
http://www.cambridge.org/052182060X

This page intentionally left blank

Modern Compiler Implementation in Java
Second Edition

This textbook describes all phases of a compiler: lexical analysis, parsing, abstract syntax, semantic
actions, intermediate representations, instruction selection via tree matching, dataflow analysis, graph-
coloring register allocation, and runtime systems. It includes good coverage of current techniques in
code generation and register allocation, as well as the compilation of functional and object-oriented
languages, which is missing from most books. The most accepted and successful techniques are de-
scribed concisely, rather than as an exhaustive catalog of every possible variant. Detailed descriptions
of the interfaces between modules of a compiler are illustrated with actual Java classes.

The first part of the book, Fundamentals of Compilation, is suitable for a one-semester first course in
compiler design. The second part, Advanced Topics, which includes the compilation of object-oriented
and functional languages, garbage collection, loop optimization, SSA form, instruction scheduling, and
optimization for cache-memory hierarchies, can be used for a second-semester or graduate course.

This new edition has been rewritten extensively to include more discussion of Java and object-oriented
programming concepts, such as visitor patterns. A unique feature is the newly redesigned compiler
project in Java for a subset of Java itself. The project includes both front-end and back-end phases, so
that students can build a complete working compiler in one semester.

Andrew W. Appel is Professor of Computer Science at Princeton University. He has done research
and published papers on compilers, functional programming languages, runtime systems and garbage
collection, type systems, and computer security; he is also author of the book Compiling with Contin-
uations. He is a designer and founder of the Standard ML of New Jersey project. In 1998, Appel was
elected a Fellow of the Association for Computing Machinery for “significant research contributions
in the area of programming languages and compilers” and for his work as editor-in-chief (1993–97)
of the ACM Transactions on Programming Languages and Systems, the leading journal in the field of
compilers and programming languages.

Jens Palsberg is Associate Professor of Computer Science at Purdue University. His research inter-
ests are programming languages, compilers, software engineering, and information security. He has
authored more than 50 technical papers in these areas and a book with Michael Schwartzbach, Object-
oriented Type Systems. In 1998, he received the National Science Foundation Faculty Early Career
Development Award, and in 1999, the Purdue University Faculty Scholar award.

i

ii

Modern Compiler
Implementation
in Java
Second Edition

ANDREW W. APPEL
Princeton University

with JENS PALSBERG
Purdue University

iii

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

First published in printed format

ISBN 0-521-82060-X hardback
ISBN 0-511-04286-8 eBook

Cambridge University Press 2004

2002

(netLibrary)

©

Contents

Preface ix

Part I Fundamentals of Compilation

1 Introduction 3
1.1 Modules and interfaces 4
1.2 Tools and software 5
1.3 Data structures for tree languages 7

2 Lexical Analysis 16
2.1 Lexical tokens 17
2.2 Regular expressions 18
2.3 Finite automata 21
2.4 Nondeterministic finite automata 24
2.5 Lexical-analyzer generators 30

3 Parsing 38
3.1 Context-free grammars 40
3.2 Predictive parsing 45
3.3 LR parsing 55
3.4 Using parser generators 68
3.5 Error recovery 76

4 Abstract Syntax 86
4.1 Semantic actions 86
4.2 Abstract parse trees 89
4.3 Visitors 93

5 Semantic Analysis 103
5.1 Symbol tables 103

v

CONTENTS

5.2 Type-checking MiniJava 111

6 Activation Records 116
6.1 Stack frames 118
6.2 Frames in the MiniJava compiler 126

7 Translation to Intermediate Code 136
7.1 Intermediate representation trees 137
7.2 Translation into trees 140
7.3 Declarations 155

8 Basic Blocks and Traces 162
8.1 Canonical trees 163
8.2 Taming conditional branches 169

9 Instruction Selection 176
9.1 Algorithms for instruction selection 179
9.2 CISC machines 187
9.3 Instruction selection for the MiniJava compiler 190

10 Liveness Analysis 203
10.1 Solution of dataflow equations 205
10.2 Liveness in the MiniJava compiler 214

11 Register Allocation 219
11.1 Coloring by simplification 220
11.2 Coalescing 223
11.3 Precolored nodes 227
11.4 Graph-coloring implementation 232
11.5 Register allocation for trees 241

12 Putting It All Together 249

Part II Advanced Topics

13 Garbage Collection 257
13.1 Mark-and-sweep collection 257
13.2 Reference counts 262
13.3 Copying collection 264

vi

CONTENTS

13.4 Generational collection 269
13.5 Incremental collection 272
13.6 Baker’s algorithm 274
13.7 Interface to the compiler 275

14 Object-Oriented Languages 283
14.1 Class extension 283
14.2 Single inheritance of data fields 284
14.3 Multiple inheritance 286
14.4 Testing class membership 289
14.5 Private fields and methods 292
14.6 Classless languages 293
14.7 Optimizing object-oriented programs 293

15 Functional Programming Languages 298
15.1 A simple functional language 299
15.2 Closures 301
15.3 Immutable variables 302
15.4 Inline expansion 308
15.5 Closure conversion 316
15.6 Efficient tail recursion 319
15.7 Lazy evaluation 321

16 Polymorphic Types 335
16.1 Parametric polymorphism 336
16.2 Polymorphic type-checking 339
16.3 Translation of polymorphic programs 344
16.4 Resolution of static overloading 347

17 Dataflow Analysis 350
17.1 Intermediate representation for flow analysis 351
17.2 Various dataflow analyses 354
17.3 Transformations using dataflow analysis 359
17.4 Speeding up dataflow analysis 360
17.5 Alias analysis 369

18 Loop Optimizations 376
18.1 Dominators 379
18.2 Loop-invariant computations 384

vii

CONTENTS

18.3 Induction variables 385
18.4 Array-bounds checks 391
18.5 Loop unrolling 395

19 Static Single-Assignment Form 399
19.1 Converting to SSA form 402
19.2 Efficient computation of the dominator tree 410
19.3 Optimization algorithms using SSA 417
19.4 Arrays, pointers, and memory 423
19.5 The control-dependence graph 425
19.6 Converting back from SSA form 428
19.7 A functional intermediate form 430

20 Pipelining and Scheduling 440
20.1 Loop scheduling without resource bounds 444
20.2 Resource-bounded loop pipelining 448
20.3 Branch prediction 456

21 The Memory Hierarchy 464
21.1 Cache organization 465
21.2 Cache-block alignment 468
21.3 Prefetching 470
21.4 Loop interchange 476
21.5 Blocking 477
21.6 Garbage collection and the memory hierarchy 480

Appendix: MiniJava Language Reference Manual 484
A.1 Lexical Issues 484
A.2 Grammar 484
A.3 Sample Program 486

Bibliography 487

Index 495

viii

Preface

This book is intended as a textbook for a one- or two-semester course in com-
pilers. Students will see the theory behind different components of a com-
piler, the programming techniques used to put the theory into practice, and
the interfaces used to modularize the compiler. To make the interfaces and
programming examples clear and concrete, we have written them in Java.
Another edition of this book is available that uses the ML language.

Implementation project. The “student project compiler” that we have out-
lined is reasonably simple, but is organized to demonstrate some important
techniques that are now in common use: abstract syntax trees to avoid tan-
gling syntax and semantics, separation of instruction selection from register
allocation, copy propagation to give flexibility to earlier phases of the com-
piler, and containment of target-machine dependencies. Unlike many “stu-
dent compilers” found in other textbooks, this one has a simple but sophisti-
cated back end, allowing good register allocation to be done after instruction
selection.

This second edition of the book has a redesigned project compiler: It uses
a subset of Java, called MiniJava, as the source language for the compiler
project, it explains the use of the parser generators JavaCC and SableCC, and
it promotes programming with the Visitor pattern. Students using this edition
can implement a compiler for a language they’re familiar with, using standard
tools, in a more object-oriented style.

Each chapter in Part I has a programming exercise corresponding to one
module of a compiler. Software useful for the exercises can be found at
http://uk.cambridge.org/resources/052182060X (outside North America);
http://us.cambridge.org/titles/052182060X.html (within North America).

Exercises. Each chapter has pencil-and-paper exercises; those marked with
a star are more challenging, two-star problems are difficult but solvable, and

ix

PREFACE

the occasional three-star exercises are not known to have a solution.

Course sequence. The figure shows how the chapters depend on each other.

1. Introduction

2. Lexical
Analysis 3. Parsing 4. Abstract

Syntax 5. Semantic
Analysis

6. Activation
Records

9. Instruction
Selection

12. Putting it
All Together

10. Liveness
Analysis

13. Garbage
Collection 14. Object-Oriented

Languages

17. Dataflow
Analysis

18. Loop
Optimizations

20. Pipelining,
Scheduling

21. Memory
Hierarchies

19.
Static Single-
Assignment
Form

11. Register
Allocation

15. Functional
Languages 16. Polymorphic

Types

7. Translation to
Intermediate Code 8. Basic Blocks

and Traces

Q
ua

rt
er

Q
ua

rt
er

S
em

es
te

r
S

em
es

te
r

• A one-semester course could cover all of Part I (Chapters 1–12), with students
implementing the project compiler (perhaps working in groups); in addition,
lectures could cover selected topics from Part II.

• An advanced or graduate course could cover Part II, as well as additional
topics from the current literature. Many of the Part II chapters can stand inde-
pendently from Part I, so that an advanced course could be taught to students
who have used a different book for their first course.

• In a two-quarter sequence, the first quarter could cover Chapters 1–8, and the
second quarter could cover Chapters 9–12 and some chapters from Part II.

Acknowledgments. Many people have provided constructive criticism or
helped us in other ways on this book. Vidyut Samanta helped tremendously
with both the text and the software for the new edition of the book. We would
also like to thank Leonor Abraido-Fandino, Scott Ananian, Nils Andersen,
Stephen Bailey, Joao Cangussu, Maia Ginsburg, Max Hailperin, David Han-
son, Jeffrey Hsu, David MacQueen, Torben Mogensen, Doug Morgan, Robert
Netzer, Elma Lee Noah, Mikael Petterson, Benjamin Pierce, Todd Proebsting,
Anne Rogers, Barbara Ryder, Amr Sabry, Mooly Sagiv, Zhong Shao, Mary
Lou Soffa, Andrew Tolmach, Kwangkeun Yi, and Kenneth Zadeck.

x

PART ONE

Fundamentals of
Compilation

1

2

1
Introduction

A compiler was originally a program that “compiled”
subroutines [a link-loader]. When in 1954 the combina-
tion “algebraic compiler” came into use, or rather into
misuse, the meaning of the term had already shifted into
the present one.

Bauer and Eickel [1975]

This book describes techniques, data structures, and algorithms for translating
programming languages into executable code. A modern compiler is often or-
ganized into many phases, each operating on a different abstract “language.”
The chapters of this book follow the organization of a compiler, each covering
a successive phase.

To illustrate the issues in compiling real programming languages, we show
how to compile MiniJava, a simple but nontrivial subset of Java. Program-
ming exercises in each chapter call for the implementation of the correspond-
ing phase; a student who implements all the phases described in Part I of the
book will have a working compiler. MiniJava is easily extended to support
class extension or higher-order functions, and exercises in Part II show how
to do this. Other chapters in Part II cover advanced techniques in program
optimization. Appendix A describes the MiniJava language.

The interfaces between modules of the compiler are almost as important
as the algorithms inside the modules. To describe the interfaces concretely,
it is useful to write them down in a real programming language. This book
uses Java – a simple object-oriented language. Java is safe, in that programs
cannot circumvent the type system to violate abstractions; and it has garbage
collection, which greatly simplifies the management of dynamic storage al-

3

CHAPTER ONE. INTRODUCTION
So

ur
ce

 P
ro

gr
am

To
ke

ns

R
ed

uc
tio

ns

A
bs

tr
ac

t S
yn

ta
x

Tr
an

sl
at

eTables

Frame

IR
 T

re
es

IR
 T

re
es

A
ss

em

A
ss

em

F
lo

w
 G

ra
ph

In
te

rf
er

en
ce

 G
ra

ph

R
eg

is
te

r
A

ss
ig

nm
en

t

A
ss

em
bl

y
La

ng
ua

ge

R
el

oc
at

ab
le

 O
bj

ec
t C

od
e

M
ac

hi
ne

 L
an

gu
ag

e

Parsing
ActionsParseLex Semantic

Analysis Translate Canon-
icalize

Frame
Layout

Environ-
ments

Instruction
Selection

Control
Flow

Analysis

Data
Flow

Analysis
Register

Allocation
Code

Emission
Assembler Linker

FIGURE 1.1. Phases of a compiler, and interfaces between them.

location. Both of these properties are useful in writing compilers (and almost
any kind of software).

This is not a textbook on Java programming. Students using this book who
do not know Java already should pick it up as they go along, using a Java
programming book as a reference. Java is a small enough language, with
simple enough concepts, that this should not be difficult for students with
good programming skills in other languages.

1.1 MODULES AND INTERFACES

Any large software system is much easier to understand and implement if
the designer takes care with the fundamental abstractions and interfaces. Fig-
ure 1.1 shows the phases in a typical compiler. Each phase is implemented as
one or more software modules.

Breaking the compiler into this many pieces allows for reuse of the compo-
nents. For example, to change the target machine for which the compiler pro-

4

1.2. TOOLS AND SOFTWARE

duces machine language, it suffices to replace just the Frame Layout and In-
struction Selection modules. To change the source language being compiled,
only the modules up through Translate need to be changed. The compiler
can be attached to a language-oriented syntax editor at the Abstract Syntax
interface.

The learning experience of coming to the right abstraction by several itera-
tions of think–implement–redesign is one that should not be missed. However,
the student trying to finish a compiler project in one semester does not have
this luxury. Therefore, we present in this book the outline of a project where
the abstractions and interfaces are carefully thought out, and are as elegant
and general as we are able to make them.

Some of the interfaces, such as Abstract Syntax, IR Trees, and Assem, take
the form of data structures: For example, the Parsing Actions phase builds an
Abstract Syntax data structure and passes it to the Semantic Analysis phase.
Other interfaces are abstract data types; the Translate interface is a set of
functions that the Semantic Analysis phase can call, and the Tokens interface
takes the form of a function that the Parser calls to get the next token of the
input program.

DESCRIPTION OF THE PHASES
Each chapter of Part I of this book describes one compiler phase, as shown in
Table 1.2

This modularization is typical of many real compilers. But some compil-
ers combine Parse, Semantic Analysis, Translate, and Canonicalize into one
phase; others put Instruction Selection much later than we have done, and
combine it with Code Emission. Simple compilers omit the Control Flow
Analysis, Data Flow Analysis, and Register Allocation phases.

We have designed the compiler in this book to be as simple as possible, but
no simpler. In particular, in those places where corners are cut to simplify the
implementation, the structure of the compiler allows for the addition of more
optimization or fancier semantics without violence to the existing interfaces.

1.2 TOOLS AND SOFTWARE

Two of the most useful abstractions used in modern compilers are context-
free grammars, for parsing, and regular expressions, for lexical analysis. To
make the best use of these abstractions it is helpful to have special tools,

5

CHAPTER ONE. INTRODUCTION

Chapter Phase Description
2 Lex Break the source file into individual words, or tokens.
3 Parse Analyze the phrase structure of the program.
4 Semantic

Actions
Build a piece of abstract syntax tree corresponding to each
phrase.

5 Semantic
Analysis

Determine what each phrase means, relate uses of variables to
their definitions, check types of expressions, request translation
of each phrase.

6 Frame
Layout

Place variables, function-parameters, etc. into activation records
(stack frames) in a machine-dependent way.

7 Translate Produce intermediate representation trees (IR trees), a nota-
tion that is not tied to any particular source language or target-
machine architecture.

8 Canonicalize Hoist side effects out of expressions, and clean up conditional
branches, for the convenience of the next phases.

9 Instruction
Selection

Group the IR-tree nodes into clumps that correspond to the ac-
tions of target-machine instructions.

10 Control
Flow
Analysis

Analyze the sequence of instructions into a control flow graph
that shows all the possible flows of control the program might
follow when it executes.

10 Dataflow
Analysis

Gather information about the flow of information through vari-
ables of the program; for example, liveness analysis calculates
the places where each program variable holds a still-needed value
(is live).

11 Register
Allocation

Choose a register to hold each of the variables and temporary
values used by the program; variables not live at the same time
can share the same register.

12 Code
Emission

Replace the temporary names in each machine instruction with
machine registers.

TABLE 1.2. Description of compiler phases.

such as Yacc (which converts a grammar into a parsing program) and Lex
(which converts a declarative specification into a lexical-analysis program).
Fortunately, such tools are available for Java, and the project described in this
book makes use of them.

The programming projects in this book can be compiled using any Java

6

1.3. DATA STRUCTURES FOR TREE LANGUAGES

Stm → Stm ; Stm (CompoundStm)

Stm → id := Exp (AssignStm)

Stm → print (ExpList) (PrintStm)

Exp → id (IdExp)

Exp → num (NumExp)

Exp → Exp Binop Exp (OpExp)

Exp → (Stm , Exp) (EseqExp)

ExpList → Exp , ExpList (PairExpList)
ExpList → Exp (LastExpList)
Binop → + (Plus)
Binop → − (Minus)
Binop → × (Times)
Binop → / (Div)

GRAMMAR 1.3. A straight-line programming language.

compiler. The parser generators JavaCC and SableCC are freely available on
the Internet; for information see the World Wide Web page

http://uk.cambridge.org/resources/052182060X (outside North America);
http://us.cambridge.org/titles/052182060X.html (within North America).

Source code for some modules of the MiniJava compiler, skeleton source
code and support code for some of the programming exercises, example Mini-
Java programs, and other useful files are also available from the same Web
address. The programming exercises in this book refer to this directory as
$MINIJAVA/ when referring to specific subdirectories and files contained
therein.

1.3 DATA STRUCTURES FOR TREE LANGUAGES

Many of the important data structures used in a compiler are intermediate
representations of the program being compiled. Often these representations
take the form of trees, with several node types, each of which has different
attributes. Such trees can occur at many of the phase-interfaces shown in
Figure 1.1.

Tree representations can be described with grammars, just like program-
ming languages. To introduce the concepts, we will show a simple program-
ming language with statements and expressions, but no loops or if-statements
(this is called a language of straight-line programs).

The syntax for this language is given in Grammar 1.3.
The informal semantics of the language is as follows. Each Stm is a state-

ment, each Exp is an expression. s1; s2 executes statement s1, then statement
s2. i:=e evaluates the expression e, then “stores” the result in variable i .

7

CHAPTER ONE. INTRODUCTION

print(e1, e2, . . . , en) displays the values of all the expressions, evaluated
left to right, separated by spaces, terminated by a newline.

An identifier expression, such as i , yields the current contents of the vari-
able i . A number evaluates to the named integer. An operator expression
e1 op e2 evaluates e1, then e2, then applies the given binary operator. And
an expression sequence (s, e) behaves like the C-language “comma” opera-
tor, evaluating the statement s for side effects before evaluating (and returning
the result of) the expression e.

For example, executing this program

a := 5+3; b := (print(a, a-1), 10*a); print(b)

prints

8 7
80

How should this program be represented inside a compiler? One represen-
tation is source code, the characters that the programmer writes. But that is
not so easy to manipulate. More convenient is a tree data structure, with one
node for each statement (Stm) and expression (Exp). Figure 1.4 shows a tree
representation of the program; the nodes are labeled by the production labels
of Grammar 1.3, and each node has as many children as the corresponding
grammar production has right-hand-side symbols.

We can translate the grammar directly into data structure definitions, as
shown in Program 1.5. Each grammar symbol corresponds to an abstract
class in the data structures:

Grammar class
Stm Stm
Exp Exp
ExpList ExpList
id String
num int

For each grammar rule, there is one constructor that belongs to the class
for its left-hand-side symbol. We simply extend the abstract class with a “con-
crete” class for each grammar rule. The constructor (class) names are indi-
cated on the right-hand side of Grammar 1.3.

Each grammar rule has right-hand-side components that must be repre-
sented in the data structures. The CompoundStm has two Stm’s on the right-
hand side; the AssignStm has an identifier and an expression; and so on.

8

1.3. DATA STRUCTURES FOR TREE LANGUAGES

.
CompoundStm

AssignStm

a OpExp

NumExp

5

Plus NumExp

3

CompoundStm

AssignStm

b EseqExp

PrintStm

PairExpList

IdExp

a

LastExpList

OpExp

IdExp

a

Minus NumExp

1

OpExp

NumExp

10

Times IdExp

a

PrintStm

LastExpList

IdExp

b

a := 5 + 3 ; b := (print (a , a - 1) , 10 * a) ; print (b)

FIGURE 1.4. Tree representation of a straight-line program.

These become fields of the subclasses in the Java data structure. Thus, Com-
poundStm has two fields (also called instance variables) called stm1 and
stm2; AssignStm has fields id and exp.

For Binop we do something simpler. Although we could make a Binop
class – with subclasses for Plus, Minus, Times, Div – this is overkill because
none of the subclasses would need any fields. Instead we make an “enumer-
ation” type (in Java, actually an integer) of constants (final int variables)
local to the OpExp class.

Programming style. We will follow several conventions for representing tree
data structures in Java:

1. Trees are described by a grammar.
2. A tree is described by one or more abstract classes, each corresponding to a

symbol in the grammar.
3. Each abstract class is extended by one or more subclasses, one for each gram-

mar rule.

9

CHAPTER ONE. INTRODUCTION

public abstract class Stm {}

public class CompoundStm extends Stm {
public Stm stm1, stm2;
public CompoundStm(Stm s1, Stm s2) {stm1=s1; stm2=s2;}}

public class AssignStm extends Stm {
public String id; public Exp exp;
public AssignStm(String i, Exp e) {id=i; exp=e;}}

public class PrintStm extends Stm {
public ExpList exps;
public PrintStm(ExpList e) {exps=e;}}

public abstract class Exp {}

public class IdExp extends Exp {
public String id;
public IdExp(String i) {id=i;}}

public class NumExp extends Exp {
public int num;
public NumExp(int n) {num=n;}}

public class OpExp extends Exp {
public Exp left, right; public int oper;
final public static int Plus=1,Minus=2,Times=3,Div=4;
public OpExp(Exp l, int o, Exp r) {left=l; oper=o; right=r;}}

public class EseqExp extends Exp {
public Stm stm; public Exp exp;
public EseqExp(Stm s, Exp e) {stm=s; exp=e;}}

public abstract class ExpList {}

public class PairExpList extends ExpList {
public Exp head; public ExpList tail;
public PairExpList(Exp h, ExpList t) {head=h; tail=t;}}

public class LastExpList extends ExpList {
public Exp head;
public LastExpList(Exp h) {head=h;}}

PROGRAM 1.5. Representation of straight-line programs.

10

PROGRAMMING EXERCISE

4. For each nontrivial symbol in the right-hand side of a rule, there will be one
field in the corresponding class. (A trivial symbol is a punctuation symbol
such as the semicolon in CompoundStm.)

5. Every class will have a constructor function that initializes all the fields.
6. Data structures are initialized when they are created (by the constructor func-

tions), and are never modified after that (until they are eventually discarded).

Modularity principles for Java programs. A compiler can be a big program;
careful attention to modules and interfaces prevents chaos. We will use these
principles in writing a compiler in Java:

1. Each phase or module of the compiler belongs in its own package.
2. “Import on demand” declarations will not be used. If a Java file begins with

import A.F.*; import A.G.*; import B.*; import C.*;

then the human reader will have to look outside this file to tell which package
defines the X that is used in the expression X.put().

3. “Single-type import” declarations are a better solution. If the module begins
import A.F.W; import A.G.X; import B.Y; import C.Z;

then you can tell without looking outside this file that X comes from A.G.
4. Java is naturally a multithreaded system. We would like to support multiple

simultaneous compiler threads and compile two different programs simultane-
ously, one in each compiler thread. Therefore, static variables must be avoided
unless they are final (constant). We never want two compiler threads to be
updating the same (static) instance of a variable.

P R O G R A M STRAIGHT-LINE PROGRAM INTERPRETER
Implement a simple program analyzer and interpreter for the straight-line
programming language. This exercise serves as an introduction to environ-
ments (symbol tables mapping variable names to information about the vari-
ables); to abstract syntax (data structures representing the phrase structure of
programs); to recursion over tree data structures, useful in many parts of a
compiler; and to a functional style of programming without assignment state-
ments.

It also serves as a “warm-up” exercise in Java programming. Programmers
experienced in other languages but new to Java should be able to do this
exercise, but will need supplementary material (such as textbooks) on Java.

Programs to be interpreted are already parsed into abstract syntax, as de-
scribed by the data types in Program 1.5.

However, we do not wish to worry about parsing the language, so we write
this program by applying data constructors:

11

CHAPTER ONE. INTRODUCTION

Stm prog =
new CompoundStm(new AssignStm("a",

new OpExp(new NumExp(5),
OpExp.Plus, new NumExp(3))),

new CompoundStm(new AssignStm("b",
new EseqExp(new PrintStm(new PairExpList(new IdExp("a"),

new LastExpList(new OpExp(new IdExp("a"),
OpExp.Minus,new NumExp(1))))),

new OpExp(new NumExp(10), OpExp.Times,
new IdExp("a")))),

new PrintStm(new LastExpList(new IdExp("b")))));

Files with the data type declarations for the trees, and this sample program,
are available in the directory $MINIJAVA/chap1.

Writing interpreters without side effects (that is, assignment statements
that update variables and data structures) is a good introduction to denota-
tional semantics and attribute grammars, which are methods for describing
what programming languages do. It’s often a useful technique in writing com-
pilers, too; compilers are also in the business of saying what programming
languages do.

Therefore, in implementing these programs, never assign a new value to
any variable or object field except when it is initialized. For local variables,
use the initializing form of declaration (for example, int i=j+3;) and for
each class, make a constructor function (like the CompoundStm constructor
in Program 1.5).

1. Write a Java function int maxargs(Stm s) that tells the maximum num-
ber of arguments of any print statement within any subexpression of a given
statement. For example, maxargs(prog) is 2.

2. Write a Java function void interp(Stm s) that “interprets” a program
in this language. To write in a “functional programming” style – in which
you never use an assignment statement – initialize each local variable as you
declare it.

Your functions that examine each Expwill have to use instanceof to de-
termine which subclass the expression belongs to and then cast to the proper
subclass. Or you can add methods to the Exp and Stm classes to avoid the use
of instanceof.

For part 1, remember that print statements can contain expressions that
contain other print statements.

12

PROGRAMMING EXERCISE

For part 2, make two mutually recursive functions interpStm and
interpExp. Represent a “table,” mapping identifiers to the integer values
assigned to them, as a list of id× int pairs.

class Table {
String id; int value; Table tail;
Table(String i, int v, Table t) {id=i; value=v; tail=t;}

}

Then interpStm is declared as

Table interpStm(Stm s, Table t)

taking a table t1 as argument and producing the new table t2 that’s just like
t1 except that some identifiers map to different integers as a result of the
statement.

For example, the table t1 that maps a to 3 and maps c to 4, which we write
{a "→ 3, c "→ 4} in mathematical notation, could be represented as the linked
list a 3 c 4 .

Now, let the table t2 be just like t1, except that it maps c to 7 instead of 4.
Mathematically, we could write,

t2 = update(t1, c, 7),

where the update function returns a new table {a "→ 3, c "→ 7}.
On the computer, we could implement t2 by putting a new cell at the head

of the linked list: a 3 c 4c 7 , as long as we assume
that the first occurrence of c in the list takes precedence over any later occur-
rence.

Therefore, the update function is easy to implement; and the correspond-
ing lookup function

int lookup(Table t, String key)

just searches down the linked list. Of course, in an object-oriented style,
int lookup(String key) should be a method of the Table class.

Interpreting expressions is more complicated than interpreting statements,
because expressions return integer values and have side effects. We wish
to simulate the straight-line programming language’s assignment statements
without doing any side effects in the interpreter itself. (The print statements
will be accomplished by interpreter side effects, however.) The solution is to
declare interpExp as

13

CHAPTER ONE. INTRODUCTION

class IntAndTable {int i; Table t;
IntAndTable(int ii, Table tt) {i=ii; t=tt;}

}
IntAndTable interpExp(Exp e, Table t) · · ·

The result of interpreting an expression e1 with table t1 is an integer value i
and a new table t2. When interpreting an expression with two subexpressions
(such as an OpExp), the table t2 resulting from the first subexpression can be
used in processing the second subexpression.

E X E R C I S E S

1.1 This simple program implements persistent functional binary search trees, so
that if tree2=insert(x,tree1), then tree1 is still available for lookups
even while tree2 can be used.

class Tree {Tree left; String key; Tree right;
Tree(Tree l, String k, Tree r) {left=l; key=k; right=r;}

Tree insert(String key, Tree t) {
if (t==null) return new Tree(null, key, null)
else if (key.compareTo(t.key) < 0)

return new Tree(insert(key,t.left),t.key,t.right);
else if (key.compareTo(t.key) > 0)

return new Tree(t.left,t.key,insert(key,t.right));
else return new Tree(t.left,key,t.right);

}

a. Implement a member function that returns true if the item is found, else
false.

b. Extend the program to include not just membership, but the mapping of
keys to bindings:

Tree insert(String key, Object binding, Tree t);
Object lookup(String key, Tree t);

c. These trees are not balanced; demonstrate the behavior on the following
two sequences of insertions:
(a) t s p i p f b s t
(b) a b c d e f g h i

*d. Research balanced search trees in Sedgewick [1997] and recommend
a balanced-tree data structure for functional symbol tables. Hint: To
preserve a functional style, the algorithm should be one that rebalances

14

EXERCISES

on insertion but not on lookup, so a data structure such as splay trees is
not appropriate.

e. Rewrite in an object-oriented (but still “functional”) style, so that insertion
is now t.insert(key) instead of insert(key,t). Hint: You’ll need an
EmptyTree subclass.

15

2
Lexical Analysis

lex-i-cal: of or relating to words or the vocabulary of
a language as distinguished from its grammar and con-
struction

Webster’s Dictionary

To translate a program from one language into another, a compiler must first
pull it apart and understand its structure and meaning, then put it together in a
different way. The front end of the compiler performs analysis; the back end
does synthesis.

The analysis is usually broken up into

Lexical analysis: breaking the input into individual words or “tokens”;
Syntax analysis: parsing the phrase structure of the program; and
Semantic analysis: calculating the program’s meaning.

The lexical analyzer takes a stream of characters and produces a stream of
names, keywords, and punctuation marks; it discards white space and com-
ments between the tokens. It would unduly complicate the parser to have to
account for possible white space and comments at every possible point; this
is the main reason for separating lexical analysis from parsing.

Lexical analysis is not very complicated, but we will attack it with high-
powered formalisms and tools, because similar formalisms will be useful in
the study of parsing and similar tools have many applications in areas other
than compilation.

16

2.1. LEXICAL TOKENS

2.1 LEXICAL TOKENS

A lexical token is a sequence of characters that can be treated as a unit in the
grammar of a programming language. A programming language classifies
lexical tokens into a finite set of token types. For example, some of the token
types of a typical programming language are

Type Examples
ID foo n14 last
NUM 73 0 00 515 082
REAL 66.1 .5 10. 1e67 5.5e-10
IF if
COMMA ,
NOTEQ !=
LPAREN (
RPAREN)

Punctuation tokens such as IF, VOID, RETURN constructed from alphabetic
characters are called reserved words and, in most languages, cannot be used
as identifiers.

Examples of nontokens are

comment /* try again */
preprocessor directive #include<stdio.h>
preprocessor directive #define NUMS 5 , 6
macro NUMS
blanks, tabs, and newlines

In languages weak enough to require a macro preprocessor, the prepro-
cessor operates on the source character stream, producing another character
stream that is then fed to the lexical analyzer. It is also possible to integrate
macro processing with lexical analysis.

Given a program such as

float match0(char *s) /* find a zero */
{if (!strncmp(s, "0.0", 3))
return 0.;

}

the lexical analyzer will return the stream

FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN

LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s)

17

CHAPTER TWO. LEXICAL ANALYSIS

COMMA STRING(0.0) COMMA NUM(3) RPAREN RPAREN

RETURN REAL(0.0) SEMI RBRACE EOF

where the token-type of each token is reported; some of the tokens, such as
identifiers and literals, have semantic values attached to them, giving auxil-
iary information in addition to the token-type.

How should the lexical rules of a programming language be described? In
what language should a lexical analyzer be written?

We can describe the lexical tokens of a language in English; here is a de-
scription of identifiers in C or Java:

An identifier is a sequence of letters and digits; the first character must be a
letter. The underscore _ counts as a letter. Upper- and lowercase letters are
different. If the input stream has been parsed into tokens up to a given char-
acter, the next token is taken to include the longest string of characters that
could possibly constitute a token. Blanks, tabs, newlines, and comments are
ignored except as they serve to separate tokens. Some white space is required
to separate otherwise adjacent identifiers, keywords, and constants.

And any reasonable programming language serves to implement an ad hoc
lexer. But we will specify lexical tokens using the formal language of regular
expressions, implement lexers using deterministic finite automata, and use
mathematics to connect the two. This will lead to simpler and more readable
lexical analyzers.

2.2 REGULAR EXPRESSIONS

Let us say that a language is a set of strings; a string is a finite sequence of
symbols. The symbols themselves are taken from a finite alphabet.

The Pascal language is the set of all strings that constitute legal Pascal
programs; the language of primes is the set of all decimal-digit strings that
represent prime numbers; and the language of C reserved words is the set of
all alphabetic strings that cannot be used as identifiers in the C programming
language. The first two of these languages are infinite sets; the last is a finite
set. In all of these cases, the alphabet is the ASCII character set.

When we speak of languages in this way, we will not assign any meaning
to the strings; we will just be attempting to classify each string as in the
language or not.

To specify some of these (possibly infinite) languages with finite descrip-

18

2.2. REGULAR EXPRESSIONS

tions, we will use the notation of regular expressions. Each regular expression
stands for a set of strings.

Symbol: For each symbol a in the alphabet of the language, the regular expres-
sion a denotes the language containing just the string a.

Alternation: Given two regular expressions M and N , the alternation operator
written as a vertical bar | makes a new regular expression M | N . A string is
in the language of M | N if it is in the language of M or in the language of
N . Thus, the language of a | b contains the two strings a and b.

Concatenation: Given two regular expressions M and N , the concatenation
operator · makes a new regular expression M · N . A string is in the language
of M · N if it is the concatenation of any two strings α and β such that α is in
the language of M and β is in the language of N . Thus, the regular expression
(a | b) · a defines the language containing the two strings aa and ba.

Epsilon: The regular expression ϵ represents a language whose only string is
the empty string. Thus, (a · b) | ϵ represents the language {"","ab"}.

Repetition: Given a regular expression M , its Kleene closure is M∗. A string
is in M∗ if it is the concatenation of zero or more strings, all of which are in
M . Thus, ((a | b) ·a)∗ represents the infinite set { "" , "aa", "ba", "aaaa",
"baaa", "aaba", "baba", "aaaaaa", . . . }.

Using symbols, alternation, concatenation, epsilon, and Kleene closure we
can specify the set of ASCII characters corresponding to the lexical tokens of
a programming language. First, consider some examples:

(0 | 1)∗ · 0 Binary numbers that are multiples of two.
b∗(abb∗)∗(a|ϵ) Strings of a’s and b’s with no consecutive a’s.
(a|b)∗aa(a|b)∗ Strings of a’s and b’s containing consecutive a’s.

In writing regular expressions, we will sometimes omit the concatenation
symbol or the epsilon, and we will assume that Kleene closure “binds tighter”
than concatenation, and concatenation binds tighter than alternation; so that
ab | c means (a · b) | c, and (a |) means (a | ϵ).

Let us introduce some more abbreviations: [abcd] means (a | b | c |
d), [b-g] means [bcdefg], [b-gM-Qkr] means [bcdefgMNOPQkr], M?
means (M | ϵ), and M+ means (M ·M∗). These extensions are convenient, but
none extend the descriptive power of regular expressions: Any set of strings
that can be described with these abbreviations could also be described by just
the basic set of operators. All the operators are summarized in Figure 2.1.

Using this language, we can specify the lexical tokens of a programming
language (Figure 2.2).

The fifth line of the description recognizes comments or white space but

19

CHAPTER TWO. LEXICAL ANALYSIS

a An ordinary character stands for itself.
ϵ The empty string.

Another way to write the empty string.
M | N Alternation, choosing from M or N .
M · N Concatenation, an M followed by an N .
M N Another way to write concatenation.
M∗ Repetition (zero or more times).
M+ Repetition, one or more times.
M? Optional, zero or one occurrence of M .
[a − zA − Z] Character set alternation.
. A period stands for any single character except newline.
"a.+*" Quotation, a string in quotes stands for itself literally.

FIGURE 2.1. Regular expression notation.

if IF

[a-z][a-z0-9]* ID

[0-9]+ NUM

([0-9]+"."[0-9]*)|([0-9]*"."[0-9]+) REAL

("--"[a-z]*"\n")|(" "|"\n"|"\t")+ no token, just white space
. error

FIGURE 2.2. Regular expressions for some tokens.

does not report back to the parser. Instead, the white space is discarded and the
lexer resumed. The comments for this lexer begin with two dashes, contain
only alphabetic characters, and end with newline.

Finally, a lexical specification should be complete, always matching some
initial substring of the input; we can always achieve this by having a rule that
matches any single character (and in this case, prints an “illegal character”
error message and continues).

These rules are a bit ambiguous. For example, does if8 match as a single
identifier or as the two tokens if and 8? Does the string if 89 begin with an
identifier or a reserved word? There are two important disambiguation rules
used by Lex, JavaCC, SableCC, and other similar lexical-analyzer generators:

Longest match: The longest initial substring of the input that can match any
regular expression is taken as the next token.

Rule priority: For a particular longest initial substring, the first regular expres-
sion that can match determines its token-type. This means that the order of

20

2.3. FINITE AUTOMATA

i

1 32

f
21

a-z a-z

0-9
21

0-9 0-9

IF ID NUM

0-9

0-9

0-9

5

1 3

4 0-9

2.
.

0-9
\n

5

1

blank, etc.

2

a-z

3 4

blank, etc.

- -

any but \n
1 2

REAL white space error

FIGURE 2.3. Finite automata for lexical tokens. The states are indicated by
circles; final states are indicated by double circles. The start
state has an arrow coming in from nowhere. An edge labeled
with several characters is shorthand for many parallel edges.

writing down the regular-expression rules has significance.

Thus, if8 matches as an identifier by the longest-match rule, and if matches
as a reserved word by rule-priority.

2.3 FINITE AUTOMATA

Regular expressions are convenient for specifying lexical tokens, but we need
a formalism that can be implemented as a computer program. For this we can
use finite automata (N.B. the singular of automata is automaton). A finite
automaton has a finite set of states; edges lead from one state to another, and
each edge is labeled with a symbol. One state is the start state, and certain of
the states are distinguished as final states.

Figure 2.3 shows some finite automata. We number the states just for con-
venience in discussion. The start state is numbered 1 in each case. An edge
labeled with several characters is shorthand for many parallel edges; so in
the ID machine there are really 26 edges each leading from state 1 to 2, each
labeled by a different letter.

In a deterministic finite automaton (DFA), no two edges leaving from the

21

CHAPTER TWO. LEXICAL ANALYSIS

\n

1

a-z

2

-

3 4

1312
9 11

6

7 8

10

5

i

0-9

0-9

.
0-9

f
0-9

0-9

-

0-9, a-z

a-h
j-z

other

blank,
etc.

blank,
etc.

ID IF REALID

NUM REAL

error

white space

white space

error

error

a-z
0-9

a-e, g-z, 0-9

.

FIGURE 2.4. Combined finite automaton.

same state are labeled with the same symbol. A DFA accepts or rejects a
string as follows. Starting in the start state, for each character in the input
string the automaton follows exactly one edge to get to the next state. The
edge must be labeled with the input character. After making n transitions for
an n-character string, if the automaton is in a final state, then it accepts the
string. If it is not in a final state, or if at some point there was no appropriately
labeled edge to follow, it rejects. The language recognized by an automaton
is the set of strings that it accepts.

For example, it is clear that any string in the language recognized by au-
tomaton ID must begin with a letter. Any single letter leads to state 2, which
is final; so a single-letter string is accepted. From state 2, any letter or digit
leads back to state 2, so a letter followed by any number of letters and digits
is also accepted.

In fact, the machines shown in Figure 2.3 accept the same languages as the
regular expressions of Figure 2.2.

These are six separate automata; how can they be combined into a single
machine that can serve as a lexical analyzer? We will study formal ways of
doing this in the next section, but here we will just do it ad hoc: Figure 2.4
shows such a machine. Each final state must be labeled with the token-type
that it accepts. State 2 in this machine has aspects of state 2 of the IF machine

22

2.3. FINITE AUTOMATA

and state 2 of the ID machine; since the latter is final, then the combined state
must be final. State 3 is like state 3 of the IF machine and state 2 of the ID

machine; because these are both final we use rule priority to disambiguate
– we label state 3 with IF because we want this token to be recognized as a
reserved word, not an identifier.

We can encode this machine as a transition matrix: a two-dimensional ar-
ray (a vector of vectors), subscripted by state number and input character.
There will be a “dead” state (state 0) that loops to itself on all characters; we
use this to encode the absence of an edge.

int edges[][] = { /* · · ·0 1 2· · ·-· · ·e f g h i j· · · */
/* state 0 */ {0,0,· · ·0,0,0· · ·0· · ·0,0,0,0,0,0· · ·},
/* state 1 */ {0,0,· · ·7,7,7· · ·9· · ·4,4,4,4,2,4· · ·},
/* state 2 */ {0,0,· · ·4,4,4· · ·0· · ·4,3,4,4,4,4· · ·},
/* state 3 */ {0,0,· · ·4,4,4· · ·0· · ·4,4,4,4,4,4· · ·},
/* state 4 */ {0,0,· · ·4,4,4· · ·0· · ·4,4,4,4,4,4· · ·},
/* state 5 */ {0,0,· · ·6,6,6· · ·0· · ·0,0,0,0,0,0· · ·},
/* state 6 */ {0,0,· · ·6,6,6· · ·0· · ·0,0,0,0,0,0· · ·},
/* state 7 */ {0,0,· · ·7,7,7· · ·0· · ·0,0,0,0,0,0· · ·},
/* state 8 */ {0,0,· · ·8,8,8· · ·0· · ·0,0,0,0,0,0· · ·},

et cetera
}

There must also be a “finality” array, mapping state numbers to actions – final
state 2 maps to action ID, and so on.

RECOGNIZING THE LONGEST MATCH
It is easy to see how to use this table to recognize whether to accept or reject
a string, but the job of a lexical analyzer is to find the longest match, the
longest initial substring of the input that is a valid token. While interpreting
transitions, the lexer must keep track of the longest match seen so far, and the
position of that match.

Keeping track of the longest match just means remembering the last time
the automaton was in a final state with two variables, Last-Final (the state
number of the most recent final state encountered) and Input-Position-

at-Last-Final. Every time a final state is entered, the lexer updates these
variables; when a dead state (a nonfinal state with no output transitions) is
reached, the variables tell what token was matched, and where it ended.

Figure 2.5 shows the operation of a lexical analyzer that recognizes longest
matches; note that the current input position may be far beyond the most
recent position at which the recognizer was in a final state.

23

CHAPTER TWO. LEXICAL ANALYSIS

Last Current Current Accept
Final State Input Action

0 1 |⊤⊥if --not-a-com

2 2 |i⊤⊥f --not-a-com

3 3 |if⊤⊥ --not-a-com

3 0 |if⊤⊥--not-a-com return IF
0 1 if|⊤⊥ --not-a-com

12 12 if|⊤⊥--not-a-com
12 0 if|⊤-⊥-not-a-com found white space; resume
0 1 if |⊤⊥--not-a-com
9 9 if |-⊤⊥-not-a-com
9 10 if |-⊤-⊥not-a-com
9 10 if |-⊤-n⊥ot-a-com
9 10 if |-⊤-no⊥t-a-com
9 10 if |-⊤-not⊥-a-com
9 0 if |-⊤-not-⊥a-com error, illegal token ‘-’; resume
0 1 if -|⊤⊥-not-a-com
9 9 if -|-⊤⊥not-a-com
9 0 if -|-⊤n⊥ot-a-com error, illegal token ‘-’; resume

FIGURE 2.5. The automaton of Figure 2.4 recognizes several tokens. The
symbol | indicates the input position at each successive call
to the lexical analyzer, the symbol ⊥ indicates the current
position of the automaton, and ⊤ indicates the most recent
position in which the recognizer was in a final state.

2.4 NONDETERMINISTIC FINITE AUTOMATA

A nondeterministic finite automaton (NFA) is one that has a choice of edges
– labeled with the same symbol – to follow out of a state. Or it may have
special edges labeled with ϵ (the Greek letter epsilon) that can be followed
without eating any symbol from the input.

Here is an example of an NFA:

a a a a

a

a

a

24

2.4. NONDETERMINISTIC FINITE AUTOMATA

In the start state, on input character a, the automaton can move either right or
left. If left is chosen, then strings of a’s whose length is a multiple of three
will be accepted. If right is chosen, then even-length strings will be accepted.
Thus, the language recognized by this NFA is the set of all strings of a’s
whose length is a multiple of two or three.

On the first transition, this machine must choose which way to go. It is
required to accept the string if there is any choice of paths that will lead to
acceptance. Thus, it must “guess,” and must always guess correctly.

Edges labeled with ϵ may be taken without using up a symbol from the
input. Here is another NFA that accepts the same language:

a a

a

a

a

∋ ∋

Again, the machine must choose which ϵ-edge to take. If there is a state
with some ϵ-edges and some edges labeled by symbols, the machine can
choose to eat an input symbol (and follow the corresponding symbol-labeled
edge), or to follow an ϵ-edge instead.

CONVERTING A REGULAR EXPRESSION TO AN NFA
Nondeterministic automata are a useful notion because it is easy to convert
a (static, declarative) regular expression to a (simulatable, quasi-executable)
NFA.

The conversion algorithm turns each regular expression into an NFA with
a tail (start edge) and a head (ending state). For example, the single-symbol
regular expression a converts to the NFA

a

The regular expression ab, made by combining a with b using concatena-
tion, is made by combining the two NFAs, hooking the head of a to the tail
of b. The resulting machine has a tail labeled by a and a head into which the
b edge flows.

25

CHAPTER TWO. LEXICAL ANALYSIS

a
a

M+ constructed as M · M∗

ϵ
∋

M? constructed as M | ϵ

M | N
M

N

∋ ∋

∋
[abc]

a∋
b
c

M · N M N "abc" constructed as a · b · c

M∗
M ∋

∋

FIGURE 2.6. Translation of regular expressions to NFAs.

ba

In general, any regular expression M will have some NFA with a tail and
head:

M

We can define the translation of regular expressions to NFAs by induc-
tion. Either an expression is primitive (a single symbol or ϵ) or it is made
from smaller expressions. Similarly, the NFA will be primitive or made from
smaller NFAs.

Figure 2.6 shows the rules for translating regular expressions to nonde-
terministic automata. We illustrate the algorithm on some of the expressions
in Figure 2.2 – for the tokens IF, ID, NUM, and error. Each expression is
translated to an NFA, the “head” state of each NFA is marked final with a dif-
ferent token type, and the tails of all the expressions are joined to a new start
node. The result – after some merging of equivalent NFA states – is shown in
Figure 2.7.

26

2.4. NONDETERMINISTIC FINITE AUTOMATA

1

any

character

32
f

IF

5

z

a

4
.
..

0-9

a-z

6
.
..

ID

10

9

0

9
.
..

9

0

11

7

12
.
..

NUM

14
.
..

error

15

i
8

13

FIGURE 2.7. Four regular expressions translated to an NFA.

CONVERTING AN NFA TO A DFA
As we saw in Section 2.3, implementing deterministic finite automata (DFAs)
as computer programs is easy. But implementing NFAs is a bit harder, since
most computers don’t have good “guessing” hardware.

We can avoid the need to guess by trying every possibility at once. Let
us simulate the NFA of Figure 2.7 on the string in. We start in state 1. Now,
instead of guessing which ϵ-transition to take, we just say that at this point the
NFA might take any of them, so it is in one of the states {1, 4, 9, 14}; that is,
we compute the ϵ-closure of {1}. Clearly, there are no other states reachable
without eating the first character of the input.

Now, we make the transition on the character i. From state 1 we can reach
2, from 4 we reach 5, from 9 we go nowhere, and from 14 we reach 15. So
we have the set {2, 5, 15}. But again we must compute the ϵ-closure: From 5
there is an ϵ-transition to 8, and from 8 to 6. So the NFA must be in one of
the states {2, 5, 6, 8, 15}.

On the character n, we get from state 6 to 7, from 2 to nowhere, from 5 to
nowhere, from 8 to nowhere, and from 15 to nowhere. So we have the set {7};
its ϵ-closure is {6, 7, 8}.

Now we are at the end of the string in; is the NFA in a final state? One
of the states in our possible-states set is 8, which is final. Thus, in is an ID

token.
We formally define ϵ-closure as follows. Let edge(s, c) be the set of all

NFA states reachable by following a single edge with label c from state s.

27

CHAPTER TWO. LEXICAL ANALYSIS

For a set of states S, closure(S) is the set of states that can be reached from a
state in S without consuming any of the input, that is, by going only through
ϵ-edges. Mathematically, we can express the idea of going through ϵ-edges
by saying that closure(S) is the smallest set T such that

T = S ∪
(

⋃

s∈T

edge(s, ϵ)

)

.

We can calculate T by iteration:

T ← S
repeat T ′ ← T

T ← T ′ ∪ (
⋃

s∈T ′ edge(s, ϵ))

until T = T ′

Why does this algorithm work? T can only grow in each iteration, so the
final T must include S. If T = T ′ after an iteration step, then T must also in-
clude

⋃

s∈T ′ edge(s, ϵ). Finally, the algorithm must terminate, because there
are only a finite number of distinct states in the NFA.

Now, when simulating an NFA as described above, suppose we are in a set
d = {si , sk, sl} of NFA states si , sk, sl . By starting in d and eating the input
symbol c, we reach a new set of NFA states; we’ll call this set DFAedge(d, c):

DFAedge(d, c) = closure(
⋃

s∈d

edge(s, c))

Using DFAedge, we can write the NFA simulation algorithm more formally.
If the start state of the NFA is s1, and the input string is c1, . . . , ck , then the
algorithm is

d ← closure({s1})
for i ← 1 to k

d ← DFAedge(d, ci)

Manipulating sets of states is expensive – too costly to want to do on every
character in the source program that is being lexically analyzed. But it is
possible to do all the sets-of-states calculations in advance. We make a DFA
from the NFA, such that each set of NFA states corresponds to one DFA state.
Since the NFA has a finite number n of states, the DFA will also have a finite
number (at most 2n) of states.

DFA construction is easy once we have closure and DFAedge algorithms.
The DFA start state d1 is just closure(s1), as in the NFA simulation algo-

28

2.4. NONDETERMINISTIC FINITE AUTOMATA

a-h
 j-z

IF
ID

NUM

error

i

1,4,9,14

2,5,6,8,15

5,6,8,15

10,11,13,15

6,7,8

11,12,13

15

0-9

f

a-z
0-9

a-z
 0-9

other

0-9

ID

NUM

a-z
0-9

0-9

ID

3,6,7,8

a-e, g-z, 0-9

FIGURE 2.8. NFA converted to DFA.

rithm. Abstractly, there is an edge from di to dj labeled with c if dj =
DFAedge(di , c). We let ! be the alphabet.

states[0] ← {}; states[1] ← closure({s1})
p ← 1; j ← 0
while j ≤ p

foreach c ∈ !

e ← DFAedge(states[j], c)
if e = states[i] for some i ≤ p

then trans[j, c] ← i
else p ← p + 1

states[p] ← e
trans[j, c] ← p

j ← j + 1

The algorithm does not visit unreachable states of the DFA. This is ex-
tremely important, because in principle the DFA has 2n states, but in practice
we usually find that only about n of them are reachable from the start state.
It is important to avoid an exponential blowup in the size of the DFA inter-
preter’s transition tables, which will form part of the working compiler.

A state d is final in the DFA if any NFA state in states[d] is final in the
NFA. Labeling a state final is not enough; we must also say what token is
recognized; and perhaps several members of states[d] are final in the NFA.
In this case we label d with the token-type that occurred first in the list of

29

CHAPTER TWO. LEXICAL ANALYSIS

regular expressions that constitute the lexical specification. This is how rule
priority is implemented.

After the DFA is constructed, the “states” array may be discarded, and the
“trans” array is used for lexical analysis.

Applying the DFA construction algorithm to the NFA of Figure 2.7 gives
the automaton in Figure 2.8.

This automaton is suboptimal. That is, it is not the smallest one that recog-
nizes the same language. In general, we say that two states s1 and s2 are equiv-
alent when the machine starting in s1 accepts a string σ if and only if starting
in s2 it accepts σ . This is certainly true of the states labeled 5,6,8,15 and

6,7,8 in Figure 2.8, and of the states labeled 10,11,13,15 and 11,12,13 .
In an automaton with two equivalent states s1 and s2, we can make all of s2’s
incoming edges point to s1 instead and delete s2.

How can we find equivalent states? Certainly, s1 and s2 are equivalent if
they are both final or both nonfinal and, for any symbol c, trans[s1, c] =
trans[s2, c]; 10,11,13,15 and 11,12,13 satisfy this criterion. But this con-
dition is not sufficiently general; consider the automaton

1

32 a

a

54 a

a

a

b

Here, states 2 and 4 are equivalent, but trans[2, a] ̸= trans[4, a].
After constructing a DFA it is useful to apply an algorithm to minimize it

by finding equivalent states; see Exercise 2.6.

2.5 LEXICAL-ANALYZER GENERATORS

DFA construction is a mechanical task easily performed by computer, so it
makes sense to have an automatic lexical-analyzer generator to translate reg-
ular expressions into a DFA.

JavaCC and SableCC generate lexical analyzers and parsers written in
Java. The lexical analyzers are generated from lexical specifications; and,
as explained in the next chapter, the parsers are generated from grammars.

30

2.5. LEXICAL-ANALYZER GENERATORS

PARSER_BEGIN(MyParser)
class MyParser {}

PARSER_END(MyParser)

/* For the regular expressions on the right, the token on the left will be returned: */
TOKEN : {

< IF: "if" >
| < #DIGIT: ["0"-"9"] >
| < ID: ["a"-"z"] (["a"-"z"]|<DIGIT>)* >
| < NUM: (<DIGIT>)+ >
| < REAL: ((<DIGIT>)+ "." (<DIGIT>)*) |

((<DIGIT>)* "." (<DIGIT>)+)>
}

/* The regular expressions here will be skipped during lexical analysis: */
SKIP : {

<"--" (["a"-"z"])* ("\n" | "\r" | "\r\n")>
| " "
| "\t"
| "\n"

}

/* If we have a substring that does not match any of the regular expressions in TOKEN or SKIP,
JavaCC will automatically throw an error. */

void Start() :
{}
{ (<IF> | <ID> | <NUM> | <REAL>)* }

PROGRAM 2.9. JavaCC specification of the tokens from Figure 2.2.

For both JavaCC and SableCC, the lexical specification and the grammar are
contained in the same file.

JAVACC
The tokens described in Figure 2.2 are specified in JavaCC as shown in Pro-
gram 2.9. A JavaCC specification starts with an optional list of options fol-
lowed by a Java compilation unit enclosed between PARSER BEGIN(name)

and PARSER END(name). The same name must follow PARSER BEGIN and
PARSER END; it will be the name of the generated parser (MyParser in Pro-
gram 2.9). The enclosed compilation unit must contain a class declaration of
the same name as the generated parser.

Next is a list of grammar productions of the following kinds: a regular-

31

CHAPTER TWO. LEXICAL ANALYSIS

Helpers
digit = [’0’..’9’];

Tokens
if = ’if’;
id = [’a’..’z’]([’a’..’z’] | (digit))*;
number = digit+;
real = ((digit)+ ’.’ (digit)*) |

((digit)* ’.’ (digit)+);
whitespace = (’ ’ | ’\t’ | ’\n’)+;
comments = (’--’ [’a’..’z’]* ’\n’);

Ignored Tokens
whitespace,
comments;

PROGRAM 2.10. SableCC specification of the tokens from Figure 2.2.

expression production defines a token, a token-manager declaration can be
used by the generated lexical analyzer, and two other kinds are used to define
the grammar from which the parser is generated.

A lexical specification uses regular-expression productions; there are four
kinds: TOKEN, SKIP, MORE, and SPECIAL TOKEN. We will only need TOKEN

and SKIP for the compiler project in this book. The kind TOKEN is used to
specify that the matched string should be transformed into a token that should
be communicated to the parser. The kind SKIP is used to specify that the
matched string should be thrown away.

In Program 2.9, the specifications of ID, NUM, and REAL use the abbrevia-
tion DIGIT. The definition of DIGIT is preceeded by # to indicate that it can
be used only in the definition of other tokens.

The last part of Program 2.9 begins with void Start. It is a production
which, in this case, allows the generated lexer to recognize any of the four de-
fined tokens in any order. The next chapter will explain productions in detail.

SABLECC
The tokens described in Figure 2.2 are specified in SableCC as shown in
Program 2.10. A SableCC specification file has six sections (all optional):

1. Package declaration: specifies the root package for all classes generated by
SableCC.

2. Helper declarations: a list of abbreviations.

32

PROGRAMMING EXERCISE

3. State declarations: support the state feature of, for example, GNU FLEX;
when the lexer is in some state, only the tokens associated with that state
are recognized. States can be used for many purposes, including the detec-
tion of a beginning-of-line state, with the purpose of recognizing tokens only
if they appear at the beginning of a line. For the compiler described in this
book, states are not needed.

4. Token declarations: each one is used to specify that the matched string should
be transformed into a token that should be communicated to the parser.

5. Ignored tokens: each one is used to specify that the matched string should be
thrown away.

6. Productions: are used to define the grammar from which the parser is gener-
ated.

P R O G R A M LEXICAL ANALYSIS
Write the lexical-analysis part of a JavaCC or SableCC specification for Mini-
Java. Appendix A describes the syntax of MiniJava. The directory

$MINIJAVA/chap2/javacc

contains a test-scaffolding file Main.java that calls the lexer generated by
javacc. It also contains a README file that explains how to invoke javacc.
Similar files for sablecc can be found in $MINIJAVA/chap2/sablecc.

F U R T H E R
R E A D I N G

Lex was the first lexical-analyzer generator based on regular expressions
[Lesk 1975]; it is still widely used.

Computing ϵ-closure can be done more efficiently by keeping a queue or
stack of states whose edges have not yet been checked for ϵ-transitions [Aho
et al. 1986]. Regular expressions can be converted directly to DFAs without
going through NFAs [McNaughton and Yamada 1960; Aho et al. 1986].

DFA transition tables can be very large and sparse. If represented as a
simple two-dimensional matrix (states × symbols), they take far too much
memory. In practice, tables are compressed; this reduces the amount of mem-
ory required, but increases the time required to look up the next state [Aho
et al. 1986].

Lexical analyzers, whether automatically generated or handwritten, must
manage their input efficiently. Of course, input is buffered, so that a large

33

CHAPTER TWO. LEXICAL ANALYSIS

batch of characters is obtained at once; then the lexer can process one charac-
ter at a time in the buffer. The lexer must check, for each character, whether
the end of the buffer is reached. By putting a sentinel – a character that can-
not be part of any token – at the end of the buffer, it is possible for the lexer
to check for end-of-buffer only once per token, instead of once per character
[Aho et al. 1986]. Gray [1988] uses a scheme that requires only one check
per line, rather than one per token, but cannot cope with tokens that contain
end-of-line characters. Bumbulis and Cowan [1993] check only once around
each cycle in the DFA; this reduces the number of checks (from once per
character) when there are long paths in the DFA.

Automatically generated lexical analyzers are often criticized for being
slow. In principle, the operation of a finite automaton is very simple and
should be efficient, but interpreting from transition tables adds overhead.
Gray [1988] shows that DFAs translated directly into executable code (imple-
menting states as case statements) can run as fast as hand-coded lexers. The
Flex “fast lexical-analyzer generator” [Paxson 1995] is significantly faster
than Lex.

E X E R C I S E S

2.1 Write regular expressions for each of the following.

a. Strings over the alphabet {a, b, c} where the first a precedes the first b.
b. Strings over the alphabet {a, b, c} with an even number of a’s.
c. Binary numbers that are multiples of four.
d. Binary numbers that are greater than 101001.
e. Strings over the alphabet {a, b, c} that don’t contain the contiguous sub-

string baa.
f. The language of nonnegative integer constants in C, where numbers

beginning with 0 are octal constants and other numbers are decimal
constants.

g. Binary numbers n such that there exists an integer solution of an+bn = cn.
2.2 For each of the following, explain why you’re not surprised that there is no

regular expression defining it.

a. Strings of a’s and b’s where there are more a’s than b’s.
b. Strings of a’s and b’s that are palindromes (the same forward as backward).
c. Syntactically correct Java programs.

34

EXERCISES

2.3 Explain in informal English what each of these finite-state automata recognizes.

a.
6 107

1

0

8

1

0

1

0

1 1
2

0
3 4 9

0 0 1

0
1

1

b.

a a aa

a

*c. 0 10 2

0

01

1

1

2.4 Convert these regular expressions to nondeterministic finite automata.

a. (if|then|else)

b. a((b|a∗c)x)∗|x∗a

2.5 Convert these NFAs to deterministic finite automata.

a.

5 7

3 411

6

2

z

∋ ∋ ∋
∋

∋∋
x y

b. 3 6

b

a
a 4

b

a

5

b

a

b

a

21

a

b

c.
5

4311

6

2
a

∋

∋

∋

c t

987

10

14

131211

15 181716
s

r

c

c

c

a

a

a t

r

s

35

CHAPTER TWO. LEXICAL ANALYSIS

2.6 Find two equivalent states in the following automaton, and merge them to
produce a smaller automaton that recognizes the same language. Repeat until
there are no longer equivalent states.

0

01

0 1
43

7 8

1

5

2

6

0

0
0

1

1

1

1
1

1 0
0

Actually, the general algorithm for minimizing finite automata works in re-
verse. First, find all pairs of inequivalent states. States X, Y are inequivalent if
X is final and Y is not or (by iteration) if X

a→ X ′ and Y
a→ Y ′ and X ′, Y ′ are

inequivalent. After this iteration ceases to find new pairs of inequivalent states,
then X, Y are equivalent if they are not inequivalent. See Hopcroft and Ullman
[1979], Theorem 3.10.

*2.7 Any DFA that accepts at least one string can be converted to a regular ex-
pression. Convert the DFA of Exercise 2.3c to a regular expression. Hint: First,
pretend state 1 is the start state. Then write a regular expression for excursions
to state 2 and back, and a similar one for excursions to state 0 and back. Or
look in Hopcroft and Ullman [1979], Theorem 2.4, for the algorithm.

*2.8 Suppose this DFA were used by Lex to find tokens in an input file.

0-9

0-9
0-9

0-9

a-z

0-9

+

-
0-9

e +

-

a-z

5

1 2 8

76
3

4

a. How many characters past the end of a token might Lex have to examine
before matching the token?

b. Given your answer k to part (a), show an input file containing at least
two tokens such that the first call to Lex will examine k characters past
the end of the first token before returning the first token. If the answer to

36

EXERCISES

part (a) is zero, then show an input file containing at least two tokens,
and indicate the endpoint of each token.

2.9 An interpreted DFA-based lexical analyzer uses two tables,

edges indexed by state and input symbol, yielding a state number, and
final indexed by state, returning 0 or an action-number.

Starting with this lexical specification,

(aba)+ (action 1);
(a(b*)a) (action 2);
(a|b) (action 3);

generate the edges and final tables for a lexical analyzer.
Then show each step of the lexer on the string abaabbaba. Be sure to show

the values of the important internal variables of the recognizer. There will be
repeated calls to the lexer to get successive tokens.

**2.10 Lex has a lookahead operator / so that the regular expressionabc/defmatches
abc only when followed by def (but def is not part of the matched string,
and will be part of the next token(s)). Aho et al. [1986] describe, and Lex
[Lesk 1975] uses, an incorrect algorithm for implementing lookahead (it fails
on (a|ab)/ba with input aba, matching ab where it should match a). Flex
[Paxson 1995] uses a better mechanism that works correctly for (a|ab)/ba
but fails (with a warning message) on zx*/xy*.

Design a better lookahead mechanism.

37

3
Parsing

syn-tax: the way in which words are put together to form
phrases, clauses, or sentences.

Webster’s Dictionary

The abbreviation mechanism discussed in the previous chapter, whereby a
symbol stands for some regular expression, is convenient enough that it is
tempting to use it in interesting ways:

digits = [0 − 9]+
sum = (digits “+”)* digits

These regular expressions define sums of the form 28+301+9.
But now consider

digits = [0 − 9]+
sum = expr “+” expr
expr = “(” sum “)” | digits

This is meant to define expressions of the form:

(109+23)
61
(1+(250+3))

in which all the parentheses are balanced. But it is impossible for a finite au-
tomaton to recognize balanced parentheses (because a machine with N states
cannot remember a parenthesis-nesting depth greater than N), so clearly sum
and expr cannot be regular expressions.

So how does a lexical analyzer implement regular-expression abbrevia-
tions such as digits? The answer is that the right-hand-side ([0-9]+) is

38

CHAPTER THREE. PARSING

simply substituted for digits wherever it appears in regular expressions,
before translation to a finite automaton.

This is not possible for the sum-and-expr language; we can first substitute
sum into expr, yielding

expr = “(” expr “+” expr “)” | digits

but now an attempt to substitute expr into itself leads to

expr = “(” (“(” expr “+” expr “)” | digits) “+” expr “)” | digits

and the right-hand side now has just as many occurrences of expr as it did
before – in fact, it has more!

Thus, the notion of abbreviation does not add expressive power to the lan-
guage of regular expressions – there are no additional languages that can be
defined – unless the abbreviations are recursive (or mutually recursive, as are
sum and expr).

The additional expressive power gained by recursion is just what we need
for parsing. Also, once we have abbreviations with recursion, we do not need
alternation except at the top level of expressions, because the definition

expr = ab(c | d)e

can always be rewritten using an auxiliary definition as

aux = c | d
expr = a b aux e

In fact, instead of using the alternation mark at all, we can just write several
allowable expansions for the same symbol:

aux = c
aux = d
expr = a b aux e

The Kleene closure is not necessary, since we can rewrite it so that

expr = (a b c)∗

becomes

expr = (a b c) expr
expr = ϵ

39

CHAPTER THREE. PARSING

1 S → S ; S
2 S → id := E
3 S → print (L)

4 E → id
5 E → num
6 E → E + E
7 E → (S , E)

8 L → E
9 L → L , E

GRAMMAR 3.1. A syntax for straight-line programs.

What we have left is a very simple notation, called context-free grammars.
Just as regular expressions can be used to define lexical structure in a static,
declarative way, grammars define syntactic structure declaratively. But we
will need something more powerful than finite automata to parse languages
described by grammars.

In fact, grammars can also be used to describe the structure of lexical to-
kens, although regular expressions are adequate – and more concise – for that
purpose.

3.1 CONTEXT-FREE GRAMMARS

As before, we say that a language is a set of strings; each string is a finite
sequence of symbols taken from a finite alphabet. For parsing, the strings are
source programs, the symbols are lexical tokens, and the alphabet is the set
of token-types returned by the lexical analyzer.

A context-free grammar describes a language. A grammar has a set of
productions of the form

symbol → symbol symbol · · · symbol

where there are zero or more symbols on the right-hand side. Each symbol
is either terminal, meaning that it is a token from the alphabet of strings in
the language, or nonterminal, meaning that it appears on the left-hand side of
some production. No token can ever appear on the left-hand side of a produc-
tion. Finally, one of the nonterminals is distinguished as the start symbol of
the grammar.

Grammar 3.1 is an example of a grammar for straight-line programs. The
start symbol is S (when the start symbol is not written explicitly it is conven-
tional to assume that the left-hand nonterminal in the first production is the
start symbol). The terminal symbols are

id print num , + () := ;

40

3.1. CONTEXT-FREE GRAMMARS

S
S ; S
S ; id := E
id := E ; id := E
id := num ; id := E
id := num ; id := E + E
id := num ; id := E + (S , E)

id := num ; id := id + (S , E)

id := num ; id := id + (id := E , E)

id := num ; id := id + (id := E + E , E)

id := num ; id := id + (id := E + E , id)

id := num ; id := id + (id := num + E , id)

id := num ; id := id + (id := num + num , id)

DERIVATION 3.2.

and the nonterminals are S, E , and L . One sentence in the language of this
grammar is

id := num; id := id + (id := num + num, id)

where the source text (before lexical analysis) might have been

a := 7;
b := c + (d := 5 + 6, d)

The token-types (terminal symbols) are id, num, :=, and so on; the names
(a,b,c,d) and numbers (7, 5, 6) are semantic values associated with some
of the tokens.

DERIVATIONS
To show that this sentence is in the language of the grammar, we can per-
form a derivation: Start with the start symbol, then repeatedly replace any
nonterminal by one of its right-hand sides, as shown in Derivation 3.2.

There are many different derivations of the same sentence. A leftmost
derivation is one in which the leftmost nonterminal symbol is always the one
expanded; in a rightmost derivation, the rightmost nonterminal is always the
next to be expanded.

41

CHAPTER THREE. PARSING

.
S

S

id := E

num

; S

id := E

E

id

+ E

(S

id := E

E

num

+ E

num

, E

id

)

FIGURE 3.3. Parse tree.

Derivation 3.2 is neither leftmost nor rightmost; a leftmost derivation for
this sentence would begin,

S
S ; S
id := E ; S
id := num ; S
id := num ; id := E
id := num ; id := E + E

...

PARSE TREES
A parse tree is made by connecting each symbol in a derivation to the one
from which it was derived, as shown in Figure 3.3. Two different derivations
can have the same parse tree.

AMBIGUOUS GRAMMARS
A grammar is ambiguous if it can derive a sentence with two different parse
trees. Grammar 3.1 is ambiguous, since the sentence id := id+id+id has
two parse trees (Figure 3.4).

Grammar 3.5 is also ambiguous; Figure 3.6 shows two parse trees for the
sentence 1-2-3, and Figure 3.7 shows two trees for 1+2*3. Clearly, if we use

42

3.1. CONTEXT-FREE GRAMMARS

.
S

id := E

E

E

id

+ E

id

+ E

id

.
S

id := E

E

id

+ E

E

id

+ E

id

FIGURE 3.4. Two parse trees for the same sentence using Grammar 3.1.

E → id
E → num
E → E ∗ E
E → E / E
E → E + E
E → E − E
E → (E)

GRAMMAR 3.5.

.
E

E

E

1

- E

2

- E

3

.
E

E

1

- E

E

2

- E

3

FIGURE 3.6. Two parse trees for the sentence 1-2-3 in Grammar 3.5.

.
E

E

E

1

+ E

2

* E

3

.
E

E

1

+ E

E

2

* E

3

FIGURE 3.7. Two parse trees for the sentence 1+2*3 in Grammar 3.5.

43

CHAPTER THREE. PARSING

E → E + T
E → E − T
E → T

T → T ∗ F
T → T / F
T → F

F → id
F → num
F → (E)

GRAMMAR 3.8.

.
?X

+ ?Y

+

.
?U

?V

+

*

FIGURE 3.9. Parse trees that Grammar 3.8 will never produce.

parse trees to interpret the meaning of the expressions, the two parse trees for
1-2-3 mean different things: (1 − 2) − 3 = −4 versus 1 − (2 − 3) = 2.
Similarly, (1 + 2) × 3 is not the same as 1 + (2 × 3). And indeed, compilers
do use parse trees to derive meaning.

Therefore, ambiguous grammars are problematic for compiling: In gen-
eral, we would prefer to have unambiguous grammars. Fortunately, we can
often transform ambiguous grammars to unambiguous grammars.

Let us find an unambiguous grammar that accepts the same language as
Grammar 3.5. First, we would like to say that * binds tighter than +, or has
higher precedence. Second, we want to say that each operator associates to
the left, so that we get (1 − 2) − 3 instead of 1 − (2 − 3). We do this by
introducing new nonterminal symbols to get Grammar 3.8.

The symbols E , T , and F stand for expression, term, and factor; conven-
tionally, factors are things you multiply and terms are things you add.

This grammar accepts the same set of sentences as the ambiguous gram-
mar, but now each sentence has exactly one parse tree. Grammar 3.8 can never
produce parse trees of the form shown in Figure 3.9 (see Exercise 3.17).

Had we wanted to make * associate to the right, we could have written its
production as T → F ∗ T .

We can usually eliminate ambiguity by transforming the grammar. Though
there are some languages (sets of strings) that have ambiguous grammars
but no unambiguous grammar, such languages may be problematic as pro-
gramming languages because the syntactic ambiguity may lead to problems
in writing and understanding programs.

44

3.2. PREDICTIVE PARSING

S → E $

E → E + T
E → E − T
E → T

T → T ∗ F
T → T / F
T → F

F → id
F → num
F → (E)

GRAMMAR 3.10.

S → if E then S else S
S → begin S L
S → print E

L → end
L → ; S L

E → num = num

GRAMMAR 3.11.

END-OF-FILE MARKER
Parsers must read not only terminal symbols such as +, -, num, and so on, but
also the end-of-file marker. We will use $ to represent end of file.

Suppose S is the start symbol of a grammar. To indicate that $ must come
after a complete S-phrase, we augment the grammar with a new start symbol
S′ and a new production S′ → S$.

In Grammar 3.8, E is the start symbol, so an augmented grammar is Gram-
mar 3.10.

3.2 PREDICTIVE PARSING

Some grammars are easy to parse using a simple algorithm known as recur-
sive descent. In essence, each grammar production turns into one clause of a
recursive function. We illustrate this by writing a recursive-descent parser for
Grammar 3.11.

A recursive-descent parser for this language has one function for each non-
terminal and one clause for each production.

45

CHAPTER THREE. PARSING

final int IF=1, THEN=2, ELSE=3, BEGIN=4, END=5, PRINT=6,
SEMI=7, NUM=8, EQ=9;

int tok = getToken();

void advance() {tok=getToken();}
void eat(int t) {if (tok==t) advance(); else error();}

void S() {switch(tok) {
case IF: eat(IF); E(); eat(THEN); S();

eat(ELSE); S(); break;
case BEGIN: eat(BEGIN); S(); L(); break;
case PRINT: eat(PRINT); E(); break;
default: error();

}}
void L() {switch(tok) {

case END: eat(END); break;
case SEMI: eat(SEMI); S(); L(); break;
default: error();

}}
void E() { eat(NUM); eat(EQ); eat(NUM); }

With suitable definitions of error and getToken, this program will parse
very nicely.

Emboldened by success with this simple method, let us try it with Gram-
mar 3.10:

void S() { E(); eat(EOF); }
void E() {switch (tok) {

case ?: E(); eat(PLUS); T(); break;
case ?: E(); eat(MINUS); T(); break;
case ?: T(); break;
default: error();

}}
void T() {switch (tok) {

case ?: T(); eat(TIMES); F(); break;
case ?: T(); eat(DIV); F(); break;
case ?: F(); break;
default: error();

}}

There is a conflict here: The E function has no way to know which clause to
use. Consider the strings (1*2-3)+4 and (1*2-3). In the former case, the
initial call to E should use the E → E + T production, but the latter case
should use E → T .

46

3.2. PREDICTIVE PARSING

Z → d
Z → X Y Z

Y →
Y → c

X → Y
X → a

GRAMMAR 3.12.

Recursive-descent, or predictive, parsing works only on grammars where
the first terminal symbol of each subexpression provides enough information
to choose which production to use. To understand this better, we will formal-
ize the notion of FIRST sets, and then derive conflict-free recursive-descent
parsers using a simple algorithm.

Just as lexical analyzers can be constructed from regular expressions, there
are parser-generator tools that build predictive parsers. But if we are going to
use a tool, then we might as well use one based on the more powerful LR(1)
parsing algorithm, which will be described in Section 3.3.

Sometimes it’s inconvenient or impossible to use a parser-generator tool.
The advantage of predictive parsing is that the algorithm is simple enough
that we can use it to construct parsers by hand – we don’t need automatic
tools.

FIRST AND FOLLOW SETS
Given a string γ of terminal and nonterminal symbols, FIRST(γ) is the set of
all terminal symbols that can begin any string derived from γ . For example,
let γ = T ∗ F . Any string of terminal symbols derived from γ must start with
id, num, or (. Thus, FIRST(T ∗ F) = {id,num,(}.

If two different productions X → γ1 and X → γ2 have the same left-
hand-side symbol (X) and their right-hand sides have overlapping FIRST
sets, then the grammar cannot be parsed using predictive parsing. If some
terminal symbol I is in FIRST(γ1) and also in FIRST(γ2), then the X func-
tion in a recursive-descent parser will not know what to do if the input token
is I .

The computation of FIRST sets looks very simple: If γ = X Y Z , it seems
as if Y and Z can be ignored, and FIRST(X) is the only thing that matters.
But consider Grammar 3.12. Because Y can produce the empty string – and
therefore X can produce the empty string – we find that FIRST(X Y Z) must
include FIRST(Z). Therefore, in computing FIRST sets, we must keep track
of which symbols can produce the empty string; we say such symbols are
nullable. And we must keep track of what might follow a nullable symbol.

47

CHAPTER THREE. PARSING

With respect to a particular grammar, given a string γ of terminals and
nonterminals,

• nullable(X) is true if X can derive the empty string.
• FIRST(γ) is the set of terminals that can begin strings derived from γ .
• FOLLOW(X) is the set of terminals that can immediately follow X . That is,

t ∈ FOLLOW(X) if there is any derivation containing Xt . This can occur if
the derivation contains X Y Zt where Y and Z both derive ϵ.

A precise definition of FIRST, FOLLOW, and nullable is that they are the
smallest sets for which these properties hold:

For each terminal symbol Z , FIRST[Z] = {Z}.
for each production X → Y1Y2 · · · Yk

if Y1 . . . Yk are all nullable (or if k = 0)
then nullable[X] = true

for each i from 1 to k, each j from i + 1 to k
if Y1 · · · Yi−1 are all nullable (or if i = 1)

then FIRST[X] = FIRST[X] ∪ FIRST[Yi]
if Yi+1 · · · Yk are all nullable (or if i = k)

then FOLLOW[Yi] = FOLLOW[Yi] ∪ FOLLOW[X]
if Yi+1 · · · Y j−1 are all nullable (or if i + 1 = j)

then FOLLOW[Yi] = FOLLOW[Yi] ∪ FIRST[Y j]
Algorithm 3.13 for computing FIRST, FOLLOW, and nullable just follows

from these facts; we simply replace each equation with an assignment state-
ment, and iterate.

Of course, to make this algorithm efficient it helps to examine the produc-
tions in the right order; see Section 17.4. Also, the three relations need not be
computed simultaneously; nullable can be computed by itself, then FIRST,
then FOLLOW.

This is not the first time that a group of equations on sets has become
the algorithm for calculating those sets; recall the algorithm on page 28 for
computing ϵ-closure. Nor will it be the last time; the technique of iteration to
a fixed point is applicable in dataflow analysis for optimization, in the back
end of a compiler.

We can apply this algorithm to Grammar 3.12. Initially, we have:

nullable FIRST FOLLOW
X no
Y no
Z no

48

3.2. PREDICTIVE PARSING

Algorithm to compute FIRST, FOLLOW, and nullable.
Initialize FIRST and FOLLOW to all empty sets, and nullable to all false.
for each terminal symbol Z

FIRST[Z] ← {Z}
repeat

for each production X → Y1Y2 · · · Yk

if Y1 . . . Yk are all nullable (or if k = 0)
then nullable[X] ← true

for each i from 1 to k, each j from i + 1 to k
if Y1 · · · Yi−1 are all nullable (or if i = 1)

then FIRST[X] ← FIRST[X] ∪ FIRST[Yi]
if Yi+1 · · · Yk are all nullable (or if i = k)

then FOLLOW[Yi] ← FOLLOW[Yi] ∪ FOLLOW[X]
if Yi+1 · · · Y j−1 are all nullable (or if i + 1 = j)

then FOLLOW[Yi] ← FOLLOW[Yi] ∪ FIRST[Y j]
until FIRST, FOLLOW, and nullable did not change in this iteration.

ALGORITHM 3.13. Iterative computation of FIRST, FOLLOW, and nullable.

In the first iteration, we find that a ∈ FIRST[X], Y is nullable,
c ∈ FIRST[Y], d ∈ FIRST[Z], d ∈ FOLLOW[X], c ∈ FOLLOW[X],
d ∈ FOLLOW[Y]. Thus:

nullable FIRST FOLLOW
X no a c d
Y yes c d
Z no d

In the second iteration, we find that X is nullable, c ∈ FIRST[X], {a, c} ⊆
FIRST[Z], {a, c, d} ⊆ FOLLOW[X], {a, c, d} ⊆ FOLLOW[Y]. Thus:

nullable FIRST FOLLOW
X yes a c a c d
Y yes c a c d
Z no a c d

The third iteration finds no new information, and the algorithm terminates.

49

CHAPTER THREE. PARSING

a c d

X
X → a
X → Y

X → Y X → Y

Y Y → Y →
Y → c

Y →

Z Z → XY Z Z → XY Z
Z → d
Z → XY Z

FIGURE 3.14. Predictive parsing table for Grammar 3.12.

It is useful to generalize the FIRST relation to strings of symbols:

FIRST(Xγ) = FIRST[X] if not nullable[X]
FIRST(Xγ) = FIRST[X] ∪ FIRST(γ) if nullable[X]

and similarly, we say that a string γ is nullable if each symbol in γ is nullable.

CONSTRUCTING A PREDICTIVE PARSER
Consider a recursive-descent parser. The parsing function for some nontermi-
nal X has a clause for each X production; it must choose one of these clauses
based on the next token T of the input. If we can choose the right produc-
tion for each (X, T), then we can write the recursive-descent parser. All the
information we need can be encoded as a two-dimensional table of produc-
tions, indexed by nonterminals X and terminals T . This is called a predictive
parsing table.

To construct this table, enter production X → γ in row X , column T of
the table for each T ∈ FIRST(γ). Also, if γ is nullable, enter the production
in row X , column T for each T ∈ FOLLOW[X].

Figure 3.14 shows the predictive parser for Grammar 3.12. But some of the
entries contain more than one production! The presence of duplicate entries
means that predictive parsing will not work on Grammar 3.12.

If we examine the grammar more closely, we find that it is ambiguous. The
sentence d has many parse trees, including:

.
Z

d

.
Z

X

Y

Y Z

d

50

3.2. PREDICTIVE PARSING

An ambiguous grammar will always lead to duplicate entries in a predictive
parsing table. If we need to use the language of Grammar 3.12 as a program-
ming language, we will need to find an unambiguous grammar.

Grammars whose predictive parsing tables contain no duplicate entries are
called LL(1). This stands for left-to-right parse, leftmost-derivation, 1-symbol
lookahead. Clearly a recursive-descent (predictive) parser examines the input
left-to-right in one pass (some parsing algorithms do not, but these are gener-
ally not useful for compilers). The order in which a predictive parser expands
nonterminals into right-hand sides (that is, the recursive-descent parser calls
functions corresponding to nonterminals) is just the order in which a leftmost
derivation expands nonterminals. And a recursive-descent parser does its job
just by looking at the next token of the input, never looking more than one
token ahead.

We can generalize the notion of FIRST sets to describe the first k tokens of
a string, and to make an LL(k) parsing table whose rows are the nonterminals
and columns are every sequence of k terminals. This is rarely done (because
the tables are so large), but sometimes when you write a recursive-descent
parser by hand you need to look more than one token ahead.

Grammars parsable with LL(2) parsing tables are called LL(2) grammars,
and similarly for LL(3), etc. Every LL(1) grammar is an LL(2) grammar, and
so on. No ambiguous grammar is LL(k) for any k.

ELIMINATING LEFT RECURSION
Suppose we want to build a predictive parser for Grammar 3.10. The two
productions

E → E + T
E → T

are certain to cause duplicate entries in the LL(1) parsing table, since any
token in FIRST(T) will also be in FIRST(E + T). The problem is that E
appears as the first right-hand-side symbol in an E-production; this is called
left recursion. Grammars with left recursion cannot be LL(1).

To eliminate left recursion, we will rewrite using right recursion. We intro-
duce a new nonterminal E ′, and write

E → T E ′

E ′ → + T E ′

E ′ →

51

CHAPTER THREE. PARSING

S → E $

E → T E ′

E ′ → + T E ′

E ′ → − T E ′

E ′ →

T → F T ′

T ′ → ∗ F T ′

T ′ → / F T ′

T ′ →

F → id
F → num
F → (E)

GRAMMAR 3.15.

nullable FIRST FOLLOW
S no (id num
E no (id num) $
E ′ yes + -) $
T no (id num) + - $
T ′ yes * /) + - $
F no (id num) * / + - $

TABLE 3.16. Nullable, FIRST, and FOLLOW for Grammar 3.15.

This derives the same set of strings (on T and +) as the original two produc-
tions, but now there is no left recursion.

In general, whenever we have productions X → Xγ and X → α, where α

does not start with X , we know that this derives strings of the form αγ ∗, an α

followed by zero or more γ . So we can rewrite the regular expression using
right recursion:

⎛

⎜
⎜
⎜

⎝

X → X γ1

X → X γ2

X → α1

X → α2

⎞

⎟
⎟
⎟

⎠

%⇒

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X → α1 X ′

X → α2 X ′

X ′ → γ1 X ′

X ′ → γ2 X ′

X ′ →

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Applying this transformation to Grammar 3.10, we obtain Grammar 3.15.
To build a predictive parser, first we compute nullable, FIRST, and FOL-

LOW (Table 3.16). The predictive parser for Grammar 3.15 is shown in Ta-
ble 3.17.

52

3.2. PREDICTIVE PARSING

+ * id () $
S S → E$ S → E$
E E → T E ′ E → T E ′

E ′ E ′ → +T E ′ E ′ → E ′ →
T T → FT ′ T → FT ′

T ′ T ′ → T ′ → ∗FT ′ T ′ → T ′ →
F F → id F → (E)

TABLE 3.17. Predictive parsing table for Grammar 3.15. We omit the
columns for num, /, and -, as they are similar to others in
the table.

LEFT FACTORING
We have seen that left recursion interferes with predictive parsing, and that
it can be eliminated. A similar problem occurs when two productions for the
same nonterminal start with the same symbols. For example:

S → if E then S else S
S → if E then S

In such a case, we can left factor the grammar – that is, take the allowable
endings (else S and ϵ) and make a new nonterminal X to stand for them:

S → if E then S X
X →
X → else S

The resulting productions will not pose a problem for a predictive parser.
Although the grammar is still ambiguous – the parsing table has two entries
for the same slot – we can resolve the ambiguity by using the else S action.

ERROR RECOVERY
Armed with a predictive parsing table, it is easy to write a recursive-descent
parser. Here is a representative fragment of a parser for Grammar 3.15:

53

CHAPTER THREE. PARSING

void T() {switch (tok) {
case ID:
case NUM:
case LPAREN: F(); Tprime(); break;
default: error!

}}

void Tprime() {switch (tok) {
case PLUS: break;
case TIMES: eat(TIMES); F(); Tprime(); break;
case EOF: break;
case RPAREN: break;
default: error!

}}

A blank entry in row T , column x of the LL(1) parsing table indicates that
the parsing function T() does not expect to see token x – this will be a syntax
error. How should error be handled? It is safe just to raise an exception and
quit parsing, but this is not very friendly to the user. It is better to print an
error message and recover from the error, so that other syntax errors can be
found in the same compilation.

A syntax error occurs when the string of input tokens is not a sentence in
the language. Error recovery is a way of finding some sentence similar to that
string of tokens. This can proceed by deleting, replacing, or inserting tokens.

For example, error recovery for T could proceed by inserting a num token.
It’s not necessary to adjust the actual input; it suffices to pretend that the num
was there, print a message, and return normally.

void T() {switch (tok) {
case ID:
case NUM:
case LPAREN: F(); Tprime(); break;
default: print("expected id, num, or left-paren");

}}

It’s a bit dangerous to do error recovery by insertion, because if the error
cascades to produce another error, the process might loop infinitely. Error re-
covery by deletion is safer, because the loop must eventually terminate when
end-of-file is reached.

Simple recovery by deletion works by skipping tokens until a token in the
FOLLOW set is reached. For example, error recovery for T ′ could work like
this:

54

3.3. LR PARSING

int Tprime_follow [] = {PLUS, RPAREN, EOF};

void Tprime() { switch (tok) {
case PLUS: break;
case TIMES: eat(TIMES); F(); Tprime(); break;
case RPAREN: break;
case EOF: break;
default: print("expected +, *, right-paren,

or end-of-file");
skipto(Tprime_follow);

}}

A recursive-descent parser’s error-recovery mechanisms must be adjusted
(sometimes by trial and error) to avoid a long cascade of error-repair mes-
sages resulting from a single token out of place.

3.3 LR PARSING

The weakness of LL(k) parsing techniques is that they must predict which
production to use, having seen only the first k tokens of the right-hand side.
A more powerful technique, LR(k) parsing, is able to postpone the decision
until it has seen input tokens corresponding to the entire right-hand side of
the production in question (and k more input tokens beyond).

LR(k) stands for left-to-right parse, rightmost-derivation, k-token looka-
head. The use of a rightmost derivation seems odd; how is that compatible
with a left-to-right parse? Figure 3.18 illustrates an LR parse of the program

a := 7;
b := c + (d := 5 + 6, d)

using Grammar 3.1, augmented with a new start production S′ → S$.
The parser has a stack and an input. The first k tokens of the input are the

lookahead. Based on the contents of the stack and the lookahead, the parser
performs two kinds of actions:

Shift: Move the first input token to the top of the stack.
Reduce: Choose a grammar rule X → A B C; pop C, B, A from the top of the

stack; push X onto the stack.

Initially, the stack is empty and the parser is at the beginning of the input.
The action of shifting the end-of-file marker $ is called accepting and causes
the parser to stop successfully.

55

CHAPTER THREE. PARSING

Stack Input Action
1 a := 7 ; b := c + (d := 5 + 6 , d) $ shift
1 id4 := 7 ; b := c + (d := 5 + 6 , d) $ shift
1 id4 :=6 7 ; b := c + (d := 5 + 6 , d) $ shift
1 id4 :=6 num10 ; b := c + (d := 5 + 6 , d) $ reduce E → num
1 id4 :=6 E11 ; b := c + (d := 5 + 6 , d) $ reduce S → id:=E
1 S2 ; b := c + (d := 5 + 6 , d) $ shift
1 S2 ;3 b := c + (d := 5 + 6 , d) $ shift
1 S2 ;3 id4 := c + (d := 5 + 6 , d) $ shift
1 S2 ;3 id4 :=6 c + (d := 5 + 6 , d) $ shift
1 S2 ;3 id4 :=6 id20 + (d := 5 + 6 , d) $ reduce E → id
1 S2 ;3 id4 :=6 E11 + (d := 5 + 6 , d) $ shift
1 S2 ;3 id4 :=6 E11 +16 (d := 5 + 6 , d) $ shift
1 S2 ;3 id4 :=6 E11 +16 (8 d := 5 + 6 , d) $ shift
1 S2 ;3 id4 :=6 E11 +16 (8 id4 := 5 + 6 , d) $ shift
1 S2 ;3 id4 :=6 E11 +16 (8 id4 :=6 5 + 6 , d) $ shift
1 S2 ;3 id4 :=6 E11 +16 (8 id4 :=6 num10 + 6 , d) $ reduce E → num
1 S2 ;3 id4 :=6 E11 +16 (8 id4 :=6 E11 + 6 , d) $ shift
1 S2 ;3 id4 :=6 E11 +16 (8 id4 :=6 E11 +16 6 , d) $ shift
1 S2 ;3 id4 :=6 E11 +16 (8 id4 :=6 E11 +16 num10 , d) $ reduce E → num
1 S2 ;3 id4 :=6 E11 +16 (8 id4 :=6 E11 +16 E17 , d) $ reduce E → E + E
1 S2 ;3 id4 :=6 E11 +16 (8 id4 :=6 E11 , d) $ reduce S → id:=E
1 S2 ;3 id4 :=6 E11 +16 (8 S12 , d) $ shift
1 S2 ;3 id4 :=6 E11 +16 (8 S12 ,18 d) $ shift
1 S2 ;3 id4 :=6 E11 +16 (8 S12 ,18 id20) $ reduce E → id
1 S2 ;3 id4 :=6 E11 +16 (8 S12 ,18 E21) $ shift
1 S2 ;3 id4 :=6 E11 +16 (8 S12 ,18 E21)22 $ reduce E → (S, E)

1 S2 ;3 id4 :=6 E11 +16 E17 $ reduce E → E + E
1 S2 ;3 id4 :=6 E11 $ reduce S → id:=E
1 S2 ;3 S5 $ reduce S → S; S
1 S2 $ accept

FIGURE 3.18. Shift-reduce parse of a sentence. Numeric subscripts in the
Stack are DFA state numbers; see Table 3.19.

In Figure 3.18, the stack and input are shown after every step, along with
an indication of which action has just been performed. The concatenation
of stack and input is always one line of a rightmost derivation; in fact, Fig-
ure 3.18 shows the rightmost derivation of the input string, upside-down.

LR PARSING ENGINE
How does the LR parser know when to shift and when to reduce? By us-
ing a deterministic finite automaton! The DFA is not applied to the input
– finite automata are too weak to parse context-free grammars – but to the
stack. The edges of the DFA are labeled by the symbols (terminals and non-

56

3.3. LR PARSING

id num print ; , + := () $ S E L
1 s4 s7 g2
2 s3 a
3 s4 s7 g5
4 s6
5 r1 r1 r1
6 s20 s10 s8 g11
7 s9
8 s4 s7 g12
9 s20 s10 s8 g15 g14

10 r5 r5 r5 r5 r5
11 r2 r2 s16 r2
12 s3 s18
13 r3 r3 r3
14 s19 s13
15 r8 r8
16 s20 s10 s8 g17
17 r6 r6 s16 r6 r6
18 s20 s10 s8 g21
19 s20 s10 s8 g23
20 r4 r4 r4 r4 r4
21 s22
22 r7 r7 r7 r7 r7
23 r9 s16 r9

TABLE 3.19. LR parsing table for Grammar 3.1.

terminals) that can appear on the stack. Table 3.19 is the transition table for
Grammar 3.1.

The elements in the transition table are labeled with four kinds of actions:

sn Shift into state n;
gn Goto state n;
rk Reduce by rule k;
a Accept;

Error (denoted by a blank entry in the table).

To use this table in parsing, treat the shift and goto actions as edges of a
DFA, and scan the stack. For example, if the stack is id := E , then the DFA
goes from state 1 to 4 to 6 to 11. If the next input token is a semicolon, then
the “;” column in state 11 says to reduce by rule 2. The second rule of the
grammar is S → id:=E , so the top three tokens are popped from the stack
and S is pushed.

The action for “+” in state 11 is to shift; so if the next token had been +

instead, it would have been eaten from the input and pushed on the stack.

57

CHAPTER THREE. PARSING

0 S′ → S$

1 S → (L)

2 S → x

3 L → S
4 L → L , S

GRAMMAR 3.20.

Rather than rescan the stack for each token, the parser can remember in-
stead the state reached for each stack element. Then the parsing algorithm
is

Look up top stack state, and input symbol, to get action;
If action is

Shift(n): Advance input one token; push n on stack.
Reduce(k): Pop stack as many times as the number of

symbols on the right-hand side of rule k;
Let X be the left-hand-side symbol of rule k;
In the state now on top of stack, look up X to get “goto n”;
Push n on top of stack.

Accept: Stop parsing, report success.
Error: Stop parsing, report failure.

LR(0) PARSER GENERATION
An LR(k) parser uses the contents of its stack and the next k tokens of the
input to decide which action to take. Table 3.19 shows the use of one sym-
bol of lookahead. For k = 2, the table has columns for every two-token se-
quence and so on; in practice, k > 1 is not used for compilation. This is
partly because the tables would be huge, but more because most reasonable
programming languages can be described by L R(1) grammars.

LR(0) grammars are those that can be parsed looking only at the stack,
making shift/reduce decisions without any lookahead. Though this class of
grammars is too weak to be very useful, the algorithm for constructing LR(0)
parsing tables is a good introduction to the LR(1) parser construction algo-
rithm.

We will use Grammar 3.20 to illustrate LR(0) parser generation. Consider
what the parser for this grammar will be doing. Initially, it will have an empty
stack, and the input will be a complete S-sentence followed by $; that is,
the right-hand side of the S′ rule will be on the input. We indicate this as
S′ → .S$ where the dot indicates the current position of the parser.

58

3.3. LR PARSING

In this state, where the input begins with S, that means that it begins with
any possible right-hand side of an S-production; we indicate that by

S′ → .S$
S → .x
S → .(L)

1

Call this state 1. A grammar rule, combined with the dot that indicates a
position in its right-hand side, is called an item (specifically, an LR(0) item).
A state is just a set of items.

Shift actions. In state 1, consider what happens if we shift an x . We then
know that the end of the stack has an x; we indicate that by shifting the dot
past the x in the S → x production. The rules S′ → .S$ and S → .(L) are
irrelevant to this action, so we ignore them; we end up in state 2:

S → x.
2

Or in state 1 consider shifting a left parenthesis. Moving the dot past the
parenthesis in the third item yields S → (.L), where we know that there
must be a left parenthesis on top of the stack, and the input begins with some
string derived by L , followed by a right parenthesis. What tokens can begin
the input now? We find out by including all L-productions in the set of items.
But now, in one of those L-items, the dot is just before an S, so we need to
include all the S-productions:

S → (.L)

L → .L , S
L → .S
S → .(L)

S → .x

3

Goto actions. In state 1, consider the effect of parsing past some string of to-
kens derived by the S nonterminal. This will happen when an x or left paren-
thesis is shifted, followed (eventually) by a reduction of an S-production. All
the right-hand-side symbols of that production will be popped, and the parser
will execute the goto action for S in state 1. The effect of this can be simulated
by moving the dot past the S in the first item of state 1, yielding state 4:

S′ → S.$
4

59

CHAPTER THREE. PARSING

Reduce actions. In state 2 we find the dot at the end of an item. This means
that on top of the stack there must be a complete right-hand side of the cor-
responding production (S → x), ready to reduce. In such a state the parser
could perform a reduce action.

The basic operations we have been performing on states are closure(I) and
goto(I, X), where I is a set of items and X is a grammar symbol (terminal
or nonterminal). Closure adds more items to a set of items when there is a
dot to the left of a nonterminal; goto moves the dot past the symbol X in all
items.

Closure(I) =
repeat

for any item A → α.Xβ in I
for any production X → γ

I ← I ∪ {X → .γ }
until I does not change.
return I

Goto(I, X) =
set J to the empty set
for any item A → α.Xβ in I

add A → αX.β to J
return Closure(J)

Now here is the algorithm for LR(0) parser construction. First, augment
the grammar with an auxiliary start production S′ → S$. Let T be the set of
states seen so far, and E the set of (shift or goto) edges found so far.

Initialize T to {Closure({S′ → .S$})}
Initialize E to empty.
repeat

for each state I in T
for each item A → α.Xβ in I

let J be Goto(I, X)

T ← T ∪ {J }
E ← E ∪ {I

X→ J }
until E and T did not change in this iteration

However, for the symbol $ we do not compute Goto(I, $); instead we will
make an accept action.

For Grammar 3.20 this is illustrated in Figure 3.21.
Now we can compute set R of LR(0) reduce actions:

R ← {}
for each state I in T

for each item A → α. in I
R ← R ∪ {(I, A → α)}

60

3.3. LR PARSING

S' . S $
S . (L)
S . x

S' S . $

S x .

S (. L)
L . S
L . L , S
S . (L)
S . x

L S .

L L , . S
S . (L)
S . x

S (L .)
L L . , S

S (L) .

L L , S .

S

x

(

(

S

x

(

L

)

,

S

1 2

3

4

5

67

8

9

x

FIGURE 3.21. LR(0) states for Grammar 3.20.

() x , $ S L
1 s3 s2 g4
2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

TABLE 3.22. LR(0) parsing table for Grammar 3.20.

We can now construct a parsing table for this grammar (Table 3.22). For

each edge I
X→ J where X is a terminal, we put the action shift J at position

(I, X) of the table; if X is a nonterminal, we put goto J at position (I, X). For
each state I containing an item S′ → S.$ we put an accept action at (I, $).
Finally, for a state containing an item A → γ . (production n with the dot at
the end), we put a reduce n action at (I, Y) for every token Y .

In principle, since LR(0) needs no lookahead, we just need a single action
for each state: A state will shift or reduce, but not both. In practice, since we
need to know what state to shift into, we have rows headed by state numbers
and columns headed by grammar symbols.

61

CHAPTER THREE. PARSING

0 S → E $
1 E → T + E

2 E → T
3 T → x

GRAMMAR 3.23.

T x .

S E . $

E T . + E
E T .

x

E

T

E

+

1 2

3

5

4

E T + E .
6

E T + . E
E . T + E
E . T
T . x

S . E $
E . T + E
E . T
T . x

x

T

x + $ E T
1 s5 g2 g3
2 a
3 r2 s4,r2 r2
4 s5 g6 g3
5 r3 r3 r3
6 r1 r1 r1

FIGURE 3.24. LR(0) states and parsing table for Grammar 3.23.

SLR PARSER GENERATION
Let us attempt to build an LR(0) parsing table for Grammar 3.23. The LR(0)
states and parsing table are shown in Figure 3.24.

In state 3, on symbol +, there is a duplicate entry: The parser must shift
into state 4 and also reduce by production 2. This is a conflict and indicates
that the grammar is not LR(0) – it cannot be parsed by an LR(0) parser. We
will need a more powerful parsing algorithm.

A simple way of constructing better-than-LR(0) parsers is called SLR,
which stands for simple LR. Parser construction for SLR is almost identi-
cal to that for LR(0), except that we put reduce actions into the table only
where indicated by the FOLLOW set.

Here is the algorithm for putting reduce actions into an SLR table:

R ← {}
for each state I in T

for each item A → α. in I
for each token X in FOLLOW(A)

R ← R ∪ {(I, X, A → α)}

62

3.3. LR PARSING

x + $ E T
1 s5 g2 g3
2 a
3 s4 r2
4 s5 g6 g3
5 r3 r3
6 r1

FIGURE 3.25. SLR parsing table for Grammar 3.23.

The action (I, X, A → α) indicates that in state I , on lookahead symbol X ,
the parser will reduce by rule A → α.

Thus, for Grammar 3.23 we use the same LR(0) state diagram (Figure 3.24),
but we put fewer reduce actions into the SLR table, as shown in Figure 3.25.

The SLR class of grammars is precisely those grammars whose SLR pars-
ing table contains no conflicts (duplicate entries). Grammar 3.23 belongs to
this class, as do many useful programming-language grammars.

LR(1) ITEMS; LR(1) PARSING TABLE
Even more powerful than SLR is the LR(1) parsing algorithm. Most program-
ming languages whose syntax is describable by a context-free grammar have
an LR(1) grammar.

The algorithm for constructing an LR(1) parsing table is similar to that for
LR(0), but the notion of an item is more sophisticated. An LR(1) item consists
of a grammar production, a right-hand-side position (represented by the dot),
and a lookahead symbol. The idea is that an item (A → α.β, x) indicates that
the sequence α is on top of the stack, and at the head of the input is a string
derivable from βx .

An LR(1) state is a set of LR(1) items, and there are Closure and Goto
operations for LR(1) that incorporate the lookahead:

Closure(I) =
repeat
for any item (A → α.Xβ, z) in I

for any production X → γ

for any w ∈ FIRST(βz)
I ← I ∪ {(X → .γ , w)}

until I does not change
return I

Goto(I, X) =
J ← { }
for any item (A → α.Xβ, z) in I

add (A → αX.β, z) to J
return Closure(J).

63

CHAPTER THREE. PARSING

The start state is the closure of the item (S′ → .S $, ?), where the looka-
head symbol ? will not matter, because the end-of-file marker will never be
shifted.

The reduce actions are chosen by this algorithm:

R ← {}
for each state I in T

for each item (A → α. , z) in I
R ← R ∪ {(I, z, A → α)}

The action (I, z, A → α) indicates that in state I , on lookahead symbol z,
the parser will reduce by rule A → α.

Grammar 3.26 is not SLR (see Exercise 3.9), but it is in the class of LR(1)
grammars. Figure 3.27 shows the LR(1) states for this grammar; in the figure,
where there are several items with the same production but different looka-
head, as at left below, we have abbreviated as at right:

S′ → . S $? S′ → . S $?
S → . V = E $ S → . V = E $
S → . E $ S → . E $
E → . V $ E → . V $
V → . x $ V → . x $,=
V → . * E $ V → . * E $,=
V → . x =
V → . * E =
The LR(1) parsing table derived from this state graph is Table 3.28a. Wher-

ever the dot is at the end of a production (as in state 3 of Figure 3.27, where
it is at the end of production E → V), then there is a reduce action for that
production in the LR(1) table, in the row corresponding to the state number
and the column corresponding to the lookahead of the item (in this case, the
lookahead is $). Whenever the dot is to the left of a terminal symbol or non-
terminal, there is a corresponding shift or goto action in the LR(1) parsing
table, just as there would be in an LR(0) table.

LALR(1) PARSING TABLES
LR(1) parsing tables can be very large, with many states. A smaller table
can be made by merging any two states whose items are identical except for
lookahead sets. The result parser is called an LALR(1) parser, for lookahead
LR(1).

64

3.3. LR PARSING

0 S′ → S $
1 S → V = E
2 S → E

3 E → V
4 V → x
5 V → * E

GRAMMAR 3.26. A grammar capturing the essence of expressions, variables, and
pointer-dereference (by the *) operator in the C language.

S' S . $?
2

S' . S $
S . V = E
S . E
E
V

?
$
$
$
$,=

1

V *. E
E . V
V x
V . *E

$,=

V
.
.V
x

.* E $,=

.
$,=
$,=
$,=

6

S V . = E
E V .

$
$

S E . $

3

5

VS

E

E V . $

V x . $,=

V x . $

E V . $.=

V *E . $.=

x

x

7

8

11

12

10

S V = . E
E . V
V . x
V

$
$
$
$. * E

S V = E . $
9

V * . E
E . V
V . x
V

$
$
$
$. * E *

V * E . $

=

V

x
x

4

13

14

*

E

E

*

*

V

E

V

FIGURE 3.27. LR(1) states for Grammar 3.26.

x * = $ S E V
1 s8 s6 g2 g5 g3
2 a
3 s4 r3
4 s11 s13 g9 g7
5 r2
6 s8 s6 g10 g12
7 r3
8 r4 r4
9 r1

10 r5 r5
11 r4
12 r3 r3
13 s11 s13 g14 g7
14 r5

(a) LR(1)

x * = $ S E V
1 s8 s6 g2 g5 g3
2 a
3 s4 r3
4 s8 s6 g9 g7
5 r2
6 s8 s6 g10 g7
7 r3 r3
8 r4 r4
9 r1

10 r5 r5

(b) LALR(1)

TABLE 3.28. LR(1) and LALR(1) parsing tables for Grammar 3.26.

65

CHAPTER THREE. PARSING

Unambiguous Grammars

LL(0)

LL(1)

LL(k)

LR(0)

SLR

LALR(1)

LR(1)

LR(k)

Ambiguous
Grammars

FIGURE 3.29. A hierarchy of grammar classes.

For example, the items in states 6 and 13 of the LR(1) parser for Gram-
mar 3.26 (Figure 3.27) are identical if the lookahead sets are ignored. Also,
states 7 and 12 are identical except for lookahead, as are states 8 and 11 and
states 10 and 14. Merging these pairs of states gives the LALR(1) parsing
table shown in Table 3.28b.

For some grammars, the LALR(1) table contains reduce-reduce conflicts
where the LR(1) table has none, but in practice the difference matters little.
What does matter is that the LALR(1) parsing table requires less memory to
represent than the LR(1) table, since there can be many fewer states.

HIERARCHY OF GRAMMAR CLASSES
A grammar is said to be LALR(1) if its LALR(1) parsing table contains no
conflicts. All SLR grammars are LALR(1), but not vice versa. Figure 3.29
shows the relationship between several classes of grammars.

Any reasonable programming language has a LALR(1) grammar, and there
are many parser-generator tools available for LALR(1) grammars. For this

66

3.3. LR PARSING

reason, LALR(1) has become a standard for programming languages and for
automatic parser generators.

LR PARSING OF AMBIGUOUS GRAMMARS
Many programming languages have grammar rules such as

S → if E then S else S
S → if E then S
S → other

which allow programs such as

if a then if b then s1 else s2

Such a program could be understood in two ways:

(1) if a then { if b then s1 else s2 }
(2) if a then { if b then s1 } else s2

In most programming languages, an else must match the most recent pos-
sible then, so interpretation (1) is correct. In the LR parsing table there will
be a shift-reduce conflict:

S → if E then S . else
S → if E then S . else S (any)

Shifting corresponds to interpretation (1) and reducing to interpretation (2).
The ambiguity can be eliminated by introducing auxiliary nonterminals M

(for matched statement) and U (for unmatched statement):

S → M
S → U
M → if E then M else M
M → other
U → if E then S
U → if E then M else U

But instead of rewriting the grammar, we can leave the grammar unchanged
and tolerate the shift-reduce conflict. In constructing the parsing table this
conflict should be resolved by shifting, since we prefer interpretation (1).

67

CHAPTER THREE. PARSING

1 P → L

2 S → id := id
3 S → while id do S
4 S → begin L end
5 S → if id then S
6 S → if id then S else S

7 L → S
8 L → L ; S

GRAMMAR 3.30.

It is often possible to use ambiguous grammars by resolving shift-reduce
conflicts in favor of shifting or reducing, as appropriate. But it is best to use
this technique sparingly, and only in cases (such as the dangling-else de-
scribed here, and operator-precedence to be described on page 74) that are
well understood. Most shift-reduce conflicts, and probably all reduce-reduce
conflicts, should not be resolved by fiddling with the parsing table. They are
symptoms of an ill-specified grammar, and they should be resolved by elimi-
nating ambiguities.

3.4 USING PARSER GENERATORS

The task of constructing a parser is simple enough to be automated. In the
previous chapter we described the lexical-analyzer aspects of JavaCC and
SableCC. Here we will discuss the parser-generator aspects of these tools.
Documentation for JavaCC and SableCC are available via this book’s Web
site.

JAVACC
JavaCC is an LL(k) parser generator. Productions are of the form:

void Assignment() : {} { Identifier() "=" Expression() ";" }

where the left-hand side is Assignment(); the right-hand side is enclosed
between the last two curly brackets; Assignment(), Identifier(), and
Expression() are nonterminal symbols; and "=" and ";" are terminal
symbols.

Grammar 3.30 can be represented as a JavaCC grammar as shown in Gram-

68

3.4. USING PARSER GENERATORS

PARSER_BEGIN(MyParser)
public class MyParser {}

PARSER_END(MyParser)

SKIP :
{ " " | "\t" | "\n" }

TOKEN :
{ < WHILE: "while" >
| < BEGIN: "begin" >
| < END: "end" >
| < DO: "do" >
| < IF: "if" >
| < THEN: "then" >
| < ELSE: "else" >
| < SEMI: ";" >
| < ASSIGN: "=" >
| < ID: ["a"-"z"](["a"-"z"] | ["0"-"9"])* >
}

void Prog() :
{}
{ StmList() <EOF> }

void StmList() :
{}
{ Stm() StmListPrime() }

void StmListPrime() :
{}
{ (";" Stm() StmListPrime())? }

void Stm() :
{}
{ <ID> "=" <ID>
| "while" <ID> "do" Stm()
| "begin" StmList() "end"
| LOOKAHEAD(5) /* we need to lookahead till we see ”else” */
"if" <ID> "then" Stm()

| "if" <ID> "then" Stm() "else" Stm()
}

GRAMMAR 3.31. JavaCC version of Grammar 3.30.

69

CHAPTER THREE. PARSING

mar 3.31. Notice that if we had written the production for StmList() in the
style of Grammar 3.30, that is,

void StmList() :
{}
{ Stm()
| StmList() ";" Stm()
}

then the grammar would be left recursive. In that case, JavaCC would give
the following error:

Left recursion detected: "StmList... --> StmList..."

We used the techniques mentioned earlier to remove the left recursion and
arrive at Grammar 3.31.

SABLECC
SableCC is an LALR(1) parser generator. Productions are of the form:

assignment = identifier assign expression semicolon ;

where the left-hand side is assignment; the right-hand side is enclosed be-
tween = and ;; assignment, identifier, and expression are nonter-
minal symbols; and assign and semicolon are terminal symbols that are
defined in an earlier part of the syntax specification.

Grammar 3.30 can be represented as a SableCC grammar as shown in
Grammar 3.32. When there is more than one alternative, SableCC requires
a name for each alternative. A name is given to an alternative in the gram-
mar by prefixing the alternative with an identifier between curly brackets.
Also, if the same grammar symbol appears twice in the same alternative of a
production, SableCC requires a name for at least one of the two elements. El-
ement names are specified by prefixing the element with an identifier between
square brackets followed by a colon.

SableCC reports shift-reduce and reduce-reduce conflicts. A shift-reduce
conflict is a choice between shifting and reducing; a reduce-reduce conflict is
a choice of reducing by two different rules.

SableCC will report that the Grammar 3.32 has a shift-reduce conflict.
The conflict can be examined by reading the detailed error message SableCC
produces, as shown in Figure 3.33.

70

3.4. USING PARSER GENERATORS

Tokens
while = ’while’;
begin = ’begin’;
end = ’end’;
do = ’do’;
if = ’if’;
then = ’then’;
else = ’else’;
semi = ’;’;
assign = ’=’;
whitespace = (’ ’ | ’\t’ | ’\n’)+;
id = [’a’..’z’]([’a’..’z’] | [’0’..’9’])*;

Ignored Tokens
whitespace;

Productions
prog = stmlist;

stm = {assign} [left]:id assign [right]:id |
{while} while id do stm |
{begin} begin stmlist end |
{if_then} if id then stm |
{if_then_else} if id then [true_stm]:stm else [false_stm]:stm;

stmlist = {stmt} stm |
{stmtlist} stmlist semi stm;

GRAMMAR 3.32. SableCC version of Grammar 3.30.

shift/reduce conflict in state [stack: TIf TId TThen PStm *] on TElse in {
[PStm = TIf TId TThen PStm * TElse PStm] (shift),
[PStm = TIf TId TThen PStm *] followed by TElse (reduce)

}

FIGURE 3.33. SableCC shift-reduce error message for Grammar 3.32.

SableCC prefixes productions with an uppercase ‘P’ and tokens with an
uppercase ‘T’, and replaces the first letter with an uppercase when it makes
the objects for the tokens and productions. This is what you see on the stack
in the error message in Figure 3.33. So on the stack we have tokens for if,
id, then, and a production that matches a stm, and now we have an else

token. Clearly this reveals that the conflict is caused by the familiar dangling
else.

In order to resolve this conflict we need to rewrite the grammar, removing
the ambiguity as in Grammar 3.34.

71

CHAPTER THREE. PARSING

Productions
prog = stmlist;

stm = {stm_without_trailing_substm}
stm_without_trailing_substm |

{while} while id do stm |
{if_then} if id then stm |
{if_then_else} if id then stm_no_short_if

else [false_stm]:stm;

stm_no_short_if = {stm_without_trailing_substm}
stm_without_trailing_substm |

{while_no_short_if}
while id do stm_no_short_if |

{if_then_else_no_short_if}
if id then [true_stm]:stm_no_short_if

else [fals_stm]:stm_no_short_if;

stm_without_trailing_substm = {assign} [left]:id assign [right]:id |
{begin} begin stmlist end ;

stmlist = {stmt} stm | {stmtlist} stmlist semi stm;

GRAMMAR 3.34. SableCC productions of Grammar 3.32 with conflicts resolved.

PRECEDENCE DIRECTIVES
No ambiguous grammar is LR(k) for any k; the LR(k) parsing table of an am-
biguous grammar will always have conflicts. However, ambiguous grammars
can still be useful if we can find ways to resolve the conflicts.

For example, Grammar 3.5 is highly ambiguous. In using this grammar to
describe a programming language, we intend it to be parsed so that ∗ and /

bind more tightly than + and −, and that each operator associates to the left.
We can express this by rewriting the unambiguous Grammar 3.8.

But we can avoid introducing the T and F symbols and their associated
“trivial” reductions E → T and T → F . Instead, let us start by building
the LR(1) parsing table for Grammar 3.5, as shown in Table 3.35. We find
many conflicts. For example, in state 13 with lookahead + we find a conflict
between shift into state 8 and reduce by rule 3. Two of the items in state 13 are

E → E ∗ E . +
E → E . + E (any)

72

3.4. USING PARSER GENERATORS

id num + - * / () $ E
1 s2 s3 s4 g7
2 r1 r1 r1 r1 r1 r1
3 r2 r2 r2 r2 r2 r2
4 s2 s3 s4 g5
5 s6
6 r7 r7 r7 r7 r7 r7
7 s8 s10 s12 s14 a
8 s2 s3 s4 g9
9 s8,r5 s10,r5 s12,r5 s14,r5 r5 r5
10 s2 s3 s4 g11
11 s8,r6 s10,r6 s12,r6 s14,r6 r6 r6
12 s2 s3 s4 g13
13 s8,r3 s10,r3 s12,r3 s14,r3 r3 r3
14 s2 s3 s4 g15
15 s8,r4 s10,r4 s12,r4 s14,r4 r4 r4

TABLE 3.35. LR parsing table for Grammar 3.5.

In this state the top of the stack is · · · E ∗ E . Shifting will lead to a stack
· · · E ∗ E+ and eventually · · · E ∗ E + E with a reduction of E + E to E .
Reducing now will lead to the stack · · · E and then the + will be shifted. The
parse trees obtained by shifting and reducing are

.
E

E * E

E + E

Shift

.
E

E

E * E

+ E

Reduce

If we wish ∗ to bind tighter than +, we should reduce instead of shift. So
we fill the (13,+) entry in the table with r3 and discard the s8 action.

Conversely, in state 9 on lookahead ∗, we should shift instead of reduce,
so we resolve the conflict by filling the (9, ∗) entry with s12.

The case for state 9, lookahead + is

E → E + E . +
E → E . + E (any)

Shifting will make the operator right-associative; reducing will make it left-
associative. Since we want left associativity, we fill (9,+) with r5.

Consider the expression a − b − c. In most programming languages, this

73

CHAPTER THREE. PARSING

+ - * /
...

9 r5 r5 s12 s14
11 · · · s12 s14 · · ·
13 r3 r3 r3 r3
15 r4 r4

...

TABLE 3.36. Conflicts of Table 3.35 resolved.

associates to the left, as if written (a − b) − c. But suppose we believe that
this expression is inherently confusing, and we want to force the programmer
to put in explicit parentheses, either (a − b) − c or a − (b − c). Then we say
that the minus operator is nonassociative, and we would fill the (11,−) entry
with an error entry.

The result of all these decisions is a parsing table with all conflicts resolved
(Table 3.36).

Yacc has precedence directives to indicate the resolution of this class of
shift-reduce conflicts. (Unfortunately, SableCC does not have precedence di-
rectives.) A series of declarations such as

precedence nonassoc EQ, NEQ;
precedence left PLUS, MINUS;
precedence left TIMES, DIV;
precedence right EXP;

indicates that + and - are left-associative and bind equally tightly; that * and
/ are left-associative and bind more tightly than +; that ˆ is right-associative
and binds most tightly; and that = and ̸= are nonassociative, and bind more
weakly than +.

In examining a shift-reduce conflict such as

E → E ∗ E . +
E → E . + E (any)

there is the choice of shifting a token and reducing by a rule. Should the rule
or the token be given higher priority? The precedence declarations (prece-
dence left, etc.) give priorities to the tokens; the priority of a rule is given
by the last token occurring on the right-hand side of that rule. Thus the choice
here is between a rule with priority * and a token with priority +; the rule has
higher priority, so the conflict is resolved in favor of reducing.

74

3.4. USING PARSER GENERATORS

%{ declarations of yylex and yyerror %}
%token INT PLUS MINUS TIMES UMINUS
%start exp

%left PLUS MINUS
%left TIMES
%left UMINUS
%%

exp : INT
| exp PLUS exp
| exp MINUS exp
| exp TIMES exp
| MINUS exp %prec UMINUS

GRAMMAR 3.37. Yacc grammar with precedence directives.

When the rule and token have equal priority, then a left precedence fa-
vors reducing, right favors shifting, and nonassoc yields an error action.

Instead of using the default “rule has precedence of its last token,” we
can assign a specific precedence to a rule using the %prec directive. This is
commonly used to solve the “unary minus” problem. In most programming
languages a unary minus binds tighter than any binary operator, so −6 ∗ 8 is
parsed as (−6) ∗ 8, not −(6 ∗ 8). Grammar 3.37 shows an example.

The token UMINUS is never returned by the lexer; it’s just a placeholder in
the chain of precedence declarations. The directive %prec UMINUS gives
the rule exp::= MINUS exp the highest precedence, so reducing by this
rule takes precedence over shifting any operator, even a minus sign.

Precedence rules are helpful in resolving conflicts, but they should not be
abused. If you have trouble explaining the effect of a clever use of precedence
rules, perhaps instead you should rewrite the grammar to be unambiguous.

SYNTAX VERSUS SEMANTICS
Consider a programming language with arithmetic expressions such as x + y
and boolean expressions such as x + y = z or a&(b = c). Arithmetic opera-
tors bind tighter than the boolean operators; there are arithmetic variables and
boolean variables; and a boolean expression cannot be added to an arithmetic
expression. Grammar 3.38 gives a syntax for this language.

The grammar has a reduce-reduce conflict. How should we rewrite the
grammar to eliminate this conflict?

Here the problem is that when the parser sees an identifier such as a, it has

75

CHAPTER THREE. PARSING

%token ID ASSIGN PLUS MINUS AND EQUAL
%start stm
%left OR
%left AND
%left PLUS
%%

stm : ID ASSIGN ae
| ID ASSIGN be

be : be OR be
| be AND be
| ae EQUAL ae
| ID

ae : ae PLUS ae
| ID

GRAMMAR 3.38. Yacc grammar with precedence directives.

no way of knowing whether this is an arithmetic variable or a boolean variable
– syntactically they look identical. The solution is to defer this analysis until
the “semantic” phase of the compiler; it’s not a problem that can be handled
naturally with context-free grammars. A more appropriate grammar is

S → id := E

E → id
E → E & E
E → E = E
E → E + E

Now the expression a + 5&b is syntactically legal, and a later phase of the
compiler will have to reject it and print a semantic error message.

3.5 ERROR RECOVERY

LR(k) parsing tables contain shift, reduce, accept, and error actions. On page
58 we claimed that when an LR parser encounters an error action it stops
parsing and reports failure. This behavior would be unkind to the program-
mer, who would like to have all the errors in her program reported, not just
the first error.

76

3.5. ERROR RECOVERY

RECOVERY USING THE ERROR SYMBOL
Local error recovery mechanisms work by adjusting the parse stack and the
input at the point where the error was detected in a way that will allow parsing
to resume. One local recovery mechanism – found in many versions of the
Yacc parser generator – uses a special error symbol to control the recovery
process. Wherever the special error symbol appears in a grammar rule, a
sequence of erroneous input tokens can be matched.

For example, in a Yacc grammar we might have productions such as

exp → ID
exp → exp + exp
exp → (exps)

exps → exp
exps → exps ; exp

Informally, we can specify that if a syntax error is encountered in the mid-
dle of an expression, the parser should skip to the next semicolon or right
parenthesis (these are called synchronizing tokens) and resume parsing. We
do this by adding error-recovery productions such as

exp → (error)

exps → error ; exp

What does the parser generator do with the error symbol? In parser gener-
ation, error is considered a terminal symbol, and shift actions are entered in
the parsing table for it as if it were an ordinary token.

When the LR parser reaches an error state, it takes the following actions:

1. Pop the stack (if necessary) until a state is reached in which the action for the
error token is shift.

2. Shift the error token.
3. Discard input symbols (if necessary) until a lookahead is reached that has a

nonerror action in the current state.
4. Resume normal parsing.

In the two error productions illustrated above, we have taken care to fol-
low the error symbol with an appropriate synchronizing token – in this case,
a right parenthesis or semicolon. Thus, the “nonerror action” taken in step 3
will always shift. If instead we used the production exp → error, the “non-
error action” would be reduce, and (in an SLR or LALR parser) it is possible
that the original (erroneous) lookahead symbol would cause another error af-
ter the reduce action, without having advanced the input. Therefore, grammar

77

CHAPTER THREE. PARSING

rules that contain error not followed by a token should be used only when
there is no good alternative.

Caution. One can attach semantic actions to Yacc grammar rules; whenever
a rule is reduced, its semantic action is executed. Chapter 4 explains the use
of semantic actions. Popping states from the stack can lead to seemingly “im-
possible” semantic actions, especially if the actions contain side effects. Con-
sider this grammar fragment:

statements: statements exp SEMICOLON
| statements error SEMICOLON
| /* empty */

exp : increment exp decrement
| ID

increment: LPAREN {: nest=nest+1; :}
decrement: RPAREN {: nest=nest-1; :}

“Obviously” it is true that whenever a semicolon is reached, the value of
nest is zero, because it is incremented and decremented in a balanced way
according to the grammar of expressions. But if a syntax error is found after
some left parentheses have been parsed, then states will be popped from the
stack without “completing” them, leading to a nonzero value of nest. The
best solution to this problem is to have side-effect-free semantic actions that
build abstract syntax trees, as described in Chapter 4.

Unfortunately, neither JavaCC nor SableCC support the error-symbol error-
recovery method, nor the kind of global error repair described below.

GLOBAL ERROR REPAIR
Global error repair finds the smallest set of insertions and deletions that
would turn the source string into a syntactically correct string, even if the
insertions and deletions are not at a point where an LL or LR parser would
first report an error.

Burke-Fisher error repair. We will describe a limited but useful form of
global error repair, which tries every possible single-token insertion, deletion,
or replacement at every point that occurs no earlier than K tokens before the
point where the parser reported the error. Thus, with K = 15, if the parsing

78

3.5. ERROR RECOVERY

a := 7

Old num10

Stack :=6

id4

↓
; b := c + (

︸ ︷︷ ︸

6-token queue

Current (8

Stack +16

E11

:=6

id4

;3

S2

↓
d := 5 + 6 , d) $

FIGURE 3.39. Burke-Fisher parsing, with an error-repair queue. Figure 3.18
shows the complete parse of this string according to Table 3.19.

engine gets stuck at the 100th token of the input, then it will try every possible
repair between the 85th and 100th tokens.

The correction that allows the parser to parse furthest past the original
reported error is taken as the best error repair. Thus, if a single-token substi-
tution of var for type at the 98th token allows the parsing engine to proceed
past the 104th token without getting stuck, this repair is a successful one.
Generally, if a repair carries the parser R = 4 tokens beyond where it origi-
nally got stuck, this is “good enough.”

The advantage of this technique is that the LL(k) or LR(k) (or LALR, etc.)
grammar is not modified at all (no error productions), nor are the parsing
tables modified. Only the parsing engine, which interprets the parsing tables,
is modified.

The parsing engine must be able to back up K tokens and reparse. To do
this, it needs to remember what the parse stack looked like K tokens ago.
Therefore, the algorithm maintains two parse stacks: the current stack and
the old stack. A queue of K tokens is kept; as each new token is shifted, it
is pushed on the current stack and also put onto the tail of the queue; simul-
taneously, the head of the queue is removed and shifted onto the old stack.
With each shift onto the old or current stack, the appropriate reduce actions
are also performed. Figure 3.39 illustrates the two stacks and queue.

Now suppose a syntax error is detected at the current token. For each possi-
ble insertion, deletion, or substitution of a token at any position of the queue,
the Burke-Fisher error repairer makes that change to within (a copy of) the

79

CHAPTER THREE. PARSING

queue, then attempts to reparse from the old stack. The success of a modifi-
cation is in how many tokens past the current token can be parsed; generally,
if three or four new tokens can be parsed, this is considered a completely
successful repair.

In a language with N kinds of tokens, there are K + K · N + K · N possible
deletions, insertions, and substitutions within the K -token window. Trying
this many repairs is not very costly, especially considering that it happens
only when a syntax error is discovered, not during ordinary parsing.

Semantic actions. Shift and reduce actions are tried repeatedly and discarded
during the search for the best error repair. Parser generators usually perform
programmer-specified semantic actions along with each reduce action, but the
programmer does not expect that these actions will be performed repeatedly
and discarded – they may have side effects. Therefore, a Burke-Fisher parser
does not execute any of the semantic actions as reductions are performed on
the current stack, but waits until the same reductions are performed (perma-
nently) on the old stack.

This means that the lexical analyzer may be up to K + R tokens ahead of
the point to which semantic actions have been performed. If semantic actions
affect lexical analysis – as they do in C, compiling the typedef feature –
this can be a problem with the Burke-Fisher approach. For languages with a
pure context-free grammar approach to syntax, the delay of semantic actions
poses no problem.

Semantic values for insertions. In repairing an error by insertion, the parser
needs to provide a semantic value for each token it inserts, so that semantic
actions can be performed as if the token had come from the lexical analyzer.
For punctuation tokens no value is necessary, but when tokens such as num-
bers or identifiers must be inserted, where can the value come from? The
ML-Yacc parser generator, which uses Burke-Fischer error correction, has a
%value directive, allowing the programmer to specify what value should be
used when inserting each kind of token:

%value ID ("bogus")
%value INT (1)
%value STRING ("")

Programmer-specified substitutions. Some common kinds of errors cannot
be repaired by the insertion or deletion of a single token, and sometimes a

80

PROGRAMMING EXERCISE

particular single-token insertion or substitution is very commonly required
and should be tried first. Therefore, in an ML-Yacc grammar specification the
programmer can use the %change directive to suggest error corrections to be
tried first, before the default “delete or insert each possible token” repairs.

%change EQ -> ASSIGN | ASSIGN -> EQ
| SEMICOLON ELSE -> ELSE | -> IN INT END

Here the programmer is suggesting that users often write “; else” where
they mean “else” and so on. These particular error corrections are often
useful in parsing the ML programming language.

The insertion of in 0 end is a particularly important kind of correction,
known as a scope closer. Programs commonly have extra left parentheses or
right parentheses, or extra left or right brackets, and so on. In ML, another
kind of nesting construct is let · · · in · · · end. If the programmer forgets to
close a scope that was opened by a left parenthesis, then the automatic single-
token insertion heuristic can close this scope where necessary. But to close
a let scope requires the insertion of three tokens, which will not be done
automatically unless the compiler-writer has suggested “change nothing to
in 0 end” as illustrated in the %change command above.

P R O G R A M PARSING
Use JavaCC or SableCC to implement a parser for the MiniJava language.
Do it by extending the specification from the corresponding exercise in the
previous chapter. Appendix A describes the syntax of MiniJava.

F U R T H E R
R E A D I N G

Conway [1963] describes a predictive (recursive-descent) parser, with a no-
tion of FIRST sets and left-factoring. LL(k) parsing theory was formalized
by Lewis and Stearns [1968].

LR(k) parsing was developed by Knuth [1965]; the SLR and LALR tech-
niques by DeRemer [1971]; LALR(1) parsing was popularized by the de-
velopment and distribution of Yacc [Johnson 1975] (which was not the first
parser generator, or “compiler-compiler,” as can be seen from the title of the
cited paper).

81

CHAPTER THREE. PARSING

Figure 3.29 summarizes many theorems on subset relations between gram-
mar classes. Heilbrunner [1981] shows proofs of several of these theorems,
including LL(k) ⊂ LR(k) and LL(1) ̸⊂ LALR(1) (see Exercise 3.14). Back-
house [1979] is a good introduction to theoretical aspects of LL and LR pars-
ing.

Aho et al. [1975] showed how deterministic LL or LR parsing engines
can handle ambiguous grammars, with ambiguities resolved by precedence
directives (as described in Section 3.4).

Burke and Fisher [1987] invented the error-repair tactic that keeps a K -
token queue and two parse stacks.

E X E R C I S E S

3.1 Translate each of these regular expressions into a context-free grammar.

a. ((x y∗x)|(yx∗y))?

b. ((0|1)+"."(0|1)∗)|((0|1)∗"."(0|1)+)

*3.2 Write a grammar for English sentences using the words

time, arrow, banana, flies, like, a, an, the, fruit

and the semicolon. Be sure to include all the senses (noun, verb, etc.) of each
word. Then show that this grammar is ambiguous by exhibiting more than one
parse tree for “time flies like an arrow; fruit flies like a banana.”

3.3 Write an unambiguous grammar for each of the following languages. Hint: One
way of verifying that a grammar is unambiguous is to run it through Yacc and
get no conflicts.

a. Palindromes over the alphabet {a, b} (strings that are the same backward
and forward).

b. Strings that match the regular expression a∗b∗ and have more a’s than
b’s.

c. Balanced parentheses and square brackets. Example:([[](()[()][])])

*d. Balanced parentheses and brackets, where a closing bracket also closes
any outstanding open parentheses (up to the previous open bracket).
Example: [([](()[(][])]. Hint: First, make the language of balanced
parentheses and brackets, where extra open parentheses are allowed;
then make sure this nonterminal must appear within brackets.

82

EXERCISES

e. All subsets and permutations (without repetition) of the keywords public
final static synchronized transient. (Then comment on how
best to handle this situation in a real compiler.)

f. Statement blocks in Pascal or ML where the semicolons separate the
statements:

(statement ; (statement ; statement) ; statement)

g. Statement blocks in C where the semicolons terminate the statements:
{ expression; { expression; expression; } expression; }

3.4 Write a grammar that accepts the same language as Grammar 3.1, but that is
suitable for LL(1) parsing. That is, eliminate the ambiguity, eliminate the left
recursion, and (if necessary) left-factor.

3.5 Find nullable, FIRST, and FOLLOW sets for this grammar; then construct the
LL(1) parsing table.

0 S′ → S $

1 S →
2 S → X S

3 B → \ begin { WORD }
4 E → \ end { WORD }

5 X → B S E
6 X → { S }
7 X → WORD
8 X → begin
9 X → end

10 X → \ WORD

3.6 a. Calculate nullable, FIRST, and FOLLOW for this grammar:

S → u B D z
B → B v

B → w

D → E F
E → y
E →
F → x
F →

b. Construct the LL(1) parsing table.

c. Give evidence that this grammar is not LL(1).

d. Modify the grammar as little as possible to make an LL(1) grammar that
accepts the same language.

*3.7 a. Left-factor this grammar.

0 S → G $
1 G → P
2 G → P G

3 P → id : R
4 R →
5 R → id R

83

CHAPTER THREE. PARSING

b. Show that the resulting grammar is LL(2). You can do this by construct-
ing FIRST sets (etc.) containing two-symbol strings; but it is simpler to
construct an LL(1) parsing table and then argue convincingly that any
conflicts can be resolved by looking ahead one more symbol.

c. Show how the tok variable and advance function should be altered for
recursive-descent parsing with two-symbol lookahead.

d. Use the grammar class hierarchy (Figure 3.29) to show that the (left-
factored) grammar is LR(2).

e. Prove that no string has two parse trees according to this (left-factored)
grammar.

3.8 Make up a tiny grammar containing left recursion, and use it to demonstrate
that left recursion is not a problem for LR parsing. Then show a small example
comparing growth of the LR parse stack with left recursion versus right recursion.

3.9 Diagram the LR(0) states for Grammar 3.26, build the SLR parsing table, and
identify the conflicts.

3.10 Diagram the LR(1) states for the grammar of Exercise 3.7 (without left-factoring),
and construct the LR(1) parsing table. Indicate clearly any conflicts.

3.11 Construct the LR(0) states for this grammar, and then determine whether it is an
SLR grammar.

0 S → B $

1 B → id P
2 B → id (E]

3 P →
4 P → (E)

5 E → B
6 E → B , E

3.12 a. Build the LR(0) DFA for this grammar:

0 S → E $

1 E → id
2 E → id (E)

3 E → E + id

b. Is this an LR(0) grammar? Give evidence.
c. Is this an SLR grammar? Give evidence.
d. Is this an LR(1) grammar? Give evidence.

3.13 Show that this grammar is LALR(1) but not SLR:

0 S → X $
1 X → M a
2 X → b M c

3 X → d c
4 X → b d a
5 M → d

84

EXERCISES

3.14 Show that this grammar is LL(1) but not LALR(1):

1 S → (X
2 S → E]
3 S → F)

4 X → E)

5 X → F]
6 E → A
7 F → A
8 A →

*3.15 Feed this grammar to Yacc; from the output description file, construct the
LALR(1) parsing table for this grammar, with duplicate entries where there are
conflicts. For each conflict, show whether shifting or reducing should be chosen
so that the different kinds of expressions have “conventional” precedence. Then
show the Yacc-style precedence directives that resolve the conflicts this way.

0 S → E $

1 E → while E do E
2 E → id := E
3 E → E + E
4 E → id

*3.16 Explain how to resolve the conflicts in this grammar, using precedence direc-
tives, or grammar transformations, or both. Use Yacc or SableCC as a tool in
your investigations, if you like.

1 E → id
2 E → E B E

3 B → +
4 B → −
5 B → ×
6 B → /

*3.17 Prove that Grammar 3.8 cannot generate parse trees of the form shown in
Figure 3.9. Hint: What nonterminals could possibly be where the ?X is shown?
What does that tell us about what could be where the ?Y is shown?

85

4
Abstract Syntax

ab-stract: disassociated from any specific instance

Webster’s Dictionary

A compiler must do more than recognize whether a sentence belongs to the
language of a grammar – it must do something useful with that sentence. The
semantic actions of a parser can do useful things with the phrases that are
parsed.

In a recursive-descent parser, semantic action code is interspersed with the
control flow of the parsing actions. In a parser specified in JavaCC, semantic
actions are fragments of Java program code attached to grammar productions.
SableCC, on the other hand, automatically generates syntax trees as it parses.

4.1 SEMANTIC ACTIONS

Each terminal and nonterminal may be associated with its own type of se-
mantic value. For example, in a simple calculator using Grammar 3.37, the
type associated with exp and INT might be int; the other tokens would not
need to carry a value. The type associated with a token must, of course, match
the type that the lexer returns with that token.

For a rule A → B C D, the semantic action must return a value whose type
is the one associated with the nonterminal A. But it can build this value from
the values associated with the matched terminals and nonterminals B, C, D.

RECURSIVE DESCENT
In a recursive-descent parser, the semantic actions are the values returned by
parsing functions, or the side effects of those functions, or both. For each ter-

86

4.1. SEMANTIC ACTIONS

class Token {int kind; Object val;
Token(int k, Object v) {kind=k; val=v;}

}
final int EOF=0, ID=1, NUM=2, PLUS=3, MINUS=4, · · ·

int lookup(String id) { · · · }

int F_follow[] = { PLUS, TIMES, RPAREN, EOF };

int F() {switch (tok.kind) {
case ID: int i=lookup((String)(tok.val)); advance(); return i;
case NUM: int i=((Integer)(tok.val)).intValue();

advance(); return i;
case LPAREN: eat(LPAREN);

int i = E();
eatOrSkipTo(RPAREN, F_follow);
return i;

case EOF:
default: print("expected ID, NUM, or left-paren");

skipto(F_follow); return 0;
}}

int T_follow[] = { PLUS, RPAREN, EOF };

int T() {switch (tok.kind) {
case ID:
case NUM:
case LPAREN: return Tprime(F());
default: print("expected ID, NUM, or left-paren");

skipto(T_follow);
return 0;

}}

int Tprime(int a) {switch (tok.kind) {
case TIMES: eat(TIMES); return Tprime(a*F());
case PLUS:
case RPAREN:
case EOF: return a;
default: · · ·

}}

void eatOrSkipTo(int expected, int[] stop) {
if (tok.kind==expected)

eat(expected);
else {print(· · ·); skipto(stop);}

}

PROGRAM 4.1. Recursive-descent interpreter for part of Grammar 3.15.

87

CHAPTER FOUR. ABSTRACT SYNTAX

void Start() :
{ int i; }
{ i=Exp() <EOF> { System.out.println(i); }
}
int Exp() :
{ int a,i; }
{ a=Term()
("+" i=Term() { a=a+i; }
| "-" i=Term() { a=a-i; }
)*
{ return a; }

}
int Term() :
{ int a,i; }
{ a=Factor()
("*" i=Factor() { a=a*i; }
| "/" i=Factor() { a=a/i; }
)*
{ return a; }

}
int Factor() :
{ Token t; int i; }
{ t=<IDENTIFIER> { return lookup(t.image); }
| t=<INTEGER_LITERAL> { return Integer.parseInt(t.image); }
| "(" i=Exp() ")" { return i; }
}

PROGRAM 4.2. JavaCC version of a variant of Grammar 3.15.

minal and nonterminal symbol, we associate a type (from the implementation
language of the compiler) of semantic values representing phrases derived
from that symbol.

Program 4.1 is a recursive-descent interpreter for part of Grammar 3.15.
The tokens ID and NUM must now carry values of type string and int,
respectively. We will assume there is a lookup table mapping identifiers to
integers. The type associated with E, T, F, etc., is int, and the semantic
actions are easy to implement.

The semantic action for an artificial symbol such as T ′ (introduced in the
elimination of left recursion) is a bit tricky. Had the production been T →
T ∗ F , then the semantic action would have been

int a = T(); eat(TIMES); int b=F(); return a*b;

88

4.2. ABSTRACT PARSE TREES

With the rearrangement of the grammar, the production T ′ → ∗FT ′ is
missing the left operand of the ∗. One solution is for T to pass the left operand
as an argument to T ′, as shown in Program 4.1.

AUTOMATICALLY GENERATED PARSERS
A parser specification for JavaCC consists of a set of grammar rules, each
annotated with a semantic action that is a Java statement. Whenever the gen-
erated parser reduces by a rule, it will execute the corresponding semantic
action fragment.

Program 4.2 shows how this works for a variant of Grammar 3.15. Every
INTEGER_CONSTANT terminal and every nonterminal (except Start) carries
a value. To access this value, give the terminal or nonterminal a name in the
grammar rule (such as i in Program 4.2), and access this name as a variable
in the semantic action.

SableCC, unlike JavaCC, has no way to attach action code to productions.
However, SableCC automatically generates syntax tree classes, and a parser
generated by SableCC will build syntax trees using those classes. For JavaCC,
there are several companion tools, including JJTree and JTB (the Java Tree
Builder), which, like SableCC, generate syntax tree classes and insert action
code into the grammar for building syntax trees.

4.2 ABSTRACT PARSE TREES

It is possible to write an entire compiler that fits within the semantic action
phrases of a JavaCC or SableCC parser. However, such a compiler is difficult
to read and maintain, and this approach constrains the compiler to analyze the
program in exactly the order it is parsed.

To improve modularity, it is better to separate issues of syntax (parsing)
from issues of semantics (type-checking and translation to machine code).
One way to do this is for the parser to produce a parse tree – a data structure
that later phases of the compiler can traverse. Technically, a parse tree has
exactly one leaf for each token of the input and one internal node for each
grammar rule reduced during the parse.

Such a parse tree, which we will call a concrete parse tree, representing the
concrete syntax of the source language, may be inconvenient to use directly.
Many of the punctuation tokens are redundant and convey no information –
they are useful in the input string, but once the parse tree is built, the structure

89

CHAPTER FOUR. ABSTRACT SYNTAX

E → E + E
E → E − E
E → E ∗ E
E → E / E
E → id
E → num

GRAMMAR 4.3. Abstract syntax of expressions.

of the tree conveys the structuring information more conveniently.
Furthermore, the structure of the parse tree may depend too much on the

grammar! The grammar transformations shown in Chapter 3 – factoring,
elimination of left recursion, elimination of ambiguity – involve the introduc-
tion of extra nonterminal symbols and extra grammar productions for tech-
nical purposes. These details should be confined to the parsing phase and
should not clutter the semantic analysis.

An abstract syntax makes a clean interface between the parser and the
later phases of a compiler (or, in fact, for the later phases of other kinds of
program-analysis tools such as dependency analyzers). The abstract syntax
tree conveys the phrase structure of the source program, with all parsing is-
sues resolved but without any semantic interpretation.

Many early compilers did not use an abstract syntax data structure because
early computers did not have enough memory to represent an entire compi-
lation unit’s syntax tree. Modern computers rarely have this problem. And
many modern programming languages (ML, Modula-3, Java) allow forward
reference to identifiers defined later in the same module; using an abstract
syntax tree makes compilation easier for these languages. It may be that Pas-
cal and C require clumsy forward declarations because their designers wanted
to avoid an extra compiler pass on the machines of the 1970s.

Grammar 4.3 shows an abstract syntax of the expression language is Gram-
mar 3.15. This grammar is completely impractical for parsing: The grammar
is quite ambiguous, since precedence of the operators is not specified.

However, Grammar 4.3 is not meant for parsing. The parser uses the con-
crete syntax to build a parse tree for the abstract syntax. The semantic anal-
ysis phase takes this abstract syntax tree; it is not bothered by the ambiguity
of the grammar, since it already has the parse tree!

The compiler will need to represent and manipulate abstract syntax trees as

90

4.2. ABSTRACT PARSE TREES

Exp Start() :
{ Exp e; }
{ e=Exp() { return e; }
}

Exp Exp() :
{ Exp e1,e2; }
{ e1=Term()

("+" e2=Term() { e1=new PlusExp(e1,e2); }
| "-" e2=Term() { e1=new MinusExp(e1,e2); }
)*

{ return e1; }
}

Exp Term() :
{ Exp e1,e2; }
{ e1=Factor()

("*" e2=Factor() { e1=new TimesExp(e1,e2); }
| "/" e2=Factor() { e1=new DivideExp(e1,e2); }
)*

{ return e1; }
}

Exp Factor() :
{ Token t; Exp e; }
{ (t=<IDENTIFIER> { return new Identifier(t.image); } |

t=<INTEGER_LITERAL> { return new IntegerLiteral(t.image); } |
"(" e=Exp() ")" { return e; })

}

PROGRAM 4.4. Building syntax trees for expressions.

data structures. In Java, these data structures are organized according to the
principles outlined in Section 1.3: an abstract class for each nonterminal, a
subclass for each production, and so on. In fact, the classes of Program 4.5 are
abstract syntax classes for Grammar 4.3. An alternate arrangement, with all
the different binary operators grouped into an OpExp class, is also possible.

Let us write an interpreter for the expression language in Grammar 3.15 by
first building syntax trees and then interpreting those trees. Program 4.4 is a
JavaCC grammar with semantic actions that produce syntax trees. Each class
of syntax-tree nodes contains an eval function; when called, such a function
will return the value of the represented expression.

POSITIONS
In a one-pass compiler, lexical analysis, parsing, and semantic analysis (type-
checking) are all done simultaneously. If there is a type error that must be
reported to the user, the current position of the lexical analyzer is a reason-

91

CHAPTER FOUR. ABSTRACT SYNTAX

public abstract class Exp {
public abstract int eval();

}
public class PlusExp extends Exp {

private Exp e1,e2;
public PlusExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
public int eval() {

return e1.eval()+e2.eval();
}

}
public class MinusExp extends Exp {

private Exp e1,e2;
public MinusExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
public int eval() {

return e1.eval()-e2.eval();
}

}
public class TimesExp extends Exp {

private Exp e1,e2;
public TimesExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
public int eval() {

return e1.eval()*e2.eval();
}

}
public class DivideExp extends Exp {

private Exp e1,e2;
public DivideExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
public int eval() {

return e1.eval()/e2.eval();
}

}
public class Identifier extends Exp {

private String f0;
public Identifier(String n0) { f0 = n0; }
public int eval() {

return lookup(f0);
}

}
public class IntegerLiteral extends Exp {

private String f0;
public IntegerLiteral(String n0) { f0 = n0; }
public int eval() {

return Integer.parseInt(f0);
}

}

PROGRAM 4.5. Exp class for Program 4.4.

92

4.3. VISITORS

able approximation of the source position of the error. In such a compiler,
the lexical analyzer keeps a “current position” global variable, and the error-
message routine just prints the value of that variable with each message.

A compiler that uses abstract-syntax-tree data structures need not do all
the parsing and semantic analysis in one pass. This makes life easier in many
ways, but slightly complicates the production of semantic error messages.
The lexer reaches the end of file before semantic analysis even begins; so if
a semantic error is detected in traversing the abstract syntax tree, the current
position of the lexer (at end of file) will not be useful in generating a line
number for the error message. Thus, the source-file position of each node of
the abstract syntax tree must be remembered, in case that node turns out to
contain a semantic error.

To remember positions accurately, the abstract-syntax data structures must
be sprinkled with pos fields. These indicate the position, within the origi-
nal source file, of the characters from which these abstract-syntax structures
were derived. Then the type-checker can produce useful error messages. (The
syntax constructors we will show in Figure 4.9 do not have pos fields; any
compiler that uses these exactly as given will have a hard time producing
accurately located error messages.)

The lexer must pass the source-file positions of the beginning and end of
each token to the parser. We can augment the typesExp, etc. with a position
field; then each constructor must take a pos argument to initialize this field.
The positions of leaf nodes of the syntax tree can be obtained from the tokens
returned by the lexical analyzer; internal-node positions can be derived from
the positions of their subtrees. This is tedious but straightforward.

4.3 VISITORS

Each abstract syntax class of Program 4.5 has a constructor for building syn-
tax trees, and an eval method for returning the value of the represented ex-
pression. This is an object-oriented style of programming. Let us consider an
alternative.

Suppose the code for evaluating expressions is written separately from
the abstract syntax classes. We might do that by examining the syntax-tree
data structure by using instanceof and by fetching public class variables
that represent subtrees. This is a syntax separate from interpretations style of
programming.

93

CHAPTER FOUR. ABSTRACT SYNTAX

IdExp
NumExp
PlusExp
MinusExp
TimesExp
SeqExp

T
yp

e-
ch

ec
k

T
ra

ns
la

te
 to

 P
en

tiu
m

T
ra

ns
la

te
 to

 S
pa

rc
Fi

nd
 u

ni
ni

tia
liz

ed
 v

ar
s

O
pt

im
iz

e
.

. . .

. . .

K
in

ds
Interpretations

Scrollbar
Menu
Canvas
DialogBox
Text
StatusBar

R
ed

is
pl

ay
M

ov
e

Ic
on

iz
e

D
ei

co
ni

ze
H

ig
hl

ig
ht

.

. . .

. . .

K
in

ds

Interpretations

(a) Compiler (b) Graphic user interface

FIGURE 4.6. Orthogonal directions of modularity.

The choice of style affects the modularity of the compiler. In a situation
such as this, we have several kinds of objects: compound statements, assign-
ment statements, print statements, and so on. And we also may have several
different interpretations of these objects: type-check, translate to Pentium
code, translate to Sparc code, optimize, interpret, and so on.

Each interpretation must be applied to each kind; if we add a new kind, we
must implement each interpretation for it; and if we add a new interpretation,
we must implement it for each kind. Figure 4.6 illustrates the orthogonality
of kinds and interpretations – for compilers, and for graphic user interfaces,
where the kinds are different widgets and gadgets, and the interpretations are
move, hide, and redisplay commands.

If the syntax separate from interpretations style is used, then it is easy
and modular to add a new interpretation: One new function is written, with
clauses for the different kinds all grouped logically together. On the other
hand, it will not be modular to add a new kind, since a new clause must be
added to every interpretation function.

With the object-oriented style, each interpretation is just a method in all
the classes. It is easy and modular to add a new kind: All the interpretations
of that kind are grouped together as methods of the new class. But it is not

94

4.3. VISITORS

public abstract class Exp {
public abstract int accept(Visitor v);

}
public class PlusExp extends Exp {

public Exp e1,e2;
public PlusExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
public int accept(Visitor v) {

return v.visit(this);
}

}
public class MinusExp extends Exp {

public Exp e1,e2;
public MinusExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
public int accept(Visitor v) {

return v.visit(this);
}

}
public class TimesExp extends Exp {

public Exp e1,e2;
public TimesExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
public int accept(Visitor v) {

return v.visit(this);
}

}
public class DivideExp extends Exp {

public Exp e1,e2;
public DivideExp(Exp a1, Exp a2) { e1=a1; e2=a2; }
public int accept(Visitor v) {

return v.visit(this);
}

}
public class Identifier extends Exp {

public String f0;
public Identifier(String n0) { f0 = n0; }
public int accept(Visitor v) {

return v.visit(this);
}

}
public class IntegerLiteral extends Exp {

public String f0;
public IntegerLiteral(String n0) { f0 = n0; }
public int accept() {

return v.visit(this);
}

}

PROGRAM 4.7. Syntax classes with accept methods.

95

CHAPTER FOUR. ABSTRACT SYNTAX

public interface Visitor {
public int visit(PlusExp n);
public int visit(MinusExp n);
public int visit(TimesExp n);
public int visit(DivideExp n);
public int visit(Identifier n);
public int visit(IntegerLiteral n);

}

public class Interpreter implements Visitor {
public int visit(PlusExp n) {

return n.e1.accept(this)+n.e2.accept(this);
}
public int visit(MinusExp n) {

return n.e1.accept(this)-n.e2.accept(this);
}
public int visit(TimesExp n) {

return n.e1.accept(this)*n.e2.accept(this);
}
public int visit(DivideExp n) {

return n.e1.accept(this)/n.e2.accept(this);
}
public int visit(Identifier n) {

return lookup(n.f0);
}
public int visit(IntegerLiteral n) {

return Integer.parseInt(n.f0);
}

}

PROGRAM 4.8. An interpreter visitor.

modular to add a new interpretation: A new method must be added to every
class.

For graphic user interfaces, each application will want to make its own
kinds of widgets; it is impossible to predetermine one set of widgets for ev-
eryone to use. On the other hand, the set of common operations (interpreta-
tions) is fixed: The window manager demands that each widget support only
a certain interface. Thus, the object-oriented style works well, and the syntax
separate from interpretations style would not be as modular.

For programming languages, on the other hand, it works very well to fix
a syntax and then provide many interpretations of that syntax. If we have a
compiler where one interpretation is translate to Pentium and we wish to port
that compiler to the Sparc, then not only must we add operations for generat-

96

4.3. VISITORS

ing Sparc code but we might also want to remove (in this configuration) the
Pentium code-generation functions. This would be very inconvenient in the
object-oriented style, requiring each class to be edited. In the syntax separate
from interpretations style, such a change is modular: We remove a Pentium-
related module and add a Sparc module.

We prefer a syntax-separate-from-interpretations style. Fortunately, we can
use this style without employing instanceof expressions for accessing syn-
tax trees. Instead, we can use a technique known as the Visitor pattern. A
visitor implements an interpretation; it is an object which contains a visit

method for each syntax-tree class. Each syntax-tree class should contain an
accept method. An accept method serves as a hook for all interpretations.
It is called by a visitor and it has just one task: It passes control back to an
appropriate method of the visitor. Thus, control goes back and forth between
a visitor and the syntax-tree classes.

Intuitively, the visitor calls the accept method of a node and asks “what
is your class?” The accept method answers by calling the corresponding
visit method of the visitor. Code for the running example, using visitors,
is given in Programs 4.7 and 4.8. Every visitor implements the interface
Visitor. Notice that each accept method takes a visitor as an argument,
and that each visit method takes a syntax-tree-node object as an argument.

In Programs 4.7 and 4.8, the visit and accept methods all return int.
Suppose we want instead to return String. In that case, we can add an ap-
propriate accept method to each syntax tree class, and we can write a new
visitor class in which all visit methods return String.

The main difference between the object-oriented style and the syntax-
separate-from-interpretations style is that, for example, the interpreter code
in Program 4.5 is in the eval methods while in Program 4.8 it is in the
Interpreter visitor.

In summary, with the Visitor pattern we can add a new interpretation with-
out editing and recompiling existing classes, provided that each of the appro-
priate classes has an accept method. The following table summarizes some
advantages of the Visitor pattern:

Frequent Frequent
type casts? recompilation?

Instanceof and type casts Yes No
Dedicated methods No Yes
The Visitor pattern No No

97

CHAPTER FOUR. ABSTRACT SYNTAX

ABSTRACT SYNTAX FOR MiniJava
Figure 4.9 shows classes for the abstract syntax of MiniJava. The meaning of
each constructor in the abstract syntax should be clear after a careful study of
Appendix A, but there are a few points that merit explanation.

Only the constructors are shown in Figure 4.9; the object field variables
correspond exactly to the names of the constructor arguments. Each of the six
list classes is implemented in the same way, for example:

public class ExpList {
private Vector list;
public ExpList() {

list = new Vector();
}
public void addElement(Exp n) {

list.addElement(n);
}
public Exp elementAt(int i) {

return (Exp)list.elementAt(i);
}
public int size() {

return list.size();
}

}

Each of the nonlist classes has an accept method for use with the visitor pat-
tern. The interface Visitor is shown in Program 4.10.

We can construct a syntax tree by using nested new expressions. For ex-
ample, we can build a syntax tree for the MiniJava statement:

x = y.m(1,4+5);

using the following Java code:

ExpList el = new ExpList();
el.addElement(new IntegerLiteral(1));
el.addElement(new Plus(new IntegerLiteral(4),

new IntegerLiteral(5)));
Statement s = new Assign(new Identifier("x"),

new Call(new IdentifierExp("y"),
new Identifier("m"),
el));

SableCC enables automatic generation of code for syntax tree classes, code
for building syntax trees, and code for template visitors. For JavaCC, a com-
panion tool called the Java Tree Builder (JTB) enables the generation of sim-

98

4.3. VISITORS

package syntaxtree;

Program(MainClass m, ClassDeclList cl)
MainClass(Identifier i1, Identifier i2, Statement s)

abstract class ClassDecl
ClassDeclSimple(Identifier i, VarDeclList vl, MethodDeclList ml)
ClassDeclExtends(Identifier i, Identifier j,

VarDeclList vl, MethodDeclList ml) see Ch.14

VarDecl(Type t, Identifier i)
MethodDecl(Type t, Identifier i, FormalList fl, VarDeclList vl,

StatementList sl, Exp e)
Formal(Type t, Identifier i)

abstract class Type
IntArrayType() BooleanType() IntegerType() IdentifierType(String s)

abstract class Statement
Block(StatementList sl)
If(Exp e, Statement s1, Statement s2)
While(Exp e, Statement s)
Print(Exp e)
Assign(Identifier i, Exp e)
ArrayAssign(Identifier i, Exp e1, Exp e2)

abstract class Exp
And(Exp e1, Exp e2)
LessThan(Exp e1, Exp e2)
Plus(Exp e1, Exp e2) Minus(Exp e1, Exp e2) Times(Exp e1, Exp e2)
ArrayLookup(Exp e1, Exp e2)
ArrayLength(Exp e)
Call(Exp e, Identifier i, ExpList el)
IntegerLiteral(int i)
True()
False()
IdentifierExp(String s)
This()
NewArray(Exp e)
NewObject(Identifier i)
Not(Exp e)

Identifier(String s)

list classes
ClassDeclList() ExpList() FormalList() MethodDeclList() StatementList() VarDeclList()

FIGURE 4.9. Abstract syntax for the MiniJava language.

99

CHAPTER FOUR. ABSTRACT SYNTAX

public interface Visitor {
public void visit(Program n);
public void visit(MainClass n);
public void visit(ClassDeclSimple n);
public void visit(ClassDeclExtends n);
public void visit(VarDecl n);
public void visit(MethodDecl n);
public void visit(Formal n);
public void visit(IntArrayType n);
public void visit(BooleanType n);
public void visit(IntegerType n);
public void visit(IdentifierType n);
public void visit(Block n);
public void visit(If n);
public void visit(While n);
public void visit(Print n);
public void visit(Assign n);
public void visit(ArrayAssign n);
public void visit(And n);
public void visit(LessThan n);
public void visit(Plus n);
public void visit(Minus n);
public void visit(Times n);
public void visit(ArrayLookup n);
public void visit(ArrayLength n);
public void visit(Call n);
public void visit(IntegerLiteral n);
public void visit(True n);
public void visit(False n);
public void visit(IdentifierExp n);
public void visit(This n);
public void visit(NewArray n);
public void visit(NewObject n);
public void visit(Not n);
public void visit(Identifier n);

}

PROGRAM 4.10. MiniJava visitor

ilar code. The advantage of using such tools is that once the grammar is writ-
ten, one can go straight on to writing visitors that operate on syntax trees. The
disadvantage is that the syntax trees supported by the generated code may be
less abstract than one could desire.

100

PROGRAMMING EXERCISE

P R O G R A M ABSTRACT SYNTAX
Add semantic actions to your parser to produce abstract syntax for the Mini-
Java language. Syntax-tree classes are available in $MINIJAVA/chap4, to-
gether with a PrettyPrintVisitor. If you use JavaCC, you can use JTB to
generate the needed code automatically. Similarly, with SableCC, the needed
code can be generated automatically.

F U R T H E R
R E A D I N G

Many compilers mix recursive-descent parsing code with semantic-action
code, as shown in Program 4.1; Gries [1971] and Fraser and Hanson [1995]
are ancient and modern examples. Machine-generated parsers with seman-
tic actions (in special-purpose “semantic-action mini-languages”) attached to
the grammar productions were tried out in 1960s [Feldman and Gries 1968];
Yacc [Johnson 1975] was one of the first to permit semantic action fragments
to be written in a conventional, general-purpose programming language.

The notion of abstract syntax is due to McCarthy [1963], who designed
the abstract syntax for Lisp [McCarthy et al. 1962]. The abstract syntax was
intended to be used for writing programs until designers could get around to
creating a concrete syntax with human-readable punctuation (instead of Lots
of Irritating Silly Parentheses), but programmers soon got used to program-
ming directly in abstract syntax.

The search for a theory of programming-language semantics, and a no-
tation for expressing semantics in a compiler-compiler, led to ideas such as
denotational semantics [Stoy 1977]. The semantic interpreter shown in Pro-
grams 4.4 and 4.5 is inspired by ideas from denotational semantics, as is the
idea of separating concrete syntax from semantics using the abstract syntax
as a clean interface.

E X E R C I S E S

4.1 Write a package of Java classes to express the abstract syntax of regular expres-
sions.

4.2 Extend Grammar 3.15 such that a program is a sequence of either assignment
statements or print statements. Each assignment statement assigns an expression

101

CHAPTER FOUR. ABSTRACT SYNTAX

to an implicitly-declared variable; each print statement prints the value of an
expression. Extend the interpreter in Program 4.1 to handle the new language.

4.3 Write a JavaCC version of the grammar from Exercise 4.2. Insert Java code for
interpreting programs, in the style of Program 4.2.

4.4 Modify the JavaCC grammar from Exercise 4.3 to contain Java code for building
syntax trees, in the style of Program 4.4. Write two interpreters for the language:
one in object-oriented style and one that uses visitors.

4.5 In $MINIJAVA/chap4/handcrafted/visitor, there is a file with a visitor
PrettyPrintVisitor.java for pretty printing syntax trees. Improve the
pretty printing of nested if and while statements.

4.6 The visitor pattern in Program 4.7 has accept methods that return int. If one
wanted to write some visitors that return integers, others that return class A, and
yet others that return class B, one could modify all the classes in Program 4.7 to
add two more accept methods, but this would not be very modular. Another
way is to make the visitor return Object and cast each result, but this loses the
benefit of compile-time type-checking. But there is a third way.

Modify Program 4.7 so that all the accept methods return void, and write
two extensions of the Visitor class: one that computes an int for each Exp,
and the other that computes a float for each Exp. Since the accept method
will return void, the visitor object must have an instance variable into which
each accept method can place its result. Explain why, if one then wanted
to write a visitor that computed an object of class C for each Exp, no more
modification of the Exp subclasses would be necessary.

102

5
Semantic Analysis

se-man-tic: of or relating to meaning in language

Webster’s Dictionary

The semantic analysis phase of a compiler connects variable definitions to
their uses, checks that each expression has a correct type, and translates the
abstract syntax into a simpler representation suitable for generating machine
code.

5.1 SYMBOL TABLES

This phase is characterized by the maintenance of symbol tables (also called
environments) mapping identifiers to their types and locations. As the decla-
rations of types, variables, and functions are processed, these identifiers are
bound to “meanings” in the symbol tables. When uses (nondefining occur-
rences) of identifiers are found, they are looked up in the symbol tables.

Each local variable in a program has a scope in which it is visible. For
example, in a MiniJava method m, all formal parameters and local variables
declared in m are visible only until the end of m. As the semantic analysis
reaches the end of each scope, the identifier bindings local to that scope are
discarded.

An environment is a set of bindings denoted by the !→ arrow. For ex-
ample, we could say that the environment σ0 contains the bindings {g !→
string,a !→ int}, meaning that the identifier a is an integer variable and
g is a string variable.

Consider a simple example in the Java language:

103

CHAPTER FIVE. SEMANTIC ANALYSIS

1 class C {
2 int a; int b; int c;
3 public void m(){
4 System.out.println(a+c);
5 int j = a+b;
6 String a = "hello";
7 System.out.println(a);
8 System.out.println(j);
9 System.out.println(b);
10 }
11 }

Suppose we compile this class in the environment σ0. The field declarations
on line 2 give us the table σ1 equal to σ0 + {a !→ int,b !→ int,c !→ int},
that is, σ0 extended with new bindings for a, b, and c. The identifiers in line 4
can be looked up in σ1. At line 5, the table σ2 = σ1 + {j !→ int} is created;
and at line 6, σ3 = σ2 + {a !→ String} is created.

How does the + operator for tables work when the two environments being
“added” contain different bindings for the same symbol? When σ2 and {a !→
String} map a to int and String, respectively? To make the scoping rules
work the way we expect them to in real programming languages, we want
{a !→ String} to take precedence. So we say that X +Y for tables is not the
same as Y + X ; bindings in the right-hand table override those in the left.

The identifiers in lines 7, 8, and 9 can be looked up in σ3. Finally, at line
10, we discard σ3 and go back to σ1. And at line 11 we discard σ1 and go back
to σ0.

How should this be implemented? There are really two choices. In a func-
tional style, we make sure to keep σ1 in pristine condition while we create σ2

and σ3. Then when we need σ1 again, it’s rested and ready.
In an imperative style, we modify σ1 until it becomes σ2. This destruc-

tive update “destroys” σ1; while σ2 exists, we cannot look things up in σ1.
But when we are done with σ2, we can undo the modification to get σ1

back again. Thus, there is a single global environment σ which becomes
σ0, σ1, σ2, σ3, σ1, σ0 at different times and an “undo stack” with enough in-
formation to remove the destructive updates. When a symbol is added to the
environment, it is also added to the undo stack; at the end of scope (e.g., at line
10), symbols popped from the undo stack have their latest binding removed
from σ (and their previous binding restored).

Either the functional or imperative style of environment management can
be used regardless of whether the language being compiled or the implemen-

104

5.1. SYMBOL TABLES

structure M = struct
structure E = struct

val a = 5;
end
structure N = struct

val b = 10
val a = E.a + b

end
structure D = struct

val d = E.a + N.a
end

end

(a) An example in ML

package M;
class E {

static int a = 5;
}
class N {

static int b = 10;
static int a = E.a + b;

}
class D {

static int d = E.a + N.a;
}

(b) An example in Java

FIGURE 5.1. Several active environments at once.

tation language of the compiler is a “functional” or “imperative” or “object-
oriented” language.

MULTIPLE SYMBOL TABLES
In some languages there can be several active environments at once: Each
module, or class, or record in the program has a symbol table σ of its own.

In analyzing Figure 5.1, let σ0 be the base environment containing pre-
defined functions, and let

σ1 = {a !→ int}
σ2 = {E !→ σ1}
σ3 = {b !→ int, a !→ int}
σ4 = {N !→ σ3}
σ5 = {d !→ int}
σ6 = {D !→ σ5}
σ7 = σ2 + σ4 + σ6

In ML, the N is compiled using environment σ0 + σ2 to look up identifiers;
D is compiled using σ0 +σ2 +σ4, and the result of the analysis is {M !→ σ7}.

In Java, forward reference is allowed (so inside N the expression D.d
would be legal), so E , N , and D are all compiled in the environment σ7;
for this program the result is still {M !→ σ7}.

105

CHAPTER FIVE. SEMANTIC ANALYSIS

class Bucket {String key; Object binding; Bucket next;
Bucket(String k, Object b, Bucket n) {key=k; binding=b; next=n;}

}

class HashT {
final int SIZE = 256;
Bucket table[] = new Bucket[SIZE];

private int hash(String s) {
int h=0;
for(int i=0; i<s.length(); i++)

h=h*65599+s.charAt(i);
return h;

}

void insert(String s, Binding b) {
int index=hash(s)%SIZE
table[index]=new Bucket(s,b,table[index]);

}

Object lookup(String s) {
int index=hash(s)%SIZE
for (Binding b = table[index]; b!=null; b=b.next)
if (s.equals(b.key)) return b.binding;

return null;
}

void pop(String s) {
int index=hash(s)%SIZE
table[index]=table[index].next;

}
}

PROGRAM 5.2. Hash table with external chaining.

EFFICIENT IMPERATIVE SYMBOL TABLES
Because a large program may contain thousands of distinct identifiers, symbol
tables must permit efficient lookup.

Imperative-style environments are usually implemented using hash tables,
which are very efficient. The operation σ ′ = σ + {a "→ τ } is implemented
by inserting τ in the hash table with key a. A simple hash table with exter-
nal chaining works well and supports deletion easily (we will need to delete
{a "→ τ } to recover σ at the end of the scope of a).

Program 5.2 implements a simple hash table. The i th bucket is a linked list
of all the elements whose keys hash to i mod SIZE.

106

5.1. SYMBOL TABLES

mouse 4camel 2

dog 3

bat 1

(a) (b)

FIGURE 5.3. Hash tables.

Consider σ + {a !→ τ2} when σ contains a !→ τ1 already. The insert

function leaves a !→ τ1 in the bucket and puts a !→ τ2 earlier in the list.
Then, when pop(a) is done at the end of a’s scope, σ is restored. Of course,
pop works only if bindings are inserted and popped in a stacklike fashion.

An industrial-strength implementation would improve on this in several
ways; see Exercise 5.1.

EFFICIENT FUNCTIONAL SYMBOL TABLES
In the functional style, we wish to compute σ ′ = σ + {a !→ τ } in such a way
that we still have σ available to look up identifiers. Thus, instead of “altering”
a table by adding a binding to it we create a new table by computing the
“sum” of an existing table and a new binding. Similarly, when we add 7 + 8
we don’t alter the 7 by adding 8 to it; we create a new value, 15 – and the 7 is
still available for other computations.

However, nondestructive update is not efficient for hash tables. Figure 5.3a
shows a hash table implementing mapping m1. It is fast and efficient to add
mouse to the fifth slot; just make the mouse record point at the (old) head
of the fifth linked list, and make the fifth slot point to the mouse record. But
then we no longer have the mapping m1: We have destroyed it to make m2.
The other alternative is to copy the array, but still share all the old buckets,
as shown in Figure 5.3b. But this is not efficient: The array in a hash table
should be quite large, proportional in size to the number of elements, and we
cannot afford to copy it for each new entry in the table.

By using binary search trees we can perform such “functional” additions
to search trees efficiently. Consider, for example, the search tree in Figure 5.4,

107

CHAPTER FIVE. SEMANTIC ANALYSIS

(a) (b)

dog 3

bat 1

dog 3

camel 2

mouse 4

FIGURE 5.4. Binary search trees.

which represents the mapping

m1 = {bat !→ 1, camel !→ 2, dog !→ 3}.

We can add the binding mouse !→ 4, creating the mapping m2 without de-
stroying the mapping m1, as shown in Figure 5.4b. If we add a new node at
depth d of the tree, we must create d new nodes – but we don’t need to copy
the whole tree. So creating a new tree (that shares some structure with the old
one) can be done as efficiently as looking up an element: in log(n) time for a
balanced tree of n nodes. This is an example of a persistent data structure; a
persistent red-black tree can be kept balanced to guarantee log(n) access time
(see Exercise 1.1c, and also page 276).

SYMBOLS
The hash table of Program 5.2 must examine every character of the string
s for the hash operation, and then again each time it compares s against a
string in the i th bucket. To avoid unnecessary string comparisons, we can
convert each string to a symbol, so that all the different occurrences of any
given string convert to the same symbol object.

The Symbol module implements symbols and has these important proper-
ties:
• Comparing symbols for equality is fast (just pointer or integer comparison).
• Extracting an integer hash key is fast (in case we want to make a hash table

mapping symbols to something else).

108

5.1. SYMBOL TABLES

package Symbol;

public class Symbol {
public String toString();
public static Symbol symbol(String s);

}

public class Table {
public Table();
public void put(Symbol key, Object value);
public Object get(Symbol key);
public void beginScope();
public void endScope();
public java.util.Enumeration keys();

}

PROGRAM 5.5. The interface of package Symbol.

• Comparing two symbols for “greater-than” (in some arbitrary ordering) is fast
(in case we want to make binary search trees).

Even if we intend to make functional-style environments mapping sym-
bols to bindings, we can use a destructive-update hash table to map strings to
symbols: We need this to make sure the second occurrence of “abc” maps to
the same symbol as the first occurrence. Program 5.5 shows the interface of
the Symbol module.

Environments are implemented in the Symbol.Table class as Tables
mapping Symbols to bindings. We want different notions of binding for
different purposes in the compiler – type bindings for types, value bindings
for variables and functions – so we let the bindings be Object, though in any
given table every binding should be a type binding, or every binding should
be a value binding, and so on.

To implement the Symbol class (Program 5.6), we rely on the intern()
method of the java.lang.String class to give us a unique object for any
given character sequence; we can map from Symbol to String by having
each symbol contain a string variable, but the reverse mapping must be done
using a hash table (we use java.util.Hashtable).

To handle the “undo” requirements of destructive update, the interface
function beginScope remembers the current state of the table, and
endScope restores the table to where it was at the most recent beginScope
that has not already been ended.

An imperative table is implemented using a hash table. When the binding

109

CHAPTER FIVE. SEMANTIC ANALYSIS

package Symbol;
public class Symbol {
private String name;
private Symbol(String n) {name=n; }
private static java.util.Dictionary dict = new java.util.Hashtable();

public String toString() {return name;}

public static Symbol symbol(String n) {
String u = n.intern();
Symbol s = (Symbol)dict.get(u);
if (s==null) {s = new Symbol(u); dict.put(u,s); }
return s;

}
}

PROGRAM 5.6. Symbol table implementation.

x !→ b is entered (table.put(x,b)), x is hashed into an index i , and a
Binder object x !→ b is placed at the head of the linked list for the i th
bucket. If the table had already contained a binding x !→ b′, that would still
be in the bucket, hidden by x !→ b. This is important because it will support
the implementation of undo (beginScope and endScope).

The key x is not a character string, but is the Symbol object itself.
There must also be an auxiliary stack, showing in what order the symbols

were “pushed” into the symbol table. When x !→ b is entered, then x is
pushed onto this stack. A beginScope operation pushes a special marker
onto the stack. Then, to implement endScope, symbols are popped off the
stack down to and including the topmost marker. As each symbol is popped,
the head binding in its bucket is removed.

The auxiliary stack can be integrated into the Binder by having a global
variable top showing the most recent Symbol bound in the table. Then “push-
ing” is accomplished by copying top into the prevtop field of the Binder.
Thus, the “stack” is threaded through the binders.

If we wanted to use functional-style symbol tables, the Table interface
might look like this:

public class Table {
public Table();
public Table put(Symbol key, Object value);
public Object get(Symbol key);
public java.util.Enumeration keys();

}

110

5.2. TYPE-CHECKING MINIJAVA

class B {
C f; int [] j; int q;
public int start(int p, int q) {

int ret; int a;
/* ... */
return ret;

}
public boolean stop(int p) {

/* ... */
retun false;

}
}

class C {
/* ... */

}

B
C

 FIELDS
f C
j int []
q int
 METHODS
start int
stop bool

 PARAMS
p int
q int
 LOCALS
ret int
a int

 PARAMS
p int
 LOCALS

. . .

FIGURE 5.7. A MiniJava Program and its symbol table

The put function would return a new table without modifying the old one.
We wouldn’t need beginScope and endScope, because we could keep an
old version of the table even as we use the new version.

5.2 TYPE-CHECKING MiniJava

With what should a symbol table be filled – that is, what is a binding? To
enable type-checking of MiniJava programs, the symbol table should contain
all declared type information:

• each variable name and formal-parameter name should be bound to its type;
• each method name should be bound to its parameters, result type, and local

variables; and
• each class name should be bound to its variable and method declarations.

For example, consider Figure 5.7, which shows a program and its symbol
table. The two class names B and C are each mapped to two tables for fields
and methods. In turn, each method is mapped to both its result type and tables
with its formal parameters and local variables.

The primitive types in MiniJava are int and boolean; all other types
are either integer array, written int [], or class names. For simplicity, we

111

CHAPTER FIVE. SEMANTIC ANALYSIS

class ErrorMsg {
boolean anyErrors;
void complain(String msg) {

anyErrors = true;
System.out.println(msg);

}
}

// Type t;
// Identifier i;
public void visit(VarDecl n) {

Type t = n.t.accept(this);
String id = n.i.toString();

if (currMethod == null) {
if (!currClass.addVar(id,t))

error.complain(id + "is already defined in " + currClass.getId());
} else if (!currMethod.addVar(id,t))

error.complain(id + "is already defined in "
+ currClass.getId() + "." + currMethod.getId());

}

PROGRAM 5.8. A visit method for variable declarations

choose to represent each type as a string, rather than as a symbol; this allows
us to test type equality by doing string comparison.

Type-checking of a MiniJava program proceeds in two phases. First, we
build the symbol table, and then we type-check the statements and expres-
sions. During the second phase, the symbol table is consulted for each iden-
tifier that is found. It is convenient to use two phases because, in Java and
MiniJava, the classes are mutually recursive. If we tried to do type-checking
in a single phase, then we might need to type-check a call to a method that
is not yet entered into the symbol table. To avoid such situations, we use an
approach with two phases.

The first phase of the type-checker can be implemented by a visitor that
visits nodes in a MiniJava syntaxtree and builds a symbol table. For instance,
the visit method in Program 5.8 handles variable declarations. It will add the
variable name and type to a data structure for the current class which later will
be added to the symbol table. Notice that the visit method checks whether a
variable is declared more than once and, if so, then it prints an appropriate
error message.

112

5.2. TYPE-CHECKING MINIJAVA

// Exp e1,e2;
public Type visit(Plus n) {
if (! (n.e1.accept(this) instanceof IntegerType))

error.complain("Left side of LessThan must be of type integer");
if (! (n.e2.accept(this) instanceof IntegerType))

error.complain("Right side of LessThan must be of type integer");
return new IntegerType();

}

PROGRAM 5.9. A visit method for plus expressions

The second phase of the type-checker can be implemented by a visitor
that type-checks all statements and expressions. The result type of each visit
method is String, for representing MiniJava types. The idea is that when
the visitor visits an expression, then it returns the type of that expression. If
the expression does not type-check, then the type-check is terminated with an
error message.

Let’s take a simple case: an addition expression e1 + e2. In MiniJava, both
operands must be integers (the type-checker must check this) and the result
will be an integer (the type-checker will return this type). The visit method
for addition is easy to implement; see Program 5.9.

In most languages, addition is overloaded: The + operator stands for either
integer addition or real addition. If the operands are both integers, the result is
integer; if the operands are both real, the result is real. And in many languages
if one operand is an integer and the other is real, the integer is implicitly
converted into a real, and the result is real. Of course, the compiler will have
to make this conversion explicit in the machine code it generates.

For an assignment statement, it must be checked that the left-hand side and
the right-hand side have the same type. When we allow extension of classes,
the requirement is less strict: It is sufficient to check that the right-hand side
is a subtype of the left-hand side.

For method calls, it is necessary to look up the method identifier in the
symbol table to get the parameter list and the result type. For a call e.m(...),
where e has type C, we look up the definition of m in class C. The parameter
types must then be matched against the arguments in the function-call expres-
sion. The result type of the method becomes the type of the method call as a
whole.

113

CHAPTER FIVE. SEMANTIC ANALYSIS

Every kind of statement and expression has its own type-checking rules,
but in all the cases we have not already described, the rules can be derived by
reference to the Java Language Specification.

ERROR HANDLING
When the type-checker detects a type error or an undeclared identifier, it
should print an error message and continue – because the programmer would
like to be told of all the errors in the program. To recover after an error, it’s
often necessary to build data structures as if a valid expression had been en-
countered. For example, type-checking

{int i = new C();
int j = i + i;
. . .

}

even though the expression new C() doesn’t match the type required to ini-
tialize an integer, it is still useful to enter i in the symbol table as an integer
so that the rest of the program can be type-checked.

If the type-checking phase detects errors, then the compiler should not
produce a compiled program as output. This means that the later phases of
the compiler – translation, register allocation, etc. – will not be executed. It
will be easier to implement the later phases of the compiler if they are not
required to handle invalid inputs. Thus, if at all possible, all errors in the
input program should be detected in the front end of the compiler (parsing
and type-checking).

P R O G R A M TYPE-CHECKING
Design a set of visitors which type-checks a MiniJava program and produces
any appropriate error messages about mismatching types or undeclared iden-
tifiers.

E X E R C I S E S

5.1 Improve the hash table implementation of Program 5.2: Double the size of the
array when the average bucket length grows larger than 2 (so table is now a
pointer to a dynamically allocated array). To double an array, allocate a bigger
one and rehash the contents of the old array; then discard the old array.

114

EXERCISES

***5.2 In many applications, we want a + operator for environments that does more
than add one new binding; instead of σ ′ = σ +{a "→ τ }, we want σ ′ = σ1 +σ2,
where σ1 and σ2 are arbitrary environments (perhaps overlapping, in which
case bindings in σ2 take precedence).

We want an efficient algorithm and data structure for environment “adding.”
Balanced trees can implement σ + {a "→ τ } efficiently (in log(N) time, where
N is the size of σ), but take O(N) to compute σ1 + σ2 if σ1 and σ2 are both
about size N .

To abstract the problem, solve the general nondisjoint integer-set union prob-
lem. The input is a set of commands of the form,

s1 = {4} (define singleton set)
s2 = {7}
s3 = s1 ∪ s2 (nondestructive union)

6
?∈ s3 (membership test)

s4 = s1 ∪ s3

s5 = {9}
s6 = s4 ∪ s5

7
?∈ s2

An efficient algorithm is one that can process an input of N commands,
answering all membership queries, in less than o(N2) time.

*a. Implement an algorithm that is efficient when a typical set union a ← b∪c
has b much smaller than c [Brown and Tarjan 1979].

***b. Design an algorithm that is efficient even in the worst case, or prove
that this can’t be done (see Lipton et al. [1997] for a lower bound in a
restricted model).

115

6
Activation Records

stack: an orderly pile or heap

Webster’s Dictionary

In almost any modern programming language, a function may have local vari-
ables that are created upon entry to the function. Several invocations of the
function may exist at the same time, and each invocation has its own instan-
tiations of local variables.

In the Java method

int f(int x) {
int y = x+x;
if (y<10)

return f(y);
else

return y-1;
}

a new instantiation of x is created (and initialized by f’s caller) each time
that f is called. Because there are recursive calls, many of these x’s exist
simultaneously. Similarly, a new instantiation of y is created each time the
body of f is entered.

In many languages (including C, Pascal, and Java), local variables are de-
stroyed when a function returns. Since a function returns only after all the
functions it has called have returned, we say that function calls behave in
last-in-first-out (LIFO) fashion. If local variables are created on function en-
try and destroyed on function exit, then we can use a LIFO data structure – a
stack – to hold them.

116

CHAPTER SIX. ACTIVATION RECORDS

fun f(x) =
let fun g(y) = x+y
in g
end

val h = f(3)
val j = f(4)

val z = h(5)
val w = j(7)

(a) Written in ML

int (*)() f(int x) {
int g(int y) {return x+y;}
return g;

}

int (*h)() = f(3);
int (*j)() = f(4);

int z = h(5);
int w = j(7);

(b) Written in pseudo-C

PROGRAM 6.1. An example of higher-order functions.

HIGHER-ORDER FUNCTIONS
But in languages supporting both nested functions and function-valued vari-
ables, it may be necessary to keep local variables after a function has returned!
Consider Program 6.1: This is legal in ML, but of course in C one cannot re-
ally nest the function g inside the function f .

When f (3) is executed, a new local variable x is created for the activation
of function f . Then g is returned as the result of f (x); but g has not yet been
called, so y is not yet created.

At this point f has returned, but it is too early to destroy x , because when
h(5) is eventually executed it will need the value x = 3. Meanwhile, f (4) is
entered, creating a different instance of x , and it returns a different instance
of g in which x = 4.

It is the combination of nested functions (where inner functions may use
variables defined in the outer functions) and functions returned as results (or
stored into variables) that causes local variables to need lifetimes longer than
their enclosing function invocations.

Pascal has nested functions, but it does not have functions as returnable
values. C has functions as returnable values, but not nested functions. So
these languages can use stacks to hold local variables.

ML, Scheme, and several other languages have both nested functions and
functions as returnable values (this combination is called higher-order func-
tions). So they cannot use stacks to hold all local variables. This complicates
the implementation of ML and Scheme – but the added expressive power of
higher-order functions justifies the extra implementation effort.

For the remainder of this chapter we will consider languages with stackable

117

CHAPTER SIX. ACTIVATION RECORDS

local variables and postpone discussion of higher-order functions to Chap-
ter 15. Notice that while Java allows nesting of functions (via inner classes),
MiniJava does not.

6.1 STACK FRAMES

The simplest notion of a stack is a data structure that supports two opera-
tions, push and pop. However, it turns out that local variables are pushed in
large batches (on entry to functions) and popped in large batches (on exit).
Furthermore, when local variables are created they are not always initialized
right away. Finally, after many variables have been pushed, we want to con-
tinue accessing variables deep within the stack. So the abstract push and pop
model is just not suitable.

Instead, we treat the stack as a big array, with a special register – the stack
pointer – that points at some location. All locations beyond the stack pointer
are considered to be garbage, and all locations before the stack pointer are
considered to be allocated. The stack usually grows only at the entry to a
function, by an increment large enough to hold all the local variables for
that function, and, just before the exit from the function, shrinks by the same
amount. The area on the stack devoted to the local variables, parameters, re-
turn address, and other temporaries for a function is called the function’s ac-
tivation record or stack frame. For historical reasons, run-time stacks usually
start at a high memory address and grow toward smaller addresses. This can
be rather confusing: Stacks grow downward and shrink upward, like icicles.

The design of a frame layout takes into account the particular features of
an instruction set architecture and the programming language being compiled.
However, the manufacturer of a computer often prescribes a “standard” frame
layout to be used on that architecture, where possible, by all compilers for all
programming languages. Sometimes this layout is not the most convenient
one for a particular programming language or compiler. But by using the
“standard” layout, we gain the considerable benefit that functions written in
one language can call functions written in another language.

Figure 6.2 shows a typical stack frame layout. The frame has a set of in-
coming arguments (technically these are part of the previous frame but they
are at a known offset from the frame pointer) passed by the caller. The re-
turn address is created by the CALL instruction and tells where (within the
calling function) control should return upon completion of the current func-

118

6.1. STACK FRAMES

↑ higher addresses

argument n
.

incoming . previous
arguments . frame

argument 2
argument 1

frame pointer → static link

local
variables

return address

temporaries
current

saved frame
registers

argument m
.

outgoing .
arguments .

argument 2
argument 1

stack pointer → static link

next
frame

↓ lower addresses

FIGURE 6.2. A stack frame.

119

CHAPTER SIX. ACTIVATION RECORDS

tion. Some local variables are in this frame; other local variables are kept in
machine registers. Sometimes a local variable kept in a register needs to be
saved into the frame to make room for other uses of the register; there is an
area in the frame for this purpose. Finally, when the current function calls
other functions, it can use the outgoing argument space to pass parameters.

THE FRAME POINTER
Suppose a function g(. . .) calls the function f (a1, . . . , an). We say g is the
caller and f is the callee. On entry to f , the stack pointer points to the first
argument that g passes to f . On entry, f allocates a frame by simply sub-
tracting the frame size from the stack pointer SP.

The old SP becomes the current frame pointer FP. In some frame layouts,
FP is a separate register; the old value of FP is saved in memory (in the frame)
and the new FP becomes the old SP. When f exits, it just copies FP back to
SP and fetches back the saved FP. This arrangement is useful if f ’s frame size
can vary, or if frames are not always contiguous on the stack. But if the frame
size is fixed, then for each function f the FP will always differ from SP by a
known constant, and it is not necessary to use a register for FP at all – FP is a
“fictional” register whose value is always SP+framesize.

Why talk about a frame pointer at all? Why not just refer to all variables,
parameters, etc., by their offset from SP, if the frame size is constant? The
frame size is not known until quite late in the compilation process, when the
number of memory-resident temporaries and saved registers is determined.
But it is useful to know the offsets of formal parameters and local variables
much earlier. So, for convenience, we still talk about a frame pointer. And
we put the formals and locals right near the frame pointer at offsets that are
known early; the temporaries and saved registers go farther away, at offsets
that are known later.

REGISTERS
A modern machine has a large set of registers (typically 32 of them). To make
compiled programs run fast, it’s useful to keep local variables, intermediate
results of expressions, and other values in registers instead of in the stack
frame. Registers can be directly accessed by arithmetic instructions; on most
machines, accessing memory requires separate load and store instructions.
Even on machines whose arithmetic instructions can access memory, it is
faster to access registers.

A machine (usually) has only one set of registers, but many different pro-

120

6.1. STACK FRAMES

cedures and functions need to use registers. Suppose a function f is using
register r to hold a local variable and calls procedure g, which also uses r for
its own calculations. Then r must be saved (stored into a stack frame) before
g uses it and restored (fetched back from the frame) after g is finished using
it. But is it f ’s responsibility to save and restore the register, or g’s? We say
that r is a caller-save register if the caller (in this case, f) must save and re-
store the register, and r is callee-save if it is the responsibility of the callee
(in this case, g).

On most machine architectures, the notion of caller-save or callee-save reg-
ister is not something built into the hardware, but is a convention described
in the machine’s reference manual. On the MIPS computer, for example, reg-
isters 16–23 are preserved across procedure calls (callee-save), and all other
registers are not preserved across procedure calls (caller-save).

Sometimes the saves and restores are unnecessary. If f knows that the
value of some variable x will not be needed after the call, it may put x in a
caller-save register and not save it when calling g. Conversely, if f has a local
variable i that is needed before and after several function calls, it may put i
in some callee-save register ri , and save ri just once (upon entry to f) and
fetch it back just once (before returning from f). Thus, the wise selection of
a caller-save or callee-save register for each local variable and temporary can
reduce the number of stores and fetches a program executes. We will rely on
our register allocator to choose the appropriate kind of register for each local
variable and temporary value.

PARAMETER PASSING
On most machines whose calling conventions were designed in the 1970s,
function arguments were passed on the stack.1 But this causes needless mem-
ory traffic. Studies of actual programs have shown that very few functions
have more than four arguments, and almost none have more than six. There-
fore, parameter-passing conventions for modern machines specify that the
first k arguments (for k = 4 or k = 6, typically) of a function are passed in
registers rp, ..., rp+k−1, and the rest of the arguments are passed in memory.

Now, suppose f (a1, . . . , an) (which received its parameters in r1, . . . , rn ,
for example) calls h(z). It must pass the argument z in r1; so f saves the
old contents of r1 (the value a1) in its stack frame before calling h. But there
is the memory traffic that was supposedly avoided by passing arguments in

1Before about 1960, they were passed not on the stack but in statically allocated blocks of memory,
which precluded the use of recursive functions.

121

CHAPTER SIX. ACTIVATION RECORDS

registers! How has the use of registers saved any time?
There are four answers, any or all of which can be used at the same time:

1. Some procedures don’t call other procedures – these are called leaf proce-
dures. What proportion of procedures are leaves? Well, if we make the (opti-
mistic) assumption that the average procedure calls either no other procedures
or calls at least two others, then we can describe a “tree” of procedure calls in
which there are more leaves than internal nodes. This means that most proce-
dures called are leaf procedures.

Leaf procedures need not write their incoming arguments to memory. In
fact, often they don’t need to allocate a stack frame at all. This is an important
savings.

2. Some optimizing compilers use interprocedural register allocation, analyz-
ing all the functions in an entire program at once. Then they assign different
procedures different registers in which to receive parameters and hold local
variables. Thus f (x) might receive x in r1, but call h(z) with z in r7.

3. Even if f is not a leaf procedure, it might be finished with all its use of the
argument x by the time it calls h (technically, x is a dead variable at the point
where h is called). Then f can overwrite r1 without saving it.

4. Some architectures have register windows, so that each function invocation
can allocate a fresh set of registers without memory traffic.

If f needs to write an incoming parameter into the frame, where in the
frame should it go? Ideally, f ’s frame layout should matter only in the imple-
mentation of f . A straightforward approach would be for the caller to pass
arguments a1, ..., ak in registers and ak+1, ..., an at the end of its own frame
– the place marked outgoing arguments in Figure 6.2 – which become the
incoming arguments of the callee. If the callee needed to write any of these
arguments to memory, it would write them to the area marked local variables.

The C programming language actually allows you to take the address of
a formal parameter and guarantees that all the formal parameters of a func-
tion are at consecutive addresses! This is the varargs feature that printf
uses. Allowing programmers to take the address of a parameter can lead to
a dangling reference if the address outlives the frame – as the address of x
will in int *f(int x){return &x;} – and even when it does not lead to
bugs, the consecutive-address rule for parameters constrains the compiler and
makes stack-frame layout more complicated. To resolve the contradiction that
parameters are passed in registers, but have addresses too, the first k param-
eters are passed in registers; but any parameter whose address is taken must
be written to a memory location on entry to the function. To satisfy printf,
the memory locations into which register arguments are written must all be

122

6.1. STACK FRAMES

consecutive with the memory locations in which arguments k +1, k +2, etc.,
are written. Therefore, C programs can’t have some of the arguments saved
in one place and some saved in another – they must all be saved contiguously.

So in the standard calling convention of many modern machines the calling
function reserves space for the register arguments in its own frame, next to
the place where it writes argument k + 1. But the calling function does not
actually write anything there; that space is written into by the called function,
and only if the called function needs to write arguments into memory for any
reason.

A more dignified way to take the address of a local variable is to use call-
by-reference. With call-by-reference, the programmer does not explicitly ma-
nipulate the address of a variable x . Instead, if x is passed as the argument to
f (y), where y is a “by-reference” parameter, the compiler generates code to
pass the address of x instead of the contents of x . At any use of y within the
function, the compiler generates an extra pointer dereference. With call-by-
reference, there can be no “dangling reference,” since y must disappear when
f returns, and f returns before x’s scope ends.

RETURN ADDRESSES
When function g calls function f , eventually f must return. It needs to know
where to go back to. If the call instruction within g is at address a, then
(usually) the right place to return to is a + 1, the next instruction in g. This is
called the return address.

On 1970s machines, the return address was pushed on the stack by the
call instruction. Modern science has shown that it is faster and more flexi-
ble to pass the return address in a register, avoiding memory traffic and also
avoiding the need to build any particular stack discipline into the hardware.

On modern machines, the call instruction merely puts the return address
(the address of the instruction after the call) in a designated register. A non-
leaf procedure will then have to write it to the stack (unless interprocedural
register allocation is used), but a leaf procedure will not.

FRAME-RESIDENT VARIABLES
So a modern procedure-call convention will pass function parameters in reg-
isters, pass the return address in a register, and return the function result in a
register. Many of the local variables will be allocated to registers, as will the
intermediate results of expression evaluation. Values are written to memory
(in the stack frame) only when necessary for one of these reasons:

123

CHAPTER SIX. ACTIVATION RECORDS

• the variable will be passed by reference, so it must have a memory address
(or, in the C language the & operator is anywhere applied to the variable);

• the variable is accessed by a procedure nested inside the current one;2

• the value is too big to fit into a single register;3

• the variable is an array, for which address arithmetic is necessary to extract
components;

• the register holding the variable is needed for a specific purpose, such as pa-
rameter passing (as described above), though a compiler may move such val-
ues to other registers instead of storing them in memory;

• or there are so many local variables and temporary values that they won’t all
fit in registers, in which case some of them are “spilled” into the frame.

We will say that a variable escapes if it is passed by reference, its address
is taken (using C’s & operator), or it is accessed from a nested function.

When a formal parameter or local variable is declared, it’s convenient to
assign it a location – either in registers or in the stack frame – right at that
point in processing the program. Then, when occurrences of that variable are
found in expressions, they can be translated into machine code that refers
to the right location. Unfortunately, the conditions in our list don’t manifest
themselves early enough. When the compiler first encounters the declaration
of a variable, it doesn’t yet know whether the variable will ever be passed by
reference, accessed in a nested procedure, or have its address taken; and it
doesn’t know how many registers the calculation of expressions will require
(it might be desirable to put some local variables in the frame instead of in
registers). An industrial-strength compiler must assign provisional locations
to all formals and locals, and decide later which of them should really go in
registers.

STATIC LINKS
In languages that allow nested function declarations (such as Pascal, ML, and
Java), the inner functions may use variables declared in outer functions. This
language feature is called block structure. For example, consider Program 6.3,
which is written with a Pascal-like syntax. The function write refers to the
outer variable output, and indent refers to outer variables n and output.
To make this work, the function indent must have access not only to its own
frame (for variables i and s) but also to the frames of show (for variable n)
and prettyprint (for variable output).

2However, with register allocation across function boundaries, local variables accessed by inner func-
tions can sometimes go in registers, as long as the inner function knows where to look.

3However, some compilers spread out a large value into several registers for efficiency.

124

6.1. STACK FRAMES

1 type tree = {key: string, left: tree, right: tree}
2
3 function prettyprint(tree: tree) : string =
4 let
5 var output := ""
6
7 function write(s: string) =
8 output := concat(output,s)
9

10 function show(n:int, t: tree) =
11 let function indent(s: string) =
12 (for i := 1 to n
13 do write(" ");
14 output := concat(output,s); write("\n"))
15 in if t=nil then indent(".")
16 else (indent(t.key);
17 show(n+1,t.left);
18 show(n+1,t.right))
19 end
20
21 in show(0,tree); output
22 end

PROGRAM 6.3. Nested functions.

There are several methods to accomplish this:

• Whenever a function f is called, it can be passed a pointer to the frame of the
function statically enclosing f ; this pointer is the static link.

• A global array can be maintained, containing – in position i – a pointer to the
frame of the most recently entered procedure whose static nesting depth is i .
This array is called a display.

• When g calls f , each variable of g that is actually accessed by f (or by any
function nested inside f) is passed to f as an extra argument. This is called
lambda lifting.

We will describe in detail only the method of static links. Which method
should be used in practice? See Exercise 6.6.

Whenever a function f is called, it is passed a pointer to the stack frame
of the “current” (most recently entered) activation of the function g that im-
mediately encloses f in the text of the program.

For example, in Program 6.3:

Line #
21 prettyprint calls show, passing prettyprint’s own frame pointer as
show’s static link.

125

CHAPTER SIX. ACTIVATION RECORDS

10 show stores its static link (the address of prettyprint’s frame) into its
own frame.

15 show calls indent, passing its own frame pointer as indent’s static link.
17 show calls show, passing its own static link (not its own frame pointer) as

the static link.
12 indent uses the value n from show’s frame. To do so, it fetches at an appro-

priate offset from indent’s static link (which points at the frame of show).
13 indent calls write. It must pass the frame pointer of prettyprint as

the static link. To obtain this, it first fetches at an offset from its own static
link (from show’s frame), the static link that had been passed to show.

14 indent uses the variable output from prettyprint’s frame. To do so it
starts with its own static link, then fetches show’s, then fetches output.4

So on each procedure call or variable access, a chain of zero or more
fetches is required; the length of the chain is just the difference in static nest-
ing depth between the two functions involved.

6.2 FRAMES IN THE MiniJava COMPILER

What sort of stack frames should the MiniJava compiler use? Here we face the
fact that every target-machine architecture will have a different standard stack
frame layout. If we want MiniJava functions to be able to call C functions,
we should use the standard layout. But we don’t want the specifics of any
particular machine intruding on the implementation of the translation module
of the MiniJava compiler.

Thus we must use abstraction. Just as the Symbolmodule provides a clean
interface, and hides the internal representation of Symbol.Table from its
clients, we must use an abstract representation for frames.

The frame interface will look something like this:

package Frame;
import Temp.Temp; import Temp.Label;

public abstract class Access { · · · }
public abstract class AccessList {· · ·head;· · ·tail;· · · }

4This program would be cleaner if show called write here instead of manipulating output
directly, but it would not be as instructive.

126

6.2. FRAMES IN THE MINIJAVA COMPILER

public abstract class Frame {
abstract public Frame newFrame(Label name,

Util.BoolList formals);
public Label name;
public AccessList formals;

abstract public Access allocLocal(boolean escape);
/* . . . other stuff, eventually . . . */

}

The abstract class Frame is implemented by a module specific to the target
machine. For example, if compiling to the MIPS architecture, there would be

package Mips;
class Frame extends Frame.Frame { · · · }

In general, we may assume that the machine-independent parts of the com-
piler have access to this implementation of Frame; for example,

// in class Main.Main:
Frame.Frame frame = new Mips.Frame(· · ·);

In this way the rest of the compiler may access frame without knowing the
identity of the target machine (except an occurrence of the word Mips here
and there).

The class Frame holds information about formal parameters and local vari-
ables allocated in this frame. To make a new frame for a function f with k
formal parameters, call newFrame(f , l), where l is a list of k booleans: true
for each parameter that escapes and false for each parameter that does not.
(In MiniJava, no parameters ever escape.) The result will be a Frame ob-
ject. For example, consider a three-argument function named g whose first
argument escapes (needs to be kept in memory). Then

frame.newFrame(g,new BoolList(true,
new BoolList(false,
new BoolList(false, null))))

returns a new frame object.
The Access class describes formals and locals that may be in the frame

or in registers. This is an abstract data type, so its implementation as a pair
of subclasses is visible only inside the Frame module:

package Mips;
class InFrame extends Frame.Access {int offset; · · · }
class InReg extends Frame.Access {Temp temp; · · · }

127

CHAPTER SIX. ACTIVATION RECORDS

InFrame(X) indicates a memory location at offset X from the frame pointer;
InReg(t84) indicates that it will be held in “register” t84. Frame.Access is
an abstract data type, so outside of the module the InFrame and InReg con-
structors are not visible. Other modules manipulate accesses using interface
functions to be described in the next chapter.

The formals field is a list of k “accesses” denoting the locations where
the formal parameters will be kept at run time, as seen from inside the callee.
Parameters may be seen differently by the caller and the callee. For example,
if parameters are passed on the stack, the caller may put a parameter at offset 4
from the stack pointer, but the callee sees it at offset 4 from the frame pointer.
Or the caller may put a parameter into register 6, but the callee may want to
move it out of the way and always access it from register 13. On the Sparc
architecture, with register windows, the caller puts a parameter into register
o1, but the save instruction shifts register windows so the callee sees this
parameter in register i1.

Because this “shift of view” depends on the calling conventions of the
target machine, it must be handled by the Frame module, starting with new-
Frame. For each formal parameter, newFrame must calculate two things:

• How the parameter will be seen from inside the function (in a register, or in a
frame location).

• What instructions must be produced to implement the “view shift.”

For example, a frame-resident parameter will be seen as “memory at offset
X from the frame pointer,” and the view shift will be implemented by copying
the stack pointer to the frame pointer on entry to the procedure.

REPRESENTATION OF FRAME DESCRIPTIONS
The implementation module Frame is supposed to keep the representation of
Frame objects secret from any clients of the Frame module. But really it’s
an object holding:

• the locations of all the formals,
• instructions required to implement the “view shift,”
• the number of locals allocated so far,
• and the label at which the function’s machine code is to begin (see page 131).

Table 6.4 shows the formals of the three-argument function g (see page 127)
as newFrame would allocate them on three different architectures: the Pen-
tium, MIPS, and Sparc. The first parameter escapes, so it needs to be InFrame

128

6.2. FRAMES IN THE MINIJAVA COMPILER

Pentium MIPS Sparc
1 InFrame(8) InFrame(0) InFrame(68)

Formals 2 InFrame(12) InReg(t157) InReg(t157)
3 InFrame(16) InReg(t158) InReg(t158)

M[sp + 0] ← fp sp ← sp − K save %sp,-K,%sp

View fp ← sp M[sp + K + 0] ← r4 M[fp + 68] ← i0

Shift sp ← sp − K t157 ← r5 t157 ← i1

t158 ← r6 t158 ← i2

TABLE 6.4. Formal parameters for g(x1, x2, x3) where x1 escapes.

on all three machines. The remaining parameters are InFrame on the Pen-
tium, but InReg on the other machines.

The freshly created temporaries t157 and t158, and the move instructions that
copy r4 and r5 into them (or on the Sparc, i1 and i2), may seem superflu-
ous. Why shouldn’t the body of g just access these formals directly from the
registers in which they arrive? To see why not, consider

void m(int x, int y) { h(y,y); h(x,x); }

If x stays in “parameter register 1” throughout m, and y is passed to h in
parameter register 1, then there is a problem.

The register allocator will eventually choose which machine register should
hold t157. If there is no interference of the type shown in function m, then (on
the MIPS) the allocator will take care to choose register r4 to hold t157 and
r5 to hold t158. Then the move instructions will be unnecessary and will be
deleted at that time.

See also pages 157 and 251 for more discussion of the view shift.

LOCAL VARIABLES
Some local variables are kept in the frame; others are kept in registers. To
allocate a new local variable in a frame f , the translation phase calls

f.allocLocal(false)

This returns an InFrame access with an offset from the frame pointer. For
example, to allocate two local variables on the Sparc, allocLocal would
be called twice, returning successively InFrame(-4) and InFrame(-8),
which are standard Sparc frame-pointer offsets for local variables.

129

CHAPTER SIX. ACTIVATION RECORDS

The boolean argument to allocLocal specifies whether the new vari-
able escapes and needs to go in the frame; if it is false, then the variable
can be allocated in a register. Thus, f.allocLocal(false) might create
InReg(t481).

For MiniJava, that no variables escape. This is because in MiniJava:

• there is no nesting of classes and methods;
• it is not possible to take the address of a variable;
• integers and booleans are passed by value; and
• objects, including integer arrays, can be represented as pointers that are also

passed by value.

The calls to allocLocal need not come immediately after the frame is
created. In many languages, there may be variable-declaration blocks nested
inside the body of a function. For example,

void f()
{int v=6;
print(v);
{int v=7;
print(v);

}
print(v);
{int v=8;
print(v);

}
print(v);

}

In this case there are three different variables v. The program will print the
sequence 6 7 6 8 6. As each variable declaration is encountered in process-
ing the program, we will allocate a temporary or new space in the frame,
associated with the name v. As each end (or closing brace) is encountered,
the association with v will be forgotten – but the space is still reserved in the
frame. Thus, there will be a distinct temporary or frame slot for every variable
declared within the entire function.

The register allocator will use as few registers as possible to represent the
temporaries. In this example, the second and third v variables (initialized to
7 and 8) could be held in the same register. A clever compiler might also
optimize the size of the frame by noticing when two frame-resident variables
could be allocated to the same slot.

130

6.2. FRAMES IN THE MINIJAVA COMPILER

TEMPORARIES AND LABELS
The compiler’s translation phase will want to choose registers for parameters
and local variables, and choose machine-code addresses for procedure bodies.
But it is too early to determine exactly which registers are available, or exactly
where a procedure body will be located. We use the word temporary to mean
a value that is temporarily held in a register, and the word label to mean some
machine-language location whose exact address is yet to be determined – just
like a label in assembly language.
Temps are abstract names for local variables; labels are abstract names

for static memory addresses. The Temp module manages these two distinct
sets of names.

package Temp;
public class Temp {
public String toString();
public Temp();

}
public class Label {
public String toString();
public Label();
public Label(String s);
public Label(Symbol s);

}
public class TempList {· · ·}
public class LabelList {· · ·}

new Temp.Temp() returns a new temporary from an infinite set of temps.
new Temp.Label() returns a new label from an infinite set of labels. And
new Temp.Label(string) returns a new label whose assembly-language
name is string.

When processing the declaration m(· · ·), a label for the address of m’s ma-
chine code can be produced by new Temp.Label(). It’s tempting to call
new Temp.Label("m") instead – the assembly-language program will be
easier to debug if it uses the label m instead of L213 – but unfortunately there
could be two different methods named m in different classes. A better idea is
to call new Temp.Label("C"+"$"+"m"), where C is the name of the class
in which the method m occurs.

MANAGING STATIC LINKS
The Frame module should be independent of the specific source language
being compiled. Many source languages, including MiniJava, do not have
nested function declarations; thus, Frame should not know anything about

131

CHAPTER SIX. ACTIVATION RECORDS

static links. Instead, this is the responsibility of the translation phase. The
translation phase would know that each frame contains a static link. The static
link would be passed to a function in a register and stored into the frame.
Since the static link behaves so much like a formal parameter, we can treat it
as one (as much as possible).

P R O G R A M FRAMES
If you are compiling for the Sparc, implement the Sparc package containing
Sparc/SparcFrame.java. If compiling for the MIPS, implement the Mips
package, and so on.

If you are working on a RISC machine (such as MIPS or Sparc) that passes
the first k parameters in registers and the rest in memory, keep things simple
by handling only the case where there are k or fewer parameters.

Supporting files available in $MINIJAVA/chap6 include:

Temp/* The module supporting temporaries and labels.
Util/BoolList.java The class for lists of booleans.

Optional: Handle functions with more than k formal parameters.

F U R T H E R
R E A D I N G

The use of a single contiguous stack to hold variables and return addresses
dates from Lisp [McCarthy 1960] and Algol [Naur et al. 1963]. Block struc-
ture (the nesting of functions) and the use of static links are also from Algol.

Computers and compilers of the 1960s and ’70s kept most program vari-
ables in memory, so that there was less need to worry about which variables
escaped (needed addresses). The VAX, built in 1978, had a procedure-call
instruction that assumed all arguments were pushed on the stack, and itself
pushed program counter, frame pointer, argument pointer, argument count,
and callee-save register mask on the stack [Leonard 1987].

With the RISC revolution [Patterson 1985] came the idea that procedure
calling can be done with much less memory traffic. Local variables should be
kept in registers by default; storing and fetching should be done as needed,
driven by “spilling” in the register allocator [Chaitin 1982].

Most procedures don’t have more than five arguments and five local vari-
ables [Tanenbaum 1978]. To take advantage of this, Chow et al. [1986] and

132

EXERCISES

Hopkins [1986] designed calling conventions optimized for the common case:
The first four arguments are passed in registers, with the (rare) extra argu-
ments passed in memory; compilers use both caller- and callee-save registers
for local variables; leaf procedures don’t even need stack frames of their own
if they can operate within the caller-save registers; and even the return address
need not always be pushed on the stack.

E X E R C I S E S

6.1 Using the C compiler of your choice (or a compiler for another language),
compile some small test functions into assembly language. On Unix this is
usually done by cc -S. Turn on all possible compiler optimizations. Then
evaluate the compiled programs by these criteria:

a. Are local variables kept in registers?

b. If local variable b is live across more than one procedure call, is it kept
in a callee-save register? Explain how doing this would speed up the
following program:

int f(int a) {int b; b=a+1; g(); h(b); return b+2;}

c. If local variable x is never live across a procedure call, is it properly
kept in a caller-save register? Explain how doing this would speed up the
following program:

void h(int y) {int x; x=y+1; f(y); f(2);}

6.2 If you have a C compiler that passes parameters in registers, make it generate
assembly language for this function:

extern void h(int, int);
void m(int x, int y) {h(y,y); h(x,x);}

Clearly, if arguments to m(x, y) arrive in registers rarg1 and rarg2, and arguments
to h must be passed in rarg1 and rarg2, then x cannot stay in rarg1 during the
marshalling of arguments to h(y, y). Explain when and how your C compiler
moves x out of the rarg1 register so as to call h(y, y).

6.3 For each of the variables a, b, c, d, e in this C program, say whether the variable
should be kept in memory or a register, and why.

133

CHAPTER SIX. ACTIVATION RECORDS

int f(int a, int b)
{ int c[3], d, e;

d=a+1;
e=g(c, &b);
return e+c[1]+b;

}

*6.4 How much memory should this program use?

int f(int i) {int j,k; j=i*i; k=i?f(i-1):0; return k+j;}
void main() {f(100000);}

a. Imagine a compiler that passes parameters in registers, wastes no space
providing “backup storage” for parameters passed in registers, does not
use static links, and in general makes stack frames as small as possible.
How big should each stack frame for f be, in words?

b. What is the maximum memory use of this program, with such a compiler?
c. Using your favorite C compiler, compile this program to assembly lan-

guage and report the size of f ’s stack frame.
d. Calculate the total memory use of this program with the real C compiler.
e. Quantitatively and comprehensively explain the discrepancy between (a)

and (c).
f. Comment on the likelihood that the designers of this C compiler consid-

ered deeply recursive functions important in real programs.
*6.5 Instead of (or in addition to) using static links, there are other ways of getting

access to nonlocal variables. One way is just to leave the variable in a register!

function f() : int =
let var a := 5

function g() : int =
(a+1)

in g()+g()
end

If a is left in register r7 (for example) while g is called, then g can just access it
from there.

What properties must a local variable, the function in which it is defined,
and the functions in which it is used, have for this trick to work?

*6.6 A display is a data structure that may be used as an alternative to static links
for maintaining access to nonlocal variables. It is an array of frame pointers,
indexed by static nesting depth. Element Di of the display always points to the
most recently called function whose static nesting depth is i .

The bookkeeping performed by a function f , whose static nesting depth is
i , looks like:

134

EXERCISES

Copy Di to save location in stack frame
Copy frame pointer to Di

· · · body of f · · ·
Copy save location back to Di

In Program 6.3, function prettyprint is at depth 1, write and show are at
depth 2, and so on.

a. Show the sequence of machine instructions required to fetch the variable
output into a register at line 14 of Program 6.3, using static links.

b. Show the machine instructions required if a display were used instead.

c. When variable x is declared at depth d1 and accessed at depth d2, how
many instructions does the static-link method require to fetch x?

d. How many does the display method require?

e. How many instructions does static-link maintenance require for a proce-
dure entry and exit (combined)?

f. How many instructions does display maintenance require for procedure
entry and exit?

Should we use displays instead of static links? Perhaps; but the issue is more
complicated. For languages such as Pascal with block structure but no function
variables, displays work well.

But the full expressive power of block structure is obtained when functions
can be returned as results of other functions, as in Scheme and ML. For such
languages, there are more issues to consider than just variable-access time and
procedure entry-exit cost: there is closure-building cost, and the problem of
avoiding useless data kept live in closures. Chapter 15 explains some of the
issues.

135

7
Translation to
Intermediate Code

trans-late: to turn into one’s own or another language

Webster’s Dictionary

The semantic analysis phase of a compiler must translate abstract syntax into
abstract machine code. It can do this after type-checking, or at the same time.

Though it is possible to translate directly to real machine code, this hin-
ders portability and modularity. Suppose we want compilers for N different
source languages, targeted to M different machines. In principle this is N · M
compilers (Figure 7.1a), a large implementation task.

An intermediate representation (IR) is a kind of abstract machine language
that can express the target-machine operations without committing to too
much machine-specific detail. But it is also independent of the details of the
source language. The front end of the compiler does lexical analysis, parsing,
semantic analysis, and translation to intermediate representation. The back
end does optimization of the intermediate representation and translation to
machine language.

A portable compiler translates the source language into IR and then trans-
lates the IR into machine language, as illustrated in Figure 7.1b. Now only
N front ends and M back ends are required. Such an implementation task is
more reasonable.

Even when only one front end and one back end are being built, a good
IR can modularize the task, so that the front end is not complicated with
machine-specific details, and the back end is not bothered with information
specific to one source language. Many different kinds of IR are used in com-
pilers; for this compiler we have chosen simple expression trees.

136

7.1. INTERMEDIATE REPRESENTATION TREES

Java

ML

Pascal

C

C++

Sparc

MIPS

Pentium

Itanium

Java

ML

Pascal

C

C++

Sparc

MIPS

Pentium

Itanium

IR

FIGURE 7.1. Compilers for five languages and four target machines:
(a) without an IR, (b) with an IR.

7.1 INTERMEDIATE REPRESENTATION TREES

The intermediate representation tree language is defined by the package Tree,
containing abstract classes Stm and Exp and their subclasses, as shown in
Figure 7.2.

A good intermediate representation has several qualities:

• It must be convenient for the semantic analysis phase to produce.
• It must be convenient to translate into real machine language, for all the de-

sired target machines.
• Each construct must have a clear and simple meaning, so that optimizing

transformations that rewrite the intermediate representation can easily be spec-
ified and implemented.

Individual pieces of abstract syntax can be complicated things, such as
array subscripts, procedure calls, and so on. And individual “real machine”
instructions can also have a complicated effect (though this is less true of
modern RISC machines than of earlier architectures). Unfortunately, it is not
always the case that complex pieces of the abstract syntax correspond exactly
to the complex instructions that a machine can execute.

Therefore, the intermediate representation should have individual compo-
nents that describe only extremely simple things: a single fetch, store, add,
move, or jump. Then any “chunky” piece of abstract syntax can be trans-
lated into just the right set of abstract machine instructions; and groups of
abstract machine instructions can be clumped together (perhaps in quite dif-
ferent clumps) to form “real” machine instructions.

137

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

package Tree;

abstract class Exp
CONST(int value)
NAME(Label label)
TEMP(Temp.Temp temp)
BINOP(int binop, Exp left, Exp right)
MEM(Exp exp)
CALL(Exp func, ExpList args)
ESEQ(Stm stm, Exp exp)

abstract class Stm
MOVE(Exp dst, Exp src)
EXP(Exp exp)
JUMP(Exp exp, Temp.LabelList targets)
CJUMP(int relop, Exp left, Exp right, Label iftrue, Label iffalse)
SEQ(Stm left, Stm right)
LABEL(Label label)

other classes:
ExpList(Exp head, ExpList tail)
StmList(Stm head, StmList tail)

other constants:
final static int BINOP.PLUS, BINOP.MINUS, BINOP.MUL, BINOP.DIV, BINOP.AND,

BINOP.OR, BINOP.LSHIFT, BINOP.RSHIFT, BINOP.ARSHIFT, BINOP.XOR;

final static int CJUMP.EQ, CJUMP.NE, CJUMP.LT, CJUMP.GT, CJUMP.LE,
CJUMP.GE, CJUMP.ULT, CJUMP.ULE, CJUMP.UGT, CJUMP.UGE;

FIGURE 7.2. Intermediate representation trees.

Here is a description of the meaning of each tree operator. First, the ex-
pressions (Exp), which stand for the computation of some value (possibly
with side effects):

CONST(i) The integer constant i .
NAME(n) The symbolic constant n (corresponding to an assembly language la-

bel).
TEMP(t) Temporary t . A temporary in the abstract machine is similar to a reg-

ister in a real machine. However, the abstract machine has an infinite number
of temporaries.

BINOP(o, e1, e2) The application of binary operator o to operands e1, e2. Subex-
pression e1 is evaluated before e2. The integer arithmetic operators are PLUS,
MINUS, MUL, DIV; the integer bitwise logical operators are AND, OR, XOR;
the integer logical shift operators are LSHIFT, RSHIFT; the integer arithmetic

138

7.1. INTERMEDIATE REPRESENTATION TREES

right-shift is ARSHIFT. The MiniJava language has only one logical opera-
tor, but the intermediate language is meant to be independent of any source
language; also, the logical operators might be used in implementing other fea-
tures of MiniJava.

MEM(e) The contents of wordSize bytes of memory starting at address e (where
wordSize is defined in the Frame module). Note that when MEM is used as
the left child of a MOVE, it means “store,” but anywhere else it means “fetch.”

CALL(f, l) A procedure call: the application of function f to argument list l.
The subexpression f is evaluated before the arguments which are evaluated
left to right.

ESEQ(s, e) The statement s is evaluated for side effects, then e is evaluated for
a result.

The statements (stm) of the tree language perform side effects and control
flow:

MOVE(TEMP t, e) Evaluate e and move it into temporary t .
MOVE(MEM(e1), e2) Evaluate e1, yielding address a. Then evaluate e2, and

store the result into wordSize bytes of memory starting at a.
EXP(e) Evaluate e and discard the result.
JUMP(e, labs) Transfer control (jump) to address e. The destination e may be a

literal label, as in NAME(lab), or it may be an address calculated by any other
kind of expression. For example, a C-language switch(i) statement may
be implemented by doing arithmetic on i . The list of labels labs specifies all
the possible locations that the expression e can evaluate to; this is necessary
for dataflow analysis later. The common case of jumping to a known label l
is written as JUMP(NAME l, new LabelList(l, null)), but the JUMP class
has an extra constructor so that this can be abbreviated as JUMP(l).

CJUMP(o, e1, e2, t, f) Evaluate e1, e2 in that order, yielding values a, b. Then
compare a, b using the relational operator o. If the result is true, jump to
t ; otherwise jump to f . The relational operators are EQ and NE for integer
equality and nonequality (signed or unsigned); signed integer inequalities LT,
GT, LE, GE; and unsigned integer inequalities ULT, ULE, UGT, UGE.

SEQ(s1, s2) The statement s1 followed by s2.
LABEL(n) Define the constant value of name n to be the current machine code

address. This is like a label definition in assembly language. The value
NAME(n) may be the target of jumps, calls, etc.

It is almost possible to give a formal semantics to the Tree language.
However, there is no provision in this language for procedure and function
definitions – we can specify only the body of each function. The procedure
entry and exit sequences will be added later as special “glue” that is different
for each target machine.

139

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

7.2 TRANSLATION INTO TREES

Translation of abstract syntax expressions into intermediate trees is reason-
ably straightforward; but there are many cases to handle. We will cover the
translation of various language constructs, including many from MiniJava.

KINDS OF EXPRESSIONS
The MiniJava grammar has clearly distinguished statements and expressions.
However, in languages such as C, the distinction is blurred; for example, an
assignment in C can be used as an expression. When translating such lan-
guages, we will have to ask the following question. What should the repre-
sentation of an abstract-syntax expression be in the Tree language? At first
it seems obvious that it should be Tree.Exp. However, this is true only for
certain kinds of expressions, the ones that compute a value. Expressions that
return no value are more naturally represented by Tree.Stm. And expres-
sions with boolean values, such as a > b, might best be represented as a
conditional jump – a combination of Tree.Stm and a pair of destinations
represented by Temp.Labels.

It is better instead to ask, “how might the expression be used?” Then we
can make the right kind of methods for an object-oriented interface to expres-
sions. Both for MiniJava and other languages, we end up withTranslate.Exp,
not the same class as Tree.Exp, having three methods:

package Translate;
public abstract class Exp {

abstract Tree.Exp unEx();
abstract Tree.Stm unNx();
abstract Tree.Stm unCx(Temp.Label t, Temp.Label f);

}

Ex stands for an “expression,” represented as a Tree.Exp.
Nx stands for “no result,” represented as a Tree statement.
Cx stands for “conditional,” represented as a function from label-pair to state-

ment. If you pass it a true destination and a false destination, it will make
a statement that evaluates some conditionals and then jumps to one of the
destinations (the statement will never “fall through”).

For example, the MiniJava statement

140

7.2. TRANSLATION INTO TREES

if (a<b && c<d) {
// true block

}
else {

// false block
}

might translate to a Translate.Exp whose unCx method is roughly like

Tree.Stm unCx(Label t, Label f) {
Label z = new Label();
return new SEQ(new CJUMP(CJUMP.LT,a,b,z,f),

new SEQ(new LABEL(z),
new CJUMP(CJUMP.LT,c,d,t,f)));

}

The abstract class Translate.Exp can be instantiated by several sub-
classes: Ex for an ordinary expression that yields a single value, Nx for an
expression that yields no value, and Cx for a “conditional” expression that
jumps to either t or f :

class Ex extends Exp {
Tree.Exp exp;
Ex(Tree.Exp e) {exp=e;}
Tree.Exp unEx() {return exp;}
Tree.Stm unNx() { · · · ?· · · }
Tree.Stm unCx(Label t, Label f) { · · · ?· · · }

}
class Nx extends Exp {

Tree.Stm stm;
Nx(Tree.Stm s) {stm=s;}
Tree.Exp unEx() { · · · ?· · · }
Tree.Stm unNx() {return stm;}
Tree.Stm unCx(Label t, Label f) { · · · ?· · · }

}

But what does the unNxmethod of an Ex do? We have a simple Tree.Exp
that yields a value, and we are asked to produce a Tree.Stm that produces
no value. There is a conversion operator Tree.EXP, and unNx must apply it:

class Ex extends Exp {
Tree.Exp exp;
...

Tree.Stm unNx() {return new Tree.EXP(exp); }
...

}

141

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

abstract class Cx extends Exp {
Tree.Exp unEx() {
Temp r = new Temp();
Label t = new Label();
Label f = new Label();

return new Tree.ESEQ(
new Tree.SEQ(new Tree.MOVE(new Tree.TEMP(r),

new Tree.CONST(1)),
new Tree.SEQ(unCx(t,f),
new Tree.SEQ(new Tree.LABEL(f),
new Tree.SEQ(new Tree.MOVE(new Tree.TEMP(r),

new Tree.CONST(0)),
new Tree.LABEL(t))))),

new Tree.TEMP(r));
}

abstract Tree.Stm unCx(Label t, Label f);

Tree.Stm unNx() { · · · }
}

PROGRAM 7.3. The Cx class.

Each kind of Translate.Exp class must have similar conversion methods.
For example, the MiniJava statement

flag = (a<b && c<d);

requires the unEx method of a Cx object so that a 1 (for true) or 0 (for false)
can be stored into flag.

Program 7.3 shows the class Cx. The unEx method is of particular interest.
To convert a “conditional” into a “value expression,” we invent a new tem-
porary r and new labels t and f . Then we make a Tree.Stm that moves the
value 1 into r , and a conditional jump unCx(t, f) that implements the con-
ditional. If the condition is false, then 0 is moved into r ; if it is true, then
execution proceeds at t and the second move is skipped. The result of the
whole thing is just the temporary r containing zero or one.

The unCx method is still abstract: We will discuss this later, with the trans-
lation of comparison operators. But the unEx and unNx methods can still be
implemented in terms of the unCx method. We have shown unEx; we will
leave unNx (which is simpler) as an exercise.

The unCx method of class Ex is left as an exercise. It’s helpful to have
unCx treat the cases of CONST 0 and CONST 1 specially, since they have par-

142

7.2. TRANSLATION INTO TREES

ticularly simple and efficient translations. Class Nx’s unEx and unCxmethods
need not be implemented, since these cases should never occur in compiling
a well-typed MiniJava program.

SIMPLE VARIABLES
For a simple variable v declared in the current procedure’s stack frame, we
translate it as

.
MEM

BINOP

PLUS TEMP fp CONST k

MEM(BINOP(PLUS, TEMP fp, CONST k))

where k is the offset of v within the frame and TEMP fp is the frame-pointer
register. For the MiniJava compiler we make the simplifying assumption that
all variables are the same size – the natural word size of the machine.

The Frame class holds all machine-dependent definitions; here we add to
it a frame-pointer register FP and a constant whose value is the machine’s
natural word size:

package Frame;
public class Frame {

...

abstract public Temp FP();
abstract public int wordSize();

}
public abstract class Access {

public abstract Tree.Exp exp(Tree.Exp framePtr);
}

In this and later chapters, we will abbreviate BINOP(PLUS, e1, e2) as +(e1, e2),
so the tree above would be shown as

.
MEM

+

TEMP fp CONST k

+(TEMP fp, CONST k)

143

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

The exp method of Frame.Access is used by Translate to turn a
Frame.Access into the Tree expression. The Tree.Exp argument is the
address of the stack frame that the Access lives in. Thus, for an access a
such as InFrame(k), we have

a.exp(new TEMP(frame.FP())) =
MEM(BINOP(PLUS,TEMP(frame.FP()),CONST(k)))

If a is a register access such as InReg(t832), then the frame-address argu-
ment to a.exp() will be discarded, and the result will be simply TEMP t832.

An l-value such as v or a[i] or p.next can appear either on the left side
or the right side of an assignment statement – l stands for left, to distinguish
from r-values, which can appear only on the right side of an assignment.
Fortunately, both MEM and TEMP nodes can appear on the left of a MOVE

node.

ARRAY VARIABLES
For the rest of this chapter we will not specify all the interface functions
of Translate, as we have done for simpleVar. But the rule of thumb just
given applies to all of them: There should be a Translate function to handle
array subscripts, one for record fields, one for each kind of expression, and
so on.

Different programming languages treat array-valued variables differently.
In Pascal, an array variable stands for the contents of the array – in this

case all 12 integers. The Pascal program

var a,b : array[1..12] of integer
begin

a := b
end;

copies the contents of array a into array b.
In C, there is no such thing as an array variable. There are pointer variables;

arrays are like “pointer constants.” Thus, this is illegal:

{int a[12], b[12];
a = b;

}

but this is quite legal:

{int a[12], *b;
b = a;

}

144

7.2. TRANSLATION INTO TREES

The statement b = a does not copy the elements of a; instead, it means that b
now points to the beginning of the array a.

In MiniJava (as in Java and ML), array variables behave like pointers.
MiniJava has no named array constants as in C, however. Instead, new ar-
ray values are created (and initialized) by the construct new int[n];where
n is the number of elements, and 0 is the initial value of each element. In the
program

int [] a;
a = new int[12];
b = new int[12];
a = b;

the array variable a ends up pointing to the same 12 zeros as the variable b;
the original 12 zeros allocated for a are discarded.

MiniJava objects are also pointers. Object assignment, like array assign-
ment, is pointer assignment and does not copy all the fields (see below). This
is also true of other object-oriented and functional programming languages,
which try to blur the syntactic distinction between pointers and objects. In
C or Pascal, however, a record value is “big,” and record assignment means
copying all the fields.

STRUCTURED L -VALUES
An l-value is the result of an expression that can occur on the left of an as-
signment statement, such as x or p.y or a[i+2]. An r-value is one that can
only appear on the right of an assignment, such as a+3 or f(x). That is, an
l-value denotes a location that can be assigned to, and an r-value does not.

Of course, an l-value can occur on the right of an assignment statement; in
this case the contents of the location are implicitly taken.

We say that an integer or pointer value is a “scalar,” since it has only one
component. Such a value occupies just one word of memory and can fit in a
register. All the variables and l-values in MiniJava are scalar. Even a Mini-
Java array or object variable is really a pointer (a kind of scalar); the Java
Language Reference Manual may not say so explicitly, because it is talking
about Java semantics instead of Java implementation.

In C or Pascal there are structured l-values – structs in C, arrays and records
in Pascal – that are not scalar. To implement a language with “large” variables
such as the arrays and records in C or Pascal requires a bit of extra work. In a
C compiler, the access type would require information about the size of the
variable. Then, the MEM operator of the TREE intermediate language would

145

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

need to be extended with a notion of size:

package Tree;
abstract class Exp
MEM(Exp exp, int size)

The translation of a local variable into an IR tree would look like

MEM(+(TEMP fp, CONST kn), S)

where the S indicates the size of the object to be fetched or stored (depending
on whether this tree appears on the left or right of a MOVE).

Leaving out the size on MEM nodes makes the MiniJava compiler easier to
implement, but limits the generality of its intermediate representation.

SUBSCRIPTING AND FIELD SELECTION
To subscript an array in Pascal or C (to compute a[i]), just calculate the ad-
dress of the i th element of a: (i − l)×s +a, where l is the lower bound of the
index range, s is the size (in bytes) of each array element, and a is the base
address of the array elements. If a is global, with a compile-time constant
address, then the subtraction a − s × l can be done at compile time.

Similarly, to select field f of a record l-value a (to calculate a. f), simply
add the constant field offset of f to the address a.

An array variable a is an l-value; so is an array subscript expression a[i],
even if i is not an l-value. To calculate the l-value a[i] from a, we do arith-
metic on the address of a. Thus, in a Pascal compiler, the translation of an
l-value (particularly a structured l-value) should not be something like

.
MEM

+

TEMP fp CONST k

but should instead be the Tree expression representing the base address of
the array:

.
+

TEMP fp CONST k

What could happen to this l-value?

146

7.2. TRANSLATION INTO TREES

• A particular element might be subscripted, yielding a (smaller) l-value. A “+”
node would add the index times the element size to the l-value for the base of
the array.

• The l-value (representing the entire array) might be used in a context where
an r -value is required (e.g., passed as a by-value parameter, or assigned to an-
other array variable). Then the l-value is coerced into an r -value by applying
the MEM operator to it.

In the MiniJava language, there are no structured, or “large,” l-values. This
is because all object and array values are really pointers to object and array
structures. The “base address” of the array is really the contents of a pointer
variable, so MEM is required to fetch this base address.

Thus, if a is a memory-resident array variable represented as MEM(e), then
the contents of address e will be a one-word pointer value p. The contents
of addresses p, p + W, p + 2W, ... (where W is the word size) will be the
elements of the array (all elements are one word long). Thus, a[i] is just

.
MEM

+

MEM

e

BINOP

MUL i CONST

W

MEM(+(MEM(e), BINOP(MUL, i, CONST W)))

l-values and MEM nodes. Technically, an l-value (or assignable variable)
should be represented as an address (without the top MEM node in the di-
agram above). Converting an l-value to an r-value (when it is used in an
expression) means fetching from that address; assigning to an l-value means
storing to that address. We are attaching the MEM node to the l-value before
knowing whether it is to be fetched or stored; this works only because in the
Tree intermediate representation, MEM means both store (when used as the
left child of a MOVE) and fetch (when used elsewhere).

A SERMON ON SAFETY
Life is too short to spend time chasing down irreproducible bugs, and money
is too valuable to waste on the purchase of flaky software. When a program
has a bug, it should detect that fact as soon as possible and announce that fact
(or take corrective action) before the bug causes any harm.

147

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

Some bugs are very subtle. But it should not take a genius to detect an out-
of-bounds array subscript: If the array bounds are L ..H , and the subscript is
i , then i < L or i > H is an array bounds error. Furthermore, computers are
well-equipped with hardware able to compute the condition i > H . For sev-
eral decades now, we have known that compilers can automatically emit the
code to test this condition. There is no excuse for a compiler that is unable to
emit code for checking array bounds. Optimizing compilers can often safely
remove the checks by compile-time analysis; see Section 18.4.

One might say, by way of excuse, “but the language in which I program has
the kind of address arithmetic that makes it impossible to know the bounds
of an array.” Yes, and the man who shot his mother and father threw himself
upon the mercy of the court because he was an orphan.

In some rare circumstances, a portion of a program demands blinding
speed, and the timing budget does not allow for bounds checking. In such
a case, it would be best if the optimizing compiler could analyze the sub-
script expressions and prove that the index will always be within bounds, so
that an explicit bounds check is not necessary. If that is not possible, perhaps
it is reasonable in these rare cases to allow the programmer to explicitly spec-
ify an unchecked subscript operation. But this does not excuse the compiler
from checking all the other subscript expressions in the program.

Needless to say, the compiler should check pointers for nil before deref-
erencing them, too.1

ARITHMETIC
Integer arithmetic is easy to translate: Each arithmetic operator corresponds
to a Tree operator.

The Tree language has no unary arithmetic operators. Unary negation of
integers can be implemented as subtraction from zero; unary complement can
be implemented as XOR with all ones.

Unary floating-point negation cannot be implemented as subtraction from
zero, because many floating-point representations allow a negative zero. The
negation of negative zero is positive zero, and vice versa. Thus, the Tree

language does not support unary negation very well.
Fortunately, the MiniJava language doesn’t support floating-point num-

bers; but in a real compiler, a new operator would have to be added for floating
negation.

1A different way of checking for nil is to unmap page 0 in the virtual-memory page tables, so that
attempting to fetch/store fields of a nil record results in a page fault.

148

7.2. TRANSLATION INTO TREES

CONDITIONALS
The result of a comparison operator will be a Cx expression: a statement s
that will jump to any true-destination and false-destination you specify.

Making “simple” Cx expressions from comparison operators is easy with
the CJUMP operator. However, the whole point of the Cx representation is that
conditional expressions can be combined easily with the MiniJava operator
&&. Therefore, an expression such as x<5 will be translated as Cx(s1), where

s1(t, f) = CJUMP(LT, x, CONST(5), t, f)

for any labels t and f .
To do this, we extend the Cx class to make a subclass RelCx that has

private fields to hold the left and right expressions (in this case x and 5) and
the comparison operator (in this case Tree.CJUMP.LT). Then we override
the unCxmethod to generate the CJUMP from these data. It is not necessary to
make unEx and unNx methods, since these will be inherited from the parent
Cx class.

The most straightforward thing to do with an if-expression

if e1 then e2 else e3

is to treat e1 as a Cx expression, and e2 and e3 as Ex expressions. That is, use
the unCx method of e1 and the unEx of e2 and e3. Make two labels t and f
to which the conditional will branch. Allocate a temporary r , and after label
t , move e2 to r ; after label f , move e3 to r . Both branches should finish by
jumping to a newly created “join” label.

This will produce perfectly correct results. However, the translated code
may not be very efficient at all. If e2 and e3 are both “statements” (expres-
sions that return no value), then their representation is likely to be Nx, not Ex.
Applying unEx to them will work – a coercion will automatically be applied
– but it might be better to recognize this case specially.

Even worse, if e2 or e3 is a Cx expression, then applying the unEx coercion
to it will yield a horrible tangle of jumps and labels. It is much better to
recognize this case specially.

For example, consider

if x < 5 then a > b else 0

As shown above, x < 5 translates into Cx(s1); similarly, a > b will be
translated as Cx(s2) for some s2. The whole if-statement should come out
approximately as

149

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

.
SEQ

CJUMP

LT x CONST

5

z f

SEQ

LABEL

z

CJUMP

GT a b t f

SEQ(s1(z, f), SEQ(LABEL z, s2(t, f)))

for some new label z.
Therefore, the translation of an if requires a new subclass of Exp:

class IfThenElseExp extends Exp {
Exp cond, a, b;
Label t = new Label();
Label f = new Label();
Label join = new Label();
IfThenElseExp(Exp cc, Exp aa, Exp bb) {

cond=cc; a=aa; b=bb;
}
Tree.Stm unCx(Label tt, Label ff) { · · · }
Tree.Exp unEx() { · · · }
Tree.Stm unNx() { · · · }

}

The labels t and f indicate the beginning of the then-clause and else-
clause, respectively. The labels tt and ff are quite different: These are the
places to which conditions inside the then-clause (or else-clause) must jump,
depending on the truth of those subexpressions.

STRINGS
A string literal is typically implemented as the constant address of a segment
of memory initialized to the proper characters. In assembly language, a label
is used to refer to this address from the middle of some sequence of instruc-
tions. At some other place in the assembly-language program, the definition
of that label appears, followed by the assembly-language pseudo-instruction
to reserve and initialize a block of memory to the appropriate characters.

For each string literal lit, a translator must make a new label lab, and
return the tree Tree.NAME(lab). It should also put the assembly-language
fragment frame.string(lab,lit) onto a global list of such fragments to
be handed to the code emitter. “Fragments” are discussed further on page 157.

150

7.2. TRANSLATION INTO TREES

.
ESEQ

SEQ

MOVE

TEMP

r

CALL

NAME

malloc

CONST

n*W

SEQ

MOVE

MEM

BINOP

PLUS TEMP

r

CONST

0*W

e1

SEQ

MOVE

MEM

BINOP

PLUS TEMP

r

CONST

1*W

e2

...

MOVE

MEM

BINOP

PLUS TEMP

r

CONST

(n-1)*W

en

TEMP

r

FIGURE 7.4. Object initialization.

All string operations are performed in functions provided by the runtime
system; these functions heap-allocate space for their results, and return point-
ers. Thus, the compiler (almost) doesn’t need to know what the representation
is, as long as it knows that each string pointer is exactly one word long. We
say “almost” because string literals must be represented.

In Pascal, strings are fixed-length arrays of characters; literals are padded
with blanks to make them fit. This is not very useful. In C, strings are point-
ers to variable-length, zero-terminated sequences. This is much more useful,
though a string containing a zero byte cannot be represented.

RECORD AND ARRAY CREATION
Imagine a language construct {e1, e2, ..., en} which creates an n-element record
initialized to the values of expressions ei . This is like an object constructor
that initializes all the instance variables of the object. Such a record may out-
live the procedure activation that creates it, so it cannot be allocated on the
stack. Instead, it must be allocated on the heap. If there is no provision for
freeing records (or strings), industrial-strength systems should have a garbage
collector to reclaim unreachable records (see Chapter 13).

The simplest way to create a record is to call an external memory-allocation
function that returns a pointer to an n-word area into a new temporary r . Then

151

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

a series of MOVE trees can initialize offsets 0, 1W, 2W, ..., (n − 1)W from r
with the translations of expressions ei . Finally, the result of the whole expres-
sion is TEMP(r), as shown in Figure 7.4.

In an industrial compiler, calling malloc (or its equivalent) on every record
creation might be too slow; see Section 13.7.

Array creation is very much like record creation, except that all the fields
are initialized to the same value. The external initArray function can take
the array length and the initializing value as arguments, see later.

In MiniJava we can create an array of integers by the construct

new int [exp]

where exp is an expression that evaluates to an integer. This will create an
integer array of a length determined by the value of exp and with each value
initialized to zero.

To translate array creation, the compiler needs to perform the following
steps:

1. Determine how much space is needed for the array. This can be calculated by:

((length of the array) + 1) × (size of an integer, e.g., 4).

The reason we add one to the length of the array is that we want to store the
length of the array along with the array. This is needed for bounds checking
and to determine the length at run time.

2. Call an external function to get space on the heap. The call will return a pointer
to the beginning of the array.

3. Generate code for saving the length of the array at offset 0.
4. Generate code for initializing each of the values in the array to zero starting

at offset 4.

Calling runtime-system functions. To call an external function named init-
Array with arguments a, b, simply generate a CALL such as

static Label initArray = new Label("initArray");
new CALL(new NAME(initArray),

new Tree.ExpList(a, new Tree.ExpList(b, null)));

This refers to an external function initArray which is written in a language
such as C or assembly language – it cannot be written in MiniJava because
MiniJava has no mechanism for manipulating raw memory.

152

7.2. TRANSLATION INTO TREES

But on some operating systems, the C compiler puts an underscore at the
beginning of each label; and the calling conventions for C functions may dif-
fer from those of MiniJava functions; and C functions don’t expect to receive
a static link, and so on. All these target-machine-specific details should be
encapsulated into a function provided by the Frame structure:

public abstract class Frame {
...

abstract public Tree.Exp externalCall(String func,
Tree.ExpList args);

}

where externalCall takes the name of the external procedure and the ar-
guments to be passed.

The implementation of externalCall depends on the relationship be-
tween MiniJava’s procedure-call convention and that of the external function.
The simplest possible implementation looks like

Tree.Exp externalCall(String s, Tree.ExpList args) {
return new Tree.CALL(new Tree.NAME(new Temp.Label(s)),

args);
}

but may have to be adjusted for static links, or underscores in labels, and so
on. Also, calling new Label(s) repeatedly with the same s makes several
label objects that all mean the same thing; this may confuse other parts of
the compiler, so it might be useful to maintain a string-to-label table to avoid
duplication.

WHILE LOOPS
The general layout of a while loop is

test:
if not(condition) goto done
body
goto test

done:

If a break statement occurs within the body (and not nested within any
interior while statements), the translation is simply a JUMP to done.

Translation of break statements needs to have a new formal parameter
break that is the done label of the nearest enclosing loop. In translating a

153

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

while loop, the translator will be called recursively upon body with the done
label passed as the break parameter. When the translator is recursively call-
ing itself in nonloop contexts, it can simply pass down the same break pa-
rameter that was passed to it.

FOR LOOPS
A for statement can be expressed using other kinds of statements:

for (i=lo; i<=hi; i++;) {
// body

}

i=lo;
limit=hi;
while (i<=limit) {

// body
i++;

}

A straightforward approach to the translation of for statements is to rewrite
the abstract syntax into the abstract syntax of the while statement shown, and
then translate the result.

This is almost right, but consider the case where limit=maxint. Then i + 1
will overflow; either a hardware exception will be raised, or i ≤ limit will
always be true! The solution is to put the test at the bottom of the loop, where
i < limit can be tested before the increment. Then an extra test will be needed
before entering the loop to check lo ≤ hi.

FUNCTION CALL
Translating a function call f (a1, ...an) is simple:

CALL(NAME l f , [e1, e2, ..., en])

where l f is the label for f . In an object-oriented language, the implicit vari-
able thismust be made an explicit argument of the call. That is, p.m(a1, ...an)

is translated as

CALL(NAME lc$m, [p, e1, e2, ..., en])

where p belongs to class c, and c$m is the m method of class c. For a static
method, the computation of address lc$m can be done at compile time – it’s a
simple label, as it is in MiniJava. For dynamic methods, the computation is
more complicated, as explained in Chapter 14.

154

7.3. DECLARATIONS

STATIC LINKS
Some programming languages (such as Pascal, Scheme, and ML) support
nesting of functions so that the inner functions can refer to variables declared
in the outer functions. When building a compiler for such a language, frame
representations and variable access are a bit more complicated.

When a variable x is declared at an outer level of static scope, static links
must be used. The general form is

MEM(+(CONST kn, MEM(+(CONST kn−1, . . .

MEM(+(CONST k1, TEMP FP)) . . .))))

where the k1, ..., kn−1 are the various static-link offsets in nested functions,
and kn is the offset of x in its own frame.

In creating TEMP variables, those temporaries that escape (i.e., are called
from within an inner function) must be allocated in the stack frame, not in a
register. When accessing such a temporary from either the same function or
an inner function, we must pass the appropriate static link. The exp method
of Frame.Access would need to calculate the appropriate chain of derefer-
ences.

Translating a function call f (a1, ...an) using static links requires that the
static link must be added as an implicit extra argument:

CALL(NAME l f , [sl, e1, e2, ..., en])

Here l f is the label for f , and sl is the static link, computed as described in
Chapter 6. To do this computation, both the level of f and the level of
the function calling f are required. A chain of (zero or more) offsets found
in successive level descriptors is fetched, starting with the frame pointer
TEMP(FP) defined by the Frame module.

7.3 DECLARATIONS

For each variable declaration within a function body, additional space will be
reserved in the frame. Also, for each function declaration, a new “fragment”
of Tree code will be kept for the function’s body.

VARIABLE DEFINITION
The translation of a variable declaration should return an augmented type
environment that is used in processing the remainder of the function body.

155

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

However, the initialization of a variable translates into a Tree expression
that must be put just before the body of the function. Therefore, the trans-
lator must return a Translate.Exp containing assignment expressions that
accomplish these initializations.

If the translator is applied to function and type declarations, the result will
be a “no-op” expression such as Ex(CONST(0)).

FUNCTION DEFINITION
A function is translated into a segment of assembly language with a prologue,
a body, and an epilogue. The body of a function is an expression, and the body
of the translation is simply the translation of that expression.

The prologue, which precedes the body in the assembly-language version
of the function, contains

1. pseudo-instructions, as needed in the particular assembly language, to an-
nounce the beginning of a function;

2. a label definition for the function name;
3. an instruction to adjust the stack pointer (to allocate a new frame);
4. instructions to save “escaping” arguments into the frame, and to move nonescap-

ing arguments into fresh temporary registers;
5. store instructions to save any callee-save registers – including the return ad-

dress register – used within the function.

Then comes

6. the function body.

The epilogue comes after the body and contains

7. an instruction to move the return value (result of the function) to the register
reserved for that purpose;

8. load instructions to restore the callee-save registers;
9. an instruction to reset the stack pointer (to deallocate the frame);

10. a return instruction (JUMP to the return address);
11. pseudo-instructions, as needed, to announce the end of a function.

Some of these items (1, 3, 9, and 11) depend on exact knowledge of the
frame size, which will not be known until after the register allocator deter-
mines how many local variables need to be kept in the frame because they
don’t fit in registers. So these instructions should be generated very late, in
a FRAME function called procEntryExit3 (see also page 252). Item 2 (and
10), nestled between 1 and 3 (and 9 and 11, respectively) are also handled at
that time.

156

7.3. DECLARATIONS

To implement 7, the Translate phase should generate a move instruction

MOVE(RV,body)

that puts the result of evaluating the body in the return value (RV) location
specified by the machine-specific frame structure:

package Frame;
public abstract class Frame {

...

abstract public Temp RV();
}

Item 4 (moving incoming formal parameters), and 5 and 8 (the saving
and restoring of callee-save registers), are part of the view shift described
on page 128. They should be done by a function in the Frame module:

package Frame;
public abstract class Frame {

...

abstract public Tree.Stm procEntryExit1(Tree.Stm body);
}

The implementation of this function will be discussed on page 251. Trans-
late should apply it to each procedure body (items 5–7) as it is translated.

FRAGMENTS
Given a function definition comprising an already-translated body expres-
sion, the Translate phase should produce a descriptor for the function con-
taining this necessary information:

frame: The frame descriptor containing machine-specific information about lo-
cal variables and parameters;

body: The result returned from procEntryExit1.

Call this pair a fragment to be translated to assembly language. It is the
second kind of fragment we have seen; the other was the assembly-language
pseudo-instruction sequence for a string literal. Thus, it is useful to define (in
the Translate interface) a frag datatype:

package Translate;
public abstract class Frag { public Frag next; }
public ProcFrag(Tree.Stm body, Frame.Frame frame);
public DataFrag(String data);

157

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

class Vehicle {
int position;
int gas;
int move (int x) {

position = position + x;
return position;

}
int fill (int y) {

gas = gas + y;
return gas;

}
}

PROGRAM 7.5. A MiniJava program.

public class Translate {
...

private Frag frags; // linked list of accumulated fragments
public void procEntryExit(Exp body);
public Frag getResult();

}

The semantic analysis phase calls upon new Translate.Level(· · ·) in
processing a function header. Later it calls other methods of Translate

to translate the body of the function. Finally the semantic analyzer calls
procEntryExit, which has the side effect of remembering a ProcFrag.

All the remembered fragments go into a private fragment list within
Translate; then getResult can be used to extract the fragment list.

CLASSES AND OBJECTS
Figure 7.5 shows a MiniJava class Vehicle with two instance variables
position and gas, and two methods move and fill. We can create mul-
tiple Vehicle objects. Each Vehicle object will have its own position
and gas variables. Two Vehicle objects can have different values in their
variables, and in MiniJava, only the methods of an object can access the vari-
ables of that object. The translation of new Vehicle() is much like the
translation of record creation and can be done in two steps:

1. Generate code for allocating heap space for all the instance variables; in this
case we need to allocate 8 bytes (2 integers, each of size, say, 4).

2. Iterate through the memory locations for those variables and initialize them—
in this case, they should both be initialized to 0.

158

PROGRAMMING EXERCISE

Methods and the this pointer. Method calls in MiniJava are similar to func-
tion calls; but first, we must determine the class in which the method is de-
clared and look up the method in that class. Second, we need to address the
following question. Suppose we have multiple Vehicle objects and we want
to call a method on one of them; how do we ensure that the implementation
knows for which object we are calling the method? The solution is to pass that
object as an extra argument to the method; that argument is the this pointer.
For a method call

Vehicle v;
...
v.move();

the Vehicle object in variable v will be the this pointer when calling the
move method.

The translation of method declarations is much like the translation of func-
tions, but we need to avoid name clashes among methods with the same name
that are declared in different classes. We can do that by choosing a naming
scheme such that the name of the translated method is the concatenation of
the class name and the method name. For example, the translation of move
can be given the name Vehicle move.

Accessing variables. In MiniJava, variables can be accessed from methods in
the same class. Variables are accessed via the this pointer; thus, the translation
of a variable reference is like field selection for records. The position of the
variable in the object can be looked up in the symbol table for the class.

P R O G R A M TRANSLATION TO TREES
Design a set of visitors which translate a MiniJava program into intermediate
representation trees.

Supporting files in $MINIJAVA/chap7 include:

Tree/* Data types for the Tree language.
Tree/Print.java Functions to display trees for debugging.

A simpler translator. To simplify the implementation of the translator, you
may do without the Ex, Nx, Cx constructors. The entire translation can be
done with ordinary value expressions. This means that there is only one Exp
class (without subclasses); this class contains one field of type Tree.Exp and
only an unEx() method. Instead of Nx(s), use Ex(ESEQ(s, CONST 0)). For
conditionals, instead of a Cx, use an expression that just evaluates to 1 or 0.

159

CHAPTER SEVEN. TRANSLATION TO INTERMEDIATE CODE

The intermediate representation trees produced from this kind of naive
translation will be bulkier and slower than a “fancy” translation. But they will
work correctly, and in principle a fancy back-end optimizer might be able to
clean up the clumsiness. In any case, a clumsy but correct translator is better
than a fancy one that doesn’t work.

E X E R C I S E S

7.1 Suppose a certain compiler translates all statements and expressions into Tree.Exp
trees, and does not use the Nx and Cx constructors to represent expressions in
different ways. Draw a picture of the IR tree that results from each of the fol-
lowing MiniJava statements and expressions.

a. a+5
b. b[i+1]
c. a<b, which should be implemented by making an ESEQ whose left-hand

side moves a 1 or 0 into some newly defined temporary, and whose
right-hand side is the temporary.

d. a = x+y; which should be translated with an EXP node at the top.
e. if (a<b) c=a; else c=b; translated using the a<b tree from part (c)

above; the whole statement will therefore be rather clumsy and ineffi-
cient.

f. if (a<b) c=a; else c=b; translated in a less clumsy way.
7.2 Translate each of these MiniJava statements and expressions into IR trees, but

using the Ex, Nx, and Cx constructors as appropriate. In each case, just draw
pictures of the trees; an Ex tree will be a Tree Exp, an Nx tree will be a Tree
Stm, and a Cx tree will be a Stm with holes labeled true and false into which
labels can later be placed.

a. a+5;
b. b[i+1]=0;
c. while (a<0) a=a+1;

d. a<b moves a 1 or 0 into some newly defined temporary, and whose
right-hand side is the temporary.

e. a = x+y;

f. if (a<b) c=a; else c=b;

7.3 Using the C compiler of your choice (or a compiler for another language),
translate some functions to assembly language. On Unix this is done with the
-S option to the C compiler.

160

EXERCISES

Then identify all the components of the calling sequence (items 1–11), and
explain what each line of assembly language does (especially the pseudo-
instructions that comprise items 1 and 11). Try one small function that returns
without much computation (a leaf function), and one that calls another function
before eventually returning.

7.4 The Tree intermediate language has no operators for floating-point variables.
Show how the language would look with new binops for floating-point arith-
metic, and new relops for floating-point comparisons. You may find it useful to
introduce a variant of MEM nodes to describe fetching and storing floating-point
values.

*7.5 The Tree intermediate language has no provision for data values that are not
exactly one word long. The C programming language has signed and unsigned
integers of several sizes, with conversion operators among the different sizes.
Augment the intermediate language to accommodate several sizes of integers,
with conversions among them.

Hint: Do not distinguish signed values from unsigned values in the intermedi-
ate trees, but do distinguish between signed operators and unsigned operators.
See also Fraser and Hanson [1995], Sections 5.5 and 9.1.

161

8
Basic Blocks and Traces

ca-non-i-cal: reduced to the simplest or clearest schema
possible

Webster’s Dictionary

The trees generated by the semantic analysis phase must be translated into as-
sembly or machine language. The operators of the Tree language are chosen
carefully to match the capabilities of most machines. However, there are cer-
tain aspects of the tree language that do not correspond exactly with machine
languages, and some aspects of the Tree language interfere with compile-
time optimization analyses.

For example, it’s useful to be able to evaluate the subexpressions of an ex-
pression in any order. But the subexpressions of Tree.exp can contain side
effects – ESEQ and CALL nodes that contain assignment statements and per-
form input/output. If tree expressions did not contain ESEQ and CALL nodes,
then the order of evaluation would not matter.

Some of the mismatches between Trees and machine-language programs
are
• The CJUMP instruction can jump to either of two labels, but real machines’

conditional jump instructions fall through to the next instruction if the condi-
tion is false.

• ESEQ nodes within expressions are inconvenient, because they make different
orders of evaluating subtrees yield different results.

• CALL nodes within expressions cause the same problem.
• CALL nodes within the argument-expressions of other CALL nodes will cause

problems when trying to put arguments into a fixed set of formal-parameter
registers.

Why does the Tree language allow ESEQ and two-way CJUMP, if they

162

8.1. CANONICAL TREES

are so troublesome? Because they make it much more convenient for the
Translate (translation to intermediate code) phase of the compiler.

We can take any tree and rewrite it into an equivalent tree without any of
the cases listed above. Without these cases, the only possible parent of a SEQ

node is another SEQ; all the SEQ nodes will be clustered at the top of the tree.
This makes the SEQs entirely uninteresting; we might as well get rid of them
and make a linear list of Tree.Stms.

The transformation is done in three stages: First, a tree is rewritten into a
list of canonical trees without SEQ or ESEQ nodes; then this list is grouped
into a set of basic blocks, which contain no internal jumps or labels; then
the basic blocks are ordered into a set of traces in which every CJUMP is
immediately followed by its false label.

Thus the module Canon has these tree-rearrangement functions:

package Canon;
public class Canon {
static public Tree.StmList linearize(Tree.Stm s);

}
public class BasicBlocks {
public StmListList blocks;
public Temp.Label done;
public BasicBlocks(Tree.StmList stms);

}
StmListList(Tree.StmList head, StmListList tail);
public class TraceSchedule {
public TraceSchedule(BasicBlocks b);
public Tree.StmList stms;

}

Linearize removes the ESEQs and moves the CALLs to top level. Then
BasicBlocks groups statements into sequences of straight-line code. Fi-
nally, TraceSchedule orders the blocks so that every CJUMP is followed by
its false label.

8.1 CANONICAL TREES

Let us define canonical trees as having these properties:

1. No SEQ or ESEQ.
2. The parent of each CALL is either EXP(. . .) or MOVE(TEMP t, . . .).

163

CHAPTER EIGHT. BASIC BLOCKS AND TRACES

TRANSFORMATIONS ON ESEQ
How can the ESEQ nodes be eliminated? The idea is to lift them higher and
higher in the tree, until they can become SEQ nodes.

Figure 8.1 gives some useful identities on trees.
Identity (1) is obvious. So is identity (2): Statement s is to be evaluated;

then e1; then e2; then the sum of the expressions is returned. If s has side
effects that affect e1 or e2, then either the left-hand side or the right-hand side
of the first equation will execute those side effects before the expressions are
evaluated.

Identity (3) is more complicated, because of the need not to interchange
the evaluations of s and e1. For example, if s is MOVE(MEM(x), y) and e1 is
BINOP(PLUS, MEM(x), z), then the program will compute a different result if
s is evaluated before e1 instead of after. Our goal is simply to pull s out of the
BINOP expression; but now (to preserve the order of evaluation) we must pull
e1 out of the BINOP with it. To do so, we assign e1 into a new temporary t ,
and put t inside the BINOP.

It may happen that s causes no side effects that can alter the result produced
by e1. This will happen if the temporaries and memory locations assigned by
s are not referenced by e1 (and s and e1 don’t both perform external I/O). In
this case, identity (4) can be used.

We cannot always tell if two expressions commute. For example, whether
MOVE(MEM(x), y) commutes with MEM(z) depends on whether x = z,
which we cannot always determine at compile time. So we conservatively
approximate whether statements commute, saying either “they definitely do
commute” or “perhaps they don’t commute.” For example, we know that any
statement “definitely commutes” with the expression CONST(n), so we can
use identity (4) to justify special cases like

BINOP(op, CONST(n), ESEQ(s, e)) = ESEQ(s, BINOP(op, CONST(n), e)).

The commute function estimates (very naively) whether a statement com-
mutes with an expression:

static boolean commute(Tree.Stm a, Tree.Exp b) {
return isNop(a)

|| b instanceof Tree.NAME
|| b instanceof Tree.CONST;

}

164

8.1. CANONICAL TREES

(1)

.
ESEQ

s1 ESEQ

s2 e

⇒

.
ESEQ

SEQ

s1 s2

e

ESEQ(s1, ESEQ(s2, e)) = ESEQ(SEQ(s1, s2), e)

(2)

.
BINOP

op ESEQ

s e1

e2 ⇒

.
ESEQ

s BINOP

op e1 e2

BINOP(op, ESEQ(s, e1), e2) = ESEQ(s, BINOP(op, e1, e2))

MEM(ESEQ(s, e1)) = ESEQ(s, MEM(e1))

JUMP(ESEQ(s, e1)) = SEQ(s, JUMP(e1))

CJUMP(op, ESEQ(s, e1), e2, l1, l2) = SEQ(s, CJUMP(op, e1, e2, l1, l2))

(3)

.
BINOP

op e1 ESEQ

s e2

⇒

.
ESEQ

MOVE

TEMP

t

e1

ESEQ

s BINOP

op TEMP

t

e2

t is a new temporary

BINOP(op, e1, ESEQ(s, e2)) = ESEQ(MOVE(TEMP t, e1),

ESEQ(s, BINOP(op, TEMP t, e2)))

CJUMP(op, e1, ESEQ(s, e2), l1, l2) = SEQ(MOVE(TEMP t, e1),

SEQ(s, CJUMP(op, TEMP t, e2, l1, l2)))

(4)

.
BINOP

op e1 ESEQ

s e2

if s, e1 commute
⇒

.
ESEQ

s BINOP

op e1 e2

if s, e1 commute
BINOP(op, e1, ESEQ(s, e2)) = ESEQ(s, BINOP(op, e1, e2))

CJUMP(op, e1, ESEQ(s, e2), l1, l2) = SEQ(s, CJUMP(op, e1, e2, l1, l2))

FIGURE 8.1. Identities on trees (see also Exercise 8.1).

165

CHAPTER EIGHT. BASIC BLOCKS AND TRACES

static boolean isNop(Tree.Stm a) {
return a instanceof Tree.EXP

&& ((Tree.EXP)a).exp instanceof Tree.CONST;
}

A constant commutes with any statement, and the empty statement com-
mutes with any expression. Anything else is assumed not to commute.

GENERAL REWRITING RULES
In general, for each kind of Tree statement or expression we can identify
the subexpressions. Then we can make rewriting rules, similar to the ones in
Figure 8.1, to pull the ESEQs out of the statement or expression.

For example, in [e1, e2, ESEQ(s, e3)], the statement s must be pulled left-
ward past e2 and e1. If they commute, we have (s; [e1, e2, e3]). But suppose
e2 does not commute with s; then we must have

(SEQ(MOVE(t1, e1), SEQ(MOVE(t2, e2), s)); [TEMP(t1), TEMP(t2), e3])

Or if e2 commutes with s but e1 does not, we have

(SEQ(MOVE(t1, e1), s); [TEMP(t1), e2, e3])

The reorder function takes a list of expressions and returns a pair of
(statement, expression-list). The statement contains all the things that must be
executed before the expression-list. As shown in these examples, this includes
all the statement-parts of the ESEQs, as well as any expressions to their left
with which they did not commute. When there are no ESEQs at all we will
use EXP(CONST 0), which does nothing, as the statement.

Algorithm. Step one is to make a “subexpression-extraction” method for
each kind. Step two is to make a “subexpression-insertion” method: Given
an ESEQ-clean version of each subexpression, this builds a new version of the
expression or statement.

These will be methods of the Tree.Exp and Tree.Stm classes:

package Tree;
abstract public class Exp {

abstract public ExpList kids();
abstract public Exp build(ExpList kids);

}

166

8.1. CANONICAL TREES

abstract public class Stm {
abstract public ExpList kids();
abstract public Stm build(ExpList kids);

}

Each subclass Exp or Stm must implement the methods; for example,

package Tree;
public class BINOP extends Exp {
public int binop;
public Exp left, right;
public BINOP(int b, Exp l, Exp r) {binop=b; · · ·}
public final static int PLUS=0, MINUS=1, MUL=2, DIV=3,

AND=4,OR=5,LSHIFT=6,RSHIFT=7,ARSHIFT=8,XOR=9;
public ExpList kids() {return new ExpList(left,

new ExpList(right,null));}
public Exp build(ExpList kids) {
return new BINOP(binop,kids.head,kids.tail.head);

}
}

Other subclasses have similar (or even simpler) kids and buildmethods.
Using these build methods, we can write functions

static Tree.Stm do_stm(Tree.Stm s)
static Tree.ESEQ do_exp (Tree.Exp e)

that pull all the ESEQs out of a statement or expression, respectively. That
is, do_stm uses s.kids() to get the immediate subexpressions of s, which
will be an expression-list l. It then pulls all the ESEQs out of l recursively,
yielding a clump of side-effecting statements s1 and a cleaned-up list l ′. Then
SEQ(s1,s.build(l ′)) constructs a new statement, like the original s but with
no ESEQs. These functions rely on auxiliary functions reorder_stm and
reorder_exp for help; see also Exercise 8.3.

The left-hand operand of the MOVE statement is not considered a subex-
pression, because it is the destination of the statement – its value is not used
by the statement. However, if the destination is a memory location, then the
address acts like a source. Thus we have,

167

CHAPTER EIGHT. BASIC BLOCKS AND TRACES

public class MOVE extends Stm {
public Exp dst, src;
public MOVE(Exp d, Exp s) {dst=d; src=s;}
public ExpList kids() {
if (dst instanceof MEM)

return new ExpList(((MEM)dst).exp,
new ExpList(src,null));

else return new ExpList(src,null);
}
public Stm build(ExpList kids) {
if (dst instanceof MEM)
return new MOVE(new MEM(kids.head), kids.tail.head);

else return new MOVE(dst, kids.head);
}

}

Now, given a list of “kids,” we pull the ESEQs out, from right to left.

MOVING CALLS TO TOP LEVEL
The Tree language permits CALL nodes to be used as subexpressions. How-
ever, the actual implementation of CALL will be that each function returns its
result in the same dedicated return-value register TEMP(RV). Thus, if we have

BINOP(PLUS, CALL(. . .), CALL(. . .))

the second call will overwrite the RV register before the PLUS can be executed.
We can solve this problem with a rewriting rule. The idea is to assign each

return value immediately into a fresh temporary register, that is

CALL(fun, args) → ESEQ(MOVE(TEMP t, CALL(fun, args)), TEMP t)

Now the ESEQ-eliminator will percolate the MOVE up outside of its contain-
ing BINOP (etc.) expressions.

This technique will generate a few extra MOVE instructions, which the
register allocator (Chapter 11) can clean up.

The rewriting rule is implemented as follows: reorder replaces any oc-
currence of CALL(f, args) by

ESEQ(MOVE(TEMP tnew, CALL(f, args)), TEMP tnew)

and calls itself again on the ESEQ. But do_stm recognizes the pattern

MOVE(TEMP tnew, CALL(f, args))

168

8.2. TAMING CONDITIONAL BRANCHES

and does not call reorder on the CALL node in that case, but treats the f
and args as the children of the MOVE node. Thus, reorder never “sees”
any CALL that is already the immediate child of a MOVE. Occurrences of the
pattern EXP(CALL(f, args)) are treated similarly.

A LINEAR LIST OF STATEMENTS
Once an entire function body s0 is processed with do_stm, the result is a tree
s′

0 where all the SEQ nodes are near the top (never underneath any other kind
of node). The linearize function repeatedly applies the rule

SEQ(SEQ(a, b), c) = SEQ(a, SEQ(b, c))

The result is that s′
0 is linearized into an expression of the form

SEQ(s1, SEQ(s2, . . . , SEQ(sn−1, sn) . . .))

Here the SEQ nodes provide no structuring information at all, and we can just
consider this to be a simple list of statements,

s1, s2, . . . , sn−1, sn

where none of the si contain SEQ or ESEQ nodes.
These rewrite rules are implemented by linearize, with an auxiliary

function linear:

static Tree.StmList linear(Tree.SEQ s, Tree.StmList l) {
return linear(s.left,linear(s.right,l));

}
static Tree.StmList linear(Tree.Stm s, Tree.StmList l) {

if (s instanceof Tree.SEQ) return linear((Tree.SEQ)s,l);
else return new Tree.StmList(s,l);

}
static public Tree.StmList linearize(Tree.Stm s) {

return linear(do_stm(s), null);
}

8.2 TAMING CONDITIONAL BRANCHES

Another aspect of the Tree language that has no direct equivalent in most
machine instruction sets is the two-way branch of the CJUMP instruction. The
Tree language CJUMP is designed with two target labels for convenience in
translating into trees and analyzing trees. On a real machine, the conditional

169

CHAPTER EIGHT. BASIC BLOCKS AND TRACES

jump either transfers control (on a true condition) or “falls through” to the
next instruction.

To make the trees easy to translate into machine instructions, we will re-
arrange them so that every CJUMP(cond, lt , l f) is immediately followed by
LABEL(l f), its “false branch.” Each such CJUMP can be directly implemented
on a real machine as a conditional branch to label lt .

We will make this transformation in two stages: First, we take the list of
canonical trees and form them into basic blocks; then we order the basic
blocks into a trace. The next sections will define these terms.

BASIC BLOCKS
In determining where the jumps go in a program, we are analyzing the pro-
gram’s control flow. Control flow is the sequencing of instructions in a pro-
gram, ignoring the data values in registers and memory, and ignoring the
arithmetic calculations. Of course, not knowing the data values means we
cannot know whether the conditional jumps will go to their true or false la-
bels; so we simply say that such jumps can go either way.

In analyzing the control flow of a program, any instruction that is not a
jump has an entirely uninteresting behavior. We can lump together any se-
quence of nonbranch instructions into a basic block and analyze the control
flow between basic blocks.

A basic block is a sequence of statements that is always entered at the
beginning and exited at the end, that is:

• The first statement is a LABEL.
• The last statement is a JUMP or CJUMP.
• There are no other LABELs, JUMPs, or CJUMPs.

The algorithm for dividing a long sequence of statements into basic blocks
is quite simple. The sequence is scanned from beginning to end; whenever
a LABEL is found, a new block is started (and the previous block is ended);
whenever a JUMP or CJUMP is found, a block is ended (and the next block
is started). If this leaves any block not ending with a JUMP or CJUMP, then
a JUMP to the next block’s label is appended to the block. If any block has
been left without a LABEL at the beginning, a new label is invented and stuck
there.

We will apply this algorithm to each function-body in turn. The procedure
“epilogue” (which pops the stack and returns to the caller) will not be part of
this body, but is intended to follow the last statement. When the flow of pro-

170

8.2. TAMING CONDITIONAL BRANCHES

gram execution reaches the end of the last block, the epilogue should follow.
But it is inconvenient to have a “special” block that must come last and that
has no JUMP at the end. Thus, we will invent a new label done – intended
to mean the beginning of the epilogue – and put a JUMP(NAME done) at the
end of the last block.

In the MiniJava compiler, the class Canon.BasicBlocks implements
this simple algorithm.

TRACES
Now the basic blocks can be arranged in any order, and the result of executing
the program will be the same – every block ends with a jump to the appropri-
ate place. We can take advantage of this to choose an ordering of the blocks
satisfying the condition that each CJUMP is followed by its false label.

At the same time, we can also arrange that many of the unconditional
JUMPs are immediately followed by their target label. This will allow the
deletion of these jumps, which will make the compiled program run a bit
faster.

A trace is a sequence of statements that could be consecutively executed
during the execution of the program. It can include conditional branches. A
program has many different, overlapping traces. For our purposes in arrang-
ing CJUMPs and false-labels, we want to make a set of traces that exactly
covers the program: Each block must be in exactly one trace. To minimize
the number of JUMPs from one trace to another, we would like to have as few
traces as possible in our covering set.

A very simple algorithm will suffice to find a covering set of traces. The
idea is to start with some block – the beginning of a trace – and follow a
possible execution path – the rest of the trace. Suppose block b1 ends with a
JUMP to b4, and b4 has a JUMP to b6. Then we can make the trace b1, b4, b6.

But suppose b6 ends with a conditional jump CJUMP(cond, b7, b3). We
cannot know at compile time whether b7 or b3 will be next. But we can assume
that some execution will follow b3, so let us imagine it is that execution that
we are simulating. Thus, we append b3 to our trace and continue with the rest
of the trace after b3. The block b7 will be in some other trace.

Algorithm 8.2 (which is similar to Canon.TraceSchedule) orders the
blocks into traces as follows: It starts with some block and follows a chain of
jumps, marking each block and appending it to the current trace. Eventually
it comes to a block whose successors are all marked, so it ends the trace and
picks an unmarked block to start the next trace.

171

CHAPTER EIGHT. BASIC BLOCKS AND TRACES

Put all the blocks of the program into a list Q.
while Q is not empty

Start a new (empty) trace, call it T .
Remove the head element b from Q.
while b is not marked

Mark b; append b to the end of the current trace T .
Examine the successors of b (the blocks to which b branches);
if there is any unmarked successor c

b ← c
End the current trace T .

ALGORITHM 8.2. Generation of traces.

FINISHING UP
An efficient compiler will keep the statements grouped into basic blocks, be-
cause many kinds of analysis and optimization algorithms run faster on (rel-
atively few) basic blocks than on (relatively many) individual statements. For
the MiniJava compiler, however, we seek simplicity in the implementation of
later phases. So we will flatten the ordered list of traces back into one long
list of statements.

At this point, most (but not all) CJUMPs will be followed by their true or
false label. We perform some minor adjustments:

• Any CJUMP immediately followed by its false label we let alone (there will
be many of these).

• For any CJUMP followed by its true label, we switch the true and false labels
and negate the condition.

• For any CJUMP(cond, a, b, lt, l f) followed by neither label, we invent a new
false label l ′f and rewrite the single CJUMP statement as three statements, just
to achieve the condition that the CJUMP is followed by its false label:

CJUMP(cond, a, b, lt, l ′f)
LABEL l ′f
JUMP(NAME l f)

The trace-generating algorithm will tend to order the blocks so that many
of the unconditional JUMPs are immediately followed by their target labels.
We can remove such jumps.

172

FURTHER READING

prologue statements prologue statements prologue statements
JUMP(NAME test) JUMP(NAME test) JUMP(NAME test)
LABEL(test) LABEL(test) LABEL(body)
CJUMP(>, i, N, done, body) CJUMP(≤, i, N, body, done) loop body statements
LABEL(body) LABEL(done) JUMP(NAME test)
loop body statements epilogue statements LABEL(test)
JUMP(NAME test) LABEL(body) CJUMP(≤, i, N, body, done)
LABEL(done) loop body statements LABEL(done)
epilogue statements JUMP(NAME test) epilogue statements

(a) (b) (c)

FIGURE 8.3. Different trace coverings for the same program.

OPTIMAL TRACES
For some applications of traces, it is important that any frequently executed
sequence of instructions (such as the body of a loop) should occupy its own
trace. This helps not only to minimize the number of unconditional jumps, but
also may help with other kinds of optimizations, such as register allocation
and instruction scheduling.

Figure 8.3 shows the same program organized into traces in different ways.
Figure 8.3a has a CJUMP and a JUMP in every iteration of the while-loop;
Figure 8.3b uses a different trace covering, also with CJUMP and a JUMP in
every iteration. But Figure 8.3c shows a better trace covering, with no JUMP

in each iteration.
The MiniJava compiler’s Canonmodule doesn’t attempt to optimize traces

around loops, but it is sufficient for the purpose of cleaning up the Tree-
statement lists for generating assembly code.

F U R T H E R
R E A D I N G

The rewrite rules of Figure 8.1 are an example of a term rewriting system;
such systems have been much studied [Dershowitz and Jouannaud 1990].

Fisher [1981] shows how to cover a program with traces so that frequently
executing paths tend to stay within the same trace. Such traces are useful for
program optimization and scheduling.

173

CHAPTER EIGHT. BASIC BLOCKS AND TRACES

E X E R C I S E S

*8.1 The rewriting rules in Figure 8.1 are a subset of the rules necessary to eliminate
all ESEQs from expressions. Show the right-hand side for each of the following
incomplete rules:

a. MOVE(TEMP t, ESEQ(s, e)) ⇒
b. MOVE(MEM(ESEQ(s, e1)), e2) ⇒
c. MOVE(MEM(e1), ESEQ(s, e2)) ⇒
d. EXP(ESEQ(s, e)) ⇒
e. EXP(CALL(ESEQ(s, e), args)) ⇒
f. MOVE(TEMP t, CALL(ESEQ(s, e), args)) ⇒
g. EXP(CALL(e1, [e2, ESEQ(s, e3), e4])) ⇒
In some cases, you may need two different right-hand sides depending on
whether something commutes (just as parts (3) and (4) of Figure 8.1 have differ-
ent right-hand sides for the same left-hand sides).

8.2 Draw each of the following expressions as a tree diagram, and then apply the
rewriting rules of Figure 8.1 and Exercise 8.1, as well as the CALL rule on
page 168.

a. MOVE(MEM(ESEQ(SEQ(CJUMP(LT, TEMPi , CONST0, Lout, Lok), LABELok),

TEMPi)), CONST1)

b. MOVE(MEM(MEM(NAMEa)), MEM(CALL(TEMP f , [])))
c. BINOP(PLUS, CALL(NAME f , [TEMPx]),

CALL(NAMEg, [ESEQ(MOVE(TEMPx , CONST0), TEMPx)]))
*8.3 The directory $MINIJAVA/chap8 contains an implementation of every algo-

rithm described in this chapter. Read and understand it.

8.4 A primitive form of the commute test is shown on page 164. This function is
conservative: If interchanging the order of evaluation of the expressions will
change the result of executing the program, this function will definitely return
false; but if an interchange is harmless, commute might return true or false.

Write a more powerful version of commute that returns true in more cases,
but is still conservative. Document your program by drawing pictures of (pairs
of) expression trees on which it will return true.

*8.5 The left-hand side of a MOVE node really represents a destination, not an ex-
pression. Consequently, the following rewrite rule is not a good idea:

MOVE(e1, ESEQ(s, e2)) → SEQ(s, MOVE(e1, e2)) if s, e1 commute

174

EXERCISES

Write a statement matching the left side of this rewrite rule that produces a
different result when rewritten.

Hint: It is very reasonable to say that the statement MOVE(TEMPa, TEMPb)

commutes with expression TEMPb (if a and b are not the same), since TEMPb

yields the same value whether executed before or after the MOVE.
Conclusion: The only subexpression of MOVE(TEMPa, e) is e, and the subex-

pressions of MOVE(MEM(e1), e2) are [e1, e2]; we should not say that a is a subex-
pression of MOVE(a, b).

8.6 Break this program into basic blocks.

1 m ← 0
2 v ← 0
3 if v ≥ n goto 15
4 r ← v

5 s ← 0
6 if r < n goto 9
7 v ← v + 1
8 goto 3

9 x ← M[r]
10 s ← s + x
11 if s ≤ m goto 13
12 m ← s
13 r ← r + 1
14 goto 6
15 return m

8.7 Express the basic blocks of Exercise 8.6 as statements in the Tree intermediate
form, and use Algorithm 8.2 to generate a set of traces.

175

9
Instruction Selection

in-struc-tion: a code that tells a computer to perform a
particular operation

Webster’s Dictionary

The intermediate representation (Tree) language expresses only one opera-
tion in each tree node: memory fetch or store, addition or subtraction, condi-
tional jump, and so on. A real machine instruction can often perform several
of these primitive operations. For example, almost any machine can perform
an add and a fetch in the same instruction, corresponding to the tree

.
MEM

BINOP

PLUS e CONST

c

Finding the appropriate machine instructions to implement a given interme-
diate representation tree is the job of the instruction selection phase of a
compiler.

TREE PATTERNS
We can express a machine instruction as a fragment of an IR tree, called a tree
pattern. Then instruction selection becomes the task of tiling the tree with a
minimal set of tree patterns.

For purposes of illustration, we invent an instruction set: the Jouette ar-
chitecture. The arithmetic and memory instructions of Jouette are shown in
Figure 9.1. On this machine, register r0 always contains zero.

176

CHAPTER NINE. INSTRUCTION SELECTION

Name Effect Trees
— ri

.
TEMP

ADD ri ← r j + rk

.
+

MUL ri ← r j × rk

.
*

SUB ri ← r j − rk

.
-

DIV ri ← r j/rk

.
/

ADDI ri ← r j + c

.
+

CONST

.
+

CONST

.
CONST

SUBI ri ← r j − c

.
-

CONST

LOAD ri ← M[r j + c]

.
MEM

+

CONST

.
MEM

+

CONST

.
MEM

CONST

.
MEM

STORE M[r j + c] ← ri

.
MOVE

MEM

+

CONST

.
MOVE

MEM

+

CONST

.
MOVE

MEM

CONST

.
MOVE

MEM

MOVEM M[r j] ← M[ri]
.

MOVE

MEM MEM

FIGURE 9.1. Arithmetic and memory instructions. The notation M[x] de-
notes the memory word at address x .

Each instruction above the double line in Figure 9.1 produces a result in a
register. The very first entry is not really an instruction, but expresses the idea
that a TEMP node is implemented as a register, so it can “produce a result in a
register” without executing any instructions at all. The instructions below the
double line do not produce results in registers, but are executed only for side
effects on memory.

For each instruction, the tree patterns it implements are shown. Some in-
structions correspond to more than one tree pattern; the alternate patterns are
obtained for commutative operators (+ and *), and in some cases where a
register or constant can be zero (LOAD and STORE). In this chapter we abbre-

177

CHAPTER NINE. INSTRUCTION SELECTION

MOVE

FP CONST a

MEM

+

+

*

TEMP i CONST 4

MEM

FP CONST x

MEM

+

9

6

2

1

3 4

5
7

8

2 LOAD r1 ← M[fp + a]
4 ADDI r2 ← r0 + 4
5 MUL r2 ← ri × r2

6 ADD r1 ← r1 + r2

8 LOAD r2 ← M[fp + x]
9 STORE M[r1 + 0] ← r2

(a)

MOVE

FP CONST a

MEM

+

+

*

TEMP i CONST 4

MEM

FP CONST x

MEM

+

9

6

2

1

3 4

5
7

8

2 LOAD r1 ← M[fp + a]
4 ADDI r2 ← r0 + 4
5 MUL r2 ← ri × r2

6 ADD r1 ← r1 + r2

8 ADDI r2 ← fp + x
9 MOVEM M[r1] ← M[r2]

(b)

FIGURE 9.2. A tree tiled in two ways.

viate the tree diagrams slightly: BINOP(PLUS, x, y) nodes will be written as
+(x, y), and the actual values of CONST and TEMP nodes will not always be
shown.

The fundamental idea of instruction selection using a tree-based interme-
diate representation is tiling the IR tree. The tiles are the set of tree patterns
corresponding to legal machine instructions, and the goal is to cover the tree
with nonoverlapping tiles.

For example, the MiniJava-language expression such as a[i] := x , where i
is a register variable and a and x are frame-resident, results in a tree that can
be tiled in many different ways. Two tilings, and the corresponding instruction
sequences, are shown in Figure 9.2 (remember that a is really the frame offset
of the pointer to an array). In each case, tiles 1, 3, and 7 do not correspond
to any machine instructions, because they are just registers (TEMPs) already
containing the right values.

Finally – assuming a “reasonable” set of tile patterns – it is always possible
to tile the tree with tiny tiles, each covering only one node. In our example,
such a tiling looks like this:

178

9.1. ALGORITHMS FOR INSTRUCTION SELECTION

ADDI r1 ← r0 + a
ADD r1 ← fp + r1
LOAD r1 ← M[r1 + 0]
ADDI r2 ← r0 + 4
MUL r2 ← ri × r2
ADD r1 ← r1 + r2
ADDI r2 ← r0 + x
ADD r2 ← fp + r2
LOAD r2 ← M[r2 + 0]
STORE M[r1 + 0] ← r2

For a reasonable set of patterns, it is sufficient that each individual Tree
node correspond to some tile. It is usually possible to arrange for this; for
example, the LOAD instruction can be made to cover just a single MEM node
by using a constant of 0, and so on.

OPTIMAL AND OPTIMUM TILINGS
The best tiling of a tree corresponds to an instruction sequence of least cost:
the shortest sequence of instructions. Or if the instructions take different
amounts of time to execute, the least-cost sequence has the lowest total time.

Suppose we could give each kind of instruction a cost. Then we could
define an optimum tiling as the one whose tiles sum to the lowest possible
value. An optimal tiling is one where no two adjacent tiles can be combined
into a single tile of lower cost. If there is some tree pattern that can be split
into several tiles of lower combined cost, then we should remove that pattern
from our catalog of tiles before we begin.

Every optimum tiling is also optimal, but not vice versa. For example, sup-
pose every instruction costs one unit, except for MOVEM, which costs m units.
Then either Figure 9.2a is optimum (if m > 1) or Figure 9.2b is optimum (if
m < 1) or both (if m = 1); but both trees are optimal.

Optimum tiling is based on an idealized cost model. In reality, instructions
are not self-contained with individually attributable costs; nearby instructions
interact in many ways, as discussed in Chapter 20.

9.1 ALGORITHMS FOR INSTRUCTION SELECTION

There are good algorithms for finding optimum and optimal tilings, but the
algorithms for optimal tilings are simpler, as you might expect.

179

CHAPTER NINE. INSTRUCTION SELECTION

Complex instruction set computers (CISC) have instructions that accom-
plish several operations each. The tiles for these instructions are quite large,
and the difference between optimum and optimal tilings – while never very
large – is at least sometimes noticeable.

Most architectures of modern design are reduced instruction set comput-
ers (RISC). Each RISC instruction accomplishes just a small number of op-
erations (all the Jouette instructions except MOVEM are typical RISC instruc-
tions). Since the tiles are small and of uniform cost, there is usually no dif-
ference at all between optimum and optimal tilings. Thus, the simpler tiling
algorithms suffice.

MAXIMAL MUNCH
The algorithm for optimal tiling is called maximal munch. It is quite simple.
Starting at the root of the tree, find the largest tile that fits. Cover the root
node – and perhaps several other nodes near the root – with this tile, leaving
several subtrees. Now repeat the same algorithm for each subtree.

As each tile is placed, the instruction corresponding to that tile is gen-
erated. The maximal munch algorithm generates the instructions in reverse
order – after all, the instruction at the root is the first to be generated, but it
can only execute after the other instructions have produced operand values in
registers.

The “largest tile” is the one with the most nodes. For example, the tile for
ADD has one node, the tile for SUBI has two nodes, and the tiles for STORE

and MOVEM have three nodes each.
If two tiles of equal size match at the root, then the choice between them

is arbitrary. Thus, in the tree of Figure 9.2, STORE and MOVEM both match,
and either can be chosen.

Maximal munch is quite straightforward to implement in Java. Simply
write two recursive functions, munchStm for statements and munchExp for
expressions. Each clause of munchExp will match one tile. The clauses are
ordered in order of tile preference (biggest tiles first).

Program 9.3 is a partial example of a Jouette code generator based on the
maximal munch algorithm. Executing this program on the tree of Figure 9.2
will match the first clause of munchStm; this will call munchExp to emit
all the instructions for the operands of the STORE, followed by the STORE

itself. Program 9.3 does not show how the registers are chosen and operand
syntax is specified for the instructions; we are concerned here only with the
pattern-matching of tiles.

180

9.1. ALGORITHMS FOR INSTRUCTION SELECTION

void munchMove(MEM dst, Exp src) {
// MOVE(MEM(BINOP(PLUS, e1, CONST(i))), e2)

if (dst.exp instanceof BINOP && ((BINOP)dst.exp).oper==BINOP.PLUS
&& ((BINOP)dst.exp).right instanceof CONST)

{munchExp(((BINOP)dst.exp).left); munchExp(src); emit("STORE");}
// MOVE(MEM(BINOP(PLUS, CONST(i), e1)), e2)

else if (dst.exp instanceof BINOP && ((BINOP)dst.exp).oper==BINOP.PLUS
&& ((BINOP)dst.exp).left instanceof CONST)

{munchExp(((BINOP)dst.exp).right); munchExp(src); emit("STORE");}
// MOVE(MEM(e1), MEM(e2))

else if (src instanceof MEM)
{munchExp(dst.exp); munchExp(((MEM)src).exp); emit("MOVEM");}

// MOVE(MEM(e1), e2)
else

{munchExp(dst.exp); munchExp(src); emit("STORE");}
}
void munchMove(TEMP dst, Exp src) {
// MOVE(TEMP(t1), e)
munchExp(src); emit("ADD");

}
void munchMove(Exp dst, Exp src) {
// MOVE(d, e)
if (dst instanceof MEM) munchMove((MEM)dst,src);
else if (dst instanceof TEMP) munchMove((TEMP)dst,src);

}
void munchStm(Stm s) {
if (s instanceof MOVE) munchMove(((MOVE)s).dst, ((MOVE)s).src);
... // CALL, JUMP, CJUMP unimplemented here

}

void munchExp(Exp)
MEM(BINOP(PLUS, e1, CONST(i))) ⇒ munchExp(e1); emit("LOAD");
MEM(BINOP(PLUS, CONST(i), e1)) ⇒ munchExp(e1); emit("LOAD");
MEM(CONST(i)) ⇒ emit("LOAD");
MEM(e1) ⇒ munchExp(e1); emit("LOAD");
BINOP(PLUS, e1, CONST(i)) ⇒ munchExp(e1); emit("ADDI");
BINOP(PLUS, CONST(i), e1) ⇒ munchExp(e1); emit("ADDI");
CONST(i) ⇒ munchExp(e1); emit("ADDI");
BINOP(PLUS, e1, CONST(i)) ⇒ munchExp(e1); emit("ADD");
TEMP(t) ⇒ {}

PROGRAM 9.3. Maximal Munch in Java.

If, for each node-type in the Tree language, there exists a single-node tile
pattern, then maximal munch cannot get “stuck” with no tile to match some
subtree.

181

CHAPTER NINE. INSTRUCTION SELECTION

DYNAMIC PROGRAMMING
Maximal munch always finds an optimal tiling, but not necessarily an opti-
mum. A dynamic-programming algorithm can find the optimum. In general,
dynamic programming is a technique for finding optimum solutions for a
whole problem based on the optimum solution of each subproblem; here the
subproblems are the tilings of the subtrees.

The dynamic-programming algorithm assigns a cost to every node in the
tree. The cost is the sum of the instruction costs of the best instruction se-
quence that can tile the subtree rooted at that node.

This algorithm works bottom-up, in contrast to maximal munch, which
works top-down. First, the costs of all the children (and grandchildren, etc.)
of node n are found recursively. Then, each tree pattern (tile kind) is matched
against node n.

Each tile has zero or more leaves. In Figure 9.1 the leaves are represented
as edges whose bottom ends exit the tile. The leaves of a tile are places where
subtrees can be attached.

For each tile t of cost c that matches at node n, there will be zero or more
subtrees si corresponding to the leaves of the tile. The cost ci of each subtree
has already been computed (because the algorithm works bottom-up). So the
cost of matching tile t is just c + ∑

ci .
Of all the tiles t j that match at node n, the one with the minimum-cost

match is chosen, and the (minimum) cost of node n is thus computed. For
example, consider this tree:

.
MEM

+

CONST 1 CONST 2

The only tile that matches CONST 1 is an ADDI instruction with cost 1. Simi-
larly, CONST 2 has cost 1. Several tiles match the + node:

Tile Instruction Tile Cost Leaves Cost Total Cost.
+

ADD 1 1+1 3
.
+

CONST
ADDI 1 1 2

.
+

CONST
ADDI 1 1 2

182

9.1. ALGORITHMS FOR INSTRUCTION SELECTION

The ADD tile has two leaves, but the ADDI tile has only one leaf. In match-
ing the first ADDI pattern, we are saying “though we computed the cost of
tiling CONST 2, we are not going to use that information.” If we choose to
use the first ADDI pattern, then CONST 2 will not be the root of any tile, and
its cost will be ignored. In this case, either of the two ADDI tiles leads to the
minimum cost for the + node, and the choice is arbitrary. The + node gets a
cost of 2.

Now, several tiles match the MEM node:

Tile Instruction Tile Cost Leaves Cost Total Cost
.

MEM
LOAD 1 2 3

.
MEM

+

CONST

LOAD 1 1 2

.
MEM

+

CONST

LOAD 1 1 2

Either of the last two matches will be optimum.
Once the cost of the root node (and thus the entire tree) is found, the in-

struction emission phase begins. The algorithm is as follows:

Emission(node n): for each leaf li of the tile selected at node n, per-
form Emission(li). Then emit the instruction matched at node n.

Emission(n) does not recur on the children of node n, but on the leaves
of the tile that matched at n. For example, after the dynamic-programming
algorithm finds the optimum cost of the simple tree above, the emission phase
emits

ADDI r1 ← r0 + 1
LOAD r1 ← M[r1 + 2]

but no instruction is emitted for any tile rooted at the + node, because this
was not a leaf of the tile matched at the root.

TREE GRAMMARS
For machines with complex instruction sets and several classes of registers
and addressing modes, there is a useful generalization of the dynamic-program-

183

CHAPTER NINE. INSTRUCTION SELECTION

Name Effect Trees
— ri

.
TEMP

ADD di ← dj + dk

.
d +

d d

MUL di ← dj × dk

.
d *

d d

SUB di ← dj − dk

.
d -

d d

DIV di ← dj/dk

.
d /

d d

ADDI di ← dj + c

.
d +

d CONST

.
d +

CONST d

.
d CONST

SUBI di ← dj − c

.
d -

d CONST

MOVEA dj ← ai
.

d a

MOVED aj ← di
.

a d

LOAD di ← M[aj + c]

.
d MEM

+

a CONST

.
d MEM

+

CONST a

.
d MEM

CONST

.
d MEM

a

STORE M[aj + c] ← di

.
MOVE

MEM

+

a CONST

d

.
MOVE

MEM

+

CONST a

d

.
MOVE

MEM

CONST

d

.
MOVE

MEM

a

d

MOVEM M[aj] ← M[ai]

.
MOVE

MEM

a

MEM

a

FIGURE 9.4. The Schizo-Jouette architecture.

ming algorithm. Suppose we make a brain-damaged version of Jouette with
two classes of registers: a registers for addressing, and d registers for “data.”
The instruction set of the Schizo-Jouette machine (loosely based on the Mo-
torola 68000) is shown in Figure 9.4.

184

9.1. ALGORITHMS FOR INSTRUCTION SELECTION

The root and leaves of each tile must be marked with a or d to indicate
which kind of register is implied. Now, the dynamic-programming algorithm
must keep track, for each node, of the min-cost match as an a register, and
also the min-cost match as a d register.

At this point it is useful to use a context-free grammar to describe the tiles;
the grammar will have nonterminals s (for statements), a (for expressions cal-
culated into an a register), and d (for expressions calculated into a d register).
Section 3.1 describes the use of context-free grammars for source-language
syntax; here we use them for quite a different purpose.

The grammar rules for the LOAD, MOVEA, and MOVED instructions might
look like this:

d → MEM(+(a, CONST))

d → MEM(+(CONST, a))

d → MEM(CONST)

d → MEM(a)

d → a
a → d

Such a grammar is highly ambiguous: There are many different parses
of the same tree (since there are many different instruction sequences im-
plementing the same expression). For this reason, the parsing techniques
described in Chapter 3 are not very useful in this application. However, a
generalization of the dynamic-programming algorithm works quite well: The
minimum-cost match at each node for each nonterminal of the grammar is
computed.

Though the dynamic-programming algorithm is conceptually simple, it
becomes messy to write down directly in a general-purpose programming
language such as Java. Thus, several tools have been developed. These code-
generator generators process grammars that specify machine instruction sets;
for each rule of the grammar, a cost and an action are specified. The costs are
used to find the optimum tiling, and then the actions of the matched rules are
used in the emission phase.

Like Yacc and Lex, the output of a code-generator generator is usually a
program in C or Java that operates a table-driven matching engine with the
action fragments (written in C or Java) inserted at the appropriate points.

Such tools are quite convenient. Grammars can specify addressing modes
of treelike CISC instructions quite well. A typical grammar for the VAX has
112 rules and 20 nonterminal symbols; and one for the Motorola 68020 has

185

CHAPTER NINE. INSTRUCTION SELECTION

141 rules and 35 nonterminal symbols. However, instructions that produce
more than one result – such as autoincrement instructions on the VAX – are
difficult to express using tree patterns.

Code-generator generators are probably overkill for RISC machines. The
tiles are quite small, there aren’t very many of them, and there is little need
for a grammar with many nonterminal symbols.

FAST MATCHING
Maximal munch and the dynamic-programming algorithm must examine, for
each node, all the tiles that match at that node. A tile matches if each nonleaf
node of the tile is labeled with the same operator (MEM, CONST, etc.) as the
corresponding node of the tree.

The naive algorithm for matching would be to examine each tile in turn,
checking each node of the tile against the corresponding part of the tree. How-
ever, there are better approaches. To match a tile at node n of the tree, the label
at n can be used in a case statement:

match(n) {
switch (label(n)) {

case MEM: · · ·
case BINOP: · · ·
case CONST: · · ·

}

Once the clause for one label (such as MEM) is selected, only those patterns
rooted in that label remain in consideration. Another case statement can use
the label of the child of n to begin distinguishing among those patterns.

The organization and optimization of decision trees for pattern matching
is beyond the scope of this book. However, for better performance the naive
sequence of clauses in function munchExp should be rewritten as a sequence
of comparisons that never looks twice at the same tree node.

EFFICIENCY OF TILING ALGORITHMS
How expensive are maximal munch and dynamic programming?

Let us suppose that there are T different tiles, and that the average match-
ing tile contains K nonleaf (labeled) nodes. Let K ′ be the largest number of
nodes that ever need to be examined to see which tiles match at a given sub-
tree; this is approximately the same as the size of the largest tile. And suppose
that, on the average, T ′ different patterns (tiles) match at each tree node. For
a typical RISC machine we might expect T = 50, K = 2, K ′ = 4, T ′ = 5.

186

9.2. CISC MACHINES

Suppose there are N nodes in the input tree. Then maximal munch will
have to consider matches at only N/K nodes because, once a “munch” is
made at the root, no pattern-matching needs to take place at the nonleaf nodes
of the tile.

To find all the tiles that match at one node, at most K ′ tree nodes must be
examined; but (with a sophisticated decision tree) each of these nodes will be
examined only once. Then each of the successful matches must be compared
to see if its cost is minimal. Thus, the matching at each node costs K ′ + T ′,
for a total cost proportional to (K ′ + T ′)N/K .

The dynamic-programming algorithm must find all the matches at every
node, so its cost is proportional to (K ′ + T ′)N . However, the constant of
proportionality is higher than that of maximal munch, since dynamic pro-
gramming requires two tree-walks instead of one.

Since K , K ′, and T ′ are constant, the running time of all of these algo-
rithms is linear. In practice, measurements show that these instruction selec-
tion algorithms run very quickly compared to the other work performed by a
real compiler – even lexical analysis is likely to take more time than instruc-
tion selection.

9.2 CISC MACHINES

A typical modern RISC machine has

1. 32 registers,
2. only one class of integer/pointer registers,
3. arithmetic operations only between registers,
4. “three-address” instructions of the form r1 ← r2 ⊕ r3,
5. load and store instructions with only the M[reg+const] addressing mode,
6. every instruction exactly 32 bits long,
7. one result or effect per instruction.

Many machines designed between 1970 and 1985 are complex instruction
set computers (CISC). Such computers have more complicated addressing
modes that encode instructions in fewer bits, which was important when com-
puter memories were smaller and more expensive. Typical features found on
CISC machines include

1. few registers (16, or 8, or 6);
2. registers divided into different classes, with some operations available only

on certain registers;

187

CHAPTER NINE. INSTRUCTION SELECTION

3. arithmetic operations can access registers or memory through “addressing
modes”;

4. “two-address” instructions of the form r1 ← r1 ⊕ r2;
5. several different addressing modes;
6. variable-length instructions, formed from variable-length opcode plus variable-

length addressing modes;
7. instructions with side effects such as “autoincrement” addressing modes.

Most computer architectures designed since 1990 are RISC machines, but
most general-purpose computers installed since 1990 are CISC machines: the
Intel 80386 and its descendants (486, Pentium).

The Pentium, in 32-bit mode, has six general-purpose registers, a stack
pointer, and a frame pointer. Most instructions can operate on all six regis-
ters, but the multiply and divide instructions operate only on the eax register.
In contrast to the “three-address” instructions found on RISC machines, Pen-
tium arithmetic instructions are generally “two-address,” meaning that the
destination register must be the same as the first source register. Most in-
structions can have either two register operands (r1 ← r1 ⊕ r2), or one regis-
ter and one memory operand, for example M[r1 + c] ← M[r1 + c] ⊕ r2 or
r1 ← r1 ⊕ M[r2 + c], but not M[r1 + c1] ← M[r1 + c1] ⊕ M[r2 + c2]

We will cut through these Gordian knots as follows:

1. Few registers: We continue to generate TEMP nodes freely, and assume that
the register allocator will do a good job.

2. Classes of registers: The multiply instruction on the Pentium requires that its
left operand (and therefore destination) must be the eax register. The high-
order bits of the result (useless to a MiniJava program) are put into register
edx. The solution is to move the operands and result explicitly; to implement
t1 ← t2 × t3:

mov eax, t2 eax ← t2
mul t3 eax ← eax× t3; edx ← garbage
mov t1, eax t1 ← eax

This looks very clumsy; but one job that the register allocator performs is to
eliminate as many move instructions as possible. If the allocator can assign
t1 or t3 (or both) to register eax, then it can delete one or both of the move
instructions.

3. Two-address instructions: We solve this problem in the same way as we
solve the previous one: by adding extra move instructions. To implement t1 ←

188

9.2. CISC MACHINES

t2 + t3 we produce

mov t1, t2 t1 ← t2
add t1, t3 t1 ← t1 + t3

Then we hope that the register allocator will be able to allocate t1 and t2 to the
same register, so that the move instruction will be deleted.

4. Arithmetic operations can address memory: The instruction selection phase
turns every TEMP node into a “register” reference. Many of these “registers”
will actually turn out to be memory locations. The spill phase of the register
allocator must be made to handle this case efficiently; see Chapter 11.

The alternative to using memory-mode operands is simply to fetch all the
operands into registers before operating and store them back to memory after-
wards. For example, these two sequences compute the same thing:

mov eax, [ebp− 8]
add eax, ecx add [ebp− 8], ecx
mov [ebp− 8], eax

The sequence on the right is more concise (and takes less machine-code space),
but the two sequences are equally fast. The load, register-register add, and
store take 1 cycle each, and the memory-register add takes 3 cycles. On a
highly pipelined machine such as the Pentium Pro, simple cycle counts are
not the whole story, but the result will be the same: The processor has to per-
form the load, add, and store, no matter how the instructions specify them.

The sequence on the left has one significant disadvantage: It trashes the
value in register eax. Therefore, we should try to use the sequence on the
right when possible. But the issue here turns into one of register allocation,
not of instruction speed; so we defer its solution to the register allocator.

5. Several addressing modes: An addressing mode that accomplishes six things
typically takes six steps to execute. Thus, these instructions are often no faster
than the multi-instruction sequences they replace. They have only two advan-
tages: They “trash” fewer registers (such as the register eax in the previous
example), and they have a shorter instruction encoding. With some work, tree-
matching instruction selection can be made to select CISC addressing modes,
but programs can be just as fast using the simple RISC-like instructions.

6. Variable-length instructions: This is not really a problem for the compiler;
once the instructions are selected, it is a trivial (though tedious) matter for the
assembler to emit the encodings.

7. Instructions with side effects: Some machines have an “autoincrement”
memory fetch instruction whose effect is

r2 ← M[r1]; r1 ← r1 + 4

189

CHAPTER NINE. INSTRUCTION SELECTION

This instruction is difficult to model using tree patterns, since it produces two
results. There are three solutions to this problem:
(a) Ignore the autoincrement instructions, and hope they go away. This is an

increasingly successful solution, as few modern machines have multiple-
side-effect instructions.

(b) Try to match special idioms in an ad hoc way, within the context of a tree
pattern-matching code generator.

(c) Use a different instruction algorithm entirely, one based on DAG patterns
instead of tree patterns.

Several of these solutions depend critically on the register allocator to elim-
inate move instructions and to be smart about spilling; see Chapter 11.

9.3 INSTRUCTION SELECTION FOR THE MiniJava COMPILER

Pattern-matching of “tiles” is simple (if tedious) in Java, as shown in Program
9.3. But this figure does not show what to do with each pattern match. It is
all very well to print the name of the instruction, but which registers should
these instructions use?

In a tree tiled by instruction patterns, the root of each tile will correspond
to some intermediate result held in a register. Register allocation is the act of
assigning register numbers to each such node.

The instruction selection phase can simultaneously do register allocation.
However, many aspects of register allocation are independent of the particu-
lar target-machine instruction set, and it is a shame to duplicate the register-
allocation algorithm for each target machine. Thus, register allocation should
come either before or after instruction selection.

Before instruction selection, it is not even known which tree nodes will
need registers to hold their results, since only the roots of tiles (and not other
labeled nodes within tiles) require explicit registers. Thus, register allocation
before instruction selection cannot be very accurate. But some compilers do
it anyway, to avoid the need to describe machine instructions without the real
registers filled in.

We will do register allocation after instruction selection. The instruction
selection phase will generate instructions without quite knowing which reg-
isters the instructions use.

190

9.3. INSTRUCTION SELECTION FOR THE MINIJAVA COMPILER

ABSTRACT ASSEMBLY LANGUAGE INSTRUCTIONS
We will invent a data type for “assembly language instruction without register
assignments,” called Assem.Instr:

package Assem;
import Temp.TempList;

public abstract class Instr {
public String assem;
public abstract TempList use();
public abstract TempList def();
public abstract Targets jumps();
public String format(Temp.TempMap m);

}

public Targets(Temp.LabelList labels);

public OPER(String assem, TempList dst, TempList src,
Temp.LabelList jump);

public OPER(String assem, TempList dst, TempList src);
public MOVE(String assem, Temp dst, Temp src);
public LABEL(String assem, Temp.Label label);

An OPER holds an assembly language instruction assem, a list of operand
registers src, and a list of result registers dst. Any of these lists may be
empty. Operations that always fall through to the next instruction are con-
structed with OPER(assem,dst,src) and the jumps() method will return
null; other operations have a list of “target” labels to which they may jump
(this list must explicitly include the next instruction if it is possible to fall
through to it). The use() method returns the src list, and the def() method
returns the dst list, either of which may be null.

A LABEL is a point in a program to which jumps may go. It has an assem

component showing how the label will look in the assembly language pro-
gram and a label component identifying which label symbol was used.

A MOVE is like an OPER, but must perform only data transfer. Then, if
the dst and src temporaries are assigned to the same register, the MOVE

can later be deleted. The use() method returns a singleton list src, and the
def() method returns a singleton list dst.

Calling i.format(m) formats an assembly instruction as a string; m is an
object implementing the TempMap interface, which contains a method to give
the register assignment (or perhaps just the name) of every temp.

191

CHAPTER NINE. INSTRUCTION SELECTION

package Temp;
public interface TempMap {

public String tempMap(Temp.Temp t);
}

Machine independence. The Assem.Instr class is independent of the cho-
sen target-machine assembly language (though it is tuned for machines with
only one class of register). If the target machine is a Sparc, then the assem

strings will be Sparc assembly language. We will use Jouette assembly lan-
guage for illustration.

For example, the tree
.

MEM

+

TEMP fp CONST 8

could be translated into Jouette assembly language as

new OPER("LOAD ‘d0 <- M[‘s0+8]",
new TempList(new Temp(), null),
new TempList(frame.FP(), null));

This instruction needs some explanation. The actual assembly language of
Jouette, after register allocation, might be

LOAD r1 <- M[r27+8]

assuming that register r27 is the frame pointer fp and that the register allocator
decided to assign the new temp to register r1. But the Assem instruction does
not know about register assignments; instead, it just talks of the sources and
destination of each instruction. This LOAD instruction has one source register,
which is referred to as ‘s0, and one destination register, referred to as ‘d0.

Another example will be useful. The tree
.
*

+

TEMP t87 CONST 3

MEM

TEMP t92

could be translated as

192

9.3. INSTRUCTION SELECTION FOR THE MINIJAVA COMPILER

assem dst src
ADDI ‘d0 <- ‘s0+3 t908 t87
LOAD ‘d0 <- M[‘s0+0] t909 t92
MUL ‘d0 <- ‘s0*‘s1 t910 t908,t909

where t908, t909, and t910 are temporaries newly chosen by the instruction
selector.

After register allocation the assembly language might look like:

ADDI r1 <- r12+3
LOAD r2 <- M[r13+0]
MUL r1 <- r1 * r2

The string of an instr may refer to source registers ‘s0, ‘s1, . . .

‘s(k − 1), and destination registers ‘d0, ‘d1, etc. Jumps are OPER instruc-
tions that refer to labels ‘j0, ‘j1, etc. Conditional jumps, which may branch
away or fall through, typically have two labels in the jump list but refer to
only one of them in the assem string.

Two-address instructions. Some machines have arithmetic instructions with
two operands, where one of the operands is both a source and a destination.
The instruction add t1,t2, which has the effect of t1 ← t1 + t2, can be
described as

assem dst src
add ‘d0,‘s1 t1 t1, t2

where ‘s0 is implicitly, but not explicitly, mentioned in the assem string.

PRODUCING ASSEMBLY INSTRUCTIONS
Now it is a simple matter to write the right-hand sides of the pattern-matching
clauses that “munch” Tree expressions into Assem instructions. We will
show some examples from the Jouette code generator, but the same ideas
apply to code generators for real machines.

The functions munchStm and munchExpwill produce Assem instructions,
bottom-up, as side effects. MunchExp returns the temporary in which the
result is held.

Temp.Temp munchExp(Tree.Exp e);
void munchStm(Tree.Stm s);

The “actions” of the munchExp clauses of Program 9.3 can be written as
shown in Programs 9.5 and 9.6.

193

CHAPTER NINE. INSTRUCTION SELECTION

TempList L(Temp h, TempList t) {return new TempList(h,t);}

munchStm(SEQ(a,b))
{munchStm(a); munchStm(b);}

munchStm(MOVE(MEM(BINOP(PLUS,e1,CONST(i))),e2))
emit(new OPER("STORE M[‘s0+" + i + "] <- ‘s1\n",

null, L(munchExp(e1), L(munchExp(e2), null))));
munchStm(MOVE(MEM(BINOP(PLUS,CONST(i),e1)),e2))

emit(new OPER("STORE M[‘s0+" + i + "] <- ‘s1\n",
null, L(munchExp(e1), L(munchExp(e2), null))));

munchStm(MOVE(MEM(e1),MEM(e2)))
emit(new OPER("MOVE M[‘s0] <- M[‘s1]\n",

null, L(munchExp(e1), L(munchExp(e2), null))));
munchStm(MOVE(MEM(CONST(i)),e2))

emit(new OPER("STORE M[r0+" + i + "] <- ‘s0\n",
null, L(munchExp(e2), null)));

munchStm(MOVE(MEM(e1),e2))
emit(new OPER("STORE M[‘s0] <- ‘s1\n",

null, L(munchExp(e1), L(munchExp(e2), null))));
munchStm(MOVE(TEMP(i), e2))

emit(new OPER("ADD ‘d0 <- ‘s0 + r0\n",
L(i,null), L(munchExp(e2), null)));

munchStm(LABEL(lab))
emit(new Assem.LABEL(lab.toString() + ":\n", lab));

PROGRAM 9.5. Assem-instructions for munchStm.

The emit function just accumulates a list of instructions to be returned
later, as shown in Program 9.7.

PROCEDURE CALLS
Procedure calls are represented by EXP(CALL(f, args)), and function calls by
MOVE(TEMP t, CALL(f, args)). These trees can be matched by tiles such as

munchStm(EXP(CALL(e,args)))
{Temp r = munchExp(e); TempList l = munchArgs(0,args);
emit(new OPER("CALL ‘s0\n",calldefs,L(r,l)));}

In this example, munchArgs generates code to move all the arguments to
their correct positions, in outgoing parameter registers and/or in memory. The
integer parameter to munchArgs is i for the i th argument; munchArgs will
recur with i + 1 for the next argument, and so on.

What munchArgs returns is a list of all the temporaries that are to be
passed to the machine’s CALL instruction. Even though these temps are never

194

9.3. INSTRUCTION SELECTION FOR THE MINIJAVA COMPILER

munchExp(MEM(BINOP(PLUS,e1,CONST(i))))
Temp r = new Temp();
emit(new OPER("LOAD ‘d0 <- M[‘s0+" + i + "]\n",

L(r,null), L(munchExp(e1),null)));
return r;

munchExp(MEM(BINOP(PLUS,CONST(i),e1)))
Temp r = new Temp();
emit(new OPER("LOAD ‘d0 <- M[‘s0+" + i + "]\n",

L(r,null), L(munchExp(e1),null)));
return r;

munchExp(MEM(CONST(i)))
Temp r = new Temp();
emit(new OPER("LOAD ‘d0 <- M[r0+" + i + "]\n",

L(r,null), null));
return r;

munchExp(MEM(e1))
Temp r = new Temp();
emit(new OPER("LOAD ‘d0 <- M[‘s0+0]\n",

L(r,null), L(munchExp(e1),null)));
return r;

munchExp(BINOP(PLUS,e1,CONST(i)))
Temp r = new Temp();
emit(new OPER("ADDI ‘d0 <- ‘s0+" + i + "\n",

L(r,null), L(munchExp(e1),null)));
return r;

munchExp(BINOP(PLUS,CONST(i),e1))
Temp r = new Temp();
emit(new OPER("ADDI ‘d0 <- ‘s0+" + i + "\n",

L(r,null), L(munchExp(e1),null)));
return r;

munchExp(CONST(i))
Temp r = new Temp();
emit(new OPER("ADDI ‘d0 <- r0+" + i + "\n",

null, L(munchExp(e1),null)));
return r;

munchExp(BINOP(PLUS,e1,e2))
Temp r = new Temp();
emit(new OPER("ADD ‘d0 <- ‘s0+‘s1\n",

L(r,null), L(munchExp(e1),L(munchExp(e2),null))));
return r;

munchExp(TEMP(t))
return t;

PROGRAM 9.6. Assem-instructions for munchExp.

195

CHAPTER NINE. INSTRUCTION SELECTION

package Jouette;
public class Codegen {
Frame frame;
public Codegen(Frame f) {frame=f;}

private Assem.InstrList ilist=null, last=null;

private void emit(Assem.Instr inst) {
if (last!=null)

last = last.tail = new Assem.InstrList(inst,null);
else last = ilist = new Assem.InstrList(inst,null);

}

void munchStm(Tree.Stm s) { · · · }
Temp.Temp munchExp(Tree.Exp s) { · · · }

Assem.InstrList codegen(Tree.Stm s) {
Assem.InstrList l;
munchStm(s);
l=ilist;
ilist=last=null;
return l;

}
}

package Frame;
public class Frame {

· · ·
public Assem.InstrList codegen(Tree.Stm stm); {

return (new Codegen(this)).codegen(stm);
}

}

PROGRAM 9.7. The Codegen class.

written explicitly in assembly language, they should be listed as “sources” of
the instruction, so that liveness analysis (Chapter 10) can see that their values
need to be kept up to the point of call.

A CALL is expected to “trash” certain registers – the caller-save regis-
ters, the return-address register, and the return-value register. This list of
calldefs should be listed as “destinations” of the CALL, so that the later
phases of the compiler know that something happens to them here.

In general, any instruction that has the side effect of writing to another reg-
ister requires this treatment. For example, the Pentium’s multiply instruction
writes to register edx with useless high-order result bits, so edx and eax are

196

PROGRAMMING EXERCISE

both listed as destinations of this instruction. (The high-order bits can be very
useful for programs written in assembly language to do multiprecision arith-
metic, but most programming languages do not support any way to access
them.)

IF THERE’S NO FRAME POINTER
In a stack frame layout such as the one shown in Figure 6.2, the frame pointer
points at one end of the frame and the stack pointer points at the other. At
each procedure call, the stack pointer register is copied to the frame pointer
register, and then the stack pointer is incremented by the size of the new
frame.

Many machines’ calling conventions do not use a frame pointer. Instead,
the “virtual frame pointer” is always equal to stack pointer plus frame size.
This saves time (no copy instruction) and space (one more register usable for
other purposes). But our Translate phase has generated trees that refer to
this fictitious frame pointer. The codegen function must replace any refer-
ence to FP+k with SP + k + fs, where fs is the frame size. It can recognize
these patterns as it munches the trees.

However, to replace them it must know the value of fs, which cannot
yet be known because register allocation is not known. Assuming the func-
tion f is to be emitted at label L14 (for example), codegen can just put
sp+L14_framesize in its assembly instructions and hope that the prologue
for f (generated by Frame.procEntryExit3) will include a definition of
the assembly language constant L14_framesize. Codegen is passed the
frame argument (Program 9.7) so that it can learn the name L14.

Implementations that have a “real” frame pointer won’t need this hack and
can ignore the frame argument to codegen. But why would an implemen-
tation use a real frame pointer when it wastes time and space to do so? The
answer is that this permits the frame size to grow and shrink even after it
is first created; some languages have permitted dynamic allocation of arrays
within the stack frame (e.g., using alloca in C). Calling-convention design-
ers now tend to avoid dynamically adjustable frame sizes, however.

P R O G R A M INSTRUCTION SELECTION
Implement the translation to Assem-instructions for your favorite instruction
set (let µ stand for Sparc, Mips, Alpha, Pentium, etc.) using maximal munch.
If you would like to generate code for a RISC machine, but you have no RISC
computer on which to test it, you may wish to use SPIM (a MIPS simulator

197

CHAPTER NINE. INSTRUCTION SELECTION

implemented by James Larus), described on the Web page for this book.
First write the class µ.Codegen implementing the “maximal munch” trans-

lation algorithm from IR trees to the Assem data structure.
Use the Canonmodule (described in Chapter 8) to simplify the trees before

applying your Codegen module to them. Use the format function to trans-
late the resulting Assem trees to µ assembly language. Since you won’t have
done register assignment, just pass new Temp.DefaultMap() to format as
the translation function from temporaries to strings.

package Temp;
public class DefaultMap implements TempMap {

public String tempMap(Temp.Temp t) {
return t.toString();

}
}

This will produce “assembly” language that does not use register names
at all: The instructions will use names such as t3, t283, and so on. But
some of these temps are the “built-in” ones created by the Frame module to
stand for particular machine registers (see page 143), such as Frame.FP. The
assembly language will be easier to read if these registers appear with their
natural names (e.g., fp instead of t1).

The Framemodule must provide a mapping from the special temps to their
names, and nonspecial temps to null:

package Frame;
public class Frame implements Temp.TempMap {

...

abstract public String tempMap(Temp temp);
}

Then, for the purposes of displaying your assembly language prior to regis-
ter allocation, make a new TempMap function that first tries frame.tempMap,
and if that returns null, resorts to Temp.toString().

REGISTER LISTS
Make the following lists of registers; for each register, you will need a string
for its assembly language representation and a Temp.Temp for referring to it
in Tree and Assem data structures.

specialregs a list of µ registers used to implement “special” registers such
as RV and FP and also the stack pointer SP, the return-address register RA, and

198

PROGRAMMING EXERCISE

(on some machines) the zero register ZERO. Some machines may have other
special registers;

argregs a list of µ registers in which to pass outgoing arguments (including
the static link);

calleesaves a list of µ registers that the called procedure (callee) must pre-
serve unchanged (or save and restore);

callersaves a list of µ registers that the callee may trash.

The four lists of registers must not overlap, and must include any register
that might show up in Assem instructions. These lists are not public, but
they are useful internally for both Frame and Codegen – for example, to
implement munchArgs and to construct the calldefs list.

Implement the procEntryExit2 function of the µ.Frame class.

package Frame;
class Frame implements Temp.TempMap {

...

abstract public Assem.InstrList procEntryExit2(
Assem.InstrList body);

}

This function appends a “sink” instruction to the function body to tell the
register allocator that certain registers are live at procedure exit. In the case
of the Jouette machine, this is simply:

package Jouette;
class Frame extends Frame.Frame {

...

static TempList returnSink =
L(ZERO, L(RA, L(SP, calleeSaves)));

static Assem.InstrList append(Assem.InstrList a,
Assem.InstrList b) {

if (a==null) return b;
else {Assem.InstrList p;

for(p=a; p.tail!=null; p=p.tail) {}
p.tail=b;
return a;

}
}

199

CHAPTER NINE. INSTRUCTION SELECTION

public Assem.InstrList procEntryExit2(
Assem.InstrList body) {

return append(body,
new Assem.InstrList(

new Assem.OPER("", null, returnSink),null));
}

}

meaning that the temporaries zero, return-address, stack pointer, and all the
callee-saves registers are still live at the end of the function. Having zero live
at the end means that it is live throughout, which will prevent the register
allocator from trying to use it for some other purpose. The same trick works
for any other special registers the machine might have.

Files available in $MINIJAVA/chap9 include:

Canon/* Canonicalization and trace generation.
Assem/* The Assem module.
Main/Main.java A Main module that you may wish to adapt.

Your code generator will handle only the body of each procedure or func-
tion, but not the procedure entry/exit sequences. Use a “scaffold” version of
Frame.procEntryExit3 function:

package µ;
class Frame extends Frame.Frame {

...

public Frame.Proc procEntryExit3(Assem.InstrList body) {
return new Frame.Proc(

"PROCEDURE " + name.toString() + "\n",
body,

"END " + name.toString() + "\n");
}

}

F U R T H E R
R E A D I N G

Cattell [1980] expressed machine instructions as tree patterns, invented the
maximal munch algorithm for instruction selection, and built a code-generator
generator to produce an instruction selection function from a tree-pattern de-
scription of an instruction set. Glanville and Graham [1978] expressed the
tree patterns as productions in LR(1) grammars, which allows the maximal

200

EXERCISES

munch algorithm to use multiple nonterminal symbols to represent differ-
ent classes of registers and addressing modes. But grammars describing in-
struction sets are inherently ambiguous, leading to problems with the LR(1)
approach; Aho et al. [1989] use dynamic programming to parse the tree
grammars, which solves the ambiguity problem, and describe the Twig au-
tomatic code-generator generator. The dynamic programming can be done at
compiler-construction time instead of code-generation time [Pelegri-Llopart
and Graham 1988]; using this technique, the BURG tool [Fraser et al. 1992]
has an interface similar to Twig’s but generates code much faster.

E X E R C I S E S

9.1 For each of the following expressions, draw the tree and generate Jouette-
machine instructions using maximal munch. Circle the tiles (as in Figure 9.2),
but number them in the order that they are munched, and show the sequence
of Jouette instructions that results.

a. MOVE(MEM(+(+(CONST1000, MEM(TEMPx)), TEMPfp)), CONST0)

b. BINOP(MUL, CONST5, MEM(CONST100))

*9.2 Consider a machine with the following instruction:
mult const1(src1), const2(src2), dst3
r3 ← M[r1 + const1] ∗ M[r2 + const2]

On this machine, r0 is always 0, and M[1] always contains 1.

a. Draw all the tree patterns corresponding to this instruction (and its special
cases).

b. Pick one of the bigger patterns and show how to write a Java if-statement
to match it, with the Tree representation used for the MiniJava compiler.

9.3 The Jouette machine has control-flow instructions as follows:
BRANCHGE if ri ≥ 0 goto L
BRANCHLT if ri < 0 goto L
BRANCHEQ if ri = 0 goto L
BRANCHNE if ri ̸= 0 goto L
JUMP goto ri

where the JUMP instruction goes to an address contained in a register.
Use these instructions to implement the following tree patterns:

.
JUMP

.
JUMP

NAME

.
CJUMP

GT NAME NAME

201

CHAPTER NINE. INSTRUCTION SELECTION

Assume that a CJUMP is always followed by its false label. Show the best
way to implement each pattern; in some cases you may need to use more
than one instruction or make up a new temporary. How do you implement
CJUMP(GT, . . .) without a BRANCHGT instruction?

202

10
Liveness Analysis

live: of continuing or current interest

Webster’s Dictionary

The front end of the compiler translates programs into an intermediate lan-
guage with an unbounded number of temporaries. This program must run
on a machine with a bounded number of registers. Two temporaries a and b
can fit into the same register, if a and b are never “in use” at the same time.
Thus, many temporaries can fit in few registers; if they don’t all fit, the excess
temporaries can be kept in memory.

Therefore, the compiler needs to analyze the intermediate-representation
program to determine which temporaries are in use at the same time. We say
a variable is live if it holds a value that may be needed in the future, so this
analysis is called liveness analysis.

To perform analyses on a program, it is often useful to make a control-flow
graph. Each statement in the program is a node in the flow graph; if statement
x can be followed by statement y, there is an edge from x to y. Graph 10.1
shows the flow graph for a simple loop.

Let us consider the liveness of each variable (Figure 10.2). A variable is
live if its current value will be used in the future, so we analyze liveness by
working from the future to the past. Variable b is used in statement 4, so b is
live on the 3 → 4 edge. Since statement 3 does not assign into b, then b is
also live on the 2 → 3 edge. Statement 2 assigns into b. That means that the
contents of b on the 1 → 2 edge are not needed by anyone; b is dead on this
edge. So the live range of b is {2 → 3, 3 → 4}.

The variable a is an interesting case. It’s live from 1 → 2, and again
from 4 → 5 → 2, but not from 2 → 3 → 4. Although a has a perfectly

203

CHAPTER TEN. LIVENESS ANALYSIS

a ← 0
L1 : b ← a + 1

c ← c + b
a ← b ∗ 2
if a < N goto L1

return c

c := c+b

b := a+1

a := 0

a := b*2

a<N

return c

1

2

3

4

5

6

GRAPH 10.1. Control-flow graph of a program.

c := c+b

b := a+1

a := 0

a := b*2

a<N

return c

1

2

3

4

5

6

c := c+b

b := a+1

a := 0

a := b*2

a<N

return c

1

2

3

4

5

6

c := c+b

b := a+1

a := 0

a := b*2

a<N

return c

1

2

3

4

5

6

(a) (b) (c)

FIGURE 10.2. Liveness of variables a, b, c.

204

10.1. SOLUTION OF DATAFLOW EQUATIONS

well-defined value at node 3, that value will not be needed again before a is
assigned a new value.

The variable c is live on entry to this program. Perhaps it is a formal param-
eter. If it is a local variable, then liveness analysis has detected an uninitialized
variable; the compiler could print a warning message for the programmer.

Once all the live ranges are computed, we can see that only two registers
are needed to hold a, b, and c, since a and b are never live at the same time.
Register 1 can hold both a and b, and register 2 can hold c.

10.1 SOLUTION OF DATAFLOW EQUATIONS

Liveness of variables “flows” around the edges of the control-flow graph; de-
termining the live range of each variable is an example of a dataflow problem.
Chapter 17 will discuss several other kinds of dataflow problems.

Flow-graph terminology. A flow-graph node has out-edges that lead to suc-
cessor nodes, and in-edges that come from predecessor nodes. The set pred[n]
is all the predecessors of node n, and succ[n] is the set of successors.

In Graph 10.1 the out-edges of node 5 are 5 → 6 and 5 → 2, and
succ[5] = {2, 6}. The in-edges of 2 are 5 → 2 and 1 → 2, and pred[2] =
{1, 5}.

Uses and defs. An assignment to a variable or temporary defines that variable.
An occurrence of a variable on the right-hand side of an assignment (or in
other expressions) uses the variable. We can speak of the def of a variable as
the set of graph nodes that define it; or the def of a graph node as the set of
variables that it defines; and similarly for the use of a variable or graph node.
In Graph 10.1, def (3) = {c}, use(3) = {b, c}.

Liveness. A variable is live on an edge if there is a directed path from that
edge to a use of the variable that does not go through any def. A variable is
live-in at a node if it is live on any of the in-edges of that node; it is live-out
at a node if it is live on any of the out-edges of the node.

CALCULATION OF LIVENESS
Liveness information (live-in and live-out) can be calculated from use and def
as follows:

205

CHAPTER TEN. LIVENESS ANALYSIS

in[n] = use[n] ∪ (out[n] − def [n])
out[n] =

⋃

s∈succ[n]
in[s]

EQUATIONS 10.3. Dataflow equations for liveness analysis.

for each n
in[n] ← { }; out[n] ← { }

repeat
for each n

in′[n] ← in[n]; out′[n] ← out[n]
in[n] ← use[n] ∪ (out[n] − def [n])
out[n] ← ⋃

s∈succ[n] in[s]
until in′[n] = in[n] and out′[n] = out[n] for all n

ALGORITHM 10.4. Computation of liveness by iteration.

1. If a variable is in use[n], then it is live-in at node n. That is, if a statement uses
a variable, the variable is live on entry to that statement.

2. If a variable is live-in at a node n, then it is live-out at all nodes m in pred[n].
3. If a variable is live-out at node n, and not in def [n], then the variable is also

live-in at n. That is, if someone needs the value of a at the end of statement n,
and n does not provide that value, then a’s value is needed even on entry to n.

These three statements can be written as Equations 10.3 on sets of vari-
ables. The live-in sets are an array in[n] indexed by node, and the live-out
sets are an array out[n]. That is, in[n] is all the variables in use[n], plus all the
variables in out[n] and not in def [n]. And out[n] is the union of the live-in
sets of all successors of n.

Algorithm 10.4 finds a solution to these equations by iteration. As usual,
we initialize in[n] and out[n] to the the empty set { }, for all n, then repeatedly
treat the equations as assignment statements until a fixed point is reached.

Table 10.5 shows the results of running the algorithm on Graph 10.1. The
columns 1st, 2nd, etc., are the values of in and out on successive iterations of
the repeat loop. Since the 7th column is the same as the 6th, the algorithm
terminates.

We can speed the convergence of this algorithm significantly by ordering
the nodes properly. Suppose there is an edge 3 → 4 in the graph. Since in[4]

206

10.1. SOLUTION OF DATAFLOW EQUATIONS

1st 2nd 3rd 4th 5th 6th 7th
use def in out in out in out in out in out in out in out

1 a a a ac c ac c ac c ac
2 a b a a bc ac bc ac bc ac bc ac bc ac bc
3 bc c bc bc b bc b bc b bc b bc bc bc bc
4 b a b b a b a b ac bc ac bc ac bc ac
5 a a a a ac ac ac ac ac ac ac ac ac ac ac
6 c c c c c c c c

TABLE 10.5. Liveness calculation following forward control-flow edges.

1st 2nd 3rd
use def out in out in out in

6 c c c c
5 a c ac ac ac ac ac
4 b a ac bc ac bc ac bc
3 bc c bc bc bc bc bc bc
2 a b bc ac bc ac bc ac
1 a ac c ac c ac c

TABLE 10.6. Liveness calculation following reverse control-flow edges.

is computed from out[4], and out[3] is computed from in[4], and so on, we
should compute the in and out sets in the order out[4] → in[4] → out[3] →
in[3]. But in Table 10.5, just the opposite order is used in each iteration! We
have waited as long as possible (in each iteration) to make use of information
gained from the previous iteration.

Table 10.6 shows the computation, in which each for loop iterates from 6 to
1 (approximately following the reversed direction of the flow-graph arrows),
and in each iteration the out sets are computed before the in sets. By the end
of the second iteration, the fixed point has been found; the third iteration just
confirms this.

When solving dataflow equations by iteration, the order of computation
should follow the “flow.” Since liveness flows backward along control-flow
arrows, and from “out” to “in,” so should the computation.

Ordering the nodes can be done easily by depth-first search, as shown in
Section 17.4.

207

CHAPTER TEN. LIVENESS ANALYSIS

Basic blocks. Flow-graph nodes that have only one predecessor and one suc-
cessor are not very interesting. Such nodes can be merged with their pre-
decessors and successors; what results is a graph with many fewer nodes,
where each node represents a basic block. The algorithms that operate on
flow graphs, such as liveness analysis, go much faster on the smaller graphs.
Chapter 17 explains how to adjust the dataflow equations to use basic blocks.
In this chapter we keep things simple.

One variable at a time. Instead of doing dataflow “in parallel” using set
equations, it can be just as practical to compute dataflow for one variable at
a time as information about that variable is needed. For liveness, this would
mean repeating the dataflow traversal once for each temporary. Starting from
each use site of a temporary t , and tracing backward (following predecessor
edges of the flow graph) using depth-first search, we note the liveness of t
at each flow-graph node. The search stops at any definition of the temporary.
Although this might seem expensive, many temporaries have very short live
ranges, so the searches terminate quickly and do not traverse the entire flow
graph for most variables.

REPRESENTATION OF SETS
There are at least two good ways to represent sets for dataflow equations: as
arrays of bits or as sorted lists of variables.

If there are N variables in the program, the bit-array representation uses
N bits for each set. Calculating the union of two sets is done by or-ing the
corresponding bits at each position. Since computers can represent K bits per
word (with K = 32 typical), one set-union operation takes N/K operations.

A set can also be represented as a linked list of its members, sorted by any
totally ordered key (such as variable name). Calculating the union is done by
merging the lists (discarding duplicates). This takes time proportional to the
size of the sets being unioned.

Clearly, when the sets are sparse (fewer than N/K elements, on the aver-
age), the sorted-list representation is asymptotically faster; when the sets are
dense, the bit-array representation is better.

TIME COMPLEXITY
How fast is iterative dataflow analysis?

A program of size N has at most N nodes in the flow graph, and at most
N variables. Thus, each live-in set (or live-out set) has at most N elements;

208

10.1. SOLUTION OF DATAFLOW EQUATIONS

X Y Z
use def in out in out in out

1 a c ac cd acd c ac
2 a b ac bc acd bcd ac b
3 bc c bc bc bcd bcd b b
4 b a bc ac bcd acd b ac
5 a ac ac acd acd ac ac
6 c c c c

TABLE 10.7. X and Y are solutions to the liveness equations; Z is not a
solution.

each set-union operation to compute live-in (or live-out) takes O(N) time.
The for loop computes a constant number of set operations per flow-graph

node; there are O(N) nodes; thus, the for loop takes O(N2) time.
Each iteration of the repeat loop can only make each in or out set larger,

never smaller. This is because the in and out sets are monotonic with respect to
each other. That is, in the equation in[n] = use[n]∪(out[n]−def [n]), a larger
out[n] can only make in[n] larger. Similarly, in out[n] = ⋃

s∈succ[n] in[s], a
larger in[s] can only make out[n] larger.

Each iteration must add something to the sets; but the sets cannot keep
growing infinitely; at most every set can contain every variable. Thus, the
sum of the sizes of all in and out sets is 2N2, which is the most that the repeat
loop can iterate.

Thus, the worst-case run time of this algorithm is O(N4). Ordering the
nodes using depth-first search (Algorithm 17.5, page 363) usually brings the
number of repeat-loop iterations to two or three, and the live sets are often
sparse, so the algorithm runs between O(N) and O(N2) in practice.

Section 17.4 discusses more sophisticated ways of solving dataflow equa-
tions quickly.

LEAST FIXED POINTS
Table 10.7 illustrates two solutions (and a nonsolution!) to the Equations 10.3;
assume there is another program variable d not used in this fragment of the
program.

In solution Y , the variable d is carried uselessly around the loop. But in
fact, Y satisfies Equations 10.3 just as X does. What does this mean? Is d live
or not?

209

CHAPTER TEN. LIVENESS ANALYSIS

The answer is that any solution to the dataflow equations is a conservative
approximation. If the value of variable a will truly be needed in some execu-
tion of the program when execution reaches node n of the flow graph, then
we can be assured that a is live-out at node n in any solution of the equations.
But the converse is not true; we might calculate that d is live-out, but that
doesn’t mean that its value will really be used.

Is this acceptable? We can answer that question by asking what use will be
made of the dataflow information. In the case of liveness analysis, if a variable
is thought to be live, then we will make sure to have its value in a register. A
conservative approximation of liveness is one that may erroneously believe a
variable is live, but will never erroneously believe it is dead. The consequence
of a conservative approximation is that the compiled code might use more
registers than it really needs; but it will compute the right answer.

Consider instead the live-in sets Z , which fail to satisfy the dataflow equa-
tions. Using this Z we think that b and c are never live at the same time, and
we would assign them to the same register. The resulting program would use
an optimal number of registers but compute the wrong answer.

A dataflow equation used for compiler optimization should be set up so
that any solution to it provides conservative information to the optimizer;
imprecise information may lead to suboptimal but never incorrect programs.

Theorem. Equations 10.3 have more than one solution.

Proof. X and Y are both solutions.

Theorem. All solutions to Equations 10.3 contain solution X . That is, if
inX [n] and inY [n] are the live-in sets for some node n in solutions X and
Y , then inX [n] ⊆ inY [n].

Proof. See Exercise 10.2.
We say that X is the least solution to Equations 10.3. Clearly, since a bigger

solution will lead to using more registers (producing suboptimal code), we
want to use the least solution. Fortunately, Algorithm 10.4 always computes
the least fixed point.

STATIC VS. DYNAMIC LIVENESS
A variable is live “if its value will be used in the future.” In Graph 10.8, we
know that b×b must be nonnegative, so that the test c ≥ b will be true. Thus,

210

10.1. SOLUTION OF DATAFLOW EQUATIONS

c := a+b

c ≥ b

a := b*b

return a

1

2

3

4

return c
5

GRAPH 10.8. Standard static dataflow analysis will not take advantage of the
fact that node 4 can never be reached.

node 4 will never be reached, and a’s value will not be used after node 2; a is
not live-out of node 2.

But Equations 10.3 say that a is live-in to node 4, and therefore live-out
of nodes 3 and 2. The equations are ignorant of which way the conditional
branch will go. “Smarter” equations would permit a and c to be assigned the
same register.

Although we can prove here that b∗b ≥ 0, and we could have the compiler
look for arithmetic identities, no compiler can ever fully understand how all
the control flow in every program will work. This is a fundamental mathe-
matical theorem, derivable from the halting problem.

Theorem. There is no program H that takes as input any program P and
input X and (without infinite-looping) returns true if P(X) halts and false if
P(X) infinite-loops.

Proof. Suppose that there were such a program H ; then we could arrive at a
contradiction as follows. From the program H , construct the function F ,

F(Y) = if H(Y, Y) then (while true do ()) else true

By the definition of H , if F(F) halts, then H(F, F) is true; so the then
clause is taken; so the while loop executes forever; so F(F) does not halt.
But if F(F) loops forever, then H(F, F) is false; so the else clause is taken;
so F(F) halts. The program F(F) halts if it doesn’t halt, and doesn’t halt if

211

CHAPTER TEN. LIVENESS ANALYSIS

it halts: a contradiction. Thus there can be no program H that tests whether
another program halts (and always halts itself).

Corollary. No program H ′(X, L) can tell, for any program X and label L
within X , whether the label L is ever reached on an execution of X .

Proof. From H ′ we could construct H . In some program that we want to test
for halting, just let L be the end of the program, and replace all instances of
the halt command with goto L .

Conservative approximation. This theorem does not mean that we can never
tell if a given label is reached or not, just that there is not a general algo-
rithm that can always tell. We could improve our liveness analysis with some
special-case algorithms that, in some cases, calculate more information about
run-time control flow. But any such algorithm will come up against many
cases where it simply cannot tell exactly what will happen at run time.

Because of this inherent limitation of program analysis, no compiler can
really tell if a variable’s value is truly needed – whether the variable is truly
live. Instead, we have to make do with a conservative approximation. We
assume that any conditional branch goes both ways. Thus, we have a dynamic
condition and its static approximation:

Dynamic liveness A variable a is dynamically live at node n if some execution
of the program goes from n to a use of a without going through any definition
of a.

Static liveness A variable a is statically live at node n if there is some path
of control-flow edges from n to some use of a that does not go through a
definition of a.

Clearly, if a is dynamically live, it is also statically live. An optimizing
compiler must allocate registers, and do other optimizations, on the basis of
static liveness, because (in general) dynamic liveness cannot be computed.

INTERFERENCE GRAPHS
Liveness information is used for several kinds of optimizations in a compiler.
For some optimizations, we need to know exactly which variables are live at
each node in the flow graph.

One of the most important applications of liveness analysis is for register
allocation: We have a set of temporaries a, b, c, . . . that must be allocated to

212

10.1. SOLUTION OF DATAFLOW EQUATIONS

a b c
a x
b x
c x x

(a) Matrix

a

b

c

(b) Graph

FIGURE 10.9. Representations of interference.

registers r1, . . . , rk . A condition that prevents a and b from being allocated to
the same register is called an interference.

The most common kind of interference is caused by overlapping live ranges:
When a and b are both live at the same program point, then they cannot be
put in the same register. But there are some other causes of interference: for
example, when a must be generated by an instruction that cannot address
register r1, then a and r1 interfere.

Interference information can be expressed as a matrix; Figure 10.9a has
an x marking interferences of the variables in Graph 10.1. The interference
matrix can also be expressed as an undirected graph (Figure 10.9b), with a
node for each variable, and edges connecting variables that interfere.

Special treatment of MOVE instructions. In static liveness analysis, we can
give MOVE instructions special consideration. It is important not to create
artifical interferences between the source and destination of a move. Consider
the program:

t ← s (copy)
...

x ← . . . s . . . (use of s)
...

y ← . . . t . . . (use of t)

After the copy instruction both s and t are live, and normally we would
make an interference edge (s, t) since t is being defined at a point where s
is live. But we do not need separate registers for s and t , since they contain
the same value. The solution is just not to add an interference edge (t, s) in
this case. Of course, if there is a later (nonmove) definition of t while s is still
live, that will create the interference edge (t, s).

Therefore, the way to add interference edges for each new definition is

213

CHAPTER TEN. LIVENESS ANALYSIS

package Graph;

public class Graph {
public Graph();
public NodeList nodes();
public Node newNode();
public void addEdge(Node from, Node to);
public void rmEdge(Node from, Node to);
public void show(java.io.PrintStream out);

}

public class Node {
public Node(Graph g);
public NodeList succ();
public NodeList pred();
public NodeList adj();
public int outDegree();
public int inDegree();
public int degree();
public boolean goesTo(Node n);
public boolean comesFrom(Node n);
public boolean adj(Node n);
public String toString();

}

PROGRAM 10.10. The Graph abstract data type.

1. At any nonmove instruction that defines a variable a, where the live-out vari-
ables are b1, . . . , b j , add interference edges (a, b1), . . . , (a, b j).

2. At a move instruction a ← c, where variables b1, . . . , b j are live-out, add
interference edges (a, b1), . . . , (a, b j) for any bi that is not the same as c.

10.2 LIVENESS IN THE MiniJava COMPILER

The flow analysis for the MiniJava compiler is done in two stages: First, the
control flow of the Assem program is analyzed, producing a control-flow
graph; then, the liveness of variables in the control-flow graph is analyzed,
producing an interference graph.

GRAPHS
To represent both kinds of graphs, let’s make a Graph abstract data type
(Program 10.10).

214

10.2. LIVENESS IN THE MINIJAVA COMPILER

The constructor Graph() creates an empty directed graph; g.newNode()
makes a new node within a graph g. A directed edge from n to m is created
by g.addEdge(n,m); after that, m will be found in the list n.succ() and
n will be in m.pred(). When working with undirected graphs, the function
adj is useful: m.adj() = m.succ() ∪ m.pred().

To delete an edge, use rmEdge. To test whether m and n are the same node,
use m==n.

When using a graph in an algorithm, we want each node to represent some-
thing (an instruction in a program, for example). To make mappings from
nodes to the things they are supposed to represent, we use a Hashtable. The
following idiom associates information x with node n in a mapping mytable.

java.util.Dictionary mytable = new java.util.Hashtable();
· · · mytable.put(n,x);

CONTROL-FLOW GRAPHS
The FlowGraph package manages control-flow graphs. Each instruction (or
basic block) is represented by a node in the flow graph. If instruction m can
be followed by instruction n (either by a jump or by falling through), then
there will be an edge (m, n) in the graph.

public abstract class FlowGraph extends Graph.Graph {
public abstract TempList def(Node node);
public abstract TempList use(Node node);
public abstract boolean isMove(Node node);
public void show(java.io.PrintStream out);

}

Each Node of the flow graph represents an instruction (or, perhaps, a basic
block). The def() method tells what temporaries are defined at this node
(destination registers of the instruction). use() tells what temporaries are
used at this node (source registers of the instruction). isMove tells whether
this instruction is a MOVE instruction, one that could be deleted if the def

and use were identical.
The AssemFlowGraph class provides an implementation of FlowGraph

for Assem instructions.

package FlowGraph;
public class AssemFlowGraph extends FlowGraph {

public Instr instr(Node n);
public AssemFlowGraph(Assem.InstrList instrs);

}

215

CHAPTER TEN. LIVENESS ANALYSIS

The constructor AssemFlowGraph takes a list of instructions and returns a
flow graph. In making the flow graph, the jump fields of the instrs are used
in creating control-flow edges, and the use and def information (obtained
from the src and dst fields of the instrs) is attached to the nodes by means
of the use and def methods of the flowgraph.

Information associated with the nodes. For a flow graph, we want to asso-
ciate some use and def information with each node in the graph. Then the
liveness-analysis algorithm will also want to remember live-in and live-out
information at each node. We could make room in the Node class to store
all of this information. This would work well and would be quite efficient.
However, it may not be very modular. Eventually we may want to do other
analyses on flow graphs, which remember other kinds of information about
each node. We may not want to modify the data structure (which is a widely
used interface) for each new analysis.

Instead of storing the information in the nodes, a more modular approach is
to say that a graph is a graph, and that a flow graph is a graph along with sep-
arately packaged auxiliary information (tables, or functions mapping nodes
to whatever). Similarly, a dataflow algorithm on a graph does not need to
modify dataflow information in the nodes, but modifies its own privately held
mappings.

There may be a trade-off here between efficiency and modularity, since it
may be faster to keep the information in the nodes, accessible by a simple
pointer-traversal instead of a hash-table or search-tree lookup.

LIVENESS ANALYSIS
The RegAlloc package has an abstract class InterferenceGraph to indi-
cate which pairs of temporaries cannot share a register:

package RegAlloc;
abstract public class InterferenceGraph extends Graph.Graph{

abstract public Graph.Node tnode(Temp.Temp temp);
abstract public Temp.Temp gtemp(Node node);
abstract public MoveList moves();
public int spillCost(Node node);

}

The method tnode relates a Temp to a Node, and gtemp is the inverse map.
The method moves tells what MOVE instructions are associated with this
graph (this is a hint about what pairs of temporaries to try to allocate to the
same register). The spillCost(n) is an estimate of how many extra instruc-

216

PROGRAMMING EXERCISE

tions would be executed if n were kept in memory instead of in registers; for
a naive spiller, it suffices to return 1 for every n.

The class Liveness produces an interference graph from a flow graph:

package RegAlloc;
public class Liveness extends InterferenceGraph {

public Liveness(FlowGraph flow);
}

In the implementation of the Livenessmodule, it is useful to maintain a data
structure that remembers what is live at the exit of each flow-graph node:

private java.util.Dictionary liveMap =
new java.util.Hashtable();

where the keys are nodes and objects are TempLists. Given a flow-graph
node n, the set of live temporaries at that node can be looked up in a global
liveMap.

Having calculated a complete liveMap, we can now construct an interfer-
ence graph. At each flow node n where there is a newly defined temporary
d ∈ def (n), and where temporaries {t1, t2, . . .} are in the liveMap, we just
add interference edges (d, t1), (d, t2), For MOVEs, these edges will be
safe but suboptimal; pages 213–214 describe a better treatment.

What if a newly defined temporary is not live just after its definition? This
would be the case if a variable is defined but never used. It would seem that
there’s no need to put it in a register at all; thus it would not interfere with any
other temporaries. But if the defining instruction is going to execute (perhaps
it is necessary for some other side effect of the instruction), then it will write to
some register, and that register had better not contain any other live variable.
Thus, zero-length live ranges do interfere with any live ranges that overlap
them.

P R O G R A M CONSTRUCTING FLOW GRAPHS
Implement the AssemFlowGraph class that turns a list of Assem instruc-
tions into a flow graph. Use the abstract classes Graph.Graph and Flow-

Graph.FlowGraph provided in $MINIJAVA/chap10.

P R O G R A M LIVENESS
Implement the Livenessmodule. Use either the set-equation algorithm with
the array-of-boolean or sorted-list-of-temporaries representation of sets, or
the one-variable-at-a-time method.

217

CHAPTER TEN. LIVENESS ANALYSIS

E X E R C I S E S

10.1 Perform flow analysis on the program of Exercise 8.6:

a. Draw the control-flow graph.

b. Calculate live-in and live-out at each statement.

c. Construct the register interference graph.

**10.2 Prove that Equations 10.3 have a least fixed point and that Algorithm 10.4
always computes it.

Hint: We know the algorithm refuses to terminate until it has a fixed point.
The questions are whether (a) it must eventually terminate, and (b) the fixed
point it computes is smaller than all other fixed points. For (a) show that the sets
can only get bigger. For (b) show by induction that at any time the in and out
sets are subsets of those in any possible fixed point. This is clearly true initially,
when in and out are both empty; show that each step of the algorithm preserves
the invariant.

*10.3 Analyze the asymptotic complexity of the one-variable-at-a-time method of
computing dataflow information.

*10.4 Analyze the worst-case asymptotic complexity of making an interference graph,
for a program of size N (with at most N variables and at most N control-flow
nodes). Assume the dataflow analysis is already done and that use, def, and
live-out information for each node can be queried in constant time. What
representation of graph adjacency matrices should be used for efficiency?

10.5 The DEC Alpha architecture places the following restrictions on floating-point
instructions, for programs that wish to recover from arithmetic exceptions:

1. Within a basic block (actually, in any sequence of instructions not sep-
arated by a trap-barrier instruction), no two instructions should write to
the same destination register.

2. A source register of an instruction cannot be the same as the destination
register of that instruction or any later instruction in the basic block.

r1 + r5 → r4 r1 + r5 → r4 r1 + r5 → r3 r1 + r5 → r4

r3 × r2 → r4 r4 × r2 → r1 r4 × r2 → r4 r4 × r2 → r6

violates rule 1. violates rule 2. violates rule 2. OK

Show how to express these restrictions in the register interference graph.

218

11
Register Allocation

reg-is-ter: a device for storing small amounts of data
al-lo-cate: to apportion for a specific purpose

Webster’s Dictionary

The Translate, Canon, and Codegen phases of the compiler assume that
there are an infinite number of registers to hold temporary values and that
MOVE instructions cost nothing. The job of the register allocator is to assign
the many temporaries to a small number of machine registers, and, where
possible, to assign the source and destination of a MOVE to the same register
so that the MOVE can be deleted.

From an examination of the control and dataflow graph, we derive an in-
terference graph. Each node in the interference graph represents a temporary
value; each edge (t1, t2) indicates a pair of temporaries that cannot be assigned
to the same register. The most common reason for an interference edge is that
t1 and t2 are live at the same time. Interference edges can also express other
constraints; for example, if a certain instruction a ← b ⊕ c cannot produce
results in register r12 on our machine, we can make a interfere with r12.

Next we color the interference graph. We want to use as few colors as
possible, but no pair of nodes connected by an edge may be assigned the
same color. Graph coloring problems derive from the old mapmakers’ rule
that adjacent countries on a map should be colored with different colors. Our
“colors” correspond to registers: If our target machine has K registers, and we
can K -color the graph (color the graph with K colors), then the coloring is a
valid register assignment for the interference graph. If there is no K -coloring,
we will have to keep some of our variables and temporaries in memory instead
of registers; this is called spilling.

219

CHAPTER ELEVEN. REGISTER ALLOCATION

11.1 COLORING BY SIMPLIFICATION

Register allocation is an N P-complete problem (except in special cases, such
as expression trees); graph coloring is also N P-complete. Fortunately there
is a linear-time approximation algorithm that gives good results; its principal
phases are Build, Simplify, Spill, and Select.

Build: Construct the interference graph. We use dataflow analysis to com-
pute the set of temporaries that are simultaneously live at each program point,
and we add an edge to the graph for each pair of temporaries in the set. We
repeat this for all program points.

Simplify: We color the graph using a simple heuristic. Suppose the graph G
contains a node m with fewer than K neighbors, where K is the number of
registers on the machine. Let G′ be the graph G − {m} obtained by removing
m. If G′ can be colored, then so can G, for when m is added to the colored
graph G′, the neighbors of m have at most K − 1 colors among them, so a
free color can always be found for m. This leads naturally to a stack-based
(or recursive) algorithm for coloring: We repeatedly remove (and push on a
stack) nodes of degree less than K . Each such simplification will decrease the
degrees of other nodes, leading to more opportunity for simplification.

Spill: Suppose at some point during simplification the graph G has nodes
only of significant degree, that is, nodes of degree ≥ K . Then the simplify
heuristic fails, and we mark some node for spilling. That is, we choose some
node in the graph (standing for a temporary variable in the program) and de-
cide to represent it in memory, not registers, during program execution. An
optimistic approximation to the effect of spilling is that the spilled node does
not interfere with any of the other nodes remaining in the graph. It can there-
fore be removed and pushed on the stack, and the simplify process continued.

Select: We assign colors to nodes in the graph. Starting with the empty graph,
we rebuild the original graph by repeatedly adding a node from the top of the
stack. When we add a node to the graph, there must be a color for it, as the
premise for removing it in the simplify phase was that it could always be
assigned a color provided the remaining nodes in the graph could be success-
fully colored.

When potential spill node n that was pushed using the Spill heuristic is

220

11.1. COLORING BY SIMPLIFICATION

live-in: k j
g := mem[j+12]
h := k - 1
f := g * h
e := mem[j+8]
m := mem[j+16]
b := mem[f]
c := e + 8
d := c
k := m + 4
j := b

live-out: d k j

j k

h g

f

e

d

b m

c

GRAPH 11.1. Interference graph for a program. Dotted lines are not interfer-
ence edges but indicate move instructions.

popped, there is no guarantee that it will be colorable: Its neighbors in the
graph may be colored with K different colors already. In this case, we have
an actual spill. We do not assign any color, but we continue the Select phase
to identify other actual spills.

But perhaps some of the neighbors are the same color, so that among them
there are fewer than K colors. Then we can color n, and it does not become
an actual spill. This technique is known as optimistic coloring.

Start over: If the Select phase is unable to find a color for some node(s),
then the program must be rewritten to fetch them from memory just before
each use, and store them back after each definition. Thus, a spilled tempo-
rary will turn into several new temporaries with tiny live ranges. These will
interfere with other temporaries in the graph. So the algorithm is repeated on
this rewritten program. This process iterates until simplify succeeds with no
spills; in practice, one or two iterations almost always suffice.

EXAMPLE
Graph 11.1 shows the interferences for a simple program. The nodes are la-
beled with the temporaries they represent, and there is an edge between two
nodes if they are simultaneously live. For example, nodes d, k, and j are all
connected since they are live simultaneously at the end of the block. Assum-
ing that there are four registers available on the machine, then the simplify
phase can start with the nodes g, h, c, and f in its working set, since they

221

CHAPTER ELEVEN. REGISTER ALLOCATION

j k

h g

f

e

d

b m

c

GRAPH 11.2. After removal of h, g, k.

m 1
c 3
b 2
f 2
e 4
j 3
d 4
k 1
h 2
g 4

(a) stack (b) assignment

j 3 k 1

h 2 g 4

f 2

e 4

d 4

b 2 m1

c 3

FIGURE 11.3. Simplification stack, and a possible coloring.

have less than four neighbors each. A color can always be found for them if
the remaining graph can be successfully colored. If the algorithm starts by
removing h and g and all their edges, then node k becomes a candidate for
removal and can be added to the work list. Graph 11.2 remains after nodes g,
h, and k have been removed. Continuing in this fashion a possible order in
which nodes are removed is represented by the stack shown in Figure 11.3a,
where the stack grows upward.

The nodes are now popped off the stack and the original graph recon-
structed and colored simultaneously. Starting with m, a color is chosen ar-
bitrarily since the graph at this point consists of a singleton node. The next
node to be put into the graph is c. The only constraint is that it be given a color
different from m, since there is an edge from m to c. A possible assignment of
colors for the reconstructed original graph is shown in Figure 11.3b.

222

11.2. COALESCING

11.2 COALESCING

It is easy to eliminate redundant move instructions with an interference graph.
If there is no edge in the interference graph between the source and destina-
tion of a move instruction, then the move can be eliminated. The source and
destination nodes are coalesced into a new node whose edges are the union
of those of the nodes being replaced.

In principle, any pair of nodes not connected by an interference edge could
be coalesced. This aggressive form of copy propagation is very successful at
eliminating move instructions. Unfortunately, the node being introduced is
more constrained than those being removed, as it contains a union of edges.
Thus, it is quite possible that a graph, colorable with K colors before coa-
lescing, may no longer be K -colorable after reckless coalescing. We wish to
coalesce only where it is safe to do so, that is, where the coalescing will not
render the graph uncolorable. Both of the following strategies are safe:

Briggs: Nodes a and b can be coalesced if the resulting node ab will have fewer
than K neighbors of significant degree (i.e., having ≥ K edges). The coa-
lescing is guaranteed not to turn a K -colorable graph into a non-K -colorable
graph, because after the simplify phase has removed all the insignificant-
degree nodes from the graph, the coalesced node will be adjacent only to
those neighbors that were of significant degree. Since there are fewer than K
of these, simplify can then remove the coalesced node from the graph. Thus
if the original graph was colorable, the conservative coalescing strategy does
not alter the colorability of the graph.

George: Nodes a and b can be coalesced if, for every neighbor t of a, either t
already interferes with b or t is of insignificant degree. This coalescing is safe,
by the following reasoning. Let S be the set of insignificant-degree neighbors
of a in the original graph. If the coalescing were not done, simplify could
remove all the nodes in S, leaving a reduced graph G1. If the coalescing is
done, then simplify can remove all the nodes in S, leaving a graph G2. But G2
is a subgraph of G1 (the node ab in G2 corresponds to the node b in G1), and
thus must be at least as easy to color.

These strategies are conservative, because there are still safe situations in
which they will fail to coalesce. This means that the program may perform
some unnecessary MOVE instructions – but this is better than spilling!

Interleaving simplification steps with conservative coalescing eliminates
most move instructions, while still guaranteeing not to introduce spills. The
coalesce, simplify, and spill procedures should be alternated until the graph
is empty, as shown in Figure 11.4.

223

CHAPTER ELEVEN. REGISTER ALLOCATION

build simplify coalesce freeze potential
spill

select actual
spill

rebuild graph if there were any actual spills

FIGURE 11.4. Graph coloring with coalescing.

These are the phases of a register allocator with coalescing:

Build: Construct the interference graph, and categorize each node as either
move-related or non-move-related. A move-related node is one that is either
the source or destination of a move instruction.

Simplify: One at a time, remove non-move-related nodes of low (< K) de-
gree from the graph.

Coalesce: Perform conservative coalescing on the reduced graph obtained in
the simplification phase. Since the degrees of many nodes have been reduced
by simplify, the conservative strategy is likely to find many more moves to
coalesce than it would have in the initial interference graph. After two nodes
have been coalesced (and the move instruction deleted), if the resulting node
is no longer move-related, it will be available for the next round of simpli-
fication. Simplify and coalesce are repeated until only significant-degree or
move-related nodes remain.

Freeze: If neither simplify nor coalesce applies, we look for a move-related
node of low degree. We freeze the moves in which this node is involved: That
is, we give up hope of coalescing those moves. This causes the node (and
perhaps other nodes related to the frozen moves) to be considered non-move-
related, which should enable more simplification. Now, simplify and coalesce
are resumed.

Spill: If there are no low-degree nodes, we select a significant-degree node
for potential spilling and push it on the stack.

Select: Pop the entire stack, assigning colors.
Consider Graph 11.1; nodes b, c, d, and j are the only move-related nodes.

The initial work list used in the simplify phase must contain only non-move-

224

11.2. COALESCING

j

k

h

g

f

e

c&d

b m

c

j&b

k

h

g

f

e

c&d

m

b

c
GRAPH 11.5. (a) after coalescing c and d; (b) after coalescing b and j.

e 1
m 2
f 3

j&b 4
c&d 1

k 2
h 2
g 1

stack coloring

j 4 k 2

h 2 g 1

f 3

e 1

d 1

b 4 m2

c 1

FIGURE 11.6. A coloring, with coalescing, for Graph 11.1.

related nodes and consists of nodes g, h, and f. Once again, after removal of
g, h, and k we obtain Graph 11.2.

We could continue the simplification phase further; however, if we invoke
a round of coalescing at this point, we discover that c and d are indeed coa-
lesceable as the coalesced node has only two neighbors of significant degree:
m and b. The resulting graph is shown in Graph 11.5a, with the coalesced
node labeled as c&d.

From Graph 11.5a we see that it is possible to coalesce b and j as well.
Nodes b and j are adjacent to two neighbors of significant degree, namely m

and e. The result of coalescing b and j is shown in Graph 11.5b.
After coalescing these two moves, there are no more move-related nodes,

and therefore no more coalescing is possible. The simplify phase can be in-
voked one more time to remove all the remaining nodes. A possible assign-
ment of colors is shown in Figure 11.6.

Some moves are neither coalesced nor frozen. Instead, they are constrained.
Consider the graph x, y, z, where (x, z) is the only interference edge and there
are two moves x ← y and y ← z. Either move is a candidate for coalesc-
ing. But after x and y are coalesced, the remaining move xy ← z cannot

225

CHAPTER ELEVEN. REGISTER ALLOCATION

be coalesced because of the interference edge (xy, z). We say this move is
constrained, and we remove it from further consideration: It no longer causes
nodes to be treated as move-related.

SPILLING
If spilling is necessary, build and simplify must be repeated on the whole
program. The simplest version of the algorithm discards any coalescences
found if build must be repeated. Then it is easy to see that coalescing does
not increase the number of spills in any future round of build. A more efficient
algorithm preserves any coalescences done before the first potential spill was
discovered, but discards (uncoalesces) any coalescences done after that point.

Coalescing of spills. On a machine with many registers (> 20), there will
usually be few spilled nodes. But on a six-register machine (such as the Intel
Pentium), there will be many spills. The front end may have generated many
temporaries, and transformations such as SSA (described in Chapter 19) may
split them into many more temporaries. If each spilled temporary lives in its
own stack-frame location, then the frame may be quite large.

Even worse, there may be many move instructions involving pairs of spilled
nodes. But to implement a ← b when a and b are both spilled temporaries re-
quires a fetch-store sequence, t ← M[bloc]; M[aloc] ← t . This is expensive,
and also defines a temporary t that itself may cause other nodes to spill.

But many of the spill pairs are never live simultaneously. Thus, they may
be graph-colored, with coalescing! In fact, because there is no fixed limit to
the number of stack-frame locations, we can coalesce aggressively, without
worrying about how many high-degree neighbors the spill nodes have. The
algorithm is thus:

1. Use liveness information to construct the interference graph for spilled nodes.
2. While there is any pair of noninterfering spilled nodes connected by a move

instruction, coalesce them.
3. Use simplify and select to color the graph. There is no (further) spilling in

this coloring; instead, simplify just picks the lowest-degree node, and select
picks the first available color, without any predetermined limit on the number
of colors.

4. The colors correspond to activation-record locations for the spilled variables.

This should be done before generating the spill instructions and regenerating
the register-temporary interference graph, so as to avoid creating fetch-store
sequences for coalesced moves of spilled nodes.

226

11.3. PRECOLORED NODES

11.3 PRECOLORED NODES

Some temporaries are precolored – they represent machine registers. The
front end generates these when interfacing to standard calling conventions
across module boundaries, for example. For each actual register that is used
for some specific purpose, such as the frame pointer, standard-argument-
1-register, standard-argument-2-register, and so on, the Codegen or Frame
module should use the particular temporary that is permanently bound to that
register (see also page 251). For any given color (that is, for any given ma-
chine register) there should be only one precolored node of that color.

The select and coalesce operations can give an ordinary temporary the
same color as a precolored register, as long as they don’t interfere, and in
fact this is quite common. Thus, a standard calling-convention register can be
reused inside a procedure as a temporary variable. Precolored nodes may be
coalesced with other (non-precolored) nodes using conservative coalescing.

For a K -register machine, there will be K precolored nodes that all inter-
fere with each other. Those of the precolored nodes that are not used explicitly
(in a parameter-passing convention, for example) will not interfere with any
ordinary (non-precolored) nodes; but a machine register used explicitly will
have a live range that interferes with any other variables that happen to be live
at the same time.

We cannot simplify a precolored node – this would mean pulling it from
the graph in the hope that we can assign it a color later, but in fact we have
no freedom about what color to assign it. And we should not spill precolored
nodes to memory, because the machine registers are by definition registers.
Thus, we should treat them as having “infinite” degree.

TEMPORARY COPIES OF MACHINE REGISTERS
The coloring algorithm works by calling simplify, coalesce, and spill until
only the precolored nodes remain, and then the select phase can start adding
the other nodes (and coloring them).

Because precolored nodes do not spill, the front end must be careful to
keep their live ranges short. It can do this by generating MOVE instructions
to move values to and from precolored nodes. For example, suppose r7 is a
callee-save register; it is “defined” at procedure entry and “used” at procedure
exit. Instead of being kept in a precolored register throughout the procedure
(Figure 11.7a), it can be moved into a fresh temporary and then moved back

227

CHAPTER ELEVEN. REGISTER ALLOCATION

enter: def(r7) enter: def(r7)

t231 ← r7

(a)
... (b)

...
r7 ← t231

exit: use(r7) exit: use(r7)

FIGURE 11.7. Moving a callee-save register to a fresh temporary.

(Figure 11.7b). If there is register pressure (a high demand for registers) in
this function, t231 will spill; otherwise t231 will be coalesced with r7 and the
MOVE instructions will be eliminated.

CALLER-SAVE AND CALLEE-SAVE REGISTERS
A local variable or compiler temporary that is not live across any procedure
call should usually be allocated to a caller-save register, because in this case
no saving and restoring of the register will be necessary at all. On the other
hand, any variable that is live across several procedure calls should be kept in
a callee-save register, since then only one save/restore will be necessary (on
entry/exit from the calling procedure).

How can the register allocator allocate variables to registers using this cri-
terion? Fortunately, a graph-coloring allocator can do this very naturally, as
a byproduct of ordinary coalescing and spilling. All the callee-save registers
are considered live on entry to the procedure, and are used by the return in-
struction. The CALL instructions in the Assem language have been annotated
to define (interfere with) all the caller-save registers. If a variable is not live
across a procedure call, it will tend to be allocated to a caller-save register.

If a variable x is live across a procedure call, then it interferes with all
the caller-save (precolored) registers, and it interferes with all the new tem-
poraries (such as t231 in Figure 11.7) created for callee-save registers. Thus,
a spill will occur. Using the common spill-cost heuristic that spills a node
with high degree but few uses, the node chosen for spilling will not be x but
t231. Since t231 is spilled, r7 will be available for coloring x (or some other
variable). Essentially, the callee saves the callee-save register by spilling t231.

EXAMPLE WITH PRECOLORED NODES
A worked example will illustrate the issues of register allocation with precol-
ored nodes, callee-save registers, and spilling.

228

11.3. PRECOLORED NODES

int f(int a, int b) {
int d=0;
int e=a;
do {d = d+b;

e = e-1;
} while (e>0);
return d;

}

enter: c ← r3

a ← r1

b ← r2

d ← 0
e ← a

loop: d ← d + b
e ← e − 1
if e > 0 goto loop
r1 ← d
r3 ← c
return (r1, r3 live out)

(a) (b)

PROGRAM 11.8. A C function and its translation into instructions

A C compiler is compiling Program 11.8a for a target machine with three
registers; r1 and r2 are caller-save, and r3 is callee-save. The code generator
has therefore made arrangements to preserve the value of r3 explicitly, by
copying it into the temporary c and back again.

The instruction-selection phase has pro-
duced the instruction list of Program 11.8b.
The interference graph for this function is
shown at right. r1

e

d
a

r2

r3 b

c

The register allocation proceeds as follows (with K = 3):

1. In this graph, there is no opportunity for simplify or freeze (because all the
non-precolored nodes have degree ≥ K). Any attempt to coalesce would pro-
duce a coalesced node adjacent to K or more significant-degree nodes. There-
fore we must spill some node. We calculate spill priorities as follows:

Node
Uses+Defs

outside loop
Uses+Defs
within loop

Degree
Spill

priority
a (2 + 10 × 0) / 4 = 0.50
b (1 + 10 × 1) / 4 = 2.75
c (2 + 10 × 0) / 6 = 0.33
d (2 + 10 × 2) / 4 = 5.50
e (1 + 10 × 3) / 3 = 10.33

229

CHAPTER ELEVEN. REGISTER ALLOCATION

Node c has the lowest priority – it interferes
with many other temporaries but is rarely
used – so it should be spilled first. Spilling
c, we obtain the graph at right.

r1

e

d
a

r2r3 b

2. We can now coalesce a and e, since the
resulting node will be adjacent to fewer than
K significant-degree nodes (after coalescing,
node d will be low-degree, though it is
significant-degree right now). No other
simplify or coalesce is possible now.

r1
d

ae

r2r3 b

3. Now we could coalesce ae&r1 or coalesce
b&r2. Let us do the latter.

r1
d

ae

r3 r2b

4. We can now coalesce either ae&r1 or coa-
lesce d&r1. Let us do the former.

dr1ae

r2br3

5. We cannot now coalesce r1ae&d because the
move is constrained: The nodes r1ae and d
interfere. We must simplify d . r1ae

r2br3

6. Now we have reached a graph with only precolored nodes, so we pop nodes
from the stack and assign colors to them. First we pick d , which can be as-
signed color r3. Nodes a, b, and e have already been assigned colors by
coalescing. But node c, which was a potential spill, turns into an actual spill
when it is popped from the stack, since no color can be found for it.

7. Since there was spilling in this round, we
must rewrite the program to include spill in-
structions. For each use (or definition) of c,
we make up a new temporary, and fetch (or
store) it immediately beforehand (or after-
ward).

enter: c1 ← r3
M[cloc] ← c1
a ← r1
b ← r2
d ← 0
e ← a

loop: d ← d + b
e ← e − 1
if e > 0 goto loop
r1 ← d
c2 ← M[cloc]
r3 ← c2
return

230

11.3. PRECOLORED NODES

8. Now we build a new interference graph:
e

d
a

r2
r3 b

c1

r1c2

9. Graph-coloring proceeds as follows. We
can immediately coalesce c1&r3 and then
c2&r3.

e

d
a

r2
r3c1c2 b

r1

10. Then, as before, we can coalesce a&e and
then b&r2.

dae

r2b
r3c1c2

r1

11. As before, we can coalesce ae&r1 and then
simplify d .

r2br3c1c2

r1ae

12. Now we start popping from the stack: We
select color r3 for d , and this was the only
node on the stack – all other nodes were
coalesced or precolored. The coloring is
shown at right.

Node Color
a r1
b r2
c r3
d r3
e r1

13. Now we can rewrite the program using the
register assignment.

enter: r3 ← r3
M[cloc] ← r3
r1 ← r1
r2 ← r2
r3 ← 0
r1 ← r1

loop: r3 ← r3 + r2
r1 ← r1 − 1
if r1 > 0 goto loop
r1 ← r3
r3 ← M[cloc]
r3 ← r3
return

231

CHAPTER ELEVEN. REGISTER ALLOCATION

14. Finally, we can delete any move instruction
whose source and destination are the same;
these are the result of coalescing.

enter: M[cloc] ← r3
r3 ← 0

loop: r3 ← r3 + r2
r1 ← r1 − 1
if r1 > 0 goto loop
r1 ← r3
r3 ← M[cloc]
return

The final program has only one uncoalesced move instruction.

11.4 GRAPH-COLORING IMPLEMENTATION

The graph-coloring algorithm needs to query the interference-graph data struc-
ture frequently. There are two kinds of queries:

1. Get all the nodes adjacent to node X ; and
2. Tell if X and Y are adjacent.

An adjacency list (per node) can answer query 1 quickly, but not query 2
if the lists are long. A two-dimensional bit matrix indexed by node numbers
can answer query 2 quickly, but not query 1. Therefore, we need both data
structures to (redundantly) represent the interference graph. If the graph is
very sparse, a hash table of integer pairs may be better than a bit matrix.

The adjacency lists of machine registers (precolored nodes) can be very
large; because they’re used in standard calling conventions, they interfere
with any temporaries that happen to be live near any of the procedure-calls in
the program. But we don’t need to represent the adjacency list for a precol-
ored node, because adjacency lists are used only in the select phase (which
does not apply to precolored nodes) and in the Briggs coalescing test. To save
space and time, we do not explicitly represent the adjacency lists of the ma-
chine registers. We coalesce an ordinary node a with a machine register r
using the George coalescing test, which needs the adjacency list of a but not
of r .

To test whether two ordinary (non-precolored) nodes can be coalesced, the
algorithm shown here uses the Briggs coalescing test.

Associated with each move-related node is a count of the moves it is in-
volved in. This count is easy to maintain and is used to test if a node is no
longer move-related. Associated with all nodes is a count of the number of

232

11.4. GRAPH-COLORING IMPLEMENTATION

neighbors currently in the graph. This is used to determine whether a node is
of significant degree during coalescing, and whether a node can be removed
from the graph during simplification.

It is important to be able to quickly perform each simplify step (removing a
low-degree non-move-related node), each coalesce step, and each freeze step.
To do this, we maintain four work lists:

• Low-degree non-move-related nodes (simplifyWorklist);
• Move instructions that might be coalesceable (worklistMoves);
• Low-degree move-related nodes (freezeWorklist);
• High-degree nodes (spillWorklist).

Using these work lists, we avoid quadratic time blowup in finding coalesce-
able nodes.

DATA STRUCTURES
The algorithm maintains these data structures to keep track of graph nodes
and move edges:

Node work lists, sets, and stacks. The following lists and sets are always
mutually disjoint and every node is always in exactly one of the sets or lists.

precolored: machine registers, preassigned a color.
initial: temporary registers, not precolored and not yet processed.
simplifyWorklist: list of low-degree non-move-related nodes.
freezeWorklist: low-degree move-related nodes.
spillWorklist: high-degree nodes.
spilledNodes: nodes marked for spilling during this round; initially empty.
coalescedNodes: registers that have been coalesced; when u←v is coalesced, v

is added to this set and u put back on some work list (or vice versa).
coloredNodes: nodes successfully colored.
selectStack: stack containing temporaries removed from the graph.

Since membership in these sets is often tested, the representation of each
node should contain an enumeration value telling which set it is in. Since
nodes must frequently be added to and removed from these sets, each set
can be represented by a doubly linked list of nodes. Initially (on entry to
Main), and on exiting RewriteProgram, only the sets precolored and initial
are nonempty.

Move sets. There are five sets of move instructions, and every move is in
exactly one of these sets (after Build through the end of Main).

233

CHAPTER ELEVEN. REGISTER ALLOCATION

coalescedMoves: moves that have been coalesced.
constrainedMoves: moves whose source and target interfere.
frozenMoves: moves that will no longer be considered for coalescing.
worklistMoves: moves enabled for possible coalescing.
activeMoves: moves not yet ready for coalescing.

Like the node work lists, the move sets should be implemented as dou-
bly linked lists, with each move containing an enumeration value identifying
which set it belongs to.

When a node x changes from significant to low-degree, the moves asso-
ciated with its neighbors must be added to the move work list. Moves that
were blocked with too many significant neighbors might now be enabled for
coalescing.

Other data structures.

adjSet: the set of interference edges (u, v) in the graph; if (u, v) ∈ adjSet, then
(v, u) ∈ adjSet.

adjList: adjacency list representation of the graph; for each non-precolored
temporary u, adjList[u] is the set of nodes that interfere with u.

degree: an array containing the current degree of each node.
moveList: a mapping from a node to the list of moves it is associated with.
alias: when a move (u, v) has been coalesced, and v put in coalescedNodes,

then alias(v) = u.
color: the color chosen by the algorithm for a node; for precolored nodes this is

initialized to the given color.

INVARIANTS
After Build, the following invariants always hold:

Degree invariant.

(u ∈ simplifyWorklist ∪ freezeWorklist ∪ spillWorklist) ⇒
degree(u) = |adjList(u)∩ (precolored ∪ simplifyWorklist

∪ freezeWorklist ∪ spillWorklist)|
Simplify worklist invariant. Either u has been selected for spilling, or

(u ∈ simplifyWorklist) ⇒
degree(u) < K ∧ moveList[u] ∩ (activeMoves ∪ worklistMoves) = {}

Freeze worklist invariant.

(u ∈ freezeWorklist) ⇒
degree(u) < K ∧ moveList[u] ∩ (activeMoves ∪ worklistMoves) ̸= {}

234

11.4. GRAPH-COLORING IMPLEMENTATION

Spill worklist invariant.

(u ∈ spillWorklist) ⇒ degree(u) ≥ K

PROGRAM CODE
The algorithm is invoked using the procedure Main, which loops (via tail
recursion) until no spills are generated.

procedure Main()
LivenessAnalysis()
Build()
MakeWorklist()
repeat

if simplifyWorklist ̸= {} then Simplify()
else if worklistMoves ̸= {} then Coalesce()
else if freezeWorklist ̸= {} then Freeze()
else if spillWorklist ̸= {} then SelectSpill()

until simplifyWorklist = {} ∧ worklistMoves = {}
∧ freezeWorklist = {} ∧ spillWorklist = {}

AssignColors()
if spilledNodes ̸= {} then

RewriteProgram(spilledNodes)
Main()

If AssignColors spills, then RewriteProgram allocates memory locations
for the spilled temporaries and inserts store and fetch instructions to access
them. These stores and fetches are to newly created temporaries (with tiny
live ranges), so the main loop must be performed on the altered graph.

procedure Build ()
forall b ∈ blocks in program

let live = liveOut(b)
forall I ∈ instructions(b) in reverse order

if isMoveInstruction(I) then
live ← live\use(I)
forall n ∈ def(I) ∪ use(I)

moveList[n] ← moveList[n] ∪ {I }
worklistMoves ← worklistMoves ∪ {I }

live ← live ∪ def(I)
forall d ∈ def(I)

forall l ∈ live
AddEdge(l, d)

live ← use(I) ∪ (live\def(I))

235

CHAPTER ELEVEN. REGISTER ALLOCATION

Procedure Build constructs the interference graph (and bit matrix) using
the results of static liveness analysis, and also initializes the worklistMoves to
contain all the moves in the program.

procedure AddEdge(u, v)
if ((u, v) ̸∈ adjSet) ∧ (u ̸= v) then

adjSet ← adjSet ∪ {(u, v), (v, u)}
if u ̸∈ precolored then

adjList[u] ← adjList[u] ∪ {v}
degree[u] ← degree[u] + 1

if v ̸∈ precolored then
adjList[v] ← adjList[v] ∪ {u}
degree[v] ← degree[v] + 1

procedure MakeWorklist()
forall n ∈ initial

initial ← initial \ {n}
if degree[n] ≥ K then

spillWorklist ← spillWorklist ∪ {n}
else if MoveRelated(n) then

freezeWorklist ← freezeWorklist ∪ {n}
else

simplifyWorklist ← simplifyWorklist ∪ {n}

function Adjacent(n)
adjList[n] \ (selectStack ∪ coalescedNodes)

function NodeMoves (n)
moveList[n] ∩ (activeMoves ∪ worklistMoves)

function MoveRelated(n)
NodeMoves(n) ̸= {}

procedure Simplify()
let n ∈ simplifyWorklist
simplifyWorklist ← simplifyWorklist \ {n}
push(n, selectStack)
forall m ∈ Adjacent(n)

DecrementDegree(m)

Removing a node from the graph involves decrementing the degree of its
current neighbors. If the degree of a neighbor is already less than K −1, then

236

11.4. GRAPH-COLORING IMPLEMENTATION

the neighbor must be move-related, and is not added to the simplifyWork-
list. When the degree of a neighbor transitions from K to K − 1, moves
associated with its neighbors may be enabled.

procedure DecrementDegree(m)
let d = degree[m]
degree[m] ← d-1
if d = K then

EnableMoves({m} ∪ Adjacent(m))
spillWorklist ← spillWorklist \ {m}
if MoveRelated(m) then

freezeWorklist ← freezeWorklist ∪ {m}
else

simplifyWorklist ← simplifyWorklist ∪ {m}

procedure EnableMoves(nodes)
forall n ∈ nodes

forall m ∈ NodeMoves(n)
if m ∈ activeMoves then

activeMoves ← activeMoves \ {m}
worklistMoves ← worklistMoves ∪ {m}

Only moves in the worklistMoves are considered in the coalesce phase.
When a move is coalesced, it may no longer be move-related and can be added
to the simplify work list by the procedure AddWorkList. OK implements the
heuristic used for coalescing a precolored register. Conservative implements
the conservative coalescing heuristic.

procedure AddWorkList(u)
if (u ̸∈ precolored ∧ not(MoveRelated(u)) ∧ degree[u] < K) then

freezeWorklist ← freezeWorklist \ {u}
simplifyWorklist ← simplifyWorklist ∪ {u}

function OK(t ,r)
degree[t] < K ∨ t ∈ precolored ∨ (t, r) ∈ adjSet

function Conservative(nodes)
let k = 0
forall n ∈ nodes

if degree[n] ≥ K then k ← k + 1
return (k < K)

237

CHAPTER ELEVEN. REGISTER ALLOCATION

procedure Coalesce()
let m(=copy(x,y)) ∈ worklistMoves
x ← GetAlias(x)
y ← GetAlias(y)
if y ∈ precolored then

let (u, v) = (y, x)

else
let (u, v) = (x, y)

worklistMoves ← worklistMoves \ {m}
if (u = v) then

coalescedMoves ← coalescedMoves ∪ {m}
AddWorkList(u)

else if v ∈ precolored ∨ (u, v) ∈ adjSet then
constrainedMoves ← constrainedMoves ∪ {m}
AddWorkList(u)
AddWorkList(v)

else if u ∈ precolored ∧ (∀t ∈ Adjacent(v), OK(t, u))

∨ u ̸∈ precolored ∧
Conservative(Adjacent(u) ∪ Adjacent(v)) then

coalescedMoves ← coalescedMoves ∪ {m}
Combine(u,v)
AddWorkList(u)

else
activeMoves ← activeMoves ∪ {m}

procedure Combine(u,v)
if v ∈ freezeWorklist then

freezeWorklist ← freezeWorklist \ {v}
else

spillWorklist ← spillWorklist \ {v}
coalescedNodes ← coalescedNodes ∪ {v}
alias[v] ← u
moveList[u] ← moveList[u] ∪ moveList[v]
EnableMoves(v)
forall t ∈ Adjacent(v)

AddEdge(t ,u)
DecrementDegree(t)

if degree[u] ≥ K ∧ u ∈ freezeWorkList
freezeWorkList ← freezeWorkList \ {u}
spillWorkList ← spillWorkList ∪ {u}

238

11.4. GRAPH-COLORING IMPLEMENTATION

function GetAlias (n)
if n ∈ coalescedNodes then

GetAlias(alias[n])
else n

procedure Freeze()
let u ∈ freezeWorklist
freezeWorklist ← freezeWorklist \ {u}
simplifyWorklist ← simplifyWorklist ∪ {u}
FreezeMoves(u)

procedure FreezeMoves(u)
forall m(=copy(x,y)) ∈ NodeMoves(u)

if GetAlias(y)=GetAlias(u) then
v ← GetAlias(x)

else
v ← GetAlias(y)

activeMoves ← activeMoves \ {m}
frozenMoves ← frozenMoves ∪ {m}
if v ∈ freezeWorklist ∧ NodeMoves(v) = {} then

freezeWorklist ← freezeWorklist \ {v}
simplifyWorklist ← simplifyWorklist ∪ {v}

procedure SelectSpill()
let m ∈ spillWorklist selected using favorite heuristic

Note: avoid choosing nodes that are the tiny live ranges
resulting from the fetches of previously spilled registers

spillWorklist ← spillWorklist \ {m}
simplifyWorklist ← simplifyWorklist ∪ {m}
FreezeMoves(m)

239

CHAPTER ELEVEN. REGISTER ALLOCATION

procedure AssignColors()
while SelectStack not empty

let n = pop(SelectStack)
okColors ← {0, . . . , K-1}
forall w ∈ adjList[n]

if GetAlias(w) ∈ (coloredNodes ∪ precolored) then
okColors ← okColors \ {color[GetAlias(w)]}

if okColors = {} then
spilledNodes ← spilledNodes ∪ {n}

else
coloredNodes ← coloredNodes ∪ {n}
let c ∈ okColors
color[n] ← c

forall n ∈ coalescedNodes
color[n] ← color[GetAlias(n)]

procedure RewriteProgram()
Allocate memory locations for each v ∈ spilledNodes,
Create a new temporary vi for each definition and each use,
In the program (instructions), insert a store after each
definition of a vi , a fetch before each use of a vi .
Put all the vi into a set newTemps.
spilledNodes ← {}
initial ← coloredNodes ∪ coalescedNodes ∪ newTemps
coloredNodes ← {}
coalescedNodes ← {}

We show a variant of the algorithm in which all coalesces are discarded if
the program must be rewritten to incorporate spill fetches and stores. For a
faster algorithm, keep all the coalesces found before the first call to Select-

Spill and rewrite the program to eliminate the coalesced move instructions
and temporaries.

In principle, a heuristic could be used to select the freeze node; the Freeze
shown above picks an arbitrary node from the freeze work list. But freezes
are not common, and a selection heuristic is unlikely to make a significant
difference.

240

11.5. REGISTER ALLOCATION FOR TREES

function SimpleAlloc(t)
for each nontrivial tile u that is a child of t

SimpleAlloc(u)
for each nontrivial tile u that is a child of t

n ← n − 1
n ← n + 1
assign rn to hold the value at the root of t

ALGORITHM 11.9. Simple register allocation on trees.

11.5 REGISTER ALLOCATION FOR TREES

Register allocation for expression trees is much simpler than for arbitrary flow
graphs. We do not need global dataflow analysis or interference graphs. Sup-
pose we have a tiled tree such as in Figure 9.2a. This tree has two trivial tiles,
the TEMP nodes fp and i, which we assume are already in registers rfp and ri .
We wish to label the roots of the nontrivial tiles (the ones corresponding to
instructions, i.e., 2, 4, 5, 6, 8) with registers from the list r1, r2, . . . , rk .

Algorithm 11.9 traverses the tree in postorder, assigning a register to the
root of each tile. With n initialized to zero, this algorithm applied to the root
(tile 9) produces the allocation {tile2 #→ r1, tile4 #→ r2, tile5 #→ r2, tile6 #→
r1, tile8 #→ r2, tile9 #→ r1}. The algorithm can be combined with Maximal
Munch, since both algorithms are doing the same bottom-up traversal.

But this algorithm will not always lead to an optimal allocation. Consider
the following tree, where each tile is shown as a single node:

.
+

MEM(NAME a) *

MEM(NAME b) MEM(NAME c)

The SimpleAlloc function will use three registers for this expression (as shown
at left on the next page), but by reordering the instructions we can do the com-
putation using only two registers (as shown at right):

241

CHAPTER ELEVEN. REGISTER ALLOCATION

function Label(t)
for each tile u that is a child of t

Label(u)
if t is trivial

then need[t] ← 0
else if t has two children, uleft and uright

then if need[uleft] = need[uright]
then need[t] ← 1 + need[uleft]
else need[t] ← max(1, need[uleft], need[uright])

else if t has one child, u
then need[t] ← max(1, need[u])

else if t has no children
then need[t] ← 1

ALGORITHM 11.10. Sethi-Ullman labeling algorithm.

r1 ← M[a] r1 ← M[b]
r2 ← M[b] r2 ← M[c]
r3 ← M[c] r1 ← r1 × r2

r2 ← r2 × r3 r2 ← M[a]
r1 ← r1 + r2 r1 ← r2 + r1

Using dynamic programming, we can find the optimal ordering for the in-
structions. The idea is to label each tile with the number of registers it needs
during its evaluation. Suppose a tile t has two nontrivial children uleft and
uright that require n and m registers, respectively, for their evaluation. If we
evaluate uleft first, and hold its result in one register while we evaluate uright,
then we have needed max(n, 1+m) registers for the whole expression rooted
at t . Conversely, if we evaluate uright first, then we need max(1 + n, m) regis-
ters. Clearly, if n > m, we should evaluate uleft first, and if n < m, we should
evaluate uright first. If n = m, we will need n + 1 registers no matter which
subexpression is evaluated first.

Algorithm 11.10 labels each tile t with need[t], the number of registers
needed to evaluate the subtree rooted at t . It can be generalized to handle tiles
with more than two children. Maximal Munch should identify – but not emit
– the tiles, simultaneously with the labeling of Algorithm 11.10. The next
pass emits Assem instructions for the tiles; wherever a tile has more than one

242

11.5. REGISTER ALLOCATION FOR TREES

function SethiUllman(t, n)
if t has two children, uleft and uright

if need[uleft] ≥ K ∧ need[uright] ≥ K
SethiUllman(uright, 0)
n ← n − 1
spill: emit instruction to store reg[uright]
SethiUllman(uleft, 0)
unspill: reg[uright] ← “r1”; emit instruction to fetch reg[uright]

else if need[uleft] ≥ need[uright]
SethiUllman(uleft, n)
SethiUllman(uright, n + 1)

else need[uleft] < need[uright]
SethiUllman(uright, n)
SethiUllman(uleft, n)

reg[t] ← “rn”
emit OPER(instruction[t], reg[t], [reg[uleft], reg[uright]])

else if t has one child, u
SethiUllman(u, n)
reg[t] ← “rn”
emit OPER(instruction[t], reg[t], [reg[u]])

else if t is nontrivial but has no children
reg[t] ← “rn”
emit OPER(instruction[t], reg[t], [])

else if t is a trivial node TEMP(ri)

reg[t] ← “ri ”

ALGORITHM 11.11. Sethi-Ullman register allocation for trees.

child, the subtrees must be emitted in decreasing order of register need.
Algorithm 11.10 can profitably be used in a compiler that uses graph-

coloring register allocation. Emitting the subtrees in decreasing order of need
will minimize the number of simultaneously live temporaries and reduce the
number of spills.

In a compiler without graph-coloring register allocation, Algorithm 11.10
is used as a pre-pass to Algorithm 11.11, which assigns registers as the trees
are emitted and also handles spilling cleanly. This takes care of register allo-
cation for the internal nodes of expression trees; allocating registers for ex-

243

CHAPTER ELEVEN. REGISTER ALLOCATION

plicit TEMPs of the Tree language would have to be done in some other way.
In general, such a compiler would keep almost all program variables in the
stack frame, so there would not be many of these explicit TEMPs to allocate.

P R O G R A M GRAPH COLORING
Implement graph-coloring register allocation as two modules: Color, which
does just the graph coloring itself, and RegAlloc, which manages spilling
and calls upon Color as a subroutine. To keep things simple, do not imple-
ment spilling or coalescing; this simplifies the algorithm considerably.

package RegAlloc;

public class RegAlloc implements Temp.TempMap {
public Assem.InstrList instrs;
public String tempMap(Temp temp);
public RegAlloc(Frame.Frame f, Assem.InstrList il);

}

class Color implements TempMap {
public TempList spills();
public String tempMap(Temp t);
public Color(InterferenceGraph ig,

TempMap initial,
TempList registers);

}

Given an interference graph, an initial allocation (precoloring) of some
temporaries imposed by calling conventions, and a list of colors (registers),
color produces an extension of the initial allocation. The resulting allo-
cation assigns all temps used in the flow graph, making use of registers from
the registers list.

The initial allocation is the frame (which implements a TempMap de-
scribing precolored temporaries); the registers argument is just the list
of all machine registers, Frame.registers (see page 251). The registers
in the initial allocation can also appear in the registers argument to
Color, since it’s OK to use them to color other nodes as well.

The result of Color is a TempMap (that is, Color implements TempMap)
describing the register allocation, along with a list of spills. The result of
RegAlloc – if there were no spills – is an identical TempMap, which can be
used in final assembly-code emission as an argument to Assem.format.

A better Color interface would have a spillCost argument that specifies
the spilling cost of each temporary. This can be just the number of uses and

244

FURTHER READING

defs, or better yet, uses and defs weighted by occurrence in loops and nested
loops. A naive spillCost that just returns 1 for every temporary will also
work.

A simple implementation of the coloring algorithm without coalescing
requires only one work list: the simplifyWorklist, which contains all
non-precolored, nonsimplified nodes of degree less than K . Obviously, no
freezeWorklist is necessary. No spillWorklist is necessary either, if
we are willing to look through all the nodes in the original graph for a spill
candidate every time the simplifyWorklist becomes empty.

With only a simplifyWorklist, the doubly linked representation is not
necessary: This work list can be implemented as a singly linked list or a stack,
since it is never accessed “in the middle.”

ADVANCED PROJECT: SPILLING
Implement spilling, so that no matter how many parameters and locals a Mini-
Java program has, you can still compile it.

ADVANCED PROJECT: COALESCING
Implement coalescing, to eliminate practically all the MOVE instructions from
the program.

F U R T H E R
R E A D I N G

Kempe [1879] invented the simplification algorithm that colors graphs by re-
moving vertices of degree < K . Chaitin [1982] formulated register allocation
as a graph-coloring problem – using Kempe’s algorithm to color the graph –
and performed copy propagation by (nonconservatively) coalescing nonin-
terfering move-related nodes before coloring the graph. Briggs et al. [1994]
improved the algorithm with the idea of optimistic spilling, and also avoided
introducing spills by using the conservative coalescing heuristic before col-
oring the graph. George and Appel [1996] found that there are more opportu-
nities for coalescing if conservative coalescing is done during simplification
instead of beforehand, and developed the work-list algorithm presented in this
chapter.

Ershov [1958] developed the algorithm for optimal register allocation on
expression trees; Sethi and Ullman [1970] generalized this algorithm and
showed how it should handle spills.

245

CHAPTER ELEVEN. REGISTER ALLOCATION

E X E R C I S E S

11.1 The following program has been compiled for a machine with three registers
r1, r2, r3; r1 and r2 are (caller-save) argument registers and r3 is a callee-save
register. Construct the interference graph and show the steps of the register
allocation process in detail, as on pages 229–232. When you coalesce two
nodes, say whether you are using the Briggs or George criterion.

Hint: When two nodes are connected by an interference edge and a move
edge, you may delete the move edge; this is called constrain and is accom-
plished by the first else if clause of procedure Coalesce.

f : c ← r3

p ← r1

if p = 0 goto L1

r1 ← M[p]
call f (uses r1, defines r1, r2)
s ← r1

r1 ← M[p + 4]
call f (uses r1, defines r1, r2)
t ← r1

u ← s + t
goto L2

L1 : u ← 1
L2 : r1 ← u

r3 ← c
return (uses r1, r3)

11.2 The table below represents a register-interference graph. Nodes 1–6 are pre-
colored (with colors 1–6), and nodes A–H are ordinary (non-precolored). Every
pair of precolored nodes interferes, and each ordinary node interferes with
nodes where there is an x in the table.

1 2 3 4 5 6 A B C D E F G H
A x x x x x x
B x x x x x
C x x x x x x x x x
D x x x x x x x x x
E x x x x x x x x x
F x x x x x x x x x
G x x x x
H x x x x x x x x

246

EXERCISES

The following pairs of nodes are related by MOVE instructions:

(A, 3) (H, 3) (G, 3) (B, 2) (C, 1) (D, 6) (E, 4) (F, 5)

Assume that register allocation must be done for an 8-register machine.

a. Ignoring the MOVE instructions, and without using the coalesce heuristic,
color this graph using simplify and spill. Record the sequence (stack)
of simplify and potential-spill decisions, show which potential spills be-
come actual spills, and show the coloring that results.

b. Color this graph using coalescing. Record the sequence of simplify, co-
alesce, freeze, and spill decisions. Identify each coalesce as Briggs- or
George-style. Show how many MOVE instructions remain.

*c. Another coalescing heuristic is biased coloring. Instead of using a con-
servative coalescing heuristic during simplification, run the simplify-spill
part of the algorithm as in part (a), but in the select part of the algorithm,
i. When selecting a color for node X that is move-related to node Y ,

when a color for Y has already been selected, use the same color if
possible (to eliminate the MOVE).

ii. When selecting a color for node X that is move-related to node Y ,
when a color for Y has not yet been selected, use a color that is not
the same as the color of any of Y ’s neighbors (to increase the chance
of heuristic (i) working when Y is colored).

Conservative coalescing (in the simplify phase) has been found to be
more effective than biased coloring, in general; but it might not be on
this particular graph. Since the two coalescing algorithms are used in
different phases, they can both be used in the same register allocator.

*d. Use both conservative coalescing and biased coloring in allocating reg-
isters. Show where biased coloring helps make the right decisions.

11.3 Conservative coalescing is so called because it will not introduce any (poten-
tial) spills. But can it avoid spills? Consider this graph, where the solid edges
represent interferences and the dashed edge represents a MOVE:

a

b
c

e

f

g

d

247

CHAPTER ELEVEN. REGISTER ALLOCATION

a. 4-color the graph without coalescing. Show the select-stack, indicating
the order in which you removed nodes. Is there a potential spill? Is there
an actual spill?

b. 4-color the graph with conservative coalescing. Did you use the Briggs
or George criterion? Is there a potential spill? Is there an actual spill?

11.4 It has been proposed that the conservative coalescing heuristic could be simpli-
fied. In testing whether MOVE(a, b) can be coalesced, instead of asking whether
the combined node ab is adjacent to < K nodes of significant degree, we could
simply test whether ab is adjacent to < K nodes of any degree. The theory
is that if ab is adjacent to many low-degree nodes, they will be removed by
simplification anyway.

a. Show that this kind of coalescing cannot create any new potential spills.

b. Demonstrate the algorithm on this graph (with K = 3):

a

b

c

d

e

g

f

i

h

j

*c. Show that this test is less effective than standard conservative coalescing.
Hint: Use the graph of Exercise 11.3, with K = 4.

248

12
Putting It All Together

de-bug: to eliminate errors in or malfunctions of

Webster’s Dictionary

Chapters 2–11 have described the fundamental components of a good com-
piler: a front end, which does lexical analysis, parsing, construction of ab-
stract syntax, type-checking, and translation to intermediate code; and a back
end, which does instruction selection, dataflow analysis, and register alloca-
tion.

What lessons have we learned? We hope that the reader has learned about
the algorithms used in different components of a compiler and the interfaces
used to connect the components. But the authors have also learned quite a bit
from the exercise.

Our goal was to describe a good compiler that is, to use Einstein’s phrase,
“as simple as possible – but no simpler.” we will now discuss the thorny issues
that arose in designing the MiniJava compiler.
Structured l-values. Java (and MiniJava) have no record or array variables,
as C, C++, and Pascal do. Instead, all object and array values are really just
pointers to heap-allocated data. Implementing structured l-values requires
some care but not too many new insights.

Tree intermediate representation. The Tree language has a fundamental
flaw: It does not describe procedure entry and exit. These are handled by
opaque procedures inside the Frame module that generate Tree code. This
means that a program translated to Trees using, for example, the Pentium-
Frame version of Frame will be different from the same program translated
using SparcFrame – the Tree representation is not completely machine-
independent.

249

CHAPTER TWELVE. PUTTING IT ALL TOGETHER

Also, there is not enough information in the trees themselves to simu-
late the execution of an entire program, since the view shift (page 128) is
partly done implicitly by procedure prologues and epilogues that are not
represented as Trees. Consequently, there is not enough information to do
whole-program optimization (across function boundaries).

The Tree representation is a low-level intermediate representation, use-
ful for instruction selection and intraprocedural optimization. A high-level
intermediate representation would preserve more of the source-program se-
mantics, including the notions of nested functions (if applicable), nonlocal
variables, object creation (as distinguished from an opaque external function
call), and so on. Such a representation would be more tied to a particular
family of source languages than the general-purpose Tree language is.

Register allocation. Graph-coloring register allocation is widely used in real
compilers, but does it belong in a compiler that is supposed to be “as simple as
possible”? After all, it requires the use of global dataflow (liveness) analysis,
construction of interference graphs, and so on. This makes the back end of
the compiler significantly bigger.

It is instructive to consider what the MiniJava compiler would be like with-
out it. We could keep all local variables in the stack frame, fetching them
into temporaries only when they are used as operands of instructions. The
redundant loads within a single basic block can be eliminated by a simple
intrablock liveness analysis. Internal nodes of Tree expressions could be as-
signed registers using Algorithms 11.10 and 11.9. But other parts of the com-
piler would become much uglier: The TEMPs introduced in canonicalizing the
trees (eliminating ESEQs) would have to be dealt with in an ad hoc way, by
augmenting the Tree language with an operator that provides explicit scope
for temporary variables; the Frame interface, which mentions registers in
many places, would now have to deal with them in more complicated ways.
To be able to create arbitrarily many temps and moves, and rely on the regis-
ter allocator to clean them up, greatly simplifies procedure-calling sequences
and code generation.

P R O G R A M PROCEDURE ENTRY/EXIT
Implement the rest of the Frame module, which contains all the machine-
dependent parts of the compiler: register sets, calling sequences, and activa-
tion record (frame) layout.

250

PROGRAMMING EXERCISE

package Frame;
import Temp.Temp;

public abstract class Frame implements Temp.TempMap {
abstract public Temp RV(); (see p. 157)
abstract public Temp FP(); (p. 143)
abstract public Temp.TempList registers();
abstract public String tempMap(Temp temp);
abstract public int wordSize(); (p. 143)
abstract public Tree.Exp externalCall(String func,Tree.ExpList args); (p. 153)
abstract public Frame newFrame(Temp.Label name,

Util.BoolList formals); (p. 127)
public AccessList formals; (p. 128)
public Temp.Label name; (p. 127)
abstract public Access allocLocal(boolean escape); (p. 129)
abstract public Tree.Stm procEntryExit1(Tree.Stm body); (p. 251)
abstract public Assem.InstrList procEntryExit2(Assem.InstrList body); (p. 199)
abstract public Proc procEntryExit3(Assem.InstrList body);
abstract public Assem.InstrList codegen(Tree.Stm stm); (p. 196)
}

PROGRAM 12.1. Package Frame.

Program 12.1 shows the Frame class. Most of this interface has been de-
scribed elsewhere. What remains is

registers A list of all the register names on the machine, which can be used as
“colors” for register allocation.

tempMap For each machine register, the Frame module maintains a particular
Temp that serves as the “precolored temporary” that stands for the register.
These temps appear in the Assem instructions generated from CALL nodes,
in procedure entry sequences generated by procEntryExit1, and so on.
The tempMap tells the “color” of each of these precolored temps.

procEntryExit1 For each incoming register parameter, move it to the place
from which it is seen from within the function. This could be a fresh tem-
porary. One good way to handle this is for newFrame to create a sequence
of Tree.MOVE statements as it creates all the formal parameter “accesses.”
newFrame can put this into the frame data structure, and procEntryExit1
can just concatenate it onto the procedure body.

Also concatenated to the body are statements for saving and restoring of
callee-save registers (including the return-address register). If your register
allocator does not implement spilling, all the callee-save (and return-address)
registers should be written to the frame at the beginning of the procedure
body and fetched back afterward. Therefore, procEntryExit1 should call

251

CHAPTER TWELVE. PUTTING IT ALL TOGETHER

allocLocal for each register to be saved, and generate Tree.MOVE in-
structions to save and restore the registers. With luck, saving and restoring the
callee-save registers will give the register allocator enough headroom to work
with, so that some nontrivial programs can be compiled. Of course, some pro-
grams just cannot be compiled without spilling.

If your register allocator implements spilling, then the callee-save registers
should not always be written to the frame. Instead, if the register allocator
needs the space, it may choose to spill only some of the callee-save registers.
But “precolored” temporaries are never spilled; so procEntryExit1 should
make up new temporaries for each callee-save (and return-address) register.
On entry, it should move all these registers to their new temporary locations,
and on exit, it should move them back. Of course, these moves (for nonspilled
registers) will be eliminated by register coalescing, so they cost nothing.

procEntryExit3 Creates the procedure prologue and epilogue assembly lan-
guage. First (for some machines) it calculates the size of the outgoing param-
eter space in the frame. This is equal to the maximum number of outgoing
parameters of any CALL instruction in the procedure body. Unfortunately, af-
ter conversion to Assem trees the procedure calls have been separated from
their arguments, so the outgoing parameters are not obvious. Either proc-
EntryExit2 should scan the body and record this information in some new
component of the frame type, or procEntryExit3 should use the maxi-
mum legal value.

Once this is known, the assembly language for procedure entry, stack-
pointer adjustment, and procedure exit can be put together; these are the
prologue and epilogue.

P R O G R A M MAKING IT WORK
Make your compiler generate working code that runs.

The file $MINIJAVA/chap12/runtime.c is a C-language file contain-
ing several external functions useful to your MiniJava program. These are
generally reached by externalCall from code generated by your compiler.
You may modify this as necessary.

Write a module Main that calls on all the other modules to produce an
assembly language file prog.s for each input program prog.java. This
assembly language program should be assembled (producing prog.o) and
linked with runtime.o to produce an executable file.

Programming projects
After your MiniJava compiler is done, here are some ideas for further work:

252

PROGRAMMING EXERCISE

12.1 Write a garbage collector (in C) for your MiniJava compiler. You will need to
make some modifications to the compiler itself to add descriptors to records
and stack frames (see Chapter 13).

12.2 Implement inner classes is MiniJava.

12.3 Implement dataflow analyses such as reaching definitions and available ex-
pressions and use them to implement some of the optimizations discussed in
Chapter 17.

12.4 Figure out other approaches to improving the assembly language generated by
your compiler. Discuss; perhaps implement.

12.5 Implement instruction scheduling to fill branch-delay and load-delay slots in
the assembly language (for a machine such as the Sparc). Or discuss how such
a module could be integrated into the existing compiler; what interfaces would
have to change, and in what ways?

12.6 Implement “software pipelining” (instruction scheduling around loop iterations)
in your compiler (see Chapter 20).

12.7 Analyze how adequate the MiniJava language itself would be for writing a
compiler. What are the smallest possible additions/changes that would make it
a much more useful language?

12.8 In the MiniJava language, some object types are recursive and must be im-
plemented as pointers; that is, a value of that type might contain a pointer to
another value of the same type (directly or indirectly). But some object types
are not recursive, so they could be implemented without pointers. Modify your
compiler to take advantage of this by keeping nonrecursive records in the stack
frame instead of on the heap.

12.9 Similarly, some arrays have bounds that are known at compile time, are not
recursive, and are not assigned to other array variables. Modify your compiler
so that these arrays are implemented right in the stack frame.

12.10 Implement inline expansion of functions (see Section 15.4).

12.11 Suppose an ordinary MiniJava program were to run on a parallel machine
(a multiprocessor)? How could the compiler automatically make a parallel
program out of the original sequential one? Research the approaches.

253

254

PART TWO

Advanced Topics

255

256

13
Garbage Collection

gar-bage: unwanted or useless material

Webster’s Dictionary

Heap-allocated records that are not reachable by any chain of pointers from
program variables are garbage. The memory occupied by garbage should be
reclaimed for use in allocating new records. This process is called garbage
collection, and is performed not by the compiler but by the runtime system
(the support programs linked with the compiled code).

Ideally, we would say that any record that is not dynamically live (will
not be used in the future of the computation) is garbage. But, as Section 10.1
explains, it is not always possible to know whether a variable is live. So we
will use a conservative approximation: We will require the compiler to guar-
antee that any live record is reachable; we will ask the compiler to minimize
the number of reachable records that are not live; and we will preserve all
reachable records, even if some of them might not be live.

Figure 13.1 shows a Java program ready to undergo garbage collection (at
the point marked garbage-collect here). There are only three program vari-
ables in scope: p, q, and r.

13.1 MARK-AND-SWEEP COLLECTION

Program variables and heap-allocated records form a directed graph. The
variables are roots of this graph. A node n is reachable if there is a path
of directed edges r → · · · → n starting at some root r . A graph-search algo-
rithm such as depth-first search (Algorithm 13.2) can mark all the reachable
nodes.

257

CHAPTER THIRTEEN. GARBAGE COLLECTION

class list {list link;
int key; }

class tree {int key;
tree left;
tree right; }

class main {
static tree maketree() { · · · }
static void showtree(tree t) { · · · }
static void main() {
{list x = new list(nil,7);
list y = new list(x,9);
x.link = y;

}
{tree p = maketree();
tree r = p.right;
int q = r.key;
garbage-collect here
showtree(r);

}
}

12

15

7

37

59

9

20

37

p
q
r

Program
Variables

Heap

.

. ..

..

.

..

..

.

..

FIGURE 13.1. A heap to be garbage collected. Class descriptors are not shown
in the diagram.

function DFS(x)
if x is a pointer into the heap

if record x is not marked
mark x
for each field fi of record x

DFS(x. fi)

ALGORITHM 13.2. Depth-first search.

Any node not marked must be garbage, and should be reclaimed. This can
be done by a sweep of the entire heap, from its first address to its last, looking
for nodes that are not marked (Algorithm 13.3). These are garbage and can
be linked together in a linked list (the freelist). The sweep phase should also
unmark all the marked nodes, in preparation for the next garbage collection.

After the garbage collection, the compiled program resumes execution.
Whenever it wants to heap-allocate a new record, it gets a record from the
freelist. When the freelist becomes empty, that is a good time to do another
garbage collection to replenish the freelist.

258

13.1. MARK-AND-SWEEP COLLECTION

Mark phase:
for each root v

DFS(v)

Sweep phase:
p ← first address in heap
while p < last address in heap

if record p is marked
unmark p

else let f1 be the first field in p
p. f1 ← freelist

freelist ← p
p ← p+(size of record p)

ALGORITHM 13.3. Mark-and-sweep garbage collection.

Cost of garbage collection. Depth-first search takes time proportional to the
number of nodes it marks, that is, time proportional to the amount of reach-
able data. The sweep phase takes time proportional to the size of the heap.
Suppose there are R words of reachable data in a heap of size H . Then the
cost of one garbage collection is c1 R + c2 H for some constants c1 and c2; for
example, c1 might be 10 instructions and c2 might be 3 instructions.

The “good” that collection does is to replenish the freelist with H − R
words of usable memory. Therefore, we can compute the amortized cost of
collection by dividing the time spent collecting by the amount of garbage
reclaimed. That is, for every word that the compiled program allocates, there
is an eventual garbage-collection cost of

c1 R + c2 H
H − R

If R is close to H , this cost becomes very large: Each garbage collec-
tion reclaims only a few words of garbage. If H is much larger than R, then
the cost per allocated word is approximately c2, or about 3 instructions of
garbage-collection cost per word allocated.

The garbage collector can measure H (the heap size) and H − R (the free-
list size) directly. After a collection, if R/H is larger than 0.5 (or some other
criterion), the collector should increase H by asking the operating system
for more memory. Then the cost per allocated word will be approximately
c1 + 2c2, or perhaps 16 instructions per word.

Using an explicit stack. The DFS algorithm is recursive, and the maximum
depth of its recursion is as long as the longest path in the graph of reachable

259

CHAPTER THIRTEEN. GARBAGE COLLECTION

12

15

7

37

59

9

20

37

p
q
r .

. ..

..

.

..

..

.

..

12

15

7

37

59

9

20

37

p
q
r .

. ..

..

.

..

..

.

..
.

freelist

(a) Marked (b) Swept

FIGURE 13.4. Mark-and-sweep collection.

data. There could be a path of length H in the worst case, meaning that the
stack of activation records would be larger than the entire heap!

To attack this problem, we use an explicit stack (instead of recursion), as
in Algorithm 13.5. Now the stack could still grow to size H , but at least this
is H words and not H activation records. Still, it is unacceptable to require
auxiliary stack memory as large as the heap being collected.

Pointer reversal. After the contents of field x. fi have been pushed on the
stack, Algorithm 13.5 will never again look the original location x. fi . This
means we can use x. fi to store one element of the stack itself! This all-too-
clever idea is called pointer reversal, because x. fi will be made to point back
to the record from which x was reached. Then, as the stack is popped, the
field x. fi will be restored to its original value.

Algorithm 13.6 requires a field in each record called done, which indicates
how many fields in that record have been processed. This takes only a few

260

13.1. MARK-AND-SWEEP COLLECTION

function DFS(x)
if x is a pointer and record x is not marked

mark x
t ← 1
stack[t] ← x
while t > 0

x ← stack[t]; t ← t − 1
for each field fi of record x

if x. fi is a pointer and record x. fi is not marked
mark x. fi

t ← t + 1; stack[t] ← x. fi

ALGORITHM 13.5. Depth-first search using an explicit stack.

bits per record (and it can also serve as the mark field).
The variable t serves as the top of the stack; every record x on the stack is

already marked, and if i = done[x], then x. fi is the “stack link” to the next
node down. When popping the stack, x. fi is restored to its original value.

An array of freelists. The sweep phase is the same no matter which marking
algorithm is used: It just puts the unmarked records on the freelist, and un-
marks the marked records. But if records are of many different sizes, a simple
linked list will not be very efficient for the allocator. When allocating a record
of size n, it may have to search a long way down the list for a free block of
that size.

A good solution is to have an array of several freelists, so that freelist[i] is
a linked list of all records of size i . The program can allocate a node of size i
just by taking the head of freelist[i]; the sweep phase of the collector can put
each node of size j at the head of freelist[j].

If the program attempts to allocate from an empty freelist[i], it can try
to grab a larger record from freelist[j] (for j > i) and split it (putting the
unused portion back on freelist[j − i]). If this fails, it is time to call the
garbage collector to replenish the freelists.

Fragmentation. It can happen that the program wants to allocate a record of
size n, and there are many free records smaller than n but none of the right
size. This is called external fragmentation. On the other hand, internal frag-
mentation occurs when the program uses a too-large record without splitting

261

CHAPTER THIRTEEN. GARBAGE COLLECTION

function DFS(x)
if x is a pointer and record x is not marked

t ← nil
mark x; done[x] ← 0
while true

i ← done[x]
if i < # of fields in record x

y ← x. fi

if y is a pointer and record y is not marked
x. fi ← t; t ← x; x ← y
mark x; done[x] ← 0

else
done[x] ← i + 1

else
y ← x; x ← t
if x = nil then return
i ← done[x]
t ← x. fi ; x. fi ← y
done[x] ← i + 1

ALGORITHM 13.6. Depth-first search using pointer reversal.

it, so that the unused memory is inside the record instead of outside.

13.2 REFERENCE COUNTS

One day a student came to Moon and said: “I understand
how to make a better garbage collector. We must keep a
reference count of the pointers to each cons.”
Moon patiently told the student the following story:

“One day a student came to Moon and said: ‘I under-
stand how to make a better garbage collector ...’ ”

(MIT-AI koan by Danny Hillis)

Mark-sweep collection identifies the garbage by first finding out what is reach-
able. Instead, it can be done directly by keeping track of how many pointers

262

13.2. REFERENCE COUNTS

point to each record: This is the reference count of the record, and it is stored
with each record.

The compiler emits extra instructions so that whenever p is stored into
x. fi , the reference count of p is incremented, and the reference count of what
x. fi previously pointed to is decremented. If the decremented reference count
of some record r reaches zero, then r is put on the freelist and all the other
records that r points to have their reference counts decremented.

Instead of decrementing the counts of r. fi when r is put on the freelist,
it is better to do this “recursive” decrementing when r is removed from the
freelist, for two reasons:
1. It breaks up the “recursive decrementing” work into shorter pieces, so that

the program can run more smoothly (this is important only for interactive or
real-time programs).

2. The compiler must emit code (at each decrement) to check whether the count
has reached zero and put the record on the freelist, but the recursive decre-
menting will be done only in one place, in the allocator.

Reference counting seems simple and attractive. But there are two major
problems:

1. Cycles of garbage cannot be reclaimed. In Figure 13.1, for example, there is a
loop of list cells (whose keys are 7 and 9) that are not reachable from program
variables; but each has a reference count of 1.

2. Incrementing the reference counts is very expensive indeed. In place of the
single machine instruction x . fi ← p, the program must execute

z ← x . fi
c ← z.count
c ← c − 1
z.count ← c
if c = 0 call putOnFreelist
x . fi ← p
c ← p.count
c ← c + 1
p.count ← c

A naive reference counter will increment and decrement the counts on ev-
ery assignment to a program variable. Because this would be extremely ex-
pensive, many of the increments and decrements are eliminated using dataflow
analysis: As a pointer value is fetched and then propagated through local vari-
ables, the compiler can aggregate the many changes in the count to a single
increment, or (if the net change is zero) no extra instructions at all. However,

263

CHAPTER THIRTEEN. GARBAGE COLLECTION

even with this technique there are many ref-count increments and decrements
that remain, and their cost is very high.

There are two possible solutions to the “cycles” problem. The first is sim-
ply to require the programmer to explicitly break all cycles when she is done
with a data structure. This is less annoying than putting explicit free calls (as
would be necessary without any garbage collection at all), but it is hardly
elegant. The other solution is to combine reference counting (for eager and
nondisruptive reclamation of garbage) with an occasional mark-sweep col-
lection (to reclaim the cycles).

On the whole, the problems with reference counting outweigh its advan-
tages, and it is rarely used for automatic storage management in programming
language environments.

13.3 COPYING COLLECTION

The reachable part of the heap is a directed graph, with records as nodes, and
pointers as edges, and program variables as roots. Copying garbage collection
traverses this graph (in a part of the heap called from-space), building an
isomorphic copy in a fresh area of the heap (called to-space). The to-space
copy is compact, occupying contiguous memory without fragmentation (that
is, without free records interspersed with the reachable data). The roots are
made to point at the to-space copy; then the entire from-space (garbage, plus
the previously reachable graph) is unreachable.

Figure 13.7 illustrates the situation before and after a copying collection.
Before the collection, the from-space is full of reachable nodes and garbage;
there is no place left to allocate, since next has reached limit. After the
collection, the area of to-space between next and limit is available for the
compiled program to allocate new records. Because the new-allocation area
is contiguous, allocating a new record of size n into pointer p is very easy:
Just copy next to p, and increment next by n. Copying collection does not
have a fragmentation problem.

Eventually, the program will allocate enough that next reaches limit;
then another garbage collection is needed. The roles of from-space and to-
space are swapped, and the reachable data are again copied.

Initiating a collection. To start a new collection, the pointer next is initial-
ized to point at the beginning of to-space; as each reachable record in from-

264

13.3. COPYING COLLECTION

roots
from-
space

to-
space

next
limit

roots
from-
space

to-
space

next

limit

(a) Before collection (b) After collection

FIGURE 13.7. Copying collection.

function Forward(p)
if p points to from-space

then if p. f1 points to to-space
then return p. f1

else for each field fi of p
next. fi ← p. fi

p. f1 ← next

next ← next+ size of record p
return p. f1

else return p

ALGORITHM 13.8. Forwarding a pointer.

space is found, it is copied to to-space at position next, and next incre-
mented by the size of the record.

Forwarding. The basic operation of copying collection is forwarding a
pointer; that is, given a pointer p that points to from-space, make p point
to to-space (Algorithm 13.8).

There are three cases:

1. If p points to a from-space record that has already been copied, then p. f1 is
a special forwarding pointer that indicates where the copy is. The forwarding
pointer can be identified just by the fact that it points within the to-space, as

265

CHAPTER THIRTEEN. GARBAGE COLLECTION

scan ← next ← beginning of to-space
for each root r

r ← Forward(r)

while scan < next

for each field fi of record at scan
scan. fi ← Forward(scan. fi)

scan ← scan+ size of record at scan

ALGORITHM 13.9. Breadth-first copying garbage collection.

no ordinary from-space field could point there.
2. If p points to a from-space record that has not yet been copied, then it is

copied to location next; and the forwarding pointer is installed into p. f1. It’s
all right to overwrite the f1 field of the old record, because all the data have
already been copied to the to-space at next.

3. If p is not a pointer at all, or if it points outside from-space (to a record outside
the garbage-collected arena, or to to-space), then forwarding p does nothing.

Cheney’s algorithm. The simplest algorithm for copying collection uses
breadth-first search to traverse the reachable data (Algorithm 13.9, illustrated
in Figure 13.10). First, the roots are forwarded. This copies a few records
(those reachable directly from root pointers) to to-space, thereby increment-
ing next.

The area between scan and next contains records that have been copied
to to-space, but whose fields have not yet been forwarded: In general, these
fields point to from-space. The area between the beginning of to-space and
scan contains records that have been copied and forwarded, so that all the
pointers in this area point to to-space. The while loop (of Algorithm 13.9)
moves scan toward next, but copying records will cause next to move
also. Eventually, scan catches up with next after all the reachable data are
copied to to-space.

Cheney’s algorithm requires no external stack, and no pointer reversal: It
uses the to-space area between scan and next as the queue of its breadth-
first search. This makes it considerably simpler to implement than depth-first
search with pointer reversal.

Locality of reference. However, pointer data structures copied by breadth-
first have poor locality of reference: If a record at address a points to another

266

13.3. COPYING COLLECTION

12

15

7

37

59

9

20

37

p
q
r

rootsfrom-space

.

...

..

.

..

..

.

..

to-space

scan
next

7

59

9

20

37

p
q
r

rootsfrom-space

.

.

..

.

..

..

.

..

to-space
scan

next

12..
15.
37..

.

7

59

9

20

37

p
q
r

rootsfrom-space

.

.

..

.

..

..

.

..

to-space

12..

scan

next

..
15.
37..

.

(a) Before collection (b) Roots forwarded (c) One record scanned

FIGURE 13.10. Breadth-first copying collection.

record at address b, it is likely that a and b will be far apart. Conversely, the
record at a+8 is likely to be unrelated to the one at a. Records that are copied
near each other are those whose distance from the roots are equal.

In a computer system with virtual memory, or with a memory cache, good
locality of reference is important. After the program fetches address a, then
the memory subsystem expects addresses near a to be fetched soon. So it
ensures that the entire page or cache line containing a and nearby addresses
can be quickly accessed.

Suppose the program is fetching down a chain of n pointers in a linked
list. If the records in the list are scattered around memory, each on a page (or
cache line) containing completely unrelated data, then we expect n difference
pages or cache lines to be active. But if successive records in the chain are
at adjacent addresses, then only n/k pages (cache lines) need to be active,
where k records fit on each page (cache line).

Depth-first copying gives better locality, since each object a will tend to be
adjacent to its first child b, unless b is adjacent to another “parent” a′. Other

267

CHAPTER THIRTEEN. GARBAGE COLLECTION

function Forward(p)
if p points to from-space

then if p. f1 points to to-space
then return p. f1

else Chase(p); return p. f1

else return p

function Chase(p)
repeat

q ← next
next ← next+ size of record p
r ← nil
for each field fi of record p

q. fi ← p. fi

if q. fi points to from-space and q. fi . f1 does not point to to-space
then r ← q. fi

p. f1 ← q
p ← r

until p = nil

ALGORITHM 13.11. Semi-depth-first forwarding.

children of a may not be adjacent to a, but if the subtree b is small, then they
should be nearby.

But depth-first copy requires pointer-reversal, which is inconvenient and
slow. A hybrid, partly depth-first and partly breadth-first algorithm can pro-
vide acceptable locality. The basic idea is to use breadth-first copying, but
whenever an object is copied, see if some child can be copied near it (Algo-
rithm 13.11).

Cost of garbage collection. Breadth-first search (or the semi-depth-first vari-
ant) takes time proportional to the number of nodes it marks, that is, c3 R for
some constant c3 (perhaps equal to 10 instructions). There is no sweep phase,
so c3 R is the total cost of collection. The heap is divided into two semi-spaces,
so each collection reclaims H/2 − R words that can be allocated before the

268

13.4. GENERATIONAL COLLECTION

next collection. The amortized cost of collection is thus
c3 R

H
2 − R

instructions per word allocated.
As H grows much larger than R, this cost approaches zero. That is, there is

no inherent lower bound to the cost of garbage collection. In a more realistic
setting, where H = 4R, the cost would be about 10 instructions per word al-
located. This is rather costly in space and time: It requires four times as much
memory as reachable data, and requires 40 instructions of overhead for every
4-word object allocated. To reduce both space and time costs significantly,
we use generational collection.

13.4 GENERATIONAL COLLECTION

In many programs, newly created objects are likely to die soon; but an object
that is still reachable after many collections will probably survive for many
collections more. Therefore the collector should concentrate its effort on the
“young” data, where there is a higher proportion of garbage.

We divide the heap into generations, with the youngest objects in gen-
eration G0; every object in generation G1 is older than any object in G0;
everything in G2 is older than anything in G1, and so on.

To collect (by mark-and-sweep or by copying) just G0, just start from
the roots and do either depth-first marking or breadth-first copying (or semi-
depth-first copying). But now the roots are not just program variables: They
include any pointer within G1, G2, . . . that points into G0. If there are too
many of these, then processing the roots will take longer than the traversal of
reachable objects within G0!

Fortunately, it is rare for an older object to point to a much younger object.
In many common programming styles, when an object a is created its fields
are immediately initialized; for example, they might be made to point to b and
c. But b and c already exist; they are older than a. So we have a newer object
pointing to an older object. The only way that an older object b could point
to a newer object a is if some field of b is updated long after b is created; this
turns out to be rare.

To avoid searching all of G1, G2, . . . for roots of G0, we make the com-
piled program remember where there are pointers from old objects to new
ones. There are several ways of remembering:

269

CHAPTER THIRTEEN. GARBAGE COLLECTION

roots

remembered
set

G0

G1

G2

roots

remembered
set

G1

G2

G0

(a) Before collection (b) After collection

FIGURE 13.12. Generational collection. The bold arrow is one of the rare
pointers from an older generation to a newer one.

Remembered list: The compiler generates code, after each update store of the
form b. fi ← a, to put b into a vector of updated objects. Then, at each
garbage collection, the collector scans the remembered list looking for old
objects b that point into G0.

Remembered set: Like the remembered list, but uses a bit within object b to
record that b is already in the vector. Then the code generated by the compiler
can check this bit to avoid duplicate references to b in the vector.

Card marking: Divide memory into logical “cards” of size 2k bytes. An object
can occupy part of a card or can start in the middle of one card and continue
onto the next. Whenever address b is updated, the card containing that address
is marked. There is an array of bytes that serve as marks; the byte index can
be found by shifting address b right by k bits.

Page marking: This is like card marking, but if 2k is the page size, then the
computer’s virtual memory system can be used instead of extra instructions
generated by the compiler. Updating an old generation sets a dirty bit for
that page. If the operating system does not make dirty bits available to user
programs, then the user program can implement this by write-protecting the
page and asking the operating system to refer protection violations to a user-
mode fault handler that records the dirtiness and unprotects the page.

When a garbage collection begins, the remembered set tells which objects (or
cards, or pages) of the old generation can possibly contain pointers into G0;
these are scanned for roots.

270

13.4. GENERATIONAL COLLECTION

Algorithm 13.3 or 13.9 can be used to collect G0: “heap” or “from-space”
means G0, “to-space” means a new area big enough to hold the reachable
objects in G0, and “roots” include program variables and the remembered
set. Pointers to older generations are left unchanged: The marking algorithm
does not mark old-generation records, and the copying algorithm copies them
verbatim without forwarding them.

After several collections of G0, generation G1 may have accumulated a
significant amount of garbage that should be collected. Since G0 may contain
many pointers into G1, it is best to collect G0 and G1 together. As before, the
remembered set must be scanned for roots contained in G2, G3, Even
more rarely, G2 will be collected, and so on.

Each older generation should be exponentially bigger than the previous
one. If G0 is half a megabyte, then G1 should be two megabytes, G2 should
be eight megabytes, and so on. An object should be promoted from Gi to
Gi+1 when it survives two or three collections of Gi .

Cost of generational collection. Without detailed empirical information about
the distribution of object lifetimes, we cannot analyze the behavior of gener-
ational collection. In practice, however, it is common for the youngest gener-
ation to be less than 10% live data. With a copying collector, this means that
H/R is 10 in this generation, so that the amortized cost per word reclaimed
is c3 R/(10R − R), or about 1 instruction. If the amount of reachable data in
G0 is about 50 to 100 kilobytes, then the amount of space “wasted” by having
H = 10R in the youngest generation is about a megabyte. In a 50-megabyte
multigeneration system, this is a small space cost.

Collecting the older generations can be more expensive. To avoid using
too much space, a smaller H/R ratio can be used for older generations. This
increases the time cost of an older-generation collection, but these are suffi-
ciently rare that the overall amortized time cost is still good.

Maintaining the remembered set also takes time, approximately 10 instruc-
tions per pointer update to enter an object into the remembered set and then
process that entry in the remembered set. If the program does many more
updates than fresh allocations, then generational collection may be more ex-
pensive than nongenerational collection.

271

CHAPTER THIRTEEN. GARBAGE COLLECTION

while there are any grey objects
select a grey record p
for each field fi of p

if record p. fi is white
color record p. fi grey

color record p black

ALGORITHM 13.13. Basic tricolor marking.

13.5 INCREMENTAL COLLECTION

Even if the overall garbage collection time is only a few percent of the com-
putation time, the collector will occasionally interrupt the program for long
periods. For interactive or real-time programs this is undesirable. Incremen-
tal or concurrent algorithms interleave garbage collection work with program
execution to avoid long interruptions.

Terminology. The collector tries to collect the garbage; meanwhile, the com-
piled program keeps changing (mutating) the graph of reachable data, so it is
called the mutator. An incremental algorithm is one in which the collector
operates only when the mutator requests it; in a concurrent algorithm the col-
lector can operate between or during any instructions executed by the mutator.

Tricolor marking. In a mark-sweep or copying garbage collection, there are
three classes of records:

White objects are not yet visited by the depth-first or breadth-first search.
Grey objects have been visited (marked or copied), but their children have not

yet been examined. In mark-sweep collection, these objects are on the stack;
in Cheney’s copying collection, they are between scan and next.

Black objects have been marked, and their children also marked. In mark-sweep
collection, they have already been popped off the stack; in Cheney’s algo-
rithm, they have already been scanned.

The collection starts with all objects white; the collector executes Algo-
rithm 13.13, blackening grey objects and greying their white children. Im-
plicit in changing an object from grey to black is removing it from the stack
or queue; implicit in greying an object is putting it into the stack or queue.
When there are no grey objects, then all white objects must be garbage.

272

13.5. INCREMENTAL COLLECTION

Algorithm 13.13 generalizes all of the mark-sweep and copying algorithms
shown so far: Algorithms 13.2, 13.3, 13.5, 13.6, and 13.9.

All these algorithms preserve two natural invariants:

1. No black object points to a white object.
2. Every grey object is on the collector’s (stack or queue) data structure (which

we will call the grey-set).

While the collector operates, the mutator creates new objects (of what color?)
and updates pointer fields of existing objects. If the mutator breaks one of the
invariants, then the collection algorithm will not work.

Most incremental and concurrent collection algorithms are based on tech-
niques to allow the mutator to get work done while preserving the invariants.
For example:

Dijkstra, Lamport, et al. Whenever the mutator stores a white pointer a into a
black object b, it colors a grey. (The compiler generates extra instructions at
each store to check for this.)

Steele. Whenever the mutator stores a white pointer a into a black object b, it
colors b grey (using extra instructions generated by the compiler).

Boehm, Demers, Shenker. All-black pages are marked read-only in the virtual
memory system. Whenever the mutator stores any value into an all-black
page, a page fault marks all objects on that page grey (and makes the page
writable).

Baker. Whenever the mutator fetches a pointer b to a white object, it colors b
grey. The mutator never possesses a pointer to a white object, so it cannot
violate invariant 1. The instructions to check the color of b are generated by
the compiler after every fetch.

Appel, Ellis, Li. Whenever the mutator fetches a pointer b from any virtual-
memory page containing any nonblack object, a page-fault handler colors ev-
ery object on the page black (making children of these objects grey). Thus the
mutator never possesses a pointer to a white object.

The first three of these are write-barrier algorithms, meaning that each
write (store) by the mutator must be checked to make sure an invariant is pre-
served. The last two are read-barrier algorithms, meaning that read (fetch)
instructions are the ones that must be checked. We have seen write barriers
before, for generational collection: Remembered lists, remembered sets, card
marking, and page marking are all different implementations of the write bar-
rier. Similarly, the read barrier can be implemented in software (as in Baker’s
algorithm) or using the virtual-memory hardware.

273

CHAPTER THIRTEEN. GARBAGE COLLECTION

Any implementation of a write or read barrier must synchronize with the
collector. For example, a Dijkstra-style collector might try to change a white
node to grey (and put it into the grey-set) at the same time the mutator is also
greying the node (and putting it into the grey-set). Thus, software implemen-
tations of the read or write barrier will need to use explicit synchronization
instructions, which can be expensive.

But implementations using virtual-memory hardware can take advantage
of the synchronization implicit in a page fault: If the mutator faults on a page,
the operating system will ensure that no other process has access to that page
before processing the fault.

13.6 BAKER’S ALGORITHM

Baker’s algorithm illustrates the details of incremental collection. It is based
on Cheney’s copying collection algorithm, so it forwards reachable objects
from from-space to to-space. Baker’s algorithm is compatible with genera-
tional collection, so that the from-space and to-space might be for generation
G0, or might be G0 + · · · + Gk .

To initiate a garbage collection (which happens when an allocate request
fails for lack of unused memory), the roles of the (previous) from-space and
to-space are swapped, and all the roots are forwarded; this is called the flip.
Then the mutator is resumed; but each time the mutator calls the allocator to
get a new record, a few pointers at scan are scanned, so that scan advances
toward next. Then a new record is allocated at the end of the to-space by
decrementing limit by the appropriate amount.

The invariant is that the mutator has pointers only to to-space (never to
from-space). Thus, when the mutator allocates and initializes a new record,
that record need not be scanned; when the mutator stores a pointer into an old
record, it is only storing a to-space pointer.

If the mutator fetches a field of a record, it might break the invariant. So
each fetch is followed by two or three instructions that check whether the
fetched pointer points to from-space. If so, that pointer must be forwarded
immediately, using the standard forward algorithm.

For every word allocated, the allocator must advance scan by at least one
word. When scan=next, the collection terminates until the next time the
allocator runs out of space. If the heap is divided into two semi-spaces of
size H/2, and R < H/4, then scan will catch up with next before next

274

13.7. INTERFACE TO THE COMPILER

reaches halfway through the to-space; also by this time, no more than half the
to-space will be occupied by newly allocated records.

Baker’s algorithm copies no more data than is live at the flip. Records al-
located during collection are not scanned, so they do not add to the cost of
collection. The collection cost is thus c3 R. But there is also a cost to check
(at every allocation) whether incremental scanning is necessary; this is pro-
portional to H/2 − R.

But the largest cost of Baker’s algorithm is the extra instructions after ev-
ery fetch, required to maintain the invariant. If one in every 10 instructions
fetches from a heap record, and each of these fetches requires two extra in-
structions to test whether it is a from-space pointer, then there is at least a
20% overhead cost just to maintain the invariant. All of the incremental or
concurrent algorithms that use a software write or read barrier will have a
significant cost in overhead of ordinary mutator operations.

13.7 INTERFACE TO THE COMPILER

The compiler for a garbage-collected language interacts with the garbage col-
lector by generating code that allocates records, by describing locations of
roots for each garbage-collection cycle, and by describing the layout of data
records on the heap. For some versions of incremental collection, the com-
piler must also generate instructions to implement a read or write barrier.

FAST ALLOCATION
Some programming languages, and some programs, allocate heap data (and
generate garbage) very rapidly. This is especially true of programs in func-
tional languages, where updating old data is discouraged.

The most allocation (and garbage) one could imagine a reasonable pro-
gram generating is one word of allocation per store instruction; this is be-
cause each word of a heap-allocated record is usually initialized. Empirical
measurements show that about one in every seven instructions executed is a
store, almost regardless of programming language or program. Thus, we have
(at most) 1

7 word of allocation per instruction executed.
Supposing that the cost of garbage collection can be made small by proper

tuning of a generational collector, there may still be a considerable cost to
create the heap records. To minimize this cost, copying collection should be
used so that the allocation space is a contiguous free region; the next free

275

CHAPTER THIRTEEN. GARBAGE COLLECTION

location is next and the end of the region is limit. To allocate one record
of size N , the steps are

1. Call the allocate function.
2. Test next + N < limit ? (If the test fails, call the garbage collector.)
3. Move next into result
4. Clear M[next], M[next+ 1], . . . , M[next+ N− 1]
5. next ← next+ N
6. Return from the allocate function.
A. Move result into some computationally useful place.
B. Store useful values into the record.

Steps 1 and 6 should be eliminated by inline expanding the allocate function
at each place where a record is allocated. Step 3 can often be eliminated by
combining it with step A, and step 4 can be eliminated in favor of step B (steps
A and B are not numbered because they are part of the useful computation;
they are not allocation overhead).

Steps 2 and 5 cannot be eliminated, but if there is more than one allocation
in the same basic block (or in the same trace; see Section 8.2), the compar-
ison and increment can be shared among multiple allocations. By keeping
next and limit in registers, steps 2 and 5 can be done in a total of three
instructions.

By this combination of techniques, the cost of allocating a record – and
then eventually garbage collecting it – can be brought down to about four
instructions. This means that programming techniques such as the persistent
binary search tree (page 108) can be efficient enough for everyday use.

DESCRIBING DATA LAYOUTS
The collector must be able to operate on records of all types: list, tree, or
whatever the program has declared. It must be able to determine the number
of fields in each record, and whether each field is a pointer.

For statically typed languages such as Pascal, or for object-oriented lan-
guages such as Java or Modula-3, the simplest way to identify heap objects
is to have the first word of every object point to a special type- or class-
descriptor record. This record tells the total size of the object and the location
of each pointer field.

For statically typed languages this is an overhead of one word per record to
serve the garbage collector. But object-oriented languages need this descrip-
tor pointer in every object just to implement dynamic method lookup, so that
there is no additional per-object overhead attributable to garbage collection.

276

13.7. INTERFACE TO THE COMPILER

The type- or class-descriptor must be generated by the compiler from the
static type information calculated by the semantic analysis phase of the com-
piler. The descriptor pointer will be the argument to the runtime system’s
alloc function.

In addition to describing every heap record, the compiler must identify to
the collector every pointer-containing temporary and local variable, whether
it is in a register or in an activation record. Because the set of live temporaries
can change at every instruction, the pointer map is different at every point
in the program. Therefore, it is simpler to describe the pointer map only at
points where a new garbage collection can begin. These are at calls to the
alloc function; and also, since any function call might be calling a function
which in turn calls alloc, the pointer map must be described at each function
call.

The pointer map is best keyed by return addresses: A function call at lo-
cation a is best described by its return address immediately after a, because
the return address is what the collector will see in the very next activation
record. The data structure maps return addresses to live-pointer sets; for each
pointer that is live immediately after the call, the pointer map tells its register
or frame location.

To find all the roots, the collector starts at the top of the stack and scans
downward, frame by frame. Each return address keys the pointer-map entry
that describes the next frame. In each frame, the collector marks (or forwards,
if copying collection) from the pointers in that frame.

Callee-save registers need special handling. Suppose function f calls g,
which calls h. Function h knows that it saved some of the callee-save registers
in its frame and mentions this fact in its pointer map; but h does not know
which of these registers are pointers. Therefore the pointer map for g must
describe which of its callee-save registers contain pointers at the call to h and
which are “inherited” from f .

DERIVED POINTERS
Sometimes a compiled program has a pointer that points into the middle of
a heap record, or that points before or after the record. For example, the ex-
pression a[i-2000] can be calculated internally as M[a-2000+i]:

t1 ← a − 2000
t2 ← t1 + i
t3 ← M[t2]

277

CHAPTER THIRTEEN. GARBAGE COLLECTION

If the expression a[i-2000] occurs inside a loop, the compiler might choose
to hoist t1 ← a − 2000 outside the loop to avoid recalculating it in each
iteration. If the loop also contains an alloc, and a garbage collection occurs
while t1 is live, will the collector be confused by a pointer t1 that does not
point to the beginning of an object, or (worse yet) that points to an unrelated
object?

We say that the t1 is derived from the base pointer a. The pointer map
must identify each derived pointer and tell the base pointer from which it is
derived. Then, when the collector relocates a to address a′, it must adjust t1
to point to address t1 + a′ − a.

Of course, this means that a must remain live as long as t1 is live. Consider
the loop at left, implemented as shown at right:

let r1 ← 100
var a := intarray[100] of 0 r2 ← 0

call alloc
a ← r1

in t1 ← a − 2000
for i := 1930 to 1990 i ← 1930
do f(a[i-2000]) L1 : r1 ← M[t1 + i]

call f
end L2 : if i ≤ 1990 goto L1

If there are no other uses of a, then the temporary a appears dead after the
assignment to t1. But then the pointer map associated with the return address
L2 would not be able to “explain” t1 adequately. Therefore, for purposes of
the compiler’s liveness analysis, a derived pointer implicitly keeps its base
pointer live.

P R O G R A M DESCRIPTORS
Implement record descriptors and pointer maps for the MiniJava compiler.

For each record-type declaration, make a string literal to serve as the record
descriptor. The length of the string should be equal to the number of fields in
the record. The i th byte of the string should be p if the i th field of the record
is a pointer (string, record, or array), or n if the i th field is a nonpointer.

The allocRecord function should now take the record descriptor string
(pointer) instead of a length; the allocator can obtain the length from the string
literal. Then allocRecord should store this descriptor pointer at field zero
of the record. Modify the runtime system appropriately.

The user-visible fields of the record will now be at offsets 1, 2, 3, . . . in-
stead of 0, 1, 2, . . . ; adjust the compiler appropriately.

278

PROGRAMMING EXERCISE

Design a descriptor format for arrays, and implement it in the compiler and
runtime system.

Implement a temp-map with a boolean for each temporary: Is it a pointer or
not? Also make a similar map for the offsets in each stack frame, for frame-
resident pointer variables. You will not need to handle derived pointers, as
your MiniJava compiler probably does not keep derived pointers live across
function calls.

For each procedure call, put a new return-address label L ret immediately
after the call instruction. For each one, make a data fragment of the form

Lptrmap327 : .word Lptrmap326 link to previous ptr-map entry
.word Lret327 key for this entry
.word . . . pointer map for
... this return address

and then the runtime system can traverse this linked list of pointer-map en-
tries, and perhaps build it into a data structure of its own choosing for fast
lookup of return addresses. The data-layout pseudo-instructions (.word, etc.)
are, of course, machine-dependent.

P R O G R A M GARBAGE COLLECTION
Implement a mark-sweep or copying garbage collector in the C language, and
link it into the runtime system. Invoke the collector from allocRecord or
initArray when the free space is exhausted.

F U R T H E R
R E A D I N G

Reference counting [Collins 1960] and mark-sweep collection [McCarthy
1960] are almost as old as languages with pointers. The pointer-reversal idea
is attributed by Knuth [1967] to Peter Deutsch and to Herbert Schorr and W.
M. Waite.

Fenichel and Yochelson [1969] designed the first two-space copying col-
lector, using depth-first search; Cheney [1970] designed the algorithm that
uses the unscanned nodes in to-space as the queue of a breadth-first search,
and also the semi-depth-first copying that improves the locality of a linked
list.

Steele [1975] designed the first concurrent mark-and-sweep algorithm. Di-
jkstra et al. [1978] formalized the notion of tricolor marking, and designed a

279

CHAPTER THIRTEEN. GARBAGE COLLECTION

concurrent algorithm that they could prove correct, trying to keep the syn-
chronization requirements as weak as possible. Baker [1978] invented the
incremental copying algorithm in which the mutator sees only to-space point-
ers.

Generational garbage collection, taking advantage of the fact that newer
objects die quickly and that there are few old-to-new pointers, was invented
by Lieberman and Hewitt [1983]; Ungar [1986] developed a simpler and more
efficient remembered set mechanism.

The Symbolics Lisp Machine [Moon 1984] had special hardware to as-
sist with incremental and generational garbage collection. The microcoded
memory-fetch instructions enforced the invariant of Baker’s algorithm; the
microcoded memory-store instructions maintained the remembered set for
generational collection. This collector was the first to explicitly improve lo-
cality of reference by keeping related objects on the same virtual-memory
page.

As modern computers rarely use microcode, and a modern general-purpose
processor embedded in a general-purpose memory hierarchy tends to be an
order of magnitude faster and cheaper than a computer with special-purpose
instructions and memory tags, attention turned in the late 1980s to algo-
rithms that could be implemented with standard RISC instructions and stan-
dard virtual-memory hardware. Appel et al. [1988] use virtual memory to
implement a read barrier in a truly concurrent variant of Baker’s algorithm.
Shaw [1988] uses virtual-memory dirty bits to implement a write barrier for
generational collection, and Boehm et al. [1991] make the same simple write
barrier serve for concurrent generational mark-and-sweep. Write barriers are
cheaper to implement than read barriers, because stores to old pages are rarer
than fetches from to-space, and a write barrier merely needs to set a dirty
bit and continue with minimal interruption of the mutator. Sobalvarro [1988]
invented the card marking technique, which uses ordinary RISC instructions
without requiring interaction with the virtual-memory system.

Appel and Shao [1996] describe techniques for fast allocation of heap
records and discuss several other efficiency issues related to garbage-collected
systems.

Branquart and Lewi [1971] describe pointer maps communicated from a
compiler to its garbage collector; Diwan et al. [1992] tie pointer maps to re-
turn addresses, show how to handle derived pointers, and compress the maps
to save space.

280

EXERCISES

Appel [1992, Chapter 12] shows that compilers for functional languages
must be careful about closure representations; using simple static links (for
example) can keep enormous amounts of data reachable, preventing the col-
lector from reclaiming it.

Boehm and Weiser [1988] describe conservative collection, where the com-
piler does not inform the collector which variables and record fields contain
pointers, so the collector must “guess.” Any bit pattern pointing into the allo-
cated heap is assumed to be a possible pointer and keeps the pointed-to record
live. However, since the bit pattern might really be meant as an integer, the
object cannot be moved (which would change the possible integer), and some
garbage objects may not be reclaimed. Wentworth [1990] points out that such
an integer may (coincidentally) point to the root of a huge garbage data struc-
ture, which therefore will not be reclaimed; so conservative collection will
occasionally suffer from a disastrous space leak. Boehm [1993] describes
several techniques for making these disasters unlikely: For example, if the
collector ever finds an integer pointing to address X that is not a currently al-
located object, it should blacklist that address so that the allocator will never
allocate an object there. Boehm [1996] points out that even a conservative
collector needs some amount of compiler assistance: If a derived pointer can
point outside the bounds of an object, then its base pointer must be kept live
as long as the derived pointer exists.

Page 481 discusses some of the literature on improving the cache perfor-
mance of garbage-collected systems.

Cohen [1981] comprehensively surveys the first two decades of garbage-
collection research; Wilson [1997] describes and discusses more recent work.
Jones and Lins [1996] offer a comprehensive textbook on garbage collection.

E X E R C I S E S

*13.1 Analyze the cost of mark-sweep versus copying collection. Assume that every
record is exactly two words long, and every field is a pointer. Some pointers
may point outside the collectible heap, and these are to be left unchanged.

a. Analyze Algorithm 13.6 to estimate c1, the cost (in instructions per reach-
able word) of depth-first marking.

b. Analyze Algorithm 13.3 to estimate c2, the cost (in instructions per word
in the heap) of sweeping.

281

CHAPTER THIRTEEN. GARBAGE COLLECTION

c. Analyze Algorithm 13.9 to estimate c3, the cost per reachable word of
copying collection.

d. There is some ratio γ so that with H = γ R the cost of copying collection
equals the cost of mark-sweep collection. Find γ .

e. For H > γ R, which is cheaper, mark-sweep or copying collection?

13.2 Run Algorithm 13.6 (pointer reversal) on the heap of Figure 13.1. Show the
state of the heap; the done flags; and variables t, x, and y at the time the node
containing 59 is first marked.

*13.3 Assume main calls f with callee-save registers all containing 0. Then f saves
the callee-save registers it is going to use; puts pointers into some callee-save
registers, integers into others, and leaves the rest untouched; and then it calls g.
Now g saves some of the callee-save registers, puts some pointers and integers
into them, and calls alloc, which starts a garbage collection.

a. Write functions f and g matching this description.

b. Illustrate the pointer maps of functions f and g.

c. Show the steps that the collector takes to recover the exact locations of
all the pointers.

**13.4 Every object in the Java language supports a hashCode() method that returns
a “hash code” for that object. Hash codes need not be unique – different objects
can return the same hash code – but each object must return the same hash
code every time it is called, and two objects selected at random should have
only a small chance of having the same hash code.

The Java language specification says that “This is typically implemented by
converting the address of the object to an integer, but this implementation
technique is not required by the Java language.”

Explain the problem in implementing hashCode() this way in a Java system
with copying garbage collection, and propose a solution.

282

14
Object-Oriented
Languages

ob-ject: to feel distaste for something

Webster’s Dictionary

An important characteristic of object-oriented languages is the notion of ex-
tension or inheritance. If some program context (such as the formal parameter
of a function or method) expects an object that supports methods m1, m2, m3,
then it will also accept an object that supports m1, m2, m3, m4.

14.1 CLASS EXTENSION

Program 14.1 illustrates the use of class extension in Java. Every Vehicle
is an Object; every Car is a Vehicle; thus every Car is also an Object.
Every Vehicle (and thus every Car and Truck) has an integer position
field and a move method.

In addition, a Car has an integer passengers field and an awaitmethod.
The variables in scope on entry to await are

passengers because it is a field of Car,
position because it is (implicitly) a field of Car,
v because it is a formal parameter of await,
this because it is (implicitly) a formal parameter of await.

At the call to c.await(t), the truck t is bound to the formal parame-
ter v of the await method. Then when v.move is called, this activates the
Truck_move method body, not Vehicle_move.

We use the notation A_m to indicate a method instance m declared within
a class A. This is not part of the Java syntax, it is just for use in discussing

283

CHAPTER FOURTEEN. OBJECT-ORIENTED LANGUAGES

class Vehicle {
int position;
void move (int x) { position = position + x; }

}
class Car extends Vehicle{

int passengers;
void await(Vehicle v) {

if (v.position < position)
v.move(position - v.position);

else
this.move(10);

}
}
class Truck extends Vehicle{

void move(int x) {
if (x <= 55) { position = position + x; }

}
}
class Main{

public static void main(String args[]) {
Truck t = new Truck();
Car c = new Car();
Vehicle v = c;
c.passengers = 2;
c.move(60);
v.move(70);
c.await(t);

}
}

PROGRAM 14.1. An object-oriented program.

the semantics of Java programs. Each different declaration of a method is
a different method instance. Two different method instances could have the
same method name if, for example, one overrides the other.

14.2 SINGLE INHERITANCE OF DATA FIELDS

To evaluate the expression v.position, where v belongs to class Vehicle,
the compiler must generate code to fetch the field position from the object
(record) that v points to.

This seems simple enough: The environment entry for variable v contains

284

14.2. SINGLE INHERITANCE OF DATA FIELDS

class A { int a = 0;}
class B extends A {int b = 0;

int c = 0;}
class C extends A {int d = 0;}
class D extends B {int e = 0;}

A
a

B
a

b
c

aa
b
c

d

e

C D

FIGURE 14.2. Single inheritance of data fields.

(among other things) a pointer to the type (class) description of Vehicle;
this has a list of fields and their offsets. But at run time the variable v could
also contain a pointer to a Car or Truck; where will the position field be
in a Car or Truck object?

Single inheritance. For single-inheritance languages, in which each class ex-
tends just one parent class, the simple technique of prefixing works well.
Where B extends A, those fields of B that are inherited from A are laid out in a
B record at the beginning, in the same order they appear in A records. Fields
of B not inherited from A are placed afterward, as shown in Figure 14.2.

METHODS
A method instance is compiled much like a function: It turns into machine
code that resides at a particular address in the instruction space. Let us say,
for example, that the method instance Truck_move has an entry point at
machine-code label Truck_move. In the semantic analysis phase of the com-
piler, each variable’s environment entry contains a pointer to its class descrip-
tor; each class descriptor contains a pointer to its parent class, and also a list
of method instances; and each method instance has a machine-code label.

Static methods. Some object-oriented languages allow some methods to be
declared static. The machine code that executes when c.f() is called de-
pends on the type of the variable c, not the type of the object that c holds. To
compile a method-call of the form c.f(), the compiler finds the class of c;
let us suppose it is class C. Then it searches in class C for a method f; suppose
none is found. Then it searches the parent class of C, class B, for a method
f; then the parent class of B; and so on. Suppose in some ancestor class A it
finds a static method f; then it can compile a function call to label A_f.

285

CHAPTER FOURTEEN. OBJECT-ORIENTED LANGUAGES

class A {int x = 0;
int f() {...} }

class B extends A {int g() {...} }
class C extends B {int g() {...} }
class D extends C {int y = 0;

int f() {...} }

x x x x
y x

y

A A_f B
B_g

C
C_g

D D_f
C_g

A_f A_f

FIGURE 14.3. Class descriptors for dynamic method lookup.

Dynamic methods. This technique will not work for dynamic methods. If
method f in A is a dynamic method, then it might be overridden in some class
D which is a subclass of C (see Figure 14.3). But there is no way to tell at
compile time if the variable c is pointing to an object of class D (in which
case D_f should be called) or class C (in which case A_f should be called).

To solve this problem, the class descriptor must contain a vector with a
method instance for each (nonstatic) method name. When class B inherits
from A, the method table starts with entries for all method names known to A,
and then continues with new methods declared by B. This is very much like
the arrangement of fields in objects with inheritance.

Figure 14.3 shows what happens when class D overrides method f. Al-
though the entry for f is at the beginning of D’s method table, as it is also at
the beginning of the ancestor class A’s method table, it points to a different
method-instance label because f has been overridden.

To execute c.f(), where f is a dynamic method, the compiled code must
execute these instructions:

1. Fetch the class descriptor d at offset 0 from object c.
2. Fetch the method-instance pointer p from the (constant) f offset of d .
3. Jump to address p, saving return address (that is, call p).

14.3 MULTIPLE INHERITANCE

In languages that permit a class D to extend several parent classes A,B,C

(that is, where A is not a subclass of B, or vice versa), finding field offsets and
method instances is more difficult. It is impossible to put all the A fields at the
beginning of D and to put all the B fields at the beginning of D.

286

14.3. MULTIPLE INHERITANCE

class A { int a = 0; }
class B { int b = 0;

int c = 0; }
class C extends A { int d = 0; }
class D extends A,B,C { int e = 0; }

A
a

B
a

b
c

a
b
c

d
e

C D

d

FIGURE 14.4. Multiple inheritance of data fields.

Global graph coloring. One solution to this problem is to statically analyze
all classes at once, finding some offset for each field name that can be used
in every record containing that field. We can model this as a graph-coloring
problem: There is a node for each distinct field name, and an edge for any two
fields which coexist (perhaps by inheritance) in the same class.1 The offsets
0, 1, 2, . . . are the colors. Figure 14.4 shows an example.

The problem with this approach is that it leaves empty slots in the middle
of objects, since it cannot always color the N fields of each class with colors
with the first N colors. To eliminate the empty slots in objects, we pack the
fields of each object and have the class descriptor tell where each field is.
Figure 14.5 shows an example. We have done graph coloring on all the field
names, as before, but now the “colors” are not the offsets of those fields within
the objects but within the descriptors. To fetch a field a of object x , we fetch
the a-word from x’s descriptor; this word contains a small integer telling the
position of the actual a data within x .

In this scheme, class descriptors have empty slots, but the objects do not;
this is acceptable because a system with millions of objects is likely to have
only dozens of class descriptors. But each data fetch (or store) requires three
instructions instead of one:

1. Fetch the descriptor pointer from the object.
2. Fetch the field-offset value from the descriptor.
3. Fetch (or store) the data at the appropriate offset in the object.

In practice, it is likely that other operations on the object will have fetched
the descriptor pointer already, and multiple operations on the same field (e.g.,
fetch then store) won’t need to refetch the offset from the descriptor; common-
subexpression elimination can remove much of this redundant overhead.

1Distinct field name does not mean simple equivalence of strings. Each fresh declaration of field or
method x (where it is not overriding the x of a parent class) is really a distinct name.

287

CHAPTER FOURTEEN. OBJECT-ORIENTED LANGUAGES

A

a

B

a
b
c

ab
c d

e

C D

d

a a
b
c

a
b
c

e
d

1
1
2

1

d 2

1
2
3
4
5

FIGURE 14.5. Field offsets in descriptors for multiple inheritance.

Method lookup. Finding method instances in a language with multiple inher-
itance is just as complicated as finding field offsets. The global graph-coloring
approach works well: The method names can be mixed with the field names to
form nodes of a large interference graph. Descriptor entries for fields give lo-
cations within the objects; descriptor entries for methods give machine-code
addresses of method instances.

Problems with dynamic linking. Any global approach suffers from the prob-
lem that the coloring (and layout of class descriptors) can be done only at link
time; the job is certainly within the capability of a special-purpose linker.

However, many object-oriented systems have the capability to load new
classes into a running system; these classes may be extensions (subclasses)
of classes already in use. Link-time graph coloring poses many problems for
a system that allows dynamic incremental linking.

Hashing. Instead of global graph coloring, we can put a hash table in each
class descriptor, mapping field names to offsets and method names to method
instances. This works well with separate compilation and dynamic linking.

The characters of the field names are not hashed at run time. Instead, each
field name a is hashed at compile time to an integer hasha in the range [0, N −
1]. Also, for each field name a unique run-time record (pointer) ptra is made.

Each class descriptor has a field-offset table Ftab of size N containing

288

14.4. TESTING CLASS MEMBERSHIP

Modula-3 Java
Test whether object x belongs class C, or to any sub-
class of C.

ISTYPE(x,C) x instanceof C

Given a variable x of class C, where x actually points
to an object of class D that extends C, yield an ex-
pression whose compile-time type is class D.

NARROW(x,D) (D)x

TABLE 14.6. Facilities for type testing and safe casting.

field-offsets and method instances, and (for purposes of collision detection)
a parallel key table Ktab containing field-name pointers. If the class has a
field x , then field-offset-table slot number hashx contains the offset for x , and
key-table slot number hashx contains the pointer ptrx .

To fetch a field x of object c, the compiler generates code to

1. Fetch the class descriptor d at offset 0 from object c.
2. Fetch the field name f from the address offset d + Ktab+ hashx .
3. Test whether f = ptrx ; if so
4. Fetch the field offset k from d + Ftab + hashx .
5. Fetch the contents of the field from c + k.

This algorithm has four instructions of overhead, which may still be tolerable.
A similar algorithm works for dynamic method-instance lookup.

The algorithm as described does not say what to do if the test at line 3 fails.
Any hash-table collision-resolution technique can be used.

14.4 TESTING CLASS MEMBERSHIP

Some object-oriented languages allow the program to test membership of an
object in a class at run time, as summarized in Table 14.6.

Since each object points to its class descriptor, the address of the class de-
scriptor can serve as a “type-tag.” However, if x is an instance of D, and D
extends C, then x is also an instance of C. Assuming there is no multiple in-
heritance, a simple way to implement x instanceof C is to generate code
that performs the following loop at run time:

t1 ← x .descriptor
L1 : if t1 = C goto true

t1 ← t1.super
if t1 = nil goto false

289

CHAPTER FOURTEEN. OBJECT-ORIENTED LANGUAGES

goto L1

where t1.super is the superclass (parent class) of class t1.
However, there is a faster approach using a display of parent classes. As-

sume that the class nesting depth is limited to some constant, such as 20.
Reserve a 20-word block in each class descriptor. In the descriptor for a class
D whose nesting depth is j , put a pointer to descriptor D in the j th slot, a
pointer to D.super in the (j − 1)th slot, a pointer to D.super.super in
slot j − 2, and so on up to Object in slot 0. In all slots numbered greater
than j , put nil.

Now, if x is an instance of D, or of any subclass of D, then the j th slot of
x’s class descriptor will point to the class descriptor D. Otherwise it will not.
So x instanceof D requires

1. Fetch the class descriptor d at offset 0 from object c.
2. Fetch the j th class-pointer slot from d .
3. Compare with the class descriptor D.

This works because the class-nesting depth of D is known at compile time.

Type coercions. Given a variable c of type C , it is always legal to treat c as
any supertype of C – if C extends B, and variable b has type B, then the
assignment b ← c is legal and safe.

But the reverse is not true. The assignment c ← b is safe only if b is
really (at run time) an instance of C , which is not always the case. If we have
b ← new B, c ← b, followed by fetching some field of c that is part of class
C but not class B, then this fetch will lead to unpredictable behavior.

Thus, safe object-oriented languages (such as Modula-3 and Java) accom-
pany any coercion from a superclass to a subclass with a run-time type-check
that raises an exception unless the run-time value is really an instance of the
subclass (e.g., unless b instanceof C).

It is a common idiom to write

Modula-3: Java:
IF ISTYPE(b,C) if (b instanceof C)
THEN f(NARROW(b,C)) f((C)b)
ELSE . . . else . . .

Now there are two consecutive, identical type tests: one explicit (ISTYPE or
instanceof) and one implicit (in NARROW or the cast). A good compiler
will do enough flow analysis to notice that the then-clause is reached only if

290

14.4. TESTING CLASS MEMBERSHIP

b is in fact an instance of C, so that the type-check in the narrowing operation
can be eliminated.

C++ is an unsafe object-oriented language. It has a static cast mechanism
without run-time checking; careless use of this mechanism can make the pro-
gram “go wrong” in unpredictable ways. C++ also has dynamic_cast with
run-time checking, which is like the mechanisms in Modula-3 and Java.

Typecase. Explicit instanceof testing, followed by a narrowing cast to a
subclass, is not a wholesome “object-oriented” style. Instead of using this
idiom, programmers are expected to use dynamic methods that accomplish
the right thing in each subclass. Nevertheless, the test-then-narrow idiom is
fairly common.

Modula-3 has a typecase facility that makes the idiom more beautiful and
efficient (but not any more “object-oriented”):

TYPECASE expr
OF C1 (v1) => S1
| C2 (v2) => S2

...

| Cn (vn) => Sn
ELSE S0
END

If the expr evaluates to an instance of class Ci , then a new variable vi of
type Ci points to the result of the expr, and statement Si is executed. The
declaration of vi is implicit in the TYPECASE, and its scope covers only Si .

If more than one of the Ci match (which can happen if, for example, one is
a superclass of another), then only the first matching clause is taken. If none
of the Ci match, then the ELSE clause is taken (statement S0 is executed).

Typecase can be converted straightforwardly to a chain of else-ifs, with
each if doing an instance test, a narrowing, and a local variable declaration.
However, if there are very many clauses, then it can take a long time to go
through all the else-ifs. Therefore it is attractive to treat it like a case (switch)
statement on integers, using an indexed jump (computed goto).

That is, an ordinary case statement on integers:

291

CHAPTER FOURTEEN. OBJECT-ORIENTED LANGUAGES

ML: C, Java:
case i switch (i) {
of 0 => s0 case 0: s0; break;
| 1 => s1 case 1: s1; break;
| 2 => s2 case 2: s2; break;
| 3 => s3 case 3: s3; break;
| 4 => s4 case 4: s4; break;
| _ => sd default: sd;

}

is compiled as follows: First a range-check comparison is made to ensure that
i is within the range of case labels (0–4, in this case); then the address of the
i th statement is fetched from the i th slot of a table, and control jumps to si .

This approach will not work for typecase, because of subclassing. That is,
even if we could make class descriptors be small integers instead of point-
ers, we cannot do an indexed jump based on the class of the object, because
we will miss clauses that match superclasses of that class. Thus, Modula-3
typecase is implemented as a chain of else-ifs.

Assigning integers to classes is not trivial, because separately compiled
modules can each define their own classes, and we do not want the integers
to clash. But a sophisticated linker might be able to assign the integers at link
time.

If all the classes in the typecase were final classes (in the sense used
by Java, that they cannot be extended), then this problem would not apply.
Modula-3 does not have final classes; and Java does not have typecase. But
a clever Java system might be able to recognize a chain of else-ifs that do
instanceof tests for a set of final classes, and generate a indexed jump.

14.5 PRIVATE FIELDS AND METHODS

True object-oriented languages can protect fields of objects from direct ma-
nipulation by other objects’ methods. A private field is one that cannot be
fetched or updated from any function or method declared outside the object;
a private method is one that cannot be called from outside the object.

Privacy is enforced by the type-checking phase of the compiler. In the sym-
bol table of C, along with each field offset and method offset, is a boolean flag
indicating whether the field is private. When compiling the expression c.f()

or c.x, it is a simple matter to check that field and reject accesses to private
fields from any method outside the object declaration.

292

14.6. CLASSLESS LANGUAGES

There are many varieties of privacy and protection. Different languages
allow

• Fields and methods which are accessible only to the class that declares them.
• Fields and methods accessible to the declaring class, and to any subclasses of

that class.
• Fields and methods accessible only within the same module (package, name-

space) as the declaring class.
• Fields that are read-only from outside the declaring class, but writable by

methods of the class.

In general, these varieties of protection can be statically enforced by compile-
time type-checking, for class-based languages.

14.6 CLASSLESS LANGUAGES

Some object-oriented languages do not use the notion of class at all. In such
a language, each object implements whatever methods and has whatever data
fields it wants. Type-checking for such languages is usually dynamic (done at
run time) instead of static (done at compile time).

Many objects are created by cloning: copying an existing object (or tem-
plate object) and then modifying some of the fields. Thus, even in a classless
language there will be groups (“pseudo-classes”) of similar objects that can
share descriptors. When b is created by cloning a, it can share a descriptor
with a. Only if a new field is added or a method field is updated (overridden)
does b require a new descriptor.

The techniques used in compiling classless languages are similar to those
for class-based languages with multiple inheritance and dynamic linking:
Pseudo-class descriptors contain hash tables that yield field offsets and method
instances.

The same kinds of global program analysis and optimization that are used
for class-based languages – finding which method instance will be called
from a (dynamic) method call site – are just as useful for classless languages.

14.7 OPTIMIZING OBJECT-ORIENTED PROGRAMS

An optimization of particular importance to object-oriented languages (which
also benefit from most optimizations that apply to programming languages in

293

CHAPTER FOURTEEN. OBJECT-ORIENTED LANGUAGES

general) is the conversion of dynamic method calls to static method-instance
calls.

Compared with an ordinary function call, at each method call site there
is a dynamic method lookup to determine the method instance. For single-
inheritance languages, method lookup takes only two instructions. This seems
like a small cost, but:

• Modern machines can jump to constant addresses more efficiently than to ad-
dresses fetched from tables. When the address is manifest in the instruction
stream, the processor is able to pre-fetch the instruction cache at the destina-
tion and direct the instruction-issue mechanism to fetch at the target of the
jump. Unpredictable jumps stall the instruction-issue and -execution pipeline
for several cycles.

• An optimizing compiler that does inline expansion or interprocedural analysis
will have trouble analyzing the consequences of a call if it doesn’t even know
which method instance is called at a given site.

For multiple-inheritance and classless languages, the dynamic method-lookup
cost is even higher.

Thus, optimizing compilers for object-oriented languages do global pro-
gram analysis to determine those places where a method call is always calling
the same method instance; then the dynamic method call can be replaced by
a static function call.

For a method call c.f(), where c is of class C, type hierarchy analysis is
used to determine which subclasses of C contain methods f that may override
C_f. If there is no such method, then the method instance must be C_f.

This idea is combined with type propagation, a form of static dataflow
analysis similar to reaching definitions (see Section 17.2). After an assign-
ment c ← new C , the exact class of c is known. This information can be
propagated through the assignment d ← c, and so on. When d.f() is en-
countered, the type-propagation information limits the range of the type hier-
archy that might contribute method instances to d.

Suppose a method f defined in class C calls method g on this. But g is
a dynamic method and may be overridden, so this call requires a dynamic
method lookup. An optimizing compiler may make a different copy of a
method instance C_f for each subclass (e.g., D,E) that extends C. Then when
the (new copy) D_f calls g, the compiler knows to call the instance D_g with-
out a dynamic method lookup.

294

FURTHER READING

P R O G R A M MiniJava WITH CLASS EXTENSION
Implement class extension in your MiniJava compiler.

F U R T H E R
R E A D I N G

Dahl and Nygaard’s Simula-67 language [Birtwistle et al. 1973] introduced
the notion of classes, objects, single inheritance, static methods, instance test-
ing, typecase, and the prefix technique to implement static single inheritance.
In addition it had coroutines and garbage collection.

Cohen [1991] suggested the display for constant-time testing of class mem-
bership.

Dynamic methods and multiple inheritance appeared in Smalltalk [Gold-
berg et al. 1983], but the first implementations used slow searches of par-
ent classes to find method instances. Rose [1988] and Connor et al. [1989]
discuss fast hash-based field- and method-access algorithms for multiple in-
heritance. The use of graph coloring in implementing multiple inheritance is
due to Dixon et al. [1989]. Lippman [1996] shows how C++-style multiple
inheritance is implemented.

Chambers et al. [1991] describe several techniques to make classless, dy-
namically typed languages perform efficiently: pseudo-class descriptors, mul-
tiple versions of method instances, and other optimizations. Diwan et al.
[1996] describe optimizations for statically typed languages that can replace
dynamic method calls by static function calls.

Conventional object-oriented languages choose a method instance for a
call a.f(x,y) based only on the class of the method receiver (a) and not
other arguments (x,y). Languages with multimethods [Bobrow et al. 1989]
allow dynamic method lookup based on the types of all arguments. This
would solve the problem of orthogonal directions of modularity discussed on
page 93. Chambers and Leavens [1995] show how to do static type-checking
for multimethods; Amiel et al. [1994] and Chen and Turau [1994] show how
to do efficient dynamic multimethod lookup.

Nelson [1991] describes Modula-3, Stroustrup [1997] describes C++, and
Arnold and Gosling [1996] describe Java.

295

CHAPTER FOURTEEN. OBJECT-ORIENTED LANGUAGES

E X E R C I S E S

*14.1 A problem with the display technique (as explained on page 290) for testing
class membership is that the maximum class-nesting depth N must be fixed
in advance, and every class descriptor needs N words of space even if most
classes are not deeply nested. Design a variant of the display technique that
does not suffer from these problems; it will be a couple of instructions more
costly than the one described on page 290.

14.2 The hash-table technique for finding field offsets and method instances in the
presence of multiple inheritance is shown incompletely on page 289 – the case
of f ̸= ptrx is not resolved. Choose a collision-resolution technique, explain
how it works, and analyze the extra cost (in instructions) in the case that f = ptrx
(no collision) and f ̸= ptrx (collision).

*14.3 Consider the following class hierarchy, which contains five method-call sites.
The task is to show which of the method-call sites call known method instances,
and (in each case) show which method instance. For example, you might say
that “method-instance X_g always calls Y_f; method Z_g may call more than
one instance of f.”

class A { int f() { return 1; } }
class B extends A { int g() { this.f(); return 2; } }
class C extends B { int f() { this.g(); return 3; } }
class D extends C { int g() { this.f(); return 4; } }
class E extends A { int g() { this.f(); return 5; } }
class F extends E { int g() { this.f(); return 6; } }

Do this analysis for each of the following assumptions:

a. This is the entire program, and there are no other subclasses of these
modules.

b. This is part of a large program, and any of these classes may be extended
elsewhere.

c. Classes C and E are local to this module, and cannot be extended else-
where; the other classes may be extended.

*14.4 Use method replication to improve your analysis of the program in Exer-
cise 14.3. That is, make every class override f and g. For example, in class
B (which does not already override f), put a copy of method A_f, and in D put
a copy of C_F:

296

EXERCISES

class B extends A { . . . int f() { return 1; } }
class D extends C { . . . int f() { this.g(); return 3; } }

Similarly, add new instances E_f, F_f, and C_g. Now, for each set of assump-
tions (a), (b), and (c), show which method calls go to known static instances.

**14.5 Devise an efficient implementation mechanism for any typecase that only men-
tions final classes. A final class is one that cannot be extended. (In Java,
there is a final keyword; but even in other object-oriented languages, a
class that is not exported from a module is effectively final, and a link-
time whole-program analysis can discover which classes are never extended,
whether declared final or not.)

You may make any of the following assumptions, but state which assumptions
you need to use:

a. The linker has control over the placement of class-descriptor records.

b. Class descriptors are integers managed by the linker that index into a
table of descriptor records.

c. The compiler explicitly marks final classes (in their descriptors).

d. Code for typecase can be generated at link time.

e. After the program is running, no other classes and subclasses are dynam-
ically linked into the program.

297

15
Functional Programming
Languages

func-tion: a mathematical correspondence that assigns
exactly one element of one set to each element of the
same or another set

Webster’s Dictionary

The mathematical notion of function is that if f (x) = a “this time,” then
f (x) = a “next time”; there is no other value equal to f (x). This allows
the use of equational reasoning familiar from algebra: If a = f (x), then
g(f (x), f (x)) is equivalent to g(a, a). Pure functional programming lan-
guages encourage a kind of programming in which equational reasoning works,
as it does in mathematics.

Imperative programming languages have similar syntax: a ← f (x). But if
we follow this by b ← f (x), there is no guarantee that a = b; the function f
can have side effects on global variables that make it return a different value
each time. Furthermore, a program might assign into variable x between calls
to f (x), so f (x) really means a different thing each time.
Higher-order functions. Functional programming languages also allow func-
tions to be passed as arguments to other functions, or returned as results.
Functions that take functional arguments are called higher-order functions.

Higher-order functions become particularly interesting if the language also
supports nested functions with lexical scope (also called block structure).
Lexical scope means that each function can refer to variables and parame-
ters of any function in which it is nested. A higher-order functional language
is one with nested scope and higher-order functions.

What is the essence of functional programming? Is it equational reasoning
or is it higher-order functions? There is no clear agreement about the an-

298

15.1. A SIMPLE FUNCTIONAL LANGUAGE

swer to this question. In this chapter we will discuss three different flavors of
“functional” language:

FunJava The MiniJava language with higher-order functions. Because side ef-
fects are still permitted (and thus, equational reasoning won’t work), this is an
impure, higher-order functional language; other such languages are Scheme,
ML, and Smalltalk.

PureFunJava A language with higher-order functions and no side effects, cap-
turing the essence of strict, pure functional languages (like the pure functional
subset of ML).

LazyFunJava A nonstrict, pure functional language that uses lazy evaluation
like the language Haskell. Nonstrict pure functional languages support equa-
tional reasoning very well (see Section 15.7).

A first-order, pure functional language such as SISAL supports equational
reasoning but not higher-order functions.

15.1 A SIMPLE FUNCTIONAL LANGUAGE

To make the new language Fun-MiniJava, we add function types to MiniJava:
ClassDecl → type id = TypeExp ;

TypeExp → TypeExp -> TypeExp
→ (TypeList) -> TypeExp
→ (TypeExp)

→ Type
TypeList → TypeExp TypeRest∗

→
TypeRest → , TypeExp

The type int->String is the type of functions that take a single integer
argument and return a string result (assuming a class String is declared).
The type (int,String)->int[] describes functions that take two argu-
ments (one integer, one string) and return an array-of-integers result.

Any variable can have a functional type; functions can be passed as argu-
ments and returned as results. Thus, the type (int->int)->(int)->int

is perfectly legal; the -> operator is right-associative, so this is the type of
functions that take an int->int argument and return an int->int result.

We also modify the format of a CALL expression, so that the function being
called is an arbitrary expression, without the .methodname component, and
so that a method itself can be the result of an expression:

299

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

type intfun = int -> int;

class C {
public intfun add(n: int) {
public int h(int m) { return n+m;}
return h;

}
public intfun twice(f: intfun) {
public int g(int x) {return f(f(x));}
return g;

}
public int test() {
intfun addFive = add(5);
intfun addSeven = add(7);
int twenty = addFive(15);
int twentyTwo = addSeven(15);
intfun addTen = twice(addFive);
int seventeen = twice(add(5))(7);
intfun addTwentyFour = twice(twice(add(6)));
return addTwentyFour(seventeen);

}
}

PROGRAM 15.1. A FunJava program.

Exp → Exp (ExpList)
Exp → Exp . id

If v is an object of a class with a method int m(int[]), then the expression
v.m evaluates to a function value of type (int[])->int. Evaluating v.m

does not call the method.
We permit variable declarations and function (method) declarations at the

beginning of a compound statement (i.e., functions are nested). We remove
the if statement and add an if expression: That is, (if (E) B else C)
evaluates E , and then evaluates B if E is true, otherwise evaluates C . The
value of the entire if expression is the value of B or C .

MethodDecl → public Type id (FormalList) Compound
Compound → { VarDecl∗ MethodDecl∗ Statement∗ return Exp ; }

Exp → Compound
→ if (Exp) Exp else Exp

Finally, we interpret the meaning of return differently: Instead of pro-
ducing the result for an entire function body, it produces the result of its own
compound statement. Thus, the expression {return 3;}+{return 4;}

evaluates to 7.

300

15.2. CLOSURES

Program 15.1 illustrates the use of function types. The function add takes
an integer argument n and returns a function h. Thus, addFive is a version
of h whose n variable is 5, but addSeven is a function h(x) = 7 + x . The
need for each different instance of h to “remember” the appropriate value
for a nonlocal variable n motivates the implementation technique of closures,
which is described later.

The function twice takes an argument f that is a function from int to
int, and the result of twice(f) is a function g that applies f twice. Thus,
addTen is a function g(x) = addFive(addFive(x)). Each instance of g(x)

needs to remember the right f value, just as each instance of h needs to re-
member n.

15.2 CLOSURES

In languages (such as C) without nested functions, the run-time representation
of a function value can be the address of the machine code for that function.
This address can be passed as an argument, stored in a variable, and so on;
when it is time to call the function, the address is loaded into a machine
register, and the “call to address contained in register” instruction is used.

In the Tree intermediate representation, this is easy to express. Suppose the
function starts at label L123; we assign the address into a variable t57 using

MOVE(TEMP(t57), NAME(L123))

and then call the function with something like

CALL(TEMP(t57), . . . parameters . . .).

But this will not work for nested functions; if we represent the h function
by an address, in what outer frame can it access the variable n? Similarly,
how does the g function access the variable f?

The solution is to represent a function variable as a closure: a record that
contains the machine-code pointer and a way to access the necessary non-
local variables. This is very much like an object with a single method (the
machine-code pointer) and several instance variables. The portion of the clo-
sure giving access to values of variables is often called the environment.

Closures need not be based on objects; any other data structure that gives
access to nonlocal variables will do. However, in this chapter we will use
objects for simplicity.

301

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

HEAP-ALLOCATED ACTIVATION RECORDS
The local variables for add must not be destroyed when add returns, because
n is still needed for the execution of h. To solve this problem, we can create
a heap-allocated object to hold each function’s local variables; then we rely
on the garbage collector to reclaim the object when all references (including
inner-nested function values) have disappeared.

A refinement of this technique is to save on the heap only those variables
that escape (that are used by inner-nested functions). The stack frame will
hold spilled registers, return address, and so on, and also a pointer to the
escaping-variable record. The escaping-variable record holds (1) any local
variables that an inner-nested procedure might need and (2) a pointer to the
environment (escaping-variable record) provided by the enclosing function.
This pointer from one closure to the closure of the statically enclosing func-
tion is called the static link; see Figure 15.2.

15.3 IMMUTABLE VARIABLES

The FunJava language has higher-order functions with nested scope, but it is
still not really possible to use equational reasoning about FunJava programs.
That is, f (3) may return a different value each time. To remedy this situation,
we prohibit side effects of functions: When a function is called, it must return
a result without changing the “world” in any observable way.

Thus, we make a new pure functional programming language PureFun-
Java, in which the following are prohibited:

⊘ Assignments to variables (except as initializations in variable declarations);
⊘ Assignments to fields of heap-allocated records (except initializations in the

class constructor);
⊘ Calls to external functions that have visible effects: println.

To distinguish clearly between initializing instance variables (which is per-
mitted) and updating instance variables (which is not), we require that every
class have a constructor in a special, stereotypical form that initializes all the
instance variables:

ClassDecl → class id { VarDecl∗ MethodDecl∗ Constructor }
Constructor → public id (FormalList) { Init∗}

Init → this . id = id

302

15.3. IMMUTABLE VARIABLES

a. Inside add

ret. adr.
saved
regs
and temps
EP:
RV:
ret. adr.
saved
regs
EP:

SL:

SL:
n: 5

main's
escaping
variables

add's
escaping
variables

frame
for

add

frame
for

main

.

.

.

.

b. Back in main

ret. adr.
saved
regs
and temps
EP:
RV:

SL:

SL:
n: 5

main's
escaping
variables

add's
escaping
variables

frame
for

main

.

.

.

EP:
MC:

closure
for h

.

.

.
machine
code
for h

c. Inside twice

ret. adr.
saved
regs
and temps
EP:
RV:

SL:

SL:
n: 5

main's
escaping
variables

add's
escaping
variables

frame
for

main

.

.

.

EP:
MC:

.

.

.
machine
code
for h

ret. adr.
EP:

SL:
f:

twice's
escaping
variables

.

.

frame
for

twice

FIGURE 15.2. Closures for execution of twice(add(5)). SL=static
link; RV=return value; EP=escaping-variables-pointer or
environment-pointer.

303

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

This seems rather Draconian: How is the program to get any work done?
To program without assignments, in a functional style, you produce new val-
ues instead of updating old ones. For example, Program 15.3 shows the im-
plementation of binary search trees in imperative and functional styles. As
explained in Section 5.1 (page 108), the imperative program updates a tree
node, but the functional program returns a new tree much like the old one,
though the path from the root to a “new” leaf has been copied. If we let t1 be
the tree in Figure 5.4a on page 108, we can say

int t2 = t1.enter("mouse",4);

and now t1 and t2 are both available for the program to use. On the other
hand, if the program returns t2 as the result of a function and discards t1,
then the root node of t1 will be reclaimed by the garbage collector (the other
nodes of t1 will not be reclaimed, because they are still in use by tree t2).

Similar techniques can allow functional programs to express the same wide
variety of algorithms that imperative programs can, and often more clearly,
expressively, and concisely.

CONTINUATION-BASED I/O
Producing new data structures instead of updating old ones makes it possi-
ble to obey the “no assignments” rules, but how is the program to do in-
put/output? The technique of continuation-based I/O expresses input/output
in a functional framework. As shown in Program 15.4, the predefined types
and functions in PureFunJava rely on the notion of an answer: This is the
“result” returned by the entire program.

MiniJava doesn’t have an input function, but if it did, the type would
be straightforward: something like int readByte(). To express this with-
out side effects, PureFunJava’s readByte takes an argument that is a int-
Consumer and passes the newly read integer to that consumer. Whatever
answer the consumer produces will also be the answer of the readByte.

Similarly, putByte takes a character to print as well as a continuation
(cont); putByte outputs a character and then calls the cont to produce an
answer.

The point of these arrangements is to allow input/output while preserving
equational reasoning. Interestingly, input/output is now “visible” to the type-
checker: Any function which does I/O will have answer in its result type.

304

15.3. IMMUTABLE VARIABLES

class tree {
String key; int binding; tree left; tree right;

public tree(String key, int binding, tree left, tree right) {
this.key=key; this.binding=binding;
this.left=left; this.right=right;

}

public int look(String k) {
int c = key.compareTo(k);
if (c < 0) return left.look(k);
else if (c > 0) return right.look(k);
else return binding;

}

public void enter(String k, int b) {
int c = key.compareTo(k);
if (c < 0)

if (left==null)
left = new tree(k,b,null,null);

else left.enter(k,b);
else if (c > 0)

if (right==null)
right = new tree(k,b,null,null);

else right.enter(k,b);
else binding=b;

}
}

(a) Imperative, object-oriented Java

// Alternative implementation of enter
public tree enter(String k, int b) {

int c = key.compareTo(k);
if (c < 0)

if (left==null)
return new tree(k,b,null,null);

else return left.enter(k,b);
else if (c > 0)

if (right==null)
return new tree(k,b,null,null);

else return right.enter(k,b);
else return new tree(k,b,left,right);

}

(b) Functional, object-oriented Java

PROGRAM 15.3. Binary search trees implemented in two ways.

305

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

type answer // a special, built-in type
type intConsumer = int -> answer
type cont = () -> answer

class ContIO {
public answer readByte (intConsumer c);
public answer putByte (int i, cont c);
public answer exit();

}

PROGRAM 15.4. Built-in types and functions for PureFunJava.

LANGUAGE CHANGES
The following modifications of FunJava make the new language PureFun-
Java:

• Add the predefined types and class shown in Program 15.4, and remove
System.out.println.

• Assignment statements and while loops are deleted from the language, and
each compound statement (in braces) can have only one statement after its
variable declarations.

Program 15.5 shows a complete PureFunJava program that loops, reading
integers and printing the factorial of each integer, until an integer larger than
12 is input.

OPTIMIZATION OF PURE FUNCTIONAL LANGUAGES
Because we have only deleted features from FunJava, and not added any
new ones (except changing some predefined types), our FunJava compiler
can compile PureFunJava right away. And, in general, functional-language
compilers can make use of the same kinds of optimizations as imperative-
language compilers: inline expansion, instruction selection, loop-invariant
analysis, graph-coloring register allocation, copy propagation, and so on. Cal-
culating the control-flow graph can be a bit more complicated, however, be-
cause much of the control flow is expressed through function calls, and some
of these calls may to be function variables instead of statically defined
functions.

A PureFunJava compiler can also make several kinds of optimizations
that a FunJava compiler cannot, because it can take advantage of equational
reasoning.

Consider this program fragment, which builds a record r and then later

306

15.3. IMMUTABLE VARIABLES

class Factorial {
boolean isDigit (int c) {

return c >= 48 && c <= 48+9; // 48 == (int)’0’
}

public answer getInt(intConsumer done) {
public answer nextDigit(int accum) {

public answer eatChar(int dig) {
return if (isDigit(dig))

nextDigit(accum*10+dig-48)
else done(accum);

}
return ContIO.readByte(eatChar);

}
return nextDigit(0);

}

answer putInt(int i, cont c) {
return if (i==0)

c()
else {

int rest = i/10;
int dig = i - rest * 10;
public answer doDigit() { return ContIO.putByte(dig,c); }
return putInt(rest, doDigit);

};
}

int factorial (int i) {
return if (i==0) 1 else i * factorial(i-1);

}

answer loop (int i) {
return if (i > 12) ContIO.exit()
else {

public answer next() { return getInt(loop); }
return putInt(factorial(i), next);

};
}

public static answer main (String [] argv) {
return getInt(loop);

}
}

PROGRAM 15.5. PureFunJava program to read i , print i !.

307

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

fetches fields from it:

class recrd {int a; int b;
public recrd(int a, int b) {this.a=a; this.b=b;}

}

int a1 = 5;
int b1 = 7;
recrd r = new recrd(a1,b1);

int x = f(r);

int y = r.a + r.b;

In a pure functional language, the compiler knows that when the computa-
tion of y refers to r.a and r.b, it is going to get the values a1 and b1. In
an imperative (or impure functional) language, the computation f(r) might
assign new values to the fields of r, but not in PureFunJava.

Thus, within the scope of r every occurrence of r.a can be replaced with
a1, and similarly b1 can be substituted for r.b. Also, since no other part of
the program can assign any new value to a1, it will contain the same value (5)
for all time. Thus, 5 can be substituted for a1 everywhere, and 7 for b1. Thus,
we end up with int y = 5+7, which can be turned into int y = 12; thus,
12 can be substituted for y throughout its scope.

The same kind of substitution works for imperative languages too; it’s just
that a compiler for an imperative language is often not sure whether a field or
variable is updated between the point of definition and the point of use. Thus,
it must conservatively approximate – assuming that the variable may have
been modified – and thus, in most cases, the substitution cannot be performed.
See also alias analysis (Section 17.5).

The ML language has pure functional records, which cannot be updated
and on which this substitution transformation is always valid, and also has
updatable reference cells, which can be assigned to and which behave like
records in a conventional imperative language.

15.4 INLINE EXPANSION

Because functional programs tend to use many small functions, and espe-
cially because they pass functions from one place to another, an important
optimization technique is inline expansion of function calls: replacing a func-
tion call with a copy of the function body.

308

15.4. INLINE EXPANSION

class list {int head; list tail;
public list (int head, list tail) {

this.head=head; this.tail=tail;
}}

type observeInt = (int,cont) -> answer;

class PrintT {
public answer doList (observeInt f, list l, cont c) {

return if (l===null)
c();

else {
public answer doRest() {return doList(f, l.tail, c);}
return f(l.head, doRest);

};
}

public int double(int j) {return j+j;}

public answer printDouble(int i, cont c) {
public answer again() {return putInt(double(i), c);}
return putInt(i, again);

}

public answer printTable(list l, cont c) {
return doList(printDouble, l, c);

}

public static void main(string argv[]) {
list mylist = · · · ;
return printTable(mylist, IO.exit);

}
}

PROGRAM 15.6. printTable in PureFunJava.

For example, in Program 15.6, an observeInt is any function (like the
putInt of Program 15.5) that “observes” an integer and then continues.
doList is a function that applies an observer f to a list l, and then con-
tinues. In this case, the observer is not putInt but printDouble, which
prints i followed by 2i . Thus, printTable prints a table of integers, each
followed by its double.

For comparison, Program 15.7a is a regular Java program that does the
same thing.

Program 15.6 uses a generic list-traverser, doList, for which any func-

309

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

class list {int head; int tail;}

class PrintT {
int double(int j) {return j+j;}

void printDouble(int i) {
putInt(i); putInt(double(i));

}

void printTable(list l) {
while (l != null) {

printDouble(l.head);
l = l.tail;

}

public static void main(. . .) {
printTable(mylist);

}}
(a) As written

class list {int head; int tail;}

class PrintT {
void printTable(list l) {
while (l != null) {

int i = l.head;
putInt(i);
putInt(i+1);
l = l.tail;

}
}

public static void main(. . .) {
printTable(mylist);

}}
(b) Optimized

PROGRAM 15.7. Java implementation of printTable.

tion can be plugged in. Although in this case printDouble is used, the
same program could reuse doList for other purposes that print or “observe”
all the integers in the list. But Program 15.7a lacks this flexibility – it calls
printDouble directly.

If compiled naively, the pure functional program – which passed print-

Double as an argument – will do many more function calls than the impera-
tive program. By using inline expansion and tail-call optimizations (described
in Section 15.6), Program 15.6 can be optimized into machine instructions
equivalent to the efficient loop of Program 15.7b.

Avoiding variable capture. We must be careful about variable names when
doing inlining in MiniJava (or Java), where a local declaration creates a “hole”
in the scope of an outer variable:

class A {
1 int x = 5
2 int function g(int y) {
3 return y+x;

}
4 int f(int x) {
5 return g(1)+x;

}
6 void main() { . . . f(2)+x . . . }
}

310

15.4. INLINE EXPANSION

The formal parameter x on line 4 creates a hole in the scope of the variable
x declared on line 1, so that the x on line 5 refers to the formal parameter,
not the variable. If we were to inline-expand the call to g(1) on line 5 by
substituting the body of g for the call, we could not simply write 1+x, for
then we’d have

4 int f(int x) {
5 return return 1+x;+x; }

but the first x on line 5 is now incorrectly referring to f’s parameter instead
of the variable declared on line 1.

To solve this problem, we could first rename, or α-convert, the formal pa-
rameter of f, then perform the substitution:

2 int function g(int y) { int function g(int y) {
3 return y+x; return y+x;

} }
4 int f(int a) { int f(int a) {
5 return g(1)+a; return {return 1+x;}+a;

} }

Alternately, we can rename the actual parameters instead of the formal pa-
rameters, and define the substitution function to avoid substituting for x inside
the scope of a new definition of x .

But the best solution of all for avoiding variable capture is to have an earlier
pass of the compiler rename all variables so that the same variable name is
never declared twice. This simplifies reasoning about, and optimizing, the
program.

By the way, the expression {return 1+x;} in line 5 is completely equiv-
alent to the expression (1+x).

Rules for inlining. Algorithm 15.8 gives the rules for inline expansion, which
can apply to imperative or functional programs. The function body B is used
in place of the function call f (. . .), but within this copy of B, each actual
parameter is substituted for the corresponding formal parameter. When the
actual parameter is just a variable or a constant, the substitution is very simple
(Algorithm 15.8a). But when the actual parameter is a nontrivial expression,
we must first assign it to a new variable (Algorithm 15.8b).

For example, in Program 15.6 the function call double(i) can be re-
placed by a copy of j+j in which each j is replaced by the actual parameter
i. Here we have used Algorithm 15.8a, since i is a variable, not a more com-
plicated expression.

311

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

(a) When the actual parameters are
simple variables i1, . . . , in .
Within the scope of:

int f (a1, . . . , an)B

(where B is a Compound)
the expression

f (i1, . . . , in)

rewrites to

B[a1 !→ i1, . . . , an !→ in]

(b) When the actual parameters are non-
trivial expressions, not just variables.
Within the scope of:

int f (a1, . . . , an)B

the expression f (E1, . . . , En)

rewrites to

{ int i1 = E1;
...

int in = En;
return B[a1 !→ i1, . . . , an !→ in];

}
where i1, . . . , in are previously unused
names.

ALGORITHM 15.8. Inline expansion of function bodies. We assume that no two
declarations declare the same name.

Suppose we wish to inline-expand double(g(x)); if we improperly use
Algorithm 15.8a, we obtain g(x)+g(x), which computes g(x) twice. Even
though the principle of equational reasoning assures that we will compute
the same result each time, we do not wish to slow down the computation
by repeating the (potentially expensive) computation g(x). Instead, Algo-
rithm 15.8b yields

{int i = g(x); return i+i;}

which computes g(x) only once.
In an imperative program, not only is g(x)+g(x) slower than

{int i = g(x); return i+i;}

but – because g may have side effects – it may compute a different result!
Again, Algorithm 15.8b does the right thing.

Dead function elimination. If all the calls to a function (such as double)
have been inline-expanded, and if the function is not passed as an argument
or referenced in any other way, the function itself can be deleted.

312

15.4. INLINE EXPANSION

int f (a1, . . . , an)

B
→

int f (a′
1, . . . , a′

n)

{ int f ′(a1, . . . , an)

B[f #→ f ′]
return f ′(a′

1, . . . , a′
n);

}

ALGORITHM 15.9. Loop-preheader transformation.

Inlining recursive functions. Inlining doList into printTable yields this
new version of printTable:

public answer printTable(list l, cont c) {
return if (l===null)

c();
else {

public answer doRest() {
return doList(printDouble, l.tail, c);

}
return printDouble(l.head, doRest);

};
}

This is not so good: printTable calls printDouble on l.head, but to
process l.tail it calls doList as before. Thus, we have inline-expanded
only the first iteration of the loop. We would rather have a fully customized
version of doRest; therefore, we do not inline-expand in this way.

For recursive functions we use a loop-preheader transformation (Algo-
rithm 15.9). The idea is to split f into two functions: a prelude called from
outside, and a loop header called from inside. Every call to the loop header
will be a recursive call from within itself, except for a single call from the
prelude. Applying this transformation to doList yields

public answer doList (observeInt fX, list lX, cont cX) {
public answer doListX(observeInt f, list l, cont c) {
return if (l==null)

c();
else {

public answer doRest() {return doListX(f, l.tail, c);}
return f(l.head, doRest);

};
}
return doListX(fX,lX,cX);

}

313

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

If every use of f ′ within B is of the form f ′(E1, . . . , Ei−1, ai , Ei+1, . . . , En) such that the
i th argument is always ai , then rewrite

int f (a′
1, . . . , a′

n){
int f ′(a1, . . . , an)B
return f ′(a′

1, . . . , a′
n)

}
→

int f (a′
1, . . . , a′

i−1, ai , a′
i+1, . . . , a′

n){
int f ′(a1, . . . , ai−1, ai+1, . . . , an)B
return f ′(a′

1, . . . , a′
i−1, a′

i+1, . . . , a′
n)

}

where every call f ′(E1, . . . , Ei−1, ai , Ei+1, . . . , En) within B is rewritten as
f ′(E1, . . . , Ei−1, Ei+1, . . . , En).

ALGORITHM 15.10. Loop-invariant hoisting.

where the new doList is the prelude, and doListX is the loop header. Notice
that the prelude function contains the entire loop as an internal function, so
that when any call to doList is inline-expanded, a new copy of doListX
comes along with it.

Loop-invariant arguments. In this example, the function doListX is pass-
ing around the values f and c that are invariant – they are the same in every
recursive call. In each case, f is fX and c is cX. A loop-invariant hoisting
transformation (Algorithm 15.10) can replace every use of f with fX, and c

with cX).
Applying this transformation to doList yields

public answer doList (observeInt f, list lX, cont c) {
public answer doListX(list l) {
return if (l==null)

c();
else {

public answer doRest() {return doListX(l.tail);}
return f(l.head, doRest);

};
}
return doListX(lX);

}

Finally, in printTable, when the call doList(printDouble,l,c) is
inlined, we obtain:

314

15.4. INLINE EXPANSION

public answer printTable(list l, cont c) {
public answer doListX(list l) {
return if (l==null)

c();
else {

public answer doRest() {return doListX(l.tail);}
return printDouble(l.head, doRest);

};
}
return doListX(l);

}

Cascading inlining. In this version of printTable, we have printDouble
applied to arguments (instead of just passed to doList), so we can inline-
expand that call, yielding

public answer printTable(list l, cont c) {
public answer doListX(list l) {
return if (l==null)

c();
else {

public answer doRest() {return doListX(l.tail);}
return {
int i = l.head;
public answer again() {return putInt(i+i, doRest);}
return putInt(i, again);

};
};

}
return doListX(l);

}

Avoiding code explosion. Inline-expansion copies function bodies. This gen-
erally makes the program bigger. If done indiscriminantly, the size of the
program explodes; in fact, it is easy to construct cases where expanding one
function call creates new instances that can also be expanded, ad infinitum.

There are several heuristics that can be used to control inlining:

1. Expand only those function-call sites that are very frequently executed; deter-
mine frequency either by static estimation (loop-nest depth) or by feedback
from an execution profiler.

2. Expand functions with very small bodies, so that the copied function body is
not much larger than the instructions that would have called the function.

3. Expand functions called only once; then dead function elimination will delete
the original copy of the function body.

315

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

1 public answer printTable(list l, cont c) {
2 public answer doListX(list l) {
3 return if (l==null) c()
4 else {public answer doRest() {
5 return doListX(l.tail);}
6 int i = l.head;
7 public answer again() {
8 return putInt(i+i,doRest); }
9 return putInt(i,again);

10 }
11 return doListX(l);
12 }

PROGRAM 15.11. printTable as automatically specialized.

Unnesting braces. Since the FunJava expression

{ Decl1 return { Decl2 return Exp}}

is exactly equivalent to

{ Decl1 Decl2 return Exp}

we end up with Program 15.11.
The optimizer has taken a program written with abstraction (with a general-

purpose doList) and transformed it into a more efficient, special-purpose
program (with a special-purpose doListX that calls putInt directly).

15.5 CLOSURE CONVERSION

A function passed as an argument is represented as a closure: a combination
of a machine-code pointer and a means of accessing the nonlocal variables
(also called free variables).

An example of a nonlocal variable in an object-oriented language is an in-
stance variable of a class. A method referring to an instance variable accesses
it through this, which is an implicit formal parameter of the method. One way
to compile free-variable access for nested functions is to represent closures
as objects.

The closure conversion phase of a functional-language compiler trans-
forms the program so that none of the functions appears to access free (non-

316

15.5. CLOSURE CONVERSION

local) variables. This is done by turning each free-variable access into an
instance-variable access.

Some local variables declared in a function f are also accessed by func-
tions nested within f ; we say these variables escape. For example, in Pro-
gram 15.5, in the function putInt, the variables dig and c escape (because
they are used in the inner-nested function doDigit), but the variable rest

does not escape.
Given a function f (a1, . . . , an) B at nesting depth d with escaping local

variables (and formal parameters) x1, x2, . . . , xn and nonescaping variables
y1, . . . , yn, we can rewrite into

f (this, a1, . . . , an) {
c272 r = newc272(this, x1, x2, . . . , xn);
return B ′

}
The new parameter this is the closure pointer, now made into an explicit

argument. The variable r is an object containing all the escaping variables and
the enclosing closure pointer. This r becomes the closure-pointer argument
when calling functions of depth d + 1. The class (in this case c272) has to
be made up specially for each function, because the list of escaping variables
(and their types) is different for each function.

Any use of a nonlocal variable (one that comes from nesting depth < d)
within B must be transformed into an access of some offset within the record
this (in the rewritten function body B ′).

Function values. We can represent a function value as an object with a single
method (which we will call exec) and zero or more instance variables (to
hold nonlocal variables). We will represent the type t1 -> t2 as the class

abstract class c_t1_t2 { abstract public t2 exec(t1 x); }

and any actual function value belonging to this type will be an extension of
this class, adding instance variables and overriding exec.

Program 15.12 is the result of closure-converting Program 15.11. We can
see that each function type is an abstract class, and each function is a different
subclass of the abstract class. Escaping local variables are put into the closure
objects of inner-nested functions. Furthermore, when functions are deeply
nested, it’s often useful for the closure of the inner-nested function to have a
link to the enclosing function’s closure for convenient access to variables of
functions further out.

317

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

abstract class cont {
abstract public answer exec(); }

abstract class c_list_cont_answer {
abstract public answer exec(list l, cont c); }

class printTable extends c_list_cont_answer {
public answer exec(list l, cont c) {

doListX r1 = new doListX(this, c);
return r1.exec(l);

} }

abstract class c_list_answer {
abstract public answer exec(list l); }

class doListX extends c_list_answer {
printTable link;
cont c;
public answer exec (list l) {

return if (l==null) c.exec()
else {doRest r2 = new doRest(this,l);

int i = l.head;
again r3 = new again(i,doRest);
return putInt.exec(i,again);

} }

abstract class c_void_answer { abstract public answer exec(); }

class doRest extends c_void_answer {
doListX link;
list l;
public answer exec() {
return doListX.exec(l);

} }

class again extends c_void_answer {
int i;
doRest d;
public answer exec() {
return putInt(i+i, d);

} }

PROGRAM 15.12. printTable after closure conversion (class constructors
omitted).

318

15.6. EFFICIENT TAIL RECURSION

15.6 EFFICIENT TAIL RECURSION

Functional programs express loops and other control flow by function calls.
Where Program 15.7b has a while loop, Program 15.12 has a function call to
doListX. Where Program 15.7b’s putInt simply returns to its two points
of call within printTable, Program 15.11 has continuation functions. The
FunJava compiler must compile the calls to doListX, doRest, and again

as efficently as the MiniJava compiler compiles loops and function returns.
Many of the function calls in Program 15.11 are in tail position. A function

call f (x) within the body of another function g(y) is in tail position if “calling
f is the last thing that g will do before returning.” More formally, in each of
the following expressions, the Bi are in tail contexts, but the Ci are not:

1. {int x = C1; return B1; }
2. C1(C2)
3. if C1 B1 else B2

4. C1 + C2

For example, C2 in expression 4 is not in a tail context, even though it
seems to be “last,” because after C2 completes there will still need to be an
add instruction. But B1 in expression 3 is in a tail context, even though it is
not “last” syntactically.

If a function call f (x) is in a tail context with respect to its enclosing
expression, and that expression is in a tail context, and so on all the way to
the body of the enclosing function definition int g(y) B, then f (x) is a tail
call.

Tail calls can be implemented more efficiently than ordinary calls. Given

int g(int y) {int x = h(y); return f(x)}

then h(y) is not a tail call, but f(x) is. When f(x) returns some result z,
then z will also be the result returned from g. Instead of pushing a new return
address for f to return to, g could just give f the return address given to g,
and have f return there directly.

That is, a tail call can be implemented more like a jump than a call. The
steps for a tail call are

1. Move actual parameters into argument registers.
2. Restore callee-save registers.
3. Pop the stack frame of the calling function, if it has one.
4. Jump to the callee.

319

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

printTable: allocate object r1 printTable: allocate stack frame
jump to doListX jump to whileL

doListX: allocate record r2 whileL:
if l=nil goto doneL if l=nil goto doneL
i = l.head i := l.head

allocate object r3
jump to putInt call putInt

again: add this.i+this.i add i+i

jump to putInt call putInt
doRest: jump to doListX jump to whileL
doneL : jump to this.c doneL: return

(a) Functional program (b) Imperative program

FIGURE 15.13. printTable as compiled.

In many cases, item 1 (moving parameters) is eliminated by the copy-propa-
gation (coalescing) phase of the compiler. Often, items 2 and 3 are eliminated
because the calling function has no stack frame – any function that can do all
its computation in caller-save registers needs no frame. Thus, a tail call can
be as cheap as a jump instruction.

In Program 15.12, every call is a tail call! Also, none of the functions in
this program needs a stack frame. This need not have been true; for example,
the call to double in Program 15.6 is not in tail position, and this nontail call
only disappeared because the inline-expander did away with it.

Tail calls implemented as jumps. The compilation of Programs 15.12 and
15.7b is instructive. Figure 15.13 shows that the pure functional program and
the imperative program are executing almost exactly the same instructions!
The figure does not show the functional program’s fetching from static-link
records; and it does not show the imperative program’s saving and restoring
callee-save registers.

The remaining inefficiency in the functional program is that it creates
three heap-allocated objects, r1,r2,r3, while the imperative program cre-
ates only one stack frame. However, more advanced closure-conversion algo-
rithms can succeed in creating only one record (at the beginning of print-
Table). So the difference between the two programs would be little more
than a heap-record creation versus a stack-frame creation.

Allocating object on the garbage-collected heap may be more expensive

320

15.7. LAZY EVALUATION

than pushing and popping a stack frame. Optimizing compilers for functional
languages solve this problem in different ways:

• Compile-time escape analysis can identify which closures do not outlive the
function that creates them. These objects can be stack-allocated. In the case
of printTable, this would make the “functional” code almost identical to
the “imperative” code.

• Or heap allocation and garbage collection can be made extremely cheap. Then
creating (and garbage collecting) a heap-allocated object takes only four or
five instructions, making the functional printTable almost as fast as the
imperative one (see Section 13.7).

15.7 LAZY EVALUATION

Equational reasoning aids in understanding functional programs. One impor-
tant principle of equational reasoning is β-substitution: If f (x) = B with
some function body B, then any application f (E) to an expression E is equiv-
alent to B with every occurrence of x replaced with E :

f (x) = B implies that f (E) ≡ B[x "→ E]

But consider the PureFunJava program fragments,

{int loop (int z) { {int loop (int z) {
return if (z>0) z return if (z>0) z

else loop(z); else loop(z);
} }
int f (int x) { int f (int x) {

return if (y>8) x return if (y>8) x
else -y; else -y;

} }
return return if (y>8) loop(y)
f(loop(y)); else -y;

} }

If the expression B is if (y>8) x else -y, and expression E is
loop(y), then clearly the program on the left contains f (E) and the pro-
gram on the right contains B[x "→ E]. So these programs are equivalent,
using equational reasoning.

However, the programs do not always behave the same! If y = 0, then the
program on the right will return 0, but the program on the left will first get
stuck in a call to loop(0), which infinite-loops.

321

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

Clearly, if we want to claim that two programs are equivalent, then they
must behave the same. In PureFunJava, if we obtain program A by doing
substition on program B, then A and B will never give different results if they
both halt; but A or B might not halt on the same set of inputs.

To remedy this (partial) failure of equational reasoning, we can introduce
lazy evaluation into the programming language. Haskell is the most widely
used lazy language. A program compiled with lazy evaluation will not eval-
uate any expression unless its value is demanded by some other part of the
computation. In contrast, strict languages such as MiniJava, PureFunJava,
ML, C, and Java evaluate each expression as the control flow of the program
reaches it.

To explore the compilation of lazy functional languages, we will use the
LazyJava language. Its syntax is identical to PureFunJava, and its semantics
are almost identical, except that lazy evaluation is used in compiling it.

CALL-BY-NAME EVALUATION
Most programming languages (Pascal, C, ML, Java, MiniJava, PureFunJava)
use call-by-value to pass function arguments: To compute f (g(x)), first g(x)

is computed, and this value is passed to f . But if f did not actually need to
use its argument, then computing g(x) will have been unnecessary.

To avoid computing expressions before their results are needed, we can
use call-by-name evaluation. Essentially, each variable is not a simple value,
but is a thunk: a function that computes the value on demand. The compiler
replaces each expression of type int with a function value of type ()->int,
and similarly for all other types.

At each place where a variable is created, the compiler creates a function
value; and everywhere a variable is used, the compiler puts a function appli-
cation.

Thus the LazyJava program

{int a = 5+7; return a + 10; }

is automatically transformed to

{int a() {return 5+7;} return a() + 10; }

Where are variables created? At variable declarations and at function-parameter
bindings. Thus, each variable turns into a function, and at each function-call
site, we need a little function declaration for each actual-parameter expres-
sion.

322

15.7. LAZY EVALUATION

type c_void_int = () -> int;
type c_void_tree = () -> tree;

class tree {
c_void_String key;
c_void_int binding;
c_void_tree left;
c_void_tree right;

}

public c_void_int look(c_void_tree t, c_void_String k) {
c_void_int c = t().key().compareTo(k);
if (c() < 0) return look(t().left, k);
else if (c() > 0) return look(t().right, k);
else return t().binding;

}

PROGRAM 15.14. Call-by-name transformation applied to Program 15.3a.

Program 15.14 illustrates this transformation applied to the look function
of Program 15.3a.

The problem with call-by-name is that each thunk may be executed many
times, each time (redundantly) yielding the same value. For example, suppose
there is a tree represented by a thunk t1. Each time look(t1,k) is called,
t1() is evaluated, which rebuilds the (identical) tree every time!

CALL-BY-NEED
Lazy evaluation, also called call-by-need, is a modification of call-by-name
that never evaluates the same thunk twice. Each thunk is equipped with a
memo slot to store the value. When the thunk is first created, the memo slot is
empty. Each evaluation of the thunk checks the memo slot: If full, it returns
the memo-ized value; if empty, it calls the thunk function.

To streamline this process, we will represent a lazy thunk as an object with
a thunk function, a memo slot, and (as with any closure object) instance vari-
ables to represent free variables as necessary for use by the thunk function.
An unevaluated thunk has an empty memo slot, and the thunk function, when
called, computes a value and puts it in the memo slot. An evaluated thunk has
the previously computed value in its memo slot, and its thunk function just
returns the memo-slot value.

For example, the LazyJava declaration int twenty = addFive(15) (in Pro-
gram 15.1) is compiled in a context where the environment pointer EP will

323

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

point to a record containing the addFive function. The representation of
addFive(15) is not a function call that will go and compute the answer
now, but a thunk that will remember how to compute it on demand, later.
We might translate this fragment of the LazyJava program into FunJava as
follows:

/* this already points to a record containing addFive */
c_void_int twenty = new intThunk(this);

which is supported by the auxiliary declarations

class intThunk {public int eval(); int memo; boolean done; }

class c_int_int {public int exec(int x);}
class intFuncThunk {public c_int_int eval();

c_int_int memo; boolean done; }

class twentyThunk extends intThunk {
intFuncThunk addFive;
public int exec() {

if (!done) {
memo = addFive.eval().exec(15);
done = true;

}
return memo;

}
twentyThunk(addFive) {this.addFive=addFive;}

}

twentyThunk twenty = new twentyThunk(. . .);

To create a thunk such as twenty, it must be given values for its free vari-
ables (in this case, addFive) so that when it later evaluates, it has all the
information it needs; this is just the same as closure conversion. To touch a
lazy thunk t, we just compute t.eval(). The first time t.eval() is exe-
cuted, it will see that done is false, and it will calculate the result and put it in
memo. Any subsequent time that t is touched, t.eval() will simply return
the memo field.

EVALUATION OF A LAZY PROGRAM
Here is a program that uses the enter function of Program 15.3b to build a
tree mapping {three !→ 3!,−one !→ (−1)!}:

324

Invariant hoisting.

15.7. LAZY EVALUATION

{int fact(int i) {
return if (i==0) 1 else i * fact(i-1)

}
tree t0 = new tree("",0,null,null);
tree t1 = t0.enter("-one", if i=0 then 1 else i * fact(i-1));
tree t2 = t1.enter("three", fact(3));
return putInt(t2.look("three", exit));

}

A curious thing about this program is that fact(-1) is undefined. Thus, if
this program is compiled by a (strict) PureFunJava compiler, it will infinite-
loop (or will eventually overflow the machine’s arithmetic as it keeps sub-
tracting 1 from a negative number).

But if compiled by a LazyJava compiler, the program will succeed, printing
three factorial! First, variable t1 is defined; but this does not actually call
enter – it merely makes a thunk which will do so on demand. Then, t2 is
defined, which also does nothing but make a thunk. Then a thunk is created
for look(t2,"three") (but look is not actually called).

Finally, a thunk for the expression putInt(...,exit) is created. This is
the result of the program. But the runtime system then “demands” an answer
from this program, which can be computed only by calling the outermost
thunk. So the body of putInt executes, which immediately demands the
integer value of its first argument; this causes the look(t2,"three") thunk
to evaluate.

The body of look needs to compare k with t.key. Since k and t are
each thunks, we can compute an integer by evaluating k.eval() and a tree
by evaluating t.eval(). From the tree we can extract the key field; but
each field is a thunk, so we must actually do (t.eval().key)() to get the
integer.

The t.key value will turn out to be −1, so look(t().right,k) is
called. The program never evaluates the binding thunk in the -one node,
so fact(-1) is never given a chance to infinite-loop.

OPTIMIZATION OF LAZY FUNCTIONAL PROGRAMS
Lazy functional programs are subject to many of the same kinds of optimiza-
tions as strict functional programs, or even imperative programs. Loops can
be identified (these are simply tail-recursive functions), induction variables
can be identified, common subexpressions can be eliminated, and so on.

In addition, lazy compilers can do some kinds of optimizations that strict
functional or imperative compilers cannot, using equational reasoning.

325

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

For example, given a loop

type intfun = int->int;

intfun f (int i) {
public int g(int j) {return h(i) * j;}
return g;

}

an optimizer might like to hoist the invariant computation h(i) out of the
function g. After all, g may be called thousands of times, and it would be
better not to recompute h(i) each time. Thus we obtain

type intfun = int->int;

intfun f (int i) {
int hi = h(i)
public int g(int j) {return hi * j;}
return g;

}

and now each time g is called, it runs faster.
This is valid in a lazy language. But in a strict language, this transformation

is invalid! Suppose after intfun a = f(8) the function a is never called at
all; and suppose h(8) infinite-loops; before the “optimization” the program
would have terminated successfully, but afterward we get a nonterminating
program. Of course, the transformation is also invalid in an impure functional
language, because h(8) might have side effects, and we are changing the
number of times h(8) is executed.

Dead-code removal. Another subtle problem with strict programming lan-
guages is the removal of dead code. Suppose we have

int f(int i) {
int d = g(x);
return i+2;

}

The variable d is never used; it is dead at its definition. Therefore, the call
to g(x) should be removed. In a conventional programming language, such
as MiniJava or FunJava, we cannot remove g(x) because it might have side
effects that are necessary to the operation of the program.

326

15.7. LAZY EVALUATION

class intList {int head; intList tail; intList(head,tail){. . .}}
type intfun = int->int;
type int2fun = (int,int) -> int;

public int sumSq(intfun inc,int2fun mul, int2fun add) {
public intList range(int i, int j) {
return if (i>j) then null else intList(i, range(inc(i),j));

}
public intList squares(intList l) {
return if (l==null) null

else intList(mul(l.head,l.head), squares(l.tail));
}
int sum(int accum, intList l) {
return if (l==null) accum else sum(add(accum,l.head), l.tail);

}
return sum(0,squares(range(1,100)));

}

PROGRAM 15.15. Summing the squares.

In a strict, purely functional language such as PureFunJava, removing the
computation g(x) could optimize a nonterminating computation into a ter-
minating one! Though this seems benign, it can be very confusing to the
programmer. We do not want programs to change their input/output behavior
when compiled with different levels of optimization.

In a lazy language, it is perfectly safe to remove dead computations such
as g(x).

Deforestation. In any language, it is common to break a program into one
module that produces a data structure and another module that consumes it.
Program 15.15 is a simple example; range(i,j) generates a list of the in-
tegers from i to j, squares(l) returns the square of each number, and
sum(l) adds up all the numbers.

First range builds a list of 100 integers; then squares builds another list
of 100 integers; finally, sum traverses this list.

It is wasteful to build these lists. A transformation called deforestation
removes intermediate lists and trees (hence the name) and does everything in
one pass. The deforested sumSq program looks like this:

327

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

public int sumSq(intfun inc,int2fun mul, int2fun add) {
public int f(int accum, int i, int j) {
return if (i>j) accum else f(add(accum,mul(i,i)),inc(i));

}
return f(0,1,100);

}

In impure functional languages (where functions can have side effects) de-
forestation is not usually valid. Suppose, for example, that the functions inc,
mul, and add alter global variables, or print on an output file. The defor-
estation transformation has rearranged the order of calling these functions;
instead of

inc(1), inc(2), . . . inc(100),

mul(1, 1), mul(2, 2), . . . mul(100, 100),

add(0, 1), add(1, 4), . . . add(328350, 10000)

the functions are called in the order

mul(1, 1), add(0, 1), inc(1),

mul(2, 2), add(1, 4), inc(2),
...

mul(100, 100), add(328350, 10000), inc(100)

Only in a pure functional language is this transformation always legal.

STRICTNESS ANALYSIS
Although laziness allows certain new optimizations, the overhead of thunk
creation and thunk evaluation is very high. If no attention is paid to this prob-
lem, then the lazy program will run slowly no matter what other optimizations
are enabled.

The solution is to put thunks only where they are needed. If a function f (x)

is certain to evaluate its argument x , then there is no need to pass a thunk for
x; we can just pass an evaluated x instead. We are trading an evaluation now
for a certain eventual evaluation.

Definition of strictness. We say a function f (x) is strict in x if, whenever
some actual parameter a would fail to terminate, then f (a) would also fail to
terminate. A multi-argument function f (x1, . . . , xn) is strict in xi if, when-
ever a would fail to terminate, then f (b1, . . . , bi−1, a, bi+1, . . . , bn) also fails
to terminate, regardless of whether the bj terminate. Let us take an example:

328

15.7. LAZY EVALUATION

bindingThunk look(tree t, key k) {
return if (k < t.key.eval()) look(t.left.eval(), k)

else if (k > t.key.eval()) look(t.right.eval(), k)
else t.binding;

}

PROGRAM 15.16. Partial call-by-name using the results of strictness analysis;
compare with Program 15.14.

int f(int x, int y) { return x + x + y; }

int g(int x, int y) { return if (x>0) y else x; }

tree h(String x, int y) { return new tree(x,y,null,null); }

int j(int x) { return j(0); }

The function f is strict in its argument x, since if the result f(x,y) is de-
manded then f will certainly touch (demand the value of) x. Similarly, f is
strict in argument y, and g is strict in x. But g is not strict in its second argu-
ment, because g can sometimes compute its result without touching y.

The function h is not strict in either argument. Even though it appears to
“use” both x and y, it does not demand (string or integer) values from them;
instead it just puts them into a data structure, and it could be that no other part
of the program will ever demand values from the key or binding fields of
that particular tree.

Curiously, by our definition of strictness, the function j is strict in x even
though it never uses x. But the purpose of strictness analysis is to determine
whether it is safe to evaluate x before passing it to the function j: Will this
cause a terminating program to become nonterminating? In this case, if j
is going to be called, it will infinite-loop anyway, so it doesn’t matter if we
perform a (possibly nonterminating) evaluation of x beforehand.

Using the result of strictness analysis. Program 15.16 shows the result of
transforming the look function (of Program 15.3a) using strictness infor-
mation. A call-by-name transformation has been applied here, as in Pro-
gram 15.14, but the result would be similar using call-by-need. Function
look is strict in both its arguments t and key. Thus, when comparing
k<t.key, it does not have to touch k and t. However, the t.key field still
points to a thunk, so it must be touched.

Since look is strict, callers of look are expected to pass evaluated values,

329

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

Function M:
M(7, σ) = 1

M(x, σ) = x ∈ σ

M(E1 + E2, σ) = M(E1, σ) ∧ M(E2, σ)

M(newobject(E1, . . . , En), σ) = 1

M(if (E1) E2 else E3, σ) = M(E1, σ) ∧ (M(E2, σ) ∨ M(E3, σ))

M(f(E1, . . . , En), σ) = (f, (M(E1, σ), . . . , M(En, σ))) ∈ H

Calculation of H :
H ← {}
repeat

done ← true
for each function f(x1, . . . ,xn) = B

for each sequence (b1, . . . , bn) of booleans (all 2n of them)
if (f, (b1, . . . , bn)) ̸∈ H

σ ← {xi | bi = 1} (σ is the set of x’s corresponding
if M(B, σ) to 1’s in the b vector)

done ← false
H ← H ∪ {(f, (b1, . . . , bn))}

until done

Strictness (after the calculation of H terminates):
f is strict in its i th argument if

(f, (1, 1, . . . , 1
︸ ︷︷ ︸

i−1

, 0, 1, 1, . . . , 1
︸ ︷︷ ︸

n−i

)) ̸∈ H

ALGORITHM 15.17. First-order strictness analysis.

not thunks. This is illustrated by the recursive calls, which must explicitly
touch t.left and t.right to turn them from thunks to values.

Approximate strictness analysis. In some cases, such as the functions f, g,
and h above, the strictness or nonstrictness of a function is obvious – and
easily determined by an optimizing compiler. But in general, exact strict-
ness analysis is not computable – like exact dynamic liveness analysis (see
page 210) and many other dataflow problems.

330

FURTHER READING

Thus, compilers must use a conservative approximation; where the exact
strictness of a function argument cannot be determined, the argument must
be assumed nonstrict. Then a thunk will be created for it; this slows down the
program a bit, but at least the optimizer will not have turned a terminating
program into an infinite-looping program.

Algorithm 15.17 shows an algorithm for computing strictness. It maintains
a set H of tuples of the form (f, (b1, . . . , bn)), where n is the number of
arguments of f and the bi are booleans. The meaning of a tuple (f, (1, 1, 0))

is this: If f is called with three arguments (thunks), and the first two may halt
but the third never halts, then f may halt.

If (f, (1, 1, 0)) is in the set H , then f might not be strict in its third ar-
gument. If (f, (1, 1, 0)) is never put into H , then f must be strict in its third
argument.

We also need an auxiliary function to calculate whether an expression
may terminate. Given an expression E and a set of variables σ , we say that
M(E, σ) means “E may terminate if all the variables in σ may terminate.”
If E1 is i+j, and there is some possibility that the thunks i and j may halt,
then it is also possible that E1 will halt too: M(i+ j, {i,j}) is true. But
if E2 is if (kJ) i else j, where i and j could conceivably halt but k
never does, then certainly E2 will not halt, so M(E2, {i,j}) is false.

Algorithm 15.17 will not work on the full LazyJava language, because it
does not handle functions passed as arguments or returned as results. But for
first-order programs (without higher-order functions), it does a good job of
computing (static) strictness. More powerful algorithms for strictness analy-
sis handle higher-order functions.

F U R T H E R
R E A D I N G

Church [1941] developed the λ-calculus, a “programming language” of nested
functions that can be passed as arguments and returned as results. He was
hampered by having no machines to compile for.

Closures. Landin [1964] showed how to interpret λ-calculus on an abstract
machine, using closures allocated on a heap. Steele [1978] used closure repre-
sentations specialized to different patterns of function usage, so that in many
cases nonlocal variables are passed as extra arguments to an inner function
to avoid heap-allocating a record. Cousineau et al. [1985] showed how clo-
sure conversion can be expressed as a transformation back into the source

331

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

language, so that closure analysis can be cleanly separated from other phases
of code generation.

Static links are actually not the best basis for doing closure conversion; for
many reasons it is better to consider each nonlocal variable separately, instead
of always grouping together all the variables at the same nesting level. Kranz
et al. [1986] performed escape analysis to determine which closures can be
stack-allocated because they do not outlive their creating function and also in-
tegrated closure analysis with register allocation to make a high-performance
optimizing compiler. Shao and Appel [1994] integrate closures with the use
of callee-save registers to minimize the load/store traffic caused by accessing
local and nonlocal variables. Appel [1992, Chapters 10 and 12] has a good
overview of closure conversion.

Continuations. Tail calls are particularly efficient and easy to analyze. Stra-
chey and Wadsworth [1974] showed that the control flow of any program
(even an imperative one) can be expressed as function calls, using the no-
tion of continuations. Steele [1978] transformed programs into continuation-
passing style early in compilation, turning all function calls into tail calls, to
simplify all the analysis and optimization phases of the compiler. Kranz et al.
[1986] built an optimizing compiler for Scheme using continuation-passing
style; Appel [1992] describes a continuation-based optimizing compiler for
ML.

Inline expansion. Cocke and Schwartz [1970] describe inline expansion of
function bodies; Scheifler [1977] shows that it is particularly useful for lan-
guages supporting data abstraction, where there tend to be many tiny func-
tions implementing operations on an abstract data type. Appel [1992] de-
scribes practical heuristics for controlling code explosion.

Continuation-based I/O. Wadler [1995] describes the use of monads to gen-
eralize the notion of continuation-based interaction.

Lazy evaluation. Algol-60 [Naur et al. 1963] used call-by-name evaluation
for function arguments, implemented using thunks – but also permitted side
effects, so programmers needed to know what they were doing! Most of its
successors use call-by-value. Henderson and Morris [1976] and Friedman and
Wise [1976] independently invented lazy evaluation (call-by-need). Hughes
[1989] argues that lazy functional languages permit clearer and more modular
programming than imperative languages.

332

PROGRAMMING EXERCISE

Several lazy pure functional languages were developed in the 1980s; the
community of researchers in this area designed and adopted the language
Haskell [Hudak et al. 1992] as a standard. Peyton Jones [1987; 1992] de-
scribes many implementation and optimization techniques for lazy functional
languages; Peyton Jones and Partain [1993] describe a practical algorithm for
higher-order strictness analysis. Wadler [1990] describes deforestation.

P R O G R A M COMPILING FUNCTIONAL LANGUAGES

a. Implement FunJava. A function value should be implemented as an object
with an exec method.

b. Implement PureFunJava. This is just like FunJava, except that several “im-
pure” features are removed and the predefined functions have different inter-
faces.

c. Implement optimizations on PureFunJava. This requires changing the Tree
intermediate language so that it can represent an entire program, including
function entry and exit, in a machine-independent way. After inline expansion
(and other) optimizations, the program can be converted into the standard
Tree intermediate representation of Chapter 7.

d. Implement LazyJava.

E X E R C I S E S

15.1 Draw a picture of the closure data structures representing add24 and a in
Program 15.1 just at the point where add24(a) is about to be called. Label all
the components.

*15.2 Figure 15.13 summarizes the instructions necessary to implement printTable
in a functional or an imperative style. But it leaves out the MOVE instructions
that pass parameters to the calls. Flesh out both the functional and imperative
versions with all omitted instructions, writing pseudo-assembly language in the
style of the program accompanying Graph 11.1 on page 221. Show which
MOVE instructions you expect to be deleted by copy propagation.

*15.3 Explain why there are no cycles in the graph of closures and records of a
PureFunJava program. Comment on the applicability of reference-count garbage
collection to such a program. Hint: Under what circumstances are records or
closures updated after they are initialized?

15.4 a. Perform Algorithm 15.9 (loop-preheader transformation) on the look
function of Program 15.3a.

b. Perform Algorithm 15.10 (loop-invariant hoisting) on the result.

333

CHAPTER FIFTEEN. FUNCTIONAL PROGRAMMING LANGUAGES

c. Perform Algorithm 15.8 (inline expansion) on the following call to look
(assuming the previous two transformations have already been applied):

look(mytree, a+1)

15.5 Perform Algorithm 15.17 (strictness analysis) on the following program, showing
the set H on each pass through the repeat loop.

function f(w: int, x: int, y: int, z: int) =
if z=0 then w+y else f(x,0,0,z-1) + f(y,y,0,z-1)

In which arguments is f strict?

334

16
Polymorphic Types

poly-mor-phic: able to assume different forms

Webster’s Dictionary

Some functions execute in a way that’s independent of the data type on which
they operate. Some data structures are structured in the same way regardless
of the types of their elements.

As an example, consider a function to concatenate linked lists in Java. We
define a List class, subclasses for empty and nonempty lists, and a (nonde-
structive) append method:

abstract class IntList {
IntList append(IntList more);

}
class IntCons extends IntList {
Integer head; IntList tail;
IntCons (Integer head, IntList tail) {

this.head=head; this.tail=tail;
}
IntList append(IntList more) {

return new IntCons(head, tail.append(more));
}

}
class IntNull extends IntList {
IntNull () {}
IntList append(IntList more) {
return more;

}
}

There’s nothing about the code for the IntList data type or the append
method that would be any different if the element type were String or Tree
instead of Integer. We might like append to be able to work on any kind of

335

CHAPTER SIXTEEN. POLYMORPHIC TYPES

list. We could, of course, use the word Object instead of Integer to declare
head, but then if we unintentionally mixed Integers and Strings as elements
of the same List, the compiler’s type-checker wouldn’t be able to give us
useful feedback: we’d get a runtime exception at a downcast somewhere.

A function is polymorphic (from the Greek many+shape) if it can operate
on arguments of different types. There are two main kinds of polymorphism

Parametric polymorphism. A function is parametrically polymorphic if it fol-
lows the same algorithm regardless of the type of its argument. The Ada or
Modula-3 generic mechanism, C++ templates, or ML type schemes are exam-
ples of parametric polymorphism.

Overloading. A function identifier is overloaded if it stands for different algo-
rithms depending on the type of its argument. For example, in most languages
+ is overloaded, meaning integer addition on integer arguments and floating-
point addition (which is quite a different algorithm) on floating-point argu-
ments. In many languages, including Ada, C++, and Java, programmers can
make overloaded functions of their own.

These two kinds of polymorphism are quite different – almost unrelated – and
require different implementation techniques.

16.1 PARAMETRIC POLYMORPHISM

A polymorphic function f (t x) takes some parameter x of type t , where t
can be instantiated at different actual types. In an explicit style of parametric
polymorphism, we pass the type as an argument to the function, so we write
something like f <t>(t x), and a function call might look like f <int>(3)

or f <string>(”three”). In a language with implicit parametric poly-
morphism, we simply write the definition as f (x), and the call as f (3) or
f (”three”) – the type parameter t is unstated. Reasonable programming
languages can be designed either way.

In this chapter we will present Generic Java (GJ for short), a polymorphic
extension of Java (polymorphic functions have also been called generic func-
tions in the literature of programming languages). In GJ, classes and methods
are polymorphic: Each class and method can take type parameters in triangle
brackets:

336

16.1. PARAMETRIC POLYMORPHISM

ClassDecl → class id TyParams Ext { VarDecl∗ MethodDecl∗ }

Ext → extends Type
→

MethodDecl → public TyParams Type id (FormalList)
{ VarDecl∗ Statement∗ return Exp ; }

TyParams → < id Ext TyParRest∗ >

→
TyParRest → , id Ext

In addition to the int and boolean types (and so on), a Type used in
declaring variables can now take arguments that are themselves types:

Type → id < Type TypeRest∗ >

TypeRest → , Type

Finally, class constructors can also take type arguments:
Exp → new id < Type TypeRest∗ > ()

GJ uses a combination of explicit and implicit polymorphism: The pro-
grammer must always write the formal type parameters (at class declarations),
but actual type parameters (when calling a class constructor) can often be
omitted. In this chapter we’ll present only a fully explicit GJ.

Using polymorphism, we can make a generic List class with which we
can make a list of integers, or a list of strings, but which prevents the unin-
tended mistaking of one for the other:

abstract class List<X> {
List<X> append(List<X> more);

}

class Cons<X> extends List<X> {
X head; List<X> tail;
Cons (X head, List<X> tail) {this.head=head; this.tail=tail;}
List<X> append(List<X> more) {

return new Cons<X>(head, tail.append(more));
}

}

class Null<X> extends List<X> {
Null () {}
List<X> append(List<X> more) {
return more;

}
}

337

CHAPTER SIXTEEN. POLYMORPHIC TYPES

Using this class declaration, we could create a list of the integers (3,4) with
the expression,

List<Integer> list34 =
new Cons<Integer>(new Integer(3),

new Cons<Integer>(new Integer(4),
new Null<Integer>));

We can even build a list of int-lists:

List<List<Integer>> lislis =
new Cons<List<Integer>>(list34,
new Null<List<Integer>>();

In GJ we can also bound a formal type parameter by specifying that it must
be a subclass of a particular base class. Suppose, for example, that we have a
class Printable:

abstract class Printable { void print_me(); }

with some subclasses, some of which are declared here and some of which
are yet to be declared:

class PrintableInt extends Printable {
int x;
void print_me() {. . . print x . . .}

}
class PrintableBool extends Printable {

boolean b;
void print_me() {. . . print b . . .}

}

In ordinary Java we could make a pair-of-printables, as follows:

class Pair {
Printable a;
Printable b;
void print_me() { a.print_me(); b.print_me(); }

}

and this will work well, as long as we don’t mind that in any particular Pair,
the a and b components might belong to different subclasses of Printable.
But if we want to make “coherent” pairs-of-printables, where both compo-
nents must belong to the same subclass, we can use bounded polymorphism
in GJ, as follows:

338

16.2. POLYMORPHIC TYPE-CHECKING

class GPair<X extends Printable> {
X a;
X b;
void print_me() { a.print_me(); b.print_me(); }

}

Now every object of type GPair<PrintableInt> has a and b compo-
nents that are both instances of PrintableInt, and correspondingly for
GPair<PrintableBool>, and for other subclasses of Printable that may
be declared in the future. We say that Printable is the bound of type pa-
rameter X.

Subtyping in GJ. In Java, if we make class Triple extends Pair,
then Triple is a subtype of Pair, and any Triple object can be passed
as a parameter to any method that expects a Pair. In GJ, we can make
class GTriple<X extends Printable> extends GPair<X>, and
then GTriple<PrintableInt> is a subtype of GPair<PrintableInt>.
But if class MyInt extends PrintableInt, then it’s not the case that
GTriple<MyInt> is a subtype of GPair<PrintableInt>. And it’s espe-
cially not the case that GTriple is a subtype of GPair, because these are not
types, they’re type constructors, which become types only when applied to
arguments.

16.2 POLYMORPHIC TYPE-CHECKING

Type-checking for a polymorphic language is not as straightforward as for a
monomorphic language. Before embarking on an implementation, we must
be clear about what the typing rules are.

The types used in the basic MiniJava compiler could all be represented as
atomic strings: int, boolean, int[], and class identifiers such as IntList.
In GJ we have three kinds of type expressions:

Primitive types such as int and boolean;
Type applications of the form c ⟨t1, t2, . . . tn⟩, where c is a type constructor –

a polymorphic class such as List in our example – and t1 through tn are type
expressions; and

Type variables such as the X in the type expression ListX.

All class identifiers will be considered polymorphic, but those with no type
arguments can be considered as types of the form C<>. In this chapter we will

339

CHAPTER SIXTEEN. POLYMORPHIC TYPES

checkType(T) =
if T is primitive (int, boolean, etc.) then OK
else if T is Object then OK
else if (T !→ . . .) is in the type table then OK
else if T is C ⟨T1, . . . , Tn⟩

look up C in the class table, yielding class C ⟨X1 N1, . . . , Xn Nn⟩ N{. . .}
for each Ti do checkType(Ti)

for each Ti do checkSubtype(Ti , [T1, . . . , Tn/X1, . . . , Xn]Ni)

checkSubtype(T, U) =
if T = U then OK
else if (T !→ T ′) is in the type table then subtype(T ′, U)

else if T is C ⟨T1, . . . , Tn⟩
look up C in the class table, yielding class C ⟨X1 N1, . . . , Xn Nn⟩ N{. . .}
subtype([T1, . . . , Tn/X1, . . . , Xn]N, U)

else error

ALGORITHM 16.1. Checking wellformedness of types and subtyping.

omit discussion of array types, though in a “MiniGJ” compiler int[] could
be treated as a primitive type.

Syntactic conventions. The type-checking algorithm will have several kinds
of variables:

T, Ti , U, V stand for type expressions;
N, Ni , P, Q stand for nonvariable type expressions (that do not contain type

variables);
X, Xi , Y, Z stand for type variables;
C stands for class names;
m stands for method names;
f stands for field names;
e stands for program expressions; and
x stands for program variables (local variables of methods).

We will often abbreviate the keyword extends with the symbol . In dis-
cussing the type-checking algorithm we will require that every TyParams
have an explicit bound, so instead of writing class List<X> we would
write class List<X Object>.

340

16.2. POLYMORPHIC TYPE-CHECKING

Method types. It’s convenient to separate the type of a method from the name
of the method. For example, consider the declaration

<X extends Printable> GPair<X> firstTwo(List<X> x) { . . . }

For any type X that’s a subclass of Printable, the firstTwo method takes
a list of X ’s, and returns a pair of X ’s. The type of the firstTwo method
is ⟨X Printable⟩ List ⟨X⟩ → GPair ⟨X⟩. (Notice that the binding oc-
currence of X requires a bounding clause ⟨X Printable⟩, but the applied
occurrences of X do not use the symbol.) In general, the form of a method
type is

MethodTy → TyParams TyList → Ty

meaning that, with type parameters TyParams and value parameters whose
types are TyList, the method returns a value of type Ty.

Substitution. Suppose we want to know the type of the firstTwo method
when it’s applied to a list of PrintableInt. We take List ⟨X⟩ → GPair ⟨X⟩
and substitute PrintableInt for X, yielding the method type

List ⟨PrintableInt⟩ → GPair ⟨PrintableInt⟩

We can write a substitution function in the compiler’s type-checker to do this;
in this chapter we’ll write [V1, . . . , Vk/X1, . . . , Xk]U to mean the substitu-
tion of type Vi for every occurrence of type variable Xi in type expression (or
function prototype) U . Because class parameterization is not nested in GJ –
that is, U cannot contain class declarations – we don’t need to worry about
internal redeclarations of the type variables Xi ; the problem of avoiding vari-
able capture (described in Section 15.4) does not occur.

Class table, type table, and var table. Section 5.2 explained that, because
classes can mutually refer to each other, type-checking must proceed in two
phases: First, build a symbol table (the class table) mapping class names to
class declarations; second, type-check the interior of the class declarations.
The same approach works for GJ. The first phase is quite straightforward; the
rest of this section explains the algorithm for the second phase. This phase
will use the class table, and maintain a type table mapping formal type pa-
rameters to their bounds, and a var table mapping ordinary (value) variables
to their types. For example, in processing the firstTwo method (described
above), the type table would map X to Printable, and the var table would
map x to List<X>.

341

CHAPTER SIXTEEN. POLYMORPHIC TYPES

getBound(T) =
if T is a type variable X
then if (X !→ N) is in the type table then N else error
else if T is a nonvariable type N then N
else error

fieldType(f,) =
if T is C ⟨T1, . . . , Tn⟩

look in the class table for class C ⟨X1 N1, . . . , Xn Nn⟩ N{fields, . . .}
if field f with type S is in fields

return [T1, . . . , Tn/X1, . . . , Xn]S
else return fieldType(f, [T1, . . . , Tn/X1, . . . , Xn]N)

else error

methodType(m, T) =
if T is C ⟨T1, . . . , Tn⟩

look in the class table for class C ⟨X1 N1, . . . , Xn Nn⟩ N{. . . , methods}
if method m is in methods, with the declaration

⟨Y1 P1, . . . , Yk Pk⟩ U m(U1 x1 . . . Ul xl){return e; }
then return [T1, . . . , Tn/X1, . . . , Xn](⟨Y1 P1, . . . , Yk Pk⟩ (U1 x1, . . . , Ul xl) → U)

else return methodType(m, [T1, . . . , Tn/X1, . . . , Xn]N)

ALGORITHM 16.2. Field and method search.

Well-formed types. A type is well formed if every type variable has a bound
in the appropriate type table. Thus, the type List<X> is well formed when
processing the declaration of firstTwo because X Printable is in the
type table. In general, we must also account for substitutions. Algorithm 16.1
shows the procedure checktype for checking wellformedness of types.

Subtyping. In type-checking Java (and GJ) it is often necessary to test whether
one type is a subtype of another: A is a subtype of B if, whenever a value of
type B is required, a value of type A will suffice. A subtype is not exactly
the same as a subclass, but still, in class-based languages like Java, if class
A extends B, then there is also a subtype relationship. Checking subtyping in
GJ is made more complex by the need to perform type substitution and the
need to look up type variables in the type table; Algorithm 16.1 shows how
to do it.

342

16.2. POLYMORPHIC TYPE-CHECKING

checkExp(e) =
if e is a variable x

look up (x !→ T) in the var table; return T
else if e is a field-selection e0. f

return fieldType(f, getBound(checkExp(e0)))

else if e is a method-call e0.m ⟨V1, . . . , Vn⟩ (e1, . . . , el)

call methodType(m, getBound(checkExp(e0))), yielding
⟨Y1 P1, . . . , Yk Pk⟩ (U1 x1, . . . , Ul xl) → U)

for each Vi do checkType(Vi)

for each Vi do checkSubtype(Vi , [V1, . . . , Vk/Y1, . . . , Yk]Pi)

for i ∈ 1 . . . l do checkSubtype(checkExp(ei), [V1, . . . , Vk/Y1, . . . , Yk]Ui)

return [V1, . . . , Vk/Y1, . . . , Yk]U
else if e is new N()

checktype(N)

return N

ALGORITHM 16.3. Type-checking expressions. Expressions with integer type are
omitted, because they are checked just as in MiniJava

Finding the bound of a type. The formal type parameters of a polymorphic
class or method are of the form ⟨X N⟩. Inside that class or method, suppose
there’s a local variable declaration X x , where X is the type and x is the
variable. When type-checking expressions such as the field access x. f , we
need to know what class x is an instance of. We don’t know exactly what
class x belongs to – it belongs to some unknown class X – but we do know
that X is a subclass of N . Therefore, we take the type X and look up its bound,
N , in the type table. The function getBound(T) looks up type bounds.

Looking up field and method types. When type-checking a field access e. f
or a method call e.m ⟨T ⟩ (), one must look up the field f or method m in
e’s class. This may involve a search through superclasses, and in the process,
types must be substituted for type variables. These searches are handled by
fieldType and methodType in Algorithm 16.2. Algorithm 16.3 shows how to
type-check expressions using all the auxiliary procedures defined thus far.

Algorithm 16.4 shows how to check class and method declarations. The
formal type parameters of the class are added to the type table, then all the
methods are checked. For each method, the formal type parameters and the
(ordinary) value parameters of the method are added to the type table and

343

CHAPTER SIXTEEN. POLYMORPHIC TYPES

checkClass(cdecl) =
suppose cdecl is class C ⟨X1 N1, . . . , Xn Nn⟩ N{fields, methods}
add (X1 #→ N1, . . . Xk #→ Nk) to the type table
checkType(N)

for each Ni do checkType(Ni)

for each mdecl in methods
suppose mdecl is

〈

Y1 P1, . . . , Y j Pj
〉

T m(T1 x1 . . . Tl xl){return e; }
add (Y1 #→ P1, . . . Y j #→ Pj) to the type table
checkType(T)

for each Ti do checkType(Ti)

for each Pi do checkType(Pi)

add (this #→ C ⟨X1, . . . , Xn⟩) to the var table
add (x1 #→ T1, . . . xl #→ Tl) to the var table
checkSubtype(checkType(e), T)

suppose methodType(m, N) is
〈

Z1 Q1, . . . , Z j Q j
〉

(U1 x1, . . . , Ul xl) → U
for each Ti check that Ti = ([Y1, . . . , Y j/Z1, . . . , Z j]Ui)

for each Pi check that Pi = ([Y1, . . . , Y j/Z1, . . . , Z j]Qi)

checkSubtype(T, [Y1, . . . , Y j/Z1, . . . , Z j]U)

pop j most recent bindings from the type table
pop l + 1 most recent bindings from the var table

pop k most recent bindings from the type table

ALGORITHM 16.4. Type-checking class declarations.

value table, then the body of the method is type-checked. The four lines end-
ing at the last call to checkSubtype are to make sure that the method over-
riding is valid; in GJ as in Java, one can only override a method at the same
argument and result type as in the superclass, but for GJ there are more sub-
stitutions to perform in order to check this.

16.3 TRANSLATION OF POLYMORPHIC PROGRAMS

After a polymorphic program is type-checked, it must be translated into ma-
chine code. There are several ways this can be done, four of which we will
discuss:

Expansion: Don’t generate code for a generic class such as Cons<X>; instead,
create a new Cons class for each different class at which <X> is instantiated.

344

16.3. TRANSLATION OF POLYMORPHIC PROGRAMS

Casting: Generate only a single Cons class, and use Java-style checked runtime
casts to operate upon it.

Erasure: Generate only a single Cons class, and operate on it directly.
Type-passing: Generate code for a Cons template class, and pass type parame-

ters at run time.

Expansion and casting have the advantage that they are compatible with
standard Java Virtual Machines; erasure is more efficient but incompatible;
and type-passing has interesting advantages and disadvantages of its own.

Expansion. It’s entirely possible to expand out all the polymorphic class in-
stantiations into ordinary Java classes. This is called the heterogenous transla-
tion of GJ into Java, because the Cons_Int class will be entirely different and
essentially unrelated to the Cons_Bool class, and so on. Templates in C++
work this way as well: They are expanded out into ordinary classes. Expan-
sion is much like inline expansion of ordinary functions; but inline expansion
of functions usally can’t be done so completely as to eliminate all function
definitions, because recursive functions or function calls within loops would
expand the program infinitely. In contrast, instantiation of generic classes
never depends on program variables and is not recursive.

The advantages of expansion are that the resulting classes are generally
compatible with ordinary Java (so that GJ can run in an ordinary Java Virtual
Machine), and that the compiled code is fairly efficient (similar to ordinary
Java). The disadvantages are that it makes many copies of the same code –
at worst, it can cause exponential blowup of the program, but in practice this
exponential behavior is rarely seen (expansion of C++ templates is tolerably
efficient). Also, expansion interacts badly with the package mechanism of
Java (see Exercise 16.3).

Casting. In the homogenous translation of GJ into Java, all the type param-
eters are simply erased. When a type variable is used in the declaration of a
local variable or parameter, it is replaced by its bound. Thus, the translation
of GPair (from page 339) would be

class GPair {
Printable a;
Printable b;
void print_me() { a.print_me(); b.print_me(); }

}

which is well-typed Java code. However, a use of GPair such as

345

CHAPTER SIXTEEN. POLYMORPHIC TYPES

int sum(GPair<PrintableInt> p) {
return p.a.x + p.b.x;

}

must be translated with casts in order to be legal Java:

int sum(GPair p) {
return ((PrintableInt)(p.a)).x + ((PrintableInt)(p.b)).x;

}

Unfortunately, these casts from a superclass to a subclass require a run-time
check in ordinary Java, even though (if the Java program results from the
translation of a well-typed GJ program) the cast will always succeed. Another
(minor) disadvantage of the homogenous translation is that class construction
cannot be applied to type variables; i.e., new X(), where X is a type variable,
cannot really be replaced by new C(), where C is the bound of X, because
the wrong class will be constructed.

Erasure. If the GJ program is translated directly into machine code, the ho-
mogenous translation can safely be done without inserting casts: Just erase
the type parameters from the program. The advantage is that there’s no dupli-
cation of code and there’s no extra run-time casting. Unfortunately, bypass-
ing Java also means that the Java Virtual Machine Language (JVML, or “Java
byte codes”) must also be bypassed, since the Java bytecode verifier uses the
Java type system, not the GJ type system. This translation technique is there-
fore incompatible with existing Java Virtual Machines that accept programs
in JVML.

Type-passing. Instead of erasing the type parameters, they can be turned into
value parameters. A polymorphic method

<X1 extends C1> int m (X1 x, int y)

can be translated (approximately) as

int m (Class X1, X1 x, int y)

where a class descriptor is really passed as a run-time argument. One advan-
tage of this translation is that class construction can now be applied to type
variables.

An even more significant advantage is that, in principle, it may be possible
to divorce class descriptors from the objects that belong to the classes. That

346

16.4. RESOLUTION OF STATIC OVERLOADING

is, instead of an object of class PrintableInt (see page 338) requiring
two words to represent it – the class descriptor and the x field – now only
one word would be required. Any place in the program that manipulates a
PrintableInt would also have an explicit class parameter passed to it in
an associated local variable; from this parameter, the virtual method table can
be accessed as needed, and the garbage collecter can learn what it needs to
know about the layout of objects.

The disadvantage of type-passing is that there is a (small) run-time cost
to passing the types, and that it is incompatible with Java and with standard
JVMs.

POINTERS, INTEGERS, AND BOXING
Polymorphism in GJ works for object types, but not for int and boolean.
Even in ordinary Java, the class extension mechanism works for objects but
not integers. The solution in Java and GJ for programmers who wish to get
the benefits of subclassing or polymorphism for ints is to make a wrapper
class Integer that contains an instance variable of type int. This is called
a boxed integer, compared to the raw int, which is an unboxed value. Boxed
values – implemented by pointers to objects containing raw values – are much
easier than unboxed values to compile polymorphically:

• They are all the same size (the size of a pointer) so that the same machine
code can obliviously manipulate boxed values of different types.

• They can contain type or class descriptors (in the pointed-to object) so that
the garbage collector can understand how to traverse them.

Some programming languages (such as ML and C#) automatically box
values as necessary to support polymorphism. That is, the programmer never
needs to distinguish between int and Integer because the compiler inserts
the coercions automatically. There is still a cost at run time to box and unbox,
but it is the same cost that would be paid if the programmer explicitly wrapped
the integers in boxes.

16.4 RESOLUTION OF STATIC OVERLOADING

Some languages permit overloading: different functions of the same name but
different argument types. The compiler must choose between function bodies
based on the types of the actual parameters. This is sometimes known as ad
hoc polymorphism, as opposed to the parametric polymorphism described in

347

CHAPTER SIXTEEN. POLYMORPHIC TYPES

the previous sections.
Static overloading is not difficult to implement. When processing the dec-

laration of an overloaded function f , the new binding bn must not hide the old
definitions b1, . . . , bn−1. Instead, the new binding maps f to a list of different
implementations, f "→ [b1, . . . , bn]. Depending on the language semantics,
it may be necessary to give an error message if bn has identical parameter
types to one of the bi .

Then, when looking up f in a place where it is called with actual parame-
ters, the types of the actual parameters will determine which of the bindings
bi should be used.

Some languages allow functions of identical argument types (but differ-
ent result type) to be overloaded; some languages allow forms of dynamic
overloading; see the Further Reading section.

F U R T H E R
R E A D I N G

One of the first “polymorphic” languages was Lisp [McCarthy 1960], which
has no static (i.e., compile-time checkable) type system at all. Consequently,
the fully boxed implementation of data was used, so that the data could de-
scribe itself to the run-time type-checker as well as to the garbage collector.

The first programming language to use statically type-checked parametric
polymorphism was ML, which was originally the MetaLanguage of the Ed-
inburgh theorem prover [Gordon et al. 1978] but was later developed into a
general-purpose programming language [Milner et al. 1990]. Cardelli [1984]
describes a fully boxed implementation of ML.

In the Ada programming language [Ada 1980], the generic mechanism
allows a function (in fact, an entire package) to be parameterized over types;
but full type-checking is done at each call site after the generic is applied to
actual parameters, and the expansion technique of implementation must be
used. In contrast, Algorithm 16.4 can check a generic class independent of
how its formal type parameters will eventually be instantiated.

Pierce [2002] provides a comprehensive survey of type systems, includ-
ing polymorphic types, in the modern notation. Bracha et al. [1998] describe
Generic Java (GJ) and its implementation. The type-checking algorithm in
Section 16.1 of this chapter is adapted from “Featherweight Generic Java”
[Igarashi et al. 2001], which should be read by anyone planning to implement
such a type-checker.

348

EXERCISES

Overloading. Ada allows different functions with the same parameter types
to be overloaded, as long as the result types are different. When the output
of such a function is an argument to another overloaded identifier, then there
may be zero, one, or many possible interpretations of the expression; the Ada
semantics say that the expression is legal only if there is exactly one interpre-
tation. Aho et al. [1986, Section 6.5] discuss this issue and give a resolution
algorithm. But Ada-style overloading has not been widely imitated in recent
language designs, perhaps because it can confuse the programmer.

Dynamic overloading allows different implementations of a function to be
chosen based on the run-time type of an actual parameter; it is a form of dy-
namic dispatch. Dynamic dispatch is also used to implement method overrid-
ing, a fundamental concept of object-oriented programming (see Chapter 14)
– overriding is a form of dynamic dispatch on the this parameter, while
general dynamic overloading can depend on any or all parameters to a func-
tion. Type classes in the Haskell language allow overloading and parametric
polymorphism to interact in a useful and expressive way [Hall et al. 1996].

E X E R C I S E S

16.1 Show the steps in type-checking the declaration of append on page 337 using
Algorithm 16.4.

*16.2 Read Section 3.2 of Igarashi et al. [2001] and show how to extend Algo-
rithms 16.3 and 16.4 to handle show type-checking of cast expressions and of
class constructors.

16.3 Use the heterogenous translation (that is, expansion) to translate the following
GJ program to ordinary Java.

package p;
public class C <X extends Object> { X a; B b; }
class B { }

package q;
class D { }
class E { p.C<D> y; p.C<Object> z; }

a. First do the translation ignoring the package declarations, the public
keyword, and the p. qualifiers within class E. Hint: The translation will
not have a class C, but will have classes C D and C Object.

b. Now, try the translation preserving the package structure. Show that it’s
impossible for B to be package-scope within p at the same time that D is
package-scope within q.

349

17
Dataflow Analysis

anal-y-sis: an examination of a complex, its elements,
and their relations

Webster’s Dictionary

An optimizing compiler transforms programs to improve their efficiency with-
out changing their output. There are many transformations that improve effi-
ciency:
Register allocation: Keep two nonoverlapping temporaries in the same register.
Common-subexpression elimination: If an expression is computed more than

once, eliminate one of the computations.
Dead-code elimination: Delete a computation whose result will never be used.
Constant folding: If the operands of an expression are constants, do the com-

putation at compile time.

This is not a complete list of optimizations. In fact, there can never be a
complete list.

NO MAGIC BULLET
Computability theory shows that it will always be possible to invent new op-
timizing transformations.

Let us say that a fully optimizing compiler is one that transforms each pro-
gram P to a program Opt(P) that is the smallest program with the same
input/output behavior as P . We could also imagine optimizing for speed in-
stead of program size, but let us choose size to simplify the discussion.

For any program Q that produces no output and never halts, Opt(Q) is
short and easily recognizable:

L1 : goto L1

350

17.1. INTERMEDIATE REPRESENTATION FOR FLOW ANALYSIS

Therefore, if we had a fully optimizing compiler, we could use it to solve the
halting problem; to see if there exists an input on which P halts, just see if
Opt(P) is the one-line infinite loop. But we know that no computable algo-
rithm can always tell whether programs halt, so a fully optimizing compiler
cannot be written either.

Since we can’t make a fully optimizing compiler, we must build optimizing
compilers instead. An optimizing compiler transforms P into a program P ′

that always has the same input/output behavior as P , and might be smaller or
faster. We hope that P ′ runs faster than the optimized programs produced by
our competitors’ compilers.

No matter what optimizing compiler we consider, there must always ex-
ist another (usually bigger) optimizing compiler that does a better job. For
example, suppose we have an optimizing compiler A. There must be some
program Px which does not halt, such that A(Px) ̸= Opt(Px). If this were
not the case, then A would be a fully optimizing compiler, which we could
not possibly have. Therefore, there exists a better compiler B:

B(P) = if P = Px then [L : goto L] else A(P)

Although we don’t know what Px is, it is certainly just a string of source code,
and given that string we could trivially construct B.

The optimizing compiler B isn’t very useful – it’s not worth handling spe-
cial cases like Px one at a time. In real life, we improve A by finding some
reasonably general program transformation (such as the ones listed at the be-
ginning of the chapter) that improves the performance of many programs. We
add this transformation to the optimizer’s “bag of tricks” and we get a more
competent compiler. When our compiler knows enough tricks, we deem it
mature.

This theorem, that for any optimizing compiler there exists a better one, is
known as the full employment theorem for compiler writers.

17.1 INTERMEDIATE REPRESENTATION FOR FLOW ANALYSIS

In this chapter we will consider intraprocedural global optimization. Intrapro-
cedural means the analysis stays within a single procedure or function (of a
language like MiniJava); global means that the analysis spans all the state-
ments or basic blocks within that procedure. Interprocedural optimization is
more global, operating on several procedures and functions at once.

351

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

Each of the optimizing transformations listed at the beginning of the chap-
ter can be applied using the following generic recipe:

Dataflow analysis: Traverse the flow graph, gathering information about what
may happen at run time (this will necessarily be a conservative approxima-
tion).

Transformation: Modify the program to make it faster in some way; the in-
formation gathered by analysis will guarantee that the program’s result is un-
changed.

There are many dataflow analyses that can provide useful information for
optimizing transformations. Like the liveness analysis described in Chap-
ter 10, most can be described by dataflow equations, a set of simultaneous
equations derived from nodes in the flow graph.

QUADRUPLES
Chapter 10’s liveness analysis operates on Assem instructions, which clearly
indicate uses and defs but whose actual operations are machine-dependent
assembly-language strings. Liveness analysis, and register allocation based
on it, do not need to know what operations the instructions are performing,
just their uses and definitions. But for the analyses and optimizations in this
chapter, we need to understand the operations as well. Therefore, instead of
Assem instructions we will use Tree-language terms (Section 7.2), simpli-
fied even further by ensuring that each Exp has only a single MEM or BINOP

node.
We can easily turn ordinary Tree expressions into simplified ones. Wher-

ever there is a nested expression of one BINOP or MEM inside another, or a
BINOP or MEM inside a JUMP or CJUMP, we introduce a new temporary using
ESEQ:

.
BINOP

+ e1 BINOP

* e2 e3

⇒

.
BINOP

+ e1 ESEQ

MOVE

TEMP t BINOP

* e2 e3

TEMP t

and then apply the Canon module to remove all the ESEQ nodes.
We also introduce new temporaries to ensure that any store statement (that

352

17.1. INTERMEDIATE REPRESENTATION FOR FLOW ANALYSIS

.
MOVE

a BINOP

binop b c

.
JUMP

L

.
LABEL

L

a ← b binop c goto L L :

.
MOVE

a b

.
MOVE

a MEM

b

.
MOVE

MEM

a

b

a ← b a ← M[b] M[a] ← b

.
CJUMP

relop a b L1 L2

.
EXP

CALL

f ...

.
MOVE

b CALL

f ...
if a relop b goto L1 else goto L2 f (a1, . . . , an) b ← f (a1, . . . , an)

TABLE 17.1. Quadruples expressed in the Tree language. Occurrences of
a, b, c, f, L denote TEMP, CONST, or LABEL nodes only.

is, a MOVE whose left-hand side is a MEM node) has only a TEMP or a CONST

on its right-hand side, and only a TEMP or CONST under the MEM.
The statements that remain are all quite simple; they take one of the forms

shown in Table 17.1.
Because the “typical” statement is a ← b ⊕ c with four components

(a, b, c,⊕), these simple statements are often called quadruples. We use ⊕
to stand for an arbitrary binop.

A more efficient compiler would represent quadruples with their own data
type (instead of using Tree data structures), and would translate from trees
to quadruples all in one pass.

Intraprocedural optimizations take these quadruples that come out of the
Canon phase of the compiler, and transform them into a new set of quadru-
ples. The optimizer may move, insert, delete, and modify the quadruples. The
resulting procedure body must then be fed into the instruction-selection phase

353

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

of the compiler. However, the tree matching will not be very effective on the
“atomized” trees where each expression contains only one BINOP or MOVE.
After the optimizations are completed, there will be many MOVE statements
that define temporaries that are used only once. It will be necessary to find
these and turn them back into nested expressions.

We make a control flow graph of the quadruples, with a directed edge from
each node (statement) n to its successors – that is, the nodes that can execute
immediately after n.

17.2 VARIOUS DATAFLOW ANALYSES

A dataflow analysis of a control flow graph of quadruples collects information
about the execution of the program. One dataflow analysis determines how
definitions and uses are related to each other, another estimates what values a
variable might have at a given point, and so on. The results of these analyses
can be used to make optimizing transformations of the program.

REACHING DEFINITIONS
For many optimizations we need to see if a particular assignment to a tem-
porary t can directly affect the value of t at another point in the program. We
say that an unambiguous definition of t is a particular statement (quadruple)
in the program of the form t ← a ⊕ b or t ← M[a]. Given such a definition
d, we say that d reaches a statement u in the program if there is some path
of control-flow edges from d to u that does not contain any unambiguous
definition of t .

An ambiguous definition is a statement that might or might not assign a
value to t . For example, if t is a global variable, and the statement s is a
CALL to a function that sometimes modifies t but sometimes does not, then
s is an ambiguous definition. But our MiniJava compiler treats escaping vari-
ables as memory locations, not as temporaries subject to dataflow analysis.
This means that we never have ambiguous definitions; unfortunately, we also
lose the opportunity to perform optimizations on escaping variables. For the
remainder of this chapter, we will assume all definitions are unambiguous.

We can express the calculation of reaching definitions as the solution of
dataflow equations. We label every MOVE statement with a definition ID, and
we manipulate sets of definition IDs. We say that the statement d1 : t ← x⊕y
generates the definition d1, because no matter what other definitions reach the

354

17.2. VARIOUS DATAFLOW ANALYSES

Statement s gen[s] kill[s]
d : t ← b ⊕ c {d} defs(t) − {d}
d : t ← M[b] {d} defs(t) − {d}
M[a] ← b {} {}
if a relop b goto L1 else goto L2 {} {}
goto L {} {}
L : {} {}
f (a1, . . . , an) {} {}
d : t ← f (a1, . . . , an) {d} defs(t) − {d}

TABLE 17.2. Gen and kill for reaching definitions.

beginning of this statement, we know that d1 reaches the end of it. And we
say that this statement kills any other definition of t , because no matter what
other definitions of t reach the beginning of the statement, they do not reach
the end (they cannot directly affect the value of t after this statement).

Let us define defs(t) as the set of all definitions (or definition IDs) of the
temporary t . Table 17.2 summarizes the generate and kill effects of the dif-
ferent kinds of quadruples.

Using gen and kill, we can compute in[n] (and out[n]) the set of definitions
that reach the beginning (and end) of each node n:

in[n] =
⋃

p∈pred[n]
out[p]

out[n] = gen[n] ∪ (in[n] − kill[n])

These equations can be solved by iteration: First in[n] and out[n] are ini-
tialized to the empty set, for all n; then the equations are treated as assignment
statements and repeatedly executed until there are no changes.

We will take Program 17.3 as an example; it is annotated with statement
numbers that will also serve as definition IDs. In each iteration, we recalculate
in and out for each statement in turn:

355

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

1 : a ← 5
2 : c ← 1
3 : L1 : if c > a goto L2

4 : c ← c + c
5 : goto L1

6 : L2 : a ← c − a
7 : c ← 0

PROGRAM 17.3.

Iter. 1 Iter. 2 Iter. 3
n gen[n] kill[n] in[n] out[n] in[n] out[n] in[n] out[n]
1 1 6 1 1 1
2 2 4,7 1 1,2 1 1,2 1 1,2
3 1,2 1,2 1,2,4 1,2,4 1,2,4 1,2,4
4 4 2,7 1,2 1,4 1,2,4 1,4 1,2,4 1,4
5 1,4 1,4 1,4 1,4 1,4 1,4
6 6 1 1,2 2,6 1,2,4 2,4,6 1,2,4 2,4,6
7 7 2,4 2,6 6,7 2,4,6 6,7 2,4,6 6,7

Iteration 3 serves merely to discover that nothing changed since iteration 2.
Having computed reaching definitions, what can we do with the informa-

tion? The analysis is useful in several kinds of optimization. As a simple
example, we can do constant propagation: Only one definition of a reaches
statement 3, so we can replace the test c > a with c > 5.

AVAILABLE EXPRESSIONS
Suppose we want to do common-subexpression elimination; that is, given a
program that computes x ⊕ y more than once, can we eliminate one of the du-
plicate computations? To find places where such optimizations are possible,
the notion of available expressions is helpful.

An expression x ⊕ y is available at a node n in the flow graph if, on every
path from the entry node of the graph to node n, x ⊕ y is computed at least
once and there are no definitions of x or y since the most recent occurrence
of x ⊕ y on that path.

We can express this in dataflow equations using gen and kill sets, where
the sets are now sets of expressions.

356

17.2. VARIOUS DATAFLOW ANALYSES

Statement s gen[s] kill[s]
t ← b ⊕ c {b ⊕ c} − kill[s] expressions containing t
t ← M[b] {M[b]} − kill[s] expressions containing t
M[a] ← b {} expressions of the form M[x]
if a > b goto L1 else goto L2 {} {}
goto L {} {}
L : {} {}
f (a1, . . . , an) {} expressions of the form M[x]
t ← f (a1, . . . , an) {} expressions containing t,

and expressions of the form M[x]

TABLE 17.4. Gen and kill for available expressions.

Any node that computes x ⊕ y generates {x ⊕ y}, and any definition of x
or y kills {x ⊕ y}; see Table 17.4.

Basically, t ← b + c generates the expression b + c. But b ← b + c does
not generate b + c, because after b + c there is a subsequent definition of b.
The statement gen[s] = {b ⊕ c} − kill[s] takes care of this subtlety.

A store instruction (M[a] ← b) might modify any memory location, so it
kills any fetch expression (M[x]). If we were sure that a ̸= x , we could be
less conservative, and say that M[a] ← b does not kill M[x]. This is called
alias analysis; see Section 17.5.

Given gen and kill, we compute in and out almost as for reaching defini-
tions, except that we compute the intersection of the out sets of the predeces-
sors instead of a union. This reflects the fact that an expression is available
only if it is computed on every path into the node.

in[n] =
⋂

p∈pred[n]
out[p] if n is not the start node

out[n] = gen[n] ∪ (in[n] − kill[n])

To compute this by iteration, we define the in set of the start node as empty,
and initialize all other sets to full (the set of all expressions), not empty. This is
because the intersection operator makes sets smaller, not bigger as the union
operator does in the computation of reaching definitions. This algorithm then
finds the greatest fixed point of the equations.

357

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

REACHING EXPRESSIONS
We say that an expression t ← x ⊕ y (in node s of the flow graph) reaches
node n if there is a path from s to n that does not go through any assignment
to x or y, or through any computation of x ⊕ y. As usual, we can express gen
and kill; see Exercise 17.1.

In practice, the reaching expressions analysis is needed by the common-
subexpression elimination optimization only for a small subset of all the ex-
pressions in a program. Thus, reaching expressions are usually computed ad
hoc, by searching backward from node n and stopping whenever a compu-
tation x ⊕ y is found. Or reaching expressions can be computed during the
calculation of available expressions; see Exercise 17.4.

LIVENESS ANALYSIS
Chapter 10 has already covered liveness analysis, but it is useful to note that
liveness can also be expressed in terms of gen and kill. Any use of a variable
generates liveness, and any definition kills liveness:

Statement s gen[s] kill[s]
t ← b ⊕ c {b, c} {t}
t ← M[b] {b} {t}
M[a] ← b {a, b} {}
if a > b goto L1 else goto L2 {a, b} {}
goto L {} {}
L : {} {}
f (a1, . . . , an) {a1, . . . , an} {}
t ← f (a1, . . . , an) {a1, . . . , an} {t}

The equations for in and out are similar to the ones for reaching defini-
tions and available expressions, but backward because liveness is a backward
dataflow analysis:

in[n] = gen[n] ∪ (out[n] − kill[n])
out[n] =

⋃

s∈succ[n]
in[s]

358

17.3. TRANSFORMATIONS USING DATAFLOW ANALYSIS

17.3 TRANSFORMATIONS USING DATAFLOW ANALYSIS

Using the results of dataflow analysis, the optimizing compiler can improve
the program in several ways.

COMMON-SUBEXPRESSION ELIMINATION
Given a flow-graph statement s : t ← x ⊕ y, where the expression x ⊕ y is
available at s, the computation within s can be eliminated.

Algorithm. Compute reaching expressions, that is, find statements of the
form n : v ← x ⊕ y, such that the path from n to s does not compute
x ⊕ y or define x or y.

Choose a new temporary w, and for such n, rewrite as

n : w ← x ⊕ y
n′ : v ← w

Finally, modify statement s to be

s : t ← w

We will rely on copy propagation to remove some or all of the extra as-
signment quadruples.

CONSTANT PROPAGATION
Suppose we have a statement d : t ← c, where c is a constant, and another
statement n that uses t , such as n : y ← t ⊕ x .

We know that t is constant in n if d reaches n, and no other definitions of
t reach n.

In this case, we can rewrite n as y ← c ⊕ x .

COPY PROPAGATION
This is like constant propagation, but instead of a constant c we have a vari-
able z.

Suppose we have a statement d : t ← z. and another statement n that uses
t , such as n : y ← t ⊕ x .

If d reaches n, and no other definition of t reaches n, and there is no defi-
nition of z on any path from d to n (including a path that goes through n one
or more times), then we can rewrite n as n : y ← z ⊕ x .

359

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

A good graph-coloring register allocator will do coalescing (see Chap-
ter 11), which is a form of copy propagation. It detects any intervening defi-
nitions of z in constructing the interference graph – an assignment to z while
d is live makes an interference edge (z, d), rendering d and z uncoalesceable.

If we do copy propagation before register allocation, then we may increase
the number of spills. Thus, if our only reason to do copy propagation were to
delete redundant MOVE instructions, we should wait until register allocation.
However, copy propagation at the quadruple stage may enable the recogni-
tion of other optimizations such as common-subexpression elimination. For
example, in the program

a ← y + z
u ← y
c ← u + z

the two +-expressions are not recognized as common subexpressions until
after the copy propagation of u ← y is performed.

DEAD-CODE ELIMINATION
If there is a quadruple s : a ← b ⊕ c or s : a ← M[x], such that a is not
live-out of s, then the quadruple can be deleted.

Some instructions have implicit side effects. For example, if the computer
is configured to raise an exception on an arithmetic overflow or divide by
zero, then deletion of an exception-causing instruction will change the result
of the computation.

The optimizer should never make a change that changes program behavior,
even if the change seems benign (such as the removal of a run-time “error”).
The problem with such optimizations is that the programmer cannot predict
the behavior of the program – and a program debugged with the optimizer
enabled may fail with the optimizer disabled.

17.4 SPEEDING UP DATAFLOW ANALYSIS

Many dataflow analyses – including the ones described in this chapter – can
be expressed using simultaneous equations on finite sets. So also can many
of the algorithms used in constructing finite automata (Chapter 2) and parsers
(Chapter 3). The equations can usually be set up so that they can be solved by
iteration: by treating the equations as assignment statements and repeatedly

360

17.4. SPEEDING UP DATAFLOW ANALYSIS

executing all the assignments until none of the sets changes any more.
There are several ways to speed up the evaluation of dataflow equations.

BIT VECTORS
A set S over a finite domain (that is, where the elements are integers in the
range 1 – N or can be put in an array indexed by 1 – N) can be represented by
a bit vector. The i th bit in the vector is a 1 if the element i is in the set S.

In the bit-vector representation, unioning two sets S and T is done by a
bitwise-or of the bit vectors. If the word size of the computer is W , and the
vectors are N bits long, then a sequence of N/W or instructions can union
two sets. Of course, 2N/W fetches and N/W stores will also be necessary,
as well as indexing and loop overhead.

Intersection can be done by bitwise-and, set complement can be done by
bitwise complement, and so on.

Thus, the bit-vector representation is commonly used for dataflow analysis.
It would be inadvisable to use bit vectors for dataflow problems where the sets
are expected to be very sparse (so the bit vectors would be almost all zeros),
in which case a different implementation of sets would be faster.

BASIC BLOCKS
Suppose we have a node n in the flow graph that has only one predecessor,
p, and p has only one successor, n. Then we can combine the gen and kill
effects of p and n and replace nodes n and p with a single node. We will take
reaching definitions as an example, but almost any dataflow analysis permits
a similar kind of combining.

Consider what definitions reach out of the node n:

out[n] = gen[n] ∪ (in[n] − kill[n]).

We know in[n] is just out[p]; therefore

out[n] = gen[n] ∪ ((gen[p] ∪ (in[p] − kill[p])) − kill[n]).

By using the identity (A∪B)−C = (A−C)∪(B−C) and then (A−B)−C =
A − (B ∪ C), we have

out[n] = gen[n] ∪ (gen[p] − kill[n]) ∪ (in[p] − (kill[p] ∪ kill[n])).

If we want to say that node pn combines the effects of p and n, then this last

361

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

equation says that the appropriate gen and kill sets for pn are

gen[pn] = gen[n] ∪ (gen[p] − kill[n])
kill[pn] = kill[p] ∪ kill[n].

We can combine all the statements of a basic block in this way, and ag-
glomerate the gen and kill effects of the whole block. The control-flow graph
of basic blocks is much smaller than the graph of individual statements, so
the multipass iterative dataflow analysis works much faster on basic blocks.

Once the iterative dataflow analysis algorithm is completed, we may re-
cover the dataflow information of an individual statement (such as n) within
a block (such as pn in our example) by starting with the in set computed
for the entire block and – in one pass – applying the gen and kill sets of the
statements that precede n in the block.

ORDERING THE NODES
In a forward dataflow problem (such as reaching definitions or available ex-
pressions), the information coming out of a node goes in to the successors.
If we could arrange that every node was calculated before its successors, the
dataflow analysis would terminate in one pass through the nodes.

This would be possible if the control-flow graph had no cycles. We would
topologically sort the flow graph – this just gives an ordering where each
node comes before its successors – and then compute the dataflow equations
in sorted order. But often the graph will have cycles, so this simple idea won’t
work. Even so, quasi-topologically sorting a cyclic graph by depth-first search
helps to reduce the number of iterations required on cyclic graphs; in quasi-
sorted order, most nodes come before their successors, so information flows
forward quite far through the equations on each iteration.

Depth-first search (Algorithm 17.5) topologically sorts an acyclic graph
graph, or quasi-topologically sorts a cyclic graph, quite efficiently. Using
sorted, the order computed by depth-first search, the iterative solution of
dataflow equations should be computed as

repeat
for i ← 1 to N

n ← sorted[i]
in ← ⋃

p∈pred[n] out[p]
out[n] ← gen[n] ∪ (in − kill[n])

until no out set changed in this iteration

362

17.4. SPEEDING UP DATAFLOW ANALYSIS

Topological-sort:
N ← number of nodes
for all nodes i

mark[i] ← false
DFS(start-node)

function DFS(i)
if mark[i] = false

mark[i] ← true
for each successor s of node i

DFS(s)
sorted[N] ← i
N ← N − 1

ALGORITHM 17.5. Topological sort by depth-first search.

There is no need to make in a global array, since it is used only locally in
computing out.

For backward dataflow problems such as liveness analysis, we use a ver-
sion of Algorithm 17.5, starting from exit-node instead of start-node, and
traversing predecessor instead of successor edges.

USE-DEF AND DEF-USE CHAINS
Information about reaching definitions can be kept as use-def chains, that
is, for each use of a variable x , a list of the definitions of x reaching that
use. Use-def chains do not allow faster dataflow analysis per se, but allow
efficient implementation of the optimization algorithms that use the results of
the analysis.

A generalization of use-def chains is static single-assignment form, de-
scribed in Chapter 19. SSA form not only provides more information than
use-def chains, but the dataflow analysis that computes it is very efficient.

One way to represent the results of liveness analysis is via def-use chains:
a list, for each definition, of all possible uses of that definition. SSA form also
contains def-use information.

WORK-LIST ALGORITHMS
If any out set changes during an iteration of the repeat-until loop of an iter-
ative solver, then all the equations are recalculated. This seems a pity, since
most of the equations may not be affected by the change.

A work-list algorithm keeps track of just which out sets must be recalcu-
lated. Whenever node n is recalculated and its out set is found to change, all
the successors of n are put onto the work list (if they’re not on it already).
This is illustrated in Algorithm 17.6.

363

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

W ← the set of all nodes
while W is not empty

remove a node n from W
old ← out[n]
in ← ⋃

p∈pred[n] out[p]
out[n] ← gen[n] ∪ (in − kill[n])
if old ̸= out[n]

for each successor s of n
if s /∈ W

put s into W

ALGORITHM 17.6. A work-list algorithm for reaching definitions.

The algorithm will converge faster if, whenever a node is removed from
W for processing, we choose the node in W that occurs earliest in the sorted
array produced by Algorithm 17.5.

The coalescing, graph-coloring register allocator described in Chapter 11
is an example of a work-list algorithm with many different work lists. Sec-
tion 19.3 describes a work-list algorithm for constant propagation.

INCREMENTAL DATAFLOW ANALYSIS
Using the results of dataflow analysis, the optimizer can perform program
transformations: moving, modifying, or deleting instructions. But optimiza-
tions can cascade:

• Removal of the dead code a ← b ⊕ c might cause b to become dead in a
previous instruction b ← x ⊕ y.

• One common-subexpression elimination begets another. In the program

x ← b + c
y ← a + x
u ← b + c
v ← a + u

after u ← b + c is replaced by u ← x , copy propagation changes a + u to
a + x , which is a common subexpression and can be eliminated.

A simple way to organize a dataflow-based optimizer is to perform a global
flow analysis, then make all possible dataflow-based optimizations, then re-
peat the global flow analysis, then perform optimizations, and so on until no

364

17.4. SPEEDING UP DATAFLOW ANALYSIS

more optimizations can be found. At best this iterates two or three times, so
that on the third round there are no more transformations to perform.

But the worst case is very bad indeed. Consider a program in which the
statement z ← a1 +a2 +a3 +· · ·+an occurs where z is dead. This translates
into the quadruples

x1 ← a1 + a2

x2 ← x1 + a3
...

xn−2 ← xn−3 + an−1

z ← xn−2 + an

Liveness analysis determines that z is dead; then dead-code elimination re-
moves the definition of z. Then another round of liveness analysis determines
that xn−2 is dead, and then dead-code elimination removes xn−2, and so on. It
takes n rounds of analysis and optimization to remove x1 and then determine
that there is no more work to do.

A similar situation occurs with common-subexpression elimination, when
there are two occurrences of an expression such as a1 + a2 + a3 + · · · + an in
the program.

To avoid the need for repeated, global calculations of dataflow information,
there are several strategies:

Cutoff: Perform no more than k rounds of analysis and optimization, for k = 3
or so. Later rounds of optimization may not be finding many transformations
to do anyway. This is a rather unsophisticated approach, but at least the com-
pilation will terminate in a reasonable time.

Cascading analysis: Design new dataflow analyses that can predict the cascade
effects of the optimizations that will be done.

Incremental dataflow analysis: When the optimizer makes a program trans-
formation – which renders the dataflow information invalid – instead of dis-
carding the dataflow information, the optimizer should “patch” it.

Value numbering. The value-numbering analysis is an example of a cascad-
ing analysis that, in one pass, finds all the (cascaded) common subexpressions
within a basic block.

The algorithm maintains a table T , mapping variables to value numbers,
and also mapping triples of the form (value number, operator, value number)
to value numbers. For efficiency, T should be represented as a hash table.
There is also a global number N counting how many distinct values have
been seen so far.

365

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

T ← empty
N ← 0
for each quadruple a ← b ⊕ c in the block

if (b #→ k) ∈ T for some k
nb ← k

else
N ← N + 1
nb ← N
put b #→ nb into T

if (c #→ k) ∈ T for some k
nc ← k

else
N ← N + 1
nc ← N
put c #→ nc into T

if ((nb,⊕, nc) #→ m) ∈ T for some m
put a #→ m into T
mark this quadruple a ← b ⊕ c as a common subexpression

else
N ← N + 1
put (nb,⊕, nc) #→ N into T
put a #→ N into T

ALGORITHM 17.7. Value numbering.

Using T and N , the value-numbering algorithm (Algorithm 17.7) scans the
quadruples of a block from beginning to end. Whenever it sees an expression
b + c, it looks up the value number of b and the value number of c. It then
looks up hash(nb, nc,+) in T ; if found, it means that b + c repeats the work
of an earlier computation; we mark b + c for deletion, and use the previously
computed result. If not found, we leave b + c in the program and also enter it
in the hash table.

Figure 17.8 illustrates value numbering on a basic block: (a) is the list of
quadruples, and (b) is the table (after the algorithm is finished). We can view
the table as a directed acyclic graph (DAG), if we view an entry (m,⊕, n) #→
q as a node q with edges to nodes m and n, as shown in Figure 17.8c.

Value numbering is an example of a single dataflow analysis that calcu-
lates the effect of cascaded optimizations: in this case, cascaded common-

366

17.4. SPEEDING UP DATAFLOW ANALYSIS

g ← x + y
h ← u − v

i ← x + y
x ← u − v

u ← g + h
v ← i + x
w ← u + v

x #→ 1
y #→ 2
(1,+, 2) #→ 3
g #→ 3
u #→ 4
v #→ 5
(4,−, 5) #→ 6
h #→ 6
i #→ 3
x #→ 6
(3,+, 6) #→ 7
u #→ 7
v #→ 7
(7,+, 7) #→ 8
w #→ 8

i

w

v

8

y

g

u x

h

6

7

3

1 2 4 5

+

+

+ _

x0 y0 u0 v0

(a) (b) (c)

FIGURE 17.8. An illustration of value numbering. (a) A basic block; (b) the
table created by the value-numbering algorithm, with hidden
bindings shown crossed out; (c) a view of the table as a DAG.

subexpression elimination. But the optimizer would like to perform a wide
variety of transformations – especially when the loop optimizations described
in the next chapter are included. It is very hard to design a single dataflow
analysis capable of predicting the results of many different optimizations in
combination.

Instead, we use a general-purpose dataflow analyzer and a general-purpose
optimizer; but when the optimizer changes the program, it must tell the ana-
lyzer what information is no longer valid.

Incremental liveness analysis. For example, an incremental algorithm for
liveness analysis must keep enough information so that if a statement is in-
serted or deleted, the liveness information can be efficiently updated.

Suppose we delete this statement s : a ← b ⊕ c from a flow graph on
which we have live-in and live-out information for every node. The changes
to the dataflow information are as follows:
1. a is no longer defined here. Therefore, if a is live-out of this node, it will now

be live-in where it was not before.
2. b is no longer used here. Therefore, if b is not live-out of this node, it will no

longer be live-in. We must propagate this change backwards, and do the same
for c.

367

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

A work-list algorithm will be useful here, since we can just add the predeces-
sor of s to the work list and run until the work list is empty; this will often
terminate quickly.

Propagating change (1) does the same kind of thing that the original (non-
incremental) work-list algorithm for liveness does: It makes the live-sets big-
ger. Thus, our proof (Exercise 10.2) that the algorithm finds a least fixed point
of the liveness equations also applies to the propagation of additional liveness
caused by the deletion of the definition of a. Even the proof that the liveness
analysis terminates was based on the idea that any change makes things big-
ger, and there was an a priori limit to how big the sets could get.

But change (2) makes live-sets smaller, not bigger, so naively running our
original algorithm starting from the previously computed in and out sets may
find a fixed point that is not a least fixed point. For example, suppose we have
the following program:

0 d ← 4
1 a ← 0
2 L1 : b ← a + 1
3 c ← c + b
3a a ← d
4 a ← b · 2
5 if a < N goto L1

6 return c

Liveness analysis shows that d is live-in at statements 1, 2, 3, 3a, 4, 5. But a is
not live-out of statement 3a, so this statement is dead code, and we can delete
it. If we then start with the previously computed dataflow information and use
Algorithm 10.4 (page 206) until it reaches a fixed point, we will end up with
the column Y of Table 10.7, which is not the best possible approximation of
the actual liveness information.

A more refined liveness analysis. Therefore, we must use a better algorithm.
The solution is that at each point where a variable d is defined, we must keep
track of exactly what uses it might have. Our liveness calculation will be
very much like Algorithm 10.4, but it will operate on sets of uses instead of
sets of variables. In fact, it is just like the reaching definitions algorithm in
reverse. Let uses(v) be the set of all uses of variable v in the program. Given
a statement s : a ← b ⊕ c, the set

live-out[s] ∩ uses(a)

368

17.5. ALIAS ANALYSIS

contains all the uses of a that could possibly be reached by this definition.
Now, when we delete a quadruple that uses some variable b, we can delete

that use of b from all the live-in and live-out sets. This gives the least fixed
point, as we desire.

Cascades of dead code After deleting statement 3a from the program above,
the incremental liveness analysis will find that statement 0 is dead code and
can be deleted. Thus, incremental liveness analysis cooperates well with dead-
code elimination. Other kinds of dataflow analysis can similarly be made in-
cremental; sometimes, as in the case of liveness analysis, we must first refine
the analysis.

17.5 ALIAS ANALYSIS

The analyses we have described in this chapter consider only the values of
Tree-language temporaries. Variables that escape are represented (by the
front end of the compiler) in memory locations with explicit fetches and
stores, and we have not tried to analyze the definitions, uses, and liveness of
these variables. The problem is that a variable or memory location may have
several different names, or aliases, so that it is hard to tell which statements
affect which variables.

Variables that can be aliases include:

• variables passed as call-by-reference parameters (in Pascal, C++, Fortran);
• variables whose address is taken (in C, C++);
• l-value expressions that dereference pointers, such as p.x in MiniJava or *p

in C;
• l-value expressions that explicitly subscript arrays, such as a[i];
• and variables used in inner-nested procedures (in Pascal, MiniJava, ML).

A good optimizer should optimize these variables. For example, in the
program fragment

p.x := 5; q.x := 7; a := p.x

we might want our reaching definitions analysis to show that only one defi-
nition of p.x (namely, 5) reaches the definition of a. But the problem is that
we cannot tell if one name is an alias for another. Could q point to the same
record as p? If so, there are two definitions (5 and 7) that could reach a.

Similarly, with call-by-reference parameters, in the program

369

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

function f(ref i: int, ref j: int) =
(i := 5; j := 7; return i)

a naive computation of reaching definitions would miss the fact that i might
be the same variable as j, if f is called with f(x,x).

The may-alias relation We use alias analysis, a kind of dataflow analysis, to
learn about different names that may point to the same memory locations. The
result of alias analysis is a may-alias relation: p may-alias q if, in some run
of the program, p and q might point to the same data. As with most dataflow
analyses, static (compile-time) information cannot be completely accurate, so
the may-alias relation is conservative: We say that p may-alias q if we cannot
prove that p is never an alias for q.

ALIAS ANALYSIS BASED ON TYPES
For languages with strong typing (such as Pascal, Java, ML, MiniJava) where
if two variables have incompatible types they cannot possibly be names for
the same memory location, we can use the type information to provide a
useful may-alias relation. Also in these languages the programmer cannot
explicitly make a pointer point to a local variable, and we will use that fact as
well.

We divide all the memory locations used by the program into disjoint sets,
called alias classes. For MiniJava, here are the classes we will use:

• For every frame location created by Frame.allocLocal(true), we have
a new class;

• For every record field of every record type, a new class;
• For every array type a, a new class.

The semantic analysis phase of the compiler must compute these classes, as
they involve the concept of type, of which the later phases are ignorant. Each
class can be represented by a different integer.

The Translate functions must label every fetch and store (that is, every
MEM node in the Tree language) with its class. We will need to modify the
Tree data structure, putting an aliasClass field into the MEM node.

Given two MEM nodes Mi [x] and M j [y], where i and j are the alias classes
of the MEM nodes, we can say that Mi [x] may-alias M j [y] if i = j .

This works for MiniJava and Java. But it fails in the presence of call-by-
reference or type casting.

370

17.5. ALIAS ANALYSIS

type list = {head: int,
tail: list}

var p : list := nil
var q : list := nil
q := list{head=0, tail=nil};
p := list{head=0, tail=q};
q.head := 5;
a := p.head

(a) MiniJava program

{int *p, *q;
int h,i;
p = &h;
q = &i;
*p = 0;
*q = 5;
a = *p;

}

(b) C program

PROGRAM 17.9. p and q are not aliases.

ALIAS ANALYSIS BASED ON FLOW
Instead of, or in addition to, alias classes based on types, we can also make
alias classes based on point of creation.

In Program 17.9a, even though p and q are the same type, we know they
point to different records. Therefore we know that a must be assigned 0; the
definition q.head:=5 cannot affect a. Similarly, in Program 17.9b we know
p and q cannot be aliases, so a must be 0.

To catch these distinctions automatically, we will make an alias class for
each point of creation. That is, for every different statement where a record is
allocated (that is, for each call to malloc in C or new in Pascal or Java) we
make a new alias class. Also, each different local or global variable whose
address is taken is an alias class.

A pointer (or call-by-reference parameter) can point to variables of more
than one alias class. In the program

1 p := list {head=0, tail=nil};
2 q := list {head=6, tail=p};
3 if a=0
4 then p:=q;
5 p.head := 4;

at line 5, q can point only to alias class 2, but p might point to alias class 1 or
2, depending on the value of a.

So we must associate with each MEM node a set of alias classes, not just a
single class. After line 2 we have the information p !→ {1}, q !→ {2}; out of
line 4 we have p !→ {2}, q !→ {2}. But when two branches of control flow
merge (in the example, we have the control edges 3 → 5 and 4 → 5) we must
merge the alias class information; at line 5 we have p !→ {1, 2}, q !→ {2}.

371

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

Statement s transs(A)

t ← b (A − !t) ∪ {(t, d, k)| (b, d, k) ∈ A}
t ← b + k (k is a constant) (A − !t) ∪ {(t, d, i)| (b, d, i − k) ∈ A}
t ← b ⊕ c (A − !t) ∪ {(t, d, i)| (b, d, j) ∈ A ∨ (c, d, k) ∈ A}
t ← M[b] A ∪ !t

M[a] ← b A
if a > b goto L1 else L2 A
goto L A
L : A
f (a1, . . . , an) A
d : t ← allocRecord(a) (A − !t) ∪ {(t, d, 0)}
t ← f (a1, . . . , an) A ∪ !t

TABLE 17.10. Transfer function for alias flow analysis.

Algorithm. The dataflow algorithm manipulates sets of tuples of the form
(t, d, k) where t is a variable and d, k is the alias class of all instances of the
kth field of a record allocated at location d. The set in[s] contains (t, d, k) if
t − k might point to a record of alias class d at the beginning of statement s.
This is an example of a dataflow problem where bit vectors will not work as
well as a tree or hash-table representation better suited to sparse problems.

Instead of using gen and kill sets, we use a transfer function: We say that
if A is the alias information (set of tuples) on entry to a statement s, then
transs(A) is the alias information on exit. The transfer function is defined by
Table 17.10 for the different kinds of quadruples.

The initial set A0 includes the binding (FP, frame,0), where frame is the
special alias class of all frame-allocated variables of the current function.

We use the abbreviation !t to mean the set of all tuples (t, d, k), where d, k
is the alias class of any record field whose type is compatible with variable t .
Cooperation from the front end in providing a “small” !t for each t makes
the analysis more accurate. Of course, in a typeless language, or one with
type-casts, !t might have to be the set of all alias classes.

The set equations for alias flow analysis are

in[s0] = A0 where s0 is the start node
in[n] = ⋃

p∈pred[n] out[p]
out[n] = transn(in[n])

and we can compute a solution by iteration in the usual way.

372

17.5. ALIAS ANALYSIS

Producing may-alias information. Finally, we say that

p may-alias q at statement s

if there exists d, k such that (p, d, k) ∈ in[s] and (q, d, k) ∈ in[s].

USING MAY-ALIAS INFORMATION
Given the may-alias relation, we can treat each alias class as a “variable” in
dataflow analyses such as reaching definitions and available expressions.

To take available expressions as an example, we modify one line of Ta-
ble 17.4, the gen and kill sets:

Statement s gen[s] kill[s]
M[a] ← b {} {M[x]| a may alias x at s}

Now we can analyze the following program fragment:

1 : u ← M[t]
2 : M[x] ← r
3 : w ← M[t]
4 : b ← u + w

Without alias analysis, the store instruction in line 2 would kill the avail-
ability of M[t], since we would not know whether t and x were related. But
suppose alias analysis has determined that t may-alias x at 2 is false; then
M[t] is still available at line 3, and we can eliminate the common subexpres-
sion; after copy propagation, we obtain:

1 : z ← M[t]
2 : M[x] ← r
4 : b ← z + z

What we have shown here is intraprocedural alias analysis. But an interpro-
cedural analysis would help to analyze the effect of CALL instructions. For
example, in the program

1 : t ← fp + 12
2 : u ← M[t]
3 : f (t)
4 : w ← M[t]
5 : b ← u + w

does the function f modify M[t]? If so, then M[t] is not available at line 4.
However, interprocedural alias analysis is beyond the scope of this book.

373

CHAPTER SEVENTEEN. DATAFLOW ANALYSIS

ALIAS ANALYSIS IN STRICT PURE-FUNCTIONAL LANGUAGES
Some languages have immutable variables that cannot change after their ini-
tialization. For example, const variables in the C language, most variables in
the ML language, and all variables in PureFun-MiniJava (see Chapter 15) are
immutable.

Alias analysis is not needed for these variables. The purpose of alias anal-
ysis is to determine whether different statements in the program interfere,
or whether one definition kills another. Though it is true that there could be
many pointers to the same value, none of the pointers can cause the value to
change, i.e., no immutable variable can be killed.

This is a good thing for the optimizer, and also for the the programmer.
The optimizer can do constant propagation and loop-invariant detection (see
Chapter 18) without being bothered by aliases; and the programmer can also
understand what a segment of the program is doing without the confusion and
complexity introduced by stores through aliased pointers.

F U R T H E R
R E A D I N G

Gödel [1931] proved the full employment theorem for mathematicians. Tur-
ing [1937] proved that the halting problem is undecidable, and Rice [1953]
proved the full employment theorem for compiler writers, even before there
were any compiler writers.

Ershov [1958] developed value numbering. Allen [1969] codified many
program optimizations; Allen [1970] and Cocke [1970] designed the first
global dataflow analysis algorithms. Kildall [1973] first presented the fixed-
point iteration method for dataflow analysis.

Landi and Ryder [1992] give an algorithm for interprocedural alias
analysis.

E X E R C I S E S

17.1 Show the dataflow equations for reaching expressions (page 358). Be specific
about what happens in the case of quadruples such as t ← t ⊕ b or t ← M[t],
where the defined temporary also appears on the right-hand side. The ele-
ments of the gen and kill sets will be definition IDs, as in reaching definitions.
Hint: If the definition on page 358 is not clear enough to formulate a pre-
cise definition, be guided by the role that reaching expressions must play in
common-subexpression elimination (page 359).

374

EXERCISES

17.2 Write down the control-flow graph of basic blocks (not just statements) for
Program 17.3, and show the gen and kill sets (for reaching definitions) of each
block.

*17.3 Show how to combine the gen and kill effects of two adjacent statements in the
same basic block for each of:

a. Available expressions.

b. Liveness analysis.

**17.4 Modify the algorithm for computing available expressions to simultaneously
compute reaching expressions. To make the algorithm more efficient, you may
take advantage of the fact that if an expression is not available at statement s,
then we do not need to know if it reaches s or not (for purposes of common-
subexpression elimination). Hint: For each available expression a + b that is
propagated through statement s, also propagate a set representing all the state-
ments that define a + b and reach s.

17.5 Consider the calculation of reaching definitions on the following program:

x := 1;
y := 1;
if z <> 0
then x := 2
else y := 2;

w := x+y

a. Draw a control-flow graph for this program.

b. Show the sorted array that results from running Algorithm 17.5 on the
program.

c. Calculate reaching definitions, showing the result of each iteration in
tabular format as on page 356. How many iterations are required?

*d. Prove that when reaching definitions is computed by iteration on an
acyclic graph, taking the nodes in the order given by Algorithm 17.5,
only one iteration is necessary (the second iteration merely verifies that
nothing has changed). Hint: Prove, and make use of, the lemma that
each node is visited after all of its predecessors.

e. Suppose we order the nodes according to the order they are first visited
by depth-first search. Calculate reaching definitions using that order,
showing the results in tabular format; how many iterations are required?

*17.6 Write down a work-list algorithm for liveness analysis, in a form similar to that
of Algorithm 17.6.

375

18
Loop Optimizations

loop: a series of instructions that is repeated until a ter-
minating condition is reached

Webster’s Dictionary

Loops are pervasive in computer programs, and a great proportion of the ex-
ecution time of a typical program is spent in one loop or another. Hence it is
worthwhile devising optimizations to make loops go faster. Intuitively, a loop
is a sequence of instructions that ends by jumping back to the beginning. But
to be able to optimize loops effectively we will use a more precise definition.

A loop in a control-flow graph is a set of nodes S including a header node
h with the following properties:
• From any node in S there is a path of directed edges leading to h.
• There is a path of directed edges from h to any node in S.
• There is no edge from any node outside S to any node in S other than h.

Thus, the dictionary definition (from Webster’s) is not the same as the techni-
cal definition.

Figure 18.1 shows some loops. A loop entry node is one with some prede-
cessor outside the loop; a loop exit node is one with a successor outside the
loop. Figures 18.1c, 18.1d, and 18.1f illustrate that a loop may have multiple
exits, but may have only one entry. Figures 18.1e and 18.1f contain nested
loops.

REDUCIBLE FLOW GRAPHS
A reducible flow graph is one in which the dictionary definition of loop cor-
responds more closely to the technical definition; but let us develop a more
precise definition.

376

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

1

2

3

1

2

3

(a) (b)

1

42 3

1

32

1

2

3

4

43

2

5

6

1

(c) (d) (e) (f)

FIGURE 18.1. Some loops; in each case, 1 is the header node.

Figure 18.2a does not contain a loop; either node in the strongly connected
component (2, 3) can be reached without going through the other.

Figure 18.2c contains the same pattern of nodes 1, 2, 3; this becomes more
clear if we repeatedly delete edges and collapse together pairs of nodes (x, y),
where x is the only predecessor of y. That is: Delete 6 → 9, 5 → 4, collapse
(7, 9), (3, 7), (7, 8), (5, 6), (1, 5), (1, 4); and we obtain Figure 18.2a.

An irreducible flow graph is one in which – after collapsing nodes and
deleting edges – we can find a subgraph like Figure 18.2a. A reducible flow
graph is one that cannot be collapsed to contain such a subgraph. Without
such subgraphs, then any cycle of nodes does have a unique header node.

Common control-flow constructs such as if-then, if-then-else, while-do,
repeat-until, for, and break (even multilevel break) can only generate re-
ducible flow graphs. Thus, the control-flow graph for a MiniJava or Java
function, or a C function without goto, will always be reducible.

The following program corresponds to the flow graph in Figure 18.1e, as-
suming MiniJava were augmented with repeat-until loops:

377

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

1

32

1

2

3

4

1

54

2

8

93 7

6

(a) (b) (c)

FIGURE 18.2. None of these contains a loop. Dotted lines indicate reduction
of graph (c) by deleting edges and collapsing nodes.

function isPrime(n: int) : int =
(i := 2;
repeat j := 2;

repeat if i*j=n
then return 0
else j := j+1

until j=n;
i := i+1

until i=n;
return 1)

In a functional language, loops are generally expressed using tail-recursive
function calls. The isPrime program might be written as:

function isPrime(n: int) : int =
0 tryI(n,2)

function tryI(n: int, i: int) : int =
1 tryJ(n,i,2)

function tryJ(n: int, i: int, j: int) : int =
2 if i*j=n
3 then 0
4 else nextJ(n,i,j+1)

function nextJ(n: int, i: int, j: int) : int =
5 if j=n

then nextI(n,i+1)
else tryJ(n,i,j)

function nextI(n: int, i: int) : int =
6 if i=n

then 1
else tryI(n,i)

378

18.1. DOMINATORS

where the numbers 1–6 show the correspondence with the flow-graph nodes
of Figure 18.1f.

Because the programmer can arrange these functions in arbitrary ways,
flow graphs produced by the tail-call structure of functional programs are
sometimes irreducible.

Advantages of reducible flow graphs. Many dataflow analyses (presented in
Chapter 17) can be done very efficiently on reducible flow graphs. Instead
of using fixed-point iteration (“keep executing assignments until there are no
changes”), we can determine an order for computing the assignments, and
calculate in advance how many assignments will be necessary – that is, there
will never be a need to check to see if anything changed.

However, for the remainder of this chapter we will assume that our control-
flow graphs may be reducible or irreducible.

18.1 DOMINATORS

Before we optimize the loops, we must find them in the flow graph. The
notion of dominators is useful for that purpose.

Each control-flow graph must have a start node s0 with no predecessors,
where program (or procedure) execution is assumed to begin.

A node d dominates a node n if every path of directed edges from s0 to n
must go through d. Every node dominates itself.

ALGORITHM FOR FINDING DOMINATORS
Consider a node n with predecessors p1, . . . , pk , and a node d (with d ̸= n).
If d dominates each one of the pi , then it must dominate n, because every
path from s0 to n must go through one of the pi , but every path from s0 to a pi

must go through d. Conversely, if d dominates n, it must dominate all the pi ;
otherwise there would be a path from s0 to n going through the predecessor
not dominated by d.

Let D[n] be the set of nodes that dominate n. Then

D[s0] = {s0} D[n] = {n} ∪
⎛

⎝

⋂

p∈pred[n]
D[p]

⎞

⎠ for n ̸= s0.

The simultaneous equations can be solved, as usual, by iteration, treating each
equation as an assignment statement. However, in this case each set D[n] (for

379

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

n ̸= s0) must be initialized to hold all the nodes in the graph, because each
assignment D[n] ← {n}∪ . . . makes D[n] smaller (or unchanged), not larger.

This algorithm can be made more efficient by ordering the set assignments
in quasi-topological order, that is, according to a depth-first search of the
graph (Algorithm 17.5). Section 19.2 describes a faster algorithm for com-
puting dominators.

Technically, an unreachable node is dominated by every node in the graph;
we will avoid the pathologies this can cause by deleting unreachable nodes
from the graph before calculating dominators and doing loop optimizations.
See also Exercise 18.4.

IMMEDIATE DOMINATORS
Theorem: In a connected graph, suppose d dominates n, and e dominates n.
Then it must be that either d dominates e, or e dominates d.

Proof: (By contradiction.) Suppose neither d nor e dominates the other.
Then there is some path from s0 to e that does not go through d. Therefore
any path from e to n must go through d; otherwise d would not dominate n.

Conversely, any path from d to n must go through e. But this means that
to get from e to n the path must infinitely loop from d to e to d . . . and never
get to n.

This theorem tells us that every node n has no more than one immediate
dominator, idom(n), such that

1. idom(n) is not the same node as n,
2. idom(n) dominates n, and
3. idom(n) does not dominate any other dominator of n.

Every node except s0 is dominated by at least one node other than itself (since
s0 dominates every node), so every node except s0 has exactly one immediate
dominator.

Dominator tree. Let us draw a graph containing every node of the flow graph,
and for every node n an edge from idom(n) to n. The resulting graph will be a
tree, because each node has exactly one immediate dominator. This is called
the dominator tree.

Figure 18.3 shows a flow graph and its dominator tree. Some edges in the
dominator tree correspond to single flow-graph edges (such as 4 → 6), but
others do not (such as 4 → 7). That is, the immediate dominator of a node is
not necessarily its predecessor in the flow graph.

380

18.1. DOMINATORS

1

2

43

65

78

9 11

1210

1

2

43

65

8 11

12

9

10

7

(a) (b)

FIGURE 18.3. (a) A flow graph; (b) its dominator tree.

A flow-graph edge from a node n to a node h that dominates n is called a
back edge. For every back edge there is a corresponding subgraph of the flow
graph that is a loop. The back edges in Figure 18.3a are 3 → 2, 4 → 2, 10 →
5, 9 → 8.

LOOPS
The natural loop of a back edge n → h, where h dominates n, is the set of
nodes x such that h dominates x and there is a path from x to n not containing
h. The header of this loop will be h.

The natural loop of the back edge 10 → 5 from Figure 18.3a includes
nodes 5, 8, 9, 10 and has the loop 8, 9 nested within it.

A node h can be the header of more than one natural loop, if there is more
than one back edge into h. In Figure 18.3a, the natural loop of 3 → 2 consists
of the nodes 3, 2 and the natural loop of 4 → 2 consists of 4, 2.

The loop optimizations described in this chapter can cope with any loop,
whether it is a natural loop or not, and whether or not that loop shares its
header with some other loop. However, we usually want to optimize an inner
loop first, because most of the program’s execution time is expected to be in

381

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

the inner loop. If two loops share a header, then it is hard to determine which
should be considered the inner loop. A common way of solving this problem
is to merge all the natural loops with the same header. The result will not
necessarily be a natural loop.

If we merge all the loops with header 2 in Figure 18.3a, we obtain the loop
2, 3, 4 – which is not a natural loop.

Nested loops If A and B are loops with headers a and b, respectively, such
that a ̸= b and b is in A, then the nodes of B are a proper subset of the nodes
of A. We say that loop B is nested within A, or that B is the inner loop.

We can construct a loop-nest tree of loops in a program. The procedure is,
for a flow graph G:

1. Compute dominators of G.
2. Construct the dominator tree.
3. Find all the natural loops, and thus all the loop-header nodes.
4. For each loop header h, merge all the natural loops of h into a single loop,

loop[h].
5. Construct the tree of loop headers (and implicitly loops), such that h1 is above

h2 in the tree if h2 is in loop[h1].

The leaves of the loop-nest tree are the innermost loops.
Just to have a place to put nodes not in any loop, we could say that the

entire procedure body is a pseudo-loop that sits at the root of the loop-nest
tree. The loop-nest tree of Figure 18.3 is shown in Figure 18.4.

LOOP PREHEADER
Many loop optimizations will insert statements immediately before the loop
executes. For example, loop-invariant hoisting moves a statement from inside
the loop to immediately before the loop. Where should such statements be
put? Figure 18.5a illustrates a problem: If we want to insert statement s into a
basic block immediately before the loop, we need to put s at the end of blocks
2 and 3. In order to have one place to put such statements, we insert a new,
initially empty, preheader node p outside the loop, with an edge p → h. All
edges x → h from nodes x inside the loop are left unchanged, but all existing
edges y → h from nodes y outside the loop are redirected to point to p.

382

18.1. DOMINATORS

1
6, 7, 11, 12

2
3, 4

5
10

8
9

FIGURE 18.4. The loop-nest tree for Figure 18.3a. Each loop header is shown
in the top half of each oval (nodes 1, 2, 5, 8); a loop comprises
a header node (e.g., node 5), all the other nodes shown in the
same oval (e.g., node 10), and all the nodes shown in subtrees
of the loop-nest-tree node (e.g., 8, 9).

4

5

76

32

8

4

5

76

8

P

32

(a) (b)

FIGURE 18.5. (a) A loop; (b) the same loop with a preheader.

383

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

18.2 LOOP-INVARIANT COMPUTATIONS

If a loop contains a statement t ← a ⊕ b such that a has the same value each
time around the loop, and b has the same value each time, then t will also
have the same value each time. We would like to hoist the computation out of
the loop, so it is computed just once instead of every time.

We cannot always tell if a will have the same value every time, so as usual
we will conservatively approximate. The definition d : t ← a1 ⊕ a2 is loop-
invariant within loop L if, for each operand ai ,

1. ai is a constant,
2. or all the definitions of ai that reach d are outside the loop,
3. or only one definition of ai reaches d , and that definition is loop-invariant.

This leads naturally to an iterative algorithm for finding loop-invariant def-
initions: First find all the definitions whose operands are constant or from
outside the loop, then repeatedly find definitions whose operands are loop-
invariant.

HOISTING
Suppose t ← a ⊕ b is loop-invariant. Can we hoist it out of the loop? In
Figure 18.6a, hoisting makes the program compute the same result faster.
But in Figure 18.6b, hoisting makes the program faster but incorrect – the
original program does not always execute t ← a ⊕ b, but the transformed
program does, producing an incorrect value for x if i ≥ N initially. Hoisting
in Figure 18.6c is also incorrect, because the original loop had more than one
definition of t , and the transformed program interleaves the assignments to
t in a different way. And hoisting in Figure 18.6d is wrong because there is
a use of t before the loop-invariant definition, so after hoisting, this use will
have the wrong value on the first iteration of the loop.

With these pitfalls in mind, we can set the criteria for hoisting d : t ←
a ⊕ b to the end of the loop preheader:

1. d dominates all loop exits at which t is live-out,
2. and there is only one definition of t in the loop,
3. and t is not live-out of the loop preheader.

Implicit side effects. These rules need modification if t ← a ⊕ b could raise
some sort of arithmetic exception or have other side effects; see Exercise 18.7.

384

18.3. INDUCTION VARIABLES

L0

t ← 0
L1

i ← i + 1
t ← a ⊕ b
M[i]← t
if i < N goto L1

L2

x ← t

L0

t ← 0
L1

if i ≥ N goto L2

i ← i + 1
t ← a ⊕ b
M[i]← t
goto L1

L2

x ← t

L0

t ← 0
L1

i ← i + 1
t ← a ⊕ b
M[i] ← t
t ← 0
M[j]← t
if i < N goto L1

L2

L0

t ← 0
L1

M[j]← t
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i < N goto L1

L2

x ← t
(a) Hoist (b) Don’t (c) Don’t (d) Don’t

FIGURE 18.6. Some good and bad candidates for hoisting t ← a ⊕ b.

Turning while loops into repeat-until loops. Condition (1) tends to prevent
many computations from being hoisted from while loops; from Figure 18.7a
it is clear that none of the statements in the loop body dominates the loop
exit node (which is the same as the header node). To solve this problem, we
can transform the while loop into a repeat loop preceded by an if statement.
This requires duplication of the statements in the header node, as shown in
Figure 18.7b. Statements in the body of a repeat loop dominate the loop exit
(unless they are in an inner if, or if there is a break statement), so condition
(1) will be satisfied.

18.3 INDUCTION VARIABLES

Some loops have a variable i that is incremented or decremented, and a vari-
able j that is set (in the loop) to i ·c+d, where c and d are loop-invariant. Then
we can calculate j ’s value without reference to i ; whenever i is incremented
by a we can increment j by c · a.

Consider, for example, Program 18.8a, which sums the elements of an ar-
ray. Using induction-variable analysis to find that i and j are related induc-
tion variables, strength reduction to replace a multiplication by 4 with an
addition, then induction-variable elimination to replace i ≥ n by k ≥ 4n +a,
followed by miscellaneous copy propagation, we get Program 18.8b. The
transformed loop has fewer quadruples; it might even run faster. Let us now

385

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

x i + 3
if x < n goto 2 else goto 3

y i + a
z M[y]
w y + 1
M[w] z
goto 1

1

2

3

y i + a
z M[y]
w y + 1
M[w] z

2

3

1a

x i + 3
if x < n goto 2 else goto 3

1

x i + 3
if x < n goto 2 else goto 3

(a) (b)

FIGURE 18.7. A while loop (a), transformed into a repeat loop (b).

s ← 0
i ← 0

L1 : if i ≥n goto L2

j ← i · 4
k ← j + a
x ← M[k]
s ← s + x
i ← i + 1
goto L1

L2
(a) Before

s ← 0
k ′ ← a
b ← n · 4
c ← a + b

L1 : if k ′ ≥ c goto L2

x ← M[k ′]
s ← s + x
k ′ ← k ′ + 4
goto L1

L2
(b) After

PROGRAM 18.8. A loop before and after induction-variable optimizations.

take the series of transformations one step at a time.
We say that a variable such as i is a basic induction variable, and j and k

are derived induction variables in the family of i . Right after j is defined (in
the original loop), we have j = aj + i · bj , where aj = 0 and bj = 4. We can
completely characterize the value of j at its definition by (i, a, b), where i is
a basic induction variable and a and b are loop-invariant expressions.

386

18.3. INDUCTION VARIABLES

s ← 0
L1 : if s > 0 goto L2

i ← i + b
j ← i · 4
x ← M[j]
s ← s − x
goto L1

L2 : i ← i + 1
s ← s + j
if i < n goto L1

(a) Before

s ← 0
j ′ ← i · 4
b′ ← b · 4
n′ ← n · 4

L1 : if s > 0 goto L2

j ′ ← j ′ + b′

j ← j ′

x ← M[j]
s ← s − x
goto L1

L2 : j ′ ← j ′ + 4
s ← s + j
if j ′ < n′ goto L1

(b) After

FIGURE 18.9. The basic induction variable i is incremented by different
amounts in different iterations; the derived induction variable
j is not changed in every iteration.

If there is another derived induction variable with definition k ← j + ck

(where ck is loop-invariant), then k is also in the family of i . We can charac-
terize k by the triple (i, aj + ck, bj), that is, k = aj + ck + i · bj .

We can characterize the basic induction variable i by a triple in the same
way, that is (i, 0, 1), meaning that i = 0+ i ·1. Thus every induction variable
can be characterized by such a triple.

If an induction variable changes by the same (constant or loop-invariant)
amount in every iteration of the loop, we say it is a linear induction variable.
In Figure 18.9a, the induction variable i is not linear: It is incremented by b
in some iterations and by 1 in other iterations. Furthermore, in some itera-
tions j = i · 4 and in other iterations the derived induction variable j gets
(temporarily) left behind as i is incremented.

DETECTION OF INDUCTION VARIABLES
Basic induction variables. The variable i is a basic induction variable in a
loop L with header node h if the only definitions of i within L are of the form
i ← i + c or i ← i − c, where c is loop-invariant.

387

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

Derived induction variables. The variable k is a derived induction variable
in loop L if:

1. There is only one definition of k within L, of the form k ← j ·c or k ← j +d ,
where j is an induction variable and c, d are loop-invariant;

2. and if j is a derived induction variable in the family of i , then:
(a) the only definition of j that reaches k is the one in the loop,
(b) and there is no definition of i on any path between the definition of j and

the definition of k.

Assuming j is characterized by (i, a, b), then k is described by (i, a · c, b · c)
or (i, a + d, b), depending on whether k’s definition was j · c or j + d.

Statements of the form k ← j − c can be treated as k ← j + (−c)
for purposes of induction-variable analysis (unless −c is not representable,
which can sometimes happen with 2’s complement arithmetic).

Division. Statements of the form k ← j/c can be rewritten as k ← j · (1
c),

so that k could be considered an induction variable. This fact is useful for
floating-point calculations – though we must beware of introducing subtle
numerical errors if 1/c cannot be represented exactly. If this is an integer
division, we cannot represent 1/c at all.

STRENGTH REDUCTION
On many machines, multiplication is more expensive than addition. So we
would like to take a derived induction variable whose definition is of the form
j ← i · c and replace it with an addition.

For each derived induction variable j whose triple is (i, a, b), make a new
variable j ′ (although different derived induction variables with the same triple
can share the same j ′ variable). After each assignment i ← i + c, make an
assignment j ′ ← j ′ + c · b, where c · b is a loop-invariant expression that
may be computed in the loop preheader. If c and b are both constant, then the
multiplication may be done at compile time. Replace the (unique) assigment
to j with j ← j ′. Finally, it is necessary to initialize j ′ at the end of the loop
preheader, with j ′ ← a + i · b.

We say two induction variables x, y in the family of i are coordinated if
(x −ax)/bx = (y −ay)/by at every time during the execution of the loop, ex-
cept during a sequence of statements zi ← zi + ci , where ci is loop-invariant.
Clearly, all the new variables in the family of i introduced by strength reduc-
tion are coordinated with each other, and with i .

388

18.3. INDUCTION VARIABLES

When the definition of an induction variable j ← · · · is replaced by j ←
j ′, we know that j ′ is coordinated but j might not be. However, the standard
copy propagation algorithm can help here, replacing uses of j by uses of j ′

where there is no intervening definition of j ′.
Thus, instead of using flow analysis to learn whether j is coordinated, we

just use j ′ instead, where copy propagation says it is legal to do so.
After strength reduction there is still a multiplication, but it is outside the

loop. If the loop executes more than one iteration, then the program should
run faster with additions instead of multiplication, on many machines. The
results of strength reduction may be disappointing on processors that can
schedule multiplications to hide their latency.

Example. Let us perform strength reduction on Program 18.8a. We find that
j is a derived induction variable with triple (i, 0, 4), and k has triple (i, a, 4).
After strength reduction on both j and k, we have

s ← 0
i ← 0
j ′ ← 0
k ′ ← a

L1 : if i ≥ n goto L2

j ← j ′

k ← k ′

x ← M[k]
s ← s + x
i ← i + 1
j ′ ← j ′ + 4
k ′ ← k ′ + 4
goto L1

L2

We can perform dead-code elimination to remove the statement j ← j ′.
We would also like to remove all the definitions of the useless variable j ′, but
technically it is not dead, since it is used in every iteration of the loop.

ELIMINATION
After strength reduction, some of the induction variables are not used at all
in the loop, and others are used only in comparisons with loop-invariant vari-
ables. These induction variables can be deleted.

389

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

A variable is useless in a loop L if it is dead at all exits from L , and its
only use is in a definition of itself. All definitions of a useless variable may
be deleted.

In our example, after the removal of j , the variable j ′ is useless. We can
delete j ′ ← j ′ + 4. This leaves a definition of j ′ in the preheader that can
now be removed by dead-code elimination.

REWRITING COMPARISONS
A variable k is almost useless if it is used only in comparisons against loop-
invariant values and in definitions of itself, and there is some other induction
variable in the same family that is not useless. An almost-useless variable may
be made useless by modifying the comparison to use the related induction
variable.

If we have k < n, where j and k are coordinated induction variables in
the family of i , and n is loop-invariant, then we know that (j − aj)/bj =
(k − ak)/bk , so therefore the comparison k < n can be written as

ak + bk

b j
(j − aj) < n.

Now, we can subtract ak from both sides and multiply both sides by bj/bk . If
bj/bk is positive, the resulting comparison is

j − aj <
bj

bk
(n − ak),

but if bj/bk is negative, then the comparison becomes

j − aj >
bj

bk
(n − ak)

instead. Finally, we add aj to both sides (here we show the positive case):

j <
bj

bk
(n − ak) + aj .

The entire right-hand side of this comparison is loop-invariant, so it can be
computed just once in the loop preheader.

Restrictions:

1. If b j (n − ak) is not evenly divisible by bk , then this transformation cannot be
used, because we cannot hold a fractional value in an integer variable.

390

18.4. ARRAY-BOUNDS CHECKS

2. If b j or bk is not constant, but is a loop-invariant value whose sign is not
known, then the transformation cannot be used since we won’t know which
comparison (less-than or greater-than) to use.

Example. In our example, the comparison i < n can be replaced by k ′ <

a + 4 · n. Of course, a + 4 · n is loop-invariant and should be hoisted. Then i
will be useless and may be deleted. The transformed program is

s ← 0
k ′ ← a
b ← n · 4
c ← a + b

L1 : if k ′ < c goto L2

k ← k ′

x ← M[k]
s ← s + x
k ′ ← k ′ + 4
goto L1

L2

Finally, copy propagation can eliminate k ← k ′, and we obtain Program 18.8b.

18.4 ARRAY-BOUNDS CHECKS

Safe programming languages automatically insert array-bounds checks on
every subscript operation (see the sermon on page 147). Of course, in well-
written programs all of these checks are redundant, since well-written pro-
grams don’t access arrays out of bounds. We would like safe languages to
achieve the fast performance of unsafe languages. Instead of turning off the
bounds checks (which would not be safe) we ask the compiler to remove any
checks that it can prove are redundant.

We cannot hope to remove all the redundant bounds checks, because this
problem is not computable (it is as hard as the halting problem). But many
array subscripts are of the form a[i], where i is an induction variable. These
the compiler can often understand well enough to optimize.

The bounds for an array are generally of the form 0 ≤ i ∧ i < N . When
N is nonnegative, as it always is for array sizes, this can be implemented as
i ≤u N , where ≤u is the unsigned comparison operator.

391

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

Conditions for eliminating array-bounds checking. Although it seems nat-
ural and intuitive that an induction variable must stay within a certain range,
and we should be able to tell whether that range does not exceed the bounds
of the array, the criteria for eliminating a bounds check from a loop L are
actually quite complicated:

1. There is an induction variable j and a loop-invariant u used in a statement s1,
taking one of the following forms:

if j < u goto L1 else goto L2
if j ≥ u goto L2 else goto L1
if u > j goto L1 else goto L2
if u ≤ j goto L2 else goto L1

where L2 is out of the loop.
2. There is a statement s2 of the form, if k <u n goto L3 else goto L4,

where k is an induction variable coordinated with j , n is loop-invariant, and
s1 dominates s2.

3. There is no loop nested within L containing a definition of k.
4. k increases when j does, that is, b j/bk > 0.

Often, n will be an array length. In a language with static arrays an array
length n is a constant. In many languages with dynamic arrays, array lengths
are loop-invariant. In MiniJava, Java, and ML the length of an array cannot be
dynamically modified once the array has been allocated. The array length n
will typically be calculated by fetching the length field of some array pointer
v. For the sake of illustration, assume the length field is at offset 0 in the array
object. To avoid the need for complicated alias analysis, the semantic anal-
ysis phase of the compiler should mark the expression M[v] as immutable,
meaning that no other store instruction can possibly update the contents of
the length field of the array v. If v is loop-invariant, then n will also be loop-
invariant. Even if n is not an array length but is some other loop invariant, we
can still optimize the comparison k <u n.

We want to put a test in the loop preheader that expresses the idea that in
every iteration, k ≥ 0 ∧ k < n. Let k0 be the value of k at the end of the
preheader, and let !k1,!k2, . . . ,!km be all the loop-invariant values that
are added to k inside the loop. Then we can ensure k ≥ 0 by testing

k ≥ 0 ∧ !k1 ≥ 0 ∧ · · · ∧ !km ≥ 0

at the end of the preheader.

392

18.4. ARRAY-BOUNDS CHECKS

Let !k1,!k2, . . . ,!kp be the set of loop-invariant values that are added
to k on any path between s1 and s2 that does not go through s1 (again). Then,
to ensure k < n at s2, it is sufficient to ensure that k < n − (!k1 +· · ·+!kp)

at s1. Since we know (k − ak)/bk = (j − aj)/bj , this test becomes

j <
bj

bk
(n − (!k1 + · · · + !kp) − ak) + aj .

This will always be true if

u <
bj

bk
(n − (!k1 + · · · + !kp) − ak) + aj

since the test j < u dominates the test k < n.
Since everything in this comparison is loop-invariant, we can move it to

the preheader as follows. First, ensure that definitions of loop-invariants are
hoisted out of the loop. Then, rewrite the loop L as follows: Copy all the
statements of L to make a new loop L ′ with header L ′

h . Inside L ′, replace the
statement

if k < n goto L ′
3 else goto L ′

4

by goto L ′
3. At the end of the preheader of L , put statements equivalent to

if k ≥ 0 ∧ k1 ≥ 0 ∧ · · · ∧ km ≥ 0
∧ u <

b j
bk

(n − (!k1 + · · · + !kp) − ak) + aj

goto L ′
h

else goto Lh

The conditional goto tests whether k will always be between 0 and n.
Sometimes we will have enough information to evaluate this complicated

condition at compile time. This will be true in at least two situations:

1. all the loop-invariants mentioned in it are constants; or
2. n and u are the same temporary variable, ak = a j , bk = b j , and there are

no !k’s added to k between s1 and s2. In a language like MiniJava or Java or
ML, this could happen if the programmer writes,

let var u := length(A)
var i := 0

in while i<u
do (sum := sum + A[i];

i := i+1)
end

The quadruples for length(A) will include u ← M[A], assuming that the
length of an array is fetched from offset zero from the array pointer; and the

393

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

quadruples for A[i] will include n ← M[A], to fetch n for doing the bounds
check. Now the expressions defining u and n are common subexpressions,
assuming the expression M[A] is marked so that we know that no other STORE

instruction is modifying the contents of memory location M[A].

If we can evaluate the big comparison at compile time, then we can uncondi-
tionally use loop L or loop L ′, and delete the loop that we are not using.

Cleaning up. After this optimization, the program may have several loose
ends. Statements after the label L ′

4 may be unreachable; there may be several
useless computations of n and k within L ′. The former can be cleaned up by
unreachable-code elimination, and the latter by dead-code elimination.

Generalizations. To be practically useful, the algorithm needs to be general-
ized in several ways:

1. The loop-exit comparison might take one of the forms

if j ≤ u′ goto L1 else goto L2
if j > u′ goto L2 else goto L1
if u′ ≥ j goto L1 else goto L2
if u′ < j goto L2 else goto L1

which compares j ≤ u′ instead of j < u.
2. The loop-exit test might occur at the bottom of the loop body, instead of before

the array-bounds test. We can describe this situation as follows: There is a test

s2 : if j < u goto L1 else goto L2

where L2 is out of the loop and s2 dominates all the loop back edges. Then
the !ki of interest are the ones between s2 and any back edge, and between
the loop header and s1.

3. We should handle the case where b j/bk < 0.
4. We should handle the case where j counts downward instead of up, and the

loop-exit test is something like j ≥ l, for l a loop-invariant lower bound.
5. The induction-variable increments might be “undisciplined”; for example,

while i<n-1
do (if sum<0

then (i:=i+1; sum:= sum+i; i:=i+1)
else i := i+2;

sum := sum + a[i])

Here there are three !i , (of 1, 1, and 2, respectively). Our analysis will assume
that any, all, or none of these increments may be applied; but clearly the effect
is i ← i +2 on either path. In such cases, an analysis that hoists (and merges)
the increments above the if will be useful.

394

18.5. LOOP UNROLLING

L1 : x ← M[i]
s ← s + x
i ← i + 4
if i < n goto L1 else L2

L2
(a) Before

L1 : x ← M[i]
s ← s + x
i ← i + 4
if i < n goto L ′

1 else L2

L ′
1 : x ← M[i]

s ← s + x
i ← i + 4
if i < n goto L1 else L2

L2
(b) After

PROGRAM 18.10. Useless loop unrolling.

18.5 LOOP UNROLLING

Some loops have such a small body that most of the time is spent incre-
menting the loop-counter variable and testing the loop-exit condition. We can
make these loops more efficient by unrolling them, putting two or more copies
of the loop body in a row.

Given a loop L with header node h and back edges si → h, we can unroll
the loop as follows:

1. Copy the nodes to make a loop L ′ with header h′ and back edges s′
i → h′.

2. Change all the back edges in L from si → h to si → h′.
3. Change all the back edges in L ′ from s′

i → h′ to s′
i → h.

For example, Program 18.10a unrolls into Program 18.10b. But nothing
useful has been accomplished; each “original” iteration still has an increment
and a conditional branch.

By using information about induction variables, we can do better. We need
an induction variable i such that every increment i ← i +! dominates every
back edge of the loop. Then we know that each iteration increments i by
exactly the sum of all the !’s, so we can agglomerate the increments and
loop-exit tests to get Program 18.11a. But this unrolled loop works correctly
only if the original loop iterated an even number of times. We execute “odd”
iterations in an epilogue, as shown in Program 18.11b.

Here we have shown only the case of unrolling by a factor of two. When a
loop is unrolled by a factor of K , then the epilogue is a loop (much like the
original one) that iterates up to K − 1 times.

395

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

L1 : x ← M[i]
s ← s + x
x ← M[i + 4]
s ← s + x
i ← i + 8
if i < n goto L1 else L2

L2
(a) Fragile

if i < n − 8 goto L1 else L2

L1 : x ← M[i]
s ← s + x
x ← M[i + 4]
s ← s + x
i ← i + 8
if i < n − 8 goto L1 else L2

L2 x ← M[i]
s ← s + x
i ← i + 4
if i < n goto L2 else L3

L3
(b) Robust

PROGRAM 18.11. Useful loop unrolling; (a) works correctly only for an even
number of iterations of the original loop; (b) works for any
number of iterations of the original loop.

F U R T H E R
R E A D I N G

Lowry and Medlock [1969] characterized loops using dominators and per-
formed induction-variable optimizations. Allen [1970] introduced the notion
of reducible flow graphs. Aho et al. [1986] describe many optimizations, anal-
yses, and transformations on loops.

Splitting control-flow nodes or edges gives a place into which statements
can be moved. The loop-preheader transformation described on page 382 is
an example of such splitting. Other examples are landing pads [Cytron et al.
1986] – nodes inserted in each loop-exit edge; postbody nodes [Wolfe 1996]
– nodes inserted at the end of a loop body (see Exercise 18.6); and edge
splitting to ensure a unique successor or predecessor property [Rosen et al.
1988] (see Section 19.1).

Chapter 19 describes other loop optimizations and a faster algorithm for
computing dominators.

396

EXERCISES

E X E R C I S E S

18.1 a. Calculate the dominators of each node of this flowgraph:

A

C

E

H

B

D

G

F

J

K L M

I

b. Show the immediate-dominator tree.
c. Identify the set of nodes in each natural loop.

18.2 Calculate the immediate-dominator tree of each of the following graphs:

a. The graph of Figure 2.8.
b. The graph of Exercise 2.3a.
c. The graph of Exercise 2.5a.
d. The graph of Figure 3.27.

*18.3 Let G be a control-flow graph, h be a node in G, A be the set of nodes in a
loop with header h, and B be the set of nodes in a different loop with header
h. Prove that the subgraph whose nodes are A ∪ B is also a loop.

*18.4 The immediate-dominator theorem (page 380) is false for graphs that contain
unreachable nodes.

a. Show a graph with nodes d, e, and n such that d dominates n, e dominates
n, but neither d dominates e nor e dominates d.

b. Identify which step of the proof is invalid for graphs containing unreach-
able nodes.

c. In approximately three words, name an algorithm useful in finding un-
reachable nodes.

*18.5 Show that in a connected flowgraph (one without unreachable nodes), a natural
loop as defined on page 381 satisfies the definition of loop given on page 376.

18.6 For some purposes it is desirable that each loop-header node should have
exactly two predecessors, one outside the loop and one inside. We can ensure
that there is only one outside predecessor by inserting a preheader node, as

397

CHAPTER EIGHTEEN. LOOP OPTIMIZATIONS

described in Section 18.1. Explain how to insert a postbody node to ensure
that the loop header has only one predecessor inside the loop.

*18.7 Suppose any arithmetic overflow or divide-by-zero will raise an exception at
run time. If we hoist t ← a ⊕ b out of a loop, and the loop might not have
executed the statement at all, then the transformed program may raise the
exception where the original program did not. Revise the criteria for loop-
invariant hoisting to take account of this. Instead of writing something informal
like “might not execute the statement,” use the terminology of dataflow analysis
and dominators.

18.8 On pages 385–385 the transformation of a while loop to a repeat loop is
described. Show how a while loop may be characterized in the control-flow
graph of basic blocks (using dominators) so that the optimizer can recognize it.
The body of the loop may have explicit break statements that exit the loop.

*18.9 For bounds-check elimination, we required (on page 392) that the loop-exit
test dominate the bounds-check comparison. If it is the other way around, then
(effectively) we have one extra array subscript at the end of the loop, so the
criterion

ak + i · bk ≥ 0 ∧ (n − ak) · b j < (u − a j) · bk

is “off by one.” Rewrite this criterion for the case where the bounds-check
comparison occurs before the loop-exit test.

*18.10 Write down the rules for unrolling a loop, such that the induction-variable
increments are agglomerated and the unrolled loop has only one loop-exit test
per iteration, as was shown informally for Program 18.10.

398

19
Static Single-Assignment
Form

dom-i-nate: to exert the supreme determining or guiding
influence on

Webster’s Dictionary

Many dataflow analyses need to find the use sites of each defined variable or
the definition sites of each variable used in an expression. The def-use chain
is a data structure that makes this efficient: For each statement in the flow
graph, the compiler can keep a list of pointers to all the use sites of variables
defined there, and a list of pointers to all definition sites of the variables used
there. In this way the compiler can hop quickly from use to definition to use
to definition.

An improvement on the idea of def-use chains is static single-assignment
form, or SSA form, an intermediate representation in which each variable has
only one definition in the program text. The one (static) definition site may be
in a loop that is executed many (dynamic) times, thus the name static single-
assignment form instead of single-assignment form (in which variables are
never redefined at all).

The SSA form is useful for several reasons:
1. Dataflow analysis and optimization algorithms can be made simpler when

each variable has only one definition.
2. If a variable has N uses and M definitions (which occupy about N + M in-

structions in a program), it takes space (and time) proportional to N · M to
represent def-use chains – a quadratic blowup (see Exercise 19.8). For almost
all realistic programs, the size of the SSA form is linear in the size of the
original program (but see Exercise 19.9).

3. Uses and defs of variables in SSA form relate in a useful way to the domi-
nator structure of the control-flow graph, which simplifies algorithms such as
interference-graph construction.

399

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

a ← x + y
b ← a − 1
a ← y + b
b ← x · 4
a ← a + b

a1 ← x + y
b1 ← a1 − 1
a2 ← y + b1

b2 ← x · 4
a3 ← a2 + b2

(a) (b)

FIGURE 19.1. (a) A straight-line program. (b) The program in single-
assignment form.

4. Unrelated uses of the same variable in the source program become different
variables in SSA form, eliminating needless relationships. An example is the
program,

for i ← 1 to N do A[i] ← 0
for i ← 1 to M do s ← s + B[i]

where there is no reason that both loops need to use the same machine reg-
ister or intermediate-code temporary variable to hold their respective loop
counters, even though both are named i .

In straight-line code, such as within a basic block, it is easy to see that
each instruction can define a fresh new variable instead of redefining an old
one, as shown in Figure 19.1. Each new definition of a variable (such as a)
is modified to define a fresh new variable (a1, a2, . . .), and each use of the
variable is modified to use the most recently defined version. This is a form
of value numbering (see page 365).

But when two control-flow paths merge together, it is not obvious how to
have only one assignment for each variable. In Figure 19.2a, if we were to
define a new version of a in block 1 and in block 3, which version should be
used in block 4? Where a statement has more than one predecessor, there is
no notion of “most recent.”

To solve this problem we introduce a notational fiction, called a φ-function.
Figure 19.2b shows that we can combine a1 (defined in block 1) and a2 (de-
fined in block 3) using the function a3 ← φ(a1, a2). But unlike ordinary
mathematical functions, φ(a1, a2) yields a1 if control reaches block 4 along
the edge 2 → 4, and yields a2 if control comes in on edge 3 → 4.

How does the φ-function know which edge was taken? That question has
two answers:

• If we must execute the program, or translate it to executable form, we can

400

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

 a ← b
3

 b ← M[x]
 a ← 0

1

if b < 4 2

 c ← a + b
4

 a2 ← b1
3

b1 ← M[x0]
a1 ← 0

1

if b1 < 4 2

a3 ← ø (a2, a1)
c1 ← a3 + b1

4

 a2 ← b1
3

b1 ← M[x0]
a1 ← 0

1

if b1 < 4 2

a3 ← ø (a2, a1)
c1 ← a3 + b1

4

5

(a) (b) (c)

FIGURE 19.2. (a) A program with a control-flow join; (b) the program trans-
formed to single-assignment form; (c) edge-split SSA form.

0a
1

b a + 1
c c + b
a b*2
if a < N

return c

2

3

←

←
←
←

a ø (a , a

return c 3

1 2)3
b ø (b , b 0)1
c ø (c , c0 1)2
b2 a3 + 1
c1 c + b2 2

2a b * 2 2
if 2a < N

1

2

 2

←
←
←
←
←
←

a 0 1
1 ←

4

(a) (b)

FIGURE 19.3. (a) A program with a loop; (b) the program transformed to edge-
split single-assignment form. a0, b0, c0 are initial values of the
variables before block 1.

“implement” the φ-function using a MOVE instruction on each incoming edge,
as shown in Section 19.6.

• In many cases, we simply need the connection of uses to definitions, and don’t
need to “execute” the φ-functions during optimization. In these cases, we can
ignore the question of which value to produce.

Consider Figure 19.3a, which contains a loop. We can convert this to static
single-assignment form as shown in Figure 19.3b. Note that variables a and c
each need a φ-function to merge their values that arrive on edges 1 → 2 and

401

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

2 → 2. The φ-function for b1 can later be deleted by dead-code elimination,
since b1 is a dead variable. The variable c is live on entry (after conversion to
SSA, the implicit definition c0 is live); this might be an uninitialized variable,
or perhaps c is a formal parameter of the function whose body this is.

The assignment c1 ← c2 + b2 will be executed many times; thus the vari-
able c1 is updated many times. This illustrates that we do not have a program
with dynamic single-assignment (like a pure functional program), but a pro-
gram in which each variable has only one static site of definition.

19.1 CONVERTING TO SSA FORM

The algorithm for converting a program to SSA form first adds φ-functions
for the variables, then renames all the definitions and uses of variables using
subscripts. The sequence of steps is illustrated in Figure 19.4.

CRITERIA FOR INSERTING φ -FUNCTIONS
We could add a φ-function for every variable at each join point (that is, each
node in the control-flow graph with more than one predecessor). But this is
wasteful and unnecessary. For example, block 4 in Figure 19.2b is reached
by the same definition of b along each incoming edge, so it does not need
a φ-function for b. The following criterion characterizes the nodes where a
variable’s dataflow paths merge:

Path-convergence criterion. There should be a φ-function for variable a at
node z of the flow graph exactly when all of the following are true:

1. There is a block x containing a definition of a,
2. There is a block y (with y ̸= x) containing a definition of a,
3. There is a nonempty path Pxz of edges from x to z,
4. There is a nonempty path Pyz of edges from y to z,
5. Paths Pxz and Pyz do not have any node in common other than z, and
6. The node z does not appear within both Pxz and Pyz prior to the end, though

it may appear in one or the other.

We consider the start node to contain an implicit definition of every variable,
either because the variable may be a formal parameter or to represent the
notion of a ← uninitialized without special cases.

Note, however, that a φ-function itself counts as a definition of a, so the
path-convergence criterion must be considered as a set of equations to be

402

19.1. CONVERTING TO SSA FORM

i ← 1
j ← 1
k ← 0
while k < 100

if j < 20
j ← i
k ← k + 1

else
j ← k
k ← k + 2

return j

if j < 20 3 return j 4

7

1 i ← 1
 j ← 1
k ← 0

 j ← i
k ← k+1

5 j ← k
k ← k+2

6

2if k < 100

1

2

3 4

5 67

n DF(n)

1 {}
2 {2}
3 {2}
4 {}
5 {7}
6 {7}
7 {2}

(a) Program (b) CFG (c) Dominator
tree

(d) Dominance
frontiers

Variable j defined in node 1,
but DF(1) is empty. Variable
j defined in node 5, DF(5)

contains 7, so node 7 needs
φ(j, j). Now j is defined in 7
(by a φ-function), DF(7) con-
tains 2, so node 2 needs φ(j, j).
DF(6) contains 7, so node 7
needs φ(j, j) (but already has
it). DF(2) contains 2, so node
2 needs φ(j, j) (but already
has it). Similar calculation for
k. Variable i defined in node
1, DF(1) is empty, so no φ-
functions necessary for i .

if j < 20 3 return j 4

 j ← ø (j , j)
k ← ø (k, k)

7

1 i ← 1
 j ← 1
k ← 0

2 j ← ø (j, j)
k ← ø (k, k)
if k < 100

 j ← i
k ← k+1

5 j ← k
k ← k+2

6

if j2 < 20 3 return j2
4

 j4 ← ø (j3, j5)
k4 ← ø (k3,k5)

7

1 i1 ← 1
 j1 ← 1
k1 ← 0

2 j2 ← ø (j4, j1)
k2 ← ø (k4, k1)
if k2 < 100

 j3 ← i1
k3 ← k2+1

5 j5 ← k2
k5 ← k2+2

6

(e) Insertion criteria for φ-
functions

(f) φ-functions inserted (g) Variables renamed

FIGURE 19.4. Conversion of a program to static single-assignment form.
Node 7 is a postbody node, inserted to make sure there is
only one loop edge (see Exercise 18.6); such nodes are not
strictly necessary but are sometimes helpful.

403

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

satisfied. As usual, we can solve them by iteration.

Iterated path-convergence criterion:

while there are nodes x, y, z satisfying conditions 1–5
and z does not contain a φ-function for a

do insert a ← φ(a, a, . . . , a) at node Z

where the φ-function has as many a arguments as there are predecessors of
node z.

Dominance property of SSA form. An essential property of static single-
assignment form is that definitions dominate uses; more specifically,

1. If x is the i th argument of a φ-function in block n, then the definition of x
dominates the i th predecessor of n.

2. If x is used in a non-φ statement in block n, then the definition of x dominates
node n.

Section 18.1 defines the dominance relation: d dominates n if every path from
the start node to n goes through d.

THE DOMINANCE FRONTIER
The iterated path-convergence algorithm for placing φ-functions is not prac-
tical, since it would be very costly to examine every triple of nodes x, y, z
and every path leading from x and y. A much more efficient algorithm uses
the dominator tree of the flow graph.

Definitions. x strictly dominates w if x dominates w and x ̸= w. In this
chapter we use successor and predecessor to refer to graph edges, and parent
and child to refer to tree edges. Node x is an ancestor of y if there is a path
x → y of tree edges, and is a proper ancestor if that path is nonempty.

The dominance frontier of a node x is the set of all nodes w such that x
dominates a predecessor of w, but does not strictly dominate w.

Figure 19.5a illustrates the dominance frontier of a node; in essence, it is
the “border” between dominated and undominated nodes.

Dominance frontier criterion. Whenever node x contains a definition of some
variable a, then any node z in the dominance frontier of x needs a φ-function
for a.

404

19.1. CONVERTING TO SSA FORM

5

6 7 10 11

12

9

1

2

3

4

13

8

5

6 7 10 11

12

9

1

2

3

4

13

8

5

6 7 10 11

12

9

1

2

3

4

13

8

(a) (b) (c)

FIGURE 19.5. Node 5 dominates all the nodes in the grey area. (a) Dominance
frontier of node 5 includes the nodes (4, 5, 12, 13) that are
targets of edges crossing from the region dominated by 5 (grey
area including node 5) to the region not strictly dominated by 5
(white area including node 5). (b) Any node in the dominance
frontier of n is also a point of convergence of nonintersecting
paths, one from n and one from the root node. (c) Another
example of converging paths P1,5 and P5,5.

Iterated dominance frontier. Since a φ-function itself is a kind of definition,
we must iterate the dominance-frontier criterion until there are no nodes that
need φ-functions.

Theorem. The iterated dominance frontier criterion and the iterated path-
convergence criterion specify exactly the same set of nodes at which to put
φ-functions.

The end-of-chapter bibliographic notes refer to a proof of this theorem.
We will sketch one half of the proof, showing that if w is in the dominance
frontier of a definition, then it must be a point of convergence. Suppose there
is a definition of variable a at some node n (such as node 5 in Figure 19.5b),
and node w (such as node 12 in Figure 19.5b) is in the dominance frontier of
n. The root node implicitly contains a definition of every variable, including
a. There is a path Prw from the root node (node 1 in Figure 19.5) to w that
does not go through n or through any node that n dominates; and there is a
path Pnw from n to w that goes only through dominated nodes. These paths
have w as their first point of convergence.

Computing the dominance frontier. To insert all the necessary φ-functions,
for every node n in the flowgraph we need DF[n], its dominance frontier.
Given the dominator tree, we can efficiently compute the dominance frontiers
of all the nodes of the flowgraph in one pass. We define two auxiliary sets

405

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

DFlocal[n]: The successors of n that are not strictly dominated by n;

DFup[n]: Nodes in the dominance frontier of n that are not strictly domi-
nated by n’s immediate dominator.

The dominance frontier of n can be computed from DFlocal and DFup:

DF[n] = DFlocal[n] ∪
⋃

c∈children[n]
DFup[c],

where children[n] are the nodes whose immediate dominator (idom) is n.
To compute DFlocal[n] more easily (using immediate dominators instead

of dominators), we use the following theorem: DFlocal[n] = the set of those
successors of n whose immediate dominator is not n.

The following computeDF function should be called on the root of the
dominator tree (the start node of the flowgraph). It walks the tree computing
DF[n] for every node n: It computes DFlocal[n] by examining the successors
of n, then combines DFlocal[n] and (for each child c) DFup[c].

computeDF[n] =
S ← {}
for each node y in succ[n] This loop computes DFlocal[n]

if idom(y) ̸= n
S ← S ∪ {y}

for each child c of n in the dominator tree
computeDF[c]
for each element w of DF[c] This loop computes DFup[c]

if n does not dominate w, or if n = w

S ← S ∪ {w}
DF[n] ← S

This algorithm is quite efficient. It does work proportional to the size (num-
ber of edges) of the original graph, plus the size of the dominance frontiers it
computes. Although there are pathological graphs in which most of the nodes
have very large dominance frontiers, in most cases the total size of all the
DFs is approximately linear in the size of the graph, so this algorithm runs in
“practically” linear time.

INSERTING φ -FUNCTIONS
Starting with a program not in SSA form, we need to insert just enough
φ-functions to satisfy the iterated dominance frontier criterion. To avoid re-

406

19.1. CONVERTING TO SSA FORM

Place-φ-Functions =
for each node n

for each variable a in Aorig[n]
defsites[a] ← defsites[a] ∪ {n}

for each variable a
W ← defsites[a]
while W not empty

remove some node n from W
for each y in DF[n]

if a ̸∈ Aφ[y]
insert the statement a ← φ(a, a, . . . , a) at the top

of block y, where the φ-function has as many
arguments as y has predecessors

Aφ[Y] ← Aφ[Y] ∪ {a}
if a ̸∈ Aorig[y]

W ← W ∪ {y}

ALGORITHM 19.6. Inserting φ-functions.

examining nodes where no φ-function has been inserted, we use a work-list
algorithm.

Algorithm 19.6 starts with a set V of variables, a graph G of control-flow
nodes – each node is a basic block of statements – and for each node n a set
Aorig[n] of variables defined in node n. The algorithm computes Aφ[a], the
set of nodes that must have φ-functions for variable a. Sometimes a node may
contain both an ordinary definition and a φ-function for the same variable; for
example, in Figure 19.3b, a ∈ Aorig[2] and 2 ∈ Aφ[a].

The outer loop is performed once for each variable a. There is a work list
W of nodes that might violate the dominance-frontier criterion.

The representation for W must allow quick testing of membership and
quick extraction of an element. Work-list algorithms (in general) do not care
which element of the list they remove, so an array or linked list of nodes
suffices. To quickly test membership in W , we can use a mark bit in the
representation of every node n which is set to true when n is put into the
list, and false when n is removed. If it is undesirable to modify the node
representation, a list plus a hash table will also work efficiently.

This algorithm does a constant amount of work (a) for each node and

407

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

edge in the control-flow graph, (b) for each statement in the program, (c)
for each element of every dominance frontier, and (d) for each inserted φ-
function. For a program of size N , the amounts a and b are proportional to N ,
c is usually approximately linear in N . The number of inserted φ-functions
(d) could be N2 in the worst case, but empirical measurement has shown
that it is usually proportional to N . So in practice, Algorithm 19.6 runs in
approximately linear time.

RENAMING THE VARIABLES
After the φ-functions are placed, we can walk the dominator tree, renaming
the different definitions (including φ-functions) of variable a to a1, a2, a3,
and so on.

In a straight-line program, we would rename all the definitions of a, and
then each use of a is renamed to use the most recent definition of a. For
a program with control-flow branches and joins whose graph satisfies the
dominance-frontier criterion, we rename each use of a to use the closest def-
inition d of a that is above a in the dominator tree.

Algorithm 19.7 renames all uses and definitions of variables, after the φ-
functions have been inserted by Algorithm 19.6. In traversing the dominator
tree, the algorithm “remembers” for each variable the most recently defined
version of each variable, on a separate stack for each variable.

Although the algorithm follows the structure of the dominator tree – not
the flowgraph – at each node in the tree it examines all outgoing flow edges, to
see if there are any φ-functions whose operands need to be properly
numbered.

This algorithm takes time proportional to the size of the program (after φ-
functions are inserted), so in practice it should be approximately linear in the
size of the original program.

EDGE SPLITTING
Some analyses and transformations are simpler if there is never a control-flow
edge that leads from a node with multiple successors to a node with multiple
predecessors. To give the graph this unique successor or predecessor prop-
erty, we perform the following transformation: For each control-flow edge
a → b such that a has more than one successor and b has more than one pre-
decessor, we create a new, empty control-flow node z, and replace the a → b
edge with an a → z edge and a z → b edge.

408

19.1. CONVERTING TO SSA FORM

Initialization:
for each variable a

Count[a] ← 0
Stack[a] ← empty
push 0 onto Stack[a]

Rename(n) =
for each statement S in block n

if S is not a φ-function
for each use of some variable x in S

i ← top(Stack[x])
replace the use of x with xi in S

for each definition of some variable a in S
Count[a] ← Count[a] + 1
i ← Count[a]
push i onto Stack[a]
replace definition of a with definition of ai in S

for each successor Y of block n,
Suppose n is the j th predecessor of Y
for each φ-function in Y

suppose the j th operand of the φ-function is a
i ← top(Stack[a])
replace the j th operand with ai

for each child X of n
Rename(X)

for each statement S in block n
for each definition of some variable a in S

pop Stack[a]

ALGORITHM 19.7. Renaming variables.

An SSA graph with this property is in edge-split SSA form. Figure 19.2
illustrates edge splitting. Edge splitting may be done before or after insertion
of φ-functions.

409

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

19.2 EFFICIENT COMPUTATION OF THE DOMINATOR TREE

A major reason for using SSA form is that it makes the optimizing compiler
faster. Instead of using costly iterative bit-vector algorithms to link uses to
definitions (to compute reaching definitions, for example), the compiler can
just look up the (unique) definition, or the list of uses, of each variable.

For SSA to help make a compiler faster, we must be able to compute
the SSA form quickly. The algorithms for computing SSA from the domi-
nator tree are quite efficient. But the iterative set-based algorithm for com-
puting dominators, given in Section 18.1, may be slow in the worst case. An
industrial-strength compiler that uses dominators should use a more efficient
algorithm for computing the dominator tree.

The near-linear-time algorithm of Lengauer and Tarjan relies on properties
of the depth-first spanning tree of the control-flow graph. This is just the
recursion tree implicitly traversed by the depth-first search (DFS) algorithm,
which numbers each node of the graph with a depth-first number (dfnum) as
it is first encountered.

The algorithm is rather technical; those readers who feel content just know-
ing that the dominator tree can be calculated quickly can skip to Section 19.3.

DEPTH-FIRST SPANNING TREES
We can use depth-first search to calculate a depth-first spanning tree of the
control-flow graph. Figure 19.8 shows a CFG and a depth-first spanning tree,
along with the dfnum of each node.

A given CFG may have many different depth-first spanning trees. From
now on we will assume that we have arbitrarily picked one of them – by
depth-first search. When we say “a is an ancestor of b” we mean that there is
some path from a to b following only spanning-tree edges, or that a = b; “a
is a proper ancestor of b” means that a is an ancestor of b and a ̸= b.

Properties of depth-first spanning trees. The start node r of the CFG is the
root of the depth-first spanning tree.

If a is a proper ancestor of b, then dfnum(a) < dfnum(b).
Suppose there is a CFG path from a to b but a is not an ancestor of b.

This means that some edge on the path is not a spanning-tree edge, so b must
have been reached in the depth-first search before a was (otherwise, after
visiting a the search would continue along tree edges to b). Thus, dfnum(a) >

dfnum(b).

410

19.2. EFFICIENT COMPUTATION OF THE DOMINATOR TREE

A

C

E

H

B

D

GF

J
K

L
M

I

A1

C11

E12

H13

B2

D3

G9F4

J10

K8

L6
M7

I5

A

C

E H

B

D G

F J

K L

M

I

A

C

E H

B

D G

F J

K

L

M

I

(a) Graph (b) Depth-first
spanning tree

(c) Semidominator
tree

(d) Dominator
tree

FIGURE 19.8. A control-flow graph and trees derived from it. The numeric
labels in part (b) are the dfnums of the nodes.

Therefore, if we know that there is a path from a to b, we can test whether
a is an ancestor of b just by comparing the dfnum’s of a and b.

When drawing depth-first spanning trees, we order the children of a node
in the order that they are visited by the depth-first search, so that nodes to the
right have a higher dfnum. This means that if a is an ancestor of b, and there
is a CFG path from a to b that departs from the spanning tree, it must branch
off to the right of the tree path, never to the left.

Dominators and spanning-tree paths. Consider a nonroot node n in the CFG,
and its immediate dominator d. The node d must be an ancestor of n in the
spanning tree – because any path (including the spanning-tree path) from r to
n must include d. Therefore dfnum(d) < dfnum(n).

Now we know that n’s immediate dominator must be on the spanning-tree
path between r and n; all that’s left is to see how high up it is.

If some ancestor x does not dominate
n, then there must be a path that departs
from the spanning-tree path above x and
rejoins it below x . The nodes on the by-
passing path are not ancestors of n, so
their dfnum’s are higher than n’s. The
path might rejoin the spanning-tree path
to n either at n or above n.

r

n

x

•
•

•

•
•

411

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

SEMIDOMINATORS
Paths that bypass ancestors of n are useful for proving that those ancestors
do not dominate n. Let us consider, for now, only those bypassing paths that
rejoin the spanning tree at n (not above n). Let’s find the path that departs
from the tree at the highest possible ancestor s, and rejoins the tree at n. We
will call s the semidominator of n.

Another way of saying this is that s is the node of smallest dfnum having
a path to n whose nodes (not counting s and n) are not ancestors of n. This
description of semidominators does not explicitly say that s must be an ances-
tor of n, but of course any nonancestor with a path to n would have a higher
dfnum than n’s own parent in the spanning tree, which itself has a path to n
with no nonancestor internal nodes (actually, no internal nodes at all).

Very often, a node’s semidominator is also its
immediate dominator. But as the figure at right
shows, to find the dominator of n it’s not enough
just to consider bypassing paths that rejoin the
tree at n. Here, a path from r to n bypasses n’s
semidominator s, but rejoins the tree at node y,
above n. However, finding the semidominator s is
still a useful step toward finding the dominator d.

r

s

y

v
n

d

u

x

• •

•

Semidominator Theorem. To find the semidominator of a node n, consider
all predecessors v of n in the CFG.

• If v is a proper ancestor of n in the spanning tree (so dfnum(v) < dfnum(n)),
then v is a candidate for semi(n).

• If v is a nonancestor of n (so dfnum(v) > dfnum(n)), then for each u that is
an ancestor of v (or u = v), let semi(u) be a candidate for semi(n).

Of all these candidates, the one with lowest dfnum is the semidominator of n.

Proof. See the Further Reading section.

Calculating dominators from semidominators. Let s be the semidominator
of n. If there is a path that departs from the spanning tree above s, bypasses
s, and rejoins the spanning tree at some node between s and n, then s does
not dominate n.

However, if we find the node y between s and n with the smallest-numbered
semidominator, and semi(y) is a proper ancestor of s, then y’s immediate
dominator also immediately dominates n.

412

19.2. EFFICIENT COMPUTATION OF THE DOMINATOR TREE

Dominator Theorem. On the spanning-tree path below semi(n) and above
or including n, let y be the node with the smallest-numbered semidominator
(minimum dfnum(semi(y))). Then,

idom(n) =
{

semi(n) if semi(y) = semi(n)

idom(y) if semi(y) ̸= semi(n).

Proof. See the Further Reading section.

THE LENGAUER-TARJAN ALGORITHM
Using these two theorems, Algorithm 19.9 uses depth-first search (DFS) to
compute dfnum’s for every node.

Then it visits the nodes in order, from highest dfnum to lowest, computing
semidominators and dominators. As it visits each node, it puts the node into
a spanning forest for the graph. It’s called a forest because there may be mul-
tiple disconnected fragments; only at the very end will it be a single spanning
tree of all the CFG nodes.

Calculating semidominators requires that, given some edge v → n, we
look at all ancestors of v in the spanning tree that have a higher dfnum than n.
When Algorithm 19.9 processes node n, only nodes with a higher dfnum than
n will be in the forest. Thus, the algorithm can simply examine all ancestors
of v that are already in the forest.

We use the Dominator Theorem to compute the immediate dominator of
n, by finding node y with the lowest semidominator on the path from semi[n]
to n. When s = semi[n] is being computed, it’s not yet possible to determine
y; but we will be able to do so later, when s is being added to the spanning
forest. Therefore with each semidominator s we keep a bucket of all the nodes
that s semidominates; when s is linked into the spanning forest, we can then
calculate the idom of each node in [s].

The forest is represented by an ancestor array: For each node v, ancestor[v]
points to v’s parent. This makes searching upward from v easy.

Algorithm 19.10a shows a too-slow version of the AncestorWithLowest-
Semi and Link functions that manage the spanning forest. Link sets the ances-
tor relation, and AncestorWithLowestSemi searches upward for the ancestor
whose semidominator has the smallest dfnum.

But each call to AncestorWithLowestSemi could take linear time (in N ,
the number of nodes in the graph) if the spanning tree is very deep; and
AncestorWithLowestSemi is called once for each node and edge. Thus Al-
gorithm 19.9+19.10a has quadratic worst-case time complexity.

413

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

DFS(node p, node n) =
if dfnum[n] = 0

dfnum[n] ← N; vertex[N] ← n; parent[n] ← p
N ← N + 1
for each successor w of n

DFS(n, w)

Link(node p, node n) = add edge p → n to spanning forest implied by ancestor array
AncestorWithLowestSemi(node n) = in the forest, find the nonroot ancestor of n that

has the lowest-numbered semidominator
Dominators() =

N ← 0; ∀n. bucket[n] ← {}
∀n. dfnum[n] ← 0, semi[n] ← ancestor[n] ← idom[n] ← samedom[n] ← none
DFS(none, r)
for i ← N − 1 downto 1 Skip over node 0, the root node.

n ← vertex[i]; p ← parent[n]; s ← p
for each predecessor v of n

These lines calcu-
late the semidom-
inator of n, based
on the Semidom-
inator Theorem.

if dfnum[v] ≤ dfnum[n]
s′ ← v

else s′ ← semi[AncestorWithLowestSemi(v)]
if dfnum[s′] < dfnum[s]

s ← s′

semi[n] ← s
bucket[s] ← bucket[s] ∪ {n}

Calculation of n’s dominator is deferred
until the path from s to n has been linked
into the forest.Link(p, n)

for each v in bucket[p]
Now that the path from p to v has been linked into
the spanning forest, these lines calculate the dom-
inator of v, based on the first clause of the Domi-
nator Theorem, or else defer the calculation until
y’s dominator is known.

y ← AncestorWithLowestSemi(v)

if semi[y] = semi[v]
idom[v] ← p

else samedom[v] ← y
bucket[p] ← {}

for i ← 1 to N − 1
n ← vertex[i]

Now all the deferred dominator calcula-
tions, based on the second clause of the
Dominator Theorem, are performed.

if samedom[n] ̸= none
idom[n] ← idom[samedom[n]]

ALGORITHM 19.9. Lengauer-Tarjan algorithm for computing dominators.

414

19.2. EFFICIENT COMPUTATION OF THE DOMINATOR TREE

AncestorWithLowestSemi(node v) =
u ← v

while ancestor[v] ̸= none
if dfnum[semi[v]] < dfnum[semi[u]]

u ← v

v ← ancestor[v]
return u

Link(node p, node n) =
ancestor[n] ← p

AncestorWithLowestSemi(node v) =
a ← ancestor[v]
if ancestor[a] ̸= none

b ← AncestorWithLowestSemi(a)

ancestor[v] ← ancestor[a]
if dfnum[semi[b]] <

dfnum[semi[best[v]]]
best[v] ← b

return best[v]

Link(node p, node n) =
ancestor[n] ← p; best[n] ← n

(a) Naive version, (b) With path-compression,
O(N) per operation. O(log N) per operation.

ALGORITHM 19.10. Two versions of AncestorWithLowestSemi and Link functions
for operations on spanning forest. The naive version (a) takes
O(N) per operation (so the algorithm runs in time O(N2))
and the efficient version (b) takes O(log N) amortized time per
operation, for an O(N log N) algorithm.

Path compression. The algorithm may call AncestorWithLowestSemi(v) sev-
eral times for the same node v. The first time, AncestorWithLowestSemi tra-
verses the nodes from v to a1, some ancestor of v, as shown in Figure 19.11a.
Then perhaps some new links a3 → a2 → a1 are added to the forest above a1,
so the second AncestorWithLowestSemi(v) searches up to a3. But we would
like to avoid the duplicate traversal of the path from v to a1. Furthermore, sup-
pose we later call AncestorWithLowestSemi(w) on some child of v. During
that search we would like to be able to skip from v to a1.

The technique of path compression makes AncestorWithLowestSemi faster.
For each node v in the spanning forest, we allow ancestor[v] to point to some
ancestor of v that may be far above v’s parent. But we must remember – in
best[v] – the best node in the skipped-over path between ancestor[v] and v.

ancestor[v] = Any node above v in the spanning forest.
best[v] = The node whose semidominator has the lowest dfnum, in the skipped-

over path from ancestor[v] down to v (including v but not ancestor[v]).

Now, when AncestorWithLowestSemi searches upwards, it can compress
paths by setting ancestor[v] ← ancestor[ancestor[v]], as long as it updates

415

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

a1

w

v

•
•

•
•

•
•

a1

w

v

•
•

•
•

•

a2

a3

•

a1

w

v

•
•

•
•

•
•

a1

w

v

•
•

•
•

•

a2

a3

•

(a) (b) (c) (d)

FIGURE 19.11. Path compression. (a) Ancestor links in a spanning
tree; AncestorWithLowestSemi(v) traverses three links. (b)
New nodes a2, a3 are linked into the tree. Now
AncestorWithLowestSemi(w) would traverse 6 links. (c)
AncestorWithLowestSemi(v) with path compression redirects
ancestor links, but best[v] remembers the best intervening node
on the compressed path between v and a1. (d) Now, after a2
and a3 are linked, AncestorWithLowestSemi(w) traverses only
4 links.

best[v] at the same time. This is shown in Algorithm 19.10b.
In a graph of K nodes and E edges, there will be K − 1 calls to Link and

E + K − 1 calls to AncestorWithLowestSemi. With path compression it can
be shown that this takes O(E log K) time. In terms of the “size” N = E + K
of the control-flow graph, Algorithm 19.9+19.10b takes O(N log N) time.

Balanced path compression. The most sophisticated version of the Lengauer-
Tarjan algorithm is Algorithm 19.9 with Link and AncestorWithLowestSemi
functions that rebalance the spanning trees, so that the work of path compres-
sion is undertaken only when it will do the most good. This algorithm has
time complexity O(N · α(N)), where α(N) is the slowly growing inverse-
Ackermann function that is for all practical purposes constant. In practice it
appears that this sophisticated algorithm is about 35% faster than the N log N
algorithm (when measured on graphs of up to 1000 nodes). See also the Fur-
ther Reading section of this chapter.

416

19.3. OPTIMIZATION ALGORITHMS USING SSA

19.3 OPTIMIZATION ALGORITHMS USING SSA

Since we are primarily interested in SSA form because it provides quick ac-
cess to important dataflow information, we should pay some attention to data-
structure representations of the SSA graph.

The objects of interest are statements, basic blocks, and variables:

Statement Fields of interest are containing block, previous statement in block,
next statement in block, variables defined, variables used. Each statement may
be an ordinary assignment, φ-function, fetch, store, or branch.

Variable Has a definition site (statement) and a list of use sites.
Block Has a list of statements, an ordered list of predecessors, a successor (for

blocks ending with a conditional branch, more than one successor). The order
of predecessors is important for determining the meaning φ(v1, v2, v3) inside
the block.

DEAD-CODE ELIMINATION
The SSA data structure makes dead-code analysis particularly quick and easy.
A variable is live at its site of definition if and only if its list of uses is not
empty. This is true because there can be no other definition of the same vari-
able (it’s single-assignment form!) and the definition of a variable dominates
every use – so there must be a path from definition to use.1

This leads to the following iterative algorithm for deleting dead code:

while there is some variable v with no uses
and the statement that defines v has no other side effects

do delete the statement that defines v

In deleting a statement v ← x ⊕ y or the statement v ← φ(x, y), we
take care to remove the statement from the list of uses of x and of y. This
may cause x or y to become dead, if it was the last use. To keep track of this
efficiently, Algorithm 19.12 uses a work list W of variables that need to be
reconsidered. This takes time proportional to the size of the program plus the
number of variables deleted (which itself cannot be larger than the size of the
program) – or linear time overall. The only question is how long it takes to
delete S from a (potentially long) list of uses of xi . By keeping xi ’s list of
uses as a doubly linked list, and having each use of xi point back to its own
entry in this list, the deletion can be done in constant time.

1As usual, we are considering only connected graphs.

417

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

W ← a list of all variables in the SSA program
while W is not empty

remove some variable v from W
if v’s list of uses is empty

let S be v’s statement of definition
if S has no side effects other than the assignment to v

delete S from the program
for each variable xi used by S

delete S from the list of uses of xi

W ← W ∪ {xi}

ALGORITHM 19.12. Dead-code elimination in SSA form.

If run on the program of Figure 19.3b, this algorithm would delete the
statement b1 ← φ(b0, b2).

A more aggressive dead-code-elimation algorithm, which uses a different
definition of dead, is shown on page 426.

SIMPLE CONSTANT PROPAGATION
Whenever there is a statement of the form v ← c for some constant c, then
any use of v can be replaced by a use of c.

Any φ-function of the form v ← φ(c1, c2, . . . , cn), where all the ci are
equal, can be replaced by v ← c.

Each of these conditions is easy to detect and implement using the SSA
data structure, and we can use a simple work-list algorithm to propagate con-
stants:

W ← a list of all statements in the SSA program
while W is not empty

remove some statement S from W
if S is v ← φ(c, c, . . . , c) for some constant c

replace S by v ← c
if S is v ← c for some constant c

delete S from the program
for each statement T that uses v

substitute c for v in T
W ← W ∪ {T }

418

19.3. OPTIMIZATION ALGORITHMS USING SSA

If we run this algorithm on the SSA program of Figure 19.4g, then the
assignment j3 ← i1 will be replaced with j3 ← 1, and the assignment i1 ← 1
will be deleted. Uses of variables j1 and k1 will also be replaced by constants.

The following transformations can all be incorporated into this work-list
algorithm, so that in linear time all these optimizations can be done at once:

Copy propagation A single-argument φ-function x ← φ(y) or a copy assign-
ment x ← y can be deleted, and y substituted for every use of x .

Constant folding If we have a statement x ← a⊕b, where a and b are constant,
we can evaluate c ← a ⊕ b at compile time and replace the statement with
x ← c.

Constant conditions In block L, a conditional branch if a < b goto L1 else L2,
where a and b are constant, can be replaced by either goto L1 or goto L2,
depending on the (compile-time) value of a < b. The control-flow edge from
L to L2 (or L1, respectively) must be deleted; this reduces the number of
predecessors of L2 (or L1), and the φ-functions in that block must be adjusted
accordingly (by removing an argument).

Unreachable code Deleting a predecessor may cause block L2 to become un-
reachable. In this case, all the statements in L2 can be deleted; use lists of all
the variables that are used in these statements must be adjusted accordingly.
Then the block itself should be deleted, reducing the number of predecessors
of its successor blocks.

CONDITIONAL CONSTANT PROPAGATION
In the program of Figure 19.4b, is j always equal to 1?

• If j = 1 always, then block 6 will never execute, so the only assigment to j
is j ← i , so j = 1 always.

• If sometimes j > 20, then block 6 will eventually execute, which assigns
j ← k, so that eventually j > 20.

Each of these statements is self-consistent; but which is true in practice? In
fact, when this program executes, j is never set to any value other than 1. This
is a kind of least fixed point (analogous to what is described in Section 10.1
on page 209).

The “simple” constant-propagation algorithm has the problem of assuming
the block 6 might be executed, and therefore that j might not be constant, and
therefore that perhaps j ≥ 20, and therefore that block 6 might be executed.
Simple constant propagation finds a fixed point that is not the least fixed point.

Why would programmers put never-executed statements in their programs?
Many programs have statements of the form if debug then ... where

419

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

debug is a constant false value; we would not like to let the statements in the
debug clauses get in the way of useful optimizations.

The SSA conditional constant propagation finds the least fixed point: It
does not assume a block can be executed until there is evidence that it can be,
and it does not assume a variable is nonconstant until there is evidence, and
so on.

The algorithm tracks the run-time value of each variable as follows:

V[v] = ⊥ We have seen no evidence that any assignment to v is ever executed.
V[v] = 4 We have seen evidence that an assignment v ← 4 is executed, but no

evidence that v is ever assigned any other value.
V[v] = ⊤ We have seen evidence that v will have, at various times, at least

two different values, or some value (perhaps read from an input file or from
memory) that is not predictable at compile time.

Thus we have a lattice of values, with ⊥ meaning never defined, 4 meaning
defined as 4, and ⊤ meaning overdefined:

3 4 5 6 7

New information can only move a variable up in the lattice.2

We also track the executability of each block, as follows:

E[B] = false We have seen no evidence that block B can ever be executed.
E[B] = true We have seen evidence that block B can be executed.

Initially we start with V[] = ⊥ for all variables, and E[] = false for all
blocks. Then we observe the following:

1. Any variable v with no definition, which is therefore an input to the program,
a formal parameter to the procedure, or (horrors!) an uninitialized variable,
must have V[v] ← ⊤.

2. The start block B1 is executable: E[B1] ← true.
3. For any executable block B with only one successor C , set E[C] ← true.
4. For any executable assignment v ← x ⊕ y, where V[x] = c1 and V[y] = c2,

set V[v] ← c1 ⊕ c2.
5. For any executable assignment v ← x ⊕ y, where V[x] = ⊤ or V[y] = ⊤,

set V[v] ← ⊤.

2Authors in the subfield of dataflow analysis use ⊥ to mean overdefined and ⊤ to mean never de-
fined; authors in semantics and abstract interpretation use ⊥ for undefined and ⊤ for overdefined; we are
following the latter practice.

420

19.3. OPTIMIZATION ALGORITHMS USING SSA

6. For any executable assignment v ← φ(x1, . . . , xn), where V[xi] = c1, V[x j] =
c2, c1 ̸= c2, the i th predecessor is executable, and the j th predecessor is exe-
cutable, set V[v] ← ⊤.

7. For any executable assignment v ← MEM() or v ← CALL(), set V[v] ← ⊤.
8. For any executable assignment v ← φ(x1, . . . , xn), where V[xi] = ⊤ and the

i th predecessor is executable, set V[v] ← ⊤.
9. For any assignment v ← φ(x1, . . . , xn) whose i th predecessor is executable

and V[xi] = c1; and for every j either the j th predecessor is not executable,
or V[x j] = ⊥, or V[x j] = c1, set V[v] ← c1.

10. For any executable branch if x < y goto L1 else L2, where V[x] = ⊤ or
V[y] = ⊤, set E[L1] ← true and E[L2] ← true.

11. For any executable branch if x < y goto L1 else L2, where V[x] = c1 and
V[y] = c2, set E[L1] ← true or E[L2] ← true depending on c1 < c2.

An executable assignment is an assignment statement in a block B with
E[B] = true. These conditions “ignore” any expression or statement in an
unexecutable block, and the φ-functions “ignore” any operand that comes
from an unexecutable predecessor.

The algorithm can be made quite efficient using work lists: There will be
one work list Wv for variables and and another work list Wb for blocks. The
algorithm proceeds by picking x from Wv and considering conditions 4–9 for
any statement in x’s list of uses; or by picking a block B from Wb and consid-
ering condition 3, and conditions 4–9 for any statement within B. Whenever a
block is newly marked executable, it and its executable successors are added
to We. Whenever V[x] is “raised” from ⊥ to c or from c to ⊤, then x is added
to Wv. When both Wv and Wb are empty, the algorithm is finished. The algo-
rithm runs quickly, because for any x it raises V[x] at most twice, and for any
B it changes E[B] at most once.

We use this information to optimize the program as follows. After the anal-
ysis terminates, wherever E[B] = false, delete block B. Wherever V[x] = c,
substitute c for x and delete the assignment to x .

Figure 19.13 shows the conditional constant propagation algorithm exe-
cuted on the program of Figure 19.4. The algorithm finds that all the j vari-
ables are constant (with value 1), k1 is constant (with value 0), and block 6
is not executed. Deleting unreachable blocks, and replacing uses of constant
variables with the constant value – deleting their definitions – leads to some
empty blocks and a φ-function that has only one argument; these can be sim-
plified, leaving the program of Figure 19.13d.

421

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

if j2 < 20 3 return j2
4

 j4 ← ø (j3, j5)
k4 ← ø (k3,k5)

7

1 i1 ← 1
 j1 ← 1
k1 ← 0

2 j2 ← ø (j4, j1)
k2 ← ø (k4, k1)
if k2 < 100

 j3 ← i1
k3 ← k2+1

5 j5 ← k2
k5 ← k2+2

6

B E[B]
1 true
2 true
3 true
4 true
5 true
6 false
7 true

x V[x]
i1 1
j1 1
j2 1
j3 1
j4 1
j5 ⊥
k1 0
k2 ⊤
k3 ⊤
k4 ⊤
k5 ⊥

3 return 1 4

k4 ← ø (k3) 7

1

2k2 ← ø (k4, 0)
if k2 < 100

k3 ← k2+1 5

return 1 4

1

2k2 ← ø (k3, 0)
if k2 < 100

k3 ← k2+1 5

(a) SSA program
(same as 19.4g)

(b) E and V (c) After constant
propagation

(d) Empty blocks and
single-argument

φ-functions deleted

FIGURE 19.13. Conditional constant propagation.

The unique successor or predecessor property is important for the proper
operation of this algorithm. Suppose we were to do conditional constant prop-
agation on the graph of Figure 19.2b, in a case where M[x] is known to be
1. Then blocks 1, 2, 3, and 4 will be marked executable, but it will not be
clear that edge 2 → 4 cannot be taken. In Figure 19.2c, block 5 would not be
executable, making the situation clear. By using the edge-split SSA form, we
avoid the need to mark edges (not just blocks) executable.

PRESERVING THE DOMINANCE PROPERTY
Almost every reasonable optimizing transformation – including the ones de-
scribed above – preserves the dominance property of the SSA program: The
definition of a variable dominates each use (or, when the use is in aφ-function,
the predecessor of the use).

It is important to preserve this property, since some optimization algo-
rithms (such as Algorithm 19.17) depend on it. Also, the very definition of
SSA form – that there is a φ-function at the convergence point of any two
dataflow paths – implicitly requires it.

But there is one kind of optimization that does not preserve the dominance
property. In the program of Figure 19.14a, we can prove that – because the
condition z < 0 evaluates the same way in blocks 1 and 4 – the use of x2 in
block 5 always gets the value x1, never x0. Thus it is tempting to substitute
x1 for x2 in block 5. But the resulting graph does not have the dominance

422

19.4. ARRAYS, POINTERS, AND MEMORY

x1 ← . . . 2

x2 ← ø (x1, x0) 3

. . . ← x2 5

4if z < 0

x0 ← u
if z < 0

1

x1 ← . . . 2

x2 ← ø (x1, x0) 3

. . . ← x1 5

4if z < 0

x0 ← u
if z < 0

1

(a) Before (b) After

FIGURE 19.14. This transformation does not preserve the dominance property
of SSA form, and should be avoided.

property: Block 5 is not dominated by the definition of x1 in block 2.
Therefore this kind of transformation – based on the knowledge that two

conditional branches test the same condition – is not valid for SSA form.

19.4 ARRAYS, POINTERS, AND MEMORY

For many purposes in optimization, parallelization, and scheduling, the com-
piler needs to know, “how does statement B depend on statement A?” The
transformations of constant propagation and dead-code removal have relied
on this dependence information.

There are several kinds of dependence relations:

Read-after-write A defines variable v, then B uses v.
Write-after-write A defines v, then B defines v.
Write-after-read A uses v, then B defines v.
Control A controls whether B executes.

Read-after-write dependences are evident in the SSA graph: A defines v,
v’s list of uses points to B; or B’s use list contains v, and v’s def-site is A.

Control dependences will be discussed in Section 19.5.
In SSA form, there are no write-after-write or write-after-read dependences.

Statements A and B can never write to the same variable, and any use must
be “after” (that is, dominated by) the variable’s definition.

423

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

MEMORY DEPENDENCE
The discussion thus far of assigments and φ-function has been only for scalar
nonescaping variables. Real programs must also load and store memory words.

One way to get a single-assignment property for memory is to ensure that
each memory word is written only once. Although this seems severe, it is just
what a pure functional programming language does (see Chapter 15) – with a
garbage collector behind the scenes to allow actual reuse of physical memory
locations.

However, in an imperative language we must do something else. Consider
a sequence of stores and fetches such as this one:

1 M[i] ← 4
2 x ← M[j]
3 M[k] ← j

We cannot treat each individual memory location as a separate variable for
static-single-assigment purposes, because we don’t know whether i , j , and k
are the same address.

We could perhaps treat memory as a “variable,” where the store instruction
creates a new value (of the entire memory):

1 M1 ← store(M0, i, 4)

2 x ← load(M1, j)
3 M2 ← store(M1, k, j)

This creates the def-use edges 1
M1→ 2 and 1

M1→ 3. These def-use edges are
like any SSA def-use relationship, and we make φ-functions for them at join
points in the same way.

But there is no edge from 2 → 3, so what prevents the compiler from
reordering the statements as follows?

1 M1 ← store(M0, i, 4)

3 M2 ← store(M1, k, j)
4 x ← load(M1, j)

The functional dependences are still correct – if M1 is viewed as a snapshot
of memory after statement 1, then statement 4 is still correct in loading from
address j in that snapshot. But it is inefficient – to say the least! – for the
computer to keep more than one copy of the machine’s memory.

We would like to say that there is a write-after-read dependence 2 → 3
to prevent the compiler from creating M2 before all uses of M1 have been

424

19.5. THE CONTROL-DEPENDENCE GRAPH

computed. But calculation of accurate dependence information for memory
locations is beyond the scope of this chapter.

A naive but practical solution. In the absence of write-after-read and write-
after-write dependence information, we will just say that a store instruction is
always presumed live – we will not do dead-code elimination on stores – and
we will not transform the program in such a way as to interchange a load and
a store, or two stores. Store instructions can be unreachable, however, and
unreachable stores can be deleted.

The optimization algorithms presented in this chapter do not reorder in-
structions, and they do not attempt to propagate dataflow information through
memory, so they implicitly use this naive model of loads and stores.

19.5 THE CONTROL-DEPENDENCE GRAPH

Can node x directly control whether node y is executed? The answer to this
question can help us with program transformations and optimizations.

Any flowgraph must have an exit node. If a control-flow graph represents
a single function, then this is the return statement of the function; if there
are several return statements, we assume that each one of them is really a
control-flow edge to some unique canonical exit node of the CFG.

We say that a node y is control-dependent on x if from x we can branch to
u or v; from u there is a path to exit that avoids y, and from v every path to
exit hits y:

x

v

y

exit

u

The control-dependence graph (CDG) has an edge from x to y whenever y is
control-dependent on x .

We say that y postdominates v when y is on every path from v to exit –
that is, y dominates v in the reverse control-flow graph.

425

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

3

1

r

7

4

exit

2

5 6

3

1

7

r

4

exit

2

5 6

3

1

r

7

4

exit

2

5 6 n DFG ′ (n)

r {}
1 {r}
2 {2, r}
3 {2}
4 {r}
5 {3}
6 {3}
7 {2}

3

1

r

7

42

5 6

(a) CFG (from
Fig. 19.4b)

(b) Reverse
CFG

(c) Post-
dominators

(d) Postdominance
frontiers

(e) CDG

FIGURE 19.15. Construction of the control-dependence graph.

Construction of the control-dependence graph. To construct the CDG of a
control-flow graph G,

1. Add a new entry-node r to G, with an edge r → s to the start node s of G
(indicating that the surrounding program might enter G) and an edge r →
exit to the exit node of G (indicating that the surrounding program might not
execute G at all).

2. Let G′ be the reverse control-flow graph that has an edge y → x whenever G
has an edge x → y; the start node of G′ corresponds to the exit node of G.

3. Construct the dominator tree of G′ (its root corresponds to the exit node of
G).

4. Calculate the dominance frontiers DFG′ of the nodes of G′.
5. The CDG has edge x → y whenever x ∈ DFG′ [y].

That is, x directly controls whether y executes, if and only if x is in the
dominance frontier of y in the reverse control-flow graph.

Figure 19.15 shows the CDG for the program of Figure 19.4.
With the SSA graph and the control-dependence graph, we can now answer

questions of the form, “must A be executed before B?” If there is any path
A → B composed of SSA use-def edges and CDG edges, then there is a trail
of data- and control-dependence requiring A to be performed before B.

AGGRESSIVE DEAD-CODE ELIMINATION
One interesting use of the control-dependence graph is in dead-code elimi-
nation. Suppose we have a situation such as the one in Figure 19.13d, where
conventional dead-code analysis (as described in Section 17.3 or Algorithm
19.12) determines:

426

19.5. THE CONTROL-DEPENDENCE GRAPH

return 1 4

1

2k2 ← ø (k3, 0)
if k2 < 100

k3 ← k2+1 5

15

4 r

exit

2

n DFG ′(n)

r {}
1 {r}
2 {2,r}
4 {r}
5 {2}

(a) SSA program (b) Postdominators (c) Postdominance
frontiers

5

1

r

42

Block 4 returns, so it is live; no
live block is control-dependent on
2, and no live assignment is data-
dependent on k2 or k3, so nothing
else is live.

return 1 4

(d) Control-dependence
graph

(e) Finding live
statements

(f) After deletion of
dead statements

FIGURE 19.16. Aggressive dead-code elimination

• k2 is live because it’s used in the definition of k3,
• k3 is live because it’s used in the definition of k2,

but neither variable contributes anything toward the eventual result of the
calculation.

Just as conditional constant propagation assumes a block is unreachable
unless there is evidence that execution can reach it, aggressive dead-code
elimination assumes a statement is dead unless it has evidence that it con-
tributes to the eventual result of the program.

Algorithm. Mark live any statement that:

1. Performs input/output, stores into memory, returns from the function, or calls
another function that might have side effects;

2. Defines some variable v that is used by another live statement; or
3. Is a conditional branch, upon which some other live statement is control-

dependent.

Then delete all unmarked statements.
This can be solved by iteration (or by a work-list algorithm). Figure 19.16

shows the amusing result of running this algorithm on the program of Fig-
ure 19.13d: The entire loop is deleted, leaving a very efficient program!

427

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

Caveat. The aggressive dead-code elimination algorithm will remove output-
free infinite loops, which does change the meaning of the program. Instead
of producing nothing, the program will execute the statements after the loop,
which may produce output. In many environments this is regarded as
unacceptable.

But on the other hand, the control-dependence graph is often used in par-
allelizing compilers: Any two statements that are not control-dependent or
data-dependent can be executed in parallel. Even if such a compiler did not
delete a useless infinite loop, it might choose to execute the loop in parallel
with successor statements (that are not control-dependent on it); this would
have approximately the same effect as deleting the infinite loop.

19.6 CONVERTING BACK FROM SSA FORM

After program transformations and optimization, a program in static single-
assignment form must be translated into some executable representation with-
out φ-functions. The definition y ← φ(x1, x2, x3) can be translated as “move
y ← x1 if arriving along predecessor edge 1, move y ← x2 if arriving along
predecessor edge 2, and move y ← x3 if arriving along predecessor edge 3.”
To “implement” this definition in an edge-split SSA form, for each i we insert
the move y ← xi at the end of the i th predecessor of the block containing the
φ-function.

The unique successor or predecessor property prevents redundant moves
from being inserted; in Figure 19.2b (without the property), block 2 would
need a move a3 ← a1 that is redundant if the then branch is taken; but in
Figure 19.2c, the move a3 ← a1 would be in block 5, and never executed
redundantly.

Now we can do register allocation on this program, as described in Chap-
ter 11. Although it is tempting simply to assign x1 and x2 the same register if
they were derived from the same variable x in the original program, it could
be that program transformations on the SSA form have made their live ranges
interfere (see Exercise 19.11). Thus, we ignore the original derivation of the
different SSA variables, and we rely on coalescing (copy propagation) in the
register allocator to eliminate almost all of the move instructions.

428

19.6. CONVERTING BACK FROM SSA FORM

LivenessAnalysis() =
for each variable v

M ← {}
for each site-of-use s of v

if s is a φ-function with
v as its i th argument

let p be the i th predecessor of
the block containing s

LiveOutAtBlock(p, v)
else LiveInAtStatement(s, v)

LiveOutAtBlock(n, v) =
v is live-out at n
if n ̸∈ M

M ← M ∪ {n}
let s be the last statement in n
LiveOutAtStatement(s, v)

LiveInAtStatement(s, v) =
v is live-in at s
if s is the first statement of some block n

v is live-in at n
for each predecessor p of n

LiveOutAtBlock(p, v)
else

let s′ be the statement preceding s
LiveOutAtStatement(s′, v)

LiveOutAtStatement(s, v) =
v is live-out at s
let W be the set of variables that s defines
for each variable w ∈ (W − {v})

add (v,w) to interference graph
if v ̸∈ W

LiveInAtStatement(s, v)

ALGORITHM 19.17. Calculation of live ranges in SSA form, and building the inter-
ference graph. The graph-walking algorithm is expressed as a
mutual recursion between LiveOutAtBlock, LiveInAtStatement,
and LiveOutAtStatement. The recursion is bounded whenever
LiveOutAtBlock finds an already walked block, or whenever
LiveOutAtStatement reaches the definition of v.

LIVENESS ANALYSIS FOR SSA
We can efficiently construct the interference graph of an SSA program, just
prior to converting the φ-functions to move instructions. For each variable v,
Algorithm 19.17 walks backward from each use, stopping when it reaches v’s
definition.

The dominance property of SSA form ensures that the algorithm will al-
ways stay in the region dominated by the definition of v. For many vari-
ables this region is small; contrast this with the situation in Figure 19.14 (a
non-SSA program), where the algorithm applied to variable x1 would walk
upwards through the 1 → 3 edge and traverse the entire program. Because
this algorithm processes only the blocks where v is live, its running time is
proportional to the size of the interference graph that it constructs (see Exer-
cise 19.12).

Algorithm 19.17 as shown uses recursion (when LiveInAtStatement calls

429

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

LiveOutAtBlock), and also tail recursion (when LiveInAtStatement calls Live-
OutAtStatement, when LiveOutAtStatement calls LiveInAtStatement, and when
LiveOutAtBlock calls LiveOutAtStatement). Some programming languages or
compilers can compile tail recursion very efficiently as a goto – see Sec-
tion 15.6. But when implementing this algorithm in compilers that do not
support efficient tail calls, then instead of tail recursion it might be best to
use explicit goto’s, or use work lists for LiveOutAtStatement and LiveInAt-
Statement.

19.7 A FUNCTIONAL INTERMEDIATE FORM

A functional programming language is one in which (as discussed in Chap-
ter 15) execution proceeds by binding variables to values, and never modify-
ing a variable once it is initialized. This permits equational reasoning, which
is useful to the programmer.

But equational reasoning is even more useful to the compiler – many com-
piler optimizations involve the rewriting of a slow program into an equivalent
faster program. When the compiler doesn’t have to worry about x’s value now
versus x’s value later, then these transformations are easier to express.

This single-assignment property is at the heart of both functional program-
ming and SSA form. There is a close relationship between the functional
intermediate representations used by functional-language compilers and the
SSA form used by imperative-language compilers.

Figure 19.18 shows the abstract syntax of the kind of intermediate repre-
sentation used in modern functional-language compilers. It aspires to the best
qualities of quadruples, SSA form, and lambda-calculus. As in quadruple no-
tation, expressions are broken down into primitive operations whose order of
evaluation is specified, every intermediate result is an explicitly named tem-
porary, and every argument of an operator or function is an atom (variable or
constant). As in SSA form and lambda-calculus, every variable has a single
assignment (or binding), and every use of the variable is within the scope of
the binding. As in lambda-calculus, scope is a simple syntactic notion, not
requiring calculation of dominators.

Scope. No variable name can be used in more than one binding. Every bind-
ing of a variable has a scope within which all the uses of that variable must
occur. For a variable bound by let v = . . . in exp, the scope of v is just the

430

19.7. A FUNCTIONAL INTERMEDIATE FORM

atom → c Constant integer

atom → s Constant string pointer

atom → v Variable

exp → let fundefs in exp Function declaration

exp → let v = atom in exp Copy

exp → let v = binop(atom, atom) in exp Arithmetic operator

exp → let v = M[atom] in exp Fetch from memory

exp → M[atom]:=atom; exp Store to memory

exp → if atom relop atom then exp else exp Conditional branch

exp → atom(args) Tail call

exp → let v = atom(args) in exp Non-tail call

exp → return atom Return

args →
args → atom args
fundefs →
fundefs → fundefs function v(formals) = exp
formals →
formals → v formals

binop → plus | minus | mul | . . .

relop → eq | ne | lt | . . .

FIGURE 19.18. Functional intermediate representation. Binding occurrences
of variables are underlined.

exp. The scope of a function variable fi bound in

let function f1(. . .) = exp1
...

function fk(. . .) = expk

in exp

includes all the exp j (to allow for mutually recursive functions) as well as the
exp. For a variable bound as the formal parameter of a function, the scope is
the body of that function.

These scope rules make many optimizations easy to reason about; we
will take inline expansion of functions as an example. As discussed in Sec-
tion 15.4, when we have a definition f (x) = E and a use f (z) we can replace

431

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

if j2 < 20 3 return j2
4

 j4 ← ø (j3, j5)
k4 ← ø (k3,k5)

7

1 i1 ← 1
 j1 ← 1
k1 ← 0

2 j2 ← ø (j4, j1)
k2 ← ø (k4, k1)
if k2 < 100

 j3 ← i1
k3 ← k2+1

5 j5 ← k2
k5 ← k2+2

6

let i1 = 1 in
let j1 = 1 in

let k1 = 0 in
let function f2(j2, k2)=

if k2 < 100 then
let function f7(j4, k4) =

f2(j4, k4)

in if j2 < 20 then
let j3 = i1 in

let k3 = k2 + 1 in
f7(j3, k3)

else
let j5 = k2 in

let k5 = k2 + 2 in
f7(j5, k5)

else return j2
in f2(j1, k1)

PROGRAM 19.19. SSA program of Figure 19.4g converted to functional interme-
diate form.

the use by a copy of E but with all the x’s replaced by z’s. In the Tree lan-
guage of Chapter 7 this is difficult to express because there are no functions;
in the functional notation of Chapter 15 the substitution can get complicated
if z is a nonatomic expression (as shown in Algorithm 15.8b). But in the
functional intermediate form of Figure 19.18, where all actual parameters are
atomic, inline expansion becomes very simple, as shown in Algorithm 15.8a.

Translating SSA into functional form. Any SSA program can be translated
into this functional form, as shown in Algorithm 19.20. Each control-flow
node with more than one predecessor becomes a function. The arguments
of that function are precisely the variables for which there are φ-functions
at the node. If node f dominates node g, then the function for g will be
nested inside the body of the function for f . Instead of jumping to a node, a
control-flow edge into a φ-containing node is represented by a function call.
Program 19.19 shows how a translated program looks.

Translating functional programs into functional intermediate form. A func-
tional program in a language such as PureFun-MiniJava starts in a form that

432

19.7. A FUNCTIONAL INTERMEDIATE FORM

Translate(node) =
let C be the children of node in the dominator tree
let p1, . . . , pn be the nodes of C that have more than one predecessor
for i ← 1 to n

let a1, . . . , ak be the targets of φ functions in pi (possibly k = 0)
let Si = Translate(pi)

let Fi = “function f pi (a1, . . . , ak) = Si”
let F = F1 F2 · · · Fn

return Statements(node, 1, F)

Statements(node, j, F) =
if there are < j statements in node

then let s be the successor of node
if s has only one predecessor
then return Statements(s, 1, F)

else s has m predecessors
suppose node is the i th predecessor of s
suppose the φ-functions in s are a1 ← φ(a11, . . . , a1m), . . .

ak ← φ(ak1, . . . , akm)

return “let F in fs(a1i , . . . , aki)”
else if the j th statement of node is a φ-function

then return Statements(node, j + 1, F)
else if the j th statement of node is “return a”

then return “let F in return a”
else if the j th statement of node is a ← b ⊕ c

The cases for a ← b,
a ← M[b], and M[a] ← b
are similar.

then let S = Statements(node, j + 1, F)

return “let a = b ⊕ c in S”
else if the j th statement of node is “if a < b goto s1 else s2”

then (in edge-split SSA form) s1 has only one predecessor, as does s2

let S1 = Translate(s1)

let S2 = Translate(s2)

return “let F in if a < b then S1 else S2”

ALGORITHM 19.20. Translating SSA to functional intermediate form.

433

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

obeys all the scope rules, but arguments are not atomic and variables are not
unique. It is a simple matter to introduce well-scoped intermediate tempo-
raries by a recursive walk of expression trees; dominator and SSA calcula-
tions are unnecessary.

All of the SSA-based optimization algorithms work equally well on a func-
tional intermediate form; so will the optimizations and transformations on
functional programs described in Chapter 15. Functional intermediate forms
can also be made explicitly typed, type-checkable, and polymorphic as de-
scribed in Chapter 16. All in all, this kind of intermediate representation has
much to recommend it.

F U R T H E R
R E A D I N G

The IBM Fortran H compiler used dominators to identify loops in control-
flow graphs of basic blocks of machine instructions [Lowry and Medlock
1969]. Lengauer and Tarjan [1979] developed the near-linear-time algorithm
for finding dominators in a directed graph, and proved the related theorems
mentioned in this chapter. It is common to use this algorithm while mention-
ing the existence [Harel 1985] of a more complicated linear-time algorithm.
Finding the “best” node above a given spanning-forest node is an example of
a union-find problem; analyses of balanced path-compression algorithms for
union-find (such as the “sophisticated” version of the Lengauer-Tarjan algo-
rithm) can be found in many algorithms textbooks (e.g., Sections 22.3–22.4
of Cormen et al. [1990]).

Static single-assignment form was developed by Wegman, Zadeck, Alpern,
and Rosen [Alpern et al. 1988; Rosen et al. 1988] for efficient computation
of dataflow problems such as global value numbering, congruence of vari-
ables, aggressive dead-code removal, and constant propagation with condi-
tional branches [Wegman and Zadeck 1991]. Control-dependence was for-
malized by Ferrante et al. [1987] for use in an optimizing compiler for vec-
tor parallel machines. Cytron et al. [1991] describe the efficient computation
of SSA and control-dependence graphs using dominance frontiers and prove
several of the theorems mentioned in this chapter.

Wolfe [1996] describes several optimization algorithms on SSA (which he
calls factored use-def chains), including induction-variable analysis.

It is useful to perform several transformations on the flowgraph before

434

FURTHER READING

conversion to SSA form. These include the conversion of while-loops to
repeat-loops (Section 18.2); and the insertion of loop preheader nodes (see
page 382), postbody nodes [Wolfe 1996] (Exercise 18.6), and landing pads
for loop-exit edges [Rosen et al. 1988] (edge-splitting effectively accom-
plishes the insertion of landing pads). Such transformations provide loca-
tions into which statements (such as loop-invariant computations or common
subexpressions) may be placed.

Varieties of functional intermediate representations. Functional intermedi-
ate forms are all based on lambda-calculus, more or less, but they differ in
three important respects:

1. Some are strict and some are lazy (see Chapter 15).
2. Some have arbitrary nesting of subexpressions; some have atomic arguments;

and some have atomic arguments +λ, meaning that all arguments except
anonymous functions are atomic.

3. Some permit nontail calls (direct style) and some support only tail calls (continuation-
passing style).

Distinction (1) ceases to matter in continuation-passing style.
The design space of these options has been well explored, as this table

shows:

Direct style Continuation-
Strict Lazy passing

Arbitrarily
nested sub-
expressions

Cardelli [1984],
Cousineau et al.
[1985]

Augustsson
[1984]

Atomic
arguments +
λ

Flanagan et al.
[1993]

Steele [1978],
Kranz et al.
[1986]

Atomic
arguments

Tarditi [1997] Peyton Jones
[1992]

Appel [1992]

The functional intermediate form shown in Figure 19.18 fits in the lower left-
hand corner, along with Tarditi [1997]. Kelsey [1995] shows how to convert
between SSA and continuation-passing style.

435

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

E X E R C I S E S

19.1 Write an algorithm, using depth-first search, to number the nodes of a tree in
depth-first order and to annotate each node with the number of its highest-
numbered descendent. Show how these annotations can be used – once your
preprocessing algorithm has been run on a dominator tree – to answer a query
of the form “does node i dominate node j?” in constant time.

19.2 Use Algorithm 19.9 to calculate the dominators of the flowgraph of Exer-
cise 18.1, showing the semidominators and spanning forest at various stages.

19.3 For each of the graphs of Figure 18.1 and Figure 18.2, calculate the immediate
dominator tree (using either Algorithm 19.9 or the algorithm in Section 18.1),
and for each node n calculate DFlocal[n], DFup[n], and DF.

*19.4 Prove that, for any node v, Algorithm 19.9+19.10b always initializes best[v] ←
v (in the Link function) before calling AncestorWithLowestSemi(v).

19.5 Calculate the dominance frontier of each node in each of these graphs:

a. The graph of Figure 2.8.

b. The graph of Exercise 2.3a.

c. The graph of Exercise 2.5a.

d. The graph of Figure 3.27.

**19.6 Prove that

DF[n] = DFlocal[n] ∪
⋃

Z∈children[n]
DFup[Z]

as follows:

a. Show that DFlocal[n] ⊆ DF[n];
b. Show that for each child Z of n, DFup[Z] ⊆ DF[n];
c. If there is a node Y in DF[n], then therefore there is an edge U → Y such

that n dominates U but does not strictly dominate Y . Show that if Y = n,
then Y ∈ DFlocal[n], and if Y ̸= n, then Y ∈ DFup[Z] for some child Z
of N .

d. Combine these lemmas into a proof of the theorem.

19.7 Convert this program to SSA form:

436

EXERCISES

if v < n 3

if r ≥ n 5

return m 4

7x ← M[r]
s ← s+x
if s ≤ m

m ← 0
 v ← 0

1

 r ← v
 s ← 0

3
8 m ← s

9 r ← r+1

6 v ← v+1

tru
e

tru
e

false

Show your work after each stage:

a. Add a start node containing initializations of all variables.
b. Draw the dominator tree.
c. Calculate dominance frontiers.
d. Insert φ-functions.
e. Add subscripts to variables.
f. Use Algorithm 19.17 to build the interference graph.
g. Convert back from SSA form by inserting move instructions in place of

φ-functions.
19.8 This C (or Java) program illustrates an important difference between def-use

chains and SSA form:

int f(int i, int j) {
int x,y;
switch(i) {
case 0: x=3;
case 1: x=1;
case 2: x=4;
case 3: x=1;
case 4: x=5;
default: x=9;

}
switch(j) {
case 0: y=x+2;
case 1: y=x+7;
case 2: y=x+1;
case 3: y=x+8;
case 4: y=x+2;
default: y=x+8;

return y;
}

437

CHAPTER NINETEEN. STATIC SINGLE-ASSIGNMENT FORM

a. Draw the control-flow graph of this program.
b. Draw the use-def and def-use data structures of the program: For each

definition site, draw a linked-list data structure pointing to each use site,
and vice versa.

c. Starting from the CFG of part (a), convert the program to SSA form. Draw
data structures representing the uses, defs, and φ-functions, as described
at the beginning of Section 19.3.

d. Count the total number of data-structure nodes in the use-def data, and
the total number in the SSA data structure. Compare.

e. Approximate the total sizes of the use-def data structures, and the SSA
data structures, if there were N cases in each switch instead of 6.

*19.9 Suppose the graph of Exercise 2.3a is the control-flow graph of a program, and
in block 1 there is an assigment to a variable v.

a. Convert the graph to SSA form (insert φ-functions for v).
b. Show that for any N , there is a “ladder” CFG with O(N) blocks, O(N)

edges, and O(N) assignment statements (all in the first block!), such that
the number of φ-functions in the SSA form is N2.

c. Write a program whose CFG looks like this.
d. Show that a program containing deeply nested repeat-until loops can

have the same N2 blowup of φ-functions.

*19.10 Algorithm 19.7 uses a stack for each variable, to remember the current active
definition of the variable. This is equivalent to using environments to process
nested scopes, as Chapter 5 explained for type-checking.

a. Rewrite Algorithm 19.7, calling upon the imperative environments of
package Symbol (whose interface is given in Program 5.5) instead of
using explicit stacks.

b. Rewrite Algorithm 19.7, using the functional-style symbol tables whose
Table class is described on page 110.

19.11 Show that optimization on an SSA program can cause two SSA variables a1

and a2, derived from the same variable a in the original program, to have
overlapping live ranges as described on page 428. Hint: Convert this program
to SSA, and then do exactly one constant-propagation optimization.

while c<0 do (b := a; a := M[x]; c := a+b);
return a;

*19.12 Let Vc and Ec be the nodes and edges of the CFG, and Vi and Ei be the
nodes and edges of the interference graph produced by Algorithm 19.17. Let
N = |Vc| + |Ec| + |Vi | + |Ei |.

438

EXERCISES

a. Show that the run time of Algorithm 19.17 on the following (weird)
program is asymptotically proportional to N1.5:

v1 ← 0
v2 ← 0

...

vm ← 0
goto L1

L1 : goto L2
L2 : goto L3

...

Lm2 :
w1 ← v1
w2 ← v2

...

wm ← vm

*b. Show that if every block defines at least one variable, and has no more
than c statements and no more than c out-edges (for some constant c),
then the time complexity of Algorithm 19.17 is O(N). Hint: Whenever
LiveOutAtBlock is called, there will be at most c calls to LiveOutAtState-
ment, and at least one will add an edge to the interference graph.

439

20
Pipelining and
Scheduling

sched-ule: a procedural plan that indicates the time and
sequence of each operation

Webster’s Dictionary

A simple computer can process one instruction at a time. First it fetches the
instruction, then decodes it into opcode and operand specifiers, then reads the
operands from the register bank (or memory), then performs the arithmetic
denoted by the opcode, then writes the result back to the register back (or
memory), and then fetches the next instruction.

Modern computers can execute parts of many different instructions at the
same time. At the same time the processor is writing results of two instruc-
tions back to registers, it may be doing arithmetic for three other instruc-
tions, reading operands for two more instructions, decoding four others, and
fetching yet another four. Meanwhile, there may be five instructions delayed,
awaiting the results of memory-fetches.

Such a processor usually fetches instructions from a single flow of control;
it’s not that several programs are running in parallel, but the adjacent instruc-
tions of a single program are decoded and executed simultaneously. This is
called instruction-level parallelism (ILP), and is the basis for much of the
astounding advance in processor speed in the last decade of the twentieth
century.

A pipelined machine performs the write-back of one instruction in the
same cycle as the arithmetic “execute” of the next instruction and the operand-
read of the previous one, and so on. A very-long-instruction-word (VLIW)
issues several instructions in the same processor cycle; the compiler must en-
sure that they are not data-dependent on each other. A superscalar machine

440

CHAPTER TWENTY. PIPELINING AND SCHEDULING

issues two or more instructions in parallel if they are not related by data de-
pendence (which it can check quickly in the instruction-decode hardware);
otherwise it issues the instructions sequentially – thus, the program will still
operate correctly if data-dependent instructions are adjacent, but it will run
faster if the compiler has not scheduled non-data-dependent instructions ad-
jacent to each other. A dynamic-scheduling machine reorders the instructions
as they are being executed, so that it can issue several non-data-dependent
instructions simultaneously, and may need less help from the compiler. Any
of these techniques produces instruction-level parallism.

The more instructions can be executed simultaneously, the faster the pro-
gram will run. But why can’t all the instructions of the program be executed
in parallel? After all, that would be the fastest possible execution.

There are several kinds of constraints on instruction execution; we can op-
timize the program for instruction-level parallelism by finding the best sched-
ule that obeys these constraints:

Data dependence: If instruction A calculates a result that’s used as an operand
of instruction B, then B cannot execute before A is finished.

Functional unit: If there are kfu multipliers (adders, etc.) on the chip, then at
most kfu multiplication (addition, etc.) instructions can execute at once.

Instruction issue: The instruction-issue unit can issue at most kii instructions at
a time.

Register: At most kr registers can be in use at a time; more specifically, any
schedule must have some valid register allocation.

The functional-unit, instruction-issue, and register constraints are often lumped
together as resource constraints or resource hazards.

On a pipelined machine, even if “B cannot execute before A,” there may
be some parts of B’s execution (such as instruction-fetch) that can proceed
concurrently with A; Figures 20.2 and 20.3 give details.

There are also pseudo-constraints that can often be made to disappear by
renaming variables:

Write-after-write: If instruction A writes to a register or memory location, and
B writes to the same location, then the order of A and B must not be changed.
But often it is possible to modify the program so that A and B write to differ-
ent locations.

Write-after-read: If A must read from a location before B writes to it, then A
and B’s order of execution must not be swapped, unless renaming can be done
so that they use different locations.

441

CHAPTER TWENTY. PIPELINING AND SCHEDULING

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

ADD I-Fetch Read Unpack
Shift
Add

Round
Add

Round
Shift

Write

MULT I-Fetch Read Unpack MultA MultA MultA MultB
MultB
Add

Round Write

CONV I-Fetch Read Unpack Add Round Shift Shift Add Round Write

FIGURE 20.1. Functional unit requirements of instructions (on the MIPS
R4000 processor). This machine’s floating-point ADD instruc-
tion uses the instruction-fetch unit for one cycle; reads regis-
ters for one cycle; unpacks exponent and mantissa; then for the
next cycle uses a shifter and an adder; then uses both the adder
and a rounding unit; then the rounding unit and a shifter; then
writes a result back to the register file. The MULT and CONV
instructions use functional units in a different order.

Resource usage of an instruction. We might describe an instruction in terms
of the number of cycles it takes to execute, and the resources it uses at dif-
ferent stages of execution. Figure 20.1 shows such a description for three
instructions of a hypothetical machine.

If the i th cycle of instruction A uses a particular resource, and the j th cycle
of instruction B uses the same resource, then B cannot be scheduled exactly
i − j cycles after A, as illustrated in Figure 20.2.

However, some machines have several functional units of each kind (e.g.,
more than one adder); on such a machine it does not suffice to consider in-
structions pairwise, but we must consider all the instructions scheduled for a
given time.

Data-dependence of an instruction. The same considerations apply to data-
dependence constraints. The result of some instruction A is written back to
the register file during the Write stage of its execution (see Figure 20.1); if
instruction B uses this register, then the Read stage of B must be after the
Write stage of A. Some machines have bypass circuitry that may allow the
arithmetic stage of B to follow immediately after the arithmetic stage of A;
for example, the Shift/Add stage of an ADD instruction might be able to
immediately follow the Round stage of a MULT. These situations are shown
in Figure 20.3.

442

CHAPTER TWENTY. PIPELINING AND SCHEDULING

ADD I-Fetch Read Unpack
Shift
Add

Round
Add

Round
Shift

Write
X

MULT I-Fetch Read Unpack MultA MultA MultA MultB
MultB
Add

Round Write

ADD I-Fetch Read Unpack
Shift
Add

Round
Add

Round
Shift

Write
OK

MULT I-Fetch Read Unpack MultA MultA MultA MultB
MultB
Add

Round Write

ADD I-Fetch Read Unpack
Shift
Add

Round
Add

Round
Shift

Write
OK

MULT I-Fetch Read Unpack MultA MultA MultA MultB
MultB
Add

Round Write

ADD I-Fetch Read Unpack
Shift
Add

Round
Add

Round
Shift

Write
X

MULT I-Fetch Read Unpack MultA MultA MultA MultB
MultB
Add

Round Write

ADD I-Fetch Read Unpack
Shift
Add

Round
Add

Round
Shift

Write
X

MULT Read Unpack MultA MultA MultA MultB
MultB
Add Round Write

ADD I-Fetch Read Unpack
Shift
Add

Round
Add

Round
Shift

Write
OK

MULT Unpack MultA MultA MultA MultB
MultB
Add

Round Write

FIGURE 20.2. If there is only one functional unit of each kind, then an ADD
cannot be started at the same time as a MULT (because of nu-
merous resource hazards shown in boldface); nor three cycles
after the MULT (because of Add, Round, and Write hazards);
nor four cycles later (because of Add and Round hazards).
But if there were two adders and two rounding units, then an
ADD could be started four cycles after a MULT. Or with dual
fetch units, multiple-access register file, and dual unpackers,
the MULT and ADD could be started simultaneously.

443

CHAPTER TWENTY. PIPELINING AND SCHEDULING

MultA MultA MultA MultB
MultB
Add

Round Write↓

I-Fetch ↑Read Unpack
Shift
Add

Round
Add

Round
Shift

Write

MultA MultA MultA MultB
MultB
Add

Round↓ Write

I-Fetch Read Unpack ↑Shift
Add

Round
Add

Round
Shift

Write

FIGURE 20.3. Data dependence. (Above) If the MULT produces a result that
is an operand to ADD, the MULT must write its result to the reg-
ister file before the ADD can read it. (Below) Special bypassing
circuitry can route the result of MULT directly to the Shift and
Add units, skipping the Write, Read, and Unpack stages.

20.1 LOOP SCHEDULING WITHOUT RESOURCE BOUNDS

Choosing an optimal schedule subject to data-dependence constraints and re-
source hazards is difficult – it is NP-complete, for example. Although NP-
completeness should never scare the compiler writer (graph coloring is NP-
complete, but the approximation algorithm for graph coloring described in
Chapter 11 is very successful), it remains the case that resource-bounded loop
scheduling is hard to do in practice.

We will first describe an algorithm that ignores the resource constraints and
finds an optimal schedule subject only to the data-dependence constraints.
This algorithm is not useful in practice, but it illustrates the kind of opportu-
nities there are in instruction-level parallelism.

The Aiken-Nicolau loop pipelining algorithm has several steps:

1. Unroll the loop;
2. Schedule each instruction from each iteration at the earliest possible time;
3. Plot the instructions in a tableau of iteration-number versus time;
4. Find separated groups of instructions at given slopes;
5. Coalesce the slopes;
6. Reroll the loop.

We use Program 20.4a as an example to explain the notions of tableau,
slope, and coalesce. Let us assume that every instruction can be completed
in one cycle, and that arbitrarily many instructions can be issued in the same
cycle, subject only to data-dependence constraints.

444

20.1. LOOP SCHEDULING WITHOUT RESOURCE BOUNDS

for i ← 1 to N
a ← j ⊕ V [i − 1]
b ← a ⊕ f
c ← e ⊕ j
d ← f ⊕ c
e ← b ⊕ d
f ← U [i]

g : V [i] ← b
h : W [i] ← d

j ← X [i]
(a)

for i ← 1 to N
ai ← ji−1 ⊕ bi−1

bi ← ai ⊕ fi−1

ci ← ei−1 ⊕ ji−1

di ← fi−1 ⊕ ci

ei ← bi ⊕ di

fi ← U [i]
g : V [i] ← bi

h : W [i] ← di

ji ← X [i]
(b)

PROGRAM 20.4. (a) A for-loop to be software-pipelined. (b) After a scalar-
replacement optimization (in the definition of a); and scalar
variables labeled with their iteration-number.

Data dependence through memory. For optimal scheduling of stores and
fetches, we need to trace data dependence as each value is stored into mem-
ory and then fetched back. As discussed on page 424, dependence analysis
of memory references is not trivial! In order to illustrate loop scheduling for
Program 20.4a without full-fledged dependence analysis, we can use scalar
replacement to replace the reference to V [i − 1] with the (equivalent) b; now
we can see that in the resulting Program 20.4b all memory references are in-
dependent of each other, assuming that the arrays U, V, W, X do not overlap.

Next we mark each variable in the loop body to indicate whether this it-
eration’s value is used, or the previous iteration’s value, as shown in Pro-
gram 20.4b. We can construct a data-dependence graph as a visual aid in
scheduling; solid edges are data dependences within an iteration, and dotted
edges are loop-carried dependences, as shown in Graph 20.5a.

Now suppose we unroll the loop; the data-dependence graph is a DAG, as
shown in Graph 20.5b. Scheduling DAGs is easy if there are no resource con-
straints; starting from operations with no predecessors, each operation goes
as soon as its predecessors have all completed:

445

CHAPTER TWENTY. PIPELINING AND SCHEDULING

a

b

g

j

c

d

f
h

e

j1
a2

e1

f1

b2

c2

g2

d2

h1

j2
a3

e2

f2

b3

c3

g1

b1

a1 c1

d1

h2

(a) (b)

GRAPH 20.5. Data-dependence graph for Program 20.4b: (a) original graph,
in which solid edges are same-iteration dependences and dot-
ted edges are loop-carried dependences; (b) acyclic depen-
dences of the unrolled loop.

Iterations
1 2 3 4 5 6

1 ac f j f j f j f j f j f j
C 2 bd
y 3 egh a
c 4 cb
l 5 dg a
e 6 eh b
s 7 cg a

8 d b
9 eh g a

10 c b
11 d g a
12 eh b
13 c g
14 d
15 eh

(a)

Iterations
1 2 3 4 5

ac f j
bd f j

Pro- egh a
logue bc f j

dg a
eh b f j

cg a
d b

Loop eh g f j
body c a

d b
eh g

Epilogue c
d
eh

(b)

TABLE 20.6. (a) Tableau of software-pipelined loop schedule; there is a
group of instructions f j with slope 0, another group abg with
slope 2, and a third group cdeh with slope 3. (b) The smaller-
slope groups are pushed down to slope 3, and a pattern is
found (boxed) that constitutes the pipelined loop.

446

20.1. LOOP SCHEDULING WITHOUT RESOURCE BOUNDS

Cycle Instructions
1 a1c1 f1 j1 f2 j2 f3 j3 . . .

2 b1d1

3 e1g1h1a2

4 b2c2

5 d2g2a3
...

...

It is convenient to write this schedule in a tableau where the rows are
successive cycles and the columns are successive iterations of the original
loop, as shown in Table 20.6a.

After a few iterations are scheduled, we notice a pattern in the tableau:
There is a group of instructions cdeh racing down to the lower-right corner
with a slope of three cycles per iteration, another group abg with a more
moderate slope of two cycles per iteration, and a third group f j with zero
slope. The key observation is that there are gaps in the schedule, separating
identical groups, that grow larger at a constant rate. In this case the groups of
instructions at iteration i ≥ 4 are identical to the groups at iteration i + 1. In
general the groups at iteration i will be identical to the groups at i + c, where
sometimes c > 1; see Exercise 20.1.

Theorems:

• If there are K instructions in the loop, the pattern of identical groups separated
by gaps will always appear within K 2 iterations (and usually much sooner).

• We can increase the slopes of the less steeply sloped groups, thereby either
closing the gaps or at least making them small and nonincreasing, without
violating data-dependence constraints.

• The resulting tableau has a repeating set of m identical cycles, which can
constitute the body of a pipelined loop.

• The resulting loop is optimally scheduled (it runs in the least possible time).

See the Further Reading section for reference to proofs. But to see why the
loop is optimal, consider that the data-dependence DAG of the unrolled loop
has some path of length P to the last instruction to execute, and the scheduled
loop executes that instruction at time P .

The result, for our example, is shown in Table 20.6b. Now we can find
a repeating pattern of three cycles (since three is the slope of the steepest
group). In this case, the pattern does not begin until cycle 8; it is shown in a
box. This will constitute the body of the scheduled loop. Irregularly scheduled

447

CHAPTER TWENTY. PIPELINING AND SCHEDULING

instructions before the loop body constitute a prologue, and instructions after
it constitute the epilogue.

Now we can generate the multiple-instruction-issue program for this loop,
as shown in Figure 20.7. However, the variables still have subscripts in this
“program”: The variable ji+1 is live at the same time as ji . To encode this
program in instructions, we need to put in MOVE instructions between the
different variables, as shown in Figure 20.8.

This loop is optimally scheduled – assuming the machine can execute eight
instructions at a time, including four simultaneous loads and stores.

Multicycle instructions. Although we have illustrated an example where each
instruction takes exactly one cycle, the algorithm is easily extensible to the
situation where some instructions take multiple cycles.

20.2 RESOURCE-BOUNDED LOOP PIPELINING

A real machine can issue only a limited number of instructions at a time,
and has only a limited number of load/store units, adders, and multipliers. To
be practically useful, a scheduling algorithm must take account of resource
constraints.

The input to the scheduling algorithm must be in three parts:

1. A program to be scheduled;
2. A description of what resources each instruction uses in each of its pipeline

stages (similar to Figure 20.1);
3. A description of the resources available on the machine (how many of each

kind of functional unit, how many instructions may be issued at once, restric-
tions on what kinds of instructions may be issued simultaneously, and so on).

Resource-bounded scheduling is NP-complete, meaning that there is un-
likely to be an efficient optimal algorithm. As usual in this situation, we use
an approximation algorithm that does reasonably well in “typical” cases.

MODULO SCHEDULING
Iterative modulo scheduling is a practical, though not optimal, algorithm for
resource-bounded loop scheduling. The idea is to use iterative backtracking
to find a good schedule that obeys the functional-unit and data-dependence
constraints, and then perform register allocation.

448

20.2. RESOURCE-BOUNDED LOOP PIPELINING

a1 ← j0 ⊕ b0 c1 ← e0 ⊕ j0 f1 ← U [1] j1 ← X[1]
b1 ← a1 ⊕ f0 d1 ← f0 ⊕ c1 f2 ← U [2] j2 ← X[2]
e1 ← b1 ⊕ d1 V [1] ← b1 W [1] ← d1 a2 ← j1 ⊕ b1
b2 ← a2 ⊕ f1 c2 ← e1 ⊕ j1 f3 ← U [3] j3 ← X[3]
d2 ← f1 ⊕ c2 V [2] ← b2 a3 ← j2 ⊕ b2
e2 ← b2 ⊕ d2 W [2] ← d2 b3 ← a3 ⊕ f2 f4 ← U [4] j4 ← X[4]
c3 ← e2 ⊕ j2 V [3] ← b3 a4 ← j3 ⊕ b3 i ← 3

L : di ← fi−1 ⊕ ci bi+1 ← ai ⊕ fi
ei ← bi ⊕ di W [i] ← di V [i + 1] ← bi+1 fi+2 ← U [i + 2] ji+2 ← X[i + 2]
ci+1 ← ei ⊕ ji ai+2 ← ji+1 ⊕ bi+1 i ← i + 1 if i < N − 2 goto L
dN−1 ← fN−2 ⊕ cN−1 bN ← aN ⊕ fN−1
eN−1 ← bN−1 ⊕ dN−1 W [N − 1] ← dN−1 V [N] ← bN
cN ← eN−1 ⊕ jN−1
dN ← fN−1 ⊕ cN
eN ← bN ⊕ dN W [N] ← dN

FIGURE 20.7. Pipelined schedule. Assignments in each row happen simul-
taneously; each right-hand side refers to the value before the
assignment. The loop exit test i < N + 1 has been “moved
past” three increments of i , so appears as i < N − 2.

a1 ← j0 ⊕ b0 c1 ← e0 ⊕ j0 f1 ← U [1] j1 ← X[1]
b1 ← a1 ⊕ f0 d1 ← f0 ⊕ c1 f ′′ ← U [2] j2 ← X[2]
e1 ← b1 ⊕ d1 V [1] ← b1 W [1] ← d1 a2 ← j1 ⊕ b1
b2 ← a2 ⊕ f1 c2 ← e1 ⊕ j1 f ′ ← U [3] j ′ ← X[3]
d ← f1 ⊕ c2 V [2] ← b2 a ← j2 ⊕ b2
e2 ← b2 ⊕ d2 W [2] ← d2 b ← a ⊕ f ′′ f ← U [4] j ← X[4]
c ← e2 ⊕ j2 V [3] ← b a ← j ′ ⊕ b i ← 3

L : d ← f ′′ ⊕ c b ← a′ ⊕ f ′ b′ ← b; a′ ← a; f ′′ ← f ′; f ′ ← f ; j ′′ ← j ′; j ′ ← j
e ← b′ ⊕ d W [i] ← d V [i + 1] ← b f ← U [i + 2] j ← X[i + 2]
c ← e ⊕ j ′′ a ← j ′ ⊕ b i ← i + 1 if i < N − 2 goto L
d ← f ′′ ⊕ c b ← a ⊕ f ′ b′ ← b
e ← b′ ⊕ d W [N − 1] ← d V [N] ← b
c ← e ⊕ j ′
d ← f ′ ⊕ c
e ← b ⊕ d W [N] ← d

FIGURE 20.8. Pipelined schedule, with move instructions.

449

CHAPTER TWENTY. PIPELINING AND SCHEDULING

The algorithm tries to place all the instructions of the loop body in a sched-
ule of ! cycles, assuming that there will also be a prologue and epilogue of
the kind used by the Aiken-Nicolau algorithm. The algorithm tries increasing
values of ! until it reaches a value for which it can make a schedule.

A key idea of modulo scheduling is that if an instruction violates functional-
unit constraints at time t , then it will not fit at time t + !, or at any time t ′

where t ≡ t ′ modulo !.
Suppose, for example, we are trying to schedule Program 20.4b with ! =

3 on a machine that can perform only one load instruction at a time. The
following loop-body schedule is illegal, with two different loads at cycle 1:

0
1 fi ← U [i] ji ← X[i]
2

We can move fi from cycle 1 of the loop to cycle 0, or cycle 2:

0 fi ← U [i] 0
1 ji ← X[i] 1 ji ← X[i]
2 3 fi ← U [i]

Either one avoids the resource conflict. We could move fi even earlier, to
cycle −1, where (in effect) we are computing fi+1, or even later, to cycle 3,
where we are computing fi−1:

0 0 fi−1 ← U [i − 1]
1 ji ← X[i] 1 ji ← X[i]
2 fi+1 ← U [i + 1] 3

But with ! = 3 we can never solve the resource conflict by moving fi

from cycle 1 to cycle 4 (or to cycle -2), because 1 ≡ 4 modulo 3; the calcula-
tion of f would still conflict with the calculation of j :

0
1 fi−1 ← U [i − 1] ji ← X[i]
2

Effects on register allocation. Consider the calculation of d ← f ⊕c, which
occurs at cycle 0 of the schedule in Figure 20.7. If we place the calculation
of d in a later cycle, then the data-dependence edges from the definitions of
f and c to this instruction would lengthen, and the data-dependence edges
from this instruction to the use of d in W [i] ← d would shrink. If a data-
dependence edge shrinks to less than zero cycles, then a data-dependence

450

20.2. RESOURCE-BOUNDED LOOP PIPELINING

constraint has been violated; this can be solved by also moving the calcula-
tions that use d to a later cycle.

Conversely, if a data-dependence edge grows many cycles long, then we
must carry several “versions” of a value around the loop (as we carry f, f ′, f ′′

around the loop of Figure 20.8), and this means that we are using more tempo-
raries, so that register allocation may fail. In fact, an optimal loop-scheduling
algorithm should consider register allocation simultaneously with scheduling;
but it is not clear whether optimal algorithms are practical, and the iterated
modulo scheduling algorithm described in this section first schedules, then
does register allocation and hopes for the best.

FINDING THE MINIMUM INITIATION INTERVAL
Modulo scheduling begins by finding a lower bound for the number of cycles
in the pipelined loop body:

Resource estimator: For any kind of functional unit, such as a multiplier or a
memory-fetch unit, we can see how many cycles such units will be used by
the corresponding instructions (e.g., multiply or load, respectively) in the loop
body. This, divided by the number of that kind of functional unit provided by
the hardware, gives a lower bound for !. For example, if there are 6 mul-
tiply instructions that each use a multiplier for 3 cycles, and there are two
multipliers, then ! ≥ 6 · 3/2.

Data-dependence estimator: For any data-dependence cycle in the data-depen-
dence graph, where some value xi depends on a chain of other calculations
that depends on xi−1, the total latency of the chain gives a lower bound for !.

Let !min be the maximum of these estimators.
Let us calculate !min for Program 20.4b. For simplicity, we assume that

one ⊕-arithmetic instruction and one load/store can be issued at a time, and
every instruction finishes in one cycle; and we will not consider the schedul-
ing of i ← i + 1 or the conditional branch.

Then the arithmetic resource estimator is 5 ⊕-instructions in the loop
body divided by 1 issuable arithmetic instructions per cycle, or ! ≥ 5. The
load/store resource estimator is 4 load/store instructions in the loop body
divided by 1 issuable memory operations per cycle, or ! ≥ 4. The data-
dependence estimator comes from the cycle ci → di → ei → ci+1 in
Graph 20.5a, whose length gives ! ≥ 3.

Next, we prioritize the instructions of the loop body by some heuristic that
decides which instructions to consider first. For example, instructions that
are in critical data-dependence cycles, or instructions that use a lot of scarce

451

CHAPTER TWENTY. PIPELINING AND SCHEDULING

resources, should be placed in the schedule first, and then other instructions
can be filled in around them. Let H1, . . . , Hn be the instructions of the loop
body, in (heuristic) priority order.

In our example, we could use H = [c, d, e, a, b, f, j, g, h], putting early
the instructions that are in the critical recurrence cycle or that use the arith-
metic functional unit (since the resource estimators for this loop tell us that
arithmetic is in more demand than load/stores).

The scheduling algorithm maintains a set S of scheduled instructions, each
scheduled for a particular time t . The value of SchedTime[h] = none if h ̸∈ S,
otherwise SchedTime[h] is the currently scheduled time for h. The members
of S obey all resource and data-dependence constraints.

Each iteration of Algorithm 20.9 places the highest-priority unscheduled
instruction h into S, as follows:

1. In the earliest time slot (if there is one) that obeys all dependence constraints
with respect to already-placed predecessors of h, and respects all resource
constraints.

2. But if there is no slot in ! consecutive cycles that obeys resource constraints,
then there can never be such a slot, because the functional units available at
time t are the same as those at t + c · !. In this case, h is placed without
regard to resource constraints, in the earliest time slot that obeys dependence
constraints (with respect to already-placed predecessors), and is later than any
previous attempt to place h.

Once h is placed, other instructions are removed to make the subset sched-
ule S legal again: any successors of h that now don’t obey data-dependence
constraints, or any instructions that have resource conflicts with h.

This placement-and-removal could iterate forever, but most of the time
either it finds a solution quickly or there is no solution, for a given !. To cut
the algorithm off if it does not find a quick solution, a Budget of c ·n schedule
placements is allowed (for c = 3 or some similar number), after which this
value of ! is abandoned and the next one is tried.

When a def-use edge associated with variable j becomes longer than !

cycles, it becomes necessary to have more than one copy of j , with MOVE

instructions copying the different-iteration versions in bucket-brigade style.
This is illustrated in Figure 20.8 for variables a, b, f, j , but we will not show
an explicit algorithm for inserting the moves.

Checking for resource conflicts is done with a resource reservation table,
an array of length !. The resources used by an instruction at time t can be
entered in the array at position t mod !; adding and removing resource-usage

452

20.2. RESOURCE-BOUNDED LOOP PIPELINING

for ! ← !min to ∞
Budget ← n · 3
for i ← 1 to n

LastTime[i] ← 0
SchedTime[i] ← none

while Budget > 0 and there are any unscheduled instructions
Budget ← Budget − 1
let h be the highest-priority unscheduled instruction
tmin ← 0
for each predecessor p of h

if SchedTime[p] ̸= none
tmin ← max(tmin, SchedTime[p] + Delay(p, h))

for t ← tmin to tmin + ! − 1
if SchedTime[h] = none

if h can be scheduled without resource conflicts
SchedTime[h] ← t

if SchedTime[h] = none
SchedTime[h] ← max(tmin, 1 + LastTime[h])

LastTime[h] ← SchedTime[h]
for each successor s of h

if SchedTime[s] ̸= none
if SchedTime[h] + Delay(h, s) > SchedTime[s]

SchedTime[s] ← none
while the current schedule has resource conflicts

let s be some instruction (other than h) involved in a resource conflict
SchedTime[s] ← none

if all instructions are scheduled
RegisterAllocate()
if register allocation succeeded without spilling

return and report a successfully scheduled loop.

Delay(h, s) =
Given a dependence edge hi → si+k , so that h uses the value of s from the kth previous iteration

(where k = 0 means that h uses the current iteration’s value of s);
Given that the latency of the instruction that computes s is l cycles;

return l − k!

ALGORITHM 20.9. Iterative modulo scheduling.

453

CHAPTER TWENTY. PIPELINING AND SCHEDULING

SchedTime
a 3
b
c 0
d 1
e 2
f
g
h
j

Resource
Table

⊕ M

0 c
1 d
2 e
3 a
4

Placing c, d, e, a.

SchedTime
a 3
b 4
c 0
d 1
e ̸ 2
f
g
h
j

Resource
Table

⊕ M

0 c
1 d
2
3 a
4 b

Placing b violates
b → e; remove e.

SchedTime
a 3
b 4
c ̸ 0 5
d ̸ 1
e ̸ 2 7
f
g
h
j

Resource
Table

⊕ M

0 c
1
2 e
3 a
4 b

Placing e violates
e → c; remove c;
placing c violates
c → d; remove d.

SchedTime
a 3
b 4
c ̸ 0 5
d ̸ 1 6
e ̸ 2 7
f 0
g 7
h 8
j 1

Resource
Table

⊕ M

0 c f
1 d j
2 e g
3 a h
4 b

Placing
d, f, j, g, h.

FIGURE 20.10. Iterative modulo scheduling applied to Program 20.4b.
Graph 20.5a is the data-dependence graph; !min = 5 (see
page 451); H = [c, d, e, a, b, f, j, g, h].

from the table, and checking for conflicts, can be done in constant time.
This algorithm is not guaranteed to find an optimal schedule in any sense.

There may be an optimal, register-allocable schedule with initiation interval
!, and the algorithm may fail to find any schedule with time !, or it may find
a schedule for which register-allocation fails. The only consolation is that it
is reported to work very well in practice.

The operation of the algorithm on our example is shown in Figure 20.10.

OTHER CONTROL FLOW
We have shown scheduling algorithms for simple straight-line loop bodies.
What if the loop contains internal control flow, such as a tree of if-then-else
statements? One approach is to compute both branches of the loop, and then
use a conditional move instruction (provided on many high-performance ma-
chines) to produce the right result.

For example, the loop at left can be rewritten into the loop at right, using a
conditional move:

for i ← 1 to N
x ← M[i]
if x > 0

u ← z ∗ x
else u ← A[i]
s ← s + u

for i ← 1 to N
x ← M[i]
u′ ← z ∗ x
u ← A[i]
if x > 0 move u ← u′

s ← s + u

454

20.2. RESOURCE-BOUNDED LOOP PIPELINING

The resulting loop body is now straight-line code that can be scheduled easily.
But if the two sides of the if differ greatly in size, and the frequently exe-

cuted branch is the small one, then executing both sides in every iteration will
be slower than optimal. Or if one branch of the if has a side effect, it must not
be executed unless the condition is true.

To solve this problem we use trace scheduling: We pick some frequently
executed straight-line path through the branches of control flow, schedule this
path efficiently, and suffer some amount of ineffiency at those times where
we must jump into or out of the trace. See Section 8.2 and also the Further
Reading section of this chapter.

SHOULD THE COMPILER SCHEDULE INSTRUCTIONS?
Many machines have hardware that does dynamic instruction rescheduling
at run time. These machines do out-of-order execution, meaning that there
may be several decoded instructions in a buffer, and whichever instruction’s
operands are available can execute next, even if other instructions that ap-
peared earlier in the program code are still awaiting operands or resources.

Such machines first appeared in 1967 (the IBM 360/91), but did not be-
come common until the mid-1990s. Now it appears that most high-perfor-
mance processors are being designed with dynamic (run-time) scheduling.
These machines have several advantages and disadvantages, and it is not yet
clear whether static (compile-time) scheduling or out-of-order execution will
become standard.

Advantages of static scheduling. Out-of-order execution uses expensive hard-
ware resources and tends to increase the chip’s cycle time and wattage. The
static scheduler can schedule earlier the instructions whose future data-depen-
dence path is longest; a real-time scheduler cannot know the length of the
data-dependence path leading from an instruction (see Exercise 20.3). The
scheduling problem is NP-complete, so compilers – which have no real-time
constraint on their scheduling algorithms – should in principle be able to find
better schedules.

Advantages of dynamic scheduling. Some aspects of the schedule are unpre-
dictable at compile time, such as cache misses, and can be better scheduled
when their actual latency is known (see Figure 21.5). Highly pipelined sched-
ules tend to use many registers; typical machines have only 32 register names
in a five-bit instruction field, but out-of-order execution with run-time regis-

455

CHAPTER TWENTY. PIPELINING AND SCHEDULING

COMPARE I-Fetch Read Arith ↓ Write
BRANCH I-Fetch Read ↑ Arith ↓
ADD wait wait ↑ I-Fetch Read Arith Write

FIGURE 20.11. Dependence of ADD’s instruction-fetch on result of BRANCH.

ter renaming can use hundreds of actual registers with a few static names (see
the Further Reading section). Optimal static scheduling depends on knowing
the precise pipeline state that will be reached by the hardware, which is some-
times difficult to determine in practice. Finally, dynamic scheduling does not
require that the program be recompiled (i.e., rescheduled) for each different
implementation of the same instruction set.

20.3 BRANCH PREDICTION

In many floating-point programs, such as Program 20.4a, the basic blocks
are long, the instructions are long-latency floating-point operations, and the
branches are very predictable for-loop exit conditions. In such programs the
problem, as described in the previous sections, is to schedule the long-latency
instructions.

But in many programs – such as compilers, operating systems, window
systems, word processors – the basic blocks are short, the instructions are
quick integer operations, and the branches are harder to predict. Here the
main problem is fetching the instructions fast enough to be able to decode
and execute them.

Figure 20.11 illustrates the pipeline stages of a COMPARE, BRANCH,
and ADD instruction. Until the BRANCH has executed, the instruction-fetch
of the successor instruction cannot be performed because the address to fetch
is unknown.

Suppose a superscalar machine can issue four instructions at once. Then,
in waiting three cycles after the BRANCH is fetched before the ADD can be
fetched, 11 instruction-issue slots are wasted (3 × 4 minus the slot that the
BRANCH occupies).

Some machines solve this problem by fetching the instructions immedi-
ately following the branch; then if the branch is not taken, these fetched-and-
decoded instructions can be used immediately. Only if the branch is taken
are there stalled instruction slots. Other machines assume the branch will be
taken, and begin fetching the instructions at the target address; then if the

456

20.3. BRANCH PREDICTION

branch falls through, there is a stall. Some machines even fetch from both
addresses simultaneously, though this requires a very complex interface be-
tween processor and instruction-cache.

Modern machines rely on branch prediction to make the right guess about
which instructions to fetch. The branch prediction can be static – the compiler
predicts which way the branch is likely to go and places its prediction in
the branch instruction itself; or dynamic – the hardware remembers, for each
recently executed branch, which way it went last time, and predicts that it will
go the same way.

STATIC BRANCH PREDICTION
The compiler can communicate predictions to the hardware by a 1-bit field of
the branch instruction that encodes the predicted direction.

To save this bit, or for compatibility with old instruction sets, some ma-
chines use a rule such as “backward branches are assumed to be taken, for-
ward branches are assumed to be not-taken.” The rationale for the first part
of this rule is that backward branches are (often) loop branches, and a loop
is more likely to continue than to exit. The rationale for the second part of
the rule is that it’s often useful to have predicted-not-taken branches for ex-
ceptional conditions; if all branches are predicted taken, we could reverse the
sense of the condition to make the exceptional case “fall through” and the
normal case take the branch, but this leads to worse instruction-cache per-
formance, as discussed in Section 21.2. When generating code for machines
that use forward/backward branch direction as the prediction mechanism, the
compiler can order the basic blocks of the program in so that the predicted-
taken branches go to lower addresses.

Several simple heuristics help predict the direction of a branch. Some of
these heuristics make intuitive sense, but all have been validated empirically:

Pointer: If a loop performs an equality comparison on pointers (p=null or
p=q), then predict the condition as false.

Call: A branch is less likely to be the successor that dominates a procedure call
(many conditional calls are to handle exceptional situations).

Return: A branch is less likely to a successor that dominates a return-from-
procedure.

Loop: A branch is more likely to the successor (if any) that is the header of the
loop containing the branch.

Loop: A branch is more likely to the successor (if any) that is a loop preheader,

457

CHAPTER TWENTY. PIPELINING AND SCHEDULING

if it does not postdominate the branch. This catches the results of the opti-
mization described in Figure 18.7, where the iteration count is more likely to
be > 0 than = 0. (B postdominates A if any path from A to program-exit
must go through B; see Section 19.5.)

Guard: If some value r is used as an operand of the branch (as part of the
conditional test), then a branch is more likely to a successor in which r is live
and which does not postdominate the branch.

There are some branches to which more than one of the heuristics apply. A
simple approach in such cases is to give the heuristics a priority order and use
the first heuristic in the order that applies (the order in which they are listed
above is a reasonable prioritization, based on empirical measurements).

Another approach is to index a table by every possible subset of conditions
that might apply, and decide (based on empirical measurements) what to do
for each subset.

SHOULD THE COMPILER PREDICT BRANCHES?
Perfect static prediction results in a dynamic mispredict rate of about 9% (for
C programs) or 6% (for Fortran programs). The “perfect” mispredict rate is
not zero because any given branch does not go in the same direction more
than 91% of the time, on average. If a branch did go the same direction 100%
of the time, there would be little need for it! Fortran programs tend to have
more predictable branches because more of the branches are loop branches,
and the loops have longer iteration counts.

Profile-based prediction, in which a program is compiled with extra in-
structions to count the number of times each branch is taken, executed on
sample data, and recompiled with prediction based on the counts, approaches
the accuracy of perfect static prediction.

Prediction based on the heuristics described above results in a dynamic
mispredict rate of about 20% (for C programs), or about half as good as per-
fect (or profile-based) static prediction.

A typical hardware-based branch-prediction scheme uses two bits for ev-
ery branch in the instruction cache, recording how the branch went the last
two times it executed. This leads to misprediction rates of about 11% (for C
programs), which is about as good as profile-based prediction.

A mispredict rate of 10% can result in very many stalled instructions –
if each mispredict stalls 11 instruction slots, as described in the example on
page 456, and there is one mispredict every 10 branches, and one-sixth of all
instructions are branches, then 18% of the processor’s time is spent waiting

458

FURTHER READING

for mispredicted instruction-fetches. Therefore it will be necessary to do bet-
ter, using some combination of hardware and software techniques. Relying on
heuristics that mispredict 20% of the branches is better than no predictions at
all, but will not suffice in the long run.

F U R T H E R
R E A D I N G

Hennessy and Patterson [1996] explain the design and implementation of
high-performance machines, instruction-level parallelism, pipeline structure,
functional units, caches, out-of-order execution, register renaming, branch
prediction, and many other computer-architecture issues, with comparisons
of compiler versus run-time-hardware techniques for optimization. Kane and
Heinrich [1992] describe the pipeline constraints of the MIPS R4000 com-
puter, from which Figures 20.1 and 20.2 are adapted.

CISC computers of the 1970s implemented complex instructions sequen-
tially using an internal microcode that could do several operations simulta-
neously; it was not possible for the compiler to interleave parts of several
macroinstructions for increased parallelism. Fisher [1981] developed an au-
tomatic scheduling algorithm for microcode, using the idea of trace schedul-
ing to optimize frequently executed paths, and then proposed a very-long-
instruction-word (VLIW) architecture [Fisher 1983] that could expose the
microoperations directly to user programs, using the compiler to schedule.

Aiken and Nicolau [1988] were among the first to point out that a single
loop iteration need not be scheduled in isolation, and presented the algorithm
for optimal (ignoring resource constraints) parallelization of loops.

Many variations of the multiprocessor scheduling problem are NP-complete
[Garey and Johnson 1979; Ullman 1975]. The iterative modulo scheduling al-
gorithm [Rau 1994] gets good results in practice. In the absence of resource
constraints, it is equivalent to the Bellman-Ford shortest-path algorithm [Ford
and Fulkerson 1962]. Optimal schedules can be obtained (in principle) by
expressing the constraints as an integer linear program [Govindarajan et al.
1996], but integer-linear-program solvers can take exponential time (the prob-
lem is NP-complete), and the register-allocation constraint is still difficult to
express in linear inequalities.

Ball and Larus [1993] describe and measure the static branch-prediction
heuristics shown in Section 20.3. Young and Smith [1994] show a profile-

459

CHAPTER TWENTY. PIPELINING AND SCHEDULING

based static branch-prediction algorithm that does better than optimal static
predition; the apparent contradiction in this statement is explained by the fact
that their algorithm replicates some basic blocks, so that a branch that’s 80%
taken (with a 20% misprediction rate) might become two different branches,
one almost-always taken and one almost-always not taken.

E X E R C I S E S

20.1 Schedule the following loop using the Aiken-Nicolau algorithm:

for i ← 1 to N
a ← X[i − 2]
b ← Y [i − 1]
c ← a × b
d ← U [i]
e ← X[i − 1]
f ← d + e
g ← d × c

h : X[i] ← g
j : Y [i] ← f

a. Label all the scalar variables with subscripts i and i − 1. Hint: In this
loop there are no loop-carried scalar-variable dependences, so none of
the subscripts will be i − 1.

b. Perform scalar replacement on uses of X[] and Y []. Hint: Now you will
have subscripts of i − 1 and i − 2.

c. Perform copy propagation to eliminate variables a, b, e.
d. Draw a data-dependence graph of statements c, d, f, g, h, j ; label intra-

iteration edges with 0 and loop-carried edges with 1 or 2, depending on
the number of iterations difference there is in the subscript.

e. Show the Aiken-Nicolau tableau (as in Table 20.6a).
f. Find the identical groups separated by increasing gaps. Hint: The iden-

tical groups will be c cycles apart, where in this case c is greater than
one!

g. Show the steepest-slope group. Hint: The slope is not an integer.
h. Unroll the loop k times, where k is the denominator of the slope.
i. Draw the data-dependence graph of the unrolled loop.
j. Draw the tableau for the schedule of the unrolled loop.
k. Find the slope of the steepest-slope group. Hint: Now it should be an

integer.

460

EXERCISES

l. Move the shallow-slope group(s) down to close the gap.

m. Identify the loop body, the prologue, and the epilogue.

n. Write a schedule showing placement of the prologue, loop body, and
epilogue in specific cycles, like Figure 20.7.

o. Eliminate the subscripts on variables in the loop body, inserting move
instructions where necessary, as in Figure 20.8.

20.2 Do parts a–d of Exercise 20.1. Then use iterated modulo scheduling to schedule
the loop for a machine that can issue three instructions at a time, of which at
most one can be a memory instruction and at most one can be a multiply
instruction. Every instruction completes in one cycle.

e. Explicitly represent the increment instruction ii+1 ← ii + 1 and the loop
branch k : if ii+1 ≤ N goto loop in the data-dependence graph, with an
edge from i to itself (labeled by 1), from i to k (labeled by 0), and from k
to every node in the loop body (labeled by 1).

f. Calculate !min based on data-dependence cycles, the 2-instruction per
cycle limit, the 1-load/store-per-cycle limit, and the 1-multiply-per-cycle
limit. Remark: The ! required for a data-dependence cycle is the length
of the cycle divided by the sum of the edge labels (where edge labels
show iteration distance, as described in Exercise 20.1d).

g. Run Algorithm 20.9, showing the SchedTime and Resource tables each
time a variable has to be removed from the schedule, as in Figure 20.10.
Use the priority order H = [i, k, c, d, g, f, h, j].

h. Eliminate the subscripts on variables in the loop body, inserting move
instructions where necessary, as in Figure 20.8. If the move instructions
don’t fit into the 3-instruction-issue limit, then it’s time to increase ! and
try again.

20.3 Consider the following program:

L : L :
a : a ← U [i] a : a ← U [i]
b : b ← a × a d : d ← d × a
c : V [i] ← b b : b ← a × a
i : i ← i + 1 c : V [i] ← b
d : d ← d × a i : i ← i + 1
e : if d < 1.0 goto L e : if d < 1.0 goto L

(I) Unscheduled (II) Scheduled

Suppose these loops are to be run on an out-of-order execution machine with
these characteristics: Each instruction takes exactly one cycle, and may be exe-
cuted as soon as its operands are ready and all preceding conditional branches

461

CHAPTER TWENTY. PIPELINING AND SCHEDULING

have been executed. Several instructions may be executed at once, except that
there is only one multiply unit. If two multiply instructions are ready, the in-
struction from an earlier iteration, or occurring first in the same iteration, is
executed.

The program was originally written as shown in loop (I); the compiler has
rescheduled it as loop (II). For each of the two loops:

a. Draw the data-dependence graph, showing loop-carried dependences
with a dashed line.

b. Add the control dependence as a loop-carried edge from e to each of the
other nodes.

c. To simulate how the machine will execute the loop, show the Aiken-
Nicolau tableau, with the restriction that b and d must never be put in
the same cycle. In a cycle where b and d’s predecessors are both ready,
prefer the instruction from the earlier iteration, or from earlier in the same
iteration.

d. Compute the steepest slope in the tableau; how many cycles per iteration
does the loop take?

e. Can compiler scheduling be useful for dynamically rescheduling (out-of-
order execution) machines?

20.4 On many machines, instructions after a conditional branch can be executed
even before the branch condition is known (the instructions do not commit
until after the branch condition is verified).

Suppose we have an out-of-order execution machine with these characteris-
tics: An add or branch takes one cycle; a multiply takes 4 cycles; each instruction
may be executed as soon as its operands are ready. Several instructions may be
executed at once, except that there is only one multiply unit. If two multiply
instructions are ready, the instruction from an earlier iteration, or occurring first
in the same iteration, is executed.

For a machine with this behavior, do parts a–e of Exercise 20.3 for the
following programs:

L : L :
a : a ← e × u b : b ← e × v

b : b ← e × v a : a ← e × u
c : c ← a + w c : c ← a + w

d : d ← c + x d : d ← c + x
e : e ← d + y e : e ← d + y
f : if e > 0.0 goto L f : if e > 0.0 goto L

(I) Unscheduled (II) Scheduled

20.5 Write a short program that contains an instance of each of the branch-prediction

462

EXERCISES

heuristics (pointer, call, return, loop header, loop preheader, guard) described
on pages 457–458. Label each instance.

20.6 Use branch-prediction heuristics to predict the direction of each of the condi-
tional branches in the programs of Exercise 8.6 (page 175) and Figure 18.7b
(page 386); explain which heuristic applies to each prediction.

463

21
The Memory Hierarchy

mem-o-ry: a device in which information can be inserted
and stored and from which it may be extracted when
wanted
hi-er-ar-chy: a graded or ranked series

Webster’s Dictionary

An idealized random access memory (RAM) has N words indexed by inte-
gers such that any word can be fetched or stored – using its integer address
– equally quickly. Hardware designers can make a big slow memory, or a
small fast memory, but a big fast memory is prohibitively expensive. Also,
one thing that speeds up access to memory is its nearness to the processor,
and a big memory must have some parts far from the processor no matter
how much money might be thrown at the problem.

Almost as good as a big fast memory is the combination of a small fast
cache memory and a big slow main memory; the program keeps its frequently
used data in cache and the rarely used data in main memory, and when it
enters a phase in which datum x will be frequently used it may move x from
the slow memory to the fast memory.

It’s inconvenient for the programmer to manage multiple memories, so the
hardware does it automatically. Whenever the processor wants the datum at
address x , it looks first in the cache, and – we hope – usually finds it there.
If there is a cache miss – x is not in the cache – then the processor fetches
x from main memory and places a copy of x in the cache so that the next
reference to x will be a cache hit. Placing x in the cache may mean removing
some other datum y from the cache to make room for it, so that some future
access to y will be a cache miss.

464

21.1. CACHE ORGANIZATION

0 0 1 1 0 1 1 0 1 0 0 1 0 0

byte

key

address

W
o

rd
in

d
ex

0 0 1 1 0 1

tagskeys

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

0 0

0 1

1 0

1 1

1 1

1 1

1 1

1 1

1 0 1 1 1 0 1 0

1 0 1 1 1 0 1 0 data word returned from cache

} one block
(cache line)

0 0 0 1 1 0 1 1

ta
g

data blocks

}}

} }

wl
n

m

FIGURE 21.1. Organization of a direct-mapped cache. Key field of the ad-
dress is used to index the tags array and the data blocks; if
tags[key] matches the tag field of the address then the data is
valid (cache hit). Word index is used to select a word from the
cache block.

21.1 CACHE ORGANIZATION

A direct-mapped cache is organized in the following way to do this quickly.
There are 2m blocks, each holding 2l words of 2w bytes; thus, the cache holds
2w+l+m bytes in all, arranged in an array Data[block][word][byte]. Each block
is a copy of some main-memory data, and there is a tag array indicating where
in memory the current contents come from. Typically, the word size 2w might
be 4 bytes, the block size 2w+l might be 32 bytes, and the cache size 2w+l+m

might be as small as 8 kilobytes or as large as 2 megabytes.

tag key word byte
(n − (m + l + w)) bits m bits l w

Given an address x , the cache unit must be able to find whether x is in
the cache. The address x is composed of n bits, xn−1xn−2 . . . x2x1x0 (see Fig-
ure 21.1). In a direct-mapped cache organization, we take the middle bits as
the key = xw+l+m−1xw+l+m−2 . . . xw+l , and hold the data for x in Data[key].

465

CHAPTER TWENTY-ONE. THE MEMORY HIERARCHY

The high bits xn−1xn−2 . . . xw+l+m form the tag, and if Tags[key] ̸= tag, then
there is a cache miss – the word we require is not in cache. In this case, con-
tents of data[key] are sent back to main memory, and the contents of memory
at address xn−1 . . . xw+l , are fetched into the kth cache block (and also sent
to the CPU). Access time for main memory is much longer than the cache
access time, so frequent misses are undesirable.

The next time address x is fetched, if no intervening instruction has fetched
another address with the same key but different tag, there will be a cache
hit: Tags[key] = tag, and bits xw+l−1 . . . xw will address a word within the
keyth block: The contents of data[key][xw+l−1 . . . xw] are transferred to the
processor. This is much faster than going all the way to main memory for the
data. If the fetching instruction is a byte-fetch (instead of a word-fetch), then
(typically) the processor takes care of selecting the byte xl−1 . . . x0 from the
word.

Another common organization is the set-associative cache, which is quite
similar but can hold more than one block with the same key value. The com-
piler optimization strategies presented in this chapter are valid for both direct-
mapped caches and set-associative caches, but they are a bit more straightfor-
ward to analyze for direct-mapped caches.

Write-hit policy. The paragraphs above explain what happens on a read,
when the CPU asks for data at address x . But what happens when the CPU
writes data at address x? If x is in the cache, this is a write hit, which is easy
and efficient to process. On a write hit, main memory may be updated now
(write-through), or only when the cache block is about to be flushed from the
cache (write-back), but the choice of write-hit policy does not much affect the
compilation and optimization of sequential programs.

Write-miss policy. If the CPU writes data at an address not in the cache, this
is a write miss. Different machines have different write-miss policies:

Fetch-on-write. Word x is written to the cache. But now the other data words in
the same cache block belonged to some other address (that had the same key
as x), so to make a valid cache block the other words are fetched from main
memory. Meanwhile, the processor is stalled.

Write-validate. Word x is written to the cache. The other words in the same
cache block are marked invalid; nothing is fetched from main memory, so the
processor is not stalled.

Write-around. Word x is written directly to main memory, and not to the cache.
The processor is not stalled, as no response is required from the memory sys-

466

21.1. CACHE ORGANIZATION

1 cycle

Registers Primary
Cache

8−64k
7−10 cycles 70−100 cycles 6 710 −10 cycles

Secondary
Cache

Main Memory

64k−2M
2M−2G

Disk

1G−?

FIGURE 21.2. The memory hierarchy.

tem. Unfortunately, the next time x is fetched there will be a read miss, which
will delay the processor.

The write-miss policy can affect how programs should be optimized (see
pages 475 and 480).

Several layers of cache. A modern machine has a memory hierarchy of sev-
eral layers, as shown in Figure 21.2: Inside the processor are registers, which
can typically hold about 200 bytes in all and can be accessed in 1 processor
cycle; a bit farther away is the primary cache, which can typically hold 8–
64 kilobytes and be accessed in about 2–3 cycles; then the secondary cache
can hold about a megabyte and be accessed in 7–10 cycles; main memory
can hold 100 megabytes and be accessed in 100 cycles. The primary cache
is usually split into an instruction cache – from which the processor fetches
instructions to execute, and a data cache, from which the processor fetches
and stores operands of instructions. The secondary cache usually holds both
instructions and data.

Many processors can issue several instructions per cycle; the number of
useful instructions in a cycle varies, depending on data-dependence and re-
source constraints (see page 441), but let us suppose that two useful instruc-
tions can be completed in each cycle, on the average. Then a primary-cache
miss is a 15-instruction delay (7–10 cycles, times 2), and a secondary-cache
miss is a 200-instruction delay.

This cache organization has several consequences of interest to the pro-
grammer (and often to the compiler):

Byte fetch: Fetching a single byte is often more expensive than fetching a whole
word, because the memory interface delivers a whole word at a time, so the
processor must do extra shifting.

Byte store: Storing a single byte is usually more expensive than storing a whole
word, because the other bytes of that word must be fetched from the cache and
stored back into it.

467

CHAPTER TWENTY-ONE. THE MEMORY HIERARCHY

Temporal locality: Accessing (fetching or storing) a word that has been re-
cently accessed will usually be a cache hit.

Spatial locality: Accessing a word in the same cache block as one that has been
accessed recently will usually be a cache hit.

Cache conflict: If address a and address a + i · 2w+b+m are both frequently
accessed, there will be many cache misses because accessing one will throw
the other out of the cache.

The compiler can do optimizing transformations that do not decrease the
number of instructions executed, but that decrease the number of cache misses
(or other memory stalls) that the program encounters.

21.2 CACHE-BLOCK ALIGNMENT

The typical cache-block size (B = about 8 words, more or less) is similar to
the typical data-object size. We may expect that an algorithm that fetches one
field of an object will probably fetch other fields as well.

If x straddles a multiple-of-B boundary, then it occupies portions of two
different cache blocks, both of which are likely to be active at the same time.
On the other hand, if x does not cross a multiple-of-B boundary, then access-
ing all the fields of x uses up only one cache block.

To improve performance by using the cache effectively, the compiler should
arrange that data objects are not unnecessarily split across blocks.

There are simple ways to accomplish this:

1. Allocate objects sequentially; if the next object does not fit in the remaining
portion of the current block, skip to the beginning of the next block.

2. Allocate size-2 objects in one area of memory, all aligned on multiple-of-2
boundaries; size-4 objects in another area, aligned on multiple-of-4 bound-
aries, and so on. This eliminates block-crossing for many common-sized ob-
jects, without wasted space between the objects.

Block alignment can waste some space, leaving unused words at the end of
some blocks, as shown in Figure 21.3. However, the execution speed may im-
prove; for a given phase of the program, there is a set S of frequently accessed
objects, and alignment may reduce the number of cache blocks occupied by
S from a number greater than the cache size to a number that fits in the cache.

Alignment can be applied both to global, static data and to heap-allocated
data. For global data, the compiler can use assembly-language alignment di-
rectives to instruct the linker. For heap-allocated records and objects, it is not

468

21.2. CACHE-BLOCK ALIGNMENT

x x

(a) (b)

FIGURE 21.3. Alignment of data objects (or basic blocks) to avoid crossing
cache-block boundaries is often worthwhile, even at the cost
of empty space between objects.

the compiler but the memory allocator within the runtime system that must
place objects on cache-block boundaries, or otherwise minimize the number
of cache-block crossings.

ALIGNMENT IN THE INSTRUCTION CACHE
Instruction “objects” (basic blocks) occupy cache blocks just as do data
records, and the same considerations of block-crossing and alignment apply
to instructions. Aligning the beginning of frequently executed basic blocks
on multiple-of-B boundaries increases the number of basic blocks that fit si-
multaneously in the instruction cache.

Infrequently executed instructions should not be placed on the same cache
blocks as frequently executed instructions. Consider the program

P;
if x then Q;
R;

where x is rarely true. We could generate code for it in either of the ways
shown in Figure 21.4; but placing Q out-of-line means that this series of state-
ments (usually) occupies two cache blocks, but placing Q straddling cache
blocks between P and R will mean that even in the common case, where Q

469

CHAPTER TWENTY-ONE. THE MEMORY HIERARCHY

L1:

Q

R

P

if not x goto L1

goto L3

L3:

L2:
P Q

R

if x goto L2

(a) (b)

FIGURE 21.4. If x is rarely true, basic-block placement (a) will occupy three
in-cache blocks, while (b) will usually occupy only two.

is not executed, this part of the program will occupy three blocks in the cache.
On some machines it is particularly important to align the target of a branch

instruction on a power-of-2 boundary. A modern processor fetches an aligned
block of k (2 or 4 or more) words. If the program branches to some address
that is not on a multiple-of-k boundary, then the instruction-fetch is not fetch-
ing k useful instructions.

An optimizing compiler should have a basic-block-ordering phase, after
instruction selection and register allocation. Trace scheduling (as described
in Section 8.2) can then be used to order a frequently executed path through a
contiguous set of cache blocks; in constructing a trace through a conditional
branch, it is important to follow the most-likely-taken out-edge, as determined
by branch prediction (as described in Section 20.3).

21.3 PREFETCHING

If a load instruction misses the primary (or secondary) cache, there will be a
7–10 cycle delay (or a 70–100 cycle delay, respectively) while the datum is
fetched from the next level of the memory hierarchy. In some cases, the need
for that datum is predictable many cycles earlier, and the compiler can insert
prefetch instructions to start the fetching earlier.

A prefetch instruction is a hint to the hardware to start bringing data at
address x from main memory into the cache. A prefetch never stalls the pro-
cessor – but on the other hand, if the hardware finds that some exceptional
condition (such as a page fault) would occur, the prefetch can be ignored.
When prefetch(x) is successful, it means that the next load from x will hit the

470

21.3. PREFETCHING

cache; an unsuccessful prefetch might cause the next load to miss the cache,
but the program will still execute correctly. Many machines now have some
form of prefetch instruction.

Of course, one reasonable alternative is – instead of starting the fetch ear-
lier – to just delay the instruction that uses the result of the fetch until later,
using the software-pipelining techniques described in Chapter 20. In fact,
processors that dynamically reorder instructions (to account for operands not
ready) achieve this effect without any special work by the compiler.

The problem with using software pipelining or dynamic rescheduling to
hide secondary-cache misses is that it increases the number of live tempo-
raries. Consider the following dot-product loop as an example:

L1 : x ← M[i]
y ← M[j]
z ← x × y
s ← s + z
i ← i + 4
j ← j + 4
if i < N goto L1

If the data for the i and j arrays are not in the primary cache, or if N is
large (> 8 kilobytes or so) so that the arrays cannot possibly fit in the cache,
then each time i or j crosses to a new multiple-of-B boundary (into a new
cache block), there will be a cache miss. In effect, the miss rate will be exactly
W/B, where W is the word size and B is the block size. Typical values for
W/B are 1

4 or 1
8 , and this is a rather high miss rate.

The penalty for a primary cache miss is perhaps 7 cycles, or (on a dual-
instruction-issue-per-cycle machine) 14 instructions. This would stall the pro-
cessor of an early-’90s machine for 14 instructions, but a good late-’90s ma-
chine with out-of-order execution will find some other instruction to execute
that is not data-dependent on the load.

The effective order of execution, on a dynamic-instruction-reordering ma-
chine, is shown in Figure 21.5a. When x1 ← M[i0] is fetched there is a cache
miss, so instructions data-dependent on x1 cannot be issued for 11 cycles. In
the meantime, i1 and j1, and even i2 and j2 can be computed; and the fetch
x2 ← M[i1] can be issued.

As the number of uncompleted loop iterations increases, the number of
live or reserved registers increases proportionately. The cache misses for
x2, x3, x4 are the same miss as for x1 because they are all in the same cache

471

CHAPTER TWENTY-ONE. THE MEMORY HIERARCHY

Cache Instruction Live or reserved
Delay issued registers

x1 ← M[i0] s0i0 j0x1y1 ← M[j0] s0i0 j0x1 y1i1 ← i0 + 4 s0i1 j0x1 y1j1 ← j0 + 4 s0i1 j1x1 y1if i1 < N . . . s0i1 j1x1 y1x2 ← M[i1] s0i1 j1x1 y1x2y2 ← M[j1] s0i1 j1x1 y1x2 y2i2 ← i1 + 4 s0i2 j1x1 y1x2 y2j2 ← j1 + 4 s0i2 j2x1 y1x2 y2if i2 < N . . . s0i2 j2x1 y1x2 y2x3 ← M[i2] s0i2 j2x1 y1x2 y2x3y3 ← M[j2] s0i2 j2x1 y1x2 y2x3 y3i3 ← i2 + 4 s0i3 j2x1 y1x2 y2x3 y3z1 ← x1 × y1 s0i3 j2z1x2 y2x3 y3s1 ← s0 + z1 s1i3 j2x2 y2x3 y3z2 ← x2 × y2 s1i3 j2z2x3 y3s2 ← s1 + z2 s2i3 j2x3 y3z3 ← x3 × y3 s2i3 j2z3s3 ← s2 + z3 s3i3 j2j3 ← j2 + 4 s3i3 j3if i3 < N . . . s3i3 j3x4 ← M[i3] s3i3 j3x4y4 ← M[j3] s3i3 j3x4 y4z4 ← x4 × y4 s3i3 j3z4s4 ← s3 + z4 s4i3 j3i4 ← i3 + 4 s4i4 j3j4 ← j3 + 4 s4i4 j4if i4 < N . . . s4i4 j4x5 ← M[i4] s4i4 j4x5y5 ← M[j4] s4i4 j4x5 y5z5 ← x5 × y5 s4i5 j4x5 y5

(a) Without prefetching

Cache Instruction Live or reserved
Delay issued registers

fetch M[i0 + 16] s0i0 j0x1 ← M[i0] s0i0 j0x1y1 ← M[j0] s0i0 j0x1 y1z1 ← x1 × y1 s0i0 j0z1s1 ← s0 + z1 s1i0 j0i1 ← i0 + 4 s1i1 j0j1 ← j0 + 4 s1i1 j1if i1 < N . . . s1i1 j1x2 ← M[i1] s1i1 j1x2y2 ← M[j1] s1i1 j1x2 y2z2 ← x2 × y2 s1i1 j1z2s2 ← s1 + z2 s2i1 j1i2 ← i1 + 4 s2i2 j1j2 ← j1 + 4 s2i2 j2if i2 < N . . . s2i2 j2fetch M[j2 + 16] s2i2 j2x3 ← M[i2] s2i2 j2x3y3 ← M[j2] s2i2 j2x3 y3z3 ← x3 × y3 s2i2 j2z3s3 ← s2 + z3 s3i2 j2i3 ← i2 + 4 s3i3 j2j3 ← j2 + 4 s3i3 j3if i3 < N . . . s3i3 j3x4 ← M[i3] s3i3 j3x4y4 ← M[j3] s3i3 j3x4 y4z4 ← x4 × y4 s3i3 j3z4s4 ← s3 + z4 s4i3 j3i4 ← i3 + 4 s4i4 j3j4 ← j3 + 4 s4i4 j4if i4 < N . . . s4i4 j4fetch M[i4 + 16] s4i4 j4

(b) With prefetching

FIGURE 21.5. Execution of a dot-product loop, with 4-word cache blocks.

(a) Without prefetching, on a machine with dynamic instruc-
tion reordering, the number of outstanding instructions (re-
served registers) grows proportionally to the cache-miss la-
tency.

(b) With prefetching, the hardware reservation table never
grows large. (Steady-state behavior is shown here, not the ini-
tial transient.)

472

21.3. PREFETCHING

block, so x1, x2, x3, x4 all become available at about the same time. Iterations
5–8 (which use the next cache block) would be dynamically scheduled like
iterations 1–4, and so on.

The primary-cache latency, illustrated here, is usually small enough to han-
dle without prefetching techniques. But with a secondary cache-miss latency
of 200 instructions (i.e., 29 loop iterations), there will be about 116 outstand-
ing instructions (computations of x, y, z, s waiting for the cache miss), which
may exceed the capacity of the machine’s instruction-issue hardware.

Prefetch instructions. Suppose the compiler inserts a prefetch instruction for
address a, in advance of the time a will be fetched. This is a hint to the
computer that it should start transferring a from main memory into the cache.
Then, when a is fetched a few cycles later by an ordinary load instruction, it
will hit the cache and there will be no delay.

Many machines don’t have a prefetch instruction as such, but many ma-
chines do have a nonblocking load instruction. That is, when r3 ← M[r7] is
performed, the processor does not stall even on a cache miss, until r3 is used
as an operand of some other instruction. If we want to prefetch address a,
we can just do rt ← M[a], and then never use the value of rt . This will start
the load, bringing the value into cache if necessary, but not delay any other
instruction. Later, when we fetch M[a] again, it will hit the cache. Of course,
if the computation was already memory-bound – fully utilizing the load/store
unit while the arithmetic units are often idle – then prefetching using ordinary
load instructions may not help.

If the computation accesses every word of an array sequentially, it uses
several words from each cache block. Then we don’t need to prefetch every
word – just one word per cache block is enough. Assuming a 4-byte word and
16-byte cache block, the dot-product loop with prefetching looks something
like this:

L1 : if i mod 16 = 0 then prefetch M[i + K]
if j mod 16 = 0 then prefetch M[j + K]
x ← M[i]
y ← M[j]
z ← x × y
s ← s + z
i ← i + 4
j ← j + 4
if i < N goto L1

473

CHAPTER TWENTY-ONE. THE MEMORY HIERARCHY

L1 : prefetch M[i + K]
prefetch M[j + K]
x ← M[i]
y ← M[j]
z ← x × y
s ← s + z
i ← i + 4
j ← j + 4
if i ≥ N goto L2
x ← M[i]
y ← M[j]
z ← x × y
s ← s + z
i ← i + 4
j ← j + 4
if i ≥ N goto L2
x ← M[i]
y ← M[j]
z ← x × y
s ← s + z
i ← i + 4
j ← j + 4
if i ≥ N goto L2
x ← M[i]
y ← M[j]
z ← x × y
s ← s + z
i ← i + 4
j ← j + 4
if i < N goto L1

L2 :

L1 : n ← i + 16
if n + K ≥ N goto L3
prefetch M[i + K]
prefetch M[j + K]

L2 : x ← M[i]
y ← M[j]
z ← x × y
s ← s + z
i ← i + 4
j ← j + 4
if i < n goto L2
goto L1

L3 : x ← M[i]
y ← M[j]
z ← x × y
s ← s + z
i ← i + 4
j ← j + 4
if i < N goto L3

PROGRAM 21.6. Inserting prefetches using loop unrolling or nested loops.

The value K is chosen to match the expected cache-miss latency. For a sec-
ondary-cache-miss latency of 200 instructions, when each loop iteration exe-
cutes 7 instructions and advances i by 4, we would use K = 200·4/7 rounded
up to the nearest multiple of the block size, that is, about 128. Figure 21.5b
uses prefetching to “hide” a cache latency of 11 instructions, so K = 16,
the block size. An additional improvement that may be helpful on some ma-
chines, when K is small, is to avoid overlapping the prefetch latencies so the
memory hardware needn’t process two misses simultaneously.

In practice, we don’t want to test i mod 16 = 0 in each iteration, so we
unroll the loop, or nest a loop within a loop, as shown in Program 21.6. The
loop-unrolled version on the left could be further improved – in ways unre-

474

21.3. PREFETCHING

lated to prefetching – by removing some of the intermediate if statements, as
described in Section 18.5.

Prefetching for stores. Sometimes we can predict at compile time that a store
instruction will miss the cache. Consider the following loop:

for i ← 0 to N − 1
A[i] ← i

If the array A is larger than the cache, or if A has not recently been accessed,
then each time i crosses into a new cache block there will be a write miss.
If the write-miss policy is write-validate, then this is no problem, as the pro-
cessor will not be stalled and all the marked-invalid words will be quickly
overwritten with valid data. If the policy is fetch-on-write, then the stalls at
each new cache block will significantly slow down the program. But prefetch-
ing can be used here:

for i ← 0 to N − 1
if i mod blocksize = 0 then prefetch A[i + K]
A[i] ← i

As usual, unrolling the loop will remove the if-test. The A[i + K] value that’s
prefetched will contain garbage – dead data that we know will be overwritten.
We perform the prefetch only to avoid the write-miss stall.

If the write-miss policy is write-around, then we should prefetch only if
we expect the A[i] values to be fetched soon after they are stored.

Summary. Prefetching is applicable when

• The machine has a prefetch instruction, or a nonblocking load instruction that
can be used as a prefetch;

• The machine does not dynamically reorder instructions, or the dynamic re-
order buffer is smaller than the particular cache latency that we desire to hide;
and

• The data in question is larger than the cache, or not expected to be already in
cache.

We will not describe the algorithm for inserting prefetch instructions in
loops, but see the Further Reading section.

475

CHAPTER TWENTY-ONE. THE MEMORY HIERARCHY

21.4 LOOP INTERCHANGE

The most fundamental way of using the cache effectively is the reuse of
cached data. When nested loops access memory, successive iterations of a
loop often reuse the same word, or use adjacent words that occupy the same
cache block. If it is the innermost loop whose iterations reuse the same val-
ues, then there will be many cache hits. But if one of the outer loops reuses
a cache block, it may be that execution of the inner loop stomps through the
cache so heavily that by the time the next outer-loop iteration executes, the
cache block will have been flushed.

Consider the following nested loops, for example.

for i ← 0 to N − 1
for j ← 0 to M − 1

for k ← 0 to P − 1
A[i, j, k] ← (B[i, j − 1, k] + B[i, j, k] + B[i, j + 1, k])/3

The value B[i, j + 1, k] is reused in the next iteration of the j loop (where
its “name” is B[i, j, k]), and then is reused again in the iteration after that.
But in the meantime, the k loop brings 3P elements of the B array, and P
elements of the A array, through the cache. Some of these words may very
well conflict with B[i, j + 1, k], causing a cache miss the next time it is
fetched.

The solution in this case is to interchange the j and k loops, putting the j
loop innermost:

for i ← 0 to N − 1
for k ← 0 to P − 1

for j ← 0 to M − 1
A[i, j, k] ← (B[i, j − 1, k] + B[i, j, k] + B[i, j + 1, k])/3

Now B[i, j, k] will always be a cache hit, and so will B[i, j − 1, k].
To see whether interchange is legal for a given pair of loops, we must

examine the data-dependence graph of the calculation. We say that iteration
(j, k) depends on iteration (j ′, k ′) if (j ′, k ′) computes values that are used by
(j, k) (read-after-write), or stores values that are overwritten by (j, k) (write-
after-write), or reads values that are overwritten (write-after-read). If the in-
terchanged loops execute (j ′, k ′) before (j, k), and there is a dependence,
then the computation may yield a different result, and the interchange is
illegal.

476

21.5. BLOCKING

In the example shown above, there is no dependence between any iterations
of the nested loops, so interchange is legal.

See the Further Reading section for a discussion of the analysis of depen-
dence relations for array accesses in nested loops.

21.5 BLOCKING

The technique of blocking reorders a computation so that all the computa-
tions that use one portion of the data are completed before moving on to the
next portion. The following nested loop for matrix multiplication, C = AB,
illustrates the need for blocking:

for i ← 0 to N − 1
for j ← 0 to N − 1

for k ← 0 to N − 1
C[i, j] ← C[i, j] + A[i, k] · B[k, j]

If both A and B fit into the cache simultaneously, then the k loop will run
without cache misses; and there may be only one cache miss for C[i, j] on
each iteration of the j loop.

But suppose the cache is large enough to hold only 2 ·c · N matrix elements
(floating-point numbers), where 1 < c < N . For example, multiplying 50 ×
50 matrices of 8-byte floats on a machine with an 8-kilobyte cache, c = 10.
Then every reference to B[k, j] in the inner loop will be a cache miss, because
– since the last time that particular cell of B was accessed – the entire B
matrix will have been marched through the cache, dumping out the “old”
values. Thus, each iteration of the inner loop will have a cache miss.

Loop interchange cannot help here, because if the j loop is outermost, then
A will suffer cache misses, and if the k loop is outermost, then C will suffer
misses.

The solution is to reuse rows of the A matrix and columns of the B matrix
while they are still in cache. A c × c block of the matrix C can be calculated
from c rows of A and c columns of B, as follows (see also Figure 21.7):

for i ← i0 to i0 + c − 1
for j ← j0 to j0 + c − 1

for k ← 0 to N − 1
C[i, j] ← C[i, j] + A[i, k] · B[k, j]

477

CHAPTER TWENTY-ONE. THE MEMORY HIERARCHY

i

j j

i A B C
c

c c

c

j0

i0 i0

j0

A B C

FIGURE 21.7. Matrix multiplication. Each element of C is computed from a
row of A and a column of B. With blocking, a c × c block of
the C matrix is computed from a c × N block of A and a N × c
block of B.

Only c · N elements of A and c · N elements of B are used in this loop, and
each element is used c times. Thus, at a cost of 2 · c · N cache misses to bring
this portion of A and B into cache, we are able to compute c · c · N iterations
of the inner loop, for a miss rate of 2/c misses per iteration.

All that remains is to nest this set of loops inside outer loops that compute
each c × c block of C:

for i0 ← 0 to N − 1 by c
for j0 ← 0 to N − 1 by c

for i ← i0 to min(i0 + c − 1, N − 1)

for j ← j0 to min(j0 + c − 1, N − 1)

for k ← 0 to N − 1
C[i, j] ← C[i, j] + A[i, k] · B[k, j]

This optimization is called blocking because it computes one block of the
iteration space at a time. There are many nested-loop programs on which an
optimizing compiler can automatically perform the blocking transformation.
Crucial to the situation are loops whose iterations are not data-dependent on
each other; in matrix multiplication, the calculation of C[i, j] does not de-
pend on C[i ′, j ′], for example.

Scalar replacement. Even though the access to C[i, j] in the matrix-multiply
program will almost always hit the cache (since the same word is being used
repeatedly in the k loop), we can still bring it up one level in the memory
hierarchy – from primary cache into registers! – by the scalar replacement
optimization. That is, when a particular array element is used as a scalar for
repeated computations, we can “cache” it in a register:

478

21.5. BLOCKING

for i ← i0 to i0 + c − 1
for j ← j0 to j0 + c − 1

s ← C[i, j]
for k ← 0 to N − 1

s ← s + A[i, k] · B[k, j]
C[i, j] ← s

This reduces the number of fetches and stores in the innermost loop by a
factor of 2.

Blocking at every level of the memory hierarchy. To do blocking optimiza-
tions, the compiler must know how big the cache is – this determines the best
value of c, the block size. If there are several levels of the memory hierarchy,
then blocking can be done at each level. Even the machine’s registers should
be considered as a level of the memory hierarchy.

Taking again the example of matrix multiply, we suppose there are 32
floating-point registers, and we want to use d of them as a kind of cache.
We can rewrite the c × c loop (of the blocked matrix multiply) as follows:

for i ← i0 to i0 + c − 1
for k0 ← 0 to N − 1 by d

for k ← k0 to k0 + d − 1
T [k − k0] ← A[i, k]

for j ← j0 to j0 + c − 1
s ← C[i, j]
for k ← k0 to k0 + d − 1

s ← s + T [k − k0] · B[k, j]
C[i, j] ← s

Unroll and jam. Loop unrolling must be used for register-level blocking,
since registers cannot be indexed by subscripts. So we unroll the k-loops d
times and keep each T [k] in a separate scalar temporary variable (for illustra-
tion, we will use d = 3, though d = 25 would be more realistic):

for i ← i0 to i0 + c − 1
for k0 ← 0 to N − 1 by 3

t0 ← A[i, k0]; t1 ← A[i, k0 + 1]; t2 ← A[i, k0 + 2]
for j ← j0 to j0 + c − 1
C[i, j] ← C[i, j] + t0 · B[k0, j] + t1 · B[k0 + 1, j] + t2 · B[k0 + 2, j]

479

CHAPTER TWENTY-ONE. THE MEMORY HIERARCHY

The register allocator will ensure, of course, that the tk are kept in registers.
Every value of A[i, k] fetched from the cache is used c times; the B values
still need to be fetched, so the number of memory accesses in the inner loop
goes down by almost a factor of two.

A high-tech compiler would perform – on the same loop! – blocking trans-
formations for the primary cache and for the secondary cache, and scalar re-
placement and unroll-and-jam for the register level of the memory hierarchy.

21.6 GARBAGE COLLECTION & THE MEMORY HIERARCHY

Garbage-collected systems have had the reputation as cache-thrashers with
bad cache locality: After all, it would appear that a garbage collection touches
all of memory in random-access fashion.

But a garbage collector is really a kind of memory manager, and we can
organize it to manage memory for improved locality of reference.

Generations: When generational copying garbage collection is used, the young-
est generation (allocation space) should be made to fit inside the secondary
cache. Then each memory allocation will be a cache hit, and each youngest-
generation garbage collection will operate almost entirely within the cache as
well – only the objects promoted to another generation may cause cache-write
misses. (Keeping the youngest generation inside the primary cache is imprac-
tical, since that cache is usually so small that too-frequent garbage collections
would be required.)

Sequential allocation: With copying collection, new objects are allocated from
a large contiguous free space, sequentially in order of address. The sequential
pattern of stores to initialize these objects is easy for most modern write-
buffers to handle.

Few conflicts: The most frequently referenced objects tend to be the newer
ones. With sequential allocation of objects in the youngest generations, the
keys of these newer objects (in a direct-mapped cache) will be all different.
Consequently, garbage-collected programs have significantly lower conflict-
miss rates than programs that use explicit freeing.

Prefetching for allocation: The sequential initializing stores cause cache-write
misses (in the primary cache, which is much smaller than the allocation space)
at the rate of one miss per B/W stores, where B is the cache block size and W
is the word size. On most modern machines (those with write-validate cache
policies) these misses are not costly, because a write miss does not cause
the processor to wait for any data. But on some machines (those with fetch-

480

FURTHER READING

on-write or write-around policies) a write miss is costly. One solution is to
prefetch the block well in advance of storing into it. This does not require anal-
ysis of any loops in the program (like the technique shown in Section 21.3) –
instead, as the allocator creates a new object at address a, it prefetches word
a+K . The value K is related to the cache-miss latency and also the frequency
of allocation versus other computation, but a value of K = 100 should work
well in almost all circumstances.

Grouping related objects: If object x points to object y, an algorithm that ac-
cesses x will likely access y soon, so it is profitable to put the two objects in
the same block. A copying collector using depth-first search to traverse the
live data will automatically tend to put related objects together; a collector us-
ing breadth-first search will not. Copying in depth-first order improves cache
performance – but only if the cache blocks are larger than the objects.

These cache-locality improvement techniques are all applicable to copying
collection. Mark-and-sweep collectors, which cannot move the live objects,
are less amenable to cache management; but see the Further Reading section.

F U R T H E R
R E A D I N G

Sites [1992] discusses several kinds of instruction- and data-cache alignment
optimizations. Efficient approximation algorithms for the traveling
salesman problem (TSP) can be applied to basic-block ordering, to minimize
the instruction-fetch penalties for branches [Young et al. 1997].

Mowry et al. [1992] describe an algorithm for inserting prefetch instruc-
tions in for-loops, taking care not to insert prefetches (which do, after all,
have an instruction-issue cost) where the data in question is likely to be in
cache already.

The Lisp Machine’s garbage collector used depth-first search to group re-
lated objects on the same page to minimize page faults [Moon 1984]. Koop-
man et al. [1992] describe prefetching for a garbage-collected system. Diwan
et al. [1994], Reinhold [1994], and Gonçalves and Appel [1995] analyze the
cache locality of programs that use copying garbage collection. For mark-
sweep collectors, Boehm et al. [1991] suggest that (to improve page-level
locality) new objects should not be allocated into mostly full pages contain-
ing old objects, and that the sweep phase should be done incrementally so
that pages and cache blocks are “touched” by the sweep just before they are
allocated by the program.

481

CHAPTER TWENTY-ONE. THE MEMORY HIERARCHY

The techniques for optimizing the memory locality of programs with nested
loops have much in common with techniques for parallelizing loops. For ex-
ample, in a parallel implementation of matrix multiplication, having each pro-
cessor compute one row of the C matrix requires that processor to have N2

elements of A and N elements of B, or O(N2) words of interprocessor com-
munication. Instead, each processor should compute one block of C (where
the block size is

√
N ×

√
N); then each processor requires N ·

√
N words

of A and of B, which is only O(N1.5) words of communication. Many of the
compilers that use blocking and loop-nest optimizations to generate the most
memory-efficient code for uniprocessors are parallelizing compilers – with
the parallelization turned off!

To generate good parallel code – or to perform many of the loop opti-
mizations described in this chapter, such as blocking and interchange – it’s
necessary to analyze how array accesses are data-dependent on each other.
Array dependence analysis is beyond the scope of this book, but is covered
well by Wolfe [1996].

Callahan et al. [1990] show how to do scalar replacement; Carr and Kennedy
[1994] show how to calculate the right amount of unroll-and-jam for a loop
based on the characteristics of the target machine.

Wolf and Lam [1991] describe a compiler optimization algorithm that uses
blocking, tiling (like blocking but where the tiles can be skewed instead of
rectangular), and loop interchange to achieve locality improvements on many
kinds of nested loops.

The textbook by Wolfe [1996] covers almost all the techniques described
in this chapter, with particular emphasis on automatic parallelization but also
with some treatment of improving memory locality.

E X E R C I S E S

*21.1 Write a program in C for multiplying 1000×1000 double-precision floating-point
matrices. Run it on your machine and measure the time it takes.

a. Find out the number of floating-point registers on your machine, the size
of the primary cache, and the size of the secondary cache.

b. Write a matrix-multiply program that uses blocking transformations at
the secondary cache level only. Measure its run time.

482

EXERCISES

c. Modify your program to optimize on both levels of the cache; measure
its run time.

d. Modify the program again to optimize over both levels of the cache and
use registers via unroll-and-jam; view the output of the C compiler to
verify that the register allocator is keeping your temporary variables in
floating-point registers. Measure the run time.

*21.2 Write a program in C for multiplying 1000 × 1000 double-precision floating-
point matrices. Use the C compiler to print out assembly language for your loop.
If your machine has a prefetch instruction, or a nonstalling load instruction that
can serve as a prefetch, insert prefetch instructions to hide secondary-cache
misses. Show what calculations you made to take account of the cache-miss
latency. How much faster is your program with prefetching?

483

APPENDIX
MiniJava Language
Reference Manual

MiniJava is a subset of Java. The meaning of a MiniJava program is given
by its meaning as a Java program. Overloading is not allowed in MiniJava.
The MiniJava statement System.out.println(...); can only print in-
tegers. The MiniJava expression e.length only applies to expressions of
type int[].

A.1 LEXICAL ISSUES

Identifiers: An identifier is a sequence of letters, digits, and underscores, start-
ing with a letter. Uppercase letters are distinguished from lowercase. In this
appendix the symbol id stands for an identifier.

Integer literals: A sequence of decimal digits is an integer constant that de-
notes the corresponding integer value. In this appendix the symbol INTE-
GER LITERAL stands for an integer constant.

Binary operators: A binary operator is one of

&& < + - *

In this appendix the symbol op stands for a binary operator.
Comments: A comment may appear between any two tokens. There are two

forms of comments: One starts with /*, ends with */, and may be nested;
another begins with // and goes to the end of the line.

A.2 GRAMMAR

In the MiniJava grammar, we use the notation N∗, where N is a nonterminal,
to mean 0, 1, or more repetitions of N.

484

A.2. GRAMMAR

Program → MainClass ClassDecl∗
MainClass → class id { public static void main (String [] id)

{ Statement } }
ClassDecl → class id { VarDecl∗ MethodDecl∗ }

→ class id extends id { VarDecl∗ MethodDecl∗ }

VarDecl → Type id ;

MethodDecl → public Type id (FormalList)
{ VarDecl∗ Statement∗ return Exp ; }

FormalList → Type id FormalRest∗
→

FormalRest → , Type id
Type → int []

→ boolean
→ int
→ id

Statement → { Statement∗ }

→ if (Exp) Statement else Statement
→ while (Exp) Statement
→ System.out.println (Exp) ;

→ id = Exp ;
→ id [Exp] = Exp ;

Exp → Exp op Exp
→ Exp [Exp]

→ Exp . length
→ Exp . id (ExpList)
→ INTEGER LITERAL
→ true
→ false
→ id
→ this
→ new int [Exp]
→ new id ()
→ ! Exp
→ (Exp)

ExpList → Exp ExpRest∗
→

ExpRest → , Exp

485

APPENDIX. MINIJAVA LANGUAGE REFERENCE MANUAL

A.3 SAMPLE PROGRAM

class Factorial {
public static void main(String[] a) {

System.out.println(new Fac().ComputeFac(10));
}

}
class Fac {

public int ComputeFac(int num) {
int num_aux;
if (num < 1)

num_aux = 1;
else

num_aux = num * (this.ComputeFac(num-1));
return num_aux;

}
}

486

Bibliography

ADA 1980. Military standard: Ada programming language. Tech. Rep. MIL-STD-1815,
Department of Defense, Naval Publications and Forms Center, Philadelphia, PA.

AHO, A. V., GANAPATHI, M., AND TJIANG, S. W. K. 1989. Code generation using tree
matching and dynamic programming. ACM Trans. on Programming Languages and
Systems 11(4), 491–516.

AHO, A. V., JOHNSON, S. C., AND ULLMAN, J. D. 1975. Deterministic parsing of
ambiguous grammars. Commun. ACM 18(8), 441–452.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA.

AIKEN, A. AND NICOLAU, A. 1988. Optimal loop parallelization. In Proc. SIGPLAN ’88
Conf. on Prog. Lang. Design and Implementation. SIGPLAN Notices 23(7), 308–17.

ALLEN, F. E. 1969. Program optimization. Annual Review of Automatic Programming 5,
239–307.

ALLEN, F. E. 1970. Control flow analysis. SIGPLAN Notices 5(7), 1–19.
ALPERN, B., WEGMAN, M. N., AND ZADECK, F. K. 1988. Detecting equality of variables

in programs. In Proc. 15th ACM Symp. on Principles of Programming Languages. ACM
Press, New York, 1–11.

AMIEL, E., GRUBER, O., AND SIMON, E. 1994. Optimizing multi-method dispatch using
compressed dispatch tables. In OOPSLA ’94: 9th Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications. SIGPLAN
Notices 29(10), 244–258.

APPEL, A. W. 1992. Compiling with Continuations. Cambridge University Press,
Cambridge, England.

APPEL, A. W., ELLIS, J. R., AND LI, K. 1988. Real-time concurrent collection on stock
multiprocessors. In Proc. SIGPLAN ’88 Conf. on Prog. Lang. Design and
Implementation. SIGPLAN Notices 23(7), 11–20.

APPEL, A. W. AND SHAO, Z. 1996. Empirical and analytic study of stack versus heap cost
for languages with closures. J. Functional Programming 6(1), 47–74.

ARNOLD, K. AND GOSLING, J. 1996. The Java Programming Language. Addison Wesley,
Reading, MA.

AUGUSTSSON, L. 1984. A compiler for lazy ML. In Proc. 1984 ACM Conf. on LISP and
Functional Programming. ACM Press, New York, 218–27.

BACKHOUSE, R. C. 1979. Syntax of Programming Languages: Theory and Practice.
Prentice-Hall International, Englewood Cliffs, NJ.

BAKER, H. G. 1978. List processing in real time on a serial computer. Commun.

487

BIBLIOGRAPHY

ACM 21(4), 280–294.
BALL, T. AND LARUS, J. R. 1993. Branch prediction for free. In Proc. ACM SIGPLAN ’93

Conf. on Prog. Lang. Design and Implementation. SIGPLAN Notices 28(6), 300–313.
BAUER, F. L. AND EICKEL, J. 1975. Compiler Construction: An Advanced Course.

Springer-Verlag, New York.
BIRTWISTLE, G. M., DAHL, O.-J., MYHRHAUG, B., AND NYGAARD, K. 1973. Simula

Begin. Petrocelli/Charter, New York.
BOBROW, D. G., DEMICHIEL, L. G., GABRIEL, R. P., KEENE, S. E., KICZALES, G., AND

MOON, D. A. 1989. Common Lisp Object System specification. Lisp and Symbolic
Computation 1(3), 245–293.

BOEHM, H.-J. 1993. Space efficient conservative garbage collection. In Proc. ACM
SIGPLAN ’93 Conf. on Prog. Lang. Design and Implementation. SIGPLAN
Notices 28(6), 197–206.

BOEHM, H.-J. 1996. Simple garbage-collector-safety. In Proc. ACM SIGPLAN ’96 Conf.
on Prog. Lang. Design and Implementation. SIGPLAN Notices 31(5), 89–98.

BOEHM, H.-J., DEMERS, A. J., AND SHENKER, S. 1991. Mostly parallel garbage
collection. In Proc. ACM SIGPLAN ’91 Conf. on Prog. Lang. Design and
Implementation. SIGPLAN Notices 26(6), 157–164.

BOEHM, H.-J. AND WEISER, M. 1988. Garbage collection in an uncooperative
environment. Software—Practice and Experience 18(9), 807–820.

BRACHA, G., ODERSKY, M., STOUTAMIRE, D., AND WADLER, P. 1998. Making the future
safe for the past: Adding genericity to the Java programming language. In Object
Oriented Programming: Systems, Languages, and Applications (OOPSLA),
C. Chambers, Ed. Vancouver, BC, 183–200.

BRANQUART, P. AND LEWI, J. 1971. A scheme for storage allocation and garbage collection
in Algol-68. In Algol 68 Implementation, J. E. L. Peck, Ed. North-Holland, Amsterdam.

BRIGGS, P., COOPER, K. D., AND TORCZON, L. 1994. Improvements to graph coloring
register allocation. ACM Trans. on Programming Languages and Systems 16(3),
428–455.

BROWN, M. R. AND TARJAN, R. E. 1979. A fast merging algorithm. Journal of the
Association for Computing Machinery 26(2), 211–226.

BUMBULIS, P. AND COWAN, D. D. 1993. RE2C: A more versatile scanner generator. ACM
Letters on Programming Languages and Systems 2(1–4), 70–84.

BURKE, M. G. AND FISHER, G. A. 1987. A practical method for LR and LL syntactic error
diagnosis and recovery. ACM Trans. on Programming Languages and Systems 9(2),
164–167.

CALLAHAN, D., CARR, S., AND KENNEDY, K. 1990. Improving register allocation for
subscripted variables. In Proc. ACM SIGPLAN ’90 Conf. on Prog. Lang. Design and
Implementation. SIGPLAN Notices 25(6), 53–65.

CARDELLI, L. 1984. Compiling a functional language. In 1984 Symp. on LISP and
Functional Programming. ACM Press, New York, 208–17.

CARR, S. AND KENNEDY, K. 1994. Improving the ratio of memory operations to
floating-point operations in loops. ACM Trans. on Programming Languages and
Systems 16(6), 1768–1810.

CATTELL, R. G. G. 1980. Automatic derivation of code generators from machine
descriptions. ACM Trans. on Programming Languages and Systems 2(2), 173–190.

CHAITIN, G. J. 1982. Register allocation and spilling via graph coloring. SIGPLAN
Notices 17(6), 98–105. Proceeding of the ACM SIGPLAN ’82 Symposium on Compiler
Construction.

488

BIBLIOGRAPHY

CHAMBERS, C. AND LEAVENS, G. T. 1995. Typechecking and modules for multimethods.
ACM Trans. on Programming Languages and Systems 17(6), 805–843.

CHAMBERS, C., UNGAR, D., AND LEE, E. 1991. An efficient implementation of SELF, a
dynamically-typed object-oriented language based on prototypes. Lisp and Symbolic
Computation 4(3), 243–281.

CHEN, W. AND TURAU, B. 1994. Efficient dynamic look-up strategy for multi-methods. In
European Conference on Object-Oriented Programming (ECOOP ’94).

CHENEY, C. J. 1970. A nonrecursive list compacting algorithm. Commun. ACM 13(11),
677–678.

CHOW, F., HIMELSTEIN, M., KILLIAN, E., AND WEBER, L. 1986. Engineering a RISC
compiler system. In Proc. COMPCON Spring 86. IEEE, 132–137.

CHURCH, A. 1941. The Calculi of Lambda Conversion. Princeton University Press,
Princeton, NJ.

COCKE, J. 1970. Global common subexpression elimination. SIGPLAN Notices 5(7), 20–24.
COCKE, J. AND SCHWARTZ, J. T. 1970. Programming languages and their compilers:

Preliminary notes. Tech. rep., Courant Institute, New York University.
COHEN, J. 1981. Garbage collection of linked data structures. Computing Surveys 13(3),

341–367.
COHEN, N. H. 1991. Type-extension type tests can be performed in constant time. ACM

Trans. on Programming Languages and Systems 13(4), 626–629.
COLLINS, G. E. 1960. A method for overlapping and erasure of lists. Commun. ACM 3(12),

655–657.
CONNOR, R. C. H., DEARLE, A., MORRISON, R., AND BROWN, A. L. 1989. An object

addressing mechanism for statically typed languages with multiple inheritance.
SIGPLAN Notices 24(10), 279–285.

CONWAY, M. E. 1963. Design of a separable transition-diagram compiler. Commun.
ACM 6(7), 396–408.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Introduction to Algorithms.
MIT Press, Cambridge, MA.

COUSINEAU, G., CURIEN, P. L., AND MAUNY, M. 1985. The categorical abstract machine.
In Functional Programming Languages and Computer Architecture, LNCS Vol. 201,
J. P. Jouannaud, Ed. Springer-Verlag, New York, 50–64.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991.
Efficiently computing static single assignment form and the control dependence graph.
ACM Trans. on Programming Languages and Systems 13(4), 451–490.

CYTRON, R., LOWRY, A., AND ZADECK, K. 1986. Code motion of control structures in
high-level languages. In Proc. 13th ACM Symp. on Principles of Programming
Languages. ACM Press, New York, 70–85.

DEREMER, F. L. 1971. Simple LR(k) grammars. Commun. ACM 14, 453–460.
DERSHOWITZ, N. AND JOUANNAUD, J.-P. 1990. Rewrite systems. In Handbook of

Theoretical Computer Science, J. van Leeuwen, Ed. Vol. B. Elsevier, Amsterdam,
243–320.

DIJKSTRA, E. W., LAMPORT, L., MARTIN, A. J., SCHOLTEN, C. S., AND STEFFENS, E.
F. M. 1978. On-the-fly garbage collection: An exercise in cooperation. Commun.
ACM 21(11), 966–975.

DIWAN, A., MOSS, E., AND HUDSON, R. 1992. Compiler support for garbage collection in
a statically typed language. In Proc. ACM SIGPLAN ’92 Conf. on Prog. Lang. Design
and Implementation. SIGPLAN Notices 27(7), 273–282.

DIWAN, A., MOSS, J. E. B., AND MCKINLEY, K. S. 1996. Simple and effective analysis of

489

BIBLIOGRAPHY

statically typed object-oriented programs. In OOPSLA ’96: 11th Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications. SIGPLAN
Notices 31, 292–305.

DIWAN, A., TARDITI, D., AND MOSS, E. 1994. Memory subsystem performance of
programs using copying garbage collection. In Proc. 21st Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages. ACM Press, New
York, 1–14.

DIXON, R., MCKEE, T., SCHWEIZER, P., AND VAUGHAN, M. 1989. A fast method
dispatcher for compiled languages with multiple inheritance. In OOPSLA ’89:
Object-Oriented Programming: Systems, Languages, and Applications. SIGPLAN
Notices 24(10), 211–214.

ERSHOV, A. P. 1958. On programming of arithmetic operations. Commun. ACM 1(8), 3–6.
FELDMAN, J. AND GRIES, D. 1968. Translator writing systems. Commun. ACM 11(2),

77–113.
FENICHEL, R. R. AND YOCHELSON, J. C. 1969. A LISP garbage-collector for

virtual-memory computer systems. Commun. ACM 12(11), 611–612.
FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. D. 1987. The program dependence

graph and its use in optimization. ACM Trans. on Programming Languages and
Systems 9(3), 319–349.

FISHER, J. A. 1981. Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers C-30(7), 478–490.

FISHER, J. A. 1983. Very long instruction word architectures and the ELI-512. In Proc. 10th
Symposium on Computer Architecture. 140–150.

FLANAGAN, C., SABRY, A., DUBA, B. F., AND FELLEISEN, M. 1993. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN ’93 Conference on
Programming Language Design and Implementation. ACM Press, New York, 237–247.

FORD, L. R. AND FULKERSON, D. R. 1962. Flows in Networks. Princeton University
Press, Princeton, NJ.

FRASER, C. W. AND HANSON, D. R. 1995. A Retargetable C Compiler: Design and
Implementation. Benjamin Cummings, Redwood City, CA.

FRASER, C. W., HENRY, R. R., AND PROEBSTING, T. 1992. BURG—fast optimal
instruction selection and tree parsing. SIGPLAN Notices 24(4), 68–76.

FRIEDMAN, D. P. AND WISE, D. S. 1976. Cons should not evaluate its arguments. In
Automata, Languages and Programming, S. Michaelson and R. Milner, Eds. Edinburgh
University Press, 257–284.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman, New York.

GEORGE, L. AND APPEL, A. W. 1996. Iterated register coalescing. ACM Trans. on
Programming Languages and Systems 18(3), 300–324.

GLANVILLE, R. S. AND GRAHAM, S. L. 1978. A new method for compiler code
generation. In Fifth ACM Symposium on Principles of Programming Languages.
231–40.

GÖDEL, K. 1931. Über formal unentscheidbare Sätze der Principia Mathematica and
verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198.

GOLDBERG, A., ROBSON, D., AND INGALLS, D. H. H. 1983. Smalltalk-80: The Language
and Its Implementation. Addison-Wesley, Reading, MA.

GONÇALVES, M. J. R. AND APPEL, A. W. 1995. Cache performance of fast-allocating
programs. In Proc. Seventh Int’l Conf. on Functional Programming and Computer
Architecture. ACM Press, New York, 293–305.

490

BIBLIOGRAPHY

GORDON, M. J. C., MILNER, A. J. R. G., MORRIS, L., NEWEY, M. C., AND

WADSWORTH, C. P. 1978. A metalanguage for interactive proof in LCF. In Fifth ACM
Symp. on Principles of Programming Languages. ACM Press, New York.

GOVINDARAJAN, R., ALTMAN, E. R., AND GAO, G. R. 1996. A framework for
resource-constrained rate-optimal software pipelining. IEEE Transactions on Parallel
and Distributed Systems 7(11), 1133–1149.

GRAY, R. W. 1988. γ -GLA—a generator for lexical analyzers that programmers can use. In
USENIX Conference Proceedings. USENIX Association, Berkeley, CA, 147–160.

GRIES, D. 1971. Compiler Construction for Digital Computers. John Wiley & Sons, New
York.

HALL, C. V., HAMMOND, K., PEYTON JONES, S. L., AND WADLER, P. L. 1996. Type
classes in Haskell. ACM Trans. on Programming Languages and Systems 18(2),
109–138.

HAREL, D. 1985. A linear time algorithm for finding dominators in flow graphs and related
problems. In Proc. 7th Annual ACM Symp. on Theory of Computing. ACM Press, New
York, 185–194.

HEILBRUNNER, S. 1981. A parsing automata approach to LR theory. Theoretical Computer
Science 15, 117–157.

HENDERSON, P. AND MORRIS, J. H. 1976. A lazy evaluator. In Third ACM Symp. on
Principles of Prog. Languages. ACM Press, New York, 123–142.

HENNESSY, J. L. AND PATTERSON, D. A. 1996. Computer Architecture: A Quantitative
Approach, Second ed. Morgan Kaufmann, San Mateo, CA.

HOPCROFT, J. E. AND ULLMAN, J. D. 1979. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA.

HOPKINS, M. E. 1986. Compiling for the RT PC ROMP. In Tutorial, Reduced Instruction
Set Computers, W. Stallings, Ed. IEEE Computer Society, Los Angeles, 196–203.

HUDAK, P., PEYTON JONES, S., AND WADLER, P. 1992. Report on the programming
language Haskell, a non-strict, purely functional language, version 1.2. SIGPLAN
Notices 27(5).

HUGHES, J. 1989. Why functional programming matters. Computer Journal 32(2), 98–107.
IGARASHI, A., PIERCE, B. C., AND WADLER, P. 2001. Featherweight Java: A minimal

core calculus for Java and GJ. ACM Trans. on Programming Languages and
Systems 23(3), 396–450.

JOHNSON, S. C. 1975. Yacc – yet another compiler compiler. Tech. Rep. CSTR-32, AT&T
Bell Laboratories, Murray Hill, NJ.

JONES, R. AND LINS, R. 1996. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. John Wiley & Sons, Chichester, England.

KANE, G. AND HEINRICH, J. 1992. MIPS RISC Architecture. Prentice-Hall, Englewood
Cliffs, NJ.

KELSEY, R. A. 1995. A correspondence between continuation passing style and static single
assignment form. In Proceedings ACM SIGPLAN Workshop on Intermediate
Representations. SIGPLAN Notices 30(3), 13–22.

KEMPE, A. B. 1879. On the geographical problem of the four colors. American Journal of
Mathematics 2, 193–200.

KILDALL, G. A. 1973. A unified approach to global program optimization. In Proc. ACM
Symp. on Principles of Programming Languages. ACM Press, New York, 194–206.

KNUTH, D. E. 1965. On the translation of languages from left to right. Information and
Control 8, 607–639.

KNUTH, D. E. 1967. The Art of Computer Programming, Vol. I: Fundamental Algorithms.

491

BIBLIOGRAPHY

Addison Wesley, Reading, MA.
KOOPMAN, P. J., LEE, P., AND SIEWIOREK, D. P. 1992. Cache behavior of combinator

graph reduction. ACM Trans. on Programming Languages and Systems 14(2), 265–297.
KRANZ, D., KELSEY, R., REES, J., HUDAK, P., PHILBIN, J., AND ADAMS, N. 1986.

ORBIT: An optimizing compiler for Scheme. SIGPLAN Notices (Proc. Sigplan ’86
Symp. on Compiler Construction) 21(7), 219–33.

LANDI, W. AND RYDER, B. G. 1992. A safe approximation algorithm for interprocedural
pointer aliasing. In Proc. ACM SIGPLAN ’92 Conf. on Prog. Lang. Design and
Implementation. SIGPLAN Notices 26(6), 235–248.

LANDIN, P. J. 1964. The mechanical evaluation of expressions. Computer J. 6(4), 308–320.
LENGAUER, T. AND TARJAN, R. E. 1979. A fast algorithm for finding dominators in a

flowgraph. ACM Trans. on Programming Languages and Systems 1(1), 121–141.
LEONARD, T. E., Ed. 1987. VAX Architecture Reference Manual. Digital Press, Bedford,

MA.
LESK, M. E. 1975. Lex—a lexical analyzer generator. Tech. Rep. Computing Science

Technical Report 39, Bell Laboratories, Murray Hill, NJ.
LEWIS, P. M. I. AND STEARNS, R. E. 1968. Syntax-directed translation. Journal of the

ACM 15, 464–488.
LIEBERMAN, H. AND HEWITT, C. 1983. A real-time garbage collector based on the

lifetimes of objects. Commun. ACM 26(6), 419–429.
LIPPMAN, S. B. 1996. Inside the C++ Object Model. Addison Wesley, Reading, MA.
LIPTON, R. J., MARTINO, P. J., AND NEITZKE, A. 1997. On the complexity of a set-union

problem. In Proc. 38th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Los Alamitos, CA, 110–115.

LOWRY, E. S. AND MEDLOCK, C. W. 1969. Object code optimization. Commun.
ACM 12(1), 13–22. Corrigendum 12(6), 332.

MCCARTHY, J. 1960. Recursive functions of symbolic expressions and their computation by
machine – I. Commun. ACM 3(1), 184–195.

MCCARTHY, J. 1963. Towards a mathematical science of computation. In Information
Processing (1962). North-Holland, Amsterdam, 21–28.

MCCARTHY, J., ABRAHAMS, P. W., EDWARDS, D. J., HART, T. P., AND LEVIN, M. I.
1962. LISP 1.5 Programmer’s Manual. M.I.T., RLE and MIT Computation Center,
Cambridge, MA.

MCNAUGHTON, R. AND YAMADA, H. 1960. Regular expressions and state graphs for
automata. IEEE Trans. on Electronic Computers 9(1), 39–47.

MILNER, R., TOFTE, M., AND HARPER, R. 1990. The Definition of Standard ML. MIT
Press, Cambridge, MA.

MOON, D. A. 1984. Garbage collection in a large LISP system. In ACM Symposium on
LISP and Functional Programming. ACM Press, New York, 235–246.

MOWRY, T. C., LAM, M. S., AND GUPTA, A. 1992. Design and evaluation of a compiler
algorithm for prefetching. In Proc. 5rd Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems. SIGPLAN Notices 27(9), 62–73.

NAUR, P., BACKUS, J. W., BAUER, F. L., GREEN, J., KATZ, C., MCCARTHY, J., PERLIS,
A. J., RUTISHAUSER, H., SAMELSON, K., VAUQUOIS, B., WEGSTEIN, J. H., VAN

WIJNGAARDEN, A., AND WOODGER, M. 1963. Revised report on the algorithmic
language ALGOL 60. Commun. ACM 6(1), 1–17.

NELSON, G., Ed. 1991. Systems Programming with Modula-3. Prentice-Hall, Englewood
Cliffs, NJ.

PATTERSON, D. A. 1985. Reduced instruction set computers. Commun. ACM 28(1), 8–21.

492

BIBLIOGRAPHY

PAXSON, V. 1995. Flex—Fast lexical analyzer generator. Lawrence Berkeley Laboratory,
Berkeley, CA, ftp://ftp.ee.lbl.gov/flex-2.5.3.tar.gz.

PELEGRI-LLOPART, E. AND GRAHAM, S. L. 1988. Optimal code generation for expression
trees: An application of BURS theory. In 15th ACM Symp. on Principles of
Programming Languages. ACM Press, New York, 294–308.

PEYTON JONES, S. AND PARTAIN, W. 1993. Measuring the effectiveness of a simple
strictness analyser. In Functional Programming: Glasgow 1993, K. Hammond and
M. O’Donnell, Eds. Springer Workshops in Computer Science. Springer, New York,
201–220.

PEYTON JONES, S. L. 1987. The Implementation of Functional Programming Languages.
Prentice-Hall, Englewood Cliffs, NJ.

PEYTON JONES, S. L. 1992. Implementing lazy functional languages on stock hardware:
The Spineless Tagless G-machine. Journal of Functional Programming 2(2), 127–202.

PIERCE, B. C. 2002. Types and Programming Languages. MIT Press, Cambridge, Mass.
RAU, B. R. 1994. Iterative modulo scheduling: An algorithm for software pipelining loops.

In Proc. 27th Annual International Symposium on Microarchitecture. ACM Press, New
York, 63–74.

REINHOLD, M. B. 1994. Cache performance of garbage-collected programs. In Proc.
SIGPLAN ’94 Symp. on Prog. Language Design and Implementation. SIGPLAN
Notices 29(6), 206–217.

RICE, H. G. 1953. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 89, 25–59.

ROSE, J. R. 1988. Fast dispatch mechanisms for stock hardware. In OOPSLA ’88: 3rd
Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications. SIGPLAN Notices 23(11), 27–35.

ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1988. Global value numbers and
redundant computations. In Proc. 15th ACM Symp. on Principles of Programming
Languages. ACM Press, New York, 12–27.

SCHEIFLER, R. W. 1977. An analysis of inline substitution for a structured programming
language. Commun. ACM 20(9), 647–654.

SEDGEWICK, R. 1997. Algorithms in C, Third ed. Addison Wesley, Reading, MA.
SETHI, R. AND ULLMAN, J. D. 1970. The generation of optimal code for arithmetic

expressions. J. Assoc. Computing Machinery 17(4), 715–28.
SHAO, Z. AND APPEL, A. W. 1994. Space-efficient closure representations. In Proc. 1994

ACM Conf. on Lisp and Functional Programming. ACM Press, New York, 150–161.
SHAW, R. A. 1988. Empirical analysis of a Lisp system. Ph.D. thesis, Stanford University,

Palo Alto, CA.
SITES, R. L., Ed. 1992. Appendix A: Software Considerations. Digital Press, Boston.
SOBALVARRO, P. G. 1988. A lifetime-based garbage collector for LISP systems on

general-purpose computers. Tech. Rep. 1417, MIT Artificial Intelligence Laboratory.
STEELE, G. L. 1975. Multiprocessing compactifying garbage collection. Commun.

ACM 18(9), 495–508.
STEELE, G. L. 1978. Rabbit: a compiler for Scheme. Tech. Rep. AI-TR-474, MIT,

Cambridge, MA.
STOY, J. E. 1977. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT Press, Cambridge, MA.
STRACHEY, C. AND WADSWORTH, C. 1974. Continuations: A mathematical semantics

which can deal with full jumps. Technical Monograph PRG-11, Programming Research
Group, Oxford University.

493

BIBLIOGRAPHY

STROUSTRUP, B. 1997. The C++ Programming Language, Third ed. Addison-Wesley,
Reading, MA.

TANENBAUM, A. S. 1978. Implications of structured programming for machine
architecture. Commun. ACM 21(3), 237–246.

TARDITI, D. 1997. Design and implementation of code optimizations for a type-directed
compiler for Standard ML. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.

TURING, A. M. 1937. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society 42, 230–265.

ULLMAN, J. D. 1975. NP-complete scheduling problems. Journal of Computer and System
Sciences 10, 384–393.

UNGAR, D. M. 1986. The Design and Evaluation of a High Performance Smalltalk System.
MIT Press, Cambridge, MA.

WADLER, P. 1990. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science 73, 231–248.

WADLER, P. 1995. How to declare an imperative. In International Logic Programming
Symposium, J. Lloyd, Ed. MIT Press, Cambridge, MA.

WEGMAN, M. N. AND ZADECK, F. K. 1991. Constant propagation with conditional
branches. ACM Trans. on Programming Languages and Systems 13(2), 181–210.

WENTWORTH, E. P. 1990. Pitfalls of conservative collection. Software—Practice and
Experience 20(7), 719–727.

WILSON, P. R. 1997. Uniprocessor garbage collection techniques. ACM Computing
Surveys, (to appear).

WOLF, M. E. AND LAM, M. S. 1991. A data locality optimizing algorithm. In Proc ACM
SIGPLAN ’91 Conf. on Prog. Lang. Design and Implementation. SIGPLAN
Notices 26(6), 30–44.

WOLFE, M. 1996. High Performance Compilers for Parallel Computing. Addison Wesley,
Redwood City, CA.

YOUNG, C., JOHNSON, D. S., KARGER, D. R., AND SMITH, M. D. 1997. Near-optimal
intraprocedural branch alignment. In Proc. ACM SIGPLAN ’97 Conf. on Prog. Lang.
Design and Implementation. SIGPLAN Notices 32(5), 183–193.

YOUNG, C. AND SMITH, M. D. 1994. Improving the accuracy of static branch prediction
using branch correlation. In ASPLOS VI: Sixth International Conference on
Architectural Support for Programming Languages and Operating Systems. SIGPLAN
Notices 29(11), 232–241.

494

Index

abstract data type, 5
abstract syntax, see syntax, abstract
access link, see static link
activation record, 6, 116–125
Ada, 336, 348, 349
addressing mode, 183, 188
ADT, see abstract data type
Aiken-Nicolau algorithm, 444–448, 459
alias

analysis, 357, 369–374, 392
in coalescing register allocation, 234

alignment, see cache alignment
alloca, 197
allocation

of activation records, 116, 118, 156
of arrays and records, 151
of heap data, 275
register, see register allocation

alphabet, 18
ambiguous grammar, see grammar
analysis

dataflow, see dataflow analysis
liveness, see liveness

antidependence, see dependence, write-after-
read

approximation
dataflow analysis, 209, 212, 352
in garbage collection, 257
of spill effect, 220
of strictness, 331

argument, see parameter
array, 144, 146, 151

bounds check, 148, 391–395
Assemmodule, 191
associativity, see right-associative, left-

associative, nonassociative
attribute grammar, 12
available expressions, 356

Baker’s algorithm, 274
basic block, 170, 172, 361, 365, 382
beta reduction, see inline expansion
binding, 103–110, see also precedence

in type environment, 111
blacklist, 281
block structure, see function, nested
blocking, 477–480, 482
branch prediction, 456–459
buffered input, 33
bypass datapaths, 442, 444

C programming language
linking to, 153
writing compiler for, 18, 90, 116, 117,

122, 130, 139, 144–146, 150, 151,
197, 322, 369, 371, 374, 377

C++, 291, 336, 369
cache, 464–467

alignment, 468–470
and garbage collection, 267, 480–481

cache alignment, 481
CALL, 162, 163, 168
call

by name, 322
by need, 323
by reference, 123, 124

callee-save, see register, callee-save
caller-save, see register, caller-save
Canon module, 163
canonical tree, see intermediate represen-

tation, canonical

495

INDEX

card marking, 270
CISC, 180, 187–190, 459
class descriptor, 285–289, 292–297
classless language, 293
cloning, 293
closure

conversion, 316–317, 320
ϵ, 27, 28, 33
function, 301, 303, 331
Kleene, 19, 39
of LR state, 60, 63

coalescing, 223–240, 245, 320, 360
conservative, 223
of SSA variables, 428

code generation, see instruction selection
code-generator generator, 185
Codegenmodule, 196
coercion, 290
coloring, see graph coloring
comma operator, see expression sequence
common-subexpression elimination, 356,

359
commute, 164, 166–174
complex instruction set, see CISC
computer, see CISC and RISC
conditional jump, 140, 149, 162, 169
conditional move, 454
conflict

in predictive parser, 46
reduce-reduce, 68, 75
resolution of, 72–75
shift-reduce, 62, 67, 68, 72, 74

conservative approximation, see approxi-
mation

constant folding, 419
constant propagation, 356, 418–419

conditional, 419–422
constraint, functional-unit, 441, 443
constructor, 8
continuation, 304, 332
continuation-passing style, 435
control dependence, 425–426

graph, 426
control flow, 170, see also flow graph
control-flow graph, see flow graph
coordinated induction variable, 388–392
copy propagation, 359, 419, see also coa-

lescing

dangling else, 68
dangling reference, 122
data type, abstract, see abstract data type
dataflow, see also liveness, reaching defi-

nitions, available expressions, etc.
analysis, 6
bit vector, 361
equations, 205–210, 352, 354, 356, 368,

372, 379
iteration, see iteration algorithms
work-list algorithms, 363

dead code, 312, 326, 360, 364, 365, 368,
369, 389, 394, 417, 426–428

dead state, 23
def (of variable), 205
def-use chain, 399, 438
deforestation, 327–328
dependence

control, see control dependence
data, 423, 442, 476
loop-carried, 445
memory and array, 423–425, 445
read-after-write, see dependence, data
write-after-read, 423, 441, 476
write-after-write, 423, 441, 476

depth-first search
for dataflow analysis, 207, 209, 362,

363
garbage collection, 257, 268, 279
spanning tree, 410–411

derivation, 41
descriptor

class, 276, 285–289, 292–297
level, 155
record, 276, 278

DFA, see finite automaton
display, 134

class hierarchy, 290, 295, 296
dominance frontier, 404, 436
dominance property, see static single-assignment

form
dominator, 379–382, 384, 392–395, 436

efficient calculation of, 410–416, 434
dynamic programming

for instruction selection, 182–186
for register allocation, 241–244

dynamic scheduling, see out-of-order ex-
ecution

496

INDEX

edge splitting, 408
edge-split SSA, see static single-assignment

form
else, dangling, 68
emission

in instruction selection phase, 183, 185
of assembly code, 5, 6, 198, 244

end-of-file marker, 45
environment, 11, 103–111, 115, 284, 301,

317
functional, 107
imperative, 106
multiple, 105

equational reasoning, 298–302, 306, 321,
430

error message, 91
error recovery, 53
escape, 124, 302, 321, 332, see also FindEscape
ESEQ, 162–169
expression sequence, see also ESEQ

finite automaton, 18, 21–30
deterministic, 22
minimization, 36
nondeterministic, 24

converting to DFA, 27
FIRST set, 47–52, 63
fixed point, 48, 206, 357, 374

least, 209, 218, 368, 419
Flex, 34
flow graph, 203

reducible, 377
flow, data, see dataflow
FlowGraphmodule, 215
FOLLOW set, 48–50, 52, 54, 62
forward reference, see recursion, mutual
forwarding, 265–268
fragmentation, 261
frame, see activation record
Framemodule, 127, 251
frame pointer, 118–120, 134, 143, 155, 197–

198
on Pentium, 188

freeze, 224, 233, 239
function

dead, 312
higher-order, 117, 298
integration, see inline expansion
leaf, 122

nested, 117–118, 124–126, 131, 135,
155, 298, 301–302, 369

functional intermediate form, 430–435
functional programming, 12, 104, 298–334,

see also side effect
impure, 299–301
pure, 302–308
symbol tables, 107–108

functional unit, 441, 442
multiple, 442

garbage collection, 151, 257–282, 321, 333
and cache, 267, 480–481
Baker’s algorithm, 274
compiler interface, 275–278
concurrent, 272
conservative, 281
copying, 264–269
cost, 259, 264, 268, 271, 275
flip, 274
generational, 269–271, 480
incremental, 272–275
mark-sweep, 257–262
reference counts, 262–264

generic, 336, 348
Generic Java, 336
GJ, 336
grammar, 5, 40–45, see also syntax

ambiguous, 42, 50, 51, 67–68, 90, 185
attribute, 12
factoring, 53
for intermediate representation, 7–9
for parser generator, 89
hierarchy of classes, 66
LALR, 66, 67
LL(1), 51
of straight-line programs, 7
to specify instruction set, 183–186
transformations, 51, 88, 90
unambiguous, 51

graph
coloring, 219–223, 250, 286, 360

optimistic, 221
with coalescing, 223–240, 245, 320
work-list algorithm, 232–240

interference, see interference graph
Graph module, 214
graph, flow, see flow graph

halting problem, 351, 374

497

INDEX

hash table, 106, 114
hazard, 441, see also constraint, functional-

unit

IBM 360/91, 455
induction variable, 385–391

coordinated, 388, 390, 392
linear, 387

inheritance, 283, 284
multiple, 286
single, 285, 294, 295

inline expansion, 276, 308–316, 332, 431
instanceof, 12, 93
instantiation of variable, 116
instruction

fetch, 456, 470
Instr representation of, 191
pipeline, see pipeline
resource usage of, 442
selection of, 6, 176–202
side effect of, 188, 196
three-address, 188
two-address, 188, 193
variable-length, 188

instruction set, see CISC and RISC
instruction-level parallelism, 440
Intel, see Pentium
interfaces, 5
interference graph, 212–232, 244

construction of, 213, 216–217, 236
for SSA form, 429
from SSA form, 429, 438

intermediate representation, 6, 137–139,
see also Tree

canonical, 162–169
functional, 430–435

interpreter, 91
invariant, see loop invariant
IR, see intermediate representation
item

LR(0), 59
LR(1), 63

iteration algorithms
alias analysis, 372
dominators, 379
ϵ-closure, 28
efficient, 360–364
first and follow sets, 48
invention of, 374

liveness analysis, 206–207
LR parser construction, 60
minimization of finite automata, 36
reaching definitions, 355

iterative modulo scheduling, see modulo
scheduling

Java, 336
writing compiler for, 18, 90, 105, 145,

276, 282, 289, 290, 292, 297, 322,
370, 371, 392, 393

writing compiler in, 3, 9–11, 91
JavaCC, 7, 68–89
JavaCC parser generator, 89
Jouette, 176–180, 192–195

Schizo, 184

Kleene closure, 19, 39

label, 131
lambda calculus, 430
lambda-calculus, 331
landing pad, 435
lattice, 420
lazy evaluation, 321–327, 435
leaf function, 122
left-associative operator, 73, 74
left-factoring, 53
left-recursion, 51
Lengauer-Tarjan algorithm, 410–416, 434,

see also dominator
Lex, 6, 33
lexical analyzer, 6, 16–37, 93
lexical scope, see function, nested
Lisp, 348
live range, 203, 213
live-in, 205
live-out, 205
liveness, 6, 203–218, 236, 358, 360, 363,

365, 367, 368
in SSA form, 429
of heap data, 257

LL(k), see parser, LL(k)
local variable, 116
locality of reference, see cache
lookahead, 37
loop, 376

header, 376, 381–382
inner, 381
interchange, 476–477

498

INDEX

invariant, 314, 326, 382, 384–389, 398
natural, 381–382
nested, 382
postbody, see postbody node
scheduling, 444–456
unrolling, 395, 444, 474

LR(k), see parser, LR(k)
l-value, 145–147

macro preprocessor, 17
Maximal Munch, 180
memory allocation, see allocation and garbage

collection
method

instance, 283
lookup, 286, 294, 295
multi-, 295
private, 292
replication, 296
static, 285

MiniJava abstract syntax, 98
MIPS, 442, 459
MIPS computer, 128, 129, 132
ML, 90, 336, 348

writing compiler for, 105, 117, 124,
135, 145, 299, 322, 332, 369, 370,
374, 392, 393

Modula-3, 90, 276, 336
modularity, 11, 93, 295
modulo scheduling, 448–456
Motorola 68000, 184
MOVE, 167
multimethod, 295

negation, 148
NFA, see finite automaton
nonassociative operator, 74
nonterminal symbol, 40
nullable symbol, 47–50, 52

object-oriented
classless language, 293
language, 145, 276, 283–297, 349
programming style, 13, 15, 93–140

OpExp, 10
out-of-order execution, 455, 471
output dependence, see dependence, write-

after-write
overloaded operator, 113
overloading, 336, 348–349

parallel processing, instruction-level, 440
parameter, see also view shift

actual, 194, 312, 319
address of, 122
allocating location of, 124
by-reference, 123, 369, 371
formal, 129, 162
in frame, 122, 127, 128
lazy, 322
outgoing, 120, 194, 252
register, 121, 129, 132
static link, 132, 317
substitution, 311
this, 283
type-checking, 113
variable number of, 122

parse tree, 42, 89
parser, 6

dynamic programming, 185
error recovery, 53
generator, 68
LL(1), 46–55
LL(k), 51, 55
LR(0), 58–62
LR(1), 56–58
LR(k), 55–58
predictive, 46–55

construction, 50
recursive-descent, 45–47, 50–55, 86
SLR, 62–63

Pascal, 90, 116, 117, 124, 135, 144–146,
151, 276, 322, 369, 370

pattern, see tile
Pentium, 128, 129, 188, 189, 196
persistent data structure, 14, 108
phases

of a compiler, 4
order of, 5

φ-function, 400
pipeline, 442

software, see scheduling
pointer

derived, 277
reversal, 260

polymorphism, 336
pos, 91
position in source code, 91
postbody node, 396, 397, 403, 435
postdominance, 425

499

INDEX

precedence, 44
precedence directive, 72–75
predicated execution, 454
prediction, see branch prediction
predictive parser, see parser
prefetching, 470–475, 480, 481
preheader, 313–314, 382, 388, 392, 396,

398, 435, 457
preprocessor, 17
procedure, see function
profile-based optimization, 458, 460
pure functional language, see functional

programming, pure

quadruple, 353, 430

RAW, see dependence, data
reachable data, 257
reaching definitions, 294, 354, 369
reaching expressions, 358
recursion

mutual, 90
tail, see tail recursion

recursive descent, see parser
red-black tree, 108
reduce-reduce conflict, see conflict
reduced instruction set, see RISC
reducible flow graph, 377
reference counts, 262–264
reference parameter, see call by reference
RegAllocmodule, 216
register

allocation, 6, 189, 360
for SSA form, 428
for trees, 241–244
Sethi-Ullman algorithm, 242

callee-save, 120–121, 156, 157, 200,
227–228, 251, 277, 319, 332

caller-save, 120–121, 133, 196, 228,
320

classes of, 183, 187, 188
windows, 122, 128, 129
zero, 200

regular expression, 18–21, 33
converting to NFA, 25–26

remembered set, 270, 280
reservation table, 452, 472
reserved word, 17
return address, 200
right-associative operator, 73, 74, 299

RISC, 132, 180
roots of garbage-collected heap, 257, 264,

266, 269, 281
rule priority, 20, 30
runtime system, 152

SableCC, 7, 68–89
scalar replacement, 478, 482
scanner, see lexical analyzer
scheduling, 444–456, 471

modulo, see modulo scheduling
Scheme, 117, 135, 299, 332
Schizo-Jouette, 184
scope, 103–108, 123, 131, 430

lexical, see function, nested
nested, 155

search tree, 14
balanced, 14

semantic
action, 86–93, 101
analysis, 6, 103
value, 18, 41, 88, 89

semantics, 12, 89
semidominator, 412
sentinel, 34
Sethi-Ullman algorithm, 242
shift of view, see view shift
shift-reduce conflict, see conflict
side effect, 12, 298

of instruction, 188, 196
significant degree, 220, 223–233, 248
Simula, 295
Sparc, 128, 129, 132
sparse conditional constant, see constant

propagation
spill, 189, 219–221, 223, 226, 243, 251

cost, 217, 244
potential, 220, 224, 226, 247, 248
work list, 233–235

splitting, see edge splitting
SSA, see static single-assignment form
stack

frame, see activation record
illustration of, 119
of activation records, 118–120
pointer, 118–120, 156, 197, 198, 200

on Pentium, 188
state

LR(0), 61

500

INDEX

LR(1), 63
static link, 125, 134, 155, 156, 199
static single-assignment form, 399–402

converting from, 428–429
converting to, 402–408
data structures for, 417
dominance property, 404, 422, 429
edge-split, 409, 422
optimizations using, 417–423
size of, 437, 438
unique successor or predecessor prop-

erty, 408, 422
straight-line program, 7–8

interpreter, 11
strength reduction, 385, 388–389
strictness analysis, 328–331
string literal, 150
substitution, 321, see also type substitu-

tion
superscalar, 441
Symbolmodule, 109, 110
symbol table, see environment
symbol, grammar, 40
syntax, 38, see also grammar

abstract, 5, 6, 89–98
of MiniJava, 98
of straight-line programs, 8
tree, 90

concrete, 89
vs. semantics, 75

table compression, 33
tableau, 447
tail recursion, 319–320
Temp module, 131, 198
template, 336
temporary variable, 131
terminal symbol, 40
thunk, 322–325, 328, 332
tile, 176–190, 194, 241–243

cost, 182
optimum vs. optimal, 179

tools, compiler generation, 5, 185
trace, 171–173
trace scheduling, 455, 459
Translatemodule, 140
tree

canonical, see intermediate represen-
tation, canonical

data structures, 7
intermediate representation, 6
parse, see parse tree
pattern, see tile
pattern matching, 186
red-black, 108
register allocation for, 241–244
search, see search tree

Tree intermediate represention, 137–139,
250

Tree module, 138, 166
type

checking, 114, 339
hierarchy analysis, 294
propagation, 294
substitution, 341

union-find, 434
unique successor or predecessor property,

428
unreachable code, 394, 419
unroll and jam, 479, 482
unrolling, see loop unrolling
use (of variable), 205
use-def chain, 438

factored, 434
useless variable, 389

value numbering, 365, 374, 400, 434
varargs, 122
variable

free, 316
in frame, 123
live, see liveness
local, 116
useless, 389

view shift, 128, 129, 250
VLIW, 459

WAR, see dependence, write-after-read
WAW, see dependence, write-after-write
work-list algorithms, 233, 363, 407, 418,

421

Yacc, 6

501

	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface
	Part One: Fundamentals of Compilation
	1. Introduction
	2. Lexical Analysis
	3. Parsing
	4. Abstract Syntax
	5. Semantic Analysis
	6. Activation Records
	7. Translation to Intermediate Code
	8. Basic Blocks and Traces
	9. Instruction Selection
	10. Liveness Analysis
	11. Register Allocation
	12. Putting It All Together

	Part Two: Advanced Topics
	13. Garbage Collection
	14. Object-Oriented Languages
	15. Functional Programming Languages
	16. Polymorphic Types
	17. Dataflow Analysis
	18. Loop Optimizations
	19. Static Single-Assignment Form
	20. Pipelining and Scheduling
	21. The Memory Hierarchy

	Appendix: MiniJava Language Reference Manual
	A.1 Lexical Issues
	A.2 Grammar
	A.3 Sample Program

	Bibliography
	Index

