
Fundamentos de Sistemas de Operação - Exam 15/01/2008
No consulting of external support elements. Duration: 3h00 hours

Question 1. Explain the meaning of:

a) a “file descriptor” in Unix.
b) a “(hard) link” in Unix.
c) a “process” in Unix.

For each item, give a list of all the Unix operating system calls which manipulate the corresponding concept.

Question 2. Explain in detail what are the actions performed by the following Unix system calls, and also
explain their effects upon the internal operating system data structures that you find more relevant. Also
describe the meaning of all arguments of each call:

a) open
b) waitpid
c) fork
d) pipe

Question 3. Based on Unix system calls, write, in C, the code for the following function: transfer_file(
char *filename1, char *filename2) that duplicates the contents of the file, with absolute pathname given
by filename1, onto a new file with absolute pathname given by filename2, and then destroys the original
file filename1.

Question 4.

a) Based on Unix system calls, write, in C, the code for the following function: transfer_process() that
delegates the continuation of the execution of the program associated to the invoker process, into a newly
created process, and destroying the original process. The new process must have exactly the same execution
context and working environment as the original one and must continue the execution at the same point in
the program where the original process was executing.

b) Based on Unix system calls, write, in C, the modified code for the following function: transfer_process()
with a single modification comparing to the text in question a): once created, the new process must start its
execution at the first instruction of the program associated to the invoker process (instead of at the same
point in the program where the original process was executing, as was the case for question a)). Assume that
the program in execution by the original process is contained in executable file “/usr/bin/f”.

Question 5. In order to implement an Unix application to display videos using multiple processors, several
phases were identified and allocated to distinct processes, which communicate using Unix pipes, in the
following scheme: (where 'Ecrã” means the “Screen”)

- Process P1 is responsible for reading from file F, successive blocks, 16Kbytes each, and distributing each
one of them, in an alternate way, to P2 and P3, that is, one block to P2, next block to P3, next block to P2, ...

F P1

P3

P2

P4 Ecrã

pipe1

pipe2

pipe3

pipe4

- Processes P2 and P3 are responsible for processing each block, as they receive them, and will be sending
the results, also in the form of 16KB blocks, to process P4.

- Process P4 will be reading, also in an alternate way the received blocks from P2 or P3, and will be
displaying them to the screen.

a) Write, in C, the code for the actions of the program, corresponding to the launching of all the above
processes and all the required pipes. Assume that each process P1, P2, P3 and P4, once created, immediately
starts executing, respectively, one of the functions proc1(), proc2(), proc3() and proc4() (assume for this
question a) that those functions are already defined and they perform all the required initializations to
connect processes to the pipes).

b) Write, in C, the code for function proc1() which is executed by P1. This function should read, from the
file with name given in variable char *F, successive blocks, 16KB each, and then write each read block, in
an alternate way, as explained above, into one of the pipes pipe1 or pipe2.

c) Assume that processes P2 and P3 execute the same program, included in executable file
"/usr/bin/decod", and are responsible for processing the blocks, as they will be arriving in their respecitive
standard input channels, and then putting the resulting blocks (also 16kB each) in their corresponding
standard output channels. Write, in C, the code for functions proc2() and proc3(), that must perform the
required input/output channels redirections, before starting executing the program "decod" by each process
P2 and P3.

Questão 6. Consider the same problem as in Question 5 but assume now that communication between
processes P2 and P3 with process P4 takes place exclusively through a single and unique Unix message
queue, named FM. Rewrite the programs for functions proc2() and proc3() and also give the code for
function proc4(), which must impose the alternate reading of messages coming from P2 and P3, and should
rely exclusively on Unix system calls using the FM message queue for communication. Assume that the FM
queue was previously created and also that each exchanged message has exactly the size of a 16KB block.

Questão 7. Consider a memory area that is shared by N concurrent processes, and has the maximum
capacity of one 16KB block. One of the processes, named P1, produces one block at a time and writes the
block in the shared memory area. Each one of the remaining processes P2, ... PN must read the contents of
that block. Only after all processes (P2, ... PN) having read that block, then this will be considered as being
read and then the shared memory area will be marked as avaliable (and free for further writing of another
block). In order to achieve the above behavior, the following functions are defined:

− Process P1 invokes function putBlock(buf) such that P1 blocks until the shared memory area is
available, and then, P1 writes the contents of buf into the shared memory.

− Each one of the remaining processes P2, ... PN invokes function readBlock(buf), such that the process
is blocked until there is a new block to read. Then the process gets a copy of the block into buf, and
waits, blocked until all the remaining processes of the set P2-PN have also read that block

Write, in C, the code for functions putBlock(buf) and readBlock(buf), exclusively relying on
communication by shared memory and on semaphores, as defined by Dijkstra.

Questão 8. Write the pseudo-code for a monitor in a concurrent programming language, such that

