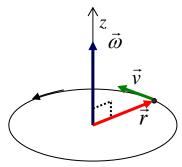

Física I – 2013/2014 – Folha de Actividades para a Aula 14

Questão 1

Para uma partícula que executa movimento circular de raio R, definiu-se uma velocidade angular $\omega = v/R$, em que v é o módulo da velocidade da partícula. Tem interesse definir a velocidade angular em termos vectoriais, como um vector perpendicular ao plano da trajectória, que aponta para o observador se este vir a partícula rodar no sentido directo (antihorário). Veja a figura anexa, em que estão representados o vector posicional relativo ao centro da trajectória, o vector velocidade e o vector velocidade angular.



Mostre que se verifica a seguinte relação $\vec{v} = \vec{\omega} \times \vec{r}$, em que o símbolo de produto se refere ao produto externo dos vectores indicados.

.....

Questão 2

Considere de novo o movimento circular de uma partícula. A taxa de variação da velocidade angular em ordem ao tempo designa-se por aceleração angular, $\vec{\alpha}$; portanto $\vec{\alpha} = \frac{d\vec{\omega}}{dt}$. Se escolhermos na figura a perpendicular ao plano da trajectória como a direcção do eixo z com o sentido indicado na figura, podemos escrever $\vec{\omega} = \omega \vec{k}$.

a) Mostre que $\vec{\alpha} = \alpha \vec{k}$, sendo $\alpha = \frac{d\omega}{dt}$ e mostre que $\alpha = a_t R$, sendo a_t o módulo da aceleração tangencial da partícula, dado por $a_t = \frac{dv}{dt}$

b) Mostre que $\vec{\alpha}$ tem o sentido de $\vec{\omega}$ quando o módulo deste aumenta no tempo e o sentido contrário quando o módulo de $\vec{\omega}$ diminui.