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UNITS, PHYSICAL QUANTITIES AND VECTORS 

 1.1. IDENTIFY: Convert units from mi to km and from km to ft. 
SET UP: 1 in. 2.54 cm= , 1 km = 1000 m , 12 in. 1 ft= , 1 mi = 5280 ft . 

EXECUTE: (a) 2 3

5280 ft 12 in. 2.54 cm 1 m 1 km1.00 mi (1.00 mi) 1.61 km
1 mi 1 ft 1 in. 10  cm 10  m

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

(b) 
3 2

310  m 10  cm 1 in. 1 ft1.00 km (1.00 km) 3.28 10  ft
1 km 1 m 2.54 cm 12 in.

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

EVALUATE: A mile is a greater distance than a kilometer. There are 5280 ft in a mile but only 3280 ft in a km. 
 1.2. IDENTIFY: Convert volume units from L to 3in. . 

SET UP: 31 L 1000 cm= . 1 in. 2.54 cm=  

EXECUTE: 
33

31000 cm 1 in.0.473 L 28.9 in. .
1 L 2.54 cm

⎛ ⎞ ⎛ ⎞× × =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: 31 in.  is greater than 31 cm , so the volume in 3in.  is a smaller number than the volume in 3cm , 
which is 3473 cm . 

 1.3. IDENTIFY: We know the speed of light in m/s. /t d v= . Convert 1.00 ft to m and t from s to ns. 
SET UP: The speed of light is 83.00 10  m/sv = × . 1 ft 0.3048 m= . 91 s 10  ns= . 

EXECUTE: 9
8

0.3048 m 1.02 10  s 1.02 ns
3.00 10  m/s

t −= = × =
×

 

EVALUATE: In 1.00 s light travels 8 5 53.00 10  m 3.00 10  km 1.86 10  mi× = × = × . 
 1.4. IDENTIFY: Convert the units from g to kg and from 3cm to 3m . 

SET UP: 1 kg 1000 g= . 1 m 1000 cm= . 

EXECUTE: 
3

4
3 3

g 1 kg 100 cm kg11.3 1.13 10
cm 1000 g 1 m m

⎛ ⎞ ⎛ ⎞
× × = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: The ratio that converts cm to m is cubed, because we need to convert 3cm to 3m . 
 1.5. IDENTIFY: Convert volume units from 3in. to L. 

SET UP: 31 L 1000 cm= . 1 in. 2.54 cm= . 
EXECUTE: ( ) ( ) ( ) 33 3327 in. 2.54  cm in. 1 L 1000 cm 5.36 L× × =  

EVALUATE: The volume is 35360 cm . 31 cm is less than 31 in. , so the volume in 3cm is a larger number than the 
volume in 3in. . 

 1.6. IDENTIFY: Convert 2ft to 2m and then to hectares. 
SET UP: 4 21.00 hectare 1.00 10  m= × . 1 ft 0.3048 m= . 

EXECUTE: The area is 
22

4 2

43,600 ft 0.3048 m 1.00 hectare(12.0 acres) 4.86 hectares
1 acre 1.00 ft 1.00 10  m

⎛ ⎞⎛ ⎞ ⎛ ⎞ =⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

EVALUATE: Since 1 ft 0.3048 m= , 2 2 21 ft (0.3048)  m= . 
 1.7. IDENTIFY: Convert seconds to years. 

SET UP: 91 billion seconds 1 10  s= × . 1 day 24 h= . 1 h 3600 s= . 

EXECUTE: ( )9 1 h 1 day 1 y1.00 billion seconds 1.00 10  s 31.7 y
3600 s 24 h 365 days

⎛ ⎞⎛ ⎞⎛ ⎞= × =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

. 
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EVALUATE: The conversion 71 y 3.156 10  s= ×  assumes 1 y 365.24 d= , which is the average for one extra day 
every four years, in leap years. The problem says instead to assume a 365-day year. 

 1.8. IDENTIFY: Apply the given conversion factors. 
SET UP: 1 furlong 0.1250 mi and 1 fortnight 14 days.= =  1 day 24 h.=  

EXECUTE: ( ) 0.125 mi 1 fortnight 1 day180,000 furlongs fortnight 67 mi/h
1 furlong 14 days 24 h
⎛ ⎞⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

EVALUATE: A furlong is less than a mile and a fortnight is many hours, so the speed limit in mph is a much 
smaller number. 

 1.9. IDENTIFY: Convert miles/gallon to km/L. 
SET UP: 1 mi 1.609 km= . 1 gallon 3.788 L.=  

EXECUTE: (a) 1.609 km 1 gallon55.0 miles/gallon (55.0 miles/gallon) 23.4 km/L
1 mi 3.788 L

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

(b) The volume of gas required is 1500 km 64.1 L
23.4 km/L

= . 64.1 L 1.4 tanks
45 L/tank

= . 

EVALUATE: 1 mi/gal 0.425  km/L = . A km is very roughly half a mile and there are roughly 4 liters in a gallon, 
so 2

41 mi/gal  km/L∼ , which is roughly our result. 
 1.10. IDENTIFY: Convert units. 

SET UP: Use the unit conversions given in the problem. Also, 100 cm 1 m= and 1000 g 1 kg= . 

EXECUTE: (a) mi 1h 5280 ft ft60   88
h 3600s 1mi s

⎛ ⎞ ⎛ ⎞⎛ ⎞ =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

(b) 2 2

ft 30.48cm 1 m m32   9.8
s 1ft 100 cm s

⎛ ⎞⎛ ⎞ ⎛ ⎞ =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(c) 
3

3
3 3

g 100 cm 1 kg kg1.0   10
cm 1 m 1000 g m

⎛ ⎞⎛ ⎞ ⎛ ⎞ =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

EVALUATE: The relations 60 mi/h 88 ft/s= and 3 3 31 g/cm 10  kg/m= are exact. The relation 2 232 ft/s 9.8 m/s= is 
accurate to only two significant figures. 

 1.11. IDENTIFY: We know the density and mass; thus we can find the volume using the relation 
density mass/volume /m V= = . The radius is then found from the volume equation for a sphere and the result for 
the volume. 
SET UP: 3Density 19.5 g/cm=  and critical 60.0 kg.m =  For a sphere 34

3V rπ= . 

EXECUTE: 3
critical 3

60.0 kg 1000 g/ density 3080 cm
19.5 g/cm 1.0 kg

V m ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

( )33 3
3 3 3080 cm 9.0 cm
4 4
Vr
π π

= = = . 

EVALUATE: The density is very large, so the 130 pound sphere is small in size. 
 1.12. IDENTIFY: Use your calculator to display 710π × . Compare that number to the number of seconds in a year. 

SET UP: 1 yr 365.24 days,=  1 day 24 h,=  and 1 h 3600 s.=  

EXECUTE: 724 h 3600 s(365.24 days/1 yr) 3.15567... 10  s
1 day 1 h
⎛ ⎞⎛ ⎞ = ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
; 7 710  s 3.14159... 10  sπ × = ×  

The approximate expression is accurate to two significant figures. 
EVALUATE: The close agreement is a numerical accident. 

 1.13. IDENTIFY: The percent error is the error divided by the quantity. 
SET UP: The distance from Berlin to Paris is given to the nearest 10 km.  

EXECUTE: (a) 3
3

10 m 1.1 10 %.
890 10  m

−= ×
×

 

(b) Since the distance was given as 890 km, the total distance should be 890,000 meters. We know the total 
distance to only three significant figures. 
EVALUATE: In this case a very small percentage error has disastrous consequences. 

 1.14. IDENTIFY: When numbers are multiplied or divided, the number of significant figures in the result can be no 
greater than in the factor with the fewest significant figures. When we add or subtract numbers it is the location of 
the decimal that matters. 
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SET UP: 12 mm has two significant figures and 5.98 mm has three significant figures. 
EXECUTE: (a) ( ) ( ) 212 mm 5.98 mm 72 mm× =  (two significant figures) 

(b) 5.98 mm 0.50
12 mm

=  (also two significant figures) 

(c) 36 mm (to the nearest millimeter) 
(d) 6 mm 
(e) 2.0 (two significant figures) 
EVALUATE: The length of the rectangle is known only to the nearest mm, so the answers in parts (c) and (d) are 
known only to the nearest mm. 

 1.15. IDENTIFY and SET UP: In each case, estimate the precision of the measurement. 
EXECUTE: (a) If a meter stick can measure to the nearest millimeter, the error will be about 0.13%.  
(b) If the chemical balance can measure to the nearest milligram, the error will be about 38.3 10 %.−×  
(c) If a handheld stopwatch (as opposed to electric timing devices) can measure to the nearest tenth of a second, the 
error will be about 22.8 10 %.−×  
EVALUATE: The percent errors are those due only to the limit of precision of the measurement. 

 1.16. IDENTIFY: Use the extreme values in the piece�s length and width to find the uncertainty in the area. 
SET UP: The length could be as large as 5.11 cm and the width could be as large as 1.91 cm. 

EXECUTE: The area is 9.69 ± 0.07 cm2. The fractional uncertainty in the area is 
2

2

0.07 cm 0.72%,
9.69 cm

=  and the 

fractional uncertainties in the length and width are 0.01 cm 0.20%
5.10 cm

=  and 0.01 cm 0.53%.
1.9 cm

=  The sum of these 

fractional uncertainties is 0.20% 0.53% 0.73%+ = , in agreement with the fractional uncertainty in the area. 
EVALUATE: The fractional uncertainty in a product of numbers is greater than the fractional uncertainty in any of 
the individual numbers. 

 1.17. IDENTIFY: Calculate the average volume and diameter and the uncertainty in these quantities. 
SET UP: Using the extreme values of the input data gives us the largest and smallest values of the target variables 
and from these we get the uncertainty. 
EXECUTE: (a) The volume of a disk of diameter d and thickness t is 2( / 2) .V d tπ=  

The average volume is 2 3(8.50 cm/2) (0.50 cm) 2.837 cm .V π= =  But t is given to only two significant figures so 

the answer should be expressed to two significant figures: 32.8 cm .V =  
We can find the uncertainty in the volume as follows. The volume could be as large as 

2 3(8.52 cm/2) (0.055 cm) 3.1 cm ,V π= =  which is 30.3 cm  larger than the average value. The volume could be as 

small as 2 3(8.52 cm/2) (0.045 cm) 2.5 cm ,V π= =  which is 30.3 cm  smaller than the average value. The 

uncertainty is 30.3 cm ,±  and we express the volume as 32.8 0.3 cm .V = ±  
(b) The ratio of the average diameter to the average thickness is 8.50 cm/0.050 cm 170.=  By taking the largest 
possible value of the diameter and the smallest possible thickness we get the largest possible value for this ratio: 
8.52 cm/0.045 cm 190.=  The smallest possible value of the ratio is 8.48/ 0.055 150.=  Thus the uncertainty is 

20±  and we write the ratio as 170 20.±  
EVALUATE: The thickness is uncertain by 10% and the percentage uncertainty in the diameter is much less, so 
the percentage uncertainty in the volume and in the ratio should be about 10%. 

 1.18. IDENTIFY: Estimate the number of people and then use the estimates given in the problem to calculate the 
number of gallons. 
SET UP: Estimate 83 10× people, so 82 10× cars. 
EXECUTE: ( ) ( )Number of cars miles/car day / mi/gal gallons/day× =   

( ) ( )8 82 10  cars 10000 mi/yr/car 1 yr/365 days / 20 mi/gal 3 10  gal/day× × × = ×  

EVALUATE: The number of gallons of gas used each day approximately equals the population of the U.S. 
 1.19. IDENTIFY: Express 200 kg in pounds. Express each of 200 m, 200 cm and 200 mm in inches. Express 

200 months in years. 
SET UP: A mass of 1 kg is equivalent to a weight of about 2.2 lbs. 1 in. 2.54 cm= . 1 y 12 months= . 
EXECUTE: (a) 200 kg is a weight of 440 lb. This is much larger than the typical weight of a man. 

(b) 4 31 in.200 m (2.00 10  cm) 7.9 10  inches
2.54 cm

⎛ ⎞= × = ×⎜ ⎟
⎝ ⎠

. This is much greater than the height of a person. 

(c) 200 cm 2.00 m 79 inches 6.6 ft= = = . Some people are this tall, but not an ordinary man. 
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(d) 200 mm 0.200 m 7.9 inches= = . This is much too short. 

(e) 1 y200 months (200 mon) 17 y
12 mon
⎛ ⎞= =⎜ ⎟
⎝ ⎠

. This is the age of a teenager; a middle-aged man is much older than this. 

EVALUATE: None are plausible. When specifying the value of a measured quantity it is essential to give the units 
in which it is being expressed. 

 1.20. IDENTIFY: The number of kernels can be calculated as bottle kernel/ .N V V=  
SET UP: Based on an Internet search, Iowan corn farmers use a sieve having a hole size of 0.3125 in. ≅ 8 mm to 
remove kernel fragments. Therefore estimate the average kernel length as 10 mm, the width as 6 mm and the depth 
as 3 mm. We must also apply the conversion factors 31 L 1000 cm  and 1 cm 10 mm.= =  
EXECUTE: The volume of the kernel is: ( )( )( ) 3

kernel 10 mm 6 mm 3 mm 180 mmV = = . The bottle�s volume is: 

( ) ( ) ( ) ( ) ( )3 33 6 3
bottle 2.0 L 1000 cm 1.0 L 10 mm 1.0 cm 2.0 10  mmV ⎡ ⎤⎡ ⎤= = ×⎣ ⎦ ⎣ ⎦ . The number of kernels is then 

( ) ( )6 3 3
kernels bottle kernels/ 2.0 10  mm 180 mm 11,000 kernelsN V V= ≈ × = . 

EVALUATE: This estimate is highly dependent upon your estimate of the kernel dimensions. And since these 
dimensions vary amongst the different available types of corn, acceptable answers could range from 6,500 to 
20,000. 

 1.21. IDENTIFY: Estimate the number of pages and the number of words per page. 
SET UP: Assuming the two-volume edition, there are approximately a thousand pages, and each page has 
between 500 and a thousand words (counting captions and the smaller print, such as the end-of-chapter exercises 
and problems). 
EXECUTE: An estimate for the number of words is about 610 . 
EVALUATE: We can expect that this estimate is accurate to within a factor of 10. 

 1.22. IDENTIFY: Approximate the number of breaths per minute. Convert minutes to years and 3cm to 3m to find the 
volume in 3m breathed in a year. 

SET UP: Assume 10 breaths/min . 524 h 60 min1 y (365 d) 5.3 10  min
1 d 1 h

⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 210  cm 1 m= so 

6 3 310  cm 1 m= . The volume of a sphere is 3 34 1
3 6V r dπ π= = , where r is the radius and d is the diameter. Don�t 

forget to account for four astronauts. 

EXECUTE: (a) The volume is 
5

6 3 4 35.3 10  min(4)(10 breaths/min)(500 10  m ) 1 10  m / yr
1 y

− ⎛ ⎞×
× = ×⎜ ⎟

⎝ ⎠
. 

(b) 
1/ 31/ 3 4 36 6[1 10  m ] 27 mVd

π π
⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

EVALUATE: Our estimate assumes that each 3cm of air is breathed in only once, where in reality not all the 
oxygen is absorbed from the air in each breath.  Therefore, a somewhat smaller volume would actually be  
required. 

 1.23. IDENTIFY: Estimate the number of blinks per minute. Convert minutes to years. Estimate the typical lifetime in 
years. 
SET UP: Estimate that we blink 10 times per minute. 1 y 365 days= . 1 day 24 h= , 1 h 60 min= . Use 80 years 
for the lifetime. 

EXECUTE: The number of blinks is 860 min 24 h 365 days(10 per min) (80 y/lifetime) 4 10
1 h 1 day 1 y

⎛ ⎞⎛ ⎞⎛ ⎞ = ×⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

EVALUATE: Our estimate of the number of blinks per minute can be off by a factor of two but our calculation is 
surely accurate to a power of 10. 

 1.24. IDENTIFY: Estimate the number of beats per minute and the duration of a lifetime. The volume of blood pumped 
during this interval is then the volume per beat multiplied by the total beats. 
SET UP: An average middle-aged (40 year-old) adult at rest has a heart rate of roughly 75 beats per minute. To 
calculate the number of beats in a lifetime, use the current average lifespan of 80 years. 

EXECUTE: ( ) 9
beats

60 min 24 h 365 days 80 yr75 beats/min 3 10  beats/lifespan
1 h 1 day yr lifespan

N ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
 

( )
9

3 7
blood 3

1 L 1 gal 3 10  beats50 cm /beat 4 10  gal/lifespan
1000 cm 3.788 L lifespan

V
⎛ ⎞×⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

EVALUATE: This is a very large volume. 
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 1.25. IDENTIFY: Estimation problem 
SET UP: Estimate that the pile is 18 in. 18 in. 5 ft 8 in..× ×  Use the density of gold to calculate the mass of gold in 
the pile and from this calculate the dollar value. 
EXECUTE: The volume of gold in the pile is 318 in. 18 in. 68 in. 22,000 in. .V = × × =  Convert to 3cm :  

3 3 3 5 322,000 in. (1000 cm / 61.02 in. ) 3.6 10  cm .V = = ×  

The density of gold is 319.3 g/cm ,  so the mass of this volume of gold is 
3 5 3 6(19.3 g/cm )(3.6 10  cm ) 7 10  g.m = × = ×  

The monetary value of one gram is $10, so the gold has a value of 6 7($10/ gram)(7 10  grams) $7 10 ,× = ×  or about 
6$100 10×  (one hundred million dollars). 

EVALUATE: This is quite a large pile of gold, so such a large monetary value is reasonable. 
 1.26. IDENTIFY: Estimate the diameter of a drop and from that calculate the volume of a drop, in 3m . Convert 3m to L. 

SET UP: Estimate the diameter of a drop to be 2 mmd = . The volume of a spherical drop is 3 34 1
3 6V r dπ π= = . 

3 310  cm 1 L= . 

EXECUTE: 3 3 31
6 (0.2 cm) 4 10  cmV π −= = × . The number of drops in 1.0 L is 

3
5

3 3

1000 cm 2 10
4 10  cm− = ×
×

 

EVALUATE: Since 3V d∼ , if our estimate of the diameter of a drop is off by a factor of 2 then our estimate of the 
number of drops is off by a factor of 8. 

 1.27. IDENTIFY: Estimate the number of students and the average number of pizzas eaten by each student in a school year. 
SET UP: Assume a school of thousand students, each of whom averages ten pizzas a year (perhaps an underestimate) 
EXECUTE: They eat a total of 104 pizzas. 
EVALUATE: The same answer applies to a school of 250 students averaging 40 pizzas a year each. 

 1.28. IDENTIFY: The number of bills is the distance to the moon divided by the thickness of one bill. 
SET UP: Estimate the thickness of a dollar bills by measuring a short stack, say ten, and dividing the 
measurement by the total number of bills. I obtain a thickness of roughly 1 mm. From Appendix F, the distance 
from the earth to the moon is 83.8 10  m.×  

EXECUTE: 
8 3

12 12
bills

3.8 10  m 10  mm 3.8 10  bills 4 10  bills
0.1 mm/bill 1 m

N
⎛ ⎞⎛ ⎞×

= = × ≈ ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: This answer represents 4 trillion dollars! The cost of a single space shuttle mission in 2005 is 
significantly less � roughly 1 billion dollars. 

 1.29. IDENTIFY: The cost would equal the number of dollar bills required; the surface area of the U.S. divided by the 
surface area of a single dollar bill. 
SET UP: By drawing a rectangle on a map of the U.S., the approximate area is 2600 mi by 1300 mi or 
3,380,000 2mi . This estimate is within 10 percent of the actual area, 3,794,083 2mi . The population is roughly 

83.0 10×  while the area of a dollar bill, as measured with a ruler, is approximately 1
86  in. by 5

82  in. 

EXECUTE: ( ) ( ) ( )[ ] ( ) ( ) 222 16 2
U.S. 3,380,000 mi 5280 ft / 1 mi 12 in. 1 ft 1.4 10  in.A ⎡ ⎤= = ×⎣ ⎦  

( )( ) 2
bill 6.125 in. 2.625 in. 16.1 in.A = =  

( ) ( )16 2 2 14
bills U.S. billTotal cost 1.4 10  in. 16.1 in. / bill 9 10  billsN A A= = = × = ×  

14 8 6Cost per person (9 10  dollars) /(3.0 10  persons) 3 10 dollars/person= × × = ×  
EVALUATE: The actual cost would be somewhat larger, because the land isn�t flat. 

 1.30. IDENTIFY: The displacements must be added as vectors and the magnitude of the sum depends on the relative 
orientation of the two displacements. 
SET UP: The sum with the largest magnitude is when the two displacements are parallel and the sum with the 
smallest magnitude is when the two displacements are antiparallel. 
EXECUTE: The orientations of the displacements that give the desired sum are shown in Figure 1.30. 
EVALUATE: The orientations of the two displacements can be chosen such that the sum has any value between 
0.6 m and 4.2 m. 

 
Figure 1.30 
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 1.31. IDENTIFY: Draw each subsequent displacement tail to head with the previous displacement. The resultant 
displacement is the single vector that points from the starting point to the stopping point. 
SET UP: Call the three displacements A

"
, B
"

, and C
"

. The resultant displacement R
"

is given by R = A + B + C
" "" "

. 
EXECUTE: The vector addition diagram is given in Figure 1.31. Careful measurement gives that R

"
is 

7.8 km, 38  north of east# . 
EVALUATE: The magnitude of the resultant displacement, 7.8 km, is less than the sum of the magnitudes of the 
individual displacements, 2.6 km 4.0 km 3.1 km+ + . 

 
Figure 1.31 

 1.32. IDENTIFY: Draw the vector addition diagram, so scale. 
SET UP: The two vectors A

"
and B

"
are specified in the figure that accompanies the problem. 

EXECUTE: (a) The diagram for C = A + B
" " "

is given in Figure 1.32a. Measuring the length and angle of C
"

gives 
9.0 mC = and an angle of 34θ = ° . 

(b) The diagram for −D = A B
"" "

is given in Figure 1.32b. Measuring the length and angle of D
"

gives 22 mD = and 
an angle of 250θ = ° . 
(c) ( )− − −A B = A + B

" "
, so − −A B

" "
has a magnitude of 9.0 m (the same as A + B

" "
) and an angle with the x+  axis 

of 214° (opposite to the direction of A + B
" "

). 
(d) ( )− − −B A = A B

" "" "
, so −B A

""
has a magnitude of 22 m and an angle with the x+  axis of 70°  (opposite to the 

direction of −A B
" "

). 
EVALUATE: The vector −A

"
is equal in magnitude and opposite in direction to the vector A

"
. 

 
Figure 1.32 

 1.33. IDENTIFY: Since she returns to the starting point, the vectors sum of the four displacements must be zero. 
SET UP: Call the three given displacements A

"
, B
"

, and C
"

, and call the fourth displacement D
"

. 
0A + B + C + D =

" "" "
. 

EXECUTE: The vector addition diagram is sketched in Figure 1.33. Careful measurement gives that D
"

 
is144 m, 41  south of west.#  
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EVALUATE: D
"

 is equal in magnitude and opposite in direction to the sum A + B + C
" ""

. 

 
Figure 1.33 

 1.34. IDENTIFY and SET UP: Use a ruler and protractor to draw the vectors described. Then draw the corresponding 
horizontal and vertical components. 
EXECUTE: (a) Figure 1.34 gives components 4.7 m, 8.1 m. 
(b) Figure 1.34 gives components 15.6 km,15.6 km− . 
(c) Figure 1.34 gives components 3.82 cm, 5.07 cm− . 
EVALUATE: The signs of the components depend on the quadrant in which the vector lies. 

 
Figure 1.34 

 1.35. IDENTIFY: For each vector V
"

, use that cosxV V θ= and sinyV V θ= , when θ is the angle V
"

makes with the x+  
axis, measured counterclockwise from the axis. 
SET UP: For A

"
, 270.0θ = ° . For B

"
, 60.0θ = ° . For C

"
, 205.0θ = ° . For D

"
, 143.0θ = ° . 

EXECUTE: 0xA = , 8.00 myA = − . 7.50 mxB = , 13.0 myB = . 10.9 mxC = − , 5.07 myC = − . 7.99 mxD = − , 

6.02 myD = . 
EVALUATE: The signs of the components correspond to the quadrant in which the vector lies. 

 1.36. IDENTIFY: tan y

x

A
A

θ = , for θ measured counterclockwise from the x+ -axis. 

SET UP: A sketch of xA , yA and A
"

tells us the quadrant in which A
"

lies. 
EXECUTE: 

(a) 1.00 mtan 0.500
2.00 m

y

X

A
θ

A
−

= = = − . ( )1tan 0.500 360 26.6 333θ −= − = ° − ° = ° . 

(b) 1.00 mtan 0.500
2.00 m

y

x

A
θ

A
= = = . ( )1tan 0.500 26.6θ −= = ° . 

(c) 1.00 mtan 0.500
2.00 m

y

x

A
θ

A
= = = −

−
. ( )1tan 0.500 180 26.6 153θ −= − = ° − ° = ° . 

(d) 1.00 mtan 0.500
2.00 m

y

x

A
θ

A
−

= = =
−

. ( )1tan 0.500 180 26.6 207θ −= = ° + ° = °  

EVALUATE: The angles 26.6° and 207° have the same tangent. Our sketch tells us which is the correct value 
of θ . 

 1.37. IDENTIFY: Find the vector sum of the two forces. 
SET UP: Use components to add the two forces. Take the -directionx+  to be forward and the -directiony+  to be 
upward. 
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EXECUTE: The second force has components 2 2 cos32.4 433 NxF F= ° =  and 2 2 sin32.4 275 N.yF F= ° =  The 

first force has components 1 725 NxF =  and 1 0.yF =  

1 2 1158 Nx x xF F F= + =  and 1 2 275 Ny y yF F F= + =  
The resultant force is 1190 N in the direction 13.4°  above the forward direction. 
EVALUATE: Since the two forces are not in the same direction the magnitude of their vector sum is less than the 
sum of their magnitudes. 

 1.38. IDENTIFY: Find the vector sum of the three given displacements. 
SET UP: Use coordinates for which x+  is east and y+  is north. The driver�s vector displacements are: 

2.6 km, 0  of north; 4.0 km, 0  of east; 3.1 km, 45  north of east= ° = ° = °A B C
$ $$

. 

EXECUTE: ( ) ( )0 4.0 km 3.1 km cos 45 6.2 kmx x x xR A B C= + + = + + =# ; y y y yR A B C= + + =  

( )2.6 km 0 (3.1 km) sin45 4.8 km+ + =# ; 2 2 7.8 kmx yR R R= + = ; ( ) ( )1tan 4.8 km 6.2 kmθ − ⎡ ⎤= ⎣ ⎦ 38= # ; 

7.8 km, 38  north of east.=R #$
 This result is confirmed by the sketch in Figure 1.38. 

EVALUATE: Both xR and yR are positive and R
"

is in the first quadrant. 

 
Figure 1.38 

 1.39. IDENTIFY: If C = A + B
" " "

, then x x xC A B= + and y y yC A B= + . Use xC and yC to find the magnitude and 

direction of C
"

. 
SET UP: From Figure 1.34 in the textbook, 0xA = , 8.00 myA = − and sin30.0 7.50 mxB B= + =° , 

cos30.0 13.0 myB B= + =° . 

EXECUTE: (a) C = A + B
" " "

so 7.50 mx x xC A B= + =  and 5.00 my y yC A B= + = + . 9.01 mC = . 

5.00 mtan
7.50 m

y

x

C
C

θ = = and 33.7θ = ° . 

(b) B + A = A + B
" "" "

, so B + A
""

has magnitude 9.01 m and direction specified by 33.7° . 

(c) −D = A B
"" "

so 7.50 mx x xD A B= − = − and 21.0 my y yD A B= − = − . 22.3 mD = . 21.0 mtan
7.50 m

y

x

D
D

φ −
= =

−
and 

70.3φ = ° . D
"

is in the 3rd quadrant and the angle θ counterclockwise from the x+  axis is 180 70.3 250.3+ =° ° ° . 
(d) ( )− = − −B A A B

" "" "
, so −B A

""
has magnitude 22.3 m and direction specified by 70.3θ = ° . 

EVALUATE: These results agree with those calculated from a scale drawing in Problem 1.32. 
 1.40. IDENTIFY: Use Equations (1.7) and (1.8) to calculate the magnitude and direction of each of the given vectors. 

SET UP: A sketch of xA , yA and A
"

tells us the quadrant in which A
"

lies. 

EXECUTE: (a) 2 2( 8.60 cm) (5.20 cm) 10.0− + =   cm, 5.20arctan 148.8
8.60

⎛ ⎞ = °⎜ ⎟−⎝ ⎠
 (which is 180 31.2° − ° ). 

(b) 2 2( 9.7 m) ( 2.45 m) 10.0 m,− + − =  2.45arctan 14 180 194 .
9.7

−⎛ ⎞ = ° + ° = °⎜ ⎟−⎝ ⎠
 

(c) 2 2(7.75 km) ( 2.70 km) 8.21 km,+ − =  2.7arctan 340.8
7.75
−⎛ ⎞ = °⎜ ⎟

⎝ ⎠
 (which is 360 19.2° − ° ). 

EVALUATE: In each case the angle is measured counterclockwise from the x+  axis. Our results for θ agree with 
our sketches. 
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 1.41. IDENTIFY: Vector addition problem. We are given the magnitude and direction of three vectors and are asked to 
find their sum. 
SET UP:  

 

3.25 kmA =  
4.75 kmB =  
1.50 kmC =  

Figure 1.41a  

Select a coordinate system where x+  is east and y+  is north. Let ,A
"

 B
"

 and C
"

 be the three displacements of the 

professor. Then the resultant displacement R
"

 is given by .= + +R A B C
" "" "

 By the method of components, 
x x x xR A B C= + +  and .y y y yR A B C= + +  Find the x and y components of each vector; add them to find the 

components of the resultant. Then the magnitude and direction of the resultant can be found from its x and y 
components that we have calculated. As always it is essential to draw a sketch. 
EXECUTE:  

 

0,xA =  3.25 kmyA = +  

4.75 km,xB = −  0yB =  

0,xC =   1.50 kmyC = −  

x x x xR A B C= + +  
0 4.75 km 0 4.75 kmxR = − + = −  

y y y yR A B C= + +  

3.25 km 0 1.50 km 1.75 kmyR = + − =  

Figure 1.41b  
 

 

The angle θ  measured counterclockwise from the -axis.x+  In terms of compass directions, the resultant 
displacement is 20.2  N°  of W. 
EVALUATE: 0xR <  and 0,yR >  so R

"
 is in 2nd quadrant. This agrees with the vector addition diagram. 

 1.42. IDENTIFY: Add the vectors using components. ( )− −B A = B + A
" "" "

. 

SET UP: If C = A + B
" " "

then x x xC A B= + and y y yC A B= + . If −D = B A
"" "

then x x xD B A= − and y y yD B A= − . 
EXECUTE: (a) The x- and y-components of the sum are 1.30 cm 4.10 cm 5.40 cm,+ =  
2.25 cm ( 3.75 cm) 1.50 cm.+ − = −  

(b) Using Equations (1.7) and (1.8), 2 2(5.40cm) ( 1.50 cm) 5.60 cm,− =  1.50arctan 344.5
5.40
−⎛ ⎞ = °⎜ ⎟+⎝ ⎠

 ccw. 

 

2 2 2 2( 4.75 km) (1.75 km)x yR R R= + = − +  

5.06 kmR =  
1.75 kmtan 0.3684
4.75 km

y

x

R
R

θ = = = −
−

 

159.8θ = °  
 

Figure 1.41c  
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(c) Similarly, ( )4 10 cm 1 30 cm 2 80 cm,. − . = .  ( )3 75 cm 2 25 cm 6 00 cm. − . = . .2 2  

(d) 2 2(2.80cm) ( 6.00cm) 6.62+ − =  cm, 6.00arctan 295
2.80
−⎛ ⎞ = °⎜ ⎟

⎝ ⎠
 (which is 360 65° − ° ). 

EVALUATE: We can draw the vector addition diagram in each case and verify that our results are qualitatively 
correct. 

 1.43. IDENTIFY: Vector addition problem. ( ).− −A B = A + B
" "" "

 

SET UP: Find the x- and y-components of A
"

 and .B
"

 Then the x- and y-components of the vector sum are 
calculated from the x- and y-components of A

"
 and .B

"
 

EXECUTE:  

 

cos(60.0 )xA A= °  
(2.80 cm)cos(60.0 ) 1.40 cmxA = ° = +  

sin(60.0 )yA A= °  

(2.80 cm)sin(60.0 ) 2.425 cmyA = ° = +  

cos( 60.0 )xB B= − °  
(1.90 cm)cos( 60.0 ) 0.95 cmxB = − ° = +  

sin( 60.0 )yB B= − °  

(1.90 cm)sin( 60.0 ) 1.645 cmyB = − ° = −  
Note that the signs of the components 
correspond to the directions of the component 
vectors. 

Figure 1.43a  

(a) Now let .= +R A B
"" "

 
1.40 cm 0.95 cm 2.35 cm.x x xR A B= + = + + = +  
2.425 cm 1.645 cm 0.78 cm.y y yR A B= + = + − = +  

 

2 2 2 2(2.35 cm) (0.78 cm)x yR R R= + = +  

2.48 cmR =  
0.78 cmtan 0.3319
2.35 cm

y

x

R
R

θ +
= = = +

+
 

18.4θ = °  
Figure 1.43b  

EVALUATE: The vector addition diagram for = +R A B
"" "

 is 

 

R
"

 is in the 1st quadrant, with 
,y xR R<  in agreement with 

our calculation. 

Figure 1.43c  
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(b) EXECUTE: Now let .−=R A B
"" "

 
1.40 cm 0.95 cm 0.45 cm.x x xR A B= − = + − = +  
2.425 cm 1.645 cm 4.070 cm.y y yR A B= − = + + = +  

 

 

2 2 2 2(0.45 cm) (4.070 cm)x yR R R= + = +  

4.09 cmR =  
4.070 cmtan 9.044
0.45 cm

y

x

R
R

θ = = = +  

83.7θ = °  

Figure 1.43d  

EVALUATE: The vector addition diagram for ( )−= +R A B
"" "

 is 

 

R
"

 is in the 1st quadrant, 
with ,x yR R<  in 

agreement with our 
calculation. 

Figure 1.43e  
(c) EXECUTE: 

 

( )− − −B A = A B
" "" "

 

−B A
""

 and −A B
" "

 are 
equal in magnitude and 
opposite in direction. 

4.09 cmR =  and 
83.7 180 264θ = ° + ° = °  

Figure 1.43f  
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EVALUATE: The vector addition diagram for ( )−= +R B A
"" "

 is 

 

 

R
"

 is in the 3rd quadrant, 
with ,x yR R<  in 

agreement with our 
calculation. 

Figure 1.43g  
 1.44. IDENTIFY: The velocity of the boat relative to the earth, B/Ev" , the velocity of the water relative to the earth, W/Ev" , 

and the velocity of the boat relative to the water, B/Wv" , are related by B/E B/W W/Ev = v + v" " " . 
SET UP: W/E 5.0 km/h=v" , north and B/W 7.0 km/h=v" , west. The vector addition diagram is sketched in 
Figure 1.44. 

EXECUTE: 2 2 2
B/E W/E B/Wv v v= +  and 2 2

B/E (5.0 km/h) (7.0 km/h) 8.6 km/hv = + = . W/E

B/W

5.0 km/htan
7.0 km/h

v
v

φ = = and 

36φ = ° , north of west. 
EVALUATE: Since the two vectors we are adding are perpendicular we can use the Pythagorean theorem directly 
to find the magnitude of their vector sum. 

 
Figure 1.44 

 1.45. IDENTIFY: Let 625 NA = and 875 NB = . We are asked to find the vector C
"

such that 0A + B = C =
" ""

. 
SET UP: 0xA = , 625 NyA = − . (875 N)cos30 758 NxB = =° , (875 N)sin30 438 NyB = =° . 

EXECUTE: ( ) (0 758 N) 758 Nx x xC A B= − + = − + = − . ( ) ( 625 N 438 N) 187 Ny y yC A B= − + = − − + = + . Vector 

C
"

 and its components are sketched in Figure 1.45. 2 2 781 Nx yC C C= + = . 187 Ntan
758 N

y

x

C
C

φ = = and 13.9φ = ° . 

C
"

is at an angle of 13.9°  above the x− -axis and therefore at an angle 180 13.9 166.1− =° ° ° counterclockwise from 
the -axisx+ . 
EVALUATE: A vector addition diagram for A + B + C

" ""
verifies that their sum is zero. 

 
Figure 1.45 
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 1.46. IDENTIFY: We know the vector sum and want to find the magnitude of the vectors. Use the method of 
components. 
SET UP: The two vectors A

"
and B

"
and their resultant C

"
are shown in Figure 1.46. Let y+  be in the direction of 

the resultant. A B= . 
EXECUTE: y y yC A B= + . 372 N 2 cos43.0A= ° and 254 NA = . 
EVALUATE: The sum of the magnitudes of the two forces exceeds the magnitude of the resultant force because 
only a component of each force is upward. 

 
Figure 1.46 

 1.47. IDENTIFY: Find the components of each vector and then use Eq.(1.14). 
SET UP: 0xA = , 8.00 myA = − . 7.50 mxB = , 13.0 myB = . 10.9 mxC = − , 5.07 myC = − . 7.99 mxD = − , 

6.02 myD = . 

EXECUTE: �( 8.00 m)−A = j
"

; � �(7.50 m) (13.0 m)B = i + j
"

; � �( 10.9 m) ( 5.07 m)− −C = i + j
"

; 
� �( 7.99 m) (6.02 m)−D = i + j

"
. 

EVALUATE: All these vectors lie in the xy-plane and have no z-component. 
 1.48. IDENTIFY: The general expression for a vector written in terms of components and unit vectors is � �

x yA AA = i + j
"

 

SET UP: � �5.0 5.0(4 6 ) 20 30− = −B = i j i j
" ""

 
EXECUTE: (a) 5.0xA = , 6.3yA = −  (b) 11.2xA = , 9.91yA = −  (c) 15.0xA = − , 22.4yA =   

(d) 20xA = , 30yA = −  
EVALUATE: The components are signed scalars. 

 1.49. IDENTIFY: Use trig to find the components of each vector. Use Eq.(1.11) to find the components of the vector 
sum. Eq.(1.14) expresses a vector in terms of its components. 
SET UP: Use the coordinates in the figure that accompanies the problem. 
EXECUTE: (a) ( ) ( ) ( ) ( )� � � �3.60 m cos70.0 3.60 m sin 70.0 1.23 m 3.38 m° °A = i + j = i + j

"
 

( ) ( ) ( ) ( )� � � �2.40 m  cos 30.0 2.40 m  sin 30.0 2.08 m 1.20 m− ° − ° − −B = i j = i + j
"

 

(b) ( ) ( )3.00  4.00−C = A B
" " "

( )( ) ( )( ) ( )( ) ( )( )� � � �3.00 1.23 m 3.00 3.38 m 4.00 2.08 m 4.00 1.20 m− − − −= i + j i j  

   � �(12.01 m) (14.94)= +i j  
(c) From Equations (1.7) and (1.8), 

( ) ( )2 2 14.94 m12.01 m 14.94 m 19.17 m, arctan 51.2
12.01 m

C ⎛ ⎞= + = = °⎜ ⎟
⎝ ⎠

 

EVALUATE: xC and yC are both positive, so θ is in the first quadrant. 
 1.50. IDENTIFY: Find A and B. Find the vector difference using components. 

SET UP: Deduce the x- and y-components and use Eq.(1.8). 
EXECUTE: (a) � �4.00 3.00 ;= +A i j

"
 4.00;xA = +  3.00yA = +  

2 2 2 2(4.00) (3.00) 5.00x yA A A= + = + =  
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� �5.00 2.00 ;= −B i j
"

 5.00;xB = +  2.00yB = −  
2 2 2 2(5.00) ( 2.00) 5.39x yB B B= + = + − =  

EVALUATE: Note that the magnitudes of A
"

 and B
"

 are each larger than either of their components. 
EXECUTE: (b) ( )� � � � � �4.00 3.00 5.00 2.00 (4.00 5.00) (3.00 2.00)− = + − − = − + +A B i j i j i j

" "
 

� �1.00 5.00− = − +A B i j
" "

 

(c) Let � �1.00 5.00 .− = − +=R A B i j
"" "

 Then 1.00,xR = −  5.00.yR =  

 

2 2
x yR R R= +  

2 2( 1.00) (5.00) 5.10.R = − + =  

5.00tan 5.00
1.00

y

x

R
R

θ = = = −
−

 

78.7 180 101.3 .θ = − ° + ° = °  

Figure 1.50  

EVALUATE: 0xR <  and 0,yR >  so R
"

 is in the 2nd quadrant. 
 1.51. IDENTIFY: A unit vector has magnitude equal to 1. 

SET UP: The magnitude of a vector is given in terms of its components by Eq.(1.12). 
EXECUTE: (a) 2 2 2� � � 1 1 1 3 1= + + = ≠i + j + k  so it is not a unit vector. 

(b) 2 2 2
x y zA A A= + +A

"
. If any component is greater than 1+  or less than 1,−  1>A

"
, so it cannot be a unit 

vector. A
"

can have negative components since the minus sign goes away when the component is squared. 

(c) 1=A
"

gives ( ) ( )2 22 23.0 4.0  1a a+ = and 2 25 1a = . 1 0.20
5.0

a = ± = ± . 

EVALUATE: The magnitude of a vector is greater than the magnitude of any of its components. 
 1.52. IDENTIFY: If vectors A

"
and B

"
commute for addition, A + B = B + A

" "" "
. If they commute for the scalar product, 

⋅ = ⋅A B B A
" "" "

. 
SET UP: Express the sum and scalar product in terms of the components of A

"
and B

"
. 

EXECUTE: (a) Let � �
x yA AA = i + j

"
 and � �

x yB BB = i + j
"

. ( ) ( )� �
x x y yA B A B+ +A + B = i + j

" "
. 

( ) ( )� �
x x y yB A B A+ +B + A = i + j

""
. Scalar addition is commutative, so A + B = B + A

" "" "
. 

x x y yA B A B⋅ = +A B
" "

and x x y yB A B A⋅ = +B A
""

. Scalar multiplication is commutative, so ⋅ = ⋅A B B A
" "" "

. 

(b) ( ) ( ) ( )� � � y z z y z x x z x y y xA B A B A B A B A B A B− − −A × B = i + j + k
" "

. 

( ) ( ) ( )� � � y z z y z x x z x y y xB A B A B A B A B A B A− − −B × A = i + j + k
""

. Comparison of each component in each vector 

product shows that one is the negative of the other. 
EVALUATE: The result in part (b) means that A × B

" "
and B × A

""
have the same magnitude and opposite direction. 

 1.53. IDENTIFY: cosAB φ⋅ =A B
" "

 
SET UP: For A

"
and B

"
, 150.0φ = ° . For B

"
and C

"
, 145.0φ = ° . For A

"
and C

"
, 65.0φ = ° . 

EXECUTE: (a) 2(8.00 m)(15.0 m)cos150.0 104 m⋅ = = −A B
" "

°  

(b) 2(15.0 m)(12.0 m)cos145.0 148 m⋅ = = −B C
""

°  

(c) 2(8.00 m)(12.0 m)cos65.0 40.6 m⋅ = =A C
" "

°  
EVALUATE: When 90φ < ° the scalar product is positive and when 90φ > ° the scalar product is negative. 

 1.54. IDENTIFY: Target variables are ⋅A B
" "

 and the angle φ  between the two vectors. 
SET UP: We are given A

"
 and B

"
 in unit vector form and can take the scalar product using Eq.(1.19). The angle 

φ  can then be found from Eq.(1.18). 
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EXECUTE:  
(a) � �4.00 3.00 ,= +A i j
"

 � �5.00 2.00 ;= −B i j
"

 5.00,A =  5.39B =  
� � � �(4.00 3.00 ) (5.00 2.00 ) (4.00)(5.00) (3.00)( 2.00)⋅ = + ⋅ − = + − =A B i j i j

" "
20.0 6.0 14.0.− = +  

(b) 14.0cos 0.519;
(5.00)(5.39)AB

φ ⋅
= = =

A B
" "

 58.7 .φ = °  

EVALUATE: The component of B
"

 along A
"

 is in the same direction as ,A
"

 so the scalar product is positive and 
the angle φ  is less than 90 .°  

 1.55. IDENTIFY: For all of these pairs of vectors, the angle is found from combining Equations (1.18) and (1.21), to 

give the angleφ  as arccos arccos x x y yA B A B
AB AB

φ
+⎛ ⎞ ⎛ ⎞⋅

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

A B
" "

. 

SET UP: Eq.(1.14) shows how to obtain the components for a vector written in terms of unit vectors. 

EXECUTE: (a) 22,  40,  13,A B⋅ = − = =A B
" "

and so 22arccos 165
40 13

φ
⎛ ⎞−

= = °⎜ ⎟
⎝ ⎠

. 

(b) 60, 34, 136,A B⋅ = = =A B
" "

 60arccos 28
34 136

φ ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

. 

(c) 0⋅ =A B
" "

and 90φ = ° . 

EVALUATE: If 0⋅ >A B
" "

, 0 90φ≤ < ° . If 0⋅ <A B
" "

, 90 180φ ≤°< ° . If 0⋅ =A B
" "

, 90φ = ° and the two vectors are 
perpendicular. 

 1.56. IDENTIFY: cosAB φ⋅ =A B
" "

and sinAB φ=A× B
" "

, where φ is the angle between A
"

and B
"

. 

SET UP: Figure 1.56 shows A
"

and B
"

. The components A%  of A
"

along B
"

and A⊥ of A
"

perpendicular to B
"

are 

shown in Figure 1.56a. The components of B%  of B
"

along A
"

and B⊥ of B
"

perpendicular to A
"

are shown in 
Figure 1.56b. 
EXECUTE: (a) From Figures 1.56a and b, cosA A φ=% and cosB B φ=% . cosAB BA ABφ⋅ = = =A B % %

" "
. 

(b) sinA A φ⊥ = and sinB B φ⊥ = . sinAB BA ABφ ⊥ ⊥= = =A× B
" "

. 

EVALUATE: When A
"

and B
"

are perpendicular, A
"

has no component along B
"

and B
"

has no component along 
A
"

and 0⋅ =A B
" "

. When A
"

and B
"

are parallel, A
"

has no component perpendicular to B
"

and B
"

has no component 
perpendicular to A

"
and 0=A× B

" "
. 

 
Figure 1.56 

 1.57. IDENTIFY: A× D
" "

has magnitude sinAD φ . Its direction is given by the right-hand rule. 
SET UP: 180 53 127φ = − =° ° °  

EXECUTE: 2(8.00 m)(10.0 m)sin127 63.9 m= =A× D
" "

° . The right-hand rule says A× D
" "

is in the 

-directionz− (into the page). 
EVALUATE: The component of D

"
perpendicular to A

"
is sin53.0 7.00 mD D⊥ = =° . 263.9 mAD⊥= =A× D

" "
, 

which agrees with our previous result. 
 1.58. IDENTIFY: Target variable is the vector ,A× B

" "
 expressed in terms of unit vectors. 

SET UP: We are given A
"

 and B
"

 in unit vector form and can take the vector product using Eq.(1.24). 
EXECUTE: � �4.00 3.00 ,= +A i j

"
 � �5.00 2.00= −B i j
"
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( ) ( )� � � �4.00 3.00 5.00 2.00× = + × − =A B i j i j
" " � � � � � � � �20.0 8.00 15.0 6.00× − × + × − ×i i i j j i j j  

But � � � � 0× = × =i i j j  and � � �,× =i j k  � � �,× = −j i k  so ( )� � �8.00 15.0 23.0 .× = − + − = −A B k k k
" "

 

The magnitude of ×A B
" "

 is 23.0. 
EVALUATE: Sketch the vectors A

"
 and B

"
 in a coordinate system where the xy-plane is in the plane of the paper 

and the z-axis is directed out toward you. 

 
Figure 1.58 

By the right-hand rule ×A B
" "

 is directed into the plane of the paper, in the -direction.z−  This agrees with the 
above calculation that used unit vectors. 

 1.59. IDENTIFY: The right-hand rule gives the direction and Eq.(1.22) gives the magnitude. 
SET UP: 120.0φ = ° . 
EXECUTE: (a) The direction of A×B

" "
is into the page (the -directionz− ). The magnitude of the vector product 

is ( )( ) 2sin 2.80 cm 1.90 cm sin120 4.61 cmAB φ = =# . 

(b) Rather than repeat the calculations, Eq. (1.23) may be used to see that B × A
""

 has magnitude 4.61 cm2 and is in 
the -directionz+  (out of the page). 
EVALUATE: For part (a) we could use Eq. (1.27) and note that the only non-vanishing component is 

( ) ( )2.80 cm cos60.0 1.90 cm sin 60z x y y xC A B A B= − = ° − °  

( ) ( ) 2        2.80 cm sin 60.0 1.90 cm cos60.0 4.61 cm− ° ° = − . 
This gives the same result. 

 1.60. IDENTIFY: Area is length times width. Do unit conversions. 
SET UP: 1 mi 5280 ft= . 31 ft 7.477 gal= . 

EXECUTE: (a) The area of one acre is 21 1 1
8 80 640mi  mi  mi ,× = so there are 640 acres to a square mile. 

(b) ( )
22

21 mi 5280 ft1 acre 43,560 ft
640 acre 1 mi
⎛ ⎞ ⎛ ⎞× × =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(all of the above conversions are exact). 

(c) (1 acre-foot) ( )3 5
3

7.477 gal43,560 ft 3.26 10  gal,
1 ft

⎛ ⎞= × = ×⎜ ⎟
⎝ ⎠

 which is rounded to three significant figures. 

EVALUATE: An acre is much larger than a square foot but less than a square mile. A volume of 1 acre-foot is 
much larger than a gallon. 

 1.61. IDENTIFY: The density relates mass and volume. Use the given mass and density to find the volume and from 
this the radius. 
SET UP: The earth has mass 24

E 5.97 10  kgm = × and radius 6
E 6.38 10  mr = × . The volume of a sphere is 

34
3V rπ= . 3 31.76 g/cm 1760 km/mρ = = . 

EXECUTE: (a) The planet has mass 25
E5.5 3.28 10  kgm m= = × . 

25
22 3

3

3.28 10  kg 1.86 10  m
1760 kg/m

mV
ρ

×
= = = × . 

1/ 31/ 3 22 3
7 43 3[1.86 10  m ] 1.64 10  m 1.64 10  km

4 4
Vr
π π

⎛ ⎞×⎛ ⎞= = = × = ×⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) E2.57r r=  

EVALUATE: Volume V is proportional to mass and radius r is proportional to 1/ 3V , so r is proportional to 1/ 3m . If 
the planet and earth had the same density its radius would be 1/ 3

E E(5.5) 1.8r r= . The radius of the planet is greater 
than this, so its density must be less than that of the earth. 
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 1.62. IDENTIFY and SET UP: Unit conversion. 

EXECUTE: (a) 91.420 10  cycles/s,f = ×  so 10
9

1 s 7.04 10  s
1.420 10

−= ×
×

 for one cycle. 

(b) 12
10

3600 s/h 5.11 10  cycles/h
7.04 10  s/cycle− = ×

×
 

(c) Calculate the number of seconds in 4600 million 9years 4.6 10  y= ×  and divide by the time for 1 cycle: 
9 7

6
10

(4.6 10  y)(3.156 10  s/y) 2.1 10  cycles
7.04 10  s/cycle

2
−

× ×
= ×

×
 

(d) The clock is off by 1 s in 5100,000 y 1 10  y,= ×  so in 94.60 10  y×  it is off by 
9

4
5

4.60 10(1 s) 4.6 10  s
1 10

⎛ ⎞×
= ×⎜ ⎟×⎝ ⎠

 

(about 13 h). 
EVALUATE: In each case the units in the calculation combine algebraically to give the correct units for the answer. 

 1.63. IDENTIFY: The number of atoms is your mass divided by the mass of one atom. 
SET UP: Assume a 70-kg person and that the human body is mostly water. Use Appendix D to find the mass of 
one H2O molecule: 27 2618 015 u 1 661 10  kg/u 2 992 10  kg/molecule. × . × = . × .2 2  

EXECUTE: ( ) ( )26 2770 kg / 2 992 10  kg/molecule 2 34 10. × = . ×2  molecules. Each 2H O molecule has 3 atoms, so 

there are about 276 10× atoms. 
EVALUATE: Assuming carbon to be the most common atom gives 273 10×  molecules, which is a result of the 
same order of magnitude. 

 1.64. IDENTIFY: Estimate the volume of each object. The mass m is the density times the volume. 
SET UP: The volume of a sphere of radius r is 34

3V rπ= . The volume of a cylinder of radius r and length l is 
2V r lπ= . The density of water is 31000 kg m . 

EXECUTE: (a) Estimate the volume as that of a sphere of diameter 10 cm: 4 35.2 10 mV −= × . 

( )( )( )3 4 30.98 1000 kg m 5.2 10 m 0.5 kgm −= × = . 

(b) Approximate as a sphere of radius 0.25 mr μ=  (probably an over estimate): 20 36.5 10 mV −= × . 

( )( )( )3 20 3 17 140.98 1000 kg m 6.5 10  m 6 10  kg 6 10  gm − − −= × = × = × . 

(c) Estimate the volume as that of a cylinder of length 1 cm and radius 3 mm: 2 7 32.8 10 mV r lπ −= = × . 

( )( )( )3 7 3 40.98 1000 kg m 2.8 10  m 3 10  kg 0.3 gm − −= × = × = . 

EVALUATE: The mass is directly proportional to the volume. 

 1.65. IDENTIFY: Use the volume V and density ρ to calculate the mass M: ,so M Mρ V
V ρ

= = . 

SET UP: The volume of a cube with sides of length x is 3x . The volume of a sphere with radius R is 34
3 Rπ . 

EXECUTE: (a) 3 5 3
3 3

0.200 kg 2.54 10 m
7.86 10  kg/m

x −= = ×
×

. 22.94 10 m 2.94 cmx −= × = . 

(b) 3 5 34 2.54 10 m
3
Rπ −= × . 21.82 10 m 1.82 cmR −= × = . 

EVALUATE: 4
3 4.2π = , so a sphere with radius R has a greater volume than a cube whose sides have length R. 

 1.66. IDENTIFY: Estimate the volume of sand in all the beaches on the earth. The diameter of a grain of sand determines 
its volume. From the volume of one grain and the total volume of sand we can calculate the number of grains. 
SET UP: The volume of a sphere of diameter d is 31

6V dπ= . Consulting an atlas, we estimate that the continents 

have about 51.45 10  km× of coastline. Add another 25% of this for rivers and lakes, giving 51.82 10  km× of 
coastline. Assume that a beach extends 50 m beyond the water and that the sand is 2 m deep. 91 billion 1 10= × . 
EXECUTE: (a) The volume of sand is 8 10 3(1.82 10  m)(50 m)(2 m) 2 10  m× = × . The volume of a grain is 

3 3 12 31
6 (0.2 10  m) 4 10  mV π − −= × = × . The number of grains is 

10 3
21

12 3

2 10  m 5 10
4 10  m−

×
= ×

×
. The number of grains of sand 

is about 2210 . 
(b) The number of stars is 9 9 22(100 10 )(100 10 ) 10× × = . The two estimates result in comparable numbers for these 
two quantities. 
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EVALUATE: Both numbers are crude estimates but are probably accurate to a few powers of 10. 
 1.67. IDENTIFY: The number of particles is the total mass divided by the mass of one particle. 

SET UP: 231 mol 6.0 10  atoms= × . The mass of the earth is 246.0 10  kg× . The mass of the sun is 302.0 10  kg× . 

The distance from the earth to the sun is 111.5 10  m× . The volume of a sphere of radius R is 34
3 Rπ . Protons and 

neutrons each have a mass of 271.7 10  kg−× and the mass of an electron is much less. 

EXECUTE: (a) 
23 atoms

24 50mole
kg3

mole

6.0 10
(6.0 10 kg) 2.6 10 atoms.

14 10−

⎛ ⎞×
× × = ×⎜ ⎟

×⎝ ⎠
 

(b) The number of neutrons is the mass of the neutron star divided by the mass of a neutron: 
30

57
27

(2)(2.0 10 kg) 2.4 10 neutrons.
(1.7 10 kg neutron)−

×
= ×

×
 

(c) The average mass of a particle is essentially 2
3  the mass of either the proton or the neutron, 271.7 10−×  kg. The 

total number of particles is the total mass divided by this average, and the total mass is the volume times the 
average density. Denoting the density by ρ , 

3
11 3 18 3

79
27

ave
p

4
(2 )(1.5 10 m) (10 kg m )3 1.2 10 .2 1.7 10 kg

3

RM
m m

π ρ π
−

×
= = = ×

×
 

Note the conversion from g/cm3 to kg/m3. 
EVALUATE: These numbers of particles are each very, very large but are still much less than a googol. 

 1.68. IDENTIFY: Let D
"

 be the fourth force. Find D
"

such that 0A + B + C + D =
" "" "

, so ( )−D = A + B + C
" "" "

. 

SET UP: Use components and solve for the components xD and yD of D
"

. 

EXECUTE: cos30.0 86.6N,  cos30.0 50.00Nx yA A A A= + ° = + = + ° = + . 

sin30.0 40.00N,  cos30.0 69.28Nx yB B B B= − ° = − = + ° = + . 

cos53.0 24.07 N,   sin53.0 31.90Nx yC C C C= + ° = − = − ° = − . 

Then 22.53 NxD = − , 87.34NyD = − and 2 2 90.2 Nx yD D D= + = . tan / 87.34 / 22.53y xD Dα = = . 75.54α = ° . 

180 256φ α= ° + = ° , counterclockwise from the -axis.x+  
EVALUATE: As shown in Figure 1.68, since xD and yD are both negative, D

"
 must lie in the third quadrant. 

 
Figure 1.68 

 1.69. IDENTIFY: We know the magnitude and direction of the sum of the two vector pulls and the direction of one pull. 
We also know that one pull has twice the magnitude of the other. There are two unknowns, the magnitude of the 
smaller pull and its direction. x x xA B C+ = and y y yA B C+ =  give two equations for these two unknowns. 

SET UP: Let the smaller pull be A
"

and the larger pull be B
"

. 2B A= . C = A + B
" " "

has magnitude 350.0 N and is 
northward. Let x+  be east and y+  be north. sin 25.0xB B= − ° and cos25.0yB B= ° . 0xC = , 350.0 NyC = . 

A
"

must have an eastward component to cancel the westward component of B
"

. There are then two possibilities, as 
sketched in Figures 1.69 a and b. A

"
can have a northward component or A

"
can have a southward component. 

EXECUTE: In either Figure 1.69 a or b, x x xA B C+ = and 2B A= gives (2 )sin 25.0 sinA A φ=°  and 57.7φ = ° . In 
Figure 1.69a, y y yA B C+ = gives 2 cos25.0 cos57.7 350.0 NA A+ =° ° and 149 NA = . In Figure 1.69b, 

2 cos25.0 cos57.7 350.0 NA A =°− ° and 274 NA = . One solution is for the smaller pull to be 57.7° east of north. 
In this case, the smaller pull is 149 N and the larger pull is 298 N. The other solution is for the smaller pull to be 
57.7° east of south. In this case the smaller pull is 274 N and the larger pull is 548 N. 
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EVALUATE: For the first solution, with A
"

east of north, each worker has to exert less force to produce the given 
resultant force and this is the sensible direction for the worker to pull. 

 
Figure 1.69 

 1.70. IDENTIFY: Find the vector sum of the two displacements. 
SET UP: Call the two displacements A

"
and B

"
, where 170 kmA = and 230 kmB = . A + B = R

" " "
. A
"

and B
"

are 
as shown in Figure 1.70. 
EXECUTE: (170 km) sin 68 (230 km) cos 48 311.5 kmx x xR A B= + = ° + ° = . 

(170 km) cos 68 (230 km) sin 48 107.2 kmy y yR A B= + = ° − ° = − . 

( ) ( )2 22 2 311.5 km 107.2 km 330 kmx yR R R= + = + − = . 107.2 kmtan 0.344
311.5 km

y
R

x

R
θ

R
= = = . 

19  south of eastRθ = ° . 

EVALUATE: Our calculation using components agrees with R
"

shown in the vector addition diagram, Figure 1.70. 

 
Figure 1.70 

 1.71. IDENTIFY: + =A B C
" ""

 (or + =B A C
" ""

). The target variable is vector .A
"

 
SET UP: Use components and Eq.(1.10) to solve for the components of .A

"
 Find the magnitude and direction of 

A
"

 from its components. 
EXECUTE: (a) 

 

,x x xC A B= +  so x x xA C B= −  
,y y yC A B= +  so y y yA C B= −  

cos22.0 (6.40 cm)cos22.0xC C= ° = °  
5.934 cmxC = +  
sin 22.0 (6.40 cm)sin 22.0yC C= ° = °  

2.397 cmyC = +  

cos(360 63.0 ) (6.40 cm)cos297.0xB B= ° − ° = °  
2.906 cmxB = +  
sin 297.0 (6.40 cm)sin 297.0yB B= ° = °  

5.702 cmyB = −  
Figure 1.71a  

(b) 5.934 cm 2.906 cm 3.03 cmx x xA C B= − = + − = +  
2.397 cm ( 5.702) cm 8.10 cmy y yA C B= − = + − − = +  
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(c) 

 

2 2
x yA A A= +  

2 2(3.03 cm) (8.10 cm) 8.65 cmA = + =  

8.10 cmtan 2.67
3.03 cm

y

x

A
A

θ = = =  

69.5θ = °  

Figure 1.71b  

EVALUATE: The A
"

 we calculated agrees qualitatively with vector A
"

 in the vector addition diagram in part (a). 
 1.72. IDENTIFY: Add the vectors using the method of components. 

SET UP: 0xA = , 8.00 myA = − . 7.50 mxB = , 13.0 myB = . 10.9 mxC = − , 5.07 myC = − . 

EXECUTE: (a) 3.4 mx x x xR A B C= + + = − . 0.07 my y y yR A B C= + + = − . 3.4 mR = . 0.07 mtan
3.4 m

θ −
=
−

. 

1.2θ = ° below the -axisx− . 

(b) 18.4 mx x x xS C A B= − − = − . 10.1 my y y yS C A B= − − = − . 21.0 mS = . 10.1 mtan
18.4 m

y

x

S
S

θ −
= =

−
. 28.8θ = °  

below the -axisx− . 
EVALUATE: The magnitude and direction we calculated for R

"
and S

"
agree with our vector diagrams. 

 
Figure 1.72 

 1.73. IDENTIFY: Vector addition. Target variable is the 4th displacement. 
SET UP: Use a coordinate system where east is in the -directionx+  and north is in the -direction.y+  

Let ,A
"

 ,B
"

 and C
"

 be the three displacements that are given and let D
"

 be the fourth unmeasured displacement. 
Then the resultant displacement is .= + + +R A B C D

" "" " "
 And since she ends up back where she started, 0.=R

"
 

0 ,= + + +A B C D
" "" "

 so ( )= − + +D A B C
" "" "

 

( )x x x xD A B C= − + +  and ( )y y y yD A B C= − + +  
EXECUTE:  

 

180 m,xA = −  0yA =  

cos315 (210 m)cos315 148.5 mxB B= ° = ° = +  
sin315 (210 m)sin315 148.5 myB B= ° = ° = −  

cos60 (280 m)cos60 140 mxC C= ° = ° = +  
sin 60 (280 m)sin 60 242.5 myC C= ° = ° = +  

Figure 1.73a  
( ) ( 180 m 148.5 m 140 m) 108.5 mx x x xD A B C= − + + = − − + + = −  



Units, Physical Quantities and Vectors  1-21 

( ) (0 148.5 m 242.5 m) 94.0 my y y yD A B C= − + + = − − + = −  

 

2 2
x yD D D= +  

2 2( 108.5 m) ( 94.0 m) 144 mD = − + − =  

94.0 mtan 0.8664
108.5 m

y

x

D
D

θ −
= = =

−
 

180 40.9 220.9θ = ° + ° = °  
( D
"

 is in the third quadrant since both 
xD  and yD  are negative.) 

Figure 1.73b  

The direction of D
"

 can also be specified in terms of 180 40.9 ;φ θ= − ° = °  D
"

 is 41°  south of west. 
EVALUATE: The vector addition diagram, approximately to scale, is 

 

Vector D
"

in this diagram 
agrees qualitatively with 
our calculation using 
components. 

Figure 1.73c  
 1.74. IDENTIFY: Solve for one of the vectors in the vector sum. Use components. 

SET UP: Use coordinates for which x+  is east and y+  is north. The vector displacements are: 

2.00 km, 0 of east; 3.50 m, 45  south of east;= ° = °A B
$ $

 and 5.80 m, 0  east= °R
$

 
EXECUTE: ( ) ( )( )5.80 km 2.00 km 3.50 km cos45 1.33 kmx x x xC R A B= − − = − − ° = ; y y y yC R A B= − −  

( )( )0 km 0 km 3.50 km sin 45 2.47 km= − − − ° = ; ( ) ( )2 21.33 km 2.47 km 2.81 kmC = + = ; 
( ) ( )1tan 2.47 km 1.33 km 61.7  north of east.θ − ⎡ ⎤= = °⎣ ⎦  The vector addition diagram in Figure 1.74 shows good 

qualitative agreement with these values. 
EVALUATE: The third leg lies in the first quadrant since its x and y components are both positive. 

 
Figure 1.74 

 1.75. IDENTIFY: The sum of the vector forces on the beam sum to zero, so their x components and their y components 
sum to zero. Solve for the components of F

"
. 

SET UP: The forces on the beam are sketched in Figure 1.75a. Choose coordinates as shown in the sketch. The 
100-N pull makes an angle of 30.0 40.0 70.0+ =° ° ° with the horizontal. F

"
and the 100-N pull have been replaced 

by their x and y components. 
EXECUTE: (a) The sum of the x-components is equal to zero gives (100 N)cos70.0 0xF + =° and 34.2 NxF = − . 

The sum of the y-components is equal to zero gives (100 N)sin70.0 124 N 0yF + − =° and 30.0 NyF = + . F
"

and 

its components are sketched in Figure 1.75b. 2 2 45.5 Nx yF F F= + = . 30.0 Ntan
34.2 N

y

x

F
F

φ = = and 41.3φ = ° . F
"

is 

directed at 41.3° above the x− -axis in Figure 1.75a. 
(b) The vector addition diagram is given in Figure 1.75c. F

"
determined from the diagram agrees with 

F
"

calculated in part (a) using components. 
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EVALUATE: The vertical component of the 100 N pull is less than the 124 N weight so F
"

must have an upward 
component if all three forces balance. 

 
Figure 1.75 

 1.76. IDENTIFY: The four displacements return her to her starting point, so ( )−D = A + B + C
" "" "

, where A
"

, B
"

 and 

C
"

are in the three given displacements and D
"

 is the displacement for her return. 
START UP: Let x+  be east and y+  be north. 
EXECUTE: (a) ( ) ( ) ( )[ 147 km sin85 106 km sin167 166 km sin 235 ] 34.3 kmxD = − ° + ° + ° = − . 

( ) ( ) ( )[ 147 km cos85 106 km cos167 166 km cos235 ] 185.7 kmyD = − ° + ° + ° = + . 
2 2( 34.3 km) (185.7 km) 189 kmD = − + = . 

(b) The direction relative to north is 34.3 kmarctan 10.5
185.7 km

φ
⎛ ⎞

= = °⎜ ⎟
⎝ ⎠

. Since 0xD < and 0yD > , the direction of D
"

 

is 10.5°  west of north. 
EVALUATE: The four displacements add to zero. 

 1.77. IDENTIFY and SET UP: The vector A
"

that connects points 1 1( , )x y and 2 2( , )x y has components 2 1xA x x= − and 

2 1yA y y= − . 

EXECUTE: (a) Angle of first line is 1 200 20tan 42 .
210 10

θ − −⎛ ⎞= = °⎜ ⎟−⎝ ⎠
 Angle of second line is 42 30 72 .° + ° = °  

Therefore 10 250 cos 72 87X = + ° = , 20 250 sin 72 258Y = + ° = for a final point of (87,258). 
(b) The computer screen now looks something like Figure 1.77. The length of the bottom line is 

( ) ( )2 2210 87 200 258 136− + − =  and its direction is 1 258 200tan 25
210 87

− −⎛ ⎞ = °⎜ ⎟−⎝ ⎠
below straight left. 

EVALUATE: Figure 1.77 is a vector addition diagram. The vector first line plus the vector arrow gives the vector 
for the second line. 

 
Figure 1.77 
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 1.78. IDENTIFY: Let the three given displacements be A
"

, B
"

 and C
"

, where 40 stepsA = , 80 stepsB = and 

50 stepsC = . R = A + B + C
" "" "

. The displacement C
"

that will return him to his hut is −R
"

. 
SET UP: Let the east direction be the -directionx+  and the north direction be the -direction.y+  
EXECUTE: (a) The three displacements and their resultant are sketched in Figure 1.78. 
(b) ( ) ( )40 cos45 80 cos  60 11.7xR = ° − ° = − and ( ) ( )40 sin 45 80 sin 60 50 47.6.yR = ° + ° − =  

The magnitude and direction of the resultant are 2 2( 11.7) (47.6) 49,− + =  47.6arctan 76
11.7
⎛ ⎞ = °⎜ ⎟
⎝ ⎠

, north of west. 

We know that R
"

is in the second quadrant because 0xR < , 0yR > . To return to the hut, the explorer must take 

49 steps in a direction 76° south of east, which is 14° east of south. 
EVALUATE: It is useful to show xR , yR and R

"
on a sketch, so we can specify what angle we are computing. 

 
Figure 1.78 

 1.79. IDENTIFY: Vector addition. One vector and the sum are given; find the second vector (magnitude and direction). 
SET UP: Let x+  be east and y+  be north. Let A

"
 be the displacement 285 km at 40.0°  north of west and let B

"
 

be the unknown displacement. 
+ =A B R
" " "

 where 115 km,=R
"

 east 
= −B R A

"" "
 

,x x xB R A= −  y y yB R A= −  

EXECUTE: cos40.0 218.3 km,xA A= − ° = −  sin 40.0 183.2 kmyA A= + ° = +  

115 km,xR =  0yR =  

Then 333.3 km,xB =  183.2 km.yB = −  2 2 380 km;x yB B B= + =  

 

tan / (183.2 km)/(333.3 km)y xB Bα = =  

28.8 ,α = °  south of east 

Figure 1.79  

EVALUATE: The southward component of B
"

 cancels the northward component of .A
"

 The eastward component 
of B
"

 must be 115 km larger than the magnitude of the westward component of .A
"

 
 1.80. IDENTIFY: Find the components of the weight force, using the specified coordinate directions. 

SET UP: For parts (a) and (b), take x+  direction along the hillside and the y+  direction in the downward 
direction and perpendicular to the hillside. For part (c), 35.0α = °  and 550 Nw = . 
EXECUTE: (a) sinxw w α=  
(b) cosyw w α=  

(c) The maximum allowable weight is ( )sinxw w α=  ( ) ( )550 N sin35.0 959 N= ° = . 
EVALUATE: The component parallel to the hill increases as α increases and the component perpendicular to the 
hill increases as α decreases. 
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 1.81. IDENTIFY: Vector addition. One force and the vector sum are given; find the second force. 
SET UP: Use components. Let y+  be upward. 

 

B
"

 is the force the biceps exerts. 
 

Figure 1.81a  

E
"

 is the force the elbow exerts. ,+ =E B R
" " "

 where 132.5 NR =  and is upward. 
,x x xE R B= −   y y yE R B= −  

EXECUTE: sin 43 158.2 N,xB B= − ° = −  cos43 169.7 N,yB B= + ° = +  0,xR =  132.5 NyR = +  

Then 158.2 N,xE = +  37.2 NyE = −  
2 2 160 N;x yE E E= + =  

 

tan / 37.2 /158.2y xE Eα = =  

13 ,α = °  below horizontal 

Figure 1.81b  

EVALUATE: The x-component of E
"

 cancels the x-component of .B
"

 The resultant upward force is less than the 
upward component of ,B

"
 so yE  must be downward. 

 1.82. IDENTIFY: Find the vector sum of the four displacements. 
SET UP: Take the beginning of the journey as the origin, with north being the y-direction, east the x-direction, 
and the z-axis vertical. The first displacement is then �( 30 m) ,− k  the second is �( 15 m) ,− j  the third is �(200 m) ,i  

and the fourth is �(100 m) .j  
EXECUTE: (a) Adding the four displacements gives 

� � � � � � �( 30 m) ( 15 m) (200 m) (100 m) (200 m) (85 m) (30 m) .− − −k + j + i + j = i + j k  
(b) The total distance traveled is the sum of the distances of the individual segments: 
30 m 15 m 200 m 100 m 345 m+ + + = .  The magnitude of the total displacement is: 

( )22 2 2 2 2(200 m) (85 m) 30 m 219 m.x y zD D D D= + + = + + − =  

EVALUATE: The magnitude of the displacement is much less than the distance traveled along the path. 
 1.83. IDENTIFY: The sum of the force displacements must be zero. Use components. 

SET UP: Call the displacements A
"

, B
"

, C
"

and D
"

, where D
"

is the final unknown displacement for the return 
from the treasure to the oak tree. Vectors A

"
, B
"

, and C
"

are sketched in Figure 1.83a. 0A + B + C + D =
" "" "

 says 
0x x x xA B C D+ + + = and 0y y y yA B C D+ + + = . 825 mA = , 1250 mB = , and 1000 mC = . Let x+  be eastward 

and y+  be north. 
EXECUTE: (a) 0x x x xA B C D+ + + = gives ( ) (0 [1250 m]sin30.0 [1000 m]cos40.0 141 mx x x xD A B C=− + + =− − + =−° °) . 

0y y y yA B C D+ + + = gives ( ) ( 825 m [1250 m]cos30.0 [1000 m]sin 40.0 900 my y y yD A B C= − + + = − − + + = −° °) . 

The fourth displacement D
"

and its components are sketched in Figure 1.83b. 2 2 911 mx yD D D= + = . 

141 mtan
900 m

x

y

D
D

φ = = and 8.9φ = ° . You should head 8.9°west of south and must walk 911 m. 
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(b) The vector diagram is sketched in Figure 1.83c. The final displacement D
"

from this diagram agrees with the 
vector D

"
calculated in part (a) using components. 

EVALUATE: Note that D
"

is the negative of the sum of A
"

, B
"

, and C
"

. 

 
Figure 1.83 

 1.84. IDENTIFY: If the vector from your tent to Joe�s is A
"

and from your tent to Karl�s is B
"

, then the vector from 
Joe�s tent to Karl�s is −B A

""
. 

SET UP: Take your tent's position as the origin. Let x+  be east and y+  be north. 
EXECUTE: The position vector for Joe�s tent is 
( ) ( )� � � �[21.0 m]cos 23 [21.0 m]sin 23 (19.33 m) (8.205 m) .° − ° −i j = i j  

The position vector for Karl's tent is ( ) ( )� � � �[32.0 m]cos 37 [32.0 m]sin 37 (25.56 m) (19.26 m) .° °i + j = i + j  
The difference between the two positions is 
( ) ( )� � � �19.33 m 25.56 m 8.205 m 19.25 m (6.23 m) (27.46 m) .− − − − −i + j = i j  The magnitude of this vector is the 

distance between the two tents: ( ) ( )2 26.23 m 27.46 m 28.2 mD = − + − =  
EVALUATE: If both tents were due east of yours, the distance between them would be 32.0 m 21.0 m 17.0 m− = . 
If Joe�s was due north of yours and Karl�s was due south of yours, then the distance between them would be 
32.0 m 21.0 m 53.0 m+ = . The actual distance between them lies between these limiting values. 

 1.85. IDENTIFY: In Eqs.(1.21) and (1.27) write the components of A
"

and B
"

in terms of A, B, Aθ and Bθ . 
SET UP: From Appendix B, cos( ) cos cos sin sina b a b a b− = + and sin( ) sin cos cos sina b a b a b− = − . 
EXECUTE: (a) With 0z zA B= = , Eq.(1.21) becomes 

( )( ) ( )( ) cos  cos  sin  sinx x y y A B A BA B A B A θ B θ A θ B θ+ = +  

( ) ( )cos cos sin sin cos  cos x x y y A B A B A BA B A B AB θ θ θ θ AB θ θ AB φ+ = + = − = , where the expression for the cosine 
of the difference between two angles has been used. 
(b) With 0z zA B= = , �

zCC = k
"

and zC C= . From Eq.(1.27), 

( )( ) ( )( ) cos  sin  sin  cos x y y x A B A AC A B A B A θ B θ A θ B θ= − = −  

( )cos sin sin cos sin sinA B A B B AC AB θ θ θ θ AB θ θ AB φ= − = − = , where the expression for the sine of the 
difference between two angles has been used. 
EVALUATE: Since they are equivalent, we may use either Eq.(1.18) or (1.21) for the scalar product and either 
(1.22) or (1.27) for the vector product, depending on which is the more convenient in a given application. 

 1.86. IDENTIFY: Apply Eqs.(1.18) and (1.22). 
SET UP: The angle between the vectors is 20 90 0 140 .° + ° = °°+3  
EXECUTE: (a) Eq. (1.18) gives ( )( ) 23.60 m 2.40 m cos 140 6.62 m .⋅ = ° = −A B

" "
 

(b) From Eq.(1.22), the magnitude of the cross product is ( )( ) 23.60 m 2.40 m sin 140 5.55 m° =  and the direction, 
from the right-hand rule, is out of the page (the -directionz+ ). 
EVALUATE: We could also use Eqs.(1.21) and (1.27), with the components of A

"
and B

"
. 
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 1.87. IDENTIFY: Compare the magnitude of the cross product, sinAB φ , to the area of the parallelogram. 
SET UP: The two sides of the parallelogram have lengths A and B. φ is the angle between A

"
and B

"
. 

EXECUTE: (a) The length of the base is B and the height of the parallelogram is sinA φ , so the area is sinAB φ . 
This equals the magnitude of the cross product. 
(b) The cross product A× B

" "
is perpendicular to the plane formed by A

"
and B

"
, so the angle is 90° . 

EVALUATE: It is useful to consider the special cases 0φ = ° , where the area is zero, and 90φ = ° , where the 
parallelogram becomes a rectangle and the area is AB. 

 1.88. IDENTIFY: Use Eq.(1.27) for the components of the vector product. 
SET UP: Use coordinates with the -axisx+  to the right, -axisy+  toward the top of the page, and -axisz+  out of 
the page. 0xA = , 0yA =  and 3.50 cmzA = − . The page is 20 cm by 35 cm, so 20 cmxB = and 35 cmyB = . 

EXECUTE: ( ) ( ) ( )2 2122 cm , 70 cm , 0.
x y z
= = − =A × B A × B A × B

" " "" " "
 

EVALUATE: From the components we calculated the magnitude of the vector product is 2141 cm . 
40.3 cmB = and 90φ = ° , so 2sin 141 cmAB φ = , which agrees. 

 1.89. IDENTIFY: A
"

 and B
"

 are given in unit vector form. Find A, B and the vector difference .−A B
" "

 
SET UP: 2.00 3.00 4.00 ,= − + +A i j k

" " " "
 3.00 1.00 3.00= + −B i j k

" " ""
 

Use Eq.(1.8) to find the magnitudes of the vectors. 
EXECUTE: (a) 2 2 2 2 2 2( 2.00) (3.00) (4.00) 5.38x y zA A A A= + + = − + + =  

2 2 2 2 2 2(3.00) (1.00) ( 3.00) 4.36x y zB B B B= + + = + + − =  

(b) � � � � � �( 2.00 3.00 4.00 ) (3.00 1.00 3.00 )− = − + + − + −A B i j k i j k
" "

 
� � � � � �( 2.00 3.00) (3.00 1.00) (4.00 ( 3.00)) 5.00 2.00 7.00 .− = − − + − + − − = − + +A B i j k i j k

" "
 

(c) Let ,= −C A B
" " "

 so 5.00,xC = −  2.00,yC = +  7.00zC = +  

2 2 2 2 2 2( 5.00) (2.00) (7.00) 8.83x y zC C C C= + + = − + + =  

( ),− = − −B A A B
" "" "

 so −A B
" "

 and −B A
""

 have the same magnitude but opposite directions. 
EVALUATE: A, B and C are each larger than any of their components. 

 1.90. IDENTIFY: Calculate the scalar product and use Eq.(1.18) to determine φ . 
SET UP: The unit vectors are perpendicular to each other. 
EXECUTE: The direction vectors each have magnitude 3 , and their scalar product is 
( )( ) ( )( ) ( )( )1 1 1 1 1 1 1,+ − + − =2  so from Eq. (1.18) the angle between the bonds is 

1 1arccos arccos 109 .
33 3

−⎛ ⎞ ⎛ ⎞= − = °⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

EVALUATE: The angle between the two vectors in the bond directions is greater than 90° . 
 1.91. IDENTIFY: Use the relation derived in part (a) of Problem 1.92: 2 2 2 2  cos ,C A B AB φ= + + where φ  is the angle 

between A
"

 and B
"

. 
SET UP: cos 0φ = for 90φ = ° . cos 0φ < for 90 180φ< <° ° and cos 0φ > for 0 90φ< <° ° . 
EXECUTE: (a) If 2 2 2 ,  cos 0,C A B φ= + = and the angle between A

"
and B

"
 is 90° (the vectors are 

perpendicular). 
(b) If 2 2 2,  cos 0,C A B φ< + <  and the angle between A

"
and B

"
 is greater than 90° . 

(c) If 2 2 2 ,  cos 0,C A B φ> + > and the angle between A
"

and B
"

is less than 90 .°  
EVALUATE: It is easy to verify the expression from Problem 1.92 for the special cases 0φ = , where C A B= + , 
and for 180φ = ° , where C A B= − . 

 1.92. IDENTIFY: Let C = A + B
" " "

and calculate the scalar product ⋅C C
" "

. 
SET UP: For any vector V

"
, 2V⋅ =V V
" "

. cosAB φ⋅ =A B
" "

. 
EXECUTE: (a) Use the linearity of the dot product to show that the square of the magnitude of the sum A + B

" "
 is 

( ) ( ) 2 2

2 2

2 2

2 cos

A B

A B AB φ

⋅ = ⋅ + ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = + + ⋅

= + +

A+ B A+ B A A A B B A B B A A B B A B A B
" " " " " " " " " "" " " " " " " " " "
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(b) Using the result of part (a), with ,A B=  the condition is that 2 2 2 22 cos A A A A φ= + + , which solves for 
1 2 2cos ,φ= +  1

2cos ,φ = −  and 120 .φ = °  

EVALUATE: The expression 2 2 2 2 cosC A B AB φ= + +  is called the law of cosines. 
 1.93. IDENTIFY: Find the angle between specified pairs of vectors. 

SET UP: Use cos
AB

φ ⋅
=

A B
" "

 

EXECUTE: (a) �A = k
"

 (along line ab) 
� � �B = i + j + k

"
 (along line ad ) 

1,A =  2 2 21 1 1 3B = + + =  

( )� � � � 1⋅ ⋅ =A B = k i + j + k
" "

 

So cos 1/ 3;
AB

φ ⋅
= =

A B
" "

 54.7φ = °  

(b) � � �A = i + j + k
"

 (along line ad ) 
� �B = j + k

"
 (along line ac) 

2 2 21 1 1 3;A = + + =  2 21 1 2B = + =  

( ) ( )� � � � � 1 1 2⋅ ⋅ = + =A B = i + j + k i + j
" "

 

So 2 2cos ;
3 2 6AB

φ ⋅
= = =

A B
" "

 35.3φ = °  

EVALUATE: Each angle is computed to be less than 90 ,°  in agreement with what is deduced from Fig. 1.43 in 
the textbook. 

 1.94. IDENTIFY: The cross product A× B
" "

is perpendicular to both A
"

and B
"

. 
SET UP: Use Eq.(1.27) to calculate the components of A× B

" "
. 

EXECUTE: The cross product is 
6.00 11.00� � � � � �( 13.00) (6.00) ( 11.00) 13 (1.00)

13.00 13.00
⎡ ⎤⎛ ⎞− − − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

i + j+ k = i + j k . The magnitude of the vector in square 

brackets is 1.93,  and so a unit vector in this direction is 

� � �(1.00) (6.00 /13.00) (11.00/13.00)
1.93

⎡ ⎤− −
⎢ ⎥
⎢ ⎥⎣ ⎦

i + j k . 

The negative of this vector, 
� � �(1.00) (6.00/13.00) (11.00 /13.00)

1.93
⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦

i j+ k , 

is also a unit vector perpendicular to A
"

 and B
"

. 
EVALUATE: Any two vectors that are not parallel or antiparallel form a plane and a vector perpendicular to both 
vectors is perpendicular to this plane. 

 1.95. IDENTIFY and SET UP: The target variables are the components of .C
"

 We are given A
"

 and .B
"

 We also know 
⋅A C
" "

 and ,⋅B C
""

 and this gives us two equations in the two unknowns xC  and .yC  

EXECUTE: A
"

 and C
"

 are perpendicular, so 0.⋅ =A C
" "

 0,x x y yA C A C+ =  which gives 5.0 6.5 0.x yC C− =  

15.0,⋅ =B C
""

 so 3.5 7.0 15.0x yC C− + =  

We have two equations in two unknowns xC  and .yC  Solving gives 8.0xC =  and 6.1yC =  

EVALUATE: We can check that our result does give us a vector C
"

 that satisfies the two equations 0⋅ =A C
" "

 and 
15.0.⋅ =B C

""
 

 1.96. IDENTIFY: Calculate the magnitude of the vector product and then use Eq.(1.22). 
SET UP: The magnitude of a vector is related to its components by Eq.(1.12). 
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EXECUTE:  sinAB θ=A× B
" "

. 
( ) ( )
( )( )

2 25.00 2.00
sin 0.5984

3.00 3.00AB
θ

− +
= = =

A× B
" "

 and  

( )1sin 0.5984 36.8 .θ −= = °  

EVALUATE: We haven't found A
"

and B
"

, just the angle between them. 
 1.97. (a) IDENTIFY: Prove that ( ) ( ) .⋅ = ⋅A B × C A× B C

" " " "" "
 

SET UP: Express the scalar and vector products in terms of components. 
EXECUTE:  

( ) ( ) ( ) ( )x yx y z
A A⋅ = +

" " " " "" " " "
zA B × C B × C B × C + A B × C  

( ) ( ) ( ) ( )x y z z y y z x x z z x y y xA B C B C A B C B C A B C B C⋅ = − + − + −A B × C
" ""

 

( ) ( ) ( ) ( )x y zx y z
C C C⋅ = + +A× B C A× B A× B A× B

" " " " "" " " "
 

( ) ( ) ( ) ( )y z z y x z x x z y x y y x zA B A B C A B A B C A B A B C⋅ = − + − + −A× B C
" ""

 

Comparison of the expressions for ( )⋅A B × C
" ""

 and ( ) ⋅A× B C
" ""

 shows they contain the same terms, so 

( ) ( ) .⋅ = ⋅A B × C A× B C
" " " "" "

 

(b) IDENTIFY: Calculate ( ) ,⋅A× B C
" ""

 given the magnitude and direction of ,A
"

 ,B
"

 and .C
"

 

SET UP: Use Eq.(1.22) to find the magnitude and direction of .A× B
" "

 Then we know the components of A× B
" "

 
and of C

"
 and can use an expression like Eq.(1.21) to find the scalar product in terms of components. 

EXECUTE: 5.00;A =  26.0 ;Aθ = °  4.00,B =  63.0Bθ = °  

sin .AB φ=A× B
" "

 

The angle φ  between A
"

 and B
"

 is equal to 63.0 26.0 37.0 .B Aφ θ θ= − = ° − ° = °  So 

(5.00)(4.00)sin37.0 12.04,= ° =A× B
" "

 and by the right hand-rule A× B
" "

 is in the -direction.z+  Thus 

( ) (12.04)(6.00) 72.2⋅ = =A× B C
" ""

 

EVALUATE: A× B
" "

 is a vector, so taking its scalar product with C
"

 is a legitimate vector operation. ( ) ⋅A× B C
" ""

 

is a scalar product between two vectors so the result is a scalar. 
 1.98. IDENTIFY: Use the maximum and minimum values of the dimensions to find the maximum and minimum areas 

and volumes. 
SET UP: For a rectangle of width W and length L the area is LW. For a rectangular solid with dimensions L, W 
and H the volume is LWH. 
EXECUTE: (a) The maximum and minimum areas are ( )( )L l W w LW lW Lw,+ + = + +  

( )( )L l W w LW lW Lw,− − = − −  where the common terms wl have been omitted. The area and its uncertainty are 
then ( ),WL lW Lw± +  so the uncertainty in the area is .a lW Lw= +  

(b) The fractional uncertainty in the area is a lW Wl l w
A WL L W

+
= = + , the sum of the fractional uncertainties in the 

length and width. 
(c) The similar calculation to find the uncertainty v in the volume will involve neglecting the terms lwH, lWh and 
Lwh as well as lwh; the uncertainty in the volume is ,v lWH LwH LWh= + +  and the fractional uncertainty in the 

volume is v lWH LwH LWh l w h
V LWH L W H

+ +
= = + + , the sum of the fractional uncertainties in the length, width and 

height. 
EVALUATE: The calculation assumes the uncertainties are small, so that terms involving products of two or more 
uncertainties can be neglected. 

 1.99. IDENTIFY: Add the vector displacements of the receiver and then find the vector from the quarterback to the 
receiver. 
SET UP: Add the x-components and the y-components. 
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EXECUTE: The receiver's position is 
( ) ( ) ( ) ( )� � � �[ 1.0 9.0 6.0 12.0  yd] [ 5.0 11.0 4.0 18.0  yd] 16.0 yd 28.0 yd+ + − + − + + +i + j = i + j . 

The vector from the quarterback to the receiver is the receiver's position minus the quarterback's position, or 

( ) ( )� �16.0 yd 35.0 ydi + j , a vector with magnitude ( ) ( )2 216.0 yd 35.0 yd 38.5 yd+ = . The angle is 

16.0arctan 24.6
35.0
⎛ ⎞ = °⎜ ⎟
⎝ ⎠

to the right of downfield. 

EVALUATE: The vector from the quarterback to receiver has positive x-component and positive y-component. 
1.100. IDENTIFY: Use the x and y coordinates for each object to find the vector from one object to the other; the distance 

between two objects is the magnitude of this vector. Use the scalar product to find the angle between two vectors. 
SET UP: If object A has coordinates ( , )A Ax y and object B has coordinates ( , )B Bx y , the vector ABr" from A to B 
has x-component B Ax x− and y-component B Ay y− . 
EXECUTE: (a) The diagram is sketched in Figure 1.100. 
(b) (i) In AU, 2 2(0.3182) (0.9329) 0.9857.+ =  

(ii) In AU, 2 2 2(1.3087) ( 0.4423) ( 0.0414) 1.3820.+ − + − =  

(iii) In AU 2 2 2(0.3182 1.3087) (0.9329 ( 0.4423)) (0.0414) 1.695.− + − − + =  
(c) The angle between the directions from the Earth to the Sun and to Mars is obtained from the dot product. 
Combining Equations (1.18) and (1.21), 

( 0.3182)(1.3087 0.3182) ( 0.9329)( 0.4423 0.9329) (0)arccos 54.6 .
(0.9857)(1.695)

φ
⎛ ⎞− − + − − − +

= = °⎜ ⎟
⎝ ⎠

 

(d) Mars could not have been visible at midnight, because the Sun-Mars angle is less than 90o. 
EVALUATE: Our calculations correctly give that Mars is farther from the Sun than the earth is. Note that on this 
date Mars was farther from the earth than it is from the Sun. 

 
Figure 1.100 

1.101. IDENTIFY: Draw the vector addition diagram for the position vectors. 
SET UP: Use coordinates in which the Sun to Merak line lies along the x-axis. Let A

"
be the position vector of 

Alkaid relative to the Sun, M
"

is the position vector of Merak relative to the Sun, and R
"

 is the position vector for 
Alkaid relative to Merak. 138 lyA = and 77 lyM = . 

EXECUTE: The relative positions are shown in Figure 1.101. M + R = A
"" "

. x x xA M R= + so 
(138 ly)cos25.6 77 ly 47.5 lyx x xR A M= − = − =° . (138 ly)sin 25.6 0 59.6 lyy y yR A M= − = − =° . 76.2 lyR = is 

the distance between Alkaid and Merak. 

(b) The angle is angle φ in Figure 1.101. 47.5 lycos
76.2 ly

xR
R

θ = = and 51.4θ = ° . Then 180 129φ θ= − =° ° . 

EVALUATE: The concepts of vector addition and components make these calculations very simple. 

 
Figure 1.101 
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1.102. IDENTIFY: Define � � �A B CS = i + j+ k
"

. Show that 0⋅r S =
"" if 0Ax By Cz+ + = . 

SET UP: Use Eq.(1.21) to calculate the scalar product. 
EXECUTE: � � � � � �( ) ( )x y z A B C Ax By Cz⋅ = + + ⋅ + + = + +r S i j k i j k

""  

If the points satisfy 0,Ax By Cz+ + =  then 0⋅ =r S
""  and all points r"  are perpendicular to S

"
. The vector and plane 

are sketched in Figure 1.102. 
EVALUATE: If two vectors are perpendicular their scalar product is zero. 

 
Figure 1.102 
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MOTION ALONG A STRAIGHT LINE 

 2.1. IDENTIFY: The average velocity is av-x
xv
t

Δ
=
Δ

. 

SET UP: Let x+  be upward. 

EXECUTE: (a) av-
1000 m 63 m 197 m/s

4.75 sxv −
= =  

(b) av-
1000 m 0 169 m/s

5.90 sxv −
= =  

EVALUATE: For the first 1.15 s of the flight, av-
63 m 0 54.8 m/s
1.15 sxv −

= = . When the velocity isn�t constant the 

average velocity depends on the time interval chosen. In this motion the velocity is increasing. 

 2.2. IDENTIFY: av-x
xv
t

Δ
=
Δ

 

SET UP: 513.5 days 1.166 10  s= × . At the release point, 65.150 10  mx = + × . 

EXECUTE: (a) 
6

2 1
av- 6

5.150 10  m 4.42 m/s
1.166 10  sx

x xv
t
− ×

= = = −
Δ ×

 

(b) For the round trip, 2 1x x=  and 0xΔ = . The average velocity is zero. 
EVALUATE: The average velocity for the trip from the nest to the release point is positive. 

 2.3. IDENTIFY: Target variable is the time tΔ  it takes to make the trip in heavy traffic. Use Eq.(2.2) that relates the 
average velocity to the displacement and average time. 

SET UP: av-x
xv
t

Δ
=
Δ

 so av-xx v tΔ = Δ  and 
av-

.
x

xt
v
Δ

Δ =  

EXECUTE: Use the information given for normal driving conditions to calculate the distance between the two 
cities: 

av- (105 km/h)(1 h/60 min)(140 min) 245 km.xx v tΔ = Δ = =  

Now use av-xv  for heavy traffic to calculate ;tΔ  xΔ  is the same as before: 

av-

245 km 3.50 h 3 h
70 km/hx

xt
v
Δ

Δ = = = =  and 30 min. 

The trip takes an additional 1 hour and 10 minutes. 
EVALUATE: The time is inversely proportional to the average speed, so the time in traffic is 
(105/ 70)(140 m) 210 min.=  

 2.4. IDENTIFY: The average velocity is av-x
xv
t

Δ
=
Δ

. Use the average speed for each segment to find the time traveled 

in that segment. The average speed is the distance traveled by the time. 
SET UP: The post is 80 m west of the pillar. The total distance traveled is 200 m 280 m 480 m+ = . 

EXECUTE: (a) The eastward run takes time 200 m 40.0 s
5.0 m/s

= and the westward run takes 280 m 70.0 s
4.0 m/s

= . The 

average speed for the entire trip is 480 m 4.4 m/s
110.0 s

= . 

(b) av-
80 m 0.73 m/s

110.0 sx
xv
t

Δ −
= = = −
Δ

. The average velocity is directed westward. 

2
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EVALUATE: The displacement is much less than the distance traveled and the magnitude of the average velocity 
is much less than the average speed. The average speed for the entire trip has a value that lies between the average 
speed for the two segments. 

 2.5. IDENTIFY: When they first meet the sum of the distances they have run is 200 m. 
SET UP: Each runs with constant speed and continues around the track in the same direction, so the distance each 
runs is given by d vt= . Let the two runners be objects A and B. 

EXECUTE: (a) 200 mA Bd d+ = , so (6.20 m/s) (5.50 m/s) 200 mt t+ =  and 200 m 17.1 s
11.70 m/s

t = = . 

(b) (6.20 m/s)(17.1 s) 106 mA Ad v t= = = . (5.50 m/s)(17.1 s) 94 mB Bd v t= = = . The faster runner will be 106 m 
from the starting point and the slower runner will be 94 m from the starting point. These distances are measured 
around the circular track and are not straight-line distances. 
EVALUATE: The faster runner runs farther. 

 2.6. IDENTIFY: To overtake the slower runner the first time the fast runner must run 200 m farther. To overtake the 
slower runner the second time the faster runner must run 400 m farther. 
SET UP: t and 0x are the same for the two runners. 
EXECUTE: (a) Apply 0 0xx x v t− = to each runner: 0 f( ) (6.20 m/s)x x t− = and 0 s( ) (5.50 m/s)x x t− = . 

0 f 0 s( ) ( ) 200 mx x x x− = − + gives (6.20 m/s) (5.50 m/s) 200 mt t= +  and 200 m 286 s
6.20 m/s 5.50 m/s

t = =
−

. 

0 f( ) 1770 mx x− = and 0 s( ) 1570 mx x− = . 
(b) Repeat the calculation but now 0 f 0 s( ) ( ) 400 mx x x x− = − + . 572 st = . The fast runner has traveled 3540 m. 
He has made 17 full laps for 3400 m and 140 m past the starting line in this 18th lap. 
EVALUATE: In part (a) the fast runner will have run 8 laps for 1600 m and will be 170 m past the starting line in 
his 9th lap. 

 2.7. IDENTIFY: In time St  the S-waves travel a distance S Sd v t=  and in time Pt  the P-waves travel a distance 

P Pd v t= . 
SET UP: S P 33 st t= +  

EXECUTE: 
S P

33 sd d
v v
= + . 1 1 33 s

3.5 km/s 6.5 km/s
d ⎛ ⎞− =⎜ ⎟
⎝ ⎠

 and 250 kmd = . 

EVALUATE: The times of travel for each wave are S 71 st = and P 38 st = . 

 2.8. IDENTIFY: The average velocity is av-x
xv
t

Δ
=
Δ

. Use ( )x t to find x for each t. 

SET UP: (0) 0x = , (2.00 s) 5.60 mx = , and (4.00 s) 20.8 mx =  

EXECUTE: (a) av-
5.60 m 0 2.80 m/s

2.00 sxv −
= = +  

(b) av-
20.8 m 0 5.20 m/s

4.00 sxv −
= = +  

(c) av-
20.8 m 5.60 m 7.60 m/s

2.00 sxv −
= = +  

EVALUATE: The average velocity depends on the time interval being considered. 
 2.9. (a) IDENTIFY: Calculate the average velocity using Eq.(2.2). 

SET UP: av-x
xv
t

Δ
=
Δ

 so use ( )x t  to find the displacement xΔ  for this time interval. 

EXECUTE: 0 :t =  0x =  
10.0 s:t =  2 2 3 3(2.40 m/s )(10.0 s) (0.120 m/s )(10.0 s) 240 m 120 m 120 m.x = − = − =  

Then av-
120 m 12.0 m/s.
10.0 sx

xv
t

Δ
= = =
Δ

 

(b) IDENTIFY: Use Eq.(2.3) to calculate ( )xv t  and evaluate this expression at each specified t. 

SET UP: 22 3 .x
dxv bt ct
dt

= = −  

EXECUTE: (i) 0 :t =  0xv =  

(ii) 5.0 s:t =  2 3 22(2.40 m/s )(5.0 s) 3(0.120 m/s )(5.0 s) 24.0 m/s 9.0 m/s 15.0 m/s.xv = − = − =  

(iii) 10.0 s:t =  2 3 22(2.40 m/s )(10.0 s) 3(0.120 m/s )(10.0 s) 48.0 m/s 36.0 m/s 12.0 m/s.xv = − = − =  



Motion Along a Straight Line  2-3 

(c) IDENTIFY: Find the value of t when ( )xv t  from part (b) is zero. 

SET UP: 2 3xv bt ct 2= −  
0xv =  at 0.t =  

0xv =  next when 22 3 0bt ct− =  

EXECUTE: 2 3b ct=  so 
2

3

2 2(2.40 m/s ) 13.3 s
3 30(.120 m/s )
bt
c

= = =  

EVALUATE: ( )xv t  for this motion says the car starts from rest, speeds up, and then slows down again. 
 2.10. IDENTIFY and SET UP: The instantaneous velocity is the slope of the tangent to the x versus t graph. 

EXECUTE: (a) The velocity is zero where the graph is horizontal; point IV. 
(b) The velocity is constant and positive where the graph is a straight line with positive slope; point I. 
(c) The velocity is constant and negative where the graph is a straight line with negative slope; point V. 
(d) The slope is positive and increasing at point II. 
(e) The slope is positive and decreasing at point III. 
EVALUATE: The sign of the velocity indicates its direction. 

 2.11. IDENTIFY: The average velocity is given by av-x
xv
t

Δ
=
Δ

. We can find the displacement tΔ for each constant 

velocity time interval. The average speed is the distance traveled divided by the time. 
SET UP: For 0t = to 2.0 st = , 2.0 m/sxv = . For 2.0 st = to 3.0 st = , 3.0 m/sxv = . In part (b), 

3.0 m/sxv = − for 2.0 st = to 3.0 st = . When the velocity is constant, xx v tΔ = Δ . 
EXECUTE: (a) For 0t = to 2.0 st = , (2.0 m/s)(2.0 s) 4.0 mxΔ = = . For 2.0 st = to 3.0 st = , 

(3.0 m/s)(1.0 s) 3.0 mxΔ = = . For the first 3.0 s, 4.0 m 3.0 m 7.0 mxΔ = + = . The distance traveled is also 7.0 m. 

The average velocity is av-
7.0 m 2.33 m/s
3.0 sx

xv
t

Δ
= = =
Δ

. The average speed is also 2.33 m/s. 

(b) For 2.0 st = to 3.0 s, ( 3.0 m/s)(1.0 s) 3.0 mxΔ = − = − . For the first 3.0 s, 4.0 m ( 3.0 m) 1.0 mxΔ = + − = + . 
The dog runs 4.0 m in the x+ -direction and then 3.0 m in the x− -direction, so the distance traveled is still 7.0 m. 

av-
1.0 m 0.33 m/s
3.0 sx

xv
t

Δ
= = =
Δ

. The average speed is 7.00 m 2.33 m/s
3.00 s

= . 

EVALUATE: When the motion is always in the same direction, the displacement and the distance traveled are 
equal and the average velocity has the same magnitude as the average speed. When the motion changes direction 
during the time interval, those quantities are different. 

 2.12. IDENTIFY and SET UP: av,
x

x
va
t

Δ
=
Δ

. The instantaneous acceleration is the slope of the tangent to the xv versus 

t graph. 
EXECUTE: (a) 0 s to 2 s: av, 0xa = ; 2 s to 4 s: 2

av, 1.0 m/sxa = ; 4 s to 6 s: 2
av, 1.5 m/sxa = ; 6 s to 8 s: 

2
av, 2.5 m/sxa = ; 8 s to 10 s: 2

av, 2.5 m/sxa = ; 10 s to 12 s: 2
av, 2.5 m/sxa = ; 12 s to 14 s: 2

av, 1.0 m/sxa = ; 14 s to 

16 s: av, 0xa = . The acceleration is not constant over the entire 16 s time interval. The acceleration is constant 
between 6 s and 12 s. 
(b) The graph of xv  versus t is given in Fig. 2.12. 9 st = : 22.5 m/sxa = ; 13 st = : 21.0 m/sxa = ; 15 st = : 0xa = . 
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EVALUATE: The acceleration is constant when the velocity changes at a constant rate. When the velocity is 
constant, the acceleration is zero. 

 
Figure 2.12 

 2.13. IDENTIFY: The average acceleration for a time interval tΔ is given by av-
x

x
va
t

Δ
=
Δ

. 

SET UP: Assume the car is moving in the x+  direction. 1 mi/h 0.447 m/s= , so 60 mi/h 26.82 m/s= , 
200 mi/h = 89.40 m/s and 253 mi/h 113.1 m/s= . 
EXECUTE: (a) The graph of xv versus t is sketched in Figure 2.13. The graph is not a straight line, so the 
acceleration is not constant. 

(b) (i) 2
av-

26.82 m/s 0 12.8 m/s
2.1 sxa −

= =  (ii) 2
av-

89.40 m/s 26.82 m/s 3.50 m/s
20.0 s 2.1 sxa −

= =
−

 (iii) 

2
av-

113.1 m/s 89.40 m/s 0.718 m/s
53 s 20.0 sxa −

= =
−

. The slope of the graph of xv versus t decreases as t increases. This is 

consistent with an average acceleration that decreases in magnitude during each successive time interval. 
EVALUATE: The average acceleration depends on the chosen time interval. For the interval between 0 and 53 s, 

2
av-

113.1 m/s 0 2.13 m/s
53 sxa −

= = . 

 
Figure 2.13 
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 2.14. IDENTIFY: av-
x

x
va
t

Δ
=
Δ

. ( )xa t is the slope of the xv versus t graph. 

SET UP: 60 km/h 16.7 m/s=  

EXECUTE: (a) (i) 2
av-

16.7 m/s 0 1.7 m/s
10 sxa −

= = . (ii) 2
av-

0 16.7 m/s 1.7 m/s
10 sxa −

= = − . 

(iii) 0xvΔ = and av- 0xa = . (iv) 0xvΔ = and av- 0xa = . 
(b) At 20 st = , xv is constant and 0xa = . At 35 st = , the graph of xv versus t is a straight line and 

2
av- 1.7 m/sx xa a= = − . 

EVALUATE: When av-xa and xv  have the same sign the speed is increasing. When they have opposite sign the 
speed is decreasing. 

 2.15. IDENTIFY and SET UP: Use x
dxv
dt

=  and x
x

dva
dt

=  to calculate ( )xv t  and ( ).xa t  

EXECUTE: 22.00 cm/s (0.125 cm/s )x
dxv t
dt

= = −  

20.125 cm/sx
x

dva
dt

= = −  

(a) At 0,t =  50.0 cm,x =  2.00 cm/s,xv =  20.125 cm/s .xa = −  
(b) Set 0xv =  and solve for t: 16.0 s.t =  
(c) Set 50.0 cmx =  and solve for t. This gives 0t =  and 32.0 s.t =  The turtle returns to the starting point after 
32.0 s. 
(d) Turtle is 10.0 cm from starting point when 60.0 cmx =  or 40.0 cm.x =  
Set 60.0 cmx =  and solve for t: 6.20 st =  and 25.8 s.t =  
At 6.20 s,t =  1.23 cm/s.xv = +  
At 25.8 s,t =  1.23 cm/s.xv = −  
Set 40.0 cmx =  and solve for t: 36.4 st =  (other root to the quadratic equation is negative and hence 
nonphysical). 
At 36.4 s,t =  2.55 cm/s.xv = −  
(e) The graphs are sketched in Figure 2.15. 

 
Figure 2.15 

EVALUATE: The acceleration is constant and negative. xv  is linear in time. It is initially positive, decreases to 
zero, and then becomes negative with increasing magnitude. The turtle initially moves farther away from the origin 
but then stops and moves in the -direction.x−  

 2.16. IDENTIFY: Use Eq.(2.4), with 10 stΔ =  in all cases. 
SET UP: xv is negative if the motion is to the right. 

EXECUTE: (a) ( ) ( )( ) ( ) 25.0 m/s 15.0 m/s / 10 s 1.0 m/s− = −  

(b) ( ) ( )( ) ( ) 215.0 m/s 5.0 m/s / 10 s 1.0 m/s− − − = −  

(c) ( ) ( )( ) ( ) 215.0 m/s 15.0 m/s / 10 s 3.0 m/s− − + = −  
EVALUATE: In all cases, the negative acceleration indicates an acceleration to the left. 

 2.17. IDENTIFY: The average acceleration is av-
x

x
va
t

Δ
=
Δ

 

SET UP: Assume the car goes from rest to 65 mi/h (29 m/s) in 10 s. In braking, assume the car goes from 65 mi/h 
to zero in 4.0 s. Let x+  be in the direction the car is traveling. 

EXECUTE: (a) 2
av-

29 m/s 0 2.9 m/s
10 sxa −

= =  

(b) 2
av-

0 29 m/s 7.2 m/s
4.0 sxa −

= = −  
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(c) In part (a) the speed increases so the acceleration is in the same direction as the velocity. If the velocity 
direction is positive, then the acceleration is positive. In part (b) the speed decreases so the acceleration is in the 
direction opposite to the direction of the velocity. If the velocity direction is positive then the acceleration is 
negative, and if the velocity direction is negative then the acceleration direction is positive. 
EVALUATE: The sign of the velocity and of the acceleration indicate their direction. 

 2.18. IDENTIFY: The average acceleration is av-
x

x
va
t

Δ
=
Δ

. Use ( )xv t  to find xv at each t. The instantaneous acceleration 

is x
x

dva
dt

= . 

SET UP: (0) 3.00 m/sxv = and (5.00 s) 5.50 m/sxv = . 

EXECUTE: (a) 2
av-

5.50 m/s 3.00 m/s 0.500 m/s
5.00 s

x
x

va
t

Δ −
= = =
Δ

 

(b) 3 3(0.100 m/s )(2 ) (0.200 m/s )x
x

dva t t
dt

= = = . At 0t = , 0xa = . At 5.00 st = , 21.00 m/sxa = . 

(c) Graphs of ( )xv t  and ( )xa t are given in Figure 2.18. 
EVALUATE: ( )xa t  is the slope of ( )xv t  and increases at t increases. The average acceleration for 0t = to 

5.00 st = equals the instantaneous acceleration at the midpoint of the time interval, 2.50 st = , since ( )xa t is a 
linear function of t. 

  
Figure 2.18 

 2.19. (a) IDENTIFY and SET UP: xv  is the slope of the x versus t curve and xa  is the slope of the xv  versus t curve. 
EXECUTE: 0t =  to 5 st = : x versus t is a parabola so xa  is a constant. The curvature is positive so xa  is 
positive. xv  versus t is a straight line with positive slope. 0 0.xv =  

5 st =  to 15 st = : x versus t is a straight line so xv  is constant and 0.xa =  The slope of x versus t is positive so 

xv  is positive. 
15 st =  to 25 s:t =  x versus t is a parabola with negative curvature, so xa  is constant and negative. xv  versus t is a 

straight line with negative slope. The velocity is zero at 20 s, positive for 15 s to 20 s, and negative for 20 s to 25 s. 
25 st =  to 35 s:t =  x versus t is a straight line so xv  is constant and 0.xa =  The slope of x versus t is negative so 

xv  is negative. 
35 st =  to 40 s:t =  x versus t is a parabola with positive curvature, so xa  is constant and positive. xv  versus t is a 

straight line with positive slope. The velocity reaches zero at 40 s.t =  
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The graphs of ( )xv t  and ( )xa t  are sketched in Figure 2.19a.  

 
Figure 2.19a 

(b) The motions diagrams are sketched in Figure 2.19b. 

 
Figure 2.19b 

EVALUATE: The spider speeds up for the first 5 s, since xv  and xa  are both positive. Starting at 15 st =  the 
spider starts to slow down, stops momentarily at 20 s,t =  and then moves in the opposite direction. At 35 st =  the 
spider starts to slow down again and stops at 40 s.t =  

 2.20. IDENTIFY: ( )x
dxv t
dt

= and ( ) x
x

dva t
dt

=  

SET UP: 1( )n nd t nt
dt

−= for 1n ≥ . 

EXECUTE: (a) 2 6 5( ) (9.60 m/s ) (0.600 m/s )xv t t t= − and 2 6 4( ) 9.60 m/s (3.00 m/s )xa t t= − . Setting 0xv = gives 

0t = and 2.00 st = . At 0t = , 2.17 mx = and 29.60 m/sxa = . At 2.00 st = , 15.0 mx = and 238.4 m/sxa = − . 
(b) The graphs are given in Figure 2.20. 
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EVALUATE: For the entire time interval from 0t = to 2.00 st = , the velocity xv is positive and x increases. 
While xa is also positive the speed increases and while xa is negative the speed decreases. 

 
Figure 2.20 

 2.21. IDENTIFY: Use the constant acceleration equations to find 0xv  and .xa  
(a) SET UP: The situation is sketched in Figure 2.21. 

  
Figure 2.21 

EXECUTE: Use 0
0 ,

2
x xv vx x t+⎛ ⎞− = ⎜ ⎟

⎝ ⎠
 so 0

0
2( ) 2(70.0 m) 15.0 m/s 5.0 m/s.

7.00 sx x
x xv v

t
−

= − = − =  

(b) Use 0 ,x x xv v a t= +  so 20 15.0 m/s 5.0 m/s 1.43 m/s .
7.00 s

x x
x

v va
t
− −

= = =  

EVALUATE: The average velocity is (70.0 m)/(7.00 s) 10.0 m/s.=  The final velocity is larger than this, so the 
antelope must be speeding up during the time interval; 0x xv v<  and 0.xa >  

 2.22. IDENTIFY: Apply the constant acceleration kinematic equations. 
SET UP: Let x+  be in the direction of the motion of the plane. 173 mi/h 77.33 m/s= . 307 ft 93.57 m= . 
EXECUTE: (a) 0 0xv = , 77.33 m/sxv = and 0 93.57 mx x− = . 2 2

0 02 ( )x x xv v a x x= + − gives 
2 2 2

20

0

(77.33 m/s) 0 32.0 m/s
2( ) 2(93.57 m)

x x
x

v va
x x
− −

= = =
−

. 

(b) 0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟
⎝ ⎠

gives 0

0

2( ) 2(93.57 m) 2.42 s
0 77.33 m/sx x

x xt
v v

−
= = =

+ +
 

EVALUATE: Either 0x x xv v a t= + or 21
0 0 2x xx x v t a t− = + could also be used to find t and would give the same 

result as in part (b). 
 2.23. IDENTIFY: For constant acceleration, Eqs. (2.8), (2.12), (2.13) and (2.14) apply. 

SET UP: Assume the ball starts from rest and moves in the -direction.x+  
EXECUTE: (a) 0 1.50 mx x− = , 45.0 m/sxv = and 0 0xv = . 2 2

0 02 ( )x x xv v a x x= + − gives 
2 2 2

20

0

(45.0 m/s) 675 m/s
2( ) 2(1.50 m)

x x
x

v va
x x
−

= = =
−

. 

(b) 0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟
⎝ ⎠

gives 0

0

2( ) 2(1.50 m) 0.0667 s
45.0 m/sx x

x xt
v v

−
= = =

+
 

EVALUATE: We could also use 0x x xv v a t= + to find 2

45.0 m/s 0.0667 s
675 m/s

x

x

vt
a

= = = which agrees with our 

previous result. The acceleration of the ball is very large. 

0 70.0 mx x− =
7.00 st =  
15.0 m/sxv =  

0 ?xv =  



Motion Along a Straight Line  2-9 

 2.24. IDENTIFY: For constant acceleration, Eqs. (2.8), (2.12), (2.13) and (2.14) apply. 
SET UP: Assume the ball moves in the x+  direction. 
EXECUTE: (a) 73.14 m/sxv = , 0 0xv = and 30.0 mst = . 0x x xv v a t= + gives 

20
3

73.14 m/s 0 2440 m/s
30.0 10  s

x x
x

v va
t −

− −
= = =

×
. 

(b) 30
0

0 73.14 m/s (30.0 10  s) 1.10 m
2 2

x xv vx x t −+ +⎛ ⎞ ⎛ ⎞− = = × =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: We could also use 21
0 0 2x xx x v t a t− = + to calculate 0x x− : 

2 3 21
0 2 (2440 m/s )(30.0 10  s) 1.10 mx x −− = × = , which agrees with our previous result. The acceleration of the ball 

is very large. 
 2.25. IDENTIFY: Assume that the acceleration is constant and apply the constant acceleration kinematic equations. Set 

xa equal to its maximum allowed value. 

SET UP: Let x+  be the direction of the initial velocity of the car. 2250 m/sxa = − . 105 km/h 29.17 m/s= . 

EXECUTE: 0 29.17 m/sxv = + . 0xv = . 2 2
0 02 ( )x x xv v a x x= + − gives 

2 2 2
0

0 2

0 (29.17 m/s) 1.70 m
2 2( 250 m/s )

x x

x

v vx x
a
− −

− = = =
−

. 

EVALUATE: The car frame stops over a shorter distance and has a larger magnitude of acceleration. Part of your 
1.70 m stopping distance is the stopping distance of the car and part is how far you move relative to the car while 
stopping. 

 2.26. IDENTIFY: Apply constant acceleration equations to the motion of the car. 
SET UP: Let x+  be the direction the car is moving. 

EXECUTE: (a) From Eq. (2.13), with 0 0,xv =  
2 2

2

0

(20 m s) 1.67 m s .
2( ) 2(120 m)

x
x

va
x x

= = =
−

 

(b) Using Eq. (2.14), 02( ) 2(120 m) (20 m s) 12 s.xt x x v= − = =  
(c) (12 s)(20 m s) 240  m.=  
EVALUATE: The average velocity of the car is half the constant speed of the traffic, so the traffic travels twice as 
far. 

 2.27. IDENTIFY: The average acceleration is av-
x

x
va
t

Δ
=
Δ

. For constant acceleration, Eqs. (2.8), (2.12), (2.13) and (2.14) 

apply. 
SET UP: Assume the shuttle travels in the x+  direction. 161 km/h 44.72 m/s= and 1610 km/h 447.2 m/s= . 
1.00 min 60.0 s=  

EXECUTE: (a) (i) 2
av-

44.72 m/s 0 5.59 m/s
8.00 s

x
x

va
t

Δ −
= = =
Δ

 

(ii) 2
av-

447.2 m/s 44.72 m/s 7.74 m/s
60.0 s 8.00 sxa −

= =
−

 

(b) (i) 8.00 st = , 0 0xv = , and 44.72 m/sxv = . 0
0

0 44.72 m/s (8.00 s) 179 m
2 2

x xv vx x t+ +⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

(ii) 60.0 s 8.00 s 52.0 stΔ = − = , 0 44.72 m/sxv = , and 447.2 m/sxv = . 

40
0

44.72 m/s 447.2 m/s (52.0 s) 1.28 10  m
2 2

x xv vx x t+ +⎛ ⎞ ⎛ ⎞− = = = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

EVALUATE: When the acceleration is constant the instantaneous acceleration throughout the time interval equals 
the average acceleration for that time interval. We could have calculated the distance in part (a) as 

2 2 21 1
0 0 2 2 (5.59 m/s )(8.00 s) 179 mx xx x v t a t− = + = = , which agrees with our previous calculation. 

 2.28. IDENTIFY: Apply the constant acceleration kinematic equations to the motion of the car. 
SET UP: 0.250 mi 1320 ft= . 60.0 mph 88.0 ft/s= . Let x+  be the direction the car is traveling. 

EXECUTE: (a) braking: 0 88.0 ft/sxv = , 0 146 ftx x− = , 0xv = . 2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
20

0

0 (88.0 ft/s) 26.5 ft/s
2( ) 2(146 ft)

x x
x

v va
x x
− −

= = = −
−

 

Speeding up: 0 0xv = , 0 1320 ftx x− = , 19.9 st = . 21
0 0 2x xx x v t a t− = +  gives 

20
2 2

2( ) 2(1320 ft) 6.67 ft/s
(19.9 s)x

x xa
t
−

= = =  
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(b) 2
0 0 (6.67 ft/s )(19.9 s) 133 ft/s 90.5 mphx x xv v a t= + = + = =  

(c) 0
2

0 88.0 ft/s 3.32 s
26.5 ft/s

x x

x

v vt
a
− −

= = =
−

 

EVALUATE: The magnitude of the acceleration while braking is much larger than when speeding up. That is why 
it takes much longer to go from 0 to 60 mph than to go from 60 mph to 0. 

 2.29. IDENTIFY: The acceleration xa  is the slope of the graph of xv  versus t. 
SET UP: The signs of xv and of xa indicate their directions. 
EXECUTE: (a) Reading from the graph, at 4.0 st = , 2.7 cm/sxv = , to the right and at 7.0 st = , 1.3 cm/sxv = , 
to the left. 

(b) xv  versus t is a straight line with slope 28.0 cm/s 1.3 cm/s
6.0 s

− = − . The acceleration is constant and equal to 

21.3 cm/s , to the left. It has this value at all times. 
(c) Since the acceleration is constant, 21

0 0 2x xx x v t a t− = + . For 0t = to 4.5 s, 
2 21

0 2(8.0 cm/s)(4.5 s) ( 1.3 cm/s )(4.5 s) 22.8 cmx x− = + − = . For 0t = to 7.5 s, 
2 21

0 2(8.0 cm/s)(7.5 s) ( 1.3 cm/s )(7.5 s) 23.4 cmx x− = + − =  
(d) The graphs of xa and x versus t are given in Fig. 2.29. 

EVALUATE: In part (c) we could have instead used 0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟
⎝ ⎠

. 

 
Figure 2.29 

 2.30. IDENTIFY: Use the constant acceleration equations to find x, 0xv , xv and xa  for each constant-acceleration 
segment of the motion. 
SET UP: Let x+  be the direction of motion of the car and let 0x = at the first traffic light. 

EXECUTE: (a) For 0t = to 8 st = : 0 0 20 m/s (8 s) 80 m
2 2

x xv vx t+ +⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

20 20 m/s 2.50 m/s
8 s

x x
x

v va
t
−

= = = + . The car moves from 0x = to 80 mx = . The velocity xv increases linearly 

from zero to 20 m/s. The acceleration is a constant 22.50 m/s . 
Constant speed for 60 m: The car moves from 80 mx = to 140 mx = . xv is a constant 20 m/s. 0xa = . This 

interval starts at 8 st =  and continues until 60 m 8 s 11 s
20 m/s

t = + = . 

Slowing from 20 m/s until stopped: The car moves from 140 mx = to 180 mx = . The velocity decreases linearly 

from 20 m/s to zero. 0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟
⎝ ⎠

gives 2(40 m) 4 s
20 m/s 0

t = =
+

. 2 2
0 02 ( )x x xv v a x x= + − gives 

2
2(20.0 m/s) 5.00 m/s

2(40 m)xa −
= = −  This segment is from 11 st = to 15 st = . The acceleration is a 

constant 25.00 m/s− . 
The graphs are drawn in Figure 2.30a. 
(b) The motion diagram is sketched in Figure 2.30b. 
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EVALUATE: When a! and v! are in the same direction, the speed increases ( 0t = to 8 st = ). When a! and v! are in 
opposite directions, the speed decreases ( 11 st = to 15 st = ). When 0a = the speed is constant 8 st = to 11 st = . 

  
Figure 2.30a-b 

 2.31. (a) IDENTIFY and SET UP: The acceleration xa  at time t is the slope of the tangent to the xv  versus t curve at 
time t. 
EXECUTE: At 3 s,t =  the xv  versus t curve is a horizontal straight line, with zero slope. Thus 0.xa =  

At 7 s,t =  the xv  versus t curve is a straight-line segment with slope 245 m/s 20 m/s 6.3 m/s .
9 s 5 s

−
=

−
 

Thus 26.3 m/s .xa =  

At 11 st =  the curve is again a straight-line segment, now with slope 20 45 m/s 11.2 m/s .
13 s 9 s
− −

= −
−

 

Thus 211.2 m/s .xa = −  
EVALUATE: 0xa =  when xv  is constant, 0xa >  when xv  is positive and the speed is increasing, and 0xa <  
when xv  is positive and the speed is decreasing. 
(b) IDENTIFY: Calculate the displacement during the specified time interval. 
SET UP: We can use the constant acceleration equations only for time intervals during which the acceleration is 
constant. If necessary, break the motion up into constant acceleration segments and apply the constant acceleration 
equations for each segment. For the time interval 0t =  to 5 st =  the acceleration is constant and equal to zero. 
For the time interval 5 st =  to 9 st =  the acceleration is constant and equal to 26.25 m/s .  For the interval 9 st =  
to 13 st =  the acceleration is constant and equal to 211.2 m/s .−  
EXECUTE: During the first 5 seconds the acceleration is constant, so the constant acceleration kinematic formulas 
can be used. 

0 20 m/sxv =  0xa =  5 st =  0 ?x x− =  

0 0xx x v t− =  ( 0xa =  so no 21
2 xa t  term) 

0 (20 m/s)(5 s) 100 m;x x− = =  this is the distance the officer travels in the first 5 seconds. 
During the interval 5 st =  to 9 s the acceleration is again constant. The constant acceleration formulas can be 
applied to this 4 second interval. It is convenient to restart our clock so the interval starts at time 0t =  and ends at 
time 5 s.t =  (Note that the acceleration is not constant over the entire 0t =  to 9 st =  interval.) 

0 20 m/sxv =  26.25 m/sxa =  4 st =  0 100 mx =  0 ?x x− =  
21

0 0 2x xx x v t a t− = +  
2 21

0 2(20 m/s)(4 s) (6.25 m/s )(4 s) 80 m 50 m 130 m.x x− = + = + =  
Thus 0 130 m 100 m 130 m 230 m.x x− + = + =  
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At 9 st =  the officer is at 230 m,x =  so she has traveled 230 m in the first 9 seconds. 
During the interval 9 st =  to 13 st =  the acceleration is again constant. The constant acceleration formulas can be 
applied for this 4 second interval but not for the whole 0t =  to 13 st =  interval. To use the equations restart our 
clock so this interval begins at time 0t =  and ends at time 4 s.t =  

0 45 m/sxv =  (at the start of this time interval) 
211.2 m/sxa = −  4 st =  0 230 mx =  0 ?x x− =  

21
0 0 2x xx x v t a t− = +  

2 21
0 2(45 m/s)(4 s) ( 11.2 m/s )(4 s) 180 m 89.6 m 90.4 m.x x− = + − = − =  

Thus 0 90.4 m 230 m 90.4 m 320 m.x x= + = + =  
At 13 st =  the officer is at 320 m,x =  so she has traveled 320 m in the first 13 seconds. 
EVALUATE: The velocity xv  is always positive so the displacement is always positive and displacement and 
distance traveled are the same. The average velocity for time interval tΔ  is av- / .xv x t= Δ Δ  For 0t =  to 5 s, 

av- 20 m/s.xv =  For 0t =  to 9 s, av- 26 m/s.xv =  For 0t =  to 13 s, av- 25 m/s.xv =  These results are consistent with 
Fig. 2.33. 

 2.32. IDENTIFY: In each constant acceleration interval, the constant acceleration equations apply. 
SET UP: When xa is constant, the graph of xv versus t is a straight line and the graph of x versus t is a parabola. 
When 0xa = , xv  is constant and x versus t is a straight line. 
EXECUTE: The graphs are given in Figure 2.32. 
EVALUATE: The slope of the x versus t graph is ( )xv t and the slope of the xv versus t graph is ( )xa t . 

 
Figure 2.32 

 2.33. (a) IDENTIFY: The maximum speed occurs at the end of the initial acceleration period. 
SET UP: 220.0 m/sxa =  15.0 min 900 st = =  0 0xv =  ?xv =  

0x x xv v a t= +  

EXECUTE: 2 40 (20.0 m/s )(900 s) 1.80 10  m/sxv = + = ×  
(b) IDENTIFY: Use constant acceleration formulas to find the displacement .xΔ  The motion consists of three 
constant acceleration intervals. In the middle segment of the trip 0xa =  and 41.80 10  m/s,xv = ×  but we can�t 
directly find the distance traveled during this part of the trip because we don�t know the time. Instead, find the 
distance traveled in the first part of the trip (where 220.0 m/sxa = + ) and in the last part of the trip (where 

220.0 m/sxa = − ). Subtract these two distances from the total distance of 83.84 10  m×  to find the distance traveled 
in the middle part of the trip (where 0).xa =  
first segment 
SET UP: 0 ?x x− =  15.0 min 900 st = =  220.0 m/sxa = +  0 0xv =  

21
0 0 2x xx x v t a t− = +  

EXECUTE: 2 2 6 31
0 20 (20.0 m/s )(900 s) 8.10 10  m 8.10 10  kmx x− = + = × = ×  

second segment 
SET UP: 0 ?x x− =  15.0 min 900 st = =  220.0 m/sxa = −  

4
0 1.80 10  m/sxv = ×  

21
0 0 2x xx x v t a t− = +  

EXECUTE: 2 2 6 31
0 2(1.80 10  s)(900 s) ( 20.0 m/s )(900 s) 8.10 10 m 8.10 10  kmx x 4− = × + − = × = ×  (The same 

distance as traveled as in the first segment.) 
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Therefore, the distance traveled at constant speed is 
8 6 6 8 53.84 10  m 8.10 10  m 8.10 10  m 3.678 10  m 3.678 10 km.× − × − × = × = ×  

The fraction this is of the total distance is 
8

8

3.678 10  m 0.958.
3.84 10  m

×
=

×
 

(c) IDENTIFY: We know the time for each acceleration period, so find the time for the constant speed segment. 
SET UP: 8

0 3.678 10  mx x− = ×  41.80 10  m/sxv = ×  0xa =  ?t =  
21

0 0 2x xx x v t a t− = +  

EXECUTE: 
8

40
4

0

3.678 10  m 2.043 10  s 340.5 min.
1.80 10  m/sx

x xt
v
− ×

= = = × =
×

 

The total time for the whole trip is thus 15.0 min 340.5 min 15.0 min 370min.+ + =  
EVALUATE: If the speed was a constant 41.80 10  m/s×  for the entire trip, the trip would take 

8 4(3.84 10  m)/(1.80 10  m/s) 356 min.× × =  The trip actually takes a bit longer than this since the average velocity is 

less than 81.80 10  m/s×  during the relatively brief acceleration phases. 
 2.34. IDENTIFY: Use constant acceleration equations to find 0x x−  for each segment of the motion. 

SET UP: Let x+  be the direction the train is traveling. 
EXECUTE: 0t =  to 14.0 s: 2 2 21 1

0 0 2 2 (1.60 m/s )(14.0 s) 157 mx xx x v t a t− = + = = . 

At 14.0 st = , the speed is 2
0 (1.60 m/s )(14.0 s) 22.4 m/sx x xv v a t= + = = . In the next 70.0 s, 0xa =  and 

0 0 (22.4 m/s)(70.0 s) 1568 mxx x v t− = = = . 

For the interval during which the train is slowing down, 0 22.4 m/sxv = , 23.50 m/sxa = −  and 0xv = . 

2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
0

0 2

0 (22.4 m/s) 72 m
2 2( 3.50 m/s )

x x

x

v vx x
a
− −

− = = =
−

. 

The total distance traveled is 157 m 1568 m 72 m 1800 m+ + = . 
EVALUATE: The acceleration is not constant for the entire motion but it does consist of constant acceleration 
segments and we can use constant acceleration equations for each segment. 

 2.35 IDENTIFY: ( )xv t is the slope of the x versus t graph. Car B moves with constant speed and zero acceleration. 
Car A moves with positive acceleration; assume the acceleration is constant. 
SET UP: For car B, xv is positive and 0xa = . For car A, xa is positive and xv increases with t. 
EXECUTE: (a) The motion diagrams for the cars are given in Figure 2.35a. 
(b) The two cars have the same position at times when their x-t graphs cross. The figure in the problem shows this 
occurs at approximately 1 st = and 3 st = . 
(c) The graphs of xv versus t for each car are sketched in Figure 2.35b. 
(d) The cars have the same velocity when their x-t graphs have the same slope. This occurs at approximately 

2 st = . 
(e) Car A passes car B when Ax moves above Bx in the x-t graph. This happens at 3 st = . 
(f) Car B passes car A when Bx  moves above Ax  in the x-t graph. This happens at 1 st = . 
EVALUATE: When 0xa = , the graph of xv versus t is a horizontal line. When xa is positive, the graph of 

xv versus t is a straight line with positive slope. 

  
Figure 2.35a-b 

 2.36. IDENTIFY: Apply the constant acceleration equations to the motion of each vehicle. The truck passes the car 
when they are at the same x at the same 0t > . 
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SET UP: The truck has 0xa = . The car has 0 0xv = . Let x+  be in the direction of motion of the vehicles. Both 

vehicles start at 0 0x = . The car has 2
C 3.20 m/sa = . The truck has 20.0 m/sxv = . 

EXECUTE: (a) 21
0 0 2x xx x v t a t− = + gives T 0Tx v t= and 21

C C2x a t= . Setting T Cx x= gives 0t = and 1
0T C2v a t= , so 

0T
2

C

2 2(20.0 m/s) 12.5 s
3.20 m/s

vt
a

= = = . At this t, T (20.0 m/s)(12.5 s) 250 mx = = and 2 21
2 (3.20 m/s )(12.5 s) 250 mx = = . 

The car and truck have each traveled 250 m. 
(b) At 12.5 st = , the car has 2

0 (3.20 m/s )(12.5 s) 40 m/sx x xv v a t= + = = . 

(c) T 0Tx v t= and 21
C C2x a t= . The x-t graph of the motion for each vehicle is sketched in Figure 2.36a. 

(d) T 0Tv v= . C Cv a t= . The -xv t graph for each vehicle is sketched in Figure 2.36b. 
EVALUATE: When the car overtakes the truck its speed is twice that of the truck. 

  
Figure 2.36a-b 

 2.37. IDENTIFY: For constant acceleration, Eqs. (2.8), (2.12), (2.13) and (2.14) apply. 
SET UP: Take y+  to be downward, so the motion is in the y+  direction. 19,300 km/h 5361 m/s= , 
1600 km/h 444.4 m/s= , and 321 km/h 89.2 m/s= . 4.0 min 240 s= . 
EXECUTE: (a) Stage A: 240 st = , 0 5361 m/syv = , 444.4 m/syv = . 0y y yv v a t= + gives 

0 2444.4 m/s 5361 m/s 20.5 m/s
240 s

y y
y

v v
a

t
− −

= = = − . 

Stage B: 94 st = , 0 444.4 m/syv = , 89.2 m/syv = . 0y y yv v a t= + gives 

0 289.2 m/s 444.4 m/s 3.8 m/s
94 s

y y
y

v v
a

t
− −

= = = − . 

Stage C: 0 75 my y− = , 0 89.2 m/syv = , 0yv = . 2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0 2

0

0 (89.2 m/s) 53.0 m/s
2( ) 2(75 m)

y y
y

v v
a

y y
− −

= = = −
−

. In each case the negative sign means that the acceleration is 

upward. 

(b) Stage A: 0
0

5361 m/s 444.4 m/s (240 s) 697 km
2 2

y yv v
y y t

+⎛ ⎞ +⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

Stage B: 0
444.4 m/s 89.2 m/s (94 s) 25 km

2
y y +⎛ ⎞− = =⎜ ⎟

⎝ ⎠
. 

Stage C: The problem states that 0 75 m = 0.075 kmy y− = . 
The total distance traveled during all three stages is 697 km 25 km 0.075 km 722 km+ + = . 
EVALUATE: The upward acceleration produced by friction in stage A is calculated to be greater than the upward 
acceleration due to the parachute in stage B. The effects of air resistance increase with increasing speed and in 
reality the acceleration was probably not constant during stages A and B. 

 2.38. IDENTIFY: Assume an initial height of 200 m and a constant acceleration of 29.80 m/s . 
SET UP: Let y+  be downward. 1 km/h 0.2778 m/s=  and 1 mi/h 0.4470 m/s= . 
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EXECUTE: (a) 0 200 my y− = , 29.80 m/sya = , 0 0yv = . 2 2
0 02 ( )y y yv v a y y= + − gives 

22(9.80 m/s )(200 m) 60 m/s 200 km/h 140 mi/hyv = = = = . 
(b) Raindrops actually have a speed of about 1 m/s as they strike the ground. 
(c) The actual speed at the ground is much less than the speed calculated assuming free-fall, so neglect of air 
resistance is a very poor approximation for falling raindrops. 
EVALUATE: In the absence of air resistance raindrops would land with speeds that would make them very 
dangerous. 

 2.39. IDENTIFY: Apply the constant acceleration equations to the motion of the flea. After the flea leaves the ground, 
,ya g=  downward. Take the origin at the ground and the positive direction to be upward. 

(a) SET UP: At the maximum height 0.yv =  

0yv =  0 0.440 my y− =  29.80 m/sya = −  0 ?yv =  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE: 2
0 02 ( ) 2( 9.80 m/s )(0.440 m) 2.94 m/sy yv a y y= − − = − − =  

(b) SET UP: When the flea has returned to the ground 0 0.y y− =  

0 0y y− =  0 2.94 m/syv = +  29.80 m/sya = −  ?t =  
21

0 0 2y yy y v t a t− = +  

EXECUTE: With 0 0y y− =  this gives 0
2

2 2(2.94 m/s) 0.600 s.
9.80 m/s

y

y

v
t

a
= − = − =

−
 

EVALUATE: We can use 0y y yv v a t= +  to show that with 0 2.94 m/s,yv =  0yv =  after 0.300 s. 
 2.40. IDENTIFY: Apply constant acceleration equations to the motion of the lander. 

SET UP: Let y+  be positive. Since the lander is in free-fall, 21.6 m/sya = + . 

EXECUTE: 0 0.8 m/syv = , 0 5.0 my y− = , 21.6 m/sya = + in 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0 02 ( ) (0.8 m/s) 2(1.6 m/s )(5.0 m) 4.1 m/sy y yv v a y y= + − = + = . 

EVALUATE: The same descent on earth would result in a final speed of 9.9 m/s, since the acceleration due to 
gravity on earth is much larger than on the moon. 

 2.41. IDENTIFY: Apply constant acceleration equations to the motion of the meterstick. The time the meterstick falls is 
your reaction time. 
SET UP: Let y+  be downward. The meter stick has 0 0yv =  and 29.80 m/sya = . Let d be the distance the 
meterstick falls. 

EXECUTE: (a) 21
0 0 2y yy y v t a t− = +  gives 2 2(4.90 m/s )d t=  and 24.90 m/s

dt = . 

(b) 2

0.176 m 0.190 s
4.90 m/s

t = =  

EVALUATE: The reaction time is proportional to the square of the distance the stick falls. 
 2.42. IDENTIFY: Apply constant acceleration equations to the vertical motion of the brick. 

SET UP: Let y+  be downward. 29.80 m/sya =  

EXECUTE: (a) 0 0yv = , 2.50 st = , 29.80 m/sya = . 2 2 21 1
0 0 2 2 (9.80 m/s )(2.50 s) 30.6 my yy y v t a t− = + = = . The 

building is 30.6 m tall. 
(b) 2

0 0 (9.80 m/s )(2.50 s) 24.5 m/sy y yv v a t= + = + =  

(c) The graphs of ya , yv  and y versus t are given in Fig. 2.42. Take 0y =  at the ground. 
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EVALUATE: We could use either 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
or 2 2

0 02 ( )y y yv v a y y= + − to check our results. 

 
Figure 2.42 

 2.43. IDENTIFY: When the only force is gravity the acceleration is 29.80 m/s , downward. There are two intervals of 
constant acceleration and the constant acceleration equations apply during each of these intervals. 
SET UP: Let y+  be upward. Let 0y = at the launch pad. The final velocity for the first phase of the motion is the 
initial velocity for the free-fall phase. 
EXECUTE: (a) Find the velocity when the engines cut off. 0 525 my y− = , 22.25 m/sya = + , 0 0yv = . 

2 2
0 02 ( )y y yv v a y y= + − gives 22(2.25 m/s )(525 m) 48.6 m/syv = = . 

Now consider the motion from engine cut off to maximum height: 0 525 my = , 0 48.6 m/syv = + , 0yv = (at the 

maximum height), 29.80 m/sya = − . 2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0

0 2

0 (48.6 m/s) 121 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

− = = =
−

and 

121 m 525 m 646 my = + = . 
(b) Consider the motion from engine failure until just before the rocket strikes the ground: 0 525 my y− = − , 

29.80 m/sya = − , 0 48.6 m/syv = + . 2 2
0 02 ( )y y yv v a y y= + − gives 

2 2(48.6 m/s) 2( 9.80 m/s )( 525 m) 112 m/syv = − + − − = − . Then 0y y yv v a t= + gives 

0
2

112 m/s 48.6 m/s 16.4 s
9.80 m/s

y y

y

v v
t

a
− − −

= = =
−

. 

(c) Find the time from blast-off until engine failure: 0 525 my y− = , 0 0yv = , 22.25 m/sya = + . 

21
0 0 2y yy y v t a t− = + gives 0

2

2( ) 2(525 m) 21.6 s
2.25 m/sy

y yt
a
−

= = = . The rocket strikes the launch pad 

21.6 s 16.4 s 38.0 s+ = after blast off. The acceleration ya is 22.25 m/s+ from 0t =  to 21.6 st = . It is 
29.80 m/s− from 21.6 st = to 38.0 s . 0y y yv v a t= + applies during each constant acceleration segment, so the 

graph of yv versus t is a straight line with positive slope of 22.25 m/s during the blast-off phase and with negative 

slope of 29.80 m/s− after engine failure. During each phase 21
0 0 2y yy y v t a t− = + . The sign of ya determines the 

curvature of ( )y t . At 38.0 st = the rocket has returned to 0y = . The graphs are sketched in Figure 2.43. 

EVALUATE: In part (b) we could have found the time from 21
0 0 2y yy y v t a t− = + , finding yv first allows us to 

avoid solving for t from a quadratic equation. 

 
Figure 2.43 
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 2.44. IDENTIFY: Apply constant acceleration equations to the vertical motion of the sandbag. 
SET UP: Take y+  upward. 29.80 m/sya = − . The initial velocity of the sandbag equals the velocity of the 

balloon, so 0 5.00 m/syv = + . When the balloon reaches the ground, 0 40.0 my y− = − . At its maximum height the 

sandbag has 0yv = . 

EXECUTE: (a) 0.250 st = : 2 2 21 1
0 0 2 2(5.00 m/s)(0.250 s) ( 9.80 m/s )(0.250 s) 0.94 my yy y v t a t− = + = + − = . The 

sandbag is 40.9 m above the ground. 2
0 5.00 m/s ( 9.80 m/s )(0.250 s) 2.55 m/sy y yv v a t= + = + + − = . 

1.00 st = : 2 21
0 2(5.00 m/s)(1.00 s) ( 9.80 m/s )(1.00 s) 0.10 my y− = + − = . The sandbag is 40.1 m above the 

ground. 2
0 5.00 m/s ( 9.80 m/s )(1.00 s) 4.80 m/sy y yv v a t= + = + + − = − . 

(b) 0 40.0 my y− = − , 0 5.00 m/syv = , 29.80 m/sya = − . 21
0 0 2y yy y v t a t− = +  gives 

2 240.0 m (5.00 m/s) (4.90 m/s )t t− = − . 2 2(4.90 m/s ) (5.00 m/s) 40.0 m 0t t− − = and 

( )21 5.00 ( 5.00) 4(4.90)( 40.0)  s (0.51 2.90) s
9.80

t = ± − − − = ± . t must be positive, so 3.41 st = . 

(c) 2
0 5.00 m/s ( 9.80 m/s )(3.41 s) 28.4 m/sy y yv v a t= + = + + − = −  

(d) 0 5.00 m/syv = , 29.80 m/sya = − , 0yv = . 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2

0 (5.00 m/s) 1.28 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

− = = =
−

. The maximum height is 41.3 m above the ground. 

(e) The graphs of ya , yv , and y versus t are given in Fig. 2.44. Take 0y =  at the ground . 
EVALUATE: The sandbag initially travels upward with decreasing velocity and then moves downward with 
increasing speed. 

 
Figure 2.44 

 2.45. IDENTIFY: The balloon has constant acceleration ,ya g=  downward. 
(a) SET UP: Take the y+  direction to be upward. 

2.00 s,t =  0 6.00 m/s,yv = −  29.80 m/s ,ya = −  ?yv =  

EXECUTE: 2
0 6.00 m/s ( 9.80 m/s )(2.00 s) 25.5 m/sy y yv v a t= + = − + − = −  

(b) SET UP: 0 ?y y− =  

EXECUTE: 2 21 1
0 0 2 2( 6.00 m/s)(2.00 s) ( 9.80 m/s )(2.00 s) 31.6 my yy y v t a t 2− = + = − + − = −  

(c) SET UP: 0 10.0 m,y y− = −  0 6.00 m/s,yv = −  29.80 m/s ,ya = −  ?yv =  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE: 2 2 2
0 02 ( ) ( 6.00 m/s) 2( 9.80 m/s )( 10.0 m) 15.2 m/sy y yv v a y y= − + − = − − + − − = −  

(d) The graphs are sketched in Figure 2.45. 

 
Figure 2.45 

EVALUATE: The speed of the balloon increases steadily since the acceleration and velocity are in the same 
direction. 25.5 m/syv =  when 0 31.6 m,y y− =  so yv  is less than this (15.2 m/s) when 0y y−  is less (10.0 m). 



2-18 Chapter 2 

 2.46. IDENTIFY: Since air resistance is ignored, the egg is in free-fall and has a constant downward acceleration of 
magnitude 29.80 m/s . Apply the constant acceleration equations to the motion of the egg. 
SET UP: Take y+  to be upward. At the maximum height, 0yv = . 

EXECUTE: (a) 0 50.0 my y− = − , 5.00 st = , 29.80 m/sya = − . 21
0 0 2y yy y v t a t− = + gives 

20 1 1
0 2 2

50.0 m ( 9.80 m/s )(5.00 s) 14.5 m/s
5.00 sy y

y yv a t
t
− −

= − = − − = + . 

(b) 0 14.5 m/syv = + , 0yv =  (at the maximum height), 29.80 m/sya = − . 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0

0 2

0 (14.5 m/s) 10.7 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

− = = =
−

. 

(c) At the maximum height 0yv = . 

(d) The acceleration is constant and equal to 29.80 m/s , downward, at all points in the motion, including at the 
maximum height. 
(e) The graphs are sketched in Figure 2.46. 

EVALUATE: The time for the egg to reach its maximum height is 0
2

14.5 m/s 1.48 s
9.8 m/s

y y

y

v v
t

a
− −

= = =
−

. The egg has 

returned to the level of the cornice after 2.96 s and after 5.00 s it has traveled downward from the cornice for 
2.04 s. 

 
Figure 2.46 

 2.47. IDENTIFY: Use the constant acceleration equations to calculate xa  and 0.x x−  

(a) SET UP: 224 m/s,xv =  0 0,xv =  0.900 s,t =  ?xa =  

0x x xv v a t= +  

EXECUTE: 20 224 m/s 0 249 m/s
0.900 s

x x
x

v va
t
− −

= = =  

(b) 2 2/ (249 m/s ) /(9.80 m/s ) 25.4xa g = =  

(c) 2 2 21 1
0 0 2 20 (249 m/s )(0.900 s) 101 mx xx x v t a t− = + = + =  

(d) SET UP: Calculate the acceleration, assuming it is constant: 
1.40 s,t =  0 283 m/s,xv =  0xv =  (stops), ?xa =  

0x x xv v a t= +  

EXECUTE: 20 0 283 m/s 202 m/s
1.40 s

x x
x

v va
t
− −

= = = −  

2 2/ ( 202 m/s ) /(9.80 m/s ) 20.6;xa g = − = −  20.6xa g= −  
If the acceleration while the sled is stopping is constant then the magnitude of the acceleration is only 20.6g. But if 
the acceleration is not constant it is certainly possible that at some point the instantaneous acceleration could be as 
large as 40g. 
EVALUATE: It is reasonable that for this motion the acceleration is much larger than g. 

 2.48. IDENTIFY: Since air resistance is ignored, the boulder is in free-fall and has a constant downward acceleration of 
magnitude 29.80 m/s . Apply the constant acceleration equations to the motion of the boulder. 
SET UP: Take y+  to be upward. 

EXECUTE: (a) 0 40.0 m/syv = + , 20.0 m/syv = + , 29.80 m/sya = − . 0y y yv v a t= + gives 

0
2

20.0 m/s 40.0 m/s 2.04 s
9.80 m/s

y y

y

v v
t

a
− −

= = = +
−

. 
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(b) 20.0 m/syv = − . 0
2

20.0 m/s 40.0 m/s 6.12 s
9.80 m/s

y y

y

v v
t

a
− − −

= = = +
−

. 

(c) 0 0y y− = , 0 40.0 m/syv = + , 29.80 m/sya = − . 21
0 0 2y yy y v t a t− = + gives 0t = and 

0
2

2 2(40.0 m/s) 8.16 s
9.80 m/s

y

y

v
t

a
= − = − = +

−
. 

(d) 0yv = , 0 40.0 m/syv = + , 29.80 m/sya = − . 0y y yv v a t= + gives 0
2

0 40.0 m/s 4.08 s
9.80 m/s

y y

y

v v
t

a
− −

= = =
−

. 

(e) The acceleration is 29.80 m/s , downward, at all points in the motion. 
(f) The graphs are sketched in Figure 2.48. 
EVALUATE: 0yv = at the maximum height. The time to reach the maximum height is half the total time in the air, 
so the answer in part (d) is half the answer in part (c). Also note that 2.04 s 4.08 s 6.12 s< < . The boulder is going 
upward until it reaches its maximum height and after the maximum height it is traveling downward. 

 
Figure 2.48 

 2.49. IDENTIFY: We can avoid solving for the common height by considering the relation between height, time of fall 
and acceleration due to gravity and setting up a ratio involving time of fall and acceleration due to gravity. 
SET UP: Let Eng be the acceleration due to gravity on Enceladus and let g be this quantity on earth. Let h be the 
common height from which the object is dropped. Let y+  be downward, so 0y y h− = . 0 0yv =  

EXECUTE: 21
0 0 2y yy y v t a t− = + gives 21

E2h gt= and 21
En En2h g t= . Combining these two equations gives 

2 2
E En Engt g t= and 

2 2
2 2E

En
En

1.75 s(9.80 m/s ) 0.0868 m/s
18.6 s

tg g
t
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

EVALUATE: The acceleration due to gravity is inversely proportional to the square of the time of fall. 
 2.50. IDENTIFY: The acceleration is not constant so the constant acceleration equations cannot be used. Instead, use 

Eqs.(2.17) and (2.18). Use the values of xv and of x at 1.0 st = to evaluate 0xv and 0x . 

SET UP: 11
1

n nt dt t
n

+=
+∫ , for 0n ≥ . 

EXECUTE: (a) 2 3 21
0 0 020

(0.60 m/s )
t

x x x xv v tdt v t v tα α= + = + = +∫ . 5.0 m/sxv =  when 1.0 st = gives 

0 4.4 m/sxv = . Then, at 2.0 st = , 3 24.4 m/s (0.60 m/s )(2.0 s) 6.8 m/sxv = + = . 

(b) 2 31
0 0 0 020

1( )
6

t

x xx x v t dt x v t tα α= + + = + +∫ . 6.0 mx = at 1.0 st =  gives 0 1.4 mx = . Then, at 2.0 st = , 

3 311.4 m (4.4 m/s)(2.0 s) (1.24 m/s )(2.0 s) 11.8 m
6

x = + + = . 

(c) 3 3( ) 1.4 m (4.4 m/s) (0.20 m/s )x t t t= + + . 3 2( ) 4.4 m/s (0.60 m/s )xv t t= + . 3( ) (1.20m/s )xa t t= . The graphs are 
sketched in Figure 2.50. 
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EVALUATE: We can verify that x
x

dva
dt

= and x
dxv
dt

= . 

 
Figure 2.50 

 2.51. 2
xa At Bt= −  with 31.50 m/sA =  and 40.120 m/sB =  

(a) IDENTIFY: Integrate ( )xa t  to find ( )xv t  and then integrate ( )xv t  to find ( ).x t  

SET UP: 0 0
 

t

x x xv v a dt= + ∫  

EXECUTE: 2 2 31 1
0 0 2 30

( ) 
t

x x xv v At Bt dt v At Bt= + − = + −∫  

At rest at 0t =  says that 0 0,xv =  so 
2 3 3 2 41 1 1 1

2 3 2 3(1.50 m/s ) (0.120 m/s )xv At Bt t t3= − = −  
3 2 4 3(0.75 m/s ) (0.040 m/s )xv t t= −  

SET UP: 0 0
 

t

xx x v dt− + ∫  

EXECUTE: ( )2 3 3 41 1 1 1
0 02 3 6 120

 
t

x x At Bt dt x At Bt= + − = + −∫  

At the origin at 0t =  says that 0 0,x =  so 
3 4 3 3 4 41 1 1 1

6 12 6 12(1.50 m/s ) (0.120 m/s )x At Bt t t= − = −  
3 3 4 4(0.25 m/s ) (0.010 m/s )x t t= −  

EVALUATE: We can check our results by using them to verify that ( )x
dxv t
dt

=  and ( ) .x
x

dva t
dt

=  

(b) IDENTIFY and SET UP: At time t, when xv  is a maximum, 0.xdv
dt

=  (Since ,x
x

dva
dt

=  the maximum velocity 

is when 0.xa =  For earlier times xa  is positive so xv  is still increasing. For later times xa  is negative and xv  is 
decreasing.) 

EXECUTE: 0x
x

dva
dt

= =  so 2 0At Bt− =  

One root is 0,t =  but at this time 0xv =  and not a maximum. 

The other root is 
3

4

1.50 m/s 12.5 s
0.120 m/s

At
B

= = =  

At this time 3 2 4 3(0.75 m/s ) (0.040 m/s )xv t t= −  gives 
3 2 4 3(0.75 m/s )(12.5 s) (0.040 m/s )(12.5 s) 117.2 m/s 78.1 m/s 39.1 m/s.xv = − = − =  

EVALUATE: For 12.5 s,t <  0xa >  and xv  is increasing. For 12.5 s,t > 0xa <  and xv  is decreasing. 
 2.52. IDENTIFY: ( )a t is the slope of the v versus t graph and the distance traveled is the area under the v versus t graph. 

SET UP: The v versus t graph can be approximated by the graph sketched in Figure 2.52. 
EXECUTE: (a) Slope 0 for 1.3 msa t= = ≥ . 
(b) 

max Area under -  graphh v t= Triangle RectangleA A≈ + ( )1 (1.3 ms) 133 cm/s (2.5 ms 1.3 ms)(133 cm s)
2

≈ + − 0.25 cm≈  

(c) slopea =  of v-t graph. 25133cm s(0.5 ms) (1.0 ms) 1.0 10 cm s
1.3ms

a a≈ ≈ = × . 

(1.5 ms) 0  because the slope is zero.a =  
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(d) areah =  under v-t graph. ( ) 3
Triangle

1(0.5 ms) (0.5 ms) 33 cm/s 8.3 10  cm
2

h A −≈ = = × . 

2
Triangle

1(1.0 ms) (1.0 ms)(100 cm s) 5.0 10  cm
2

h A −≈ = = × . 

( )Triangle Rectangle
1(1.5 ms) (1.3 ms) 133 cm/s (0.2 ms)(1.33) 0.11 cm
2

h A A≈ + = =  

EVALUATE: The acceleration is constant until 1.3 mst = , and then it is zero. 2980 cm/sg = . The acceleration 
during the first 1.3 ms is much larger than this and gravity can be neglected for the portion of the jump that we are 
considering. 

 
Figure 2.52 

 2.53. (a) IDENTIFY and SET UP: The change in speed is the area under the xa  versus t curve between vertical lines at 
2.5 st =  and 7.5 s.t =  

EXECUTE: This area is 2 21
2 (4.00 cm/s 8.00 cm/s )(7.5 s 2.5 s) 30.0 cm/s+ − =  

This acceleration is positive so the change in velocity is positive. 
(b) Slope of xv  versus t is positive and increasing with t. The graph is sketched in Figure 2.53. 

 
Figure 2.53 

EVALUATE: The calculation in part (a) is equivalent to av-( ) .x xv a tΔ = Δ  Since xa  is linear in t, 

av- 0( ) / 2.x x xa a a= +  Thus 2 21
av- 2 (4.00 cm/s 8.00 cm/s )xa = +  for the time interval 2.5 st =  to 7.5 s.t =  

 2.54. IDENTIFY: The average speed is the total distance traveled divided by the total time. The elapsed time is the 
distance traveled divided by the average speed. 
SET UP: The total distance traveled is 20 mi. With an average speed of 8 mi/h for 10 mi, the time for that first 

10 miles is 10 mi 1.25 h
8 mi/h

= . 

EXECUTE: (a) An average speed of 4 mi/h for 20 mi gives a total time of 20 mi 5.0 h
4 mi/h

= . The second 10 mi must 

be covered in 5.0 h 1.25 h 3.75 h− = . This corresponds to an average speed of 10 mi 2.7 mi/h
3.75 h

= . 

(b) An average speed of 12 mi/h for 20 mi gives a total time of 20 mi 1.67 h
12 mi/h

= . The second 10 mi must be 

covered in 1.67 h 1.25 h 0.42 h− = . This corresponds to an average speed of 10 mi 24 mi/h
0.42 h

= . 

(c) An average speed of 16 mi/h for 20 mi gives a total time of 20 mi 1.25 h
16 mi/h

= . But 1.25 h was already spent 

during the first 10 miles and the second 10 miles would have to be covered in zero time. This is not possible and an 
average speed of 16 mi/h for the 20-mile ride is not possible. 
EVALUATE: The average speed for the total trip is not the average of the average speeds for each 10-mile 
segment. The rider spends a different amount of time traveling at each of the two average speeds. 

 2.55. IDENTIFY: ( )x
dxv t
dt

=  and x
x

dva
dt

= . 

SET UP: 1( )n nd t nt
dt

−= , for 1n ≥ . 

EXECUTE: (a) 3 2 2( ) (9.00 m/s ) (20.0 m/s ) 9.00 m/sxv t t t= − + . 3 2( ) (18.0 m/s ) 20.0 m/sxa t t= − . The graphs are 
sketched in Figure 2.55. 
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(b) The particle is instantaneously at rest when ( ) 0xv t = . 0 0xv = and the quadratic formula gives 

21 (20.0 (20.0) 4(9.00)(9.00)) s 1.11 s 0.48 s
18.0

t = ± − = ± . 0.63 st = and 1.59 st = . These results agree with the 

-xv t graphs in part (a). 

(c) For 0.63 st = , 3 2 2(18.0 m/s )(0.63 s) 20.0 m/s 8.7 m/sxa = − = − . For 1.59 st = , 28.6 m/sxa = + . At 0.63 st =  
the slope of the -xv t graph is negative and at 1.59 st = it is positive, so the same answer is deduced from the 

( )xv t graph as from the expression for ( )xa t . 

(d) ( )xv t  is instantaneously not changing when 0xa = . This occurs at 
2

3

20.0 m/s 1.11 s
18.0m/s

t = = . 

(e) When the particle is at its greatest distance from the origin, 0xv = and 0xa <  (so the particle is starting to 
move back toward the origin). This is the case for 0.63 st = , which agrees with the x-t graph in part (a) . At 

0.63 st = , 2.45 mx = . 
(f) The particle�s speed is changing at its greatest rate when xa has its maximum magnitude. The -xa t graph in part 
(a) shows this occurs at 0t = and at 2.00 st = . Since xv is always positive in this time interval, the particle is 
speeding up at its greatest rate when xa is positive, and this is for 2.00 st = . 
The particle is slowing down at its greatest rate when xa is negative and this is for 0t = . 
EVALUATE: Since ( )xa t is linear in t, ( )xv t is a parabola and is symmetric around the point where ( )xv t has its 
minimum value ( 1.11 st = ). For this reason, the answer to part (d) is midway between the two times in part (c). 

 
Figure 2.55 

 2.56. IDENTIFY: The average velocity is av-x
xv
t

Δ
=
Δ

. The average speed is the distance traveled divided by the 

elapsed time. 
SET UP: Let x+  be in the direction of the first leg of the race. For the round trip, 0xΔ ≥ and the total distance 
traveled is 50.0 m. For each leg of the race both the magnitude of the displacement and the distance traveled 
are 25.0 m. 

EXECUTE: (a) av-
25.0 m 1.25 m/s
20.0 sx

xv
t

Δ
= = =
Δ

. This is the same as the average speed for this leg of the race. 

(b) av-
25.0 m 1.67 m/s
15.0 sx

xv
t

Δ
= = =
Δ

. This is the same as the average speed for this leg of the race. 

(c) 0xΔ = so av- 0xv = . 

(d) The average speed is 50.0 m 1.43 m/s
35.0 s

= . 

EVALUATE: Note that the average speed for the round trip is not equal to the arithmetic average of the average 
speeds for each leg. 

 2.57. IDENTIFY: Use information about displacement and time to calculate average speed and average velocity. Take 
the origin to be at Seward and the positive direction to be west. 

(a) SET UP: distance traveledaverage speed
time

=  

EXECUTE: The distance traveled (different from the net displacement 0( )x x− ) is 76 km 34 km 110 km.+ =  

Find the total elapsed time by using 0
av-x

x x xv
t t

Δ −
= =
Δ

 to find t for each leg of the journey. 

Seward to Auora: 0

av-

76 km 0.8636 h
88 km/hx

x xt
v
−

= = =  
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Auora to York: 0

av-

34 km 0.4722 h
72 km/hx

x xt
v
− −

= = =
−

 

Total 0.8636 h 0.4722 h 1.336 h.t = + =  

Then 110 kmaverage speed 82 km/h.
1.336 h

= =  

(b) SET UP: av- ,x
xv
t

Δ
=
Δ

 where xΔ  is the displacement, not the total distance traveled. 

For the whole trip he ends up 76 km 34 km 42 km− =  west of his starting point. av-
42 km 31 km/h.
l.336 hxv = =  

EVALUATE: The motion is not uniformly in the same direction so the displacement is less than the distance 
traveled and the magnitude of the average velocity is less than the average speed. 

 2.58. IDENTIFY: The vehicles are assumed to move at constant speed. The speed (mi/h) divided by the frequency with 
which vehicles pass a given point (vehicles/h) is the total space per vehicle (the length of the vehicle plus space to 
the next vehicle). 
SET UP: 396 km/h 96 10  m/h= ×  

EXECUTE: (a) The total space per vehicle is 
396 10  m/h 40 m/vehicle

2400 vehicles/h
×

= . Since the average length of a 

vehicle is 4.6 m, the average space between vehicles is 40 m 4.6 m 35 m− = . 

(b) The frequency of vehicles (vehicles/h) is 
396 10  m/h 7000 vehicles/h

(4.6 9.2) m/vehicle
×

=
+

. 

EVALUATE: The traffic flow rate per lane would nearly triple. Note that the traffic flow rate is directly 
proportional to the traffic speed. 

 2.59. (a) IDENTIFY: Calculate the average acceleration using 0
av-

x x x
x

v v va
t t

Δ −
= =
Δ

 Use the information about the time 

and total distance to find his maximum speed. 
SET UP: 0 0xv =  since the runner starts from rest. 

4.0 s,t =  but we need to calculate ,xv  the speed of the runner at the end of the acceleration period. 
EXECUTE: For the last 9.1 s 4.0 s 5.1 s− =  the acceleration is zero and the runner travels a distance of 

1 (5.1 s) xd v=  (obtained using 21
0 0 2 )x xx x v t a t− = +  

During the acceleration phase of 4.0 s, where the velocity goes from 0 to ,xv  the runner travels a distance 

0
2 (4.0 s) (2.0 s)

2 2
x x x

x
v v vd t v+⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

The total distance traveled is 100 m, so 1 2 100 m.d d+ =  This gives (5.1 s) (2.0 s) 100 m.x xv v+ =  
100 m 14.08 m/s.
7.1 sxv = =  

Now we can calculate av- :xa  20
av-

14.08 s 0 3.5 m/s .
4.0 s

x x
x

v va
t
− −

= = =  

(b) For this time interval the velocity is constant, so av 0.xa − =  
EVALUATE: Now that we have xv  we can calculate 1 (5.1 s)(14.08 m/s) 71.9 md = =  and 

2 (2.0 s)(14.08 m/s) 28.2 m.d = =  So, 1 2 100 m,d d+ =  which checks. 

(c) IDENTIFY and SET UP: 0
av- ,x x

x
v va

t
−

=  where now the time interval is the full 9.1 s of the race. 

We have calculated the final speed to be 14.08 m/s,  so 

2
av-

14.08 m/s 1.5 m/s .
9.1 sxa = =  

EVALUATE: The acceleration is zero for the last 5.1 s, so it makes sense for the answer in part (c) to be less than 
half the answer in part (a). 
(d) The runner spends different times moving with the average accelerations of parts (a) and (b). 

 2.60. IDENTIFY: Apply the constant acceleration equations to the motion of the sled. The average velocity for a time 

interval tΔ is av-x
xv
t

Δ
=
Δ

. 
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SET UP: Let x+  be parallel to the incline and directed down the incline. The problem doesn�t state how much 
time it takes the sled to go from the top to 14.4 m from the top. 

EXECUTE: (a) 14.4 m to 25.6 m: av-
25.6 m 14.4 m 5.60 m/s

2.00 sxv −
= = . 25.6 to 40.0 m: 

av-
40.0 m 25.6 m 7.20 m/s

2.00 sxv −
= = . 40.0 m to 57.6 m: av-

57.6 m 40.0 m 8.80 m/s
2.00 sxv −

= = . 

(b) For each segment we know 0x x− and t but we don�t know 0xv or xv . Let 1 14.4 mx = and 2 25.6 mx = . For 

this interval 1 2 2 1

2
v v x x

t
+ −⎛ ⎞ =⎜ ⎟

⎝ ⎠
and 2 1at v v= − . Solving for 2v gives 2 11

2 2
x xv at

t
−

= + . Let 2 25.6 mx = and 

3 40.0 mx = . For this second interval, 2 3 3 2

2
v v x x

t
+ −⎛ ⎞ =⎜ ⎟

⎝ ⎠
and 3 2at v v= − . Solving for 2v gives 

3 21
2 2

x xv at
t
−

= − + . Setting these two expressions for 2v equal to each other and solving for a gives 

2
3 2 2 12 2

1 1[( ) ( )] [(40.0 m 25.6 m) (25.6 m 14.4 m)] 0.80 m/s
(2.00 s)

a x x x x
t

= − − − = − − − = . 

Note that this expression for a says av-23 av-12v va
t
−

= , where av-12v and av-23v are the average speeds for successive 

2.00 s intervals. 
(c) For the motion from 14.4 mx = to 25.6 mx = , 0 11.2 mx x− = , 20.80 m/sxa = and 2.00 st = . 

21
0 0 2x xx x v t a t− = + gives 20 1

0 2
11.2 m 1 (0.80 m/s )(2.00 s) 4.80 m/s
2.00 s 2x x

x xv a t
t
−

= − = − = . 

(d) For the motion from 0x = to 14.4 mx = , 0 14.4 mx x− = , 0 0xv = , and 4.8 m/sxv = . 

0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟
⎝ ⎠

gives 0

0

2( ) 2(14.4 m) 6.0 s
4.8 m/sx x

x xt
v v

−
= = =

+
. 

(e) For this 1.00 s time interval, 1.00 st = , 0 4.8 m/sxv = , 20.80 m/sxa = . 
2 2 21 1

0 0 2 2(4.8 m/s)(1.00 s) (0.80 m/s )(1.00 s) 5.2 mx xx x v t a t− = + = + = . 

EVALUATE: With 0x = at the top of the hill, 2 2 21
0 2( ) (0.40 m/s )x xx t v t a t t= + = . We can verify that 

6.0 st = gives 14.4 mx = , 8.0 st = gives 25.6 m, 10.0 st = gives 40.0 m, and 12.0 st = gives 57.6 m. 
 2.61. IDENTIFY: When the graph of xv versus t is a straight line the acceleration is constant, so this motion consists of 

two constant acceleration segments and the constant acceleration equations can be used for each segment. Since 
xv is always positive the motion is always in the x+  direction and the total distance moved equals the magnitude 

of the displacement. The acceleration xa is the slope of the xv versus t graph. 
SET UP: For the 0t = to 10.0 st = segment, 0 4.00 m/sxv = and 12.0 m/sxv = . For the 10.0 st = to 
12.0 s segment, 0 12.0 m/sxv = and 0xv = . 

EXECUTE: (a) For 0t = to 10.0 st = , 0
0

4.00 m/s 12.0 m/s (10.0 s) 80.0 m
2 2

x xv vx x t+ +⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. For 

10.0 st = to 12.0 st = , 0
12.0 m/s 0 (2.00 s) 12.0 m

2
x x +⎛ ⎞− = =⎜ ⎟

⎝ ⎠
. The total distance traveled is 92.0 m. 

(b) 0 80.0 m 12.0 m 92.0 mx x− = + =  

(c) For 0t = to 10.0 s, 212.0 m/s 4.00 m/s 0.800 m/s
10.0 sxa −

= = . For 10.0 st = to 10.2 s, 

20 12.0 m/s 6.00 m/s
2.00 sxa −

= = − . The graph of xa versus t is given in Figure 2.61. 
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EVALUATE: When xv and xa are both positive, the speed increases. When xv is positive and xa is negative, the 
speed decreases. 

 
Figure 2.61 

 2.62. IDENTIFY: Since light travels at constant speed, d ct=  
SET UP: The distance from the earth to the sun is 111.50 10  m× . The distance from the earth to the moon is 

83.84 10  m× . 186,000 mi/sc = . 

EXECUTE: (a) 
1

8 154365  d 24 h 3600 s(3.0 10  m/s)(1 y) 9.5 10  m
1 y 1 d 1 h

d ct
⎛ ⎞⎛ ⎞⎛ ⎞= = × = ×⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

(b) 8 9(3.0 10  m/s)(10  s) 0.30 md ct −= = × =  

(c) 
11

8

1.5 10  m 500 s 8 33 min
3.0 10  m s

dt .
c

×
= = = =

×
 

(d) 
8

8

2(3.84 10  m) 2.6 s
3.0 10  m s

dt
c

×
= = =

×
  

(e) 
93 10  mi 16,100 s 4 5 h

186,000 mi s
dt .
c

×
= = = =  

EVALUATE: The speed of light is very large but it still takes light a measurable length of time to travel a large 
distance. 

 2.63. IDENTIFY: Speed is distance d divided by time t. The distance around a circular path is 2d Rπ= , where R is the 
radius of the circular path. 
SET UP: The radius of the earth is 6

E 6.38 10  mR = × . The earth rotates once in 1 day 86,400 s= . The radius of 

the earth�s orbit around the sun is 111.50 10  m× and the earth completes this orbit in 71 year 3.156 10  s= × . The 

speed of light in vacuum is 83.00 10  m/sc = × . 

EXECUTE: (a) 
6

E2 2 (6.38 10  m) 464 m/s
86,400 s

d Rv
t t

π π ×
= = = = . 

(b) 
11

4
7

2 2 (1.50 10  m) 2.99 10  m/s
3.156 10  s

Rv
t
π π ×

= = = ×
×

. 

(c) The time for light to go around once is 
6

E
8

2 2 (6.38 10  m) 0.1336 s
c 3.00 10  m/s

d Rt
c

π π ×
= = = =

×
. In 1.00 s light would go 

around the earth 1.00 s 7.49 times 
0.1336 s

= . 

EVALUATE: All these speeds are large compared to speeds of objects in our everyday experience. 
 2.64. IDENTIFY: When the graph of xv versus t is a straight line the acceleration is constant, so this motion consists of 

two constant acceleration segments and the constant acceleration equations can be used for each segment. For 
0t = to 5.0 s, xv is positive and the ball moves in the x+  direction. For 5.0 st = to 20.0 s, xv is negative and the 

ball moves in the x− direction. The acceleration xa is the slope of the xv versus t graph. 
SET UP: For the 0t = to 5.0 st = segment, 0 0xv = and 30.0 m/sxv = . For the 5.0 st = to 20.0 st = segment, 

0 20.0 m/sxv = − and 0xv = . 
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EXECUTE: (a) For 0t = to 5.0 s, 0
0

0 30.0 m/s (5.0 m/s) 75.0 m
2 2

x xv vx x t+ +⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. The ball travels a 

distance of 75.0 m. For 5.0 st = to 20.0 s, 0
20.0 m/s 0 (15.0 m/s) 150.0 m

2
x x − +⎛ ⎞− = = −⎜ ⎟

⎝ ⎠
. The total distance 

traveled is 75.0 m 150.0 m 225.0 m+ = . 
(b) The total displacement is 0 75.0 m +( 150.0 m) 75.0 mx x− = − = − . The ball ends up 75.0 m in the negative x-
direction from where it started. 

(c) For 0t = to 5.0 s, 230.0 m/s 0 6.00 m/s
5.0 sxa −

= = . For 5.0 st = to 20.0 s, 20 ( 20.0 m/s) 1.33 m/s
15.0 sxa − −

= = + . 

The graph of xa versus t is given in Figure 2.64. 
(d) The ball is in contact with the floor for a small but nonzero period of time and the direction of the velocity 
doesn't change instantaneously. So, no, the actual graph of ( )xv t is not really vertical at 5.00 s. 
EVALUATE: For 0t = to 5.0 s, both xv and xa are positive and the speed increases. For 5.0 st = to 20.0 s, xv is 
negative and xa is positive and the speed decreases. Since the direction of motion is not the same throughout, the 
displacement is not equal to the distance traveled. 

 
Figure 2.64 

 2.65. IDENTIFY and SET UP: Apply constant acceleration equations. 
Find the velocity at the start of the second 5.0 s; this is the velocity at the end of the first 5.0 s. Then find 0x x−  for 
the first 5.0 s. 
EXECUTE: For the first 5.0 s of the motion, 0 0,xv =  5.0 s.t =  

0x x xv v a t= +  gives (5.0 s).x xv a=  
This is the initial speed for the second 5.0 s of the motion. For the second 5.0 s: 

0 (5.0 s),x xv a=  5.0 s,t =  0 150 m.x x− =  
21

0 0 2x xx x v t a t− = +  gives 2 2150 m (25 s ) (12.5 s )x xa a= +  and 24.0 m/sxa =  
Use this xa  and consider the first 5.0 s of the motion: 

2 2 21 1
0 0 2 20 (4.0 m/s )(5.0 s) 50.0 m.x xx x v t a t− = + = + =  

EVALUATE: The ball is speeding up so it travels farther in the second 5.0 s interval than in the first. In fact, 
0x x−  is proportional to t 2  since it starts from rest. If it goes 50.0 m in 5.0 s, in twice the time (10.0 s) it should go 

four times as far. In 10.0 s we calculated it went 50 m 150 m 200 m,+ =  which is four times 50 m. 
 2.66. IDENTIFY: Apply 21

0 0 2x xx x v t a t− = +  to the motion of each train. A collision means the front of the passenger 
train is at the same location as the caboose of the freight train at some common time. 
SET UP: Let P be the passenger train and F be the freight train. For the front of the passenger train 0 0x = and for 
the caboose of the freight train 0 200 mx = . For the freight train F 15.0 m/sv = and F 0a = . For the passenger train 

P 25.0 m/sv = and 2
P 0.100 m/sa = − . 

EXECUTE: (a) 21
0 0 2x xx x v t a t− = + for each object gives 21

P P P2x v t a t= + and F F200 mx v t= + . Setting 

P Fx x= gives 21
P P F2 200 mv t a t v t+ = + . 2 2(0.0500 m/s ) (10.0 m/s) 200 m 0t t− + = . The 

quadratic formula gives ( )21 10.0 (10.0) 4(0.0500)(200)  s (100 77.5) s
0.100

t = + ± − = ± . The collision occurs at 

100 s 77.5 s 22.5 st = − = . The equations that specify a collision have a physical solution (real, positive t), so a 
collision does occur. 
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(b) 2 21
P 2(25.0 m/s)(22.5 s) ( 0.100 m/s )(22.5 s) 537 mx = + − = . The passenger train moves 537 m before the 

collision. The freight train moves (15.0 m/s)(22.5 s) 337 m= . 
(c) The graphs of Fx and Px versus t are sketched in Figure 2.66. 
EVALUATE: The second root for the equation for t, 177.5 st = is the time the trains would meet again if they 
were on parallel tracks and continued their motion after the first meeting. 

 
Figure 2.66 

 2.67. IDENTIFY: Apply constant acceleration equations to the motion of the two objects, you and the cockroach. You 
catch up with the roach when both objects are at the same place at the same time. Let T be the time when you catch 
up with the cockroach. 
SET UP: Take 0x =  to be at the 0t =  location of the roach and positive x to be in the direction of motion of the 
two objects. 
roach: 

0 1.50 m/s,xv =  0,xa =  0 0,x =  1.20 m,x =  t T=  
you: 

0 0.80 m/s,xv =  0 0.90 m,x = −  1.20 m,x =  ,t T=  ?xa =  

Apply 21
0 0 2x xx x v t a t− = +  to both objects: 

EXECUTE: roach: 1.20 m (1.50 m/s) ,T=  so 0.800 s.T =  

you: 21
21.20 m ( 0.90 m) (0.80 m/s) xT a T− − = +  

21
22.10 m (0.80 m/s)(0.800 s) (0.800 s)xa= +  

22.10 m 0.64 m (0.320 s ) xa= +  
24.6 m/s .xa =  

EVALUATE: Your final velocity is 0 4.48 m/s.x x xv v a t= + =  Then 0
0 2.10 m,

2
x xv vx x t+⎛ ⎞− = =⎜ ⎟

⎝ ⎠
 which checks. 

You have to accelerate to a speed greater than that of the roach so you will travel the extra 0.90 m you are initially 
behind. 

 2.68. IDENTIFY: The insect has constant speed 15 m/s during the time it takes the cars to come together. 
SET UP: Each car has moved 100 m when they hit. 

EXECUTE: The time until the cars hit is 100 m 10 s
10 m/s

= . During this time the grasshopper travels a distance of 

(15 m/s)(10 s) 150 m= . 
EVALUATE: The grasshopper ends up 100 m from where it started, so the magnitude of his final displacement is 
100 m. This is less than the total distance he travels since he spends part of the time moving in the opposite 
direction. 

 2.69. IDENTIFY: Apply constant acceleration equations to each object. 
Take the origin of coordinates to be at the initial position of the truck, as shown in Figure 2.69a 
Let d be the distance that the auto initially is behind the truck, so 0(auto)x d= −  and 0(truck) 0.x =  Let T be the 
time it takes the auto to catch the truck. Thus at time T the truck has undergone a displacement 0 40.0 m,x x− =  so 
is at 0 40.0 m 40.0 m.x x= + =  The auto has caught the truck so at time T is also at 40.0 m.x =  

 
Figure 2.69a 
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(a) SET UP: Use the motion of the truck to calculate T: 

0 40.0 m,x x− =  0 0xv =  (starts from rest), 22.10 m/s ,xa =  t T=  
21

0 0 2x xx x v t a t− = +  

Since 0 0,xv =  this gives 02( )

x

x xt
a
−

=  

EXECUTE: 2

2(40.0 m) 6.17 s
2.10 m/s

T = =  

(b) SET UP: Use the motion of the auto to calculate d: 

0 40.0 m ,x x d− = +  0 0,xv =  23.40 m/s ,xa =  6.17 st =  
21

0 0 2x xx x v t a t− = +  

EXECUTE: 2 21
240.0 m (3.40 m/s )(6.17 s)d + =  

64.8 m 40.0 m 24.8 md = − =  
(c) auto: 2

0 0 (3.40 m/s )(6.17 s) 21.0 m/sx x xv v a t= + = + =  

truck: 2
0 0 (2.10 m/s )(6.17 s) 13.0 m/sx x xv v a t= + = + =  

(d) The graph is sketched in Figure 2.69b. 

 
Figure 2.69b 

EVALUATE: In part (c) we found that the auto was traveling faster than the truck when they come abreast. The 
graph in part (d) agrees with this: at the intersection of the two curves the slope of the x-t curve for the auto is 
greater than that of the truck. The auto must have an average velocity greater than that of the truck since it must 
travel farther in the same time interval. 

 2.70. IDENTIFY: Apply the constant acceleration equations to the motion of each car. The collision occurs when the 
cars are at the same place at the same time. 
SET UP: Let x+  be to the right. Let 0x = at the initial location of car 1, so 01 0x = and 02x D= . The cars collide 
when 1 2x x= . 0 1 0xv = , 1x xa a= , 0 2 0xv v= − and 2 0xa = . 

EXECUTE: (a) 21
0 0 2x xx x v t a t− = + gives 21

1 2 xx a t= and 2 0x D v t= − . 1 2x x= gives 21
02 xa t D v t= − . 

21
02 0xa t v t D+ − = . The quadratic formula gives ( )2

0 0
1 2 x

x

t v v a D
a

= − ± + . Only the positive root is physical, 

so ( )2
0 0

1 2 x
x

t v v a D
a

= − + + . 

(b) 2
1 0 02x xv a t v a D v= = + −  

(c) The x-t and -xv t graphs for the two cars are sketched in Figure 2.70. 
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EVALUATE: In the limit that 0xa = , 0 0D v t− = and 0/t D v= , the time it takes car 2 to travel distance D. In the 

limit that 0 0v = , 2

x

Dt
a

= , the time it takes car 1 to travel distance D. 

 
Figure 2.70 

 2.71. IDENTIFY: The average speed is the distance traveled divided by the time. The average velocity is av-x
xv
t

Δ
=
Δ

. 

SET UP: The distance the ball travels is half the circumference of a circle of diameter 50.0 cm so is 
1 1
2 2 (50.0 cm) 78.5 cmdπ π= = . Let x+  be horizontally from the starting point toward the ending point, so 

xΔ equals the diameter of the bowl. 

EXECUTE: (a) The average speed is 
1
2 78.5 cm 7.85 cm/s

10.0 s
d

t
π

= = . 

(b) The average velocity is av-
50.0 cm 5.00 cm/s
10.0 sx

xv
t

Δ
= = =
Δ

. 

EVALUATE: The average speed is greater than the magnitude of the average velocity, since the distance traveled 
is greater than the magnitude of the displacement. 

 2.72. IDENTIFY: xa is the slope of the xv versus t graph. x is the area under the xv versus t graph. 
SET UP: The slope of xv is positive and decreasing in magnitude. As xv increases, the displacement in a given 
amount of time increases. 
EXECUTE: The -xa t  and x-t graphs are sketched in Figure 2.72. 
EVALUATE: xv is the slope of the x versus t graph. The ( )x t graph we sketch has zero slope at 0t = , the slope is 
always positive, and the slope initially increases and then approaches a constant. This behavior agrees with the 

( )xv t that is given in the graph in the problem. 

 
Figure 2.72 

 2.73. IDENTIFY: Apply constant acceleration equations to each vehicle. 
SET UP: (a) It is very convenient to work in coordinates attached to the truck. 
Note that these coordinates move at constant velocity relative to the earth. In these coordinates the truck is at rest, 
and the initial velocity of the car is 0 0.xv =  Also, the car�s acceleration in these coordinates is the same as in 
coordinates fixed to the earth. 
EXECUTE: First, let�s calculate how far the car must travel relative to the truck: The situation is sketched in 
Figure 2.73. 

 
Figure 2.73 



2-30 Chapter 2 

The car goes from 0 24.0 mx = −  to 51.5 m.x =  So 0 75.5 mx x− =  for the car. 
Calculate the time it takes the car to travel this distance: 

20.600 m/s ,xa =  0 0,xv =  0 75.5 m,x x− =  ?t =  
21

0 0 2x xx x v t a t− = +  

0
2

2( ) 2(75.5 m) 15.86 s
0.600 m/sx

x xt
a
−

= = =  

It takes the car 15.9 s to pass the truck. 
(b) Need how far the car travels relative to the earth, so go now to coordinates fixed to the earth. In these 
coordinates 0 20.0 m/sxv =  for the car. Take the origin to be at the initial position of the car. 

0 20.0 m/s,xv =  20.600 m/s ,xa =  15.86 s,t =  0 ?x x− =  
2 2 21 1

0 0 2 2(20.0 m/s)(15.86 s) (0.600 m/s )(15.86 s)x xx x v t a t− = + = +  

0 317.2 m 75.5 m 393 m.x x− = + =  
(c) In coordinates fixed to the earth: 

2
0 20.0 m/s (0.600 m/s )(15.86 s) 29.5 m/sx x xv v a t= + = + =  

EVALUATE: In 15.9 s the truck travels 0 (20.0 m/s)(15.86 s) 317.2 m.x x− = =  The car travels 
392.7 m 317.2 m 75 m− =  farther than the truck, which checks with part (a). In coordinates attached to the truck, 

for the car 0 0,xv =  9.5 m/sxv =  and in 15.86 s the car travels 0
0 75 m,

2
x xv vx x t+⎛ ⎞− = =⎜ ⎟

⎝ ⎠
 which checks with 

part (a). 
 2.74. IDENTIFY: The acceleration is not constant so the constant acceleration equations cannot be used. Instead, use 

( ) x
x

dva t
dt

= and 0 0
( )

t

xx x v t dt= + ∫ . 

SET UP: 11
1

n nt dt t
n

+=
+∫  for 0n ≥ . 

EXECUTE: (a) 2 31
0 0 30

( ) [ ]
t

x t x t dt x t tα β α β= + − = + −∫ . 0x = at 0t = gives 0 0x = and 

3 3 31
3( ) (4.00 m/s) (0.667 m/s )x t t t t tα β= − = − . 3( ) 2 (4.00 m/s )x

x
dva t t t
dt

β= = − = − . 

(b) The maximum positive x is when 0xv = and 0xa < . 0xv =  gives 2 0tα β− =  and 

3

4.00 m/s 1.41 s
2.00 m/s

t α
β

= = = . At this t, xa is negative. For 1.41 st = , 

3 3(4.00 m/s)(1.41 s) (0.667 m/s )(1.41 s) 3.77 mx = − = . 
EVALUATE: After 1.41 st =  the object starts to move in the x−  direction and goes to x = −∞  as t →∞ . 

 2.75. ( ) ,a t tα β= +  with 22.00 m/sα = −  and 33.00 m/sβ =  
(a) IDENTIFY and SET UP: Integrage ( )xa t  to find ( )xv t  and then integrate ( )xv t  to find ( ).x t  

EXECUTE: 21
0 0 0 20 0

 ( ) 
t t

x x x x xv v a dt v dt v t tα β α β= + = + + = + +∫ ∫  

2 2 31 1 1
0 0 0 0 02 2 60 0

 ( ) 
t t

x x xx x v dt x v t t dt x v t t tα β α β= + = + + + = + + +∫ ∫  

At 0,t =  0.x x=  

To have 0x x=  at 1 4.00 st =  requires that 2 31 1
0 1 1 12 6 0.xv t t tα β+ + =  

Thus 2 3 2 21 1 1 1
0 1 16 2 6 2(3.00 m/s )(4.00 s) ( 2.00 m/s )(4.00 s) 4.00 m/s.xv t tβ α= − − = − − − = −  

(b) With 0xv  as calculated in part (a) and 4.00 s,t =  
2 2 3 21 1

0 0 2 24.00 s ( 2.00 m/s )(4.00 s) (3.00 m/s )(4.00 s) 12.0 m/s.xv v t tα β= + + = − + − + = +  
EVALUATE: 0xa =  at 0.67 s.t =  For 0.67 s,t >  0.xa >  At 0,t =  the particle is moving in the -directionx−  
and is speeding up. After 0.67 s,t =  when the acceleration is positive, the object slows down and then starts to 
move in the -directionx+  with increasing speed. 
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 2.76. IDENTIFY: Find the distance the professor walks during the time t it takes the egg to fall to the height of his head. 
SET UP: Let y+  be downward. The egg has 0 0yv =  and 29.80 m/sya = . At the height of the professor�s head, 

the egg has 0 44.2 my y− = . 

EXECUTE: 21
0 0 2y yy y v t a t− = +  gives 0

2

2( ) 2(44.2 m) 3.00 s
9.80 m/sy

y yt
a
−

= = = . The professor walks a distance 

0 0 (1.20 m/s)(3.00 s) 3.60 mxx x v t− = = = . Release the egg when your professor is 3.60 m from the point directly 
below you. 
EVALUATE: Just before the egg lands its speed is 2(9.80 m/s )(3.00s) 29.4 m/s= . It is traveling much faster than 
the professor. 

 2.77. IDENTIFY: Use the constant acceleration equations to establish a relationship between maximum height and 
acceleration due to gravity and between time in the air and acceleration due to gravity. 
SET UP: Let y+  be upward. At the maximum height, 0yv = . When the rock returns to the surface, 0 0y y− = . 

EXECUTE: (a) 2 2
0 02 ( )y y yv v a y y= + − gives 21

02y ya H v= − , which is constant, so E E M Ma H a H= . 
2

E
M E 2

M

9.80 m/s 2.64
3.71 m/s

aH H H H
a

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

(b) 21
0 0 2y yy y v t a t− = + with 0 0y y− = gives 02y ya t v= − , which is constant, so E E M Ma T a T= . 

E
M E

M

2.64aT T T
a
⎡ ⎤

= =⎢ ⎥
⎣ ⎦

. 

EVALUATE: On Mars, where the acceleration due to gravity is smaller, the rocks reach a greater height and are in 
the air for a longer time. 

 2.78. IDENTIFY: Calculate the time it takes her to run to the table and return. This is the time in the air for the thrown 
ball. The thrown ball is in free-fall after it is thrown. Assume air resistance can be neglected. 
SET UP: For the thrown ball, let y+  be upward. 29.80 m/sya = − . 0 0y y− = when the ball returns to its original 
position. 

EXECUTE: (a) It takes her 5.50 m 2.20 s
2.50 m/s

=  to reach the table and an equal time to return. For the ball, 

0 0y y− = , 4.40 st = and 29.80 m/sya = − . 21
0 0 2y yy y v t a t− = + gives 

21 1
0 2 2 ( 9.80 m/s )(4.40 s) 21.6 m/sy yv a t= − = − − = . 

(b) Find 0y y− when 2.20 st = . 2 2 21 1
0 0 2 2(21.6 m/s)(2.20 s) ( 9.80 m/s )(2.20 s) 23.8 my yy y v t a t− = + = + − =  

EVALUATE: It takes the ball the same amount of time to reach its maximum height as to return from its 
maximum height, so when she is at the table the ball is at its maximum height. Note that this large maximum 
height requires that the act either be done outdoors, or in a building with a very high ceiling. 

 2.79. (a) IDENTIFY: Use constant acceleration equations, with ,ya g=  downward, to calculate the speed of the diver 
when she reaches the water. 
SET UP: Take the origin of coordinates to be at the platform, and take the -directiony+  to be downward. 

0 21.3 m,y y− = +  29.80 m/s ,ya = +  0 0yv =  (since diver just steps off), ?yv =  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE: 2
02 ( ) 2(9.80 m/s )(31.3 m) 20.4 m/s.y yv a y y= + − = + = +  

We know that yv  is positive because the diver is traveling downward when she reaches the water. 
The announcer has exaggerated the speed of the diver. 
EVALUATE: We could also use 21

0 0 2y yy y v t a t− = +  to find 2.085 s.t =  The diver gains 9.80 m/s of speed each 

second, so has 2(9.80 m/s )(2.085 s) 20.4 m/syv = =  when she reaches the water, which checks. 
(b) IDENTIFY: Calculate the initial upward velocity needed to give the diver a speed of 25.0 m/s when she 
reaches the water. Use the same coordinates as in part (a). 
SET UP: 0 ?,yv =  25.0 m/s,yv = +  29.80 m/s ,ya = +  0 21.3 my y− = +  

2 2
0 02 ( )y y yv v a y y= + −  
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EXECUTE: 2 2 2
0 02 ( ) (25.0 m/s) 2(9.80 m/s )(21.3 m) 14.4 m/sy y yv v a y y= − − − = − − = −  

0( yv  is negative since the direction of the initial velocity is upward.) 
EVALUATE: One way to decide if this speed is reasonable is to calculate the maximum height above the platform 
it would produce: 

0 14.4 m/s,yv = −  0yv =  (at maximum height), 29.80 m/s ,ya = +  0 ?y y− =  
2 2

0 02 ( )y y yv v a y y= + −  
2 2 2

0
0

0 ( 14.4 s) 10.6 m
2 2( 9.80 m/s)

y y

y

v v
y y

a
− − −

− = = = −
+

 

This is not physically attainable; a vertical leap of 10.6 m upward is not possible. 
 2.80. IDENTIFY: The flowerpot is in free-fall. Apply the constant acceleration equations. Use the motion past the 

window to find the speed of the flowerpot as it reaches the top of the window. Then consider the motion from the 
windowsill to the top of the window. 
SET UP: Let y+  be downward. Throughout the motion 29.80 m/sya = + . 

EXECUTE: Motion past the window: 0 1.90 my y− = , 0.420 st = , 29.80 m/sya = + . 21
0 0 2y yy y v t a t− = + gives 

20 1 1
0 2 2

1.90 m (9.80 m/s )(0.420 s) 2.466 m/s
0.420 sy y

y yv a t
t
−

= − = − = . This is the velocity of the flowerpot when it is 

at the top of the window. 
Motion from the windowsill to the top of the window: 0 0yv = , 2.466 m/syv = , 29.80 m/sya = + . 

2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0

0 2

(2.466 m/s) 0 0.310 m
2 2(9.80 m/s )

y y

y

v v
y y

a
− −

− = = = . The top of the window is 0.310 m 

below the windowsill. 

EVALUATE: It takes the flowerpot 0
2

2.466 m/s 0.252 s
9.80 m/s

y y

y

v v
t

a
−

= = = to fall from the sill to the top of the 

window. Our result says that from the windowsill the pot falls 0.310 m 1.90 m 2.21 m+ =  in 
0.252 s 0.420 s 0.672 s+ = . 2 2 21 1

0 0 2 2 (9.80 m/s )(0.672 s) 2.21 my yy y v t a t− = + = = , which checks. 
 2.81. IDENTIFY: For parts (a) and (b) apply the constant acceleration equations to the motion of the bullet. In part (c) 

neglect air resistance, so the bullet is free-fall. Use the constant acceleration equations to establish a relation 
between initial speed 0v and maximum height H. 
SET UP: For parts (a) and (b) let x+  be in the direction of motion of the bullet. For part (c) let y+  be upward, so 

ya g= − . At the maximum height, 0yv = . 

EXECUTE: (a) 0 0.700 mx x− = , 0 0xv = , 965 m/sxv = . 2 2
0 02 ( )x x xv v a x x= + − gives 

2 2 2
5 20

0

(965 m/s) 0 6.65 10  m/s
2( ) 2(0.700 m)

x x
x

v va
x x
− −

= = = ×
−

. 46.79 10xa
g
= × , so 4(6.79 10 )xa g= × . 

(b) 0
0 2

x xv vx x t+⎛ ⎞− = ⎜ ⎟
⎝ ⎠

gives 0

0

2( ) 2(0.700 m) 1.45 ms
0 965 m/sx x

x xt
v v

−
= = =

+ +
. 

(c) 2 2
0 02 ( )y y yv v a y y= + − and 0yv = gives 

2
0

0

2y
y

v
a

y y
= −

−
, which is constant. 

2 2
01 02

1 2

v v
H H

= . 

22 1
0102 2

2 1 2
01 01

/ 4
vvH H H H

v v
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

EVALUATE: 
2 2 2

0
2

(965 m/s) 47.5 km
2 2( 9.80 m/s )

y y

y

v v
H

a
− −

= = =
−

. Rifle bullets fired vertically don't actually reach such a 

large height; it is not an accurate approximation to ignore air resistance. 
 2.82. IDENTIFY: Assume the firing of the second stage lasts a very short time, so the rocket is in free-fall after 25.0 s. 

The motion consists of two constant acceleration segments. 
SET UP: Let y+  be upward. After 25.0 st = , 29.80 m/sya = − . 

EXECUTE: (a) Find the height of the rocket at 25.0 st = : 0 0yv = , 23.50 m/sya = + , 25.0 st = . 
2 2 31 1

0 0 2 2 (3.50 m/s)(25.0 s) 1.0938 10  my yy y v t a t− = + = = × . Find the displacement of the rocket from firing of the 
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second stage until the maximum height is reached: 0 132.5 m/syv = , 0yv = (at maximum height), 29.80 m/sya = − . 

2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0

0 2

0 (132.5 m/s) 896 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

− = = =
−

. The total height is 

1094 m 896 m 1990 m+ = . 
(b) 0 132.5 m/syv = + , 29.80 m/sya = − , 0 1094 my y− = − . 21

0 0 2y yy y v t a t− = + gives 
2 21093.8 m (132.5 m/s) (4.90 m/s )t t− = − . The quadratic formula gives 33.7 st = as the positive root. The rocket 

returns to the launch pad 33.7 s after the second stage fires. 
(c) 2

0 132.5 m/s ( 9.80 m/s )(33.7 s) 198 m/sy y yv v a t= + = + + − = − . The rocket has speed 198 m/s as it reaches the 
launch pad. 
EVALUATE: The speed when the rocket returns to the launch pad is greater than 132.5 m/s. When the rocket 
returns to the height where the second stage fired, its velocity is 132.5 m/s downward and it continues to speed up 
during the rest of the descent. 

 2.83. Take positive y to be upward. 
(a) IDENTIFY: Consider the motion from when he applies the acceleration to when the shot leaves his hand. 
SET UP: 0 0,yv =  ?,yv =  245.0 m/s ,ya =  0 0.640 my y− =  

2 2
0 02 ( )y y yv v a y y= + −  

EXECUTE: 2
02 ( ) 2(45.0 m/s )(0.640 m) 7.59 m/sy yv a y y= − = =  

(b) IDENTIFY: Consider the motion of the shot from the point where he releases it to its maximum height, where 
0.v =  Take 0y =  at the ground. 

SET UP: 0 2.20 m,y =  ?,y =  29.80 m/sya = −  (free fall), 0 7.59 m/syv =  

(from part (a), 0yv =  at maximum height) 
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE: 
2 2 2

0
0 2

0 (7.59 m/s) 2.94 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

− = = =
−

 

2.20 m 2.94 m 5.14 m.y = + =  
(c) IDENTIFY: Consider the motion of the shot from the point where he releases it to when it returns to the height 
of his head. Take 0y =  at the ground. 

SET UP: 0 2.20 m,y =  1.83 m,y =  29.80 m/s ,ya = −  0 7.59 m/s,yv = +  ?t =  1
0 0 2y yy y v t a t 2− = +  

EXECUTE: 2 21
21.83 m 2.20 m (7.59 m/s) ( 9.80 m/s )t t− = + −  

2 2(7.59 m/s) (4.90 m/s )t t= −  
24.90 7.59 0.37 0,t t− − =  with t in seconds. 

Use the quadratic formula to solve for t: 

( )21 7.59 (7.59) 4(4.90)( 0.37) 0.774 0.822
9.80

t = ± − − = ±  

t must be positive, so 0.774 s 0.822 s 1.60 st = + =  
EVALUATE: Calculate the time to the maximum height: 0 ,y y yv v a t= +  so 

2
0( ) / (7.59 m/s)/( 9.80 m/s ) 0.77 s.y y yt v v a= − = − − =  It also takes 0.77 s to return to 2.2 m above the ground, for a 

total time of 1.54 s. His head is a little lower than 2.20 m, so it is reasonable for the shot to reach the level of his 
head a little later than 1.54 s after being thrown; the answer of 1.60 s in part (c) makes sense. 

 2.84. IDENTIFY: The teacher is in free-fall and falls with constant acceleration 29.80 m/s , downward. The sound from 
her shout travels at constant speed. The sound travels from the top of the cliff, reflects from the ground and then 
travels upward to her present location. If the height of the cliff is h and she falls a distance y in 3.0 s, the sound 
must travel a distance ( )h h y+ − in 3.0 s. 

SET UP: Let y+  be downward, so for the teacher 29.80 m/sya = and 0 0yv = . Let 0y = at the top of the cliff. 

EXECUTE: (a) For the teacher, 2 21
2 (9.80 m/s )(3.0 s) 44.1 my = = . For the sound, s( )h h y v t+ − = . 

1 1
s2 2( ) ([340 m/s][3.0 s] 44.1 m) 532 mh v t y= + = + = , which rounds to 530 m. 

(b) 2 2
0 02 ( )y y yv v a y y= + − gives 2

02 ( ) 2(9.80 m/s )(532 m) 102 m/sy yv a y y= − = = . 
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EVALUATE: She is in the air for 0
2

102 m/s 10.4 s
9.80 m/s

y y

y

v v
t

a
−

= = = and strikes the ground at high speed. 

 2.85. IDENTIFY and SET UP: Let y+  be upward. Each ball moves with constant acceleration 29.80 m/s .ya = −  In 
parts (c) and (d) require that the two balls be at the same height at the same time. 
EXECUTE: (a) At ceiling, 0,yv =  0 3.0 m,y y− =  29.80 m/s .ya = −  Solve for 0 .yv  

2 2
0 02 ( )y y yv v a y y= + −  gives 0 7.7 m/s.yv =  

(b) 0y y yv v a t= +  with the information from part (a) gives 0.78 s.t =  

(c) Let the first ball travel downward a distance d in time t. It starts from its maximum height, so 0 0.yv =  
21

0 0 2y yy y v t a t− = =  gives 2 2(4.9 m/s )d t=  

The second ball has 2
0 3 (7.7 m/s) 5.1 m/s.yv = =  In time t it must travel upward 3.0 m d−  to be at the same place 

as the first ball. 
1

0 0 2y yy y v t a t 2− = +  gives 2 23.0 m (5.1 m/s) (4.9 m/s ) .d t t− = −  
We have two equations in two unknowns, d and t. Solving gives 0.59 st =  and 1.7 m.d =  
(d) 3.0 m 1.3 md− =  
EVALUATE: In 0.59 s the first ball falls 2 2(4.9 m/s )(0.59 s) 1.7 m,d = =  so is at the same height as the 
second ball. 

 2.86. IDENTIFY: The helicopter has two segments of motion with constant acceleration: upward acceleration for 10.0 s 
and then free-fall until it returns to the ground. Powers has three segments of motion with constant acceleration: 
upward acceleration for 10.0 s, free-fall for 7.0 s and then downward acceleration of 22.0 m/s . 
SET UP: Let y+  be upward. Let 0y = at the ground. 
EXECUTE: (a) When the engine shuts off both objects have upward velocity 

2
0 (5.0 m/s )(10.0 s) 50.0 m/sy y yv v a t= + = = and are at 2 2 21 1

0 2 2 (5.0 m/s )(10.0 s) 250 my yy v t a t= + = = . For the 

helicopter, 0yv = (at the maximum height), 0 50.0 m/syv = + , 0 250 my = , and 29.80 m/sya = − . 

2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0

0 2

0 (50.0 m/s) 250 m 378 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

= + = + =
−

, which rounds to 380 m. 

(b) The time for the helicopter to crash from the height of 250 m where the engines shut off can be found using 

0 50.0 m/syv = + , 29.80 m/sya = − , and 0 250 my y− = − . 21
0 0 2y yy y v t a t− = + gives 

2 2250 m (50.0 m/s) (4.90 m/s )t t− = − . 2 2(4.90 m/s ) (50.0 m/s) 250 m 0t t− − = . The quadratic formula gives 

( )21 50.0 (50.0) 4(4.90)(250)  s
9.80

t = ± + . Only the positive solution is physical, so 13.9 st = . Powers therefore 

has free-fall for 7.0 s and then downward acceleration of 22.0 m/s for 13.9 s 7.0 s 6.9 s− = . After 7.0 s of free-fall 
he is at 2 2 21 1

0 0 2 2250 m (50.0 m/s)(7.0 s) ( 9.80 m/s )(7.0 s) 360 my yy y v t a t− = + = + + − = and has velocity 
2

0 50.0 m/s ( 9.80 m/s )(7.0 s) 18.6 m/sx x xv v a t= + = + − = − . After the next 6.9 s he is at 
2 2 21 1

0 0 2 2360 m ( 18.6 m/s)(6.9 s) ( 2.00 m/s )(6.9 s) 184 my yy y v t a t− = + = + − + − = . Powers is 184 m above the 
ground when the helicopter crashes. 
EVALUATE: When Powers steps out of the helicopter he retains the initial velocity he had in the helicopter but 
his acceleration changes abruptly from 25.0 m/s upward to 29.80 m/s downward. Without the jet pack he would 
have crashed into the ground at the same time as the helicopter. The jet pack slows his descent so he is above the 
ground when the helicopter crashes. 

 2.87. IDENTIFY: Apply the constant acceleration equations to his motion. Consider two segments of the motion: the 
last 1.0 s and the motion prior to that. The final velocity for the first segment is the initial velocity for the second 
segment. 
SET UP: Let y+  be downward, so 29.80 m/sya = + . 

EXECUTE: Motion from the roof to a height of / 4h above ground: 0 3 / 4y y h− = , 29.80 m/sya = + , 0 0yv = . 
2 2

0 02 ( )y y yv v a y y= + −  gives 02 ( ) 3.834  m /sy yv a y y h= − = . Motion from height of / 4h to the ground: 

0 / 4y y h− = , 29.80 m/sya = + , 0 3.834  m /syv h= , 1.00 st = . 21
0 0 2y yy y v t a t− = + gives 
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3.834  m 4.90 m
4
h h= + . Let 2h u= and solve for u. 21

4 3.834  m 4.90 m 0u u− − = . 

( )22 3.834 ( 3.834) 4.90  mu = ± − + . Only the positive root is physical, so 16.52 mu =  and 2 273 mh u= = , 

which rounds to 270 m. The building is 270 m tall. 

EVALUATE: With 273 mh =  the total time of fall is 2 7.46 s
y

ht
a

= = . In 7.47 s 1.00 s 6.46 s− =  Spider-Man 

falls a distance 2 21
0 2 (9.80 m/s )(6.46 s) 204 my y− = = . This leaves 69 m for the last 1.0 s of fall, which is / 4h . 

 2.88. IDENTIFY: Apply constant acceleration equations to the motion of the rock. Sound travels at constant speed. 
SET UP: Let fallt  be the time for the rock to fall to the ground and let st  be the time it takes the sound to travel 
from the impact point back to you. fall s 10.0 st t+ = . Both the rock and sound travel a distance d that is equal to the 

height of the cliff. Take y+  downward for the motion of the rock. The rock has 0 0yv =  and 29.80 m/sya = . 

EXECUTE: (a) For the rock, 21
0 0 2y yy y v t a t− = +  gives fall 2

2
9.80 m/s

dt = . 

For the sound, s 10.0 s
330 m/s

dt = = . Let 2 dα = . 20.00303 0.4518 10.0 0α α+ − = . 19.6α =  and 384 md = . 

(b) You would have calculated 2 21
2 (9.80 m/s )(10.0 s) 490 md = = . You would have overestimated the height of 

the cliff. It actually takes the rock less time than 10.0 s to fall to the ground. 
EVALUATE: Once we know d we can calculate that fall 8.8 st =  and s 1.2 st = . The time for the sound of impact 
to travel back to you is 12% of the total time and cannot be neglected. The rock has speed 86 m/s just before it 
strikes the ground. 

 2.89. (a) IDENTIFY: Let y+  be upward. The can has constant acceleration .ya g= −  The initial upward velocity of the 
can equals the upward velocity of the scaffolding; first find this speed. 
SET UP: 0 15.0 m,y y− = −  3.25 s,t =  29.80 m/s ,ya = −  0 ?yv =  

EXECUTE: 21
0 0 2y yy y v t a t− = +  gives 0 11.31 m/syv =  

Use this 0 yv  in 0y y yv v a t= +  to solve for :yv  20.5 m/syv = −  
(b) IDENTIFY: Find the maximum height of the can, above the point where it falls from the scaffolding: 
SET UP: 0,yv =  0 11.31 m/s,yv = +  29.80 m/s ,ya = −  0 ?y y− =  

EXECUTE: 2 2
0 02 ( )y y yv v a y y= + −  gives 0 6.53 my y− =  

The can will pass the location of the other painter. Yes, he gets a chance. 
EVALUATE: Relative to the ground the can is initially traveling upward, so it moves upward before stopping 
momentarily and starting to fall back down. 

 2.90. IDENTIFY: Both objects are in free-fall. Apply the constant acceleration equations to the motion of each person. 
SET UP: Let y+  be downward, so 29.80 m/sya = + for each object. 

EXECUTE: (a) Find the time it takes the student to reach the ground: 0 180 my y− = , 0 0yv = , 29.80 m/sya = . 

21
0 0 2y yy y v t a t− = + gives 0

2

2( ) 2(180 m) 6.06 s
9.80 m/sy

y yt
a
−

= = = . Superman must reach the ground in 

6.06 s 5.00 s 1.06 s− = : 1.06 st = , 0 180 my y− = , 29.80 m/sya = + . 21
0 0 2y yy y v t a t− = + gives 

20 1 1
0 2 2

180 m (9.80 m/s )(1.06 s) 165 m/s
1.06 sy y

y yv a t
t
−

= − = − = . Superman must have initial speed 0 165 m/sv = . 

(b) The graphs of y-t for Superman and for the student are sketched in Figure 2.90. 
(c) The minimum height of the building is the height for which the student reaches the ground in 5.00 s, before 
Superman jumps. 2 2 21 1

0 0 2 2 (9.80 m/s )(5.00 s) 122 my yy y v t a t− = + = = . The skyscraper must be at least 
122 m high. 
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EVALUATE: 165 m/s 369 mi/h= , so only Superman could jump downward with this initial speed. 

 
Figure 2.90 

 2.91. IDENTIFY: Apply constant acceleration equations to the motion of the rocket and to the motion of the canister 
after it is released. Find the time it takes the canister to reach the ground after it is released and find the height of 
the rocket after this time has elapsed. The canister travels up to its maximum height and then returns to the ground. 
SET UP: Let y+  be upward. At the instant that the canister is released, it has the same velocity as the rocket. 

After it is released, the canister has 29.80 m/sya = − . At its maximum height the canister has 0yv = . 

EXECUTE: (a) Find the speed of the rocket when the canister is released: 0 0yv = , 23.30 m/sya = , 

0 235 my y− = . 2 2
0 02 ( )y y yv v a y y= + − gives 2

02 ( ) 2(3.30 m/s )(235 m) 39.4 m/sy yv a y y= − = = . For the 

motion of the canister after it is released, 0 39.4 m/syv = + , 29.80 m/sya = − , 0 235 my y− = − . 
21

0 0 2y yy y v t a t− = + gives 2 2235 m (39.4 m/s) (4.90 m/s )t t− = − . The quadratic formula gives 12.0 st = as the 
positive solution. Then for the motion of the rocket during this 12.0 s, 

2 2 21 1
0 0 2 2235 m (39.4 m/s)(12.0 s) (3.30 m/s )(12.0 s) 945 my yy y v t a t− = + = + + = . 

(b) Find the maximum height of the canister above its release point: 0 39.4 m/syv = + , 0yv = , 29.80 m/sya = − . 

2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0

0 2

0 (39.4 m/s) 79.2 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

− = = =
−

. After its release the canister travels 

upward 79.2 m to its maximum height and then back down 79.2 m 235 m+ to the ground. The total distance it 
travels is 393 m. 
EVALUATE: The speed of the rocket at the instant that the canister returns to the launch pad is 

2
0 39.4 m/s (3.30 m/s )(12.0 s) 79.0 m/sy y yv v a t= + = + = . We can calculate its height at this instant by 

2 2
0 02 ( )y y yv v a y y= + − with 0 0yv = and 79.0 m/syv = . 

2 2 2
0

0 2

(79.0 m/s) 946 m
2 2(3.30 m/s )

y y

y

v v
y y

a
−

− = = = , which agrees 

with our previous calculation. 
 2.92. IDENTIFY: Both objects are in free-fall and move with constant acceleration 29.80 m/s , downward. The two 

balls collide when they are at the same height at the same time. 
SET UP: Let y+  be upward, so 29.80 m/sya = − for each ball. Let 0y = at the ground. Let ball A be the one 

thrown straight up and ball B be the one dropped from rest at height H. 0 0Ay = , 0By H= . 

EXECUTE: (a) 21
0 0 2y yy y v t a t− = + applied to each ball gives 21

0 2Ay v t gt= − and 21
2By H gt= − . A By y=  gives 

2 21 1
0 2 2v t gt H gt− = − and 

0

Ht
v

= . 

(b) For ball A at its highest point, 0yAv = and 0y y yv v a t= + gives 0vt
g

= . Setting this equal to the time in 

part (a) gives 0

0

H v
v g
= and 

2
0vH

g
= . 

EVALUATE: In part (a), using 
0

Ht
v

= in the expressions for Ay and By gives 2
0

1
2A B
gHy y H
v

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
. H must be 

less than 
2
02v

g
in order for the balls to collide before ball A returns to the ground. This is because it takes ball A 
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time 02vt
g

=  to return to the ground and ball B falls a distance 
2

2 01
2

2vgt
g

= during this time. When 
2
02vH

g
= the 

two balls collide just as ball A reaches the ground and for H greater than this ball A reaches the ground before 
they collide. 

 2.93. IDENTIFY and SET UP: Use /xv dx dt=  and /x xa dv dt=  to calculate ( )xv t  and ( )xa t  for each car. Use these 
equations to answer the questions about the motion. 

EXECUTE: 2 ,Ax t tα β= +  2 ,A
Ax

dxv t
dt

α β= = +  2Ax
Ax

dva
dt

β= =  

2 3,Bx t tγ δ= −  22 3 ,B
Bx

dxv t t
dt

γ δ= = −  2 6Bx
Bx

dva t
dt

γ δ= − −  

(a) IDENTIFY and SET UP: The car that initially moves ahead is the one that has the larger 0 .xv  
EXECUTE: At 0,t =  Axv α=  and 0.Bxv =  So initially car A moves ahead. 
(b) IDENTIFY and SET UP: Cars at the same point implies .A Bx x=  

2 2 3t t t tα β γ δ+ = −  
EXECUTE: One solution is 0,t =  which says that they start from the same point. To find the other solutions, 
divide by t: 2t t tα β γ δ+ = −  

2 ( ) 0t tδ β γ α+ − + =  

( ) ( )2 21 1( ) ( ) 4 1.60 (1.60) 4(0.20)(2.60) 4.00 s 1.73 s
2 0.40

t β γ β γ δα
δ

= − − ± − − = + ± − = ±  

So A Bx x=  for 0,t =  2.27 st =  and 5.73 s.t =  
EVALUATE: Car A has constant, positive .xa  Its xv  is positive and increasing. Car B has 0 0xv =  and xa  that is 
initially positive but then becomes negative. Car B initially moves in the -directionx+  but then slows down and 
finally reverses direction. At 2.27 st =  car B has overtaken car A and then passes it. At 5.73 s,t =  car B is 
moving in the -directionx−  as it passes car A again. 

(c) IDENTIFY: The distance from A to B is .B Ax x−  The rate of change of this distance is ( ) .B Ad x x
dt
−  If this 

distance is not changing, ( ) 0.B Ad x x
dt
−

=  But this says 0.Bx Axv v− =  (The distance between A and B is neither 

decreasing nor increasing at the instant when they have the same velocity.) 
SET UP: Ax Bxv v=  requires 22 2 3t t tα β γ δ+ = −  

EXECUTE: 23 2( ) 0t tδ β γ α+ − + =  

( ) ( )2 21 12( ) 4( ) 12 3.20 4( 1.60) 12(0.20)(2.60)
6 1.20

t β γ β γ δα
δ

= − − ± − − = ± − −  

2.667 s 1.667 s,t = ±  so Ax Bxv v=  for 1.00 st =  and 4.33 s.t =  
EVALUATE: At 1.00 s,t =  5.00 m/s.Ax Bxv v= =  At 4.33 s,t =  13.0 m/s.Ax Bxv v= =  Now car B is slowing down 
while A continues to speed up, so their velocities aren�t ever equal again. 
(d) IDENTIFY and SET UP: Ax Bxa a=  requires 2 2 6 tβ γ δ= −  

EXECUTE: 
2 2

3

2.80 m/s 1.20 m/s 2.67 s.
3 3(0.20 m/s ) 

t γ β
δ
− −

= = =  

EVALUATE: At 0,t =  ,Bx Axa a>  but Bxa  is decreasing while Axa  is constant. They are equal at 2.67 st =  but 
for all times after that .Bx Axa a<  

 2.94. IDENTIFY: The apple has two segments of motion with constant acceleration. For the motion from the tree to the 
top of the grass the acceleration is g, downward and the apple falls a distance H h− . For the motion from the top 
of the grass to the ground the acceleration is a, upward, the apple travels downward a distance h, and the final 
speed is zero. 
SET UP: Let y+  be upward and let 0y = at the ground. The apple is initially a height H h+ above the ground. 

EXECUTE: (a) Motion from 0y H h= +  to y H= : 0y y H− = − , 0 0yv = , ya g= − . 2 2
0 02 ( )y y yv v a y y= + −  gives 

2yv gH= − . The speed of the apple is 2gH as it enters the grass. 
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(b) Motion from 0y h=  to 0y = : 0y y h− = − , 0 2yv gH= − . 2 2
0 02 ( )y y yv v a y y= + − gives 

2 2
0

0

2
2( ) 2( )

y y
y

v v gH gHa
y y h h
− −

= = =
− −

. The acceleration of the apple while it is in the grass is /gH h , upward. 

(c) Graphs of y-t, -yv t and -ya t are sketched in Figure 2.94. 
EVALUATE: The acceleration a produced by the grass increases when H increases and decreases when h 
increases. 

 
Figure 2.94 

 2.95. IDENTIFY: Apply constant acceleration equations to the motion of the two objects, the student and the bus. 
SET UP: For convenience, let the student's (constant) speed be 0v  and the bus's initial position be 0.x  Note that 
these quantities are for separate objects, the student and the bus. The initial position of the student is taken to be 
zero, and the initial velocity of the bus is taken to be zero. The positions of the student 1x  and the bus 2x  as 

functions of time are then 1 0x v t=  and 2
2 0 (1 2) .x x at= +  

EXECUTE: (a) Setting 1 2x x= and solving for the times t gives ( )2
0 0 0

1 2t v v ax
a

= ± − . 

( )2 2
2

1 (5.0 m s) (5.0 m s) 2(0.170 m s )(40.0 m) 9.55 s and 49 3 s
(0.170 m s )

t .= ± − = . 

The student will be likely to hop on the bus the first time she passes it (see part (d) for a discussion of the later 
time). During this time, the student has run a distance 0 (5 m s)(9.55 s) 47 8 m.v t .= =  

(b) The speed of the bus is 2(0.170 m/s )(9.55 s) 1.62 m/s= .  
(c) The results can be verified by noting that the x lines for the student and the bus intersect at two points, as shown 
in Figure 2.95a. 
(d) At the later time, the student has passed the bus, maintaining her constant speed, but the accelerating bus then 
catches up to her. At this later time the bus's velocity is ( )( )20.170 m s 49.3 s 8.38 m s.=  

(e) No; 2
0 02v ax< , and the roots of the quadratic are imaginary. When the student runs at 3.5 m s,  Figure 2.95b 

shows that the two lines do not intersect: 
(f) For the student to catch the bus, 2

0 02 .v ax>  and so the minimum speed is 

( )( )22 0.170 m s 40 m s 3.688 m s.=  She would be running for a time 2

3.69 m s 21.7 s,
0.170 m/s

=  and covers a 

distance ( ) ( )3.688 m s  21.7 s 80.0 m.=  

However, when the student runs at 3.688 m s, the lines intersect at one point, at 80 mx = , as shown in 
Figure 2.95c. 
EVALUATE: The graph in part (c) shows that the student is traveling faster than the bus the first time they meet 
but at the second time they meet the bus is traveling faster. 

2 tot 1t t t= −  

 
Figure 2.95 
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 2.96. IDENTIFY: Apply 21
0 0 2y yy y v t a t− = + to the motion from the maximum height, where 0 0yv = . The time spent 

above max / 2y on the way down equals the time spent above max / 2y on the way up. 
SET UP: Let y+  be downward. ya g= . 0 max / 2y y y− = when he is a distance max / 2y above the floor. 

EXECUTE: The time from the maximum height to max / 2y above the floor is given by 21
max 12/ 2y gt= . The time 

from the maximum height to the floor is given by 21
max tot2y gt= and the time from a height of max / 2y to the floor is . 

max1

2 max max

/ 2 1 2.4
/ 2 2 1

yt
t y y
= = =

− −
. 

EVALUATE: The person spends over twice as long above max / 2y as below max / 2y . His average speed is less 
above max / 2y than it is when he is below this height. 

 2.97. IDENTIFY: Apply constant acceleration equations to both objects. 
SET UP: Let y+  be upward, so each ball has ya g= − . For the purpose of doing all four parts with the least 

repetition of algebra, quantities will be denoted symbolically. That is, let ( )22
1 0 2 0

1 1,  .
2 2

y h v t gt y h g t t= + − = − −  

In this case, 0 1.00 st = . 

EXECUTE: (a) Setting 1 2 0,y y= = expanding the binomial ( )2
0t t− and eliminating the common term 

2 21 1
0 0 02 2 yields gt v t gt t gt= − . Solving for t: 

21
0 02

0 0 0 0

1
2 1 /( )

gt tt
gt v v gt

⎛ ⎞
= = ⎜ ⎟− −⎝ ⎠

. 

Substitution of this into the expression for 1y  and setting 1 0y = and solving for h as a function of 0v  yields, after 

some algebra, ( )
( )

21
0 02 21

02 2
0 0

.
gt v

h gt
gt v

−
=

−
 Using the given value 2

0 1.00 s and 9.80 m s ,t g= =  

( ) 0

0

24.9 m s20.0 m 4.9 m .
9.8 m s

vh
v

⎛ ⎞−
= = ⎜ ⎟−⎝ ⎠

 

This has two solutions, one of which is unphysical (the first ball is still going up when the second is released; see 
part (c)). The physical solution involves taking the negative square root before solving for 0v , and yields 8.2 m s.  
The graph of y versus t for each ball is given in Figure 2.97. 
(b) The above expression gives for (i), 0.411 m and for (ii) 1.15 km. 
(c) As 0v  approaches 9.8 m s , the height h becomes infinite, corresponding to a relative velocity at the time the 
second ball is thrown that approaches zero. If 0 9.8 m s,v >  the first ball can never catch the second ball. 
(d) As 0v  approaches 4.9 m/s, the height approaches zero. This corresponds to the first ball being closer and closer 
(on its way down) to the top of the roof when the second ball is released. If 0 4.9 m s,v <  the first ball will already 
have passed the roof on the way down before the second ball is released, and the second ball can never catch up. 
EVALUATE: Note that the values of 0v in parts (a) and (b) are all greater than minv and less than maxv . 

 
Figure 2.97 

 2.98. IDENTIFY: Apply constant acceleration equations to the motion of the boulder. 
SET UP: Let y+  be downward, so ya g= + . 
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EXECUTE: (a) Let the height be h and denote the 1.30-s interval as ;tΔ  the simultaneous equations 

2 21 2 1
2 3 2, ( )h gt h g t t= = − Δ  can be solved for t. Eliminating h and taking the square root, 3 ,

2
t

t t
=

− Δ
 and 

 ,
1 2/3

tt Δ
=

−
 and substitution into 21

2h gt= gives 246 m.h =  

(b) The above method assumed that 0t >  when the square root was taken. The negative root (with 0)tΔ =  gives 
an answer of 2.51 m, clearly not a �cliff�. This would correspond to an object that was initially near the bottom of 
this �cliff� being thrown upward and taking 1.30 s to rise to the top and fall to the bottom. Although physically 
possible, the conditions of the problem preclude this answer. 
EVALUATE: For the first two-thirds of the distance, 0 164 my y− = , 0 0yv = , and 29.80 m/sya = . 

02 ( ) 56.7 m/sy yv a y y= − = . Then for the last third of the distance, 0 82.0 my y− = , 0 56.7 m/syv = and 
29.80 m/sya = . 21

0 0 2y yy y v t a t− = + gives 2 2(4.90 m/s ) (56.7 m/s) 82.0 m 0t t+ − = . 

( )21 56.7 (56.7) 4(4.9)(82.0)  s 1.30 s
9.8

t = − + + = , as required. 
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MOTION IN TWO OR THREE DIMENSIONS 

 3.1. IDENTIFY and SET UP: Use Eq.(3.2), in component form. 

EXECUTE: ( ) 2 1
av

2 1

5.3 m 1.1 m 1.4 m/s
3.0 s 0x

x x xv
t t t

Δ − −
= = = =
Δ − −

 

( ) 2 1
av

2 1

0.5 m 3.4 m 1.3 m/s
3.0 s 0y

y y yv
t t t

Δ − − −
= = = = −
Δ − −

 

 

EVALUATE: Our calculation gives that avv
!  is in the 4th quadrant. This corresponds to increasing x and 

decreasing y. 
 3.2. IDENTIFY: Use Eq.(3.2), written in component form. The distance from the origin is the magnitude of r! . 

SET UP: At time 1t , 1 1 0x y= = . 
EXECUTE: (a) av-( )Δ ( 3.8m s)(12.0 s) 45.6 mxx v t= = − = − and av-( )Δ (4.9m s)(12.0 s) 58.8 myy v t= = = . 
(b) 2 2 2 2( 45.6 m) (58.8 m) 74.4 m.r x y= + = − + =  
EVALUATE: Δr! is in the direction of avv

! . Therefore, xΔ is negative since av-xv is negative and yΔ is positive 
since av-yv is positive. 

 3.3. (a) IDENTIFY and SET UP: From r!  we can calculate x and y for any t. 
Then use Eq.(3.2), in component form. 
EXECUTE: ( ) ( )2 2 � �4.0 cm 2.5 cm/s 5.0 cm/st t⎡ ⎤= + +⎣ ⎦r i j!  

At 0,t =  ( ) �4.0 cm .=r i!  

At 2.0 s,t =  ( ) ( )� �14.0 cm 10.0 cm .= +r i j!  

( )av
10.0 cm 5.0 cm/s.

2.0 sx

xv
t

Δ
= = =
Δ

 

( )av
10.0 cm 5.0 cm/s.

2.0 sy

yv
t

Δ
= = =
Δ

 

 

( )
( )

av

av

1.3 m/stan 0.9286
1.4 m/s

y

x

v

v
α −
= = = −  

360 42.9 317α = ° − ° = °  

( ) ( )2 2
av av avx y

v v v= +  

2 2
av (1.4 m/s) ( 1.3 m/s) 1.9 m/sv = + − =  

Figure 3.1  

3
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( ) ( )2 2
av av av 7.1 cm/s

x y
v v v= + =  

( )
( )

av

av

tan 1.00y

x

v

v
α = =  

45 .θ = °  

Figure 3.3a  
EVALUATE: Both x and y increase, so avv

!  is in the 1st quadrant. 
(b) IDENTIFY and SET UP: Calculate r!  by taking the time derivative of ( ).tr!  

EXECUTE: ( ) ( )2 � �5.0 cm/s 5.0 cm/sd t
dt

⎡ ⎤= = +⎣ ⎦
rv i j
!!  

0 :t =  0,xv =  5.0 cm/s;yv =  5.0 cm/sv =  and 90θ = °  

1.0 s:t =  5.0 cm/s,xv =  5.0 cm/s;yv =  7.1 cm/sv =  and 45θ = °  

2.0 s:t =  10.0 cm/s,xv =  5.0 cm/s;yv =  11 cm/sv =  and 27θ = °  
(c) The trajectory is a graph of y versus x. 

2 24.0 cm (2.5 cm/s ) ,x t= +  (5.0 cm/s)y t=  
For values of t between 0 and 2.0 s, calculate x and y and plot y versus x. 

 
Figure 3.3b 

EVALUATE: The sketch shows that the instantaneous velocity at any t is tangent to the trajectory. 
 3.4. IDENTIFY: d dtv = r/! ! . This vector will make a 45° -angle with both axes when its x- and y-components are equal. 

SET UP: 1( )n
nd t nt

dt
−= . 

EXECUTE: 2� �2 3bt ctv = i + j! . x yv v= gives 2 3t b c= . 
EVALUATE: Both components of v! change with t. 

 3.5. IDENTIFY and SET UP: Use Eq.(3.8) in component form to calculate ( )av x
a  and ( )av .ya  
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EXECUTE: (a) The velocity vectors at 1 0t =  and 2 30.0 st =  are shown in Figure 3.5a. 

 
Figure 3.5a 

(b) ( ) 22 1
av

2 1

170 m/s 90 m/s 8.67 m/s
30.0 s

x x x
x

v v va
t t t

Δ − − −
= = = = −
Δ −

 

( ) 2 1 2
av

2 1

40 m/s 110 m/s 2.33 m/s
30.0 s

y y y
y

v v v
a

t t t
Δ − −

= = = = −
Δ −

 

(c)  

 

( ) ( )2 2 2
av av 8.98 m/s

x y
a a a= + =  

( )
( )

2
av

2
av

2.33 m/stan 0.269
8.67 m/s

y

x

a

a
α −
= = =

−
 

15 180 195α = ° + ° = °  

Figure 3.5b  
EVALUATE: The changes in xv  and yv  are both in the negative x or y direction, so both components of ava

!  are in 
the 3rd quadrant. 

 3.6. IDENTIFY: Use Eq.(3.8), written in component form. 
SET UP: 2 2 2 2(0.45m s )cos31.0 0.39m s ,  (0.45m s )sin31.0 0.23m sx ya a= ° = = ° =  

EXECUTE: (a) av-
x

x
va
t

Δ
=
Δ

and 22.6 m s (0.39 m s )(10.0 s) 6.5 m sxv = + = . av-
y

y

v
a

t
Δ

=
Δ

and 

21.8 m s (0.23 m s )(10.0 s) 0.52 m syv = − + = . 

(b) 2 2(6.5m s) (0.52m s) 6.48m sv = + = , at an angle of 0.52arctan 4.6
6.5

⎛ ⎞ = °⎜ ⎟
⎝ ⎠

 above the horizontal. 

(c) The velocity vectors 1v
! and 2v

! are sketched in Figure 3.6. The two velocity vectors differ in magnitude and 
direction. 
EVALUATE: 1v

!  is at an angle of 35° below the -axisx+  and has magnitude 1 3.2 m/sv = , so 2 1v v> and the 
direction of 2v

! is rotated counterclockwise from the direction of 1v
! . 

 
Figure 3.6 

 3.7. IDENTIFY and SET UP: Use Eqs.(3.4) and (3.12) to find ,xv  ,yv  ,xa  and ya  as functions of time. The magnitude 
and direction of r!  and a!  can be found once we know their components. 
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EXECUTE: (a) Calculate x and y for t values in the range 0 to 2.0 s and plot y versus x. The results are given in 
Figure 3.7a. 

 
Figure 3.7a 

(b) x
dxv
dt

α= =  2y
dyv t
dt

β= = −  

0x
y

dva
dt

= =  2y
y

dv
a

dt
β= = −  

Thus � �2a tβ= −v i j!  �2β= −a j!  

(c) velocity: At 2.0 s,t =  2.4 m/s,xv =  22(1.2 m/s )(2.0 s) 4.8 m/syv = − = −  

 

2 2 5.4 m/sx yv v v= + =  

4.8 m/stan 2.00
2.4 m/s

y

x

v
v

α −
= = = −  

63.4 360 297α = − ° + ° = °  

Figure 3.7b  

acceleration: At 2.0 s,t =  0,xa =  2 22(1.2 m/s ) 2.4 m/sya = − = −  

 

2 2 22.4 m/sx ya a a= + =  
22.4 m/stan

0
y

x

a
a

β −
= = = −∞  

270β = °  

Figure 3.7c  

 

EVALUATE: (d) a!  has a component a"  in the same direction as 
,v!  so we know that v is increasing (the bird is speeding up.) 
a!  also has a component a⊥  perpendicular to ,v!  so that the 
direction of v!  is changing; the bird is turning toward the 

-directiony−  (toward the right) 

Figure 3.7d  
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v!  is always tangent to the path; v!  at 2.0 st =  shown in part (c) is tangent to the path at this t, conforming to this 
general rule. a!  is constant and in the -direction;y−  the direction of v!  is turning toward the -direction.y−  

 3.8. IDENTIFY: The component ⊥a
! of a!  perpendicular to the path is related to the change in direction of v! and the 

component a"
! of a! parallel to the path is related to the change in the magnitude of v! . 

SET UP: When the speed is increasing, a"
! is in the direction of v! and when the speed is decreasing, a"

! is opposite 

to the direction of v! . When v is constant, a" is zero and when the path is a straight line, a⊥ is zero. 
EXECUTE: The acceleration vectors in each case are sketched in Figure 3.8a-c. 
EVALUATE: ⊥a

! is toward the center of curvature of the path. 

 
Figure 3.8a-c 

 3.9. IDENTIFY: The book moves in projectile motion once it leaves the table top. Its initial velocity is horizontal. 
SET UP: Take the positive y-direction to be upward. Take the origin of coordinates at the initial position of the 
book, at the point where it leaves the table top. 

 

x-component: 
0,xa =  0 1.10 m/s,xv =  

0.350 st =  
y-component: 

29.80 m/s ,ya = −  

0 0,yv =  
0.350 st =  

Figure 3.9a  
Use constant acceleration equations for the x and y components of the motion, with 0xa =  and .ya g= −  

EXECUTE: (a) 0 ?y y− =  
2 2 21 1

0 0 2 20 ( 9.80 m/s )(0.350 s) 0.600 m.y yy y v t a t− = + = + − = −  The table top is 0.600 m above the floor. 

(b) 0 ?x x− =  
21

0 0 2 (1.10 m/s)(0.350 s) 0 0.358 m.x xx x v t a t− = + = + =  
(c) 0 1.10 m/sx x xv v a t= + =  (The x-component of the velocity is constant, since 0.)xa =  

2
0 0 ( 9.80 m/s )(0.350 s) 3.43 m/sy y yv v a t= + = + − = −  

 

 

2 2 3.60 m/sx yv v v= + =  

3.43 m/stan 3.118
1.10 m/s

y

x

v
v

α −
= = = −  

72.2α = − °  
Direction of v!  is 72.2°  below the horizontal 

Figure 3.9b  
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(d) The graphs are given in Figure 3.9c 

 
Figure 3.9c 

EVALUATE: In the x-direction, 0xa =  and xv  is constant. In the y-direction, 29.80 m/sya = −  and yv  is 

downward and increasing in magnitude since ya  and yv  are in the same directions. The x and y motions occur 
independently, connected only by the time. The time it takes the book to fall 0.600 m is the time it travels 
horizontally. 

 3.10. IDENTIFY: The bomb moves in projectile motion. Treat the horizontal and vertical components of the motion 
separately. The vertical motion determines the time in the air. 
SET UP: The initial velocity of the bomb is the same as that of the helicopter. Take y+  downward, so 0xa = , 

29.80 m/sya = + , 0 60.0 m/sxv =  and 0 0yv = . 

EXECUTE: (a) 21
0 0 2y yy y v t a t− = +  with 0 300 my y− =  gives 0

2

2( ) 2(300 m) 7.82 s
9.80 m/sy

y yt
a
−

= = = . 

(b) The bomb travels a horizontal distance 21
0 0 2 (60.0 m/s)(7.82 s) 470 mx xx x v t a t− = + = = . 

(c) 0 60.0 m/sx xv v= = . 2
0 (9.80 m/s )(7.82 s) 76.6 m/sy y yv v a t= + = = . 

(d) The graphs are given in Figure 3.10. 
(e) Because the airplane and the bomb always have the same x-component of velocity and position, the plane will 
be 300 m directly above the bomb at impact. 
EVALUATE: The initial horizontal velocity of the bomb doesn�t affect its vertical motion. 

 
Figure 3.10 

 3.11. IDENTIFY: Each object moves in projectile motion. 
SET UP: Take y+  to be downward. For each cricket, 0xa =  and 29.80 m/sya = + . For Chirpy, 0 0 0x yv v= = . For 

Milada, 0 0.950 m/sxv = , 0 0yv =  
EXECUTE: Milada's horizontal component of velocity has no effect on her vertical motion. She also reaches the 
ground in 3.50 s. 21

0 0 2 (0.950 m/s)(3.50 s) 3.32 mx xx x v t a t− = + = =  
EVALUATE: The x and y components of motion are totally separate and are connected only by the fact that the 
time is the same for both. 

 3.12. IDENTIFY: The person moves in projectile motion. She must travel 1.75 m horizontally during the time she falls 
9.00 m vertically. 
SET UP: Take y+  downward. 0xa = , 29.80 m/sya = + . 0 0xv v= , 0 0yv = . 

EXECUTE: Time to fall 9.00 m: 21
0 0 2y yy y v t a t− = +  gives 0

2

2( ) 2(9.00 m) 1.36 s
9.80 m/sy

y yt
a
−

= = = . 

Speed needed to travel 1.75 m horizontally during this time: 21
0 0 2x xx x v t a t− = +  gives 

0
0 0

1.75 m 1.29 m/s
1.36 sx

x xv v
t
−

= = = = . 

EVALUATE: If she increases her initial speed she still takes 1.36 s to reach the level of the ledge, but has traveled 
horizontally farther than 1.75 m. 

 3.13. IDENTIFY: The car moves in projectile motion. The car travels 21.3 m 1.80 m 19.5 m− = downward during the 
time it travels 61.0 m horizontally. 
SET UP: Take y+  to be downward. 0xa = , 29.80 m/sya = + . 0 0xv v= , 0 0yv = . 
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EXECUTE: Use the vertical motion to find the time in the air: 

21
0 0 2y yy y v t a t− = +  gives 0

2

2( ) 2(19.5 m) 1.995 s
9.80 m/sy

y yt
a
−

= = =  

Then 21
0 0 2x xx x v t a t− = +  gives 0

0 0
61.0 m 30.6 m/s
1.995 sx

x xv v
t
−

= = = = . 

(b) 30.6m sxv =  since 0xa = . 0 19.6m sy y yv v a t= + = − . 2 2 36.3m sx yv v v= + = . 

EVALUATE: We calculate the final velocity by calculating its x and y components. 
 3.14. IDENTIFY: The marble moves with projectile motion, with initial velocity that is horizontal and has 

magnitude 0v . Treat the horizontal and vertical motions separately. If 0v is too small the marble will land to the 
left of the hole and if 0v is too large the marble will land to the right of the hole. 

SET UP: Let x+  be horizontal to the right and let y+  be upward. 0 0xv v= , 0 0yv = , 0xa = , 29.80 m/sya = −  
EXECUTE: Use the vertical motion to find the time it takes the marble to reach the height of the level ground; 

0 2.75 my y− = − . 21
0 0 2y yy y v t a t− = + gives 0

2

2( ) 2( 2.75 m) 0.749 s
9.80 m/sy

y yt
a
− −

= = =
−

. The time does not depend 

on 0v . 

Minimum 0 :v 0 2.00 mx x− = , 0.749 st = . 21
0 0 2x xx x v t a t− = + gives 0

0
2.00 m 2.67 m/s
0.749 s

x xv
t
−

= = = . 

Maximum 0v : 0 3.50 mx x− = and 0
3.50 m 4.67 m/s
0.749 s

v = = . 

EVALUATE: The horizontal and vertical motions are independent and are treated separately. Their only 
connection is that the time is the same for both. 

 3.15. IDENTIFY: The ball moves with projectile motion with an initial velocity that is horizontal and has magnitude 0v . 

The height h of the table and 0v are the same; the acceleration due to gravity changes from 2
E 9.80 m/sg = on earth 

to Xg on planet X. 
SET UP: Let x+  be horizontal and in the direction of the initial velocity of the marble and let y+  be upward. 

0 0xv v= , 0 0yv = , 0xa = , ya g= − , where g is either Eg or Xg . 

EXECUTE: Use the vertical motion to find the time in the air: 0y y h− = − . 21
0 0 2y yy y v t a t− = + gives 2ht

g
= . 

Then 21
0 0 2x xx x v t a t− = + gives 0 0 0

2
x

hx x v t v
g

− = = . 0x x D− = on earth and 2.76D on Planet X. 

0 0( ) 2x x g v h− = , which is constant, so E X2.76D g D g= . 2E
X E2 0.131 1.28 m/s

(2.76)
gg g= = = . 

EVALUATE: On Planet X the acceleration due to gravity is less, it takes the ball longer to reach the floor, and it 
travels farther horizontally. 

 3.16. IDENTIFY: The football moves in projectile motion. 
SET UP: Let y+  be upward. 0xa = , ya g= − . At the highest point in the trajectory, 0yv = . 

EXECUTE: (a) 0y y yv v a t= + . The time t is 0
2

16.0m s 1.63 s
9.80m s

yv
g
= = . 

(b) Different constant acceleration equations give different expressions but the same numerical result: 
2
021 1

02 2 13.1 m
2

y
y

v
gt v t

g
= = = . 

(c) Regardless of how the algebra is done, the time will be twice that found in part (a), or 3.27 s 
(d) 0xa = , so 0 0 (20.0 m s)(3.27 s) 65 3 mxx x v t .− = = = . 
(e) The graphs are sketched in Figure 3.16. 
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EVALUATE: When the football returns to its original level, 20.0 m/sxv = and 16.0 m/syv = − . 

 
Figure 3.16 

 3.17. IDENTIFY: The shell moves in projectile motion. 
SET UP: Let x+  be horizontal, along the direction of the shell's motion, and let y+  be upward. 0xa = , 

29.80 m/sya = − . 

EXECUTE: (a) 0 0 0cos (80.0 m/s)cos60.0 40.0 m/sxv v α= = =° , 0 0 0sin (80.0 m/s)sin60.0 69.3 m/syv v α= = =° . 

(b) At the maximum height 0yv = . 0y y yv v a t= + gives 0
2

0 69.3 m/s 7.07 s
9.80 m/s

y y

y

v v
t

a
− −

= = =
−

. 

(c) 2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0

0 2

0 (69.3 m/s) 245 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

− = = =
−

. 

(d) The total time in the air is twice the time to the maximum height, so 
21

0 0 2 (40.0 m/s)(14.14 s) 566 mx xx x v t a t− = + = = . 
(e) At the maximum height, 0 40.0 m/sx xv v= = and 0yv = . At all points in the motion, 0xa = and 

29.80 m/sya = − . 

EVALUATE: The equation for the horizontal range R derived in Example 3.8 is 
2
0 0sin 2vR

g
α

= . This gives 

2

2

(80.0 m/s) sin(120.0 ) 566 m
9.80 m/s

R = =
° , which agrees with our result in part (d). 

 3.18. IDENTIFY: The flare moves with projectile motion. The equations derived in Example 3.8 can be used to find the 
maximum height h and range R. 

SET UP: From Example 3.8, 
2 2
0 0sin

2
vh

g
α

= and 
2
0 0sin 2vR

g
α

= . 

EXECUTE: (a) 
2 2

2

(125 m/s) (sin55.0 ) 535 m
2(9.80 m/s )

h = =
° . 

2

2

(125 m/s) (sin110.0 ) 1500 m
9.80 m/s

R = =
° . 

(b) h and R are proportional to 1/ g , so on the Moon, 
2

2

9.80 m/s (535 m) 3140 m
1.67 m/s

h
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

and 

2

2

9.80 m/s (1500 m) 8800 m
1.67 m/s

R
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

. 

EVALUATE: The projectile travels on a parabolic trajectory. It is incorrect to say that 0( / 2) tanh R α= . 
 3.19. IDENTIFY: The baseball moves in projectile motion. In part (c) first calculate the components of the velocity at 

this point and then get the resultant velocity from its components. 
SET UP: First find the x- and y-components of the initial velocity. Use coordinates where the -directiony+  is 
upward, the -directionx+  is to the right and the origin is at the point where the baseball leaves the bat. 

 

0 0 0cos (30.0 m/s)cos36.9 24.0 m/sxv v α= = ° =  

0 0 0sin (30.0 m/s)sin36.9 18.0 m/syv v α= = ° =  

Figure 3.19a  
Use constant acceleration equations for the x and y motions, with 0xa =  and .ya g= −  
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EXECUTE: (a) y-component (vertical motion): 
0 10.0 m/s,y y− = +  0 18.0 m/s,yv =  29.80 m/s ,ya = −  ?t =  

21
0 0 2y yy y v a t− = +  

2 210.0 m (18.0 m/s) (4.90 m/s )t t= −  
2 2(4.90 m/s ) (18.0 m/s) 10.0 m 0t t− + =  

Apply the quadratic formula: ( ) ( )( ) ( )21
9.80 18.0 18.0 4 4.90 10.0  s 1.837 1.154  st ⎡ ⎤= ± − − = ±⎢ ⎥⎣ ⎦

 

The ball is at a height of 10.0 above the point where it left the bat at 1 0.683 st =  and at 2 2.99 s.t =  At the earlier 
time the ball passes through a height of 10.0 m as its way up and at the later time it passes through 10.0 m on its 
way down. 
(b) 0 24.0 m/s,x xv v= = +  at all times since 0.xa =  

0y y yv v a t= +  

1 0.683 s:t =  218.0 m/s ( 9.80 m/s )(0.683 s) 11.3 m/s.yv = + + − = +  ( yv  is positive means that the ball is traveling 

upward at this point. 

2 2.99 s:t =  218.0 m/s ( 9.80 m/s )(2.99 s) 11.3 m/s.yv = + + − = −  ( yv  is negative means that the ball is traveling 

downward at this point.) 
(c) 0 24.0 m/sx xv v= =  
Solve for :yv  

?,yv =  0 0y y− =  (when ball returns to height where motion started), 
29.80 m/s ,ya = −  0 18.0 m/syv = +  

2 2
0 02 ( )y y yv v a y y= + −  

0 18.0 m/sy yv v= − = −  (negative, since the baseball must be traveling downward at this point) 
Now that have the components can solve for the magnitude and direction of .v!  

 

2 2
x yv v v= +  

( ) ( )2 224.0 m/s 18.0 m/s 30.0 m/sv = + − =  

18.0 m/stan
24.0 m/s

y

x

v
v

α −
= =  

36.9 ,α = − °  36.9°  below the horizontal 
Figure 3.19b  

The velocity of the ball when it returns to the level where it left the bat has magnitude 30.0 m/s and is directed at 
an angle of 36.9°  below the horizontal. 
EVALUATE: The discussion in parts (a) and (b) explains the significance of two values of t for which 

0 10.0 m.y y− = +  When the ball returns to its initial height, our results give that its speed is the same as its initial 
speed and the angle of its velocity below the horizontal is equal to the angle of its initial velocity above the 
horizontal; both of these are general results. 

 3.20. IDENTIFY: The shot moves in projectile motion. 
SET UP: Let y+  be upward. 
EXECUTE: (a) If air resistance is to be ignored, the components of acceleration are 0 horizontally and 

29.80 m sg− = −  vertically downward. 
(b) The x-component of velocity is constant at (12.0 m s)cos51.0 7.55 m sxv = ° = . The y-component is 

0 (12.0 m s)sin51.0 9.32 m syv = ° =  at release and 2
0 (10.57 m s) (9.80 m s )(2.08 s) 11.06 m sy yv v gt= − = − = −  

when the shot hits. 
(c) 0 0 (7.55 m s)(2.08 s) 15 7 mxx x v t .− = = = . 
(d) The initial and final heights are not the same. 
(e) With 0y =  and 0 yv as found above, Eq.(3.18) gives 0 1.81my = . 
(f) The graphs are sketched in Figure 3.20. 
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EVALUATE: When the shot returns to its initial height, 9.32 m/syv = − . The shot continues to accelerate 

downward as it travels downward 1.81 m to the ground and the magnitude of yv at the ground is larger than 
9.32 m/s. 

 
Figure 3.20 

 3.21. IDENTIFY: Take the origin of coordinates at the point where the quarter leaves your hand and take positive y to 
be upward. The quarter moves in projectile motion, with 0,xa =  and .ya g= −  It travels vertically for the time it 
takes it to travel horizontally 2.1 m. 

 
Figure 3.21 

(a) SET UP: Use the horizontal (x-component) of motion to solve for t, the time the quarter travels through the 
air: 

?,t =  0 2.1 m,x x− =  0 3.2 m/s,xv =  0xa =  
21

0 0 02 ,x x xx x v t a t v t− = + =  since 0xa =  

EXECUTE: 0

0

2.1 m 0.656 s
3.2 m/sx

x xt
v
−

= = =  

SET UP: Now find the vertical displacement of the quarter after this time: 

0 ?,y y− =  29.80 m/s ,ya = −  0 5.54 m/s,yv = +  0.656 st =  
21

0 0 2y yy y v t a t− + +  

EXECUTE: 2 21
0 2(5.54 m/s)(0.656 s) ( 9.80 m/s )(0.656 s) 3.63 m 2.11 m 1.5 m.y y− = + − = − =  

(b) SET UP: ?,yv =  0.656 s,t =  29.80 m/s ,ya = −  0 5.54 m/syv = +  

0y y yv v a t= +  

EXECUTE: 25.54 m/s ( 9.80 m/s )(0.656 s) 0.89 m/s.yv = + − = −  

EVALUATE: The minus sign for yv  indicates that the y-component of v!  is downward. At this point the quarter 
has passed through the highest point in its path and is on its way down. The horizontal range if it returned to its 
original height (it doesn�t!) would be 3.6 m. It reaches its maximum height after traveling horizontally 1.8 m, so at 

0 2.1 mx x− =  it is on its way down. 
 3.22. IDENTIFY: Use the analysis of Example 3.10. 

SET UP: From Example 3.10, 
0 0cos

dt
v α

= and 21
dart 0 0 2( sin )y v t gtα= − . 

EXECUTE: Substituting for t in terms of d in the expression for darty  gives 

dart 0 2 2
0 0

tan .
2 cos

gdy d
v

α
α

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

Using the given values for d and 0α  to express this as a function of 0v , 
2 2

2
0

26.62 m s(3.00 m) 0.90 .y
v

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

(a) 0 12.0 m/sv = gives 2.14 my = . 
(b) 0 8.0 m/sv = gives 1.45 my = . 

0 0 0cos (6.4 m/s)cos60xv v α= = °

0 3.20 m/sxv =  

0 0 0sin (6.4 m/s)sin 60yv v α= = °  

0 5.54 m/syv =  
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(c) 0 4.0 m/sv = gives 2.29 my = − . In this case, the dart was fired with so slow a speed that it hit the ground before 
traveling the 3-meter horizontal distance. 
EVALUATE: For (a) and (d) the trajectory of the dart has the shape shown in Figure 3.26 in the textbook. For (c) 
the dart moves in a parabola and returns to the ground before it reaches the x-coordinate of the monkey. 

 3.23. IDENTIFY: Take the origin of coordinates at the roof and let the -directiony+  be upward. The rock moves in 
projectile motion, with 0xa =  and .ya g= −  Apply constant acceleration equations for the x and y components of 
the motion. 
SET UP:  

 

0 0 0cos 25.2 m/sxv v α= =  

0 0 0sin 16.3 m/syv v α= =  

Figure 3.23a  
(a) At the maximum height 0.yv =  

29.80 m/s ,ya = −  0,yv =  0 16.3 m/s,yv = +  0 ?y y− =  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE: 
2 2 2

0
0 2

0 (16.3 m/s) 13.6 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

− = = = +
−

 

(b) SET UP: Find the velocity by solving for its x and y components. 
0 25.2 m/sx xv v= =  (since 0xa = ) 

?,yv =  29.80 m/s ,ya = −  0 15.0 my y− = −  (negative because at the ground the rock is below its initial position), 

0 16.3 m/syv =  
2 2

0 02 ( )y y yv v a y y= + −  
2
0 02 ( )y y yv v a y y= − + −  ( yv  is negative because at the ground the rock is traveling downward.) 

EXECUTE: 2 2(16.3 m/s) 2( 9.80 m/s )( 15.0 m) 23.7 m/syv = − + − − = −  

Then 2 2 2 2(25.2 m/s) ( 23.7 m/s) 34.6 m/s.x yv v v= + = + − =  

(c) SET UP: Use the vertical motion (y-component) to find the time the rock is in the air: 
?,t =  23.7 m/syv = −  (from part (b)), 29.80 m/s ,ya = −  0 16.3 m/syv = +  

EXECUTE: 0
2

23.7 m/s 16.3 m/s 4.08 s
9.80 m/s

y y

y

v v
t

a
− − −

= = = +
−

 

SET UP: Can use this t to calculate the horizontal range: 
4.08 s,t =  0 25.2 m/s,xv =  0,xa =  0 ?x x− =  

EXECUTE: 21
0 0 2 (25.2 m/s)(4.08 s) 0 103 mx xx x v t a t− = + = + =  

(d) Graphs of x versus t, y versus t, xv  versus t, and yv  versus t: 

 
Figure 3.23b 
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EVALUATE: The time it takes the rock to travel vertically to the ground is the time it has to travel horizontally. 
With 0 16.3 m/syv = +  the time it takes the rock to return to the level of the roof ( 0)y =  is 02 / 3.33 s.yt v g= =  The 
time in the air is greater than this because the rock travels an additional 15.0 m to the ground. 

 3.24. IDENTIFY: Consider the horizontal and vertical components of the projectile motion. The water travels 45.0 m 
horizontally in 3.00 s. 
SET UP: Let y+  be upward. 0xa = , 29.80 m/sya = − . 0 0 0cosxv v θ= , 0 0 0sinyv v θ= . 

EXECUTE: (a) 21
0 0 2x xx x v t a t− = +  gives 0 0 0(cos )x x v tθ− =  and 0

45.0 mcos 0.600
(25.0 m/s)(3.00 s)

θ = = ; 0 53.1θ = °  

(b) At the highest point 0 (25.0 m/s)cos53.1 15.0 m/sx xv v= = ° = , 0yv = and 2 2 15.0 m/sx yv v v= + = . At all points 

in the motion, 29.80 m/sa = downward. 
(c) Find 0y y−  when 3 00st = . : 

2 2 21 1
0 0 2 2(25.0 m/s)(sin53.1 )(3.00 s) ( 9.80 m/s )(3.00 s) 15.9 my yy y v t a t− = + = ° + − =  

0 15.0 m/sx xv v= = , 2
0 (25.0 m/s)(sin53.1 ) (9.80m/s )(3.00 s) 9.41 m/sy y yv v a t= + = ° − = − , and 

2 2 2 2(15.0 m/s) ( 9.41 m/s) 17.7 m/sx yv v v= + = + − =  

EVALUATE: The acceleration is the same at all points of the motion. It takes the water 
0

2

20.0 m/s 2.04 s
9.80 m/s

y

y

v
t

a
= − = − =

−
 to reach its maximum height. When the water reaches the building it has passed 

its maximum height and its vertical component of velocity is downward. 
 3.25. IDENTIFY and SET UP: The stone moves in projectile motion. Its initial velocity is the same as that of the balloon. 

Use constant acceleration equations for the x and y components of its motion. Take y+  to be upward. 
EXECUTE: (a) Use the vertical motion of the rock to find the initial height. 

6.00 s,t =  0 20.0 m/s,yv = +  29.80 m/s ,ya = +  0 ?y y− =  
21

0 0 2y yy y v t a t− = +  gives 0 296 my y− =  

(b) In 6.00 s the balloon travels downward a distance 0 (20.0 s)(6.00 s) 120 m.y y− = =  So, its height above 
ground when the rock hits is 296 m 120 m 176 m.− =  
(c) The horizontal distance the rock travels in 6.00 s is 90.0 m. The vertical component of the distance between the 
rock and the basket is 176 m, so the rock is 2 2(176 m) (90 m) 198 m+ =  from the basket when it hits the ground. 
(d) (i) The basket has no horizontal velocity, so the rock has horizontal velocity 15.0 m/s relative to the basket. 
Just before the rock hits the ground, its vertical component of velocity is 0y y yv v a t= + =  

220.0 m/s (9.80 m/s )(6.00 s) 78.8 m/s,+ =  downward, relative to the ground. The basket is moving downward at 
20.0 m/s, so relative to the basket the rock has downward component of velocity 58.8 m/s. 
(e) horizontal: 15.0 m/s; vertical: 78.8 m/s 
EVALUATE: The rock has a constant horizontal velocity and accelerates downward 

 3.26. IDENTIFY: The shell moves as a projectile. To just clear the top of the cliff, the shell must have 
0 25.0 my y− = when it has 0 60.0 mx x− = . 

SET UP: Let y+  be upward. 0xa = , ya g= − . 0 0 cos43xv v= ° , 0 0 sin 43yv v= ° . 

EXECUTE: (a) horizontal motion: 0 0
0

60.0 m  so  
( cos43 )xx x v t t
v t

− = =
°

. 

vertical motion: 2 2 21 1
0 0 02 2  gives  25.0m (  sin 43.0 ) ( 9.80m/s )y yy y v t a t v t t− = + = ° + − . 

Solving these two simultaneous equations for 0v  and t gives 0 3.26 m/sv =  and 2.51 st = . 
(b) yv  when shell reaches cliff: 

2
0 (32.6 m/s) sin 43.0 (9.80 m/s )(2.51 s) 2.4 m/s y y yv v a t= + = ° − = −  

The shell is traveling downward when it reaches the cliff, so it lands right at the edge of the cliff. 

EVALUATE: The shell reaches its maximum height at 0 2.27 sy

y

v
t

a
= − = , which confirms that at 2.51 st =  it has 

passed its maximum height and is on its way down when it strikes the edge of the cliff. 
 3.27. IDENTIFY: The suitcase moves in projectile motion. The initial velocity of the suitcase equals the velocity of the 

airplane. 
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SET UP: Take y+  to be upward. 0xa = , ya g= − . 
EXECUTE: Use the vertical motion to find the time it takes the suitcase to reach the ground: 

2
0 0 0 sin23 ,  9.80 m/s ,  114 m, ?y yv v a y y t= ° = − − = − =  21

0 0 2 gives  9.60 sy yy y v t a t t− = + = . 

The distance the suitcase travels horizontally is 0 0 0(  cos23.0 ) 795 mxx x v v t− = = ° = . 

EVALUATE: An object released from rest at a height of 114 m strikes the ground at 02( ) 4.82 sy yt
g
−

= =
−

. The 

suitcase is in the air much longer than this since it initially has an upward component of velocity. 
 3.28. IDENTIFY: Determine how rada depends on the rotational period T. 

SET UP: 
2

rad 2

4 Ra
T
π

= . 

EXECUTE: For any item in the washer, the centripetal acceleration will be inversely proportional to the square of 
the rotational period; tripling the centripetal acceleration involves decreasing the period by a factor of 3 , so that 
the new period T ′  is given in terms of the previous period T by / 3T T′ = . 
EVALUATE: The rotational period must be decreased in order to increase the rate of rotation and therefore 
increase the centripetal acceleration. 

 3.29. IDENTIFY: Apply Eq. (3.30). 
SET UP: 24 hT = . 

EXECUTE: (a) 
2 6

2 3
rad 2

4 (6.38 10  m) 0.034  m/s 3.4 10 .
((24 h)(3600 s/h))

a gπ −×
= = = ×  

(b) Solving Eq. (3.30) for the period T with rada g= , 
2 6

2

4 (6.38 10 m) 5070 s =1.4 h.
9.80 m/s

T π ×
= =  

EVALUATE: rada is proportional to 21/T , so to increase rada by a factor of 3

1 294
3.4 10− =

×
requires that T be 

multiplied by a factor of 1
294

. 24 h 1.4 h
294

= . 

 3.30. IDENTIFY: Each blade tip moves in a circle of radius 3.40 mR =  and therefore has radial acceleration 
2

rad /a v R= . 

SET UP: 550 rev/min  9.17 rev/s= , corresponding to a period of 1 0.109 s
9.17 rev/s

T = = . 

EXECUTE: (a) 2 196 m/sRv
T
π

= = . 

(b) 
2

4 2 3
rad 1.13 10  m/s 1.15 10va g

R
= = × = × . 

EVALUATE: 
2

rad 2

4 Ra
T
π

= gives the same results for rada as in part (b). 

 3.31. IDENTIFY: Apply Eq.(3.30). 
SET UP: 7.0 mR = . 29.80 m/sg = . 
EXECUTE: (a) Solving Eq. (3.30) for T in terms of R and rada , 

2 2 2
rad4 / 4 (7.0 m)/(3.0)(9.80 m/s ) 3.07 sT R aπ π= = = . 

(b) rad 10a g= gives 1.68 sT = . 
EVALUATE: When rada increases, T decreases. 

 3.32. IDENTIFY: Each planet moves in a circular orbit and therefore has acceleration 2
rad /a v R= . 

SET UP: The radius of the earth�s orbit is 111.50 10  mr = ×  and its orbital period is 7365 days 3.16 10  sT = = × . 

For Mercury, 105.79 10  mr = ×  and 688.0 days 7.60 10  sT = = × . 

EXECUTE: (a) 42 2.98 10  m/srv
T
π

= = ×  

(b) 
2

3 2
rad 5.91 10  m/sva

r
−= = × . 

(c) 44.79 10  m/sv = × , and 2 2
rad 3.96 10  m/sa −= × . 
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EVALUATE: Mercury has a larger orbital velocity and a larger radial acceleration than earth. 
 3.33. IDENTIFY: Uniform circular motion. 

SET UP: Since the magnitude of v!  is constant. tan 0
d

v
dt

= =
v!

 and the resultant acceleration is equal to the radial 

component. At each point in the motion the radial component of the acceleration is directed in toward the center of 
the circular path and its magnitude is given by 2 / .v R  

EXECUTE: (a) 
2 2

2
rad

(7.00 m/s) 3.50 m/s ,
14.0 m

va
R

= = =  upward. 

(b) The radial acceleration has the same magnitude as in part (a), but now the direction toward the center of the 
circle is downward. The acceleration at this point in the motion is 23.50 m/s ,  downward. 
(c) SET UP: The time to make one rotation is the period T, and the speed v is the distance for one revolution 
divided by T. 

EXECUTE: 2 Rv
T
π

=  so 2 2 (14.0 m) 12.6 s
7.00 m/s

RT
v
π π

= = =  

EVALUATE: The radial acceleration is constant in magnitude since v is constant and is at every point in the 
motion directed toward the center of the circular path. The acceleration is perpendicular to v!  and is nonzero 
because the direction of v!  changes. 

 3.34. IDENTIFY: The acceleration is the vector sum of the two perpendicular components, rada and tana . 

SET UP: tana is parallel to v! and hence is associated with the change in speed; 2
tan 0.500 m/sa = . 

EXECUTE: (a) 2 2 2
rad / (3 m/s) /(14 m) 0.643 m/sa v R= = = . 

2 2 2 2 1/ 2 2((0.643 m/s ) (0.5 m/s ) ) 0.814 m/s ,  37.9a = + = °  to the right of vertical. 
(b) The sketch is given in Figure 3.34. 

 
Figure 3.34 

 3.35. IDENTIFY: Each part of his body moves in uniform circular motion, with 
2

rad
va
R

= . The speed in rev/s is 1/T , 

where T is the period in seconds (time for 1 revolution). The speed v increases with R along the length of his body 
but all of him rotates with the same period T. 
SET UP: For his head 8.84 mR = and for his feet 6.84 mR = . 

EXECUTE: (a) 2
rad (8.84 m)(12.5)(9.80 m/s ) 32.9 m/sv Ra= = =  

(b) Use 
2

rad 2

4 Ra
T
π

= . Since his head has rad 12.5a g= and 8.84 mR = , 

2
rad

8.84 m2 2 1.688 s
12.5(9.80 m/s )

RT
a

π π= = = . Then his feet have 
2

2
rad 2 2

4 (6.84 m) 94.8 m/s 9.67
(1.688 s)

Ra g
T

π
= = = = . 

The difference between the acceleration of his head and his feet is 212.5 9.67 2.83 27.7 m/sg g g− = = . 

(c) 1 1 0.592 rev/s 35.5 rpm
1.69 sT

= = =  

EVALUATE: His feet have speed 2
rad (6.84 m)(94.8 m/s ) 25.5 m/sv Ra= = =  

 3.36. IDENTIFY: The relative velocities are S/Fv
! , the velocity of the scooter relative to the flatcar, S/Gv

! , the scooter 
relative to the ground and F/Gv

! , the flatcar relative to the ground. S/G S/F F/Gv = v + v! ! ! . Carry out the vector addition by 
drawing a vector addition diagram. 
SET UP: S/F S/G F/G−v = v v! ! ! . F/Gv

! is to the right, so F/G−v! is to the left. 
EXECUTE: In each case the vector addition diagram gives 
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(a) 5.0 m/s  to the right 
(b) 16.0 m/s to the left 
(c) 13.0 m/s  to the left. 
EVALUATE: The scooter has the largest speed relative to the ground when it is moving to the right relative to the 
flatcar, since in that case the two velocities S/Fv

! and F/Gv
! are in the same direction and their magnitudes add. 

 3.37. IDENTIFY: Relative velocity problem. The time to walk the length of the moving sidewalk is the length divided 
by the velocity of the woman relative to the ground. 
SET UP: Let W stand for the woman, G for the ground, and S for the sidewalk. Take the positive direction to be 
the direction in which the sidewalk is moving. 
The velocities are W/Gv  (woman relative to the ground), W/Sv  (woman relative to the sidewalk), and S/Gv  (sidewalk 
relative to the ground). 
Eq.(3.33) becomes W/G W/S S/G.v v v= +  

The time to reach the other end is given by 
W/G

distance traveled relative to groundt
v

=  

EXECUTE: (a) S/G 1.0 m/sv =  

W/S 1.5 m/sv = +  

W/G W/S S/G 1.5 m/s 1.0 m/s 2.5 m/s.v v v= + = + =  

W/G

35.0 m 35.0 m 14 s.
2.5 m/s

t
v

= = =  

(b) S/G 1.0 m/sv =  

W/S 1.5 m/sv = −  

W/G W/S S/G 1.5 m/s 1.0 m/s 0.5 m/s.v v v= + = − + = −  (Since W/Gv  now is negative, she must get on the moving 
sidewalk at the opposite end from in part (a).) 

W/G

35.0 m 35.0 m 70 s.
0.5 m/s

t
v

− −
= = =

−
 

EVALUATE: Her speed relative to the ground is much greater in part (a) when she walks with the motion of the 
sidewalk. 

 3.38. IDENTIFY: Calculate the rower�s speed relative to the shore for each segment of the round trip. 
SET UP: The boat�s speed relative to the shore is 6.8 km/h downstream and 1.2 km/h upstream. 
EXECUTE: The walker moves a total distance of 3.0 km at a speed of 4.0 km/h, and takes a time of three fourths 
of an hour (45.0 min). 

The total time the rower takes is 1.5 km 1.5 km 1.47 h 88.2 min.
6.8 km/h 1.2 km/h

+ = =  
EVALUATE: It takes the rower longer, even though for half the distance his speed is greater than 4.0 km/h. The 
rower spends more time at the slower speed. 

 3.39. IDENTIFY: Apply the relative velocity relation. 
SET UP: The relative velocities are C/Ev

! , the canoe relative to the earth, R/Ev! , the velocity of the river relative to 
the earth and C/Rv! , the velocity of the canoe relative to the river. 
EXECUTE: C/E C/R R/Ev = v + v! ! ! and therefore C/R C/E R/E−v = v v! ! ! . The velocity components of C/Rv! are 

0.50 m/s (0.40 m/s)/ 2,  east  and  (0.40 m/s)/ 2,  south,− +  for a velocity relative to the river of 0.36 m/s, at 
52.5°  south of west. 
EVALUATE: The velocity of the canoe relative to the river has a smaller magnitude than the velocity of the canoe 
relative to the earth. 

 3.40. IDENTIFY: Use the relation that relates the relative velocities. 
SET UP: The relative velocities are the velocity of the plane relative to the ground, P/Gv

! , the velocity of the plane 
relative to the air, P/Av

! , and the velocity of the air relative to the ground, A/Gv! . P/Gv
!  must due west and A/Gv!  must 

be south. A/G 80 km/hv =  and P/A 320 km/hv = . P/G P/A A/Gv = v + v! ! ! . The relative velocity addition diagram is given 
in Figure 3.40. 

EXECUTE: (a) A/G

P/A

80 km/hsin
320 km/h

v
v

θ = =  and 14θ = ° , north of west. 

(b) 2 2 2 2
P/G P/A A/G (320 km/h) (80.0 km/h) 310 km/hv v v= − = − = . 



3-16 Chapter 3 

EVALUATE: To travel due west the velocity of the plane relative to the air must have a westward component and 
also a component that is northward, opposite to the wind direction. 

 
Figure 3.40 

 3.41. IDENTIFY: Relative velocity problem in two dimensions. His motion relative to the earth (time displacement) 
depends on his velocity relative to the earth so we must solve for this velocity. 
(a) SET UP: View the motion from above. 

 

 

The velocity vectors in the problem are: 
M/E ,v!  the velocity of the man relative to the earth 

W/E ,v!  the velocity of the water relative to the earth 

M/W ,v!  the velocity of the man relative to the water 
The rule for adding these velocities is 

M/E M/W W/Ev = v + v! ! !  

Figure 3.41a  
The problem tells us that W/Ev!  has magnitude 2.0 m/s and direction due south. It also tells us that M/Wv!  has 
magnitude 4.2 m/s and direction due east. The vector addition diagram is then as shown in Figure 3.41b 

 

This diagram shows the vector addition 
M/E M/W W/Ev = v + v! ! !  

and also has M/Wv!  and W/Ev!  in their 
specified directions. Note that the 
vector diagram forms a right triangle. 

Figure 3.41b  

The Pythagorean theorem applied to the vector addition diagram gives 2 2 2
M/E M/W W/E.v v v= +  

EXECUTE: 2 2 2 2
M/E M/W W/E (4.2 m/s) (2.0 m/s) 4.7 m/sv v v= + = + =  M/W

W/E

4.2 m/stan 2.10;
2.0 m/s

v
v

θ = = =  65 ;θ = °  or 

90 25 .φ θ= ° − = ° The velocity of the man relative to the earth has magnitude 4.7 m/s and direction 25  S°  of E. 
(b) This requires careful thought. To cross the river the man must travel 800 m due east relative to the earth. The 
man�s velocity relative to the earth is M/E.v!  But, from the vector addition diagram the eastward component of M/Ev  
equals M/W 4.2 m/s.v =  

Thus 0 800 m 190 s.
4.2 m/sx

x xt
v
−

= = =  

(c) The southward component of M/Ev!  equals W/E 2.0 m/s.v =  Therefore, in the 190 s it takes him to cross the river 
the distance south the man travels relative to the earth is 

0 (2.0 m/s)(190 s) 380 m.yy y v t− = = =  

EVALUATE: If there were no current he would cross in the same time, (800 m) /(4.2 m/s) 190 s.=  The current 
carries him downstream but doesn�t affect his motion in the perpendicular direction, from bank to bank. 

 3.42. IDENTIFY: Use the relation that relates the relative velocities. 
SET UP: The relative velocities are the water relative to the earth, W/Ev! , the boat relative to the water, B/Wv! , and 
the boat relative to the earth, B/Ev

! . B/Ev
!  is due east, W/Ev!  is due south and has magnitude 2.0 m/s. B/W 4.2 m/sv = . 

B/E B/W W/E= +v v v! ! ! . The velocity addition diagram is given in Figure 3.42. 
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EXECUTE: (a) Find the direction of B/Wv! . W/E

B/W

2.0 m/ssin
4.2 m/s

v
v

θ = = . 28.4θ = ° , north of east. 

(b) 2 2 2 2
B/E B/W W/E (4.2 m/s) (2.0 m/s) 3.7 m/sv v v= − = − =  

(c) 
B/E

800 m 800 m 216 s
3.7 m/s

t
v

= = = . 

EVALUATE: It takes longer to cross the river in this problem than it did in Problem 3.41. In the direction straight 
across the river (east) the component of his velocity relative to the earth is lass than 4.2 m/s. 

 
Figure 3.42 

 3.43. IDENTIFY: Relative velocity problem in two dimensions. 
(a) SET UP: P/Av

!  is the velocity of the plane relative to the air. The problem states that P/Av
!  has magnitude 

35 m/s and direction south. 
A/Ev!  is the velocity of the air relative to the earth. The problem states that A/Ev!  is to the southwest ( 45  S°  of W) 

and has magnitude 10 m/s. 
The relative velocity equation is P/E P/A A/E.= +v v v! ! !  

 
Figure 3.43a 

EXECUTE: (b) P/A( ) 0,xv =  P/A( ) 35 m/syv = −  

A/E( ) (10 m/s)cos45 7.07 m/s,xv = − ° = −  

A/E( ) (10 m/s)sin 45 7.07 m/syv = − ° = −  

P/E P/A A/E( ) ( ) ( ) 0 7.07 m/s 7.1 m/sx x xv v v= + = − = −  

P/E P/A A/E( ) ( ) ( ) 35 m/s 7.07 m/s 42 m/sy y yv v v= + = − − = −  
(c)   

 

2 2
P/E P/E P/E( ) ( )x yv v v= +  

2 2
P/E ( 7.1 m/s) ( 42 m/s) 43 m/sv = − + − =  

P/E

P/E

( ) 7.1tan 0.169
( ) 42

x

y

v
v

φ −
= = =

−
 

9.6 ;φ = °  ( 9.6°  west of south) 

Figure 3.43b  
EVALUATE: The relative velocity addition diagram does not form a right triangle so the vector addition must be 
done using components. The wind adds both southward and westward components to the velocity of the plane 
relative to the ground. 
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 3.44. IDENTIFY: Use Eqs.(2.17) and (2.18). 
SET UP: At the maximum height 0yv = . 

EXECUTE: (a) 3 2
0 0,  

3 2x x y yv v t v v t tα γβ= + = + − , and 4 2 3
0 0,  

12 2 6x yx v t t y v t t tα β γ
= + = + − . 

(b) Setting 0yv =  yields a quadratic in 2
0,  0

2yt v t tγβ= + − , which has as the positive solution 

2
0

1 2 13.59 st vβ β γ
γ
⎡ ⎤= + + =⎣ ⎦ . Using this time in the expression for y(t) gives a maximum height of 341 m. 

(c) The path of the rocket is sketched in Figure 3.44. 

(d) 0y = gives 2 3
00

2 6yv t t tβ γ
= + − and 2

0 0
6 2 yt t vγ β

− − = . The positive solution is 20.73 st = . For this t, 

43.85 10  mx = × . 
EVALUATE: The graph in part (c) shows the path is not symmetric about the highest point and the time to return 
to the ground is less than twice the time to the maximum height. 

 
Figure 3.44 

 3.45. IDENTIFY: d
dt
rv =
!! and d

dt
va =
!!  

SET UP: 1( )n nd t nt
dt

−= . At 1.00 st = , 24.00 m/sxa = and 23.00 m/sya = . At 0t = , 0x = and 50.0 my = . 

EXECUTE: (a) 2x
dxv Bt
dt

= = . 2x
x

dva B
dt

= = , which is independent of t. 24.00 m/sxa = gives 22.00 m/sB = . 

23y
dyv Dt
dt

= = . 6y
y

dv
a Dt

dt
= = . 23.00 m/sya = gives 20.500 m/sD = . 0x = at 0t = gives 0A = . 50.0 my = at 

0t = gives 50.0 mC = . 
(b) At 0t = , 0xv = and 0yv = , so 0v =! . At 0t = , 22 4.00 m/sxa B= = and 0ya = , so 2 �(4.00 m/s )a = i! . 

(c) At 10.0 st = , 22(2.00 m/s )(10.0 s) 40.0 m/sxv = = and 3 23(0.500 m/s )(10.0 s) 150 m/syv = = . 
2 2 155 m/sx yv v v= + = . 

(d) 2 2(2.00 m/s )(10.0 s) 200 mx = = , 3 350.0 m (0.500 m/s )(10.0 s) 550 my = + = . � �(200 m) (550 m)r = i + j! . 
EVALUATE: The velocity and acceleration vectors as functions of time are 

2� �( ) (2 ) (3 )t Bt Dtv = i + j! and � �( ) (2 ) (6 )t B Dta = i + j! . The acceleration is not constant. 

 3.46. IDENTIFY: 0 0
( )

t
t dt∫r = r + v! ! ! and d

dt
va =
!

. 

SET UP: At 0t = , 0 0x = and 0 0y = . 

EXECUTE: (a) Integrating, 3 2� �( ) ( )
3 2

t t tβ γα −r = i + j! . Differentiating, � �( 2 )tβ γ−a = i + j! . 

(b) The positive time at which 0x =  is given by 2 3t α β= . At this time, the y-coordinate is 
2

2
3

3 3(2.4 m/s)(4.0 m/s ) 9.0 m
2 2 2(1.6 m/s )

y tγ αγ
β

= = = = . 

EVALUATE: The acceleration is not constant. 
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 3.47. IDENTIFY: Once the rocket leaves the incline it moves in projectile motion. The acceleration along the incline 
determines the initial velocity and initial position for the projectile motion. 
SET UP: For motion along the incline let x+  be directed up the incline. 2 2

0 02 ( )x x xv v a x x= + − gives 
22(1.25 m/s )(200 m) 22.36 m/sxv = = . When the projectile motion begins the rocket has 0 22.36 m/sv = at 

35.0° above the horizontal and is at a vertical height of (200.0 m)sin35.0 114.7 m=° . For the projectile motion 
let x+  be horizontal to the right and let y+  be upward. Let 0y = at the ground. Then 0 114.7 my = , 

0 0 cos35.0 18.32 m/sxv v= =° , 0 0 sin35.0 12.83 m/syv v= =° , 0xa = , 29.80 m/sya = − . Let 0x = at point A, so 

0 (200.0 m)cos35.0 163.8 mx = =° . 

EXECUTE: (a) At the maximum height 0yv = . 2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0

0 2

0 (12.83 m/s) 8.40 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

− = = =
−

 and 114.7 m 8.40 m 123 my = + = . The maximum height above 

ground is 123 m. 
(b) The time in the air can be calculated from the vertical component of the projectile motion: 0 114.7 my y− = − , 

0 12.83 m/syv = , 29.80 m/sya = − . 21
0 0 2y yy y v t a t− = + gives 2 2(4.90 m/s ) (12.83 m/s) 114.7 mt t− − . The 

quadratic formula gives ( )21 12.83 (12.83) 4(4.90)(114.7)  s
9.80

t = ± + . The positive root is 6.32 st = . Then 

21
0 0 2 (18.32 m/s)(6.32 s) 115.8 mx xx x v t a t− = + = = and 163.8 m 115.8 m 280 mx = + = . The horizontal range of 

the rocket is 280 m. 
EVALUATE: The expressions for h and R derived in Example 3.8 do not apply here. They are only for a projectile 
fired on level ground. 

 3.48. IDENTIFY: The person moves in projectile motion. Use the results in Example 3.8 to determine how T, h and D 
depend on g and set up a ratio. 

SET UP: From Example 3.8, the time in the air is 0 02 sinvt
g
α

= , the maximum height is 
2 2
0 0sin

2
vh

g
α

= and the 

horizontal range (called D in the problem) is 
2
0 0sin 2vD

g
α

= . The person has the same 0v and 0α on Mars as on 

the earth. 

EXECUTE: 0 02 sintg v α= , which is constant, so E E M Mt g t g= . E E
M E E E

M E

2.64
0.379

g gt t t t
g g

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

2 2
0 0sin

2
vhg α

= , which is constant, so E E M Mh g h g= . E
M E E

M

2.64gh h h
g

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

. 2
0 0sin 2Dg v α= , which is constant, 

so E E M MD g D g= . E
M E E

M

2.64gD D D
g

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

. 

EVALUATE: All three quantities are proportional to 1/ g so all increase by the same factor of E M/ 2.64g g = . 

 3.49. IDENTIFY: The range for a projectile that lands at the same height from which it was launched is 
2
0 sin 2v αR

g
= . 

SET UP: The maximum range is for 45α = ° . 
EXECUTE: Assuming 45α = ° , and 50 mR = , 0 22 m/sv gR= = . 
EVALUATE: We have assumed that debris was launched at all angles, including the angle of 45° that gives 
maximum range. 

 3.50. IDENTIFY: The velocity has a horizontal tangential component and a vertical component. The vertical component 

of acceleration is zero and the horizontal component is 
2

rad
xva

R
=  

SET UP: Let y+  be upward and x+  be in the direction of the tangential velocity at the instant we are 
considering. 
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EXECUTE: (a) The bird�s tangential velocity can be found from 
circumference 2 (8.00 m) 50.27 m 10.05 m/s

time of rotation 5.00 s 5.00 sxv π
= = = =  

Thus its velocity consists of the components 10.05 m/sxv =  and 3.00 m/syv = . The speed relative to the ground is 

then 2 2 10.5 m/sx yv v v= + = . 
(b) The bird�s speed is constant, so its acceleration is strictly centripetal�entirely in the horizontal direction, toward 

the center of its spiral path�and has magnitude 
2 2

2
rad

(10.05 m/s) 12.6 m/s
8.00 m

xva
r

= = = . 

(c) Using the vertical and horizontal velocity components 1 3.00 m/stan 16.6
10.05 m/s

θ −= = ° . 
EVALUATE: The angle between the bird�s velocity and the horizontal remains constant as the bird rises. 

 3.51. IDENTIFY: Take y+  to be downward. Both objects have the same vertical motion, with 0 yv  and .ya g= +  Use 
constant acceleration equations for the x and y components of the motion. 
SET UP: Use the vertical motion to find the time in the air: 

0 0,yv =  9.80 m/s ,ya 2=  0 25 m,y y− =  ?t =  

EXECUTE: 21
0 0 2y yy y v t a t− = +  gives 2.259 st =  

During this time the dart must travel 90 m, so the horizontal component of its velocity must be 
0

0
90 m 40 m/s
2.25 sx

x xv
t
−

= = =  

EVALUATE: Both objects hit the ground at the same time. The dart hits the monkey for any muzzle velocity 
greater than 40 m/s. 

 3.52. IDENTIFY: The person moves in projectile motion. Her vertical motion determines her time in the air. 
SET UP: Take y+  upward. 0 15.0 m/sxv = , 0 10.0 m/syv = + , 0xa = , 29.80 m/sya = − . 

EXECUTE: (a) Use the vertical motion to find the time in the air: 21
0 0 2y yy y v t a t− = +  with 0 30.0 my y− = −  

gives 2 230.0 m (10.0 m/s) (4.90 m/s )t t− = − . The quadratic formula gives 

( )21 10.0 ( 10.0) 4(4.9)( 30)  s
2(4.9)

t = + ± − − − . The positive solution is 3.70 st = . During this time she travels a 

horizontal distance 21
0 0 2 (15.0 m/s)(3.70 s) 55.5 mx xx x v t a t− = + = = . She will land 55.5 m south of the point 

where she drops from the helicopter and this is where the mats should have been placed. 
(b) The x-t, y-t, xv -t and yv -t graphs are sketched in Figure 3.52. 

EVALUATE: If she had dropped from rest at a height of 30.0 m it would have taken her 2

2(30.0 m) 2.47 s
9.80 m/s

t = = . 

She is in the air longer than this because she has an initial vertical component of velocity that is upward. 

 
Figure 3.52 

 3.53. IDENTIFY: The cannister moves in projectile motion. Its initial velocity is horizontal. Apply constant acceleration 
equations for the x and y components of motion. 
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SET UP:  

 

Take the origin of 
coordinates at the point 
where the canister is 
released. Take y+  to be 
upward. The initial 
velocity of the canister is 
the velocity of the plane, 
64.0 m/s in the 

-direction.x+  
Figure 3.53  

Use the vertical motion to find the time of fall: 
?,t =  0 0,yv =  29.80 m/s ,ya = −  0 90.0 my y− = −  (When the canister reaches the ground it is 90.0 m below the 

origin.) 
21

0 0 2y yy y v t a t− = +  

EXECUTE: Since 0 0,yv =  0
2

2( ) 2( 90.0 m) 4.286 s.
9.80 m/sy

y yt
a
− −

= = =
−

 

SET UP: Then use the horizontal component of the motion to calculate how far the canister falls in this time: 
0 ?,x x− =  0,xa −  0 64.0 m/s,xv =  

EXECUTE: 21
0 0 2 (64.0 m/s)(4.286 s) 0 274 m.x x v t at− = + = + =  

EVALUATE: The time it takes the cannister to fall 90.0 m, starting from rest, is the time it travels horizontally at 
constant speed. 

 3.54. IDENTIFY: The equipment moves in projectile motion. The distance D is the horizontal range of the equipment 
plus the distance the ship moves while the equipment is in the air. 
SET UP: For the motion of the equipment take x+  to be to the right and y+  to be upwards. Then 0xa = , 

29.80 m/sya = − , 0 0 0cos 7.50 m/sxv v α= = and 0 0 0sin 13.0 m/syv v α= = . When the equipment lands in the front 

of the ship, 0 8.75 my y− = − . 

EXECUTE: Use the vertical motion of the equipment to find its time in the air: 21
0 0 2y yy y v t a t− = + gives 

( )21 13.0 ( 13.0) 4(4.90)(8.75)  s
9.80

t = ± − + . The positive root is 3.21 st = . The horizontal range of the 

equipment is 21
0 0 2 (7.50 m/s)(3.21 s) 24.1 mx xx x v t a t− = + = = . In 3.21 s the ship moves a horizontal distance 

(0.450 m/s)(3.21 s) 1.44 m= , so 24.1 m 1.44 m 25.5 mD = + = . 

EVALUATE: The equation 
2
0 0sin 2vR

g
α

= from Example 3.8 can't be used because the starting and ending points 

of the projectile motion are at different heights. 
 3.55. IDENTIFY: Projectile motion problem. 

 

Take the origin of 
coordinates at the point 
where the ball leaves the 
bat, and take y+  to be 
upward. 

0 0 0cosxv v α=  

0 0 0sin ,yv v α=  

but we don�t know 0.v  
Figure 3.55  

Write down the equation for the horizontal displacement when the ball hits the ground and the corresponding 
equation for the vertical displacement. The time t is the same for both components, so this will give us two 
equations in two unknowns ( 0v  and t). 
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(a) SET UP: y-component: 
29.80 m/s ,ya = −  0 0.9 m,y y− = −  0 0 sin 45yv v= °  

21
0 0 2y yy y v t a t− = +  

EXECUTE: 2 21
0 20.9 m ( sin 45 ) ( 9.80 m/s )v t t− = ° + −  

SET UP: x-component: 
0,xa =  0 188 m,x x− =  0 0 cos45xv v= °  

21
0 0 2x xx x v t a t− = +  

EXECUTE: 0

0 0

188 m
cos45x

x xt
v v
−

= =
°

 

Put the expression for t from the x-component motion into the y-component equation and solve for 0.v  (Note that 
sin 45 cos45 .° = ° ) 

2
2

0
0 0

188 m 188 m0.9 m ( sin 45 ) (4.90 m/s )
cos45 cos45

v
v v
⎛ ⎞ ⎛ ⎞

− = ° −⎜ ⎟ ⎜ ⎟° °⎝ ⎠ ⎝ ⎠
 

2
2

0

188 m4.90 m/s 188 m 0.9 m 188.9 m
cos45v

⎛ ⎞
= + =⎜ ⎟°⎝ ⎠

 

2 2
0 cos45 4.90 m/s ,
188 m 188.9 m

v °⎛ ⎞ =⎜ ⎟
⎝ ⎠

 
2

0
188 m 4.90 m/s 42.8 m/s
cos45 188.9 m

v ⎛ ⎞= =⎜ ⎟°⎝ ⎠
 

(b) Use the horizontal motion to find the time it takes the ball to reach the fence: 
SET UP: x-component: 

0 116 m,x x− =  0,xa =  0 0 cos45 (42.8 m/s)cos45 30.3 m/s,xv v= ° = ° =  ?t =  
21

0 0 2x xx x v t a t− = +  

EXECUTE: 0

0

116 m 3.83 s
30.3 m/sx

x xt
v
−

= = =  

SET UP: Find the vertical displacement of the ball at this t: 
y-component: 

0 ?,y y− =  29.80 m/s ,ya = −  0 0 sin 45 30.3 m/s,yv v= ° =  3.83 st =  
21

0 0 2y yy y v t a t− = +  

EXECUTE: 21
0 2(30.3 s)(3.83 s) ( 9.80 m/s )(3.83 s)y y 2− = + −  

0 116.0 m 71.9 m 44.1 m,y y− = − = +  above the point where the ball was hit. The height of the ball above the 
ground is 44.1 m 0.90 m 45.0 m.+ =  It�s height then above the top of the fence is 45.0 m 3.0 m 42.0 m.− =  
EVALUATE: With 0 42.8 m/s,v =  0 30.3 m/syv =  and it takes the ball 6.18 s to return to the height where it was 

hit and only slightly longer to reach a point 0.9 m below this height. 0(188 m) /( cos45 )t v= °  gives 6.21 s,t =  
which agrees with this estimate. The ball reaches its maximum height approximately (188 m) / 2 94 m=  from 
home plate, so at the fence the ball is not far past its maximum height of 47.6 m, so a height of 45.0 m at the fence 
is reasonable. 

 3.56. IDENTIFY: The water moves in projectile motion. 
SET UP: Let 0 0 0x y= = and take y+  to be positive. 0xa = , ya g= − . 

EXECUTE: The equations of motions are 21
0 2(  sin )y v α t gt= −  and 0(  cos )x v α t= . When the water goes in the 

tank for the minimum velocity, 2y D=  and 6x D= . When the water goes in the tank for the maximum velocity, 

2y D=  and 7x D= . In both cases, sin   cos 2 / 2.α α= =  

To reach the minimum distance: 0
26

2
D v t= , and 21

0 2
22

2
D v t gt= − . Solving the first equation for t gives 

0

6 2Dt
v

= . Substituting this into the second equation gives 
2

1
2

0

6 22 6 DD D g
v

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
. Solving this for 0v  gives 

0 3v gD= . 



Motion in Two or Three Dimensions 3-23 

To reach the maximum distance: 0
27

2
D v t= , and 21

0 2
22

2
D v t gt= − . Solving the first equation for t gives 

0

7 2Dt
v

= . Substituting this into the second equation gives
2

1
2

0

7 22 7 DD D g
v

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
. Solving this for 0v  gives 

0 49 /5 3.13v gD gD= = , which, as expected, is larger than the previous result. 

EVALUATE: A launch speed of 0 6 2.45v gD gD= = is required for a horizontal range of 6D. The minimum 
speed required is greater than this, because the water must be at a height of at least 2D when it reaches the front of 
the tank. 

 3.57. IDENTIFY: The equations for h and R from Example 3.8 can be used. 

SET UP: 
2 2
0 0sin

2
vh

g
α

= and 
2
0 0sin 2vR

g
α

= . If the projectile is launched straight up, 0 90α = ° . 

EXECUTE: (a) 
2
0

2
vh
g

= and 0 2v gh= . 

(b) Calculate 0α that gives a maximum height of h when 0 2 2v gh= . 
2

20
0

8 sin 4 sin
2

ghh h
g
α α= = . 1

0 2sinα = and 

0 30.0α = ° . 

(c) 
( )2
2 2 sin 60.0

6.93
gh

R h
g

= =
°

. 

EVALUATE: 
2
0

2
0

2
sin

v h
g α
=  so 0

2
0

2 sin(2 )
sin

hR α
α

= . For a given 0α , R increases when h increases. For 0 90α = ° , 

0R =  and for 0 0α = ° , 0h = and 0R = . For 0 45α = ° , 4R h= . 
 3.58. IDENTIFY: To clear the bar the ball must have a height of 10.0 ft when it has a horizontal displacement of 36.0 ft. 

The ball moves as a projectile. When 0v is very large, the ball reaches the goal posts in a very short time and the 
acceleration due to gravity causes negligible downward displacement. 
SET UP: 36.0 ft 10.97 m= ; 10.0 ft 3.048 m= . Let x+  be to the right and y+  be upward, so 0xa = , ya g= − , 

0 0 0cosxv v α= and 0 0 0sinyv v α=  

EXECUTE: (a) The ball cannot be aimed lower than directly at the bar. 0
10.0 fttan
36.0 ft

α = and 0 15.5α = ° . 

(b) 21
0 0 2x xx x v t a t− = + gives 0 0

0 0 0cosx

x x x xt
v v α
− −

= = . Then 21
0 0 2y yy y v t a t− = + gives 

2 2
0 0 0

0 0 0 0 02 2 2 2
0 0 0 0 0 0

1 ( ) 1 ( )( sin ) ( ) tan
cos 2 cos 2 cos

x x x x x xy y v g x x g
v v v

α α
α α α

⎛ ⎞− − −
− = − = − −⎜ ⎟

⎝ ⎠
. 

2
0

0
0 0 0 0

( ) 10.97 m 9.80 m/s 12.2 m/s
cos 2[( ) tan ( )] cos45.0 2[10.97 m 3.048 m]
x x gv

x x y yα α
−

= = =
− − − −°

 

EVALUATE: With the 0v in part (b) the horizontal range of the ball is 
2
0 0sin 2 15.2 m 49.9 ftvR

g
α

= = = . The ball 

reaches the highest point in its trajectory when 0 / 2x x R− = , so when it reaches the goal posts it is on its way 
down. 

 3.59. IDENTIFY: Apply Eq.(3.27) and solve for x. 
SET UP: The change in height is y h= − . 
EXECUTE: (a) We get a quadratic equation in x, the solution to which is 

2
2 2 20 0 0 0

0 0 0 0 02
0 0

cos 2 costan sin sin 2
cos

v gh vx v v gh
g v g
α αα α α

α
⎡ ⎤ ⎡ ⎤= + = + +⎢ ⎥ ⎣ ⎦⎣ ⎦

. 

If 0h = , the square root reduces to 0 0sin v α , and x R= . 



3-24 Chapter 3 

(b) The expression for x becomes 2 2
0 0 0(10.2 m)cos [sin  sin 0.98]x α α α= + + + . The graph of x as a function of 

0α is sketched in Figure 3.59. The angle 0 90α = °  corresponds to the projectile being launched straight up, and 
there is no horizontal motion. If 0 0α = , the projectile moves horizontally until it has fallen the distance h. 
(d) The graph shows that the maximum horizontal distance is for an angle less than 45° . 
EVALUATE: For 0 45α = °  the x and y components of the initial velocity are equal. For 0 45α < ° the x component 
of the initial velocity is less than the y component. Height comes from the initial position and less vertical 
component of initial velocity is needed for the maximum range. 

 
Figure 3.59 

 3.60. IDENTIFY: The snowball moves in projectile motion. In part (a) the vertical motion determines the time in the air. 
In part (c), find the height of the snowball above the ground after it has traveled horizontally 4.0 m. 
SET UP: Let y+  be downward. 0xa = , 29.80 m/sya = + . 0 0 0cos 5.36 m/sxv v θ= = , 0 0 0sin 4.50 m/syv v θ= = . 

EXECUTE: (a) Use the vertical motion to find the time in the air: 21
0 0 2y yy y v t a t− = +  with 0 14.0 my y− =  gives 

2 214.0 m (4.50 m/s) (4.9 m/s )t t= + . The quadratic formula gives ( )21 4.50 (4.50) 4(4.9)( 14.0)  s
2(4.9)

t = − ± − − . 

The positive root is 1.29 st = . Then 21
0 0 2 (5.36 m/s)(1.29 s) 6.91 mx xx x v t a t− = + = = . 

(b) The x-t, y-t, xv -t and yv -t graphs are sketched in Figure 3.60. 

(c) 21
0 0 2x xx x v t a t− = + gives 0

0

4.0 m 0.746 s
5.36 m/sx

x xt
v
−

= = = . In this time the snowball travels downward a 

distance 21
0 0 2 6.08 my yy y v t a t− = + = and is therefore 14.0 m 6.08 m 7.9 m− = above the ground. The snowball 

passes well above the man and doesn�t hit him. 
EVALUATE: If the snowball had been released from rest at a height of 14.0 m it would have reached the ground 

in 2

2(14.0 m) 1.69 s
9.80 m/s

t = = . The snowball reaches the ground in a shorter time than this because of its initial 

downward component of velocity. 

 
Figure 3.60 

 3.61. (a) IDENTIFY and SET UP: Use the equation derived in Example 3.8: 

0 0
0 0

2 sin( cos ) vR v
g
αα

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
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Call the range 1R  when the angle is 0α  and 2R  when the angle is 90 .α° −  

0 0
1 0 0

2 sin( cos ) vR v
g
αα

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

0 0
2 0 0

2 sin(90 )( cos(90 )) vR v
g

αα
⎛ ⎞° −

= ° − ⎜ ⎟
⎝ ⎠

 

The problem asks us to show that 1 2.R R=  
EXECUTE: We can use the trig identities in Appendix B to show: 

0 0 0cos(90 ) cos( 90 ) sinα α α° − = − ° =  

0 0 0 0sin(90 ) sin( 90 ) ( cos ) cosα α α α° − = − − ° = − − = +  

Thus 0 0 0 0
2 0 0 0 0 1

2 cos 2 sin( sin ) ( cos ) .v vR v v R
g g
α αα α

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(b) 
2
0 0sin 2vR

g
α

=  so 
2

0 2 2
0

(0.25 m)(9.80 m/s )sin 2 .
(2.2 m/s)

Rg
v

α = =  

This gives 15α = °  or 75 .°  
EVALUATE: 2

0 0( sin 2 ) / ,R v gα=  so the result in part (a) requires that 2 2
0 0sin (2 ) sin (180 2 ),α α= ° −  which is true. 

(Try some values of 0α  and see!) 
 3.62. IDENTIFY: Mary Belle moves in projectile motion. 

SET UP: Let y+  be upward. 0xa = , ya g= − . 

EXECUTE: (a) Eq.(3.27) with 8.2 mx = , 6.1 my = and 0 53α = ° gives 0 13 8  m/sv .= . 

(b) When she reached Joe Bob, 
0

8.2 m 0.9874 s
cos53

t
v

= =
°

. 0 8.31 m/sx xv v= = and 0 1.34 m/sy y yv v a t= + = + . 

8 4 m/sv .= , at an angle of 9.16° . 
(c) The graph of ( )xv t  is a horizontal line. The other graphs are sketched in Figure 3.62. 

(d) Use Eq. (3.27), which becomes 1 2(1.327) (0.071115  m )y x x−= − . Setting 8.6 my = −  gives 23.8  mx = as the 
positive solution. 

 
Figure 3.62 

 3.63. (a) IDENTIFY: Projectile motion. 

 

Take the origin of coordinates at the top 
of the ramp and take y+  to be upward. 
The problem specifies that the object is 
displaced 40.0 m to the right when it is 
15.0 m below the origin. 

Figure 3.63  
We don�t know t, the time in the air, and we don�t know 0.v  Write down the equations for the horizontal and 
vertical displacements. Combine these two equations to eliminate one unknown. 
SET UP: y-component: 

0 15.0 m,y y− = −  29.80 m/s ,ya = −  0 0 sin53.0yv v= °  
21

0 0 2y yy y v t a t− = +  

EXECUTE: 2 2
015.0 m ( sin53.0 ) (4.90 m/s )v t t− = ° −  
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SET UP: x-component: 
0 40.0 m,x x− =  0,xa =  0 0 cos53.0xv v= °  

21
0 0 2x xx x v t a t− = +  

EXECUTE: 040.0 m ( )cos53.0v t= °  

The second equation says 0
40.0 m 66.47 m.

cos53.0
v t = =

°
 

Use this to replace 0v t  in the first equation: 
2 215.0 m (66.47 m)sin53 (4.90 m/s )t− = ° −  

2 2

(66.46 m)sin53 15.0 m 68.08 m 3.727 s.
4.90 m/s 4.90 m/s

t ° +
= = =  

Now that we have t we can use the x-component equation to solve for 0:v  

0
40.0 m 40.0 m 17.8 m/s.
cos53.0 (3.727 s)cos53.0

v
t

= = =
° °

 

EVALUATE: Using these values of 0v  and t in the 1
0 0 2y yy y v a t 2= = +  equation verifies that 0 15.0 m.y y− = −  

(b) IDENTIFY: 0 (17.8 m/s) / 2 8.9 m/sv = =  
This is less than the speed required to make it to the other side, so he lands in the river. 
Use the vertical motion to find the time it takes him to reach the water: 
SET UP: 0 100 m;y y− = −  0 0 sin53.0 7.11 m/s;yv v= + ° =  29.80 m/sya = −  

21
0 0 2y yy y v t a t− = +  gives 100 7.11 4.90t t 2− = −  

EXECUTE: 24.90 7.11 100 0t t− − =  and ( )21
9.80 7.11 (7.11) 4(4.90)( 100)t = ± − −  

0.726 s 4.57 st = ±  so 5.30 s.t =  
The horizontal distance he travels in this time is 

0 0 0( cos53.0 ) (5.36 m/s)(5.30 s) 28.4 m.xx x v t v t− = = ° = =  

He lands in the river a horizontal distance of 28.4 m from his launch point. 
EVALUATE: He has half the minimum speed and makes it only about halfway across. 

 3.64. IDENTIFY: The rock moves in projectile motion. 
SET UP: Let y+  be upward. 0xa = , ya g= − . Eqs.(3.22) and (3.23) give xv and yv . 
EXECUTE: Combining equations 3.25, 3.22 and 3.23 gives 

2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0cos ( sin ) (sin cos ) 2 sin ( )v v v gt v v gt gtα α α α α= + − = + − + . 

2 2 2 2
0 0 0 0

12 ( sin ) 2
2

v v g v t gt v gyα= − − = − , where Eq.(3.21) has been used to eliminate t in favor of y. For the case 

of a rock thrown from the roof of a building of height h, the speed at the ground is found by substituting y h= −  

into the above expression, yielding 2
0 2v v gh= + , which is independent of 0α . 

EVALUATE: This result, as will be seen in the chapter dealing with conservation of energy (Chapter 7), is valid 
for any y, positive, negative or zero, as long as 2

0 2 0v gy− > . 
 3.65. IDENTIFY and SET UP: Take y+  to be upward. The rocket moves with projectile motion, with 0 40.0 m/syv = +  

and 0 30.0 m/sxv =  relative to the ground. The vertical motion of the rocket is unaffected by its horizontal velocity. 

EXECUTE: (a) 0yv =  (at maximum height), 0 40.0 m/s,yv = +  29.80 m/s ,ya = −  0 ?y y− =  
2 2

0 02 ( )y y yv v a y y= + −  gives 0 81.6 my y− =  
(b) Both the cart and the rocket have the same constant horizontal velocity, so both travel the same horizontal 
distance while the rocket is in the air and the rocket lands in the cart. 
(c) Use the vertical motion of the rocket to find the time it is in the air. 

0 40 m/s,yv =  29.80 m/s ,ya = −  40 m/s,yv = −  ?t =  

0y y yv v a t= +  gives 8.164 st =  

Then 0 0 (30.0 m/s)(8.164 s) 245 m.xx x v t− = = =  
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(d) Relative to the ground the rocket has initial velocity components 0 30.0 m/sxv =  and 0 40.0 m/s,yv =  so it is 
traveling at 53.1°  above the horizontal. 
(e) (i) 

 
Figure 3.65a 

Relative to the cart, the rocket travels straight up and then straight down 
(ii) 

 
Figure 3.65b 

Relative to the ground the rocket travels in a parabola. 
EVALUATE: Both the cart and rocket have the same constant horizontal velocity. The rocket lands in the cart. 

 3.66. IDENTIFY: The ball moves in projectile motion. 
SET UP: The woman and ball travel for the same time and must travel the same horizontal distance, so for the 
ball 0 6.00 m/sxv = . 

EXECUTE: (a) 0 0 0cosxv v θ= . 0
0

0

6.00 m/scos
20.0 m/s

xv
v

θ = =  and 0 72.5θ = ° . 

(b) Relative to the ground the ball moves in a parabola. The ball and the runner have the same horizontal 
component of velocity, so relative to the runner the ball has only vertical motion. The trajectories as seen by each 
observer are sketched in Figure 3.66. 
EVALUATE: The ball could be thrown with a different speed, so long as the angle at which it was thrown was 
adjusted to keep 0 6.00 m/sxv = . 

 
Figure 3.66 

 3.67. IDENTIFY: The boulder moves in projectile motion. 
SET UP: Take y+  downward. 0 0xv v= , 0 0yv = . 0xa = , 29.80 m/sya = + . 
EXECUTE: (a) Use the vertical motion to find the time for the boulder to reach the level of the lake: 

21
0 0 2y yy y v t a t− = +  with 0 20 my y− = +  gives 0

2

2( ) 2(20 m) 2.02 s
9.80 m/sy

y yt
a
−

= = = . The rock must travel 

horizontally 100 m during this time. 21
0 0 2x xx x v t a t− = +  gives 0

0 0
100 m 49.5 m/s
2.02 sx

x xv v
t
−

= = = =  

(b) In going from the edge of the cliff to the plain, the boulder travels downward a distance of 0 45 my y− = . 

0
2

2( ) 2(45 m) 3.03 s
9.80 m/sy

y yt
a
−

= = =  and 0 0 (49.5 m/s)(3.03 s) 150 mxx x v t− = = = . The rock lands 

150 m 100 m 50 m− =  beyond the foot of the dam. 
EVALUATE: The boulder passes over the dam 2.02 s after it leaves the cliff and then travels an additional 1.01 s 
before landing on the plain. If the boulder has an initial speed that is less than 49 m/s, then it lands in the lake. 

 3.68. IDENTIFY: The bagels move in projectile motion. Find Henrietta�s location when the bagels reach the ground, 
and require the bagels to have this horizontal range. 
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SET UP: Let y+  be downward and let 0 0 0x y= = . 0xa = , ya g= + . When the bagels reach the ground, 
43.9 my = . 

EXECUTE: (a) When she catches the bagels, Henrietta has been jogging for 9.00 s plus the time for the bagels to 

fall 43.9 m from rest. Get the time to fall: 21
2

y gt= , 2 2143.9 m (9.80 m/s )
2

t=  and 2.99 st = . So, she has been 

jogging for 9.00 s 2.99 s 12.0 s+ = . During this time she has gone (3.05 m/s)(12.0 s) 36.6 mx vt= = = . Bruce 

must throw the bagels so they travel 36.6 m horizontally in 2.99 s. This gives x vt= . 36.6 m (2 99 s)v .= and 
12.2 m/sv = . 

(b) 36.6 m from the building. 
EVALUATE: If 12.2 m/sv > the bagels land in front of her and if 12.2 m/sv < they land behind her. There is a 
range of velocities greater than 12.2 m/s for which she would catch the bagels in the air, at some height above the 
sidewalk. 

 3.69. IDENTIFY: The shell moves in projectile motion. To find the horizontal distance between the tanks we must find 
the horizontal velocity of one tank relative to the other. Take y+  to be upward. 
(a) SET UP: The vertical motion of the shell is unaffected by the horizontal motion of the tank. Use the vertical 
motion of the shell to find the time the shell is in the air: 

0 0 sin 43.4 m/s,yv v α= =  29.80 m/s ,ya = −  0 0y y− =  (returns to initial height), ?t =  

EXECUTE: 21
0 0 2y yy y v t a t− = +  gives 8.86 st =  

SET UP: Consider the motion of one tank relative to the other. 
EXECUTE: Relative to tank #1 the shell has a constant horizontal velocity 0 cos 246.2 m/s.v α =  Relative to the 
ground the horizontal velocity component is 246.2 m/s 15.0 m/s 261.2 m/s.+ =  Relative to tank #2 the shell has 
horizontal velocity component 261.2 m/s 35.0 m/s 226.2 m/s.− =  The distance between the tanks when the shell 
was fired is the (226.2 m/s)(8.86 s) 2000 m=  that the shell travels relative to tank #2 during the 8.86 s that the 
shell is in the air. 
(b) The tanks are initially 2000 m apart. In 8.86 s tank #1 travels 133 m and tank #2 travels 310 m, in the same 
direction. Therefore, their separation increases by 310 m 133 m 177 m.− =  So, the separation becomes 2180 m 
(rounding to 3 significant figures). 
EVALUATE: The retreating tank has greater speed than the approaching tank, so they move farther apart while the 
shell is in the air. We can also calculate the separation in part (b) as the relative speed of the tanks times the time 
the shell is in the air: (35.0 m/s 15.0 m/s)(8.86 s) 177 m.− =  

 3.70. IDENTIFY: The object moves with constant acceleration in both the horizontal and vertical directions. 
SET UP: Let y+  be downward and let x+  be the direction in which the firecracker is thrown. 

EXECUTE: The firecracker�s falling time can be found from the vertical motion: 2ht
g

= . 

The firecracker�s horizontal position at any time t (taking the student�s position as 0x = ) is 21
2x vt at= − . 

0x = when cracker hits the ground, so 2 /t v a= . Combining this with the expression for the falling time gives 
2 2v h
a g
= and 

2

2

2v gh
a

= . 

EVALUATE: When h is smaller, the time in the air is smaller and either v must be smaller or a must be larger. 
 3.71. IDENTIFY: The velocity T/Gv

! of the tank relative to the ground is related to the velocity R/Gv! of the rocket relative 
to the ground and the velocity T/Rv

! of the tank relative to the rocket by T/G T/R R/Gv = v + v! ! ! . 
SET UP: Let y+  be upward and take 0y = at the ground. Let x+  be in the direction of the horizontal component 

of the tank's motion. Once the tank is released it has 0xa = , 29.80 m/sya = − , relative to the ground. 

EXECUTE: (a) For the rocket 2
0 (1.75m/s )(22.0 s) 38.5 m/sy y yv v a t= + = = and 0xv = . The rocket has speed 38.5 

m/s at the instant when the fuel tank is released. 
(b) (i) The rocket's path is vertical, so relative to the crew member T/R- 25.0 m/sxv = + and T/R- 0yv = . (ii) R/Gv! is 

vertical and T/Rv
! is horizontal, so T/G- 25.0 m/sxv = + and T/G 38.5 m/syv − = + . 

(c) (i) The tank initially moves horizontally, at an angle of zero. (ii) T/G-
0

T/G-

38.5 m/stan
25.0 m/s

y

x

v
v

α = = and 0 57.0α = ° . 
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(d) Consider the motion of the tank, in the reference frame of the technician on the ground. At the instant the tank 
is released the rocket at a height 2 2 21 1

0 0 2 2 (1.75 m/s )(22.0 s) 423.5 my yy y v t a t− = + = = . So, for the tank 

0 423.5 my = , 0 38.5 m/syv = and 29.80 m/sya = − . 0yv = at the maximum height. 2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0

0 2

0 (38.5 m/s) 75.6 m
2 2(9.80 m/s )

y y

y

v v
y y

a
− −

− = = = . 423.5 m 75.6 m 499 my = + = . The tank reaches a height of 499 m 

above the launch pad. 
EVALUATE: Relative to the crew member in the rocket the jettisoned tank has an acceleration of 

2 2 21.75 m/s 9.80 m/s 11.5 m/s+ = , downward. Relative to the rocket the tank follows a parabolic path, but with 
zero initial vertical velocity and with a downward acceleration that has magnitude greater than g. 

 3.72. IDENTIFY: The velocity R/Gv! of the rocket relative to the ground is related to the velocity S/Gv
! of the secondary 

rocket relative to the ground and the velocity S/Rv
! of the secondary rocket relative to the rocket by 

S/G S/R R/Gv = v + v! ! ! . 
SET UP: Let y+  be upward and let 0y = at the ground. Let x+  be in the direction of the horizontal component 

of the secondary rocket's motion. After it is launched the secondary rocket has 0xa = and 29.80 m/sya = − , relative 
to the ground. 
EXECUTE: (a) (i) S/R- (12.0 m/s)cos53.0 7.22 m/sxv = =° and S/R-y (12.0 m/s)sin53.0 9.58 m/sv = =° . 

(ii) R/G- 0xv = and R/G- 8.50 m/syv = . S/G- S/R- R/G- 7.22 m/sx x xv v v= + =  and S/G- S/R- R/G-y y yv v v= + =  
9.58 m/s 8.50 m/s 18.1 m/s+ = . 

(b) 2 2
S/G S/G- S/G-( ) ( ) 19.5 m/sx yv v v= + = . S/G-

0
S/G-

18.1 m/stan
7.22 m/s

y

x

v
v

α = = and 0 68.3α = ° . 

(c) Relative to the ground the secondary rocket has 0 145 my = , 0 18.1 m/syv = + , 29.80 m/sya = − and 0yv = (at 

the maximum height). 2 2
0 02 ( )y y yv v a y y= + − gives 

2 2 2
0

0 2

0 (18.1 m/s) 16.7 m
2 2( 9.80 m/s )

y y

y

v v
y y

a
− −

− = = =
−

 . 

145 m 16.7 m 162 my = + = . 

EVALUATE: The secondary rocket reaches its maximum height in time 0
2

18.1 m/s 1.85 s
9.80 m/s

y y

y

v v
t

a
− −

= = =
−

after it 

is launched. At this time the primary rocket has height 145 m (8.50 m/s)(1.85 s) 161 m+ = , so is at nearly the same 
height as the secondary rocket. The secondary rocket first moves upward from the primary rocket but then loses 
vertical velocity due to the acceleration of gravity. 

 3.73. IDENTIFY: The original firecracker moves as a projectile. At its maximum height it's velocity is horizontal. The 
velocity A/Gv! of fragment A relative to the ground is related to the velocity F/Gv

! of the original firecracker relative to 
the ground and the velocity A/Fv! of the fragment relative to the original firecracker by A/G A/F F/Gv = v + v! ! ! . Fragment 
B obeys a similar equation. 
SET UP: Let x+  be along the direction of the horizontal motion of the firecracker before it explodes and let y+  
be upward. Fragment A moves at 53.0° above the x+  direction and fragment B moves at 53.0° below the x+  
direction. Before it explodes the firecracker has 0xa = and 29.80 m/sya = −  
EXECUTE: The horizontal component of the firecracker's velocity relative to the ground is constant (since 

0xa = ), so F/G- (25.0 m/s)cos30.0 21.65 m/sxv = =° . At the time of the explosion, F/G- 0yv = . For fragment A, 

A/F- (20.0 m/s)cos53.0 12.0 m/sxv = =° and A/F- (20.0 m/s)sin53.0 16.0 m/syv = =° . 

A/G- A/F- F/G- 12.0 m/s 21.65 m/s 33.7 m/sx x xv v v= + = + = . A/G- A/F- F/G- 16.0 m/sy y yv v v= + = . 

A/G-
0

A/G-

16.0 m/stan
33.7 m/s

y

x

v
v

α = = and 0 25.4α = ° . The calculation for fragment B is the same, except A/F- 16.0 m/syv = − . 

The fragments move at 25.4° above and 25.4° below the horizontal. 
EVALUATE: As the initial velocity of the firecracker increases the angle with the horizontal for the fragments, as 
measured from the ground, decreases. 

 3.74. IDENTIFY: The grenade moves in projectile motion. 110 km/h 30.6 m/s= . The horizontal range R of the grenade 
must be 15.8 m plus the distance d that the enemy's car travels while the grenade is in the air. 
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SET UP: For the grenade take y+  upward, so 0xa = , ya g= − . Let 0v  be the magnitude of the velocity of the 

grenade relative to the hero. 0 0 cos45xv v= ° , 0 0 sin 45yv v= ° . 90 km/h 25 m/s= ; The enemy�s car is traveling 

away from the hero�s car with a relative velocity of rel 30.6 m/s 25 m/s 5.6 m/sv = − = . 

EXECUTE: 21
0 0 2y yy y v t a t− = +  with 0 0y y− =  gives 0 02 2 sin 45y

y

v vt
a g

= − =
° . 0 rel

rel
2v vd v t

g
= = . 

2 2
0 0

0 0
2 sin 45 cos45(cos45x
v vR v t v t

g g
= = = =

° °
°) . 15.8 mR d= +  gives that 

2
0 rel

0
2 15.8 mv v v

g g
= + . 

2
0 rel 02 (15.8 m) 0v v v g− − = . 2

0 07.92 154.8 0v v− − = . The quadratic formula gives 0 17.0 m/s 61.2 km/hv = = . The 
grenade has velocity of magnitude 61.2 km/h relative to the hero. Relative to the hero the velocity of the grenade 
has components 0 0 cos45 43.3 km/hxv v= =°  and 0 0 sin 45 43.3 km/hyv v= =° . Relative to the earth the velocity of 

the grenade has components E 43.3 km/h 90 km/h = 133.3 km/hxv = +  and E 43.3 km/hyv = . The magnitude of the 

velocity relative to the earth is 2 2
E E E 140 km/hx yv v v= + = . 

EVALUATE: The time the grenade is in the air is 0
2

2 sin 45 2(17.0 m/s)sin 45 2.45 s
9.80 m/s

vt
g

= = =
° ° . During this time 

the grenade travels a horizontal distance 0 (133.3 km/h)(2.45 s)(1 h /3600 s) 90.7 mx x− = = , relative to the earth, 
and the enemy�s car travels a horizontal distance 0 (110 km/h)(2.45 s)(1 h /3600 s) 74.9 mx x− = = , relative to the 
earth. The grenade has traveled 15.8 m farther. 

 3.75. IDENTIFY and SET UP: Use Eqs. (3.4) and (3.12) to get the velocity and acceleration components from the 
position components. 
EXECUTE: cos ,x R tω=  siny R tω=  

(a) 2 2 2 2 2 2 2 2 2 2cos sin (sin cos ) ,r x y R t R t R t t R Rω ω ω ω= + = + = + = =  

since 2 2sin cos 1.t tω ω+ =  

(b) sin ,x
dxv R t
dt

ω ω= = −  cosy
dyv R t
dt

ω ω= =  

( sin )( cos ) ( cos )( sin )x yv x v y R t R t R t R tω ω ω ω ω ω⋅ = + = − +v r! !  
2 ( sin cos sin cos ) 0,R t t t tω ω ω ω ω⋅ = − + =v r! !  so v!  is perpendicular to .r!  

(c) 2 2cosx
x

dva R t x
dt

ω ω ω= = − = −  

2 2siny
y

dv
a R t y

dt
ω ω ω= = − = −  

2 2 4 2 4 2 2 2 2 2.x ya a a x y x y Rω ω ω ω= + = + = + =  
2 2� � � �( ) .x ya a x yω ω+ − −a = i j = i + j = r! !  

Since 2ω  is positive this means that the direction of a!  is opposite to the direction of .r!  

(d) 2 2 2 2 2 2 2 2 2 2 2 2sin cos (sin cos ).x yv v v R t R t R t tω ω ω ω ω ω ω= + = + = +  2 2 .v R Rω ω= =  

(e) 2 ,a Rω=  / ,v Rω =  so 2 2 2( / ) / .a R v R v R= =  
EVALUATE: The rock moves in uniform circular motion. The position vector is radial, the velocity is tangential, 
and the acceleration is radially inward. 

 3.76. IDENTIFY: All velocities are constant, so the distance traveled is B/Ed v t= , where B/Ev is the magnitude of the 
velocity of the boat relative to the earth. The relative velocities B/Ev

! , S/Wv
! (boat relative to the water) 

and W/Ev! (water relative to the earth) are related by B/E B/W W/Ev = v + v! ! ! . 
SET UP: Let x+  be east and let y+  be north. W/E- 30.0 m/minxv = + and W/E- 0yv = . B/W 100.0 m/minv = . The 

direction of B/Wv! is the direction in which the boat is pointed or aimed. 
EXECUTE: (a) B/W- 100.0 m/minyv = + and B/W- 0xv = . B/E- B/W- W/E- 30.0 m/minx x xv v v= + = and 

B/E- B/W- W/E- 100.0 m/miny y yv v v= + = . The time to cross the river is 0

B/E-

400.0 m 4.00 min
100.0 m/miny

y yt
v
−

= = = . 
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0 (30.0 m/min)(4.00 min) 120.0 mx x− = = . You will land 120.0 m east of point B, which is 45.0 m east of 

point C. The distance you will have traveled is 2 2(400.0 m) (120.0 m) 418 m+ = . 

(b) B/Wv! is directed at angle φ east of north, where 75.0 mtan
400.0 m

φ = and 10.6φ = ° . 

B/W- (100.0 m/min)sin10.6 18.4 m/minxv = =° and B/W- (100.0 m/min)cos10.6 98.3 m/minyv = =° . 

B/E- B/W- W/E- 18.4 m/min 30.0 m/min 48.4 m/minx x xv v v= + = + = . B/E- B/W- W/E- 98.3 m/miny y yv v v= + = . 

0

B/E-

400.0 m 4.07 min
98.3 m/miny

y yt
v
−

= = = . 0 (48.4 m/min)(4.07 min) 197 mx x− = = . You will land 197 m downstream 

from B, so 122 m downstream from C. 
(c) (i) If you reach point C, then B/Ev

!  is directed at 10.6° east of north, which is 79.4° north of east. We don't know 
the magnitude of B/Ev

!  and the direction of B/Wv! . In part (a) we found that if we aim the boat due north we will land 
east of C, so to land at C we must aim the boat west of north. Let B/Wv!  be at an angle φ of north of west. The 

relative velocity addition diagram is sketched in Figure 3.76. The law of sines says 
W/E B/W

sin sin 79.4
v v
θ
=

° . 

30.0 m/minsin sin 79.4
100.0 m/min

θ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

° and 17.15θ = ° . Then 180 79.4 17.15 83.5φ = − − =° ° ° ° . The boat will head 

83.5° north of west, so 6.5°west of north. 
B/E- B/W- W/E- (100.0 m/min)cos83.5 30.0 m/min 18.7 m/minx x xv v v= + = − + =° . 

B/E- B/W- W/E- (100.0 m/min)sin83.5 99.4 m/miny y yv v v= + = − =° . Note that these two components do give the 

direction of B/Ev
!  to be 79.4° north of east, as required. (ii) The time to cross the river is 

0

B/E-

400.0 m 4.02 min
99.4 m/miny

y yt
v
−

= = = . (iii) You travel from A to C, a distance of 2 2(400.0 m) (75.0 m) 407 m+ = . 

(iv) 2 2
B/E B/E- B/E-( ) ( ) 101 m/minx yv v v= + = . Note that B/E 406 mv t = , the distance traveled (apart from a small 

difference due to rounding). 
EVALUATE: You cross the river in the shortest time when you head toward point B, as in part (a), even though 
you travel farther than in part (c). 

 
Figure 3.76 

 3.77. IDENTIFY: /xv dx dt= , /yv dy dt= , /x xa dv dt= and /y ya dv dt= . 

SET UP: (sin ) cos( )d t t
dt
ω ω ω= and (cos ) sin( )d t t

dt
ω ω ω= − . 

EXECUTE: (a) The path is sketched in Figure 3.77. 
(b) To find the velocity components, take the derivative of x and y with respect to time: (1 cos ),xv R ωtω= −  and 

sin .yv R ωtω=  To find the acceleration components, take the derivative of xv  and yv  with respect to time: 
2 sinxa R t,ω ω=  and 2 cosya R t.ω ω=  

(c) The particle is at rest ( 0)y xv v= =  every period, namely at 0  2 /  4 / ....t , π ω, π ω,=  At that time, 

0  2  4 ...;x , πR, πR,=  and 0.y =  The acceleration is 2a Rω=  in the -y+ direction. 
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(d) No, since ( ) ( )
1/ 22 22 2 2sin cos .a R t R t Rω ω ω ω ω⎡ ⎤= + =⎢ ⎥⎣ ⎦

 The magnitude of the acceleration is the same as for 

uniform circular motion. 
EVALUATE: The velocity is tangent to the path. 0xv is always positive; yv changes sign during the motion. 

 
Figure 3.77 

 3.78. IDENTIFY: At the highest point in the trajectory the velocity of the projectile relative to the earth is horizontal. 
The velocity P/Ev

!  of the projectile relative to the earth, the velocity F/Pv
!  of a fragment relative to the projectile, and 

the velocity F/Ev
!  of a fragment relative to the earth are related by F/E F/P P/Ev = v + v! ! ! . 

SET UP: Let x+  be along the horizontal component of the projectile motion. Let the speed of each fragment 
relative to the projectile be v. Call the fragments 1 and 2, where fragment 1 travels in the x+  direction and 
fragment 2 is in the -directionx− , and let the speeds just after the explosion of the two fragments relative to the 
earth be 1v and 2v . Let pv be the speed of the projectile just before the explosion. 

EXECUTE: F/E- F/P- P/E-x x xv v v= + gives 1 pv v v= +  and 2 pv v v− = − . Both fragments start from the same height with 
zero vertical component of velocity relative to the earth, so they both fall for the same time t, and this is also the 
same time as it took for the projectile to travel a horizontal distance D, so pv t D= . Since fragment 2 lands at A it 

travels a horizontal distance D as it falls and 2v t D= . 2 pv v v− = + − gives p 2v v v= +  and p 2 2vt v t v t D= + = . Then 

1 p 3v t v t vt D= + = . This fragment lands a horizontal distance 3D from the point of explosion and hence 4D from A. 
EVALUATE: Fragment 1, that is ejected in the direction of the motion of the projectile travels with greater speed 
relative to the earth than the fragment that travels in the opposite direction. 

 3.79. IDENTIFY: 
2 2

rad 2

4v Ra
R T

π
= = . All points on the centrifuge have the same period T. 

SET UP: The period T in seconds is related to n, the number of revolutions per minute, by 60 s/minn
T

= . 

EXECUTE: (a) 
2

rad
2

4a
R T

π
= , which is constant. rad,1 rad,2

1 2

a a
R R

= . Let 1R R= , so rad,1 5.00a g= and let 2 / 2R R= . 

2
rad,2 rad,1

1

(5.00 )(1/ 2) 2.50Ra a g g
R

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
. 

(b) 60 s/minT
n

⎛ ⎞= ⎜ ⎟
⎝ ⎠

and 
2

rad 2

4 Ra
T
π

= gives 2 2 2
rad 4 /(60 s/min)a Rnπ= . 

2
rad
2 2

4
(60 s/min)

a R
n

π
= , which is constant. 

rad,1 rad,2
2 2
1 2

a a
n n

= . Let rad,1 5.00a g= , so 1n n= and rad,2 Mercury5 5(0.378)a g g= = . Then 

rad,2
2 1

rad,1

5(0.378) 0.615
5.00

a gn n n n
a g

= = = . 

EVALUATE: The radial acceleration is less for points closer to the rotation axis. Since Mercuryg g< , a smaller 

rotation rate is required to produce Mercury5g than to produce 5g . 
 3.80. IDENTIFY: Use the relation that relates the relative velocities. 

SET UP: The relative velocities are the raindrop relative to the earth, R/Ev! , the raindrop relative to the train, R/Tv! , 
and the train relative to the earth, T/Ev

! . R/E R/T T/E= +v v v! ! ! . T/Ev
!  is due east and has magnitude 12.0 m/s. R/Tv!  is 

30.0°  west of vertical. R/Ev!  is vertical. The relative velocity addition diagram is given in Figure 3.80. 
EXECUTE: (a) R/Ev!  is vertical and has zero horizontal component. The horizontal component of R/Tv!  is T/E−v! , so 
is 12.0 m/s westward. 

(b) T/E
R/E

12.0 m/s 20.8 m/s
tan30.0 tan30.0

vv = = =
° °

. T/E
R/T

12.0 m/s 24.0 m/s
sin30.0 sin30.0

vv = = =
° °

. 
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EVALUATE: The speed of the raindrop relative to the train is greater than its speed relative to the earth, because 
of the motion of the train. 

 
Figure 3.80 

 3.81. IDENTIFY: Relative velocity problem. The plane�s motion relative to the earth is determined by its velocity 
relative to the earth. 
SET UP: Select a coordinate system where y+  is north and x+  is east. 
The velocity vectors in the problem are: 

P/E ,v!  the velocity of the plane relative to the earth. 

P/A ,v!  the velocity of the plane relative to the air (the magnitude P/Av  is the air speed of the plane and the direction 
of P/Av
!  is the compass course set by the pilot). 

A/E ,v!  the velocity of the air relative to the earth (the wind velocity). 
The rule for combining relative velocities gives P/E P/A A/E.v = v + v! ! !  
(a) We are given the following information about the relative velocities: 

P/Av
!  has magnitude 220 km/h and its direction is west. In our coordinates is has components P/A( ) 220 km/hxv = −  

and P/A( ) 0.yv =  

From the displacement of the plane relative to the earth after 0.500 h, we find that P/Ev
!  has components in our 

coordinate system of 

P/E
120 km( ) 240 km/h
0.500 hxv = − = −  (west) 

P/E
20 km( ) 40 km/h
0.500 hyv = − = −  (south) 

With this information the diagram corresponding to the velocity addition equation is shown in Figure 3.81a. 

 
Figure 3.81a 

We are asked to find A/E ,v!  so solve for this vector: 

P/E P/A A/Ev = v + v! ! !  gives A/E P/E P/A.v = v v! ! !
−  

EXECUTE: The x-component of this equation gives 
A/E P/E P/A( ) ( ) ( ) 240 km/h ( 220 km/h) 20 km/h.x x xv v v= − = − − − = −  

The y-component of this equation gives 
A/E P/E P/A( ) ( ) ( ) 40 km/h.y y yv v v= − = −  
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Now that we have the components of A/Ev!  we can find its magnitude and direction. 

 

2 2
A/E A/E A/E( ) ( )x yv v v= +  

2 2
A/E ( 20 km/h) ( 40 km/h) 44.7 km/hv = − + − =  

40 km/htan 2.00;
20 km/h

φ = =  63.4φ = °  

The direction of the wind velocity is 63.4  S°  of W, or 
26.6  W°  of S. 

Figure 3.81b  
EVALUATE: The plane heads west. It goes farther west than it would without wind and also travels south, so the 
wind velocity has components west and south. 
(b) SET UP: The rule for combining the relative velocities is still P/E P/A A/E ,v = v + v! ! !  but some of these velocities 
have different values than in part (a). 

P/Av
!  has magnitude 220 km/h but its direction is to be found. 

A/Ev!  has magnitude 40 km/h and its direction is due south. 
The direction of P/Ev

!  is west; its magnitude is not given. 
The vector diagram for P/E P/A A/Ev = v + v! ! !  and the specified directions for the vectors is shown in Figure 3.81c. 

 
Figure 3.81c 

The vector addition diagram forms a right triangle. 

EXECUTE: A/E

P/A

40 km/hsin 0.1818;
220 km/h

v
v

φ = = =  10.5 .φ = °  

The pilot should set her course 10.5°  north of west. 
EVALUATE: The velocity of the plane relative to the air must have a northward component to counteract the wind 
and a westward component in order to travel west. 

 3.82. IDENTIFY: Both the bolt and the elevator move vertically with constant acceleration. 
SET UP: Let y+  be upward and let 0y = at the initial position of the floor of the elevator, so 0y for the bolt is 
3.00 m. 
EXECUTE: (a) The position of the bolt is 2 23.00 m (2.50 m/s) (1/ 2)(9.80 m/s )t t+ −  and the position of the floor 

is (2.50 m/s)t. Equating the two, 2 23.00 m (4.90 m/s )t= . Therefore, 0.782 st = . 

(b) The velocity of the bolt is 22.50 m/s (9.80 m/s )(0.782 s) 5.17 m/s− = −  relative to Earth, therefore, relative to 
an observer in the elevator 5.17 m/s 2.50 m/s 7.67 m/s.v = − − = −  
(c) As calculated in part (b), the speed relative to Earth is 5.17 m/s. 
(d) Relative to Earth, the distance the bolt traveled is 

2 2 2 2(2.50 m/s) (1/ 2)(9.80 m/s ) (2.50 m/s)(0.782 s) (4.90 m/s )(0.782 s) 1.04 mt t− = − = − . 

EVALUATE: As viewed by an observer in the elevator, the bolt has 0 0yv = and 29.80 m/sya = − , so in 0.782 s it 

falls 2 21
2 (9.80 m/s )(0.782 s) 3.00 m− = − . 

 3.83. IDENTIFY: In an earth frame the elevator accelerates upward at 24.00 m/s and the bolt accelerates downward at 
29.80 m/s . Relative to the elevator the bolt has a downward acceleration of 2 2 24.00 m/s 9.80 m/s 13.80 m/s+ = . In 

either frame, that of the earth or that of the elevator, the bolt has constant acceleration and the constant acceleration 
equations can be used. 
SET UP: Let y+  be upward. The bolt travels 3.00 m downward relative to the elevator. 

EXECUTE: (a) In the frame of the elevator, 0 0yv = , 0 3.00 my y− = − , 213.8 m/sya = − . 

21
0 0 2y yy y v t a t− = + gives 0

2

2( ) 2( 3.00 m) 0.659 s
13.8 m/sy

y yt
a
− −

= = =
−

. 
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(b) 0y y yv v a t= + . 0 0yv = and 0.659 st = . (i) 213.8 m/sya = − and 9.09 m/syv = − . The bolt has speed 9.09 m/s 

when it reaches the floor of the elevator. (ii) 29.80 m/sya = − and 6.46 m/syv = − . In this frame the bolt has speed 
6.46 m/s when it reaches the floor of the elevator. 
(c) 21

0 0 2y yy y v t a t− = + . 0 0yv = and 0.659 st = . (i) 213.8 m/sya = − and 
2 21

0 2 ( 13.8 m/s )(0.659 s) 3.00 my y− = − = − . The bolt falls 3.00 m, which is correctly the distance between the 

floor and roof of the elevator. (ii) 29.80 m/sya = − and 2 21
0 2 ( 9.80 m/s )(0.659 s) 2.13 my y− = − = − . The bolt falls 

2.13 m. 
EVALUATE: In the earth's frame the bolt falls 2.13 m and the elevator rises 

2 21
2 (4.00 m/s )(0.659 s) 0.87 m= during the time that the bolt travels from the ceiling to the floor of the elevator. 

 3.84. IDENTIFY: The velocity P/Ev
!  of the plane relative to the earth is related to the velocity P/Av

! of the plane relative to 
the air and the velocity A/Ev! of the air relative to the earth (the wind velocity) by P/E P/A A/Ev = v + v! ! ! . 

SET UP: Let x+  be to the east. With no wind P/A P/E
5550 km 840.9 km/h

6.60 h
v v= = = . A/E- 225 km/hxv = + . The 

distance between A and B is 2775 km. 
EXECUTE: P/E- P/A- A/E-x x xv v v= + . For the trip A to B, P/A- 840.9 km/hxv = + and 

P/E- 840.9 km/h 225 km/h 1065.9 km/hxv = + = and the travel time is 2775 km 2.60 h
1065.9 km/hABt = = . For the trip B to 

A, P/A- 840.9 km/hxv = − and P/E- 840.9 km/h 225 km/h 615.9 km/hxv = − + = − and the travel time is 
2775 km 4.51 h

615.9 km/hBAt −
= =
−

. The total time for the round trip will be 7.11 hAB BAt t t= + = . 

EVALUATE: The round trip takes longer when the wind blows, even though the plane travels with the wind for 

one leg of the trip. The arithmetic average of the speeds for each leg is 1065.9 km/h 615.9 km/h 840.9 km/h
2
+

= , 

the same speed when there is no wind. But the plane spends more time traveling at the slower speed relative to the 
ground and the average speed is less than the arithmetic average of the speeds for each half of the trip. 

 3.85. IDENTIFY: Relative velocity problem. 
SET UP: The three relative velocities are: 

J/G ,v!  Juan relative to the ground. This velocity is due north and has magnitude J/G 8.00 m/s.v =  

B/G ,v!  the ball relative to the ground. This vector is 37.0°  east of north and has magnitude B/G 12.00 m/s.v =  

B/J ,v!  the ball relative to Juan. We are asked to find the magnitude and direction of this vector. 
The relative velocity addition equation is B/G B/J J/G ,v = v + v! ! !  so B/J B/G J/G.−v = v v! ! !  
The relative velocity addition diagram does not form a right triangle so we must do the vector addition using 
components. 
Take y+  to be north and x+  to be east. 
EXECUTE: B/J B/G sin37.0 7.222 m/sxv v= + ° =  

B/J B/G J/Gcos37.0 1.584 m/syv v v= + °− =  

These two components give B/J 7.39 m/sv =  at 12.4°  north of east. 
EVALUATE: Since Juan is running due north, the ball�s eastward component of velocity relative to him is the 
same as its eastward component relative to the earth. The northward component of velocity for Juan and the ball 
are in the same direction, so the component for the ball relative to Juan is the difference in their components of 
velocity relative to the ground. 

 3.86. IDENTIFY: (a) The ball moves in projectile motion. When it is moving horizontally, 0yv = . 

SET UP: Let x+  be to the right and let y+  be upward. 0xa = , ya g= − . 

EXECUTE: (a) 2
0 2 2(9.80 m/s )(4.90 m) 9.80 m/s.yv gh= = =  

(b) 0 / 1.00 syv g = . 
(c) The horizontal component of the velocity of the ball relative to the man is 

2 2(10.8 m/s) (9.80 m/s) 4.54 m/s− = , the horizontal component of the velocity relative to the hoop is 
4.54 m/s 9.10 m/s 13.6 m/s+ = , and the man must be 13.6 m in front of the hoop at release. 
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(d) Relative to the flat car, the ball is projected at an angle 1 9.80 m/stan 65 .
4.54 m/s

θ − ⎛ ⎞
= = °⎜ ⎟

⎝ ⎠
 Relative to the ground the 

angle is 1 9.80 m/stan 35.7
4.54 m/s 9.10 m/s

θ − ⎛ ⎞
= = °⎜ ⎟+⎝ ⎠

. 

EVALUATE: In both frames of reference the ball moves in a parabolic path with 0xa = and ya g= − . The only 
difference between the description of the motion in the two frames is the horizontal component of the ball�s 
velocity. 

 3.87. IDENTIFY: The pellets move in projectile motion. The vertical motion determines their time in the air. 
SET UP: 0 0 cos1.0xv v= ° , 0 0 sin1.0yv v= ° . 

EXECUTE: (a) 02 yv
t

g
= . 0 0xx x v t− = gives 0

0 0
sin1.0( cos1.0 80 mvx x v
g

⎛ ⎞
− = =⎜ ⎟

⎝ ⎠

2 °
°) . 

(b) The probability is 1000 times the ratio of the area of the top of the person�s head to the area of the circle in 

which the pellets land. 
2 2

3
2

(10 10  m)(1000) 1.6 10 .
(80 m)

π
π

−
−⎛ ⎞×

= ×⎜ ⎟
⎝ ⎠

 

(c) The slower rise will tend to reduce the time in the air and hence reduce the radius. The slower horizontal 
velocity will also reduce the radius. The lower speed would tend to increase the time of descent, hence increasing 
the radius. As the bullets fall, the friction effect is smaller than when they were rising, and the overall effect is to 
decrease the radius. 
EVALUATE: The small angle of deviation from the vertical still causes the pellets to spread over a large area 
because their time in the air is large. 

 3.88. IDENTIFY: Write an expression for the square of the distance 2( )D  from the origin to the particle, expressed as a 

function of time. Then take the derivative of 2D  with respect to t, and solve for the value of t when this derivative 
is zero. If the discriminant is zero or negative, the distance D will never decrease. 
SET UP: 2 2 2D x y= + , with ( )x t and ( )y t given by Eqs.(3.20) and (3.21). 

EXECUTE: Following this process, 1sin 8/9 70.5 .− = °  
EVALUATE: We know that if the object is thrown straight up it moves away from P and then returns, so we are 
not surprised that the projectile angle must be less than some maximum value for the distance to always increase 
with time. 

 3.89. IDENTIFY: The baseball moves in projectile motion. 
SET UP: Use coordinates where the x-axis is horizontal and the y-axis is vertical. 
EXECUTE: (a) The trajectory of the projectile is given by Eq. (3.27), with 0 θ φ,α = +  and the equation describing 
the incline is tan .y x θ=  Setting these equal and factoring out the 0x =  root (where the projectile is on the 
incline) gives a value for 0;x  the range measured along the incline is 

2 2
02 cos ( )/ cos [tan( ) tan ]  .

cos
v θ φx θ θ φ
g θ

θ
⎡ ⎤ ⎡ ⎤+

= + −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

(b) Of the many ways to approach this problem, a convenient way is to use the same sort of substitution, involving 
double angles, as was used to derive the expression for the range along a horizontal incline. Specifically, write the 
above in terms of θ φ,α = +  as 

2
20

2

2 [sin cos cos cos sin ] .
cos

vR
g

α α θ α θ
θ

⎡ ⎤
= −⎢ ⎥
⎣ ⎦

 

The dependence on α  and hence φ  is in the second term. Using the identities 
2sin cos (1/ 2)sin 2   and  cos (1/ 2)(1 cos2 ),α α α α α= = +  this term becomes 

(1/ 2)[cos sin 2 sin cos2 sin ] (1/ 2)[sin(2 ) sin ] .θ θ θ θ θα α α− − = − −  

This will be a maximum when sin(2 )θα −  is a maximum, at 2 2 90θ φ θ ,α − = + = °  or 45 / 2.φ θ= ° −  
EVALUATE: Note that the result reduces to the expected forms when 0θ =  (a flat incline, 45φ = °  and when 

90θ = − °  (a vertical cliff), when a horizontal launch gives the greatest distance). 
 3.90. IDENTIFY: The arrow moves in projectile motion. 

SET UP: Use coordinates that for which the axes are horizontal and vertical. Let θ be the angle of the slope and 
letφ be the angle of projection relative to the sloping ground. 
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EXECUTE: The horizontal distance x in terms of the angles is 

2 2
0

1tan tan( )  .
2 cos ( )
gx
v

θ θ φ
θ φ

⎛ ⎞
= + − ⎜ ⎟ +⎝ ⎠

 

Denote the dimensionless quantity 2
0/ 2gx v  by ;β  in this case 

2

2

(9.80 m/s )(60.0 m)cos30.0 0.2486.
2(32.0 m/s)

β °
= =  

The above relation can then be written, on multiplying both sides by the product cos cos( ),θ θ φ+  

cossin cos( ) sin( )cos ,
cos( )
β θθ θ φ θ φ θ
θ φ

+ = + −
+

 

and so cossin( )cos cos( )sin  .
cos( )
β θθ φ θ θ φ θ
θ φ

+ − + =
+

 The term on the left is sin(( ) ) sin ,θ φ θ φ+ − =  so the result 

of this combination is sin cos( ) cos .φ θ φ β θ+ =  
Although this can be done numerically (by iteration, trial-and-error, or other methods), the expansion 

1
2sin cos (sin( ) sin( ))a b a b a b= + + −  allows the angle φ  to be isolated; specifically, then 

1 (sin(2 ) sin( )) cos ,
2

φ θ θ β θ+ + − =  with the net result that sin(2 ) 2 cos sin .φ θ β θ θ+ = +  

(a) For 30 ,θ = °  and β  as found above, 19.3φ = °  and the angle above the horizontal is 49.3 .θ φ+ = °  For level 
ground, using 0.2871,β =  gives 17.5 .φ = °  
(b) For 30 ,θ = − °  the same β  as with 30θ = °  may be used (cos30 cos( 30 )),° = − °  giving 13.0φ = °  and 

17.0 .φ θ+ = − °  
EVALUATE: For 0θ = the result becomes 2

0sin(2 ) 2 /gx vφ β= = . This is equivalent to the expression 
2
0 0sin(2 )vR

g
α

= derived in Example 3.8. 

 3.91. IDENTIFY: Find Δv! and use this to calculate the magnitude and direction of the average acceleration. 

SET UP: In a time t,Δ  the velocity vector has moved through an angle (in radians) v t
R

φ Δ
Δ =  (see Figure 3.28 in 

the textbook). By considering the isosceles triangle formed by the two velocity vectors, the magnitude Δv!  is seen 
to be 2 sin( / 2)v φ . 

EXECUTE: av
10 m/s2 sin sin([1.0 / s] t)

2 t
v v v t
t t R

Δ Δ⎛ ⎞= = = Δ⎜ ⎟Δ Δ Δ⎝ ⎠
a

!
#  

Using the given values gives magnitudes of 2 29.59 m/s 9.98 m/s,  and 210.0 m/s .  The changes in direction of the 

velocity vectors are given by v t
R

θ Δ
Δ =  and are, respectively, 1.0 rad, 0.2 rad, and 0.1 rad. Therefore, the angle of 

the average acceleration vector with the original velocity vector is / 2 1/ 2 rad(or 118.6 ),
2

π θ π+ Δ
= + °  

 / 2 0.1 rad(or 95.7 ),π + °  and / 2 0.05 rad(or 92.9 ).π + °  

EVALUATE: The instantaneous acceleration magnitude, 2 2 2/ (5.00 m/s) /(2.50 m 10 0 m/sv R ) .= =  is indeed 
approached in the limit at 0.tΔ →  Also, the direction of ava

# approaches the radially inward direction as 0tΔ → . 
 3.92. IDENTIFY: The rocket has two periods of constant acceleration motion. 

SET UP: Let y+  be upward. During the free-fall phase, 0xa =  and ya g= − . After the engines turn on, 

(3.00 )cos30.0xa g= ° and (3.00 )sin30.0ya g= ° . Let t be the total time since the rocket was dropped and let T be 
the time the rocket falls before the engine starts. 
EXECUTE: (i) The diagram is given in Figure 3.92a. 
(ii) The x-position of the plane is (236 m/s)t  and the x-position of the rocket is 

2 2(236 m/s) (1/ 2)(3.00)(9.80 m/s )cos30 ( ) .t t T+ ° −  The graphs of these two equations are sketched in Figure 
3.92b. 
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(iii) If we take 0y =  to be the altitude of the airliner, then 
2 2 2( ) 1/ 2 ( ) 1/ 2(3.00)(9.80 m/s )(sin30 )( )y t gT gT t T t T= − − − + ° −  for the rocket. The airliner has constant y. The 

graphs are sketched in Figure 3.92b. 
In each of the Figures 3.92a-c, the rocket is dropped at 0t = and the time T when the motor is turned on is 
indicated. 
By setting 0y =  for the rocket, we can solve for t in terms of T: 

2 2 2 2 20 (4.90 m/s ) (9.80 m/s ) ( ) (7.35 m/s )( )T T t T t T= − − − + − . Using the quadratic formula for the 

variable x t T= − we find
2 2 2 2 2

2

(9.80 m/s ) (9.80 m/s ) (4)(7.35 m/s )(4.9)
2(7.35 m/s )

T T T
x t T

+ +
= − = , or 2.72 .t T=  Now, 

using the condition that rocket plane 1000 mx x ,− =  we find 2 2(236 m/s) (12.7 m/s ( ) (236 m/s) 1000 m,t ) t T t+ − − =  or 
2 2(1.72 ) 78.6 s .T =  Therefore 5.15 s.T =  

EVALUATE: During the free-fall phase the rocket and airliner have the same x coordinate but the rocket moves 
downward from the airliner. After the engines fire, the rocket starts to move upward and its horizontal component 
of velocity starts to exceed that of the airliner. 

 
Figure 3.92 

 3.93. IDENTIFY: Apply the relative velocity relation. 
SET UP: Let C/Wv  be the speed of the canoe relative to water and W/Gv  be the speed of the water relative to the 
ground. 
EXECUTE: (a) Taking all units to be in km and h, we have three equations. We know that heading upstream 

C/W W/G 2v v− = . We know that heading downstream for a time C/W W/G,  ( ) 5.t v v t+ =  We also know that for the 
bottle W/G ( 1) 3.v t + =  Solving these three equations for W/G C/W,  2v x v x,= = +  therefore (2 ) 5x x t+ + =  or 

(2 2 ) 5.x t+ =  Also 3/ 1t x ,= −  so 3(2 2 ) 1 5x
x

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

 or 22 6 0.x x+ − =  The positive solution is 

W/G 1.5 km/h.x v= =  
(b) C/W W/G2 km/h 3.5 km/h.v v= + =  
EVALUATE: When they head upstream, their speed relative to the ground is 3.5 km/h 1.5 km/h 2.0 km/h− = . 
When they head downstream, their speed relative to the ground is 3.5 km/h 1.5 km/h 5.0 km/h+ = . The bottle is 
moving downstream at 1.5 km/s relative to the earth, so they are able to overtake it. 
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 4.1. IDENTIFY: Consider the vector sum in each case. 
SET UP: Call the two forces 1F

!
and 2F

!
. Let 1F

!
be to the right. In each case select the direction of 2F

!
such that 

1= 2F F + F
! ! !

has the desired magnitude. 
EXECUTE: (a) For the magnitude of the sum to be the sum of the magnitudes, the forces must be parallel, and the 
angle between them is zero. The two vectors and their sum are sketched in Figure 4.1a. 
(b) The forces form the sides of a right isosceles triangle, and the angle between them is 90 . The two vectors and 
their sum are sketched in Figure 4.1b. 

°

(c) For the sum to have zero magnitude, the forces must be antiparallel, and the angle between them is 180 . The 
two vectors are sketched in Figure 4.1c. 

°

EVALUATE: The maximum magnitude of the sum of the two vectors is 2F, as in part (a). 

 
Figure 4.1 

 4.2. IDENTIFY: Add the three forces by adding their components. 
SET UP: In the new coordinates, the 120-N force acts at an angle of 53  from the ° x− -axis, or  from 
the 

233°
x+ -axis, and the 50-N force acts at an angle of 32  from the 3° x+ -axis. 

EXECUTE: (a) The components of the net force are 
(120 N)cos233 (50 N)cos323 32 NxR = °+ ° = −  

(250 N) (120 N)sin 233 (50 N)sin323 124 N.yR = + °+ ° =  

(b) 2 2 128 N,x yR R R= + =  124arctan 104
32

⎛ ⎞ = °⎜ ⎟−⎝ ⎠
. The results have the same magnitude as in Example 4.1, and the 

angle has been changed by the amount (37  that the coordinates have been rotated. )°
EVALUATE: We can use any set of coordinate axes that we wish to and can therefore select axes for which the 
analysis of the problem is the simplest. 

 4.3. IDENTIFY: Use right-triangle trigonometry to find the components of the force. 
SET UP: Let x+  be to the right and let y+  be downward. 
EXECUTE: The horizontal component of the force is  to the right and the vertical 
component is  down. 

(10 N)cos45 7.1 N° =
(10 N)sin 45 7.1 N° =

EVALUATE: In our coordinates each component is positive; the signs of the components indicate the directions of 
the component vectors. 

 4.4. IDENTIFY: cosxF F θ= , sinyF F θ= . 
SET UP: Let x+  be parallel to the ramp and directed up the ramp. Let y+  be perpendicular to the ramp and 
directed away from it. Then . 30.0θ = °

4-1 
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EXECUTE: (a) 60.0N 69.3 N.
cos cos30

xFF
θ

= = =
°

 

(b)  sin tan 34.6 N.y xF F Fθ θ= = =

EVALUATE: We can verify that . The signs of 2 2
x yF F F+ = 2

xF and yF show their direction. 
 4.5. IDENTIFY: Vector addition. 

SET UP: Use a coordinate system where the -axisx+  is in the direction of ,AF
!

 the force applied by dog A. The 
forces are sketched in Figure 4.5. 
EXECUTE:  

 

270 N,AxF = +  0AyF =  

cos60.0 (300 N)cos60.0 150 NBx BF F= ° = ° = +  
sin60.0 (300 N)sin 60.0 260 NBy BF F= ° = ° = +  

Figure 4.5a  

A B= +R F F
! ! !

 
270 N 150 N 420 Nx Ax BxR F F= + = + + = +  

0 260 N 260 Ny Ay ByR F F= + = + = +  

 

2 2
x yR R R= +  

2 2(420 N) (260 N) 494 NR = + =  

tan 0.619y

x

R
R

θ = =  

31.8θ = °  
Figure 4.5b  

EVALUATE: The forces must be added as vectors. The magnitude of the resultant force is less than the sum of the 
magnitudes of the two forces and depends on the angle between the two forces. 

 4.6. IDENTIFY: Add the two forces using components. 
SET UP: cosxF F θ= , sinyF F θ= , where θ is the angle F

!
makes with the x+  axis. 

EXECUTE: (a)  1 2 (9.00 N)cos120 (6.00 N)cos(233.1 ) 8.10 Nx xF F+ = ° + ° = −

1 2 (9.00 N)sin120 (6.00 N)sin(233.1 ) 3.00 N.y yF F+ = ° + = +°  

(b) 2 2 2 2(8.10 N) (3.00 N) 8.64 N.x yR R R= + = + =  

EVALUATE: Since and , 0xF < 0yF > F
!

is in the second quadrant. 

 4.7. IDENTIFY: Apply m∑F = a
! ! . 

SET UP: Let x+  be in the direction of the force. 
EXECUTE: . 2/ (132 N) (60 kg) 2.2 m /sx xa F m /= = =
EVALUATE: The acceleration is in the direction of the force. 

 4.8. IDENTIFY: Apply m∑F = a
! ! . 

SET UP: Let x+  be in the direction of the acceleration. 
EXECUTE:  2(135 kg)(1.40 m/s ) 189 N.x xF ma= = =
EVALUATE: The net force must be in the direction of the acceleration. 

 4.9. IDENTIFY: Apply m=∑F a
! ! to the box. 

SET UP: Let x+  be the direction of the force and acceleration. 48.0 NxF =∑ . 
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EXECUTE: x xF ma=∑  gives 2

48.0 N 16.0 kg
3.00 m/s

x

x

F
m

a
= = =∑ . 

EVALUATE: The vertical forces sum to zero and there is no motion in that direction. 
 4.10. IDENTIFY: Use the information about the motion to find the acceleration and then use x xF ma=∑  to 

calculate m. 
SET UP: Let x+  be the direction of the force. 80.0 NxF =∑ . 

EXECUTE: (a) , , 0 11.0 mx x− = 5.00 st = 0 0xv = . 21
0 0 2x xx x v t a t− = +  gives 

20
2 2

2( ) 2(11.0 m) 0.880 m/s .
(5.00 s)x

x xa
t
−

= = =  2

80.0 N 90.9 kg
0.880 m/s

x

x

F
m

a
= = =∑ . 

(b) and 0xa = xv is constant. After the first 5.0 s, . 2
0 (0.880 m/s )(5.00 s) 4.40 m/sx x xv v a t= + = =

21
0 0 2 (4.40 m/s)(5.00 s) 22.0 mx xx x v t a t− = + = = . 

EVALUATE: The mass determines the amount of acceleration produced by a given force. The block moves farther 
in the second 5.00 s than in the first 5.00 s. 

 4.11. IDENTIFY and SET UP: Use Newton�s second law in component form (Eq.4.8) to calculate the acceleration 
produced by the force. Use constant acceleration equations to calculate the effect of the acceleration on the motion. 
EXECUTE: (a) During this time interval the acceleration is constant and equal to 

20.250 N 1.562 m/s
0.160 kg

x
x
Fa
m

= = =  

We can use the constant acceleration kinematic equations from Chapter 2. 
2 21 1

0 0 2 20 (1.562 m/s )(2.00 s) ,x xx x v t a t− = + = + 2  
so the puck is at  3.12 m.x =

2
0 0 (1.562 m/s )(2.00 s) 3.13 m/s.x x xv v a t= + = + =  

(b) In the time interval from  to 5.00 s the force has been removed so the acceleration is zero. The speed 
stays constant at  The distance the puck travels is  
At the end of the interval it is at  

2.00 st =
3.12 m/s.xv = 0 0 (3.12 m/s)(5.00 s 2.00 s) 9.36 m.xx x v t− = = − =

0 9.36 m 12.5 m.x x= + =

In the time interval from  to 7.00 s the acceleration is again  At the start of this interval 
 and  

5.00 st = 21.562 m/s .xa =

0 3.12 m/sxv = 0 12.5 m.x =
2 21 1

0 0 2 2(3.12 m/s)(2.00 s) (1.562 m/s )(2.00 s) .x xx x v t a t− = + = + 2  

0 6.24 m 3.12 m 9.36 m.x x− = + =  
Therefore, at  the puck is at  7.00 st = 0 9.36 m 12.5 m 9.36 m 21.9 m.x x= + = + =

2
0 3.12 m/s (1.562 m/s )(2.00 s) 6.24 m/sx x xv v a t= + = + =  

EVALUATE: The acceleration says the puck gains 1.56 m/s of velocity for every second the force acts. The force 
acts a total of 4.00 s so the final velocity is (1.56 m/s)(4.0 s) 6.24 m/s.=  

 4.12. IDENTIFY: Apply m∑F = a
! ! . Then use a constant acceleration equation to relate the kinematic quantities. 

SET UP: Let x+  be in the direction of the force. 
EXECUTE: (a)  2/ (140 N) /(32.5 kg) 4.31 m/s .x xa F m= = =

(b) 21
0 0 2x xx x v t a t− = + . With 21

0 20,  215 mxv x at= = =  . 
(c) 0x x xv v a t= + . With . 0 0,  2 / 43.0 m/sx x xv v a t x t= = = =
EVALUATE: The acceleration connects the motion to the forces. 

 4.13. IDENTIFY: The force and acceleration are related by Newton�s second law. 
SET UP: x xF ma=∑ , where xF∑ is the net force. 4.50 kgm = . 
EXECUTE: (a) The maximum net force occurs when the acceleration has its maximum value. 

. This maximum force occurs between 2.0 s and 4.0 s. 2(4.50 kg)(10.0 m/s ) 45.0 Nx xF ma= = =∑
(b) The net force is constant when the acceleration is constant. This is between 2.0 s and 4.0 s. 
(c) The net force is zero when the acceleration is zero. This is the case at 0t = and 6.0 st = . 
EVALUATE: A graph of xF∑ versus t would have the same shape as the graph of xa versus t. 
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 4.14. IDENTIFY: The force and acceleration are related by Newton�s second law. x
x
dva
dt

= , so xa is the slope of the 

graph of xv versus t. 

SET UP: The graph of xv versus t consists of straight-line segments. For 0t = to 2.00 st = , . For 

to 6.00 s, . For to 10.0 s, . 

24.00 m/sxa =

2.00 st = 0xa = 6.00 st = 21.00 m/sxa =

x xF ma=∑ , with . 2.75 kgm = xF∑ is the net force. 
EXECUTE: (a) The maximum net force occurs when the acceleration has its maximum value. 

. This maximum occurs in the interval to . 2(2.75 kg)(4.00 m/s ) 11.0 Nx xF ma= = =∑ 0t = 2.00 st =
(b) The net force is zero when the acceleration is zero. This is between 2.00 s and 6.00 s. 
(c) Between 6.00 s and 10.0 s, , so 21.00 m/sxa = 2(2.75 kg)(1.00 m/s ) 2.75 N xF = =∑ . 
EVALUATE: The net force is largest when the velocity is changing most rapidly. 

 4.15. IDENTIFY: The net force and the acceleration are related by Newton�s second law. When the rocket is near the 
surface of the earth the forces on it are the upward force F

!
exerted on it because of the burning fuel and the 

downward force gravF
!

of gravity. . gravF m= g

 

SET UP: Let  be upward. The weight of the rocket is . y+ 2
grav (8.00 kg)(9.80 m/s ) 78.4 NF = =

EXECUTE: (a) At , . At 0t = 100.0 NF A= = 2.00 st = , and 2(4.00 s ) 150.0 NF A B= + =

2
2

150.0 N 100.0 N 12.5 N/s
4.00 s

B −
= = . 

(b) (i) At , . The net force is 0t = 100.0 NF A= =  grav 100.0 N 78.4 N 21.6 NyF F F= − = − =∑ . 

221.6 N 2.70 m/s
8.00 kg

y
y

F
a

m
= = =∑ . (ii) At 3.00 s,t = 2(3.00 s) 212.5 NF A B= + = . 

. 212.5 N 78.4 N 134.1 NyF = − =∑ 2134.1 N 16.8 m/s
8.00 kg

y
y

F
a

m
= = =∑ . 

(c) Now and . grav 0F = 212.5 NyF F= =∑ 2212.5 N 26.6 m/s
8.00 kgy = =a . 

EVALUATE: The acceleration increases as F increases. 
 4.16. IDENTIFY: Use constant acceleration equations to calculate xa and t. Then use m=∑F a

! ! to calculate the 
net force. 
SET UP: Let x+  be in the direction of motion of the electron. 
EXECUTE: (a) , , .  gives 0 0xv = 2

0( ) 1.80 10  mx x −− = × 63.00 10  m/sxv = × 2 2
0 02 ( )x x xv v a x x= + −

2 2 6 2
14 20

2
0

(3.00 10  m/s) 0 2.50 10  m/s
2( ) 2(1.80 10  m)
x x

x
v va
x x −

− × −
= = = ×

− ×
 

(b) 0x x xv v a t= +  gives 
6

80
14 2

3.00 10  m/s 0 1.2 10  s
2.50 10  m/s

x x

x

v vt
a

−− × −
= = = ×

×
 

(c) . 31 14 2 16(9.11 10  kg)(2.50 10  m/s ) 2.28 10  Nx xF ma − −= = × × = ×∑
EVALUATE: The acceleration is in the direction of motion since the speed is increasing, and the net force is in the 
direction of the acceleration. 

 4.17. IDENTIFY and SET UP:  We must use .F ma= w mg=  to find the mass of the boulder. 

EXECUTE: 2

2400 N 244.9 kg
9.80 m/s

wm
g

= = =  

Then  2(244.9 kg)(12.0 m/s ) 2940 N.F ma= = =
EVALUATE: We must use mass in Newton�s second law. Mass and weight are proportional. 

 4.18. IDENTIFY: Apply m∑F = a
! ! . 

SET UP: . 2/ (71.2 N) /(9.80 m/s ) 7.27 kgm w g= = =

EXECUTE: 2160 N 22.0 m/s
7.27 kg

x
x
Fa
m

= = =  

EVALUATE: The weight of the ball is a vertical force and doesn�t affect the horizontal acceleration. However, the 
weight is used to calculate the mass. 
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 4.19. IDENTIFY and SET UP: .  The mass of the watermelon is constant, independent of its location. Its weight 
differs on earth and Jupiter�s moon. Use the information about the watermelon�s weight on earth to calculate its 
mass: 

w mg=

EXECUTE:  gives that w mg= 2

44.0 N 4.49 kg.
9.80 m/s

wm
g

= = =  

On Jupiter�s moon,  the same as on earth. Thus the weight on Jupiter�s moon is 

 

4.49 kg,m =
2(4.49 kg)(1.81 m/s ) 8.13 N.w mg= = =

EVALUATE: The weight of the watermelon is less on Io, since g is smaller there. 
 4.20. IDENTIFY: Weight and mass are related by w mg= . The mass is constant but g and w depend on location. 

SET UP: On earth, . 29.80 m/sg =

EXECUTE: (a) w m
g
= , which is constant, so E A

E A

w w
g g

= . , , and . E 17.5 Nw = 2
E 9.80 m/sg = A 3.24 Nw =

2 2A
A E

E

3.24 N (9.80 m/s ) 1.81 m/s
17.5 N

wg g
w

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

(b) E
2

E

17.5 N 1.79 kg
9.80 m/s

wm
g

= = = . 

EVALUATE: The weight at a location and the acceleration due to gravity at that location are directly proportional. 
 4.21. IDENTIFY: Apply x xF ma=∑  to find the resultant horizontal force. 

SET UP: Let the acceleration be in the x+  direction. 
EXECUTE: . The force is exerted by the blocks. The blocks push on the 
sprinter because the sprinter pushes on the blocks. 

2(55 kg)(15 m/s ) 825 Nx xF ma= = =∑

EVALUATE: The force the blocks exert on the sprinter has the same magnitude as the force the sprinter exerts on 
the blocks. The harder the sprinter pushes, the greater the force on him. 

 4.22. IDENTIFY: m=∑F a
! ! refers to forces that all act on one object. The third law refers to forces that a pair of 

objects exert on each other. 
SET UP: An object is in equilibrium if the vector sum of all the forces on it is zero. A third law pair of forces 
have the same magnitude regardless of the motion of either object. 
EXECUTE: (a) the earth (gravity) 
(b) 4 N; the book 
(c) no, these two forces are exerted on the same object 
(d) 4 N; the earth; the book; upward 
(e) 4 N, the hand; the book; downward 
(f) second (The two forces are exerted on the same object and this object has zero acceleration.) 
(g) third (The forces are between a pair of objects.) 
(h) No. There is a net upward force on the book equal to 1 N. 
(i) No. The force exerted on the book by your hand is 5 N, upward. The force exerted on the book by the earth is 
4 N, downward. 
(j) Yes. These forces form a third-law pair and are equal in magnitude and opposite in direction. 
(k) Yes. These forces form a third-law pair and are equal in magnitude and opposite in direction. 
(l) One, only the gravity force. 
(m) No. There is a net downward force of 5 N exerted on the book. 
EVALUATE: Newton�s second and third laws give complementary information about the forces that act. 

 4.23. IDENTIFY: Identify the forces on the bottle. 
SET UP: Classify forces as contact or noncontact forces. The noncontact force is gravity and the contact forces 
come from things that touch the object. Gravity is always directed downward toward the center of the earth. Air 
resistance is always directed opposite to the velocity of the object relative to the air. 
EXECUTE: (a) The free-body diagram for the bottle is sketched in Figure 4.23a 

 

The only forces on the bottle are gravity 
(downward) and air resistance (upward). 

Figure 4.23a  
(b)  
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w is the force of gravity that the earth exerts 
on the bottle. The reaction to this force is  ,w′
force that the bottle exerts on the earth 

Figure 4.23b  
Note that these two equal and opposite forces produce very different accelerations because the bottle and the earth 
have very different masses. 

airF  is the force that the air exerts on the bottle and is upward. The reaction to this force is a downward force airF ′  
that the bottle exerts on the air. These two forces have equal magnitudes and opposite directions. 
EVALUATE: The only thing in contact with the bottle while it is falling is the air. Newton�s third law always 
deals with forces on two different objects. 

 4.24. IDENTIFY: The reaction forces in Newton�s third law are always between a pair of objects. In Newton�s second 
law all the forces act on a single object. 
SET UP: Let  be downward. . y+ /m w g=
EXECUTE: The reaction to the upward normal force on the passenger is the downward normal force, also of 
magnitude 620 N, that the passenger exerts on the floor. The reaction to the passenger�s weight is the gravitational 

force that the passenger exerts on the earth, upward and also of magnitude 650 N. y
y

F
a

m
=∑ gives 

2
2

650 N 620 N 0.452 m/s
(650 N)/(9.80 m/s )ya

−
= = . The passenger�s acceleration is , downward. 20.452 m /s

EVALUATE: There is a net downward force on the passenger and the passenger has a downward acceleration. 
 4.25. IDENTIFY: Apply Newton�s second law to the earth. 

SET UP: The force of gravity that the earth exerts on her is her weight,  By 
Newton�s 3rd law, she exerts an equal and opposite force on the earth. 

2(45 kg)(9.8 m/s ) 441 N.w mg= = =

Apply m=∑F a
! !  to the earth, with 441 N,w= =∑F

!
 but must use the mass of the earth for m. 

EXECUTE: 23 2
24

441 N 7.4 10  m/s .
6.0 10  kg

wa
m

−= = = ×
×

 

EVALUATE: This is much smaller than her acceleration of  The force she exerts on the earth equals in 
magnitude the force the earth exerts on her, but the acceleration the force produces depends on the mass of the 
object and her mass is much less than the mass of the earth. 

29.8 m/s .

 4.26. IDENTIFY and SET UP: The only force on the ball is the gravity force, gravF
!

. This force is , downward and is 
independent of the motion of the object. 

mg

EXECUTE: The free-body diagram is sketched in Figure 4.26. The free-body diagram is the same in all cases. 
EVALUATE: Some forces, such as friction, depend on the motion of the object but the gravity force does not. 

 
Figure 4.26 

 4.27. IDENTIFY: Identify the forces on each object. 
SET UP: In each case the forces are the noncontact force of gravity (the weight) and the forces applied by objects 
that are in contact with each crate. Each crate touches the floor and the other crate, and some object applies F

!
to 

crate A. 
EXECUTE: (a) The free-body diagrams for each crate are given in Figure 4.27. 
ABF  (the force on due toAm Bm ) and BAF  (the force on Bm due to ) form an action-reaction pair. Am

(b) Since there is no horizontal force opposing F, any value of F, no matter how small, will cause the crates to 
accelerate to the right. The weight of the two crates acts at a right angle to the horizontal, and is in any case 
balanced by the upward force of the surface on them. 
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EVALUATE: Crate B is accelerated by BAF and crate A is accelerated by the net force . The greater the 
total weight of the two crates, the greater their total mass and the smaller will be their acceleration. 

ABF F−

 
Figure 4.27 

 4.28. IDENTIFY: The surface of block B can exert both a friction force and a normal force on block A. The friction force is 
directed so as to oppose relative motion between blocks B and A. Gravity exerts a downward force w on block A. 
SET UP: The pull is a force on B not on A. 
EXECUTE: (a) If the table is frictionless there is a net horizontal force on the combined object of the two blocks, 
and block B accelerates in the direction of the pull. The friction force that B exerts on A is to the right, to try to 
prevent A from slipping relative to B as B accelerates to the right. The free-body diagram is sketched in Figure 
4.28a. f is the friction force that B exerts on A and n is the normal force that B exerts on A. 
(b) The pull and the friction force exerted on B by the table cancel and the net force on the system of two blocks is 
zero. The blocks move with the same constant speed and B exerts no friction force on A. The free-body diagram is 
sketched in Figure 4.28b. 
EVALUATE: If in part (b) the pull force is decreased, block B will slow down, with an acceleration directed to the 
left. In this case the friction force on A would be to the left, to prevent relative motion between the two blocks by 
giving A an acceleration equal to that of B. 

 
Figure 4.28 

 4.29. IDENTIFY: Since the observer in the train sees the ball hang motionless, the ball must have the same acceleration 
as the train car. By Newton�s second law, there must be a net force on the ball in the same direction as its 
acceleration. 
SET UP: The forces on the ball are gravity, which is w, downward, and the tension T in the string, which is 
directed along the string. 

!

EXECUTE: (a) The acceleration of the train is zero, so the acceleration of the ball is zero. There is no net 
horizontal force on the ball and the string must hang vertically. The free-body diagram is sketched in Figure 4.29a. 
(b) The train has a constant acceleration directed east so the ball must have a constant eastward acceleration. There 
must be a net horizontal force on the ball, directed to the east. This net force must come from an eastward 
component of T

!
and the ball hangs with the string displaced west of vertical. The free-body diagram is sketched in 

Figure 4.29b. 
EVALUATE: When the motion of an object is described in an inertial frame, there must be a net force in the 
direction of the acceleration. 

 
Figure 4.29 

 4.30. IDENTIFY: Identify the forces for each object. Action-reaction pairs of forces act between two objects. 
SET UP: Friction is parallel to the surfaces and is directly to oppose relative motion between the surfaces. 
EXECUTE: The free-body diagram for the box is given in Figure 4.30a. The free body diagram for the truck is 
given in Figure 4.30b. The box�s friction force on the truck bed and the truck bed�s friction force on the box form 
an action-reaction pair. There would also be some small air-resistance force action to the left, presumably 
negligible at this speed. 
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EVALUATE: The friction force on the box, exerted by the bed of the truck, is in the direction of the truck's 
acceleration. This friction force can't be large enough to give the box the same acceleration that the truck has and 
the truck acquires a greater speed than the box. 

 
Figure 4.30 

 4.31. IDENTIFY: Identify the forces on the chair. The floor exerts a normal force and a friction force. 
SET UP: Let  be upward and let y+ x+  be in the direction of the motion of the chair. 
EXECUTE: (a) The free-body diagram for the chair is given in Figure 4.31. 
(b) For the chair,  so 0ya = y yF ma=∑  gives sin37 0n mg F− − ° = and 142 Nn = . 

EVALUATE: n is larger than the weight because F
!

has a downward component. 

 
Figure 4.31 

 4.32. IDENTIFY: Identify the forces on the skier and apply m=∑F a
! ! . Constant speed means . 0a =

SET UP: Use coordinates that are parallel and perpendicular to the slope. 
EXECUTE: (a) The free-body diagram for the skier is given in Figure 4.32. 
(b) x xF ma=∑ with gives . 0xa = 2sin (65.0 kg)(9.80 m/s )sin 26.0 279 NT mg θ= = ° =

EVALUATE: T is less than the weight of the skier. It is equal to the component of the weight that is parallel to the 
incline. 

 
Figure 4.32 

 4.33. IDENTIFY: m∑F = a
! ! must be satisfied for each object. Newton�s third law says that the force that the car 

exerts on the truck is equal in magnitude and opposite in direction to the force 
C on TF
!

T on CF
!

that the truck exerts on the 
car. 
SET UP: The only horizontal force on the car is the force T on CF

!
exerted by the truck. The car exerts a force 

on the truck. There is also a horizontal friction force C on TF
!

f
!

that the highway surface exerts on the truck. Assume 
the system is accelerating to the right in the free-body diagrams. 
EXECUTE: (a) The free-body diagram for the car is sketched in Figure 4.33a 
(b) The free-body diagram for the truck is sketched in Figure 4.33b. 
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(c) The friction force f
!

accelerates the system forward. The tires of the truck push backwards on the highway 
surface as they rotate, so by Newton�s third law the roadway pushes forward on the tires. 
EVALUATE: and each equal the tension T in the rope. Both objects have the same acceleration T on CF C on TF a! . 

and CT m a= Tf T m a− = , so C T( )f m m a= + . The acceleration of the two objects is proportional to f. 

 
Figure 4.33 

 4.34. IDENTIFY: Use a constant acceleration equation to find the stopping time and acceleration. Then use 
m=∑F a

! ! to calculate the force. 

SET UP: Let x+  be in the direction the bullet is traveling. F
!

 is the force the wood exerts on the bullet. 

EXECUTE: (a) ,  and . 0 350 m/sxv = 0xv = 0( ) 0.130 mx x− = 0
0 2

x xv v( )x t+⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 x

gives 40

0

2( ) 2(0.130 m) 7.43 10  s
350 m/sx x

x xt
v v

−−
= = = ×

+
. 

(b)  gives 2 2
0 02 ( )x x xv v a x x= + −

2 2 2
5 20

0

0 (350 m/s) 4.71 10  m/s
2( ) 2(0.130 m)
x x

x
v va
x x
− −

= = = − ×
−

 

x xF ma=∑  gives xF ma− =  and . 3 5 2(1.80 10  kg)( 4.71 10  m/s ) 848 NxF ma −= − = − × − × =

EVALUATE: The acceleration and net force are opposite to the direction of motion of the bullet. 
 4.35. IDENTIFY: Vector addition problem. Write the vector addition equation in component form. We know one vector 

and its resultant and are asked to solve for the other vector. 
SET UP: Use coordinates with the  along -axisx+ 1F

!
 and the -axisy+  along ;R

!
 as shown in Figure 4.35a. 

 

1 1300 N,xF = +  1 0yF =  

0,xR = 1300 NyR = +  

Figure 4.35a  

1 2 ,F F R
! ! !
+ =  so 2 1F R F

! ! !
= −  

EXECUTE:  2 1 0 1300 N 1300 Nx x xF R F= − = − = −

2 1 1300 N 0 1300 Ny y yF R F= − = + − = +  

The components of 2F
!

 are sketched in Figure 4.35b. 

 

2 2 2
2 2 2 ( 1300 N) (1300 N)x yF F F= + = − + 2  

1840 NF =  
2

2

1300 Ntan 1.00
1300 N

y

x

F
F

θ +
= = = −

−
 

135θ = °  
Figure 4.35b  

The magnitude of 2F
!

 is 1840 N and its direction is  counterclockwise from the direction of 135° 1.F
!

 

EVALUATE: 2F
!

 has a negative x-component to cancel 1F
!

 and a y-component to equal .R
!

 
 4.36. IDENTIFY: Use the motion of the ball to calculate g, the acceleration of gravity on the planet. Then w mg= . 

SET UP: Let  be downward and take y+ 0 0y = . 0 0yv = since the ball is released from rest. 
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EXECUTE: Get g on X: 21
2

y gt=  gives 2110.0 m (2.2 s)
2
g= . and then 

. 

24.13 m /sg =

2
X X (0.100 kg)(4.03 m /s ) 0.41 Nw mg= = =

EVALUATE: g on Planet X is smaller than on earth and the object weighs less than it would on earth. 
 4.37. IDENTIFY: If the box moves in the -directionx+  it must have 0,ya =  so 0.yF =∑  

 

The smallest force the child can exert and still 
produce such motion is a force that makes the 
y-components of all three forces sum to zero, 
but that doesn�t have any x-component. 

Figure 4.37  

SET UP: 1F
!

 and 2F
!

 are sketched in Figure 4.37. Let 3F
!

 be the force exerted by the child. 

y yF ma=∑  implies  so 1 2 3 0,y y yF F F+ + = 3 1 2( ).y y yF F F= − +  

EXECUTE:  1 1 sin60 (100 N)sin 60 86.6 NyF F= + ° = ° =

2 2 2sin( 30 ) sin30 (140 N)sin30 70.0 NyF F F= + − ° = − ° = − ° = −  

Then  3 1 2( ) (86.6 N 70.0 N) 16.6 N;y y yF F F= − + = − − = − 3 0xF =  
The smallest force the child can exert has magnitude 17 N and is directed at  clockwise from the  
shown in the figure. 

90° -axisx+

(b) IDENTIFY and SET UP: Apply .x xF ma=∑  We know the forces and xa  so can solve for m. The force exerted 
by the child is in the  and has no x-component. -directiony−
EXECUTE:  1 1 cos60 50 NxF F= ° =

2 2 cos30 121.2 NxF F= ° =  

1 2 50 N 121.2 N 171.2 Nx x xF F F= + = + =∑  

2

171.2 N 85.6 kg
2.00 m/s

x

x

F
m

a
= = =∑  

Then  840 N.w mg= =  
EVALUATE: In part (b) we don�t need to consider the y-component of Newton�s second law.  so the mass 

doesn�t appear in the 

0ya =

y yF ma=∑  equation. 

 4.38. IDENTIFY: Use m=∑F a
! ! to calculate the acceleration of the tanker and then use constant acceleration 

kinematic equations. 
SET UP: Let x+  be the direction the tanker is moving initially. Then . /xa F= − m

0EXECUTE: says that if the reef weren't there the ship would stop in a distance of 2 2
0 2 ( )x x xv v a x x= + −

2 2 2 7 2
0 0 0

0 4

(3.6 10  kg)(1.5 m /s) 506 m,
2 2( / ) 2 2(8.0 10  N)

x

x

v v mvx x
a F m F

×
− = − = = = =

×
 

so the ship would hit the reef. The speed when the tanker hits the reef is found from , so it is 2 2
0 02 ( )x x xv v a x x= + −

4
2 2
0 7

2(8.0 10  N)(500 m)(2 / ) (1.5 m/s) 0.17 m/s,
(3.6 10  kg)

v v Fx m ×
= − = − =

×
 

and the oil should be safe. 
EVALUATE: The force and acceleration are directed opposite to the initial motion of the tanker and the speed 
decreases. 

 4.39. IDENTIFY: We can apply constant acceleration equations to relate the kinematic variables and we can use 
Newton�s second law to relate the forces and acceleration. 
(a) SET UP: First use the information given about the height of the jump to calculate the speed he has at the 
instant his feet leave the ground. Use a coordinate system with the -axisy+  upward and the origin at the position 
when his feet leave the ground. 
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0yv =  (at the maximum height), 0 ?,yv =    29.80 m/s ,ya = − 0 1.2 my y− = +
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE: 2
0 02 ( ) 2( 9.80 m/s )(1.2 m) 4.85 m/sy yv a y y= − − = − − =  

(b) SET UP: Now consider the acceleration phase, from when he starts to jump until when his feet leave the 
ground. Use a coordinate system where the -axisy+  is upward and the origin is at his position when he starts his 
jump. 
EXECUTE: Calculate the average acceleration: 

0 2
av

4.89 m/s 0( ) 16.2 m/s
0.300 s

y y
y

v v
a

t
− −

= = =  

(c) SET UP: Finally, find the average upward force that the ground must exert on him to produce this average 
upward acceleration. (Don�t forget about the downward force of gravity.) The forces are sketched in Figure 4.39. 

 

EXECUTE: 

2

890 N/ 90.8 kg
9.80 m/s

m w g= = =  

y yF ma=∑  

av av( ) yF mg m a− =  

av av( ( ) )yF m g a= +  
2 2

av 90.8 kg(9.80 m/s 16.2 m/s )F = +  

av 2360 NF =  
Figure 4.39  

This is the average force exerted on him by the ground. But by Newton�s 3rd law, the average force he exerts on 
the ground is equal and opposite, so is 2360 N, downward. 
EVALUATE: In order for him to accelerate upward, the ground must exert an upward force greater than his 
weight. 

 4.40. IDENTIFY: Use constant acceleration equations to calculate the acceleration xa that would be required. Then use 

x xF ma=∑ to find the necessary force. 
SET UP: Let x+  be the direction of the initial motion of the auto. 

EXECUTE: with 2 2
0 02 ( )x x xv v a x x= + − 0xv =  gives 

2
0

02( )
x

x
va
x x

= −
−

. The force F is directed opposite to the 

motion and x
Fa
m

= − . Equating these two expressions for xa gives 

2 2
60

2
0

(12.5 m /s)(850 kg) 3.7 10  N.
2( ) 2(1.8 10  m)

xvF m
x x −= = = ×
− ×

 

EVALUATE: A very large force is required to stop such a massive object in such a short distance. 
 4.41. IDENTIFY: Apply Newton�s second law to calculate a. 

(a) SET UP: The free-body diagram for the bucket is sketched in Figure 4.41. 

 

The net force on the bucket 
is ,T mg−  upward. 

Figure 4.41  
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(b) EXECUTE: y yF ma=∑  gives T mg ma− =  
2

275.0 N (4.80 kg)(9.80 m/s ) 75.0 N 47.04 N 5.82 m/s .
4.80 kg 4.80 kg

T mga
m
− − −

= = = =  

EVALUATE: The weight of the bucket is 47.0 N. The upward force exerted by the cord is larger than this, so the 
bucket accelerates upward. 

 4.42. IDENTIFY: Apply m=∑F a
! ! to the parachutist. 

SET UP: Let  be upward. y+ airF
!

is the force of air resistance. 

EXECUTE: (a)  2(55.0 kg)(9.80 m/s ) 539 Nw mg= = =

(b) The free-body diagram is given in Fig. 4.42. air 620 N 539 N 81 NyF F w= − = − =∑ . The net force is upward. 

(c) 281 N 1.5 m/s
55.0 kg

y
y

F
a

m
= = =∑ , upward. 

EVALUATE: Both the net force and the acceleration are upward. Since her velocity is downward and her 
acceleration is upward, her speed decreases. 

 
Figure 4.42 

 4.43. IDENTIFY: Use Newton�s 2nd law to relate the acceleration and forces for each crate. 
(a) SET UP: Since the crates are connected by a rope, they both have the same acceleration,  22.50 m/s .
(b) The forces on the 4.00 kg crate are shown in Figure 4.43a. 

 

EXECUTE: 
x xF ma=∑  

2
1 (4.00 kg)(2.50 m/s ) 10.0 N.T m a= = =  

Figure 4.43a  
(c) SET UP: Forces on the 6.00 kg crate are shown in Figure 4.43b 

 

The crate accelerates to the right, 
so the net force is to the right. 
F must be larger than T. 

Figure 4.43b  

(d) EXECUTE: x xF ma=∑  gives  2F T m a− =

2
2 10.0 N (6.00 kg)(2.50 m/s ) 10.0 N 15.0 N 25.0 NF T m a= + = + = + =  
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EVALUATE: We can also consider the two crates and the rope connecting them as a single object of mass 
 The free-body diagram is sketched in Figure 4.43c. 1 2 10.0 kg.m m m= + =

 

x xF ma=∑  
2(10.0 kg)(2.50 m/s ) 25.0 NF ma= = =  

This agrees with our answer in part (d). 

Figure 4.43c  
 4.44. IDENTIFY: Apply Newton's second and third laws. 

SET UP: Action-reaction forces act between a pair of objects. In the second law all the forces act on the same 
object. 
EXECUTE: (a) The force the astronaut exerts on the cable and the force that the cable exerts on the astronaut are 
an action-reaction pair, so the cable exerts a force of 80.0 N on the astronaut. 
(b) The cable is under tension. 

(c) 280.0 N 0.762 m /s
105.0 kg

Fa
m

= = = . 

(d) There is no net force on the massless cable, so the force that the shuttle exerts on the cable must be 80.0 N (this 
is not an action-reaction pair). Thus, the force that the cable exerts on the shuttle must be 80.0 N. 

(e) 4 2
4

80.0 N 8.84 10  m /s
9.05 10  kg

Fa
m

−= = = ×
×

. 

EVALUATE: Since the cable is massless the net force on it is zero and the tension is the same at each end. 
 4.45. IDENTIFY and SET UP: Take derivatives of ( )x t  to find xv  and .xa  Use Newton�s second law to relate the 

acceleration to the net force on the object. 
EXECUTE:  
(a) 3 2 2 4 3(9.0 10  m/s ) (8.0 10 m/s )x t t3= × − ×  

0x =  at  0t =
When   0.025 s,t = 3 2 2 4 3 3(9.0 10  m/s )(0.025 s) (8.0 10  m/s )(0.025 s) 4.4 m.x = × − × =
The length of the barrel must be 4.4 m. 

(b) 3 2 4 3(18.0 10  m/s ) (24.0 10  m/s )x
dxv t
dt

= = × − × 2t  

At  0  (object starts from rest). 0,t = xv =
At  when the object reaches the end of the barrel, 

 
0.025 s,t =

2 4 3 2(18.0 10  m/s )(0.025 s) (24.0 10  m/s )(0.025 s) 300 m/sxv
3= × − × =

(c) ,x xF ma=∑  so must find .xa  

3 2 318.0 10  m/s (48.0 10  m/s )x
x
dva t
dt

4= = × − ×  

(i) At   and 0,t = 318.0 10  m/sxa = × 2 3 2 4(1.50 kg)(18.0 10  m/s ) 2.7 10  N.xF = × = ×∑  

(ii) At   and 

 

0.025 s,t = 3 2 4 318 10  m/s (48.0 10  m/s )(0.025 s) 6.0 10  m/sxa
3= × − × = × 2

2 3(1.50 kg)(6.0 10  m/s ) 9.0 10  N.xF
3= × = ×∑

EVALUATE: The acceleration and net force decrease as the object moves along the barrel. 
 4.46. IDENTIFY: Apply m=∑F a

! ! and solve for the mass m of the spacecraft. 
SET UP: . Let  be upward. w mg= y+
EXECUTE: (a) The velocity of the spacecraft is downward. When it is slowing down, the acceleration is upward. 
When it is speeding up, the acceleration is downward. 
(b) In each case the net force is in the direction of the acceleration. Speeding up:  and the net force is 
downward. Slowing down:  and the net force is upward. 

w F>
w F<
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(c) Denote the y-component of the acceleration when the thrust is  by  and the y-component of the 

acceleration when the thrust is  by  and . The forces and accelerations are 

then related by  Dividing the first of these by the second to eliminate the mass gives 

1F 1a

2F 1.a
21.20 m/sya = + 2

2 0.80 m/sa = −

1 1 2,F w ma F w ma− = − = 2.

1

2 2

,F w a
F w a
−

=
−

1 and solving for the weight w gives 

1 2 2 1

1 2

.a F a Fw
a a
−

=
−

 Substituting the given numbers, with y+  upward, gives 

2 3 2 3
3

2 2

(1.20 m /s )(10.0 10  N) ( 0.80 m /s )(25.0 10  N) 16.0 10  N.
1.20 m /s ( 0.80 m /s )

w × − − ×
= =

− −
×  

EVALUATE: The acceleration due to gravity at the surface of Mercury did not need to be found. 
 4.47. IDENTIFY: The ship and instrument have the same acceleration. The forces and acceleration are related by 

Newton�s second law. We can use a constant acceleration equation to calculate the acceleration from the 
information given about the motion. 
SET UP: Let  be upward. The forces on the instrument are the upward tension Ty+

!
exerted by the wire and the 

downward force of gravity.  w! 2(6.50 kg)(9.80 m/s ) 63.7 Nw mg= = =
EXECUTE: (a) The free-body diagram is sketched in Figure 4.47. The acceleration is upward, so T w . 

, , . 

>

0 276 my y− = 15.0 st = 0 0yv = 21
0 0 2y yy y v t a t− = + gives 20

2 2

2( ) 2(276 m) 2.45 m/s
(15.0 s)y

y ya
t
−

= = = . 

y yF ma=∑ gives and . T w ma− = 263.7 N (6.50 kg)(2.45 m/s ) 79.6 NT w ma= + = + =

EVALUATE: There must be a net force in the direction of the acceleration. 

 
Figure 4.47 

 4.48. If the rocket is moving downward and its speed is decreasing, its acceleration is upward, just as in Problem 4.47. 
The solution is identical to that of Problem 4.47. 

 4.49. IDENTIFY: Apply m=∑F a
! ! to the gymnast. 

SET UP: The upward force on the gymnast gives the tension in the rope. The free-body diagram for the gymnast 
is given in Figure 4.49. 
EXECUTE: (a) If the gymnast climbs at a constant rate, there is no net force on the gymnast, so the tension must 
equal the weight; T . mg=
(b) No motion is no acceleration, so the tension is again the gymnast�s weight. 
(c) T w T mg ma m− = − = = a!  (the acceleration is upward, the same direction as the tension), so ( )T m g= + a! . 

(d) T w T mg ma m− = − = = − a!  (the acceleration is downward, the opposite direction to the tension), so 

( )T m g= − a! . 
EVALUATE: When she accelerates upward the tension is greater than her weight and when she accelerates 
downward the tension is less than her weight. 

 
Figure 4.49 



Newton�s Laws of Motion  4-15 

 4.50. IDENTIFY: Apply m=∑F a
! !  to the elevator to relate the forces on it to the acceleration. 

(a) SET UP:  The free-body diagram for the elevator is sketched in Figure 4.50. 

 

The net force is T mg−  (upward). 

Figure 4.50  
Take the  to be upward since that is the direction of the acceleration. The maximum upward 
acceleration is obtained from the maximum possible tension in the cables. 

-directiony+

EXECUTE: y yF ma=∑  gives T m  g ma− =
2

228,000 N (2200 kg)(9.80 m/s ) 2.93 m/s .
2200 kg

T mga
m
− −

= = =  

(b) What changes is the weight mg of the elevator. 
2

228,000 N (2200 kg)(1.62 m/s ) 11.1 m/s .
2200 kg

T mga
m
− −

= = =  

EVALUATE: The cables can give the elevator a greater acceleration on the moon since the downward force of 
gravity is less there and the same T then gives a greater net force. 

 4.51. IDENTIFY: He is in free-fall until he contacts the ground. Use the constant acceleration equations and 
apply m=∑F a

! ! . 
SET UP: Take  downward. While he is in the air, before he touches the ground, his acceleration 

is . 

y+
29.80 m/sya =

EXECUTE: (a) , , and .  gives 0 0yv = 0 3.10 my y− = 29.80 m/sya = 2 2
0 02 ( )y y yv v a y y= + −

2
02 ( ) 2(9.80 m/s )(3.10 m) 7.79 m/sy yv a y y= − = =  

(b) , , .  gives 0 7.79 m/syv = 0yv = 0 0.60 my y− = 2 2
0 02 ( )y y yv v a y y= + −

2 2 2
0 2

0

0 (7.79 m/s) 50.6 m/s
2( ) 2(0.60 m)
y y

y

v v
a

y y
− −

= = = −
−

. The acceleration is upward. 

(c) The free-body diagram is given in Fig. 4.51. F
!

 is the force the ground exerts on him. 

y yF ma=∑  gives . , upward. mg F ma− = − 2 2( ) (75.0 kg)(9.80 m/s 50.6 m/s ) 4.53 10  NF m g a= + = + = × 3

3

2

4.53 10  N 6.16
(75.0 kg)(9.80 m/s )

F
w

×
= = , so 6.16F w= . 

By Newton's third law, the force his feet exert on the ground is −F
!

. 
EVALUATE: The force the ground exerts on him is about six times his weight. 

 
Figure 4.51 

 4.52. IDENTIFY: Apply m=∑F a
! ! to the hammer head. Use a constant acceleration equation to relate the motion to the 

acceleration. 
SET UP: Let  be upward. y+
EXECUTE: (a) The free-body diagram for the hammer head is sketched in Figure 4.52. 
(b) The acceleration of the hammer head is given by with 2 2

0 02 ( )y y yv v a y y= + − 0yv = , and 

. . The mass of the hammer 

2
0 3.2 m/syv = −

0 0.0045 my y− = − 2 2
0 0/ 2( ) (3.2 m /s) / 2(0.0045 cm) 1.138 10  m /sy ya v y y= − = = × 3 2
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head is its weight divided by , and so the net force on the hammer head is 

 This is the sum of the forces on the hammer head: the upward force that the 
nail exerts, the downward weight and the downward 15-N force. The force that the nail exerts is then 590 N, and 
this must be the magnitude of the force that the hammer head exerts on the nail. 

2, (4.9 N) /(9.80 m /s ) 0.50 kgg =
3 2(0.50 kg)(1.138 10  m /s ) 570 N.× =

(c) The distance the nail moves is 0.12 m, so the acceleration will be , and the net force on the hammer 
head will be 2133 N. The magnitude of the force that the nail exerts on the hammer head, and hence the magnitude 
of the force that the hammer head exerts on the nail, is 2153 N, or about 2200 N. 

24267 m /s

EVALUATE: For the shorter stopping distance the acceleration has a larger magnitude and the force between the 
nail and hammer head is larger. 

 
Figure 4.52 

 4.53. IDENTIFY: Apply m=∑F a
! ! to some portion of the cable. 

SET UP: The free-body diagrams for the whole cable, the top half of the cable and the bottom half are sketched in 
Figure 4.53. The cable is at rest, so in each diagram the net force is zero. 
EXECUTE: (a) The net force on a point of the cable at the top is zero; the tension in the cable must be equal to the 
weight w. 
(b) The net force on the cable must be zero; the difference between the tensions at the top and bottom must be 
equal to the weight w, and with the result of part (a), there is no tension at the bottom. 
(c) The net force on the bottom half of the cable must be zero, and so the tension in the cable at the middle must be 
half the weight, . Equivalently, the net force on the upper half of the cable must be zero. From part (a) the 
tension at the top is w, the weight of the top half is  and so the tension in the cable at the middle must 
be . 

/ 2w
/ 2w

/ 2 / 2w w w− =
(d) A graph of T vs. distance will be a negatively sloped line. 
EVALUATE: The tension decreases linearly from a value of w at the top to zero at the bottom of the cable. 

 
Figure 4.53 

 4.54. IDENTIFY: Note that in this problem the mass of the rope is given, and that it is not negligible compared to the 
other masses. Apply m=∑F a

! !  to each object to relate the forces to the acceleration. 
(a) SET UP: The free-body diagrams for each block and for the rope are given in Figure 4.54a. 

 
Figure 4.54a 
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tT  is the tension at the top of the rope and bT  is the tension at the bottom of the rope. 
EXECUTE: (b) Treat the rope and the two blocks together as a single object, with mass 

 Take 6.00 kg 4.00 kg 5.00 kg 15.0 kg.m = + + = y+  upward, since the acceleration is upward. The free-body 
diagram is given in Figure 4.54b. 

 

y yF ma=∑  
F mg ma− =  

F mga
m
−

=  

2200 N (15.0 kg)(9.80 m/s ) 3.53 m/s
15.0 kg

a 2−
= =  

Figure 4.54b  
(c) Consider the forces on the top block ( 6.00 kg),m =  since the tension at the top of the rope  will be one of 
these forces. 

t( )T

 

y yF ma=∑  

tF mg T ma− − =  

t ( )T F m g a= − +  
2 2200 N (6.00 kg)(9.80 m/s 3.53 m/s ) 120 NT = − + =  

Figure 4.54c  
Alternatively, can consider the forces on the combined object rope plus bottom block (  9.00 kg):m =

 

y yF ma=∑  

tT mg ma− =  
2 2

t ( ) 9.00 kg(9.80 m/s 3.53 m/s ) 120 N,T m g a= + = + =  
which checks 

Figure 4.54d  
(d) One way to do this is to consider the forces on the top half of the rope ( 2.00 kg).m =  Let  be the tension at 
the midpoint of the rope. 

mT

 

y yF ma=∑  

t mT T mg ma− − =  
2 2

m t ( ) 120 N 2.00 kg(9.80 m/s 3.53 m/s ) 93.3 NT T m g a= − + = − + =  

Figure 4.54e  
To check this answer we can alternatively consider the forces on the bottom half of the rope plus the lower block 
taken together as a combined object ( 2.00 kg 5.00 kg 7.00 kg):m = + =  

 

y yF ma=∑  

mT mg ma− =  
2 2

m ( ) 7.00 kg(9.80 m/s 3.53 m/s ) 93.3 N,T m g a= + = + =  
which checks 

Figure 4.54f  
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EVALUATE: The tension in the rope is not constant but increases from the bottom of the rope to the top. The 
tension at the top of the rope must accelerate the rope as well the 5.00-kg block. The tension at the top of the rope 
is less than F; there must be a net upward force on the 6.00-kg block. 

 4.55. IDENTIFY: Apply m=∑F a
! ! to the barbell and to the athlete. Use the motion of the barbell to calculate its 

acceleration. 
SET UP: Let  be upward. y+
EXECUTE: (a) The free-body diagrams for the baseball and for the athlete are sketched in Figure 4.55. 
(b) The athlete�s weight is . The upward acceleration of the barbell is found 

from 

2(90.0 kg)(9.80 m /s ) 882 Nmg = =

21
0 0 2y yy y v t a t− = + . 20

2 2

2( ) 2(0.600 m) 0.469 m/s
(1.6 s)y

y ya
t
−

= = = . The force needed to lift the barbell is given 

by lift barbell yF w ma− = . The barbell�s mass is , so 

. 

2(490 N) (9 80 m s ) 50 0 kg/ . / = .
2

lift barbell 490 N (50.0 kg)(0.469 m /s ) 490 N 23 N 513 NF w ma= + = + = + =

The athlete is not accelerating, so floor lift athlete 0F F w− − = . . floor lift athlete 513 N 882 N 1395 NF F w= + = + =
EVALUATE: Since the athlete pushes upward on the barbell with a force greater than its weight the barbell pushes 
down on him and the normal force on the athlete is greater than the total weight, 1362 N, of the athlete plus 
barbell. 

 
Figure 4.55 

 4.56. IDENTIFY: Apply m=∑F a
! ! to the balloon and its passengers and cargo, both before and after objects are 

dropped overboard. 
SET UP: When the acceleration is downward take y+  to be downward and when the acceleration is upward take 

 to be upward. y+
EXECUTE: (a) The free-body diagram for the descending balloon is given in Figure 4.56. 
L is the lift force. 
(b) y yF ma∑ =  gives  and ( /3)Mg L M g− = 2 /3L Mg= . 
(c) Now  is upward, so , where m is the mass remaining. y+ ( / 2)L mg m g− =

2 /3L Mg= , so . Mass 5  must be dropped overboard. 4 /9m M= /9M
EVALUATE: In part (b) the lift force is greater than the total weight and in part (c) the lift force is less than the 
total weight. 

 
Figure 4.56 
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 4.57. IDENTIFY: Apply m=∑F a
! ! to the entire chain and to each link. 

SET UP:  mass of one link. Let m = y+  be upward. 
EXECUTE: (a) The free-body diagrams are sketched in Figure 4.57. is the force the top and middle links 

exert on each other. is the force the middle and bottom links exert on each other. 
topF

middleF

(b) (i) The weight of each link is . Using the free-body diagram for the 
whole chain: 

2(0.300 kg)(9.80 m /s ) 2.94 Nmg = =

2student 3 12 N 3(2.94 N) 3.18 N 3.53 m /s
3 0.900 kg 0.900 kg

F mga
m
− −

= = = =  

(ii) The top link also accelerates at , so . 

. 

23.53 m /s student topF F mg ma− − =
2 2

top student ( ) 12 N (0.300 kg)(9.80 m/s 3.53 m/s ) 8.0 NF F m g a= − + = − + =

EVALUATE: The force exerted by the middle link on the bottom link is given by and 

. We can verify that with our results 
middleF mg m− = a

Nmiddle ( ) 4.0 F m g a= + = y yF ma=∑ is satisfied for the middle link. 

 
Figure 4.57 

 4.58. IDENTIFY: Calculate  from . Then a! 2 /d dt=a r! ! 2
net m=F a
! ! . 

SET UP:  w mg=
EXECUTE: Differentiating twice, the acceleration of the helicopter as a function of time is 

3 2� �(0.120 m /s ) (0.12 m /s )t −a = i k!  and at 5 0st = . , the acceleration is 2 2� �(0.60 m /s ) (0.12 m /s )−a = i k! . 
The force is then 

5
2 2 4

2

(2.75 10  N) � � �(0.60 m /s ) (0.12 m /s ) (1.7 10  N) (3.4 10  N)
(9.80 m /s )

wm
g

× ⎡ ⎤− × −⎣ ⎦
3 �×F = a = a = i k = i k

! ! !  

EVALUATE: The force and acceleration are in the same direction. They are both time dependent. 

 4.59. IDENTIFY: x xF ma= and 
2

2x
d xa
dt

= . 

SET UP: 1( )n nd t nt
dt

−=  

EXECUTE: The velocity as a function of time is  and the acceleration as a function of time is 
, and so the force as a function of time is . 

2( ) 3xv t A Bt= −

( ) 6xa t Bt= − ( ) ( ) 6xF t ma t mBt= = −
EVALUATE: Since the acceleration is along the x-axis, the force is along the x-axis. 

 4.60. IDENTIFY: . . /ma = F
!!

0 0

t
dt∫v = v + a ! ! !

SET UP: since the object is initially at rest. 0 0v =

EXECUTE: 42
10

1 1 � �( )
4

t kt dt k t
m m

⎛ ⎞
⎜ ⎟
⎝ ⎠∫v = F = i + t j

!! . 

EVALUATE: F
!

has both x and y components, so v! develops x and y components. 
 4.61. IDENTIFY: Follow the steps specified in the problem. 

SET UP: The chain rule for differentiating says dv dv dv dv v
dt dx dt dx

= = . 
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EXECUTE: (a) The equation of motion, 2 dvCv m
dt

− =  cannot be integrated with respect to time, as the unknown 

function  is part of the integrand. The equation must be separated before integration; that is, ( )v t 2

C ddt
m v

− =
v  and 

0

1 1 ,Ct
m v v

− = − +  

where  is the constant of integration that gives 0v 0v v=  at 0t = . Note that this form shows that if , there is 

no motion. This expression may be rewritten as 

0 0v =
1

0

1 ,dx Ctv
dt v m

−
⎛ ⎞

= = +⎜ ⎟
⎝ ⎠

 

which may be integrated to obtain 0
0 ln 1 .m Ctvx x
C m

⎡ ⎤− = +⎢ ⎥⎣ ⎦
 

To obtain x as a function of v, the time t must be eliminated in favor of v; from the expression obtained after the 

first integration, 0 0 1Ctv v
m v

= − , so 0
0 ln .m vx x
C v

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 

(b) Applying the chain rule, dv dvF m mv
dt dx

= =∑ . Using the given expression for the net force, 

2 dvCv v m
dx

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

. C ddx
m v

− =
v . Integrating gives 0

0

( ) lnC vx x
m v

⎛ ⎞
− − = ⎜ ⎟

⎝ ⎠
 and 0

0 ln .m vx x
C v

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 

EVALUATE: If C is positive, our expression for shows it decreases from its value of . As v decreases, so 
does the acceleration and therefore the rate of decrease of v. 

( )v t 0v

 4.62. IDENTIFY: 
0

t

xx v dt= ∫ and , and similar equations apply to the y-component. 
0

t

x xv a d= ∫ t

SET UP: In this situation, the x-component of force depends explicitly on the y-component of position. As the y-
component of force is given as an explicit function of time, yv  and y can be found as functions of time and used in 

the expression for . ( )xa t

EXECUTE: , so  and , where the initial conditions  have 

been used. Then, the expressions for 

3( / )ya k m= t 2
3( / 2 )yv k m t= 3

3( / 6 )y k m t= 0 00, 0yv y= =

,x xa v  and x are obtained as functions of time: 31 2 3
26x

k k ka t
m m

= + , 

41 2 3
224x

k k kv t
m m

= + t  and 2 51 2 3
22 120

k k kx t t
m m

= + . 

In vector form, 2 51 2 3 3
2

� �
2 120 6
k k k kt t t
m m m

⎛ ⎞ ⎛ 3+⎜ ⎟ ⎜
⎝ ⎠ ⎝

i + ⎞
⎟
⎠

r = j!  and 4 21 2 3 3
2

� �
24 2

k k k kt t t
m m m

⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

v = i +! j . 

EVALUATE: xa depends on time because it depends on y, and y is a function of time. 
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APPLYING NEWTON�S LAWS 

 5.1. IDENTIFY: 0a =  for each object. Apply y yF ma=∑ to each weight and to the pulley. 

SET UP: Take y+  upward. The pulley has negligible mass. Let rT be the tension in the rope and let cT be the 
tension in the chain. 
EXECUTE: (a) The free-body diagram for each weight is the same and is given in Figure 5.1a. 

y yF ma=∑ gives r 25.0 NT w= = . 

(b) The free-body diagram for the pulley is given in Figure 5.1b. c r2 50.0 NT T= = . 
EVALUATE: The tension is the same at all points along the rope. 

 
Figure 5.1a, b 

 5.2. IDENTIFY: Apply m=∑F a
! ! to each weight. 

SET UP: Two forces act on each mass: w down and ( )T w=  up. 
EXECUTE: In all cases, each string is supporting a weight w against gravity, and the tension in each string is w. 
EVALUATE: The tension is the same in all three cases. 

 5.3. IDENTIFY: Both objects are at rest and 0a = . Apply Newton�s first law to the appropriate object. The maximum 
tension maxT is at the top of the chain and the minimum tension is at the bottom of the chain. 
SET UP: Let y+  be upward. For the maximum tension take the object to be the chain plus the ball. For the 
minimum tension take the object to be the ball. For the tension T three-fourths of the way up from the bottom of 
the chain, take the chain below this point plus the ball to be the object. The free-body diagrams in each of these 
three cases are sketched in Figures 5.3a, 5.3b and 5.3c. b+c 75.0 kg 26.0 kg 101.0 kgm = + = . b 75.0 kgm = . m is 
the mass of three-fourths of the chain: 3

4 (26.0 kg) 19.5 kgm = = . 

EXECUTE: (a) From Figure 5.3a, 0yF =∑ gives max b+c 0T m g− = and 2
max (101.0 kg)(9.80 m/s ) 990 NT = = . 

From Figure 5.3b, 0yF =∑ gives min b 0T m g− = and 2
min (75.0 kg)(9.80 m/s ) 735 NT = = . 

(b) From Figure 5.3c, 0yF =∑ gives b( ) 0T m m g− + = and 2(19.5 kg 75.0 kg)(9.80 m/s ) 926 NT = + = . 

5



5-2 Chapter 5 

EVALUATE: The tension in the chain increases linearly from the bottom to the top of the chain. 

 
Figure 5.3a�c 

 5.4. IDENTIFY: Apply Newton�s 1st law to the person. Each half of the rope exerts a force on him, directed along the 
rope and equal to the tension T in the rope. 
SET UP: (a) The force diagram for the person is given in Figure 5.4 

 

1T  and 2T  are the 
tensions in each half of 
the rope. 

Figure 5.4  

EXECUTE: 0xF =∑  

2 1cos cos 0T Tθ θ− =  
This says that 1 2T T T= =  (The tension is the same on both sides of the person.) 

0yF =∑  

1 2sin sin 0T T mgθ θ+ − =  
But 1 2 ,T T T= =  so 2 sinT mgθ =  

2(90.0 kg)(9.80 m/s ) 2540 N
2sin 2sin10.0

mgT
θ

= = =
°

 

(b) The relation 2 sinT mgθ =  still applies but now we are given that 42.50 10  NT = ×  (the breaking strength) and 
are asked to find .θ  

2

4

(90.0 kg)(9.80 m/s )sin 0.01764,
2 2(2.50 10  N)
mg

T
θ = = =

×
 1.01 .θ = °  

EVALUATE: /(2sin )T mg θ=  says that / 2T mg=  when 90θ = °  (rope is vertical). 
T →∞  when 0θ →  since the upward component of the tension becomes a smaller fraction of the tension. 

 5.5. IDENTIFY: Apply m=∑F a
! ! to the frame. 

SET UP: Let w be the weight of the frame. Since the two wires make the same angle with the vertical, the tension 
is the same in each wire. 0.75T w= . 
EXECUTE: The vertical component of the force due to the tension in each wire must be half of the weight, and 

this in turn is the tension multiplied by the cosine of the angle each wire makes with the vertical. 3 cos
2 4
w w θ=  

and 2
3arccos 48θ = = ° . 

EVALUATE: If 0θ = ° , / 2T w= and T →∞ as 90θ → ° . Therefore, there must be an angle where 3 / 4T w= . 
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 5.6. IDENTIFY: Apply Newton�s 1st law to the car. The forces are the same as in Example 5.5. 
SET UP: The free-body diagram is sketched in Figure 5.6. 

 

EXECUTE:  
x xF ma=∑  

cos sin 0T nα α− =  
cos sinT nα α=  

y yF ma=∑  
cos sin 0n T wα α+ − =  
cos sinn T wα α+ =  

Figure 5.6  

The first equation gives cos .
sin

n T α
α

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Use this in the second equation to eliminate n: 
cos cos sin
sin

T T wα α α
α

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

 

Multiply this equation by sin :α  
2 2(cos sin ) sinT wα α α+ =  

sinT w α=  (since 2 2cos sin 1α α+ = ). 

Then cos cossin cos .
sin sin

n T w wα αα α
α α

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: These results are the same as obtained in Example 5.5. The choice of coordinate axes is up to us. 
Some choices may make the calculation easier, but the results are the same for any choice of axes. 

 5.7. IDENTIFY: Apply m=∑F a
! ! to the car. 

SET UP: Use coordinates with x+  parallel to the surface of the street. 
EXECUTE: 0xF =∑ gives sinT w α= . 2 3sin (1390 kg)(9.80 m/s )sin17.5 4.10 10  NF mg θ= = ° = × . 
EVALUATE: The force required is less than the weight of the car by the factor sinα . 

 5.8. IDENTIFY: Apply Newton�s 1st law to the wrecking ball. Each cable exerts a force on the ball, directed along the 
cable. 
SET UP: The force diagram for the wrecking ball is sketched in Figure 5.8. 

 
Figure 5.8 

EXECUTE:  
(a) y yF ma=∑  

cos40 0BT mg° − =  
2

4(4090 kg)(9.80 m/s ) 5.23 10  N
cos40 cos40B

mgT = = = ×
° °

 

(b) x xF ma=∑  

sin 40 0B AT T° − =  
4sin 40 3.36 10  NA BT T= ° = ×  

EVALUATE: If the angle 40°  is replaces by 0°  (cable B is vertical), then BT mg=  and 0.AT =  
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 5.9. IDENTIFY: Apply m=∑F a
! ! to the object and to the knot where the cords are joined. 

SET UP: Let y+  be upward and x+  be to the right. 
EXECUTE: (a) ,   sin30 sin 45 ,  and cos30 cos45 0.C A B C A BT w T T T w T T= ° + ° = = ° − ° =  Since sin 45 cos45 ,° = °  

adding the last two equations gives (cos30 sin30 ) ,AT w° + ° =  and so 0.732 .
1.366A

wT w= =  Then, 

cos30 0.897 .
cos45B AT T w°

= =
°

 

(b) Similar to part (a), ,  cos60 sin 45 ,C A BT w T T w= − ° + ° =  and sin 60 cos45 0.A BT T° − ° =  

Adding these two equations, 2.73 ,  
(sin60 cos60 )A

wT w= =
° − °

and sin60 3.35 .
cos45B AT T w°

= =
°

 

EVALUATE: In part (a), A BT T w+ > since only the vertical components of AT and BT  hold the object against 
gravity. In part (b), since AT  has a downward component BT  is greater than w. 

 5.10. IDENTIFY: Apply Newton�s first law to the car. 
SET UP: Use x and y coordinates that are parallel and perpendicular to the ramp. 
EXECUTE: (a) The free-body diagram for the car is given in Figure 5.10. The vertical weight w and the tension T 
in the cable have each been replaced by their x and y components. 

(b) 0xF =∑ gives cos31.0 sin 25.0 0T w− =° ° and 2sin 25.0 sin 25.0(1130 kg)(9.80 m/s ) 5460 N
cos31.0 cos31.0

T w= = =
° °
° °

. 

(c) 0yF =∑ gives sin31.0 cos25.0 0n T w+ − =° ° and 
2cos25.0 sin31.0  kg 9.80 m/s )cos25.0 (5460 N)sin31.0 7220 Nn w T= − =°− °=(1130 )( ° °  

EVALUATE: We could also use coordinates that are horizontal and vertical and would obtain the same values of n 
and T. 

 
Figure 5.10 

 5.11. IDENTIFY: Since the velocity is constant, apply Newton�s first law to the piano. The push applied by the man 
must oppose the component of gravity down the incline. 
SET UP: The free-body diagrams for the two cases are shown in Figures 5.11a and b. F

!
is the force applied by 

the man. Use the coordinates shown in the figure. 
EXECUTE: (a) 0xF =∑ gives sin11.0 0F w− =° and 2(180 kg)(9.80 m/s )sin11.0 337 NF = °= . 

(b) 0yF =∑ gives cos11.0 0n w− =° and 
cos11.0

wn =
°

. 0xF =∑ gives sin11.0 0F n− =° and 

sin11.0 tan11.0  N
cos11.0

wF w⎛ ⎞= ⎜ ⎟
⎝ ⎠

°= °=343
°

. 
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EVALUATE: A slightly greater force is required when the man pushes parallel to the floor. If the slope angle of 
the incline were larger, sinα and tanα would differ more and there would be more difference in the force needed 
in each case. 

 
Figure 5.11a, b 

 5.12. IDENTIFY: Apply Newton�s 1st law to the hanging weight and to each knot. The tension force at each end of a 
string is the same. 
(a) Let the tensions in the three strings be T, ,T ′  and ,T ′′  as shown in Figure 5.12a. 

 
Figure 5.12a 

SET UP: The free-body diagram for the block is given in Figure 5.12b. 

 

EXECUTE:  
0yF =∑  
0T w′ − =  
60.0 NT w′ = =  

Figure 5.12b  
SET UP: The free-body diagram for the lower knot is given in Figure 5.12c. 

 

EXECUTE:  
0yF =∑  

sin 45 0T T ′° − =  
60.0 N 84.9 N

sin 45 sin 45
TT
′

= = =
° °

 

Figure 5.12c  
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(b) Apply 0xF =∑  to the force diagram for the lower knot: 

0xF =∑  

2 cos45 (84.9 N)cos45 60.0 NF T= ° = ° =  
SET UP: The free-body diagram for the upper knot is given in Figure 5.12d. 

 

EXECUTE:  
0xF =∑  

1cos45 0T F° − =  

1 (84.9 N)cos45F = °  

1 60.0 NF =  

Figure 5.12d  
Note that 1 2.F F=  

EVALUATE: Applying 0yF =∑  to the upper knot gives sin 45 60.0 N .T T w′′ = ° = =  If we treat the whole 
system as a single object, the force diagram is given in Figure 5.12e. 

 

0xF =∑  gives 2 1,F F=  which checks 

0yF =∑  gives ,T w′′ =  which checks 
 

Figure 5.12e  
 5.13. IDENTIFY: Apply Newton�s first law to the ball. The force of the wall on the ball and the force of the ball on the 

wall are related by Newton�s third law. 
SET UP: The forces on the ball are its weight, the tension in the wire, and the normal force applied by the wall. 

To calculate the angle φ that the wire makes with the wall, use Figure 5.13a. 16.0 cmsin
46.0 cm

φ = and 20.35φ = °  

EXECUTE: (a) The free-body diagram is shown in Figure 5.13b. Use the x and y coordinates shown in the figure. 

0yF =∑ gives cos 0T wφ − = and 
2(45.0 kg)(9.80 m/s ) 470 N

cos cos20.35
wT
φ

= = =
°

 

(b) 0xF =∑ gives sin 0T nφ − = . (470 N)sin 20.35 163 Nn = =° . By Newton�s third law, the force the ball 
exerts on the wall is 163 N, directed to the right. 

EVALUATE: sin tan
cos

wn wφ φ
φ

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

. As the angle φ decreases (by increasing the length of the wire), T 

decreases and n decreases. 

 
Figure 5.13a, b 

 5.14. IDENTIFY: Apply m=∑F a
! !  to each block. 0a = . 

SET UP: Take y+  perpendicular to the incline and x+  parallel to the incline. 
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EXECUTE: The free-body diagrams for each block, A and B, are given in Figure 5.14. 
(a) For B, x xF ma=∑ gives 1 sin 0T w α− =  and 1 sinT w α= . 

(b) For block A, x xF ma=∑  gives 1 2 sin 0T T w α− − =  and 2 2 sinT w α= . 

(c) y yF ma=∑  for each block gives cosA Bn n w α= = . 

(d) For 0α → , 1 2 0T T= →  and A Bn n w= → . For 90α → ° , 1T w= , 2 2T w=  and 0A Bn n= = . 
EVALUATE: The two tensions are different but the two normal forces are the same. 

 
Figure 5.14a, b 

 5.15. IDENTIFY: Apply Newton�s first law to the ball. Treat the ball as a particle. 
SET UP: The forces on the ball are gravity, the tension in the wire and the normal force exerted by the surface. 
The normal force is perpendicular to the surface of the ramp. Use x and y axes that are horizontal and vertical. 
EXECUTE: (a) The free-body diagram for the ball is given in Figure 5.15. The normal force has been replaced by 
its x and y components. 

(b) 0yF =∑ gives cos35.0 0n w− =° and 1.22
cos35.0

mgn mg= =
°

. 

(c) 0xF =∑ gives sin35.0 0T n− =° and (1.22 )sin35.0 0.700T mg mg= =° . 
EVALUATE: Note that the normal force is greater than the weight, and increases without limit as the angle of the 
ramp increases towards 90° . The tension in the wire is tanw φ , where φ is the angle of the ramp and T also 
increases without limit as 90φ → ° . 

 
Figure 5.15 

 5.16. IDENTIFY: Apply Newton�s second law to the rocket plus its contents and to the power supply. Both the rocket 
and the power supply have the same acceleration. 
SET UP: The free-body diagrams for the rocket and for the power supply are given in Figures 5.16a and b. Since 
the highest altitude of the rocket is 120 m, it is near to the surface of the earth and there is a downward gravity 
force on each object. Let y+  be upward, since that is the direction of the acceleration. The power supply has 

mass 2
ps (15.5 N) /(9.80 m/s ) 1.58 kgm = =  
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EXECUTE: (a) y yF ma=∑ applied to the rocket gives r rF m g m a− = . 
2

2r

r

1720 N (125 kg)(9.80 m/s ) 3.96 m/s
125 kg

F m ga
m
− −

= = = . 

(b) y yF ma=∑ applied to the power supply gives ps psn m g m a− = . 
2 2

ps ( ) (1.58 kg)(9.80 m/s 3.96 m/s ) 21.7 Nn m g a= + = + = . 
EVALUATE: The acceleration is constant while the thrust is constant and the normal force is constant while the 
acceleration is constant. The altitude of 120 m is not used in the calculation. 

 
Figure 5.16a, b 

 5.17. IDENTIFY: Use the kinematic information to find the acceleration of the capsule and the stopping time. Use 
Newton�s second law to find the force F that the ground exerted on the capsule during the crash. 
SET UP: Let y+  be upward. 311 km/h 86.4 m/s= . The free-body diagram for the capsule is given in 
Figure 15.17. 
EXECUTE: 0 0.810 my y− = −  , 0 86.4 m/syv = − , 0yv = . 2 2

0 02 ( )y y yv v a y y= + −  gives 
2 2 2

0 2

0

0 ( 86.4 m/s) 4610 m/s 470
2( ) 2( 0.810) m

y y
y

v v
a g

y y
− − −

= = = =
− −

. 

(b) y yF ma=∑ applied to the capsule gives F mg ma− = and 
2 2 5( ) (210 kg)(9.80 m/s 4610 m/s ) 9.70 10  N 471 .F m g a w= + = + = × =  

(c) 0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
gives 0

2
0

2( ) 2( 0.810 m) 0.0187 s
86.4 m/s 0y y

y yt
v v

− −
= = =

+ − +
 

EVALUATE: The upward force exerted by the ground is much larger than the weight of the capsule and stops the 
capsule in a short amount of time. After the capsule has come to rest, the ground still exerts a force mg on the 
capsule, but the large 59.00 10  N× force is exerted only for 0.0187 s. 

 
Figure 5.17 

 5.18. IDENTIFY: Apply Newton�s second law to the three sleds taken together as a composite object and to each 
individual sled. All three sleds have the same horizontal acceleration a. 
SET UP: The free-body diagram for the three sleds taken as a composite object is given in Figure 5.18a and for 
each individual sled in Figure 5.18b-d. Let x+  be to the right, in the direction of the acceleration. tot 60.0 kgm = . 

EXECUTE: (a) x xF ma=∑ for the three sleds as a composite object gives totP m a= and 

2

tot

125 N 2.08 m/s
60.0 kg

Pa
m

= = = . 
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(b) x xF ma=∑ applied to the 10.0 kg sled gives 10AP T m a− = and 
2

10 125 N (10.0 kg)(2.08 m/s ) 104 NAT P m a= − = − = . x xF ma=∑ applied to the 30.0 kg sled gives 
2

30 (30.0 kg)(2.08 m/s ) 62.4 NBT m a= = = . 

EVALUATE: If we apply x xF ma=∑ to the 20.0 kg sled and calculate a from AT and BT found in part (b), we get 

20A BT T m a− = . 2

20

104 N 62.4 N 2.08 m/s
20.0 kg

A BT Ta
m
− −

= = = , which agrees with the value we calculated in part (a). 

 
Figure 5.18a�d 

 5.19. IDENTIFY: Apply m=∑F a
! !  to the load of bricks and to the counterweight. The tension is the same at each end 

of the rope. The rope pulls up with the same force ( )T  on the bricks and on the counterweight. The counterweight 
accelerates downward and the bricks accelerate upward; these accelerations have the same magnitude. 
(a) SET UP: The free-body diagrams for the bricks and counterweight are given in Figure 5.19. 

 
Figure 5.19 

(b) EXECUTE: Apply y yF ma=∑  to each object. The acceleration magnitude is the same for the two objects. 
For the bricks take y+  to be upward since a!  for the bricks is upward. For the counterweight take y+  to be 
downward since a!  is downward. 
bricks: y yF ma=∑  

1 1T m g m a− =  

counterweight: y yF ma=∑  

2 2m g T m a− =  
Add these two equations to eliminate T: 

2 1 1 2( ) ( )m m g m m a− = +  

2 22 1

1 2

28.0 kg 15.0 kg (9.80 m/s ) 2.96 m/s
15.0 kg 28.0 kg

m ma g
m m

⎛ ⎞ ⎛ ⎞− −
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

(c) 1 1T m g m a− =  gives 2 2
1( ) (15.0 kg)(2.96 m/s 9.80 m/s ) 191 NT m a g= + = + =  

As a check, calculate T using the other equation. 

2 2m g T m a− =  gives 2 2
2 ( ) 28.0 kg(9.80 m/s 2.96 m/s ) 191 N,T m g a= − = − =  which checks. 
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EVALUATE: The tension is 1.30 times the weight of the bricks; this causes the bricks to accelerate upward. The 
tension is 0.696 times the weight of the counterweight; this causes the counterweight to accelerate downward. If 

1 2 ,m m=  0a =  and 1 2 .T m g m g= =  In this special case the objects don�t move. If 1 0,m =  a g=  and 0;T =  in 
this special case the counterweight is in free-fall. Our general result is correct in these two special cases. 

 5.20. IDENTIFY: In part (a) use the kinematic information and the constant acceleration equations to calculate the 
acceleration of the ice. Then apply m∑F = a

! ! . In part (b) use m∑F = a
! ! to find the acceleration and use this in 

the constant acceleration equations to find the final speed. 
SET UP: Figures 5.20a and b give the free-body diagrams for the ice both with and without friction. Let x+  be 
directed down the ramp, so y+  is perpendicular to the ramp surface. Let φ be the angle between the ramp and the 
horizontal. The gravity force has been replaced by its x and y components. 
EXECUTE: (a) 0 1.50 mx x− = , 0 0xv = , 2.50 m/sxv = . 2 2

0 02 ( )x x xv v a x x= + − gives 
2 2 2

20

0

(2.50 m/s) 0 2.08 m/s
2( ) 2(1.50 m)

x x
x

v va
x x
− −

= = =
−

. x xF ma=∑ gives sinmg maφ = and 
2

2

2.08 m/ssin
9.80 m/s

a
g

φ = = . 

12.3φ = ° . 
(b) x xF ma=∑ gives sinmg f maφ − = and 

2
2sin (8.00 kg)(9.80 m/s )sin12.3 10.0 N 0.838 m/s

8.00 kg
mg fa

m
φ − −

= = =
° . 

Then 0 1.50 mx x− = , 0 0xv = , 20.838 m/sxa = and 2 2
0 02 ( )x x xv v a x x= + − gives  

2
02 ( ) 2(0.838 m/s )(1.50 m) 1.59 m/sx xv a x x= − = =  

EVALUATE: With friction present the speed at the bottom of the ramp is less. 

 
Figure 5.20a, b 

 5.21. IDENTIFY: Apply m∑F = a
! ! to each block. Each block has the same magnitude of acceleration a. 

SET UP: Assume the pulley is to the right of the 4.00 kg block. There is no friction force on the 4.00 kg block, 
the only force on it is the tension in the rope. The 4.00 kg block therefore accelerates to the right and the suspended 
block accelerates downward. Let x+  be to the right for the 4.00 kg block, so for it xa a= , and let y+  be 
downward for the suspended block, so for it ya a= . 
EXECUTE: (a) The free-body diagrams for each block are given in Figures 5.21a and b. 

(b) x xF ma=∑ applied to the 4.00 kg block gives (4.00 kg)T a= and 210.0 N 2.50 m/s
4.00 kg 4.00 kg

Ta = = = . 

(c) y yF ma=∑ applied to the suspended block gives mg T ma− = and 

2 2

10.0 N 1.37 kg
9.80 m/s 2.50 m/s

Tm
g a

= = =
− −

. 

(d) The weight of the hanging block is 2(1.37 kg)(9.80 m/s ) 13.4 Nmg = = . This is greater than the tension in the 
rope; 0.75T mg= . 
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EVALUATE: Since the hanging block accelerates downward, the net force on this block must be downward and 
the weight of the hanging block must be greater than the tension in the rope. Note that the blocks accelerate no 
matter how small m is. It is not necessary to have 4.00 kgm > , and in fact in this problem m is less than 4.00 kg. 

 
Figure 5.21a, b 

 5.22. IDENTIFY: (a) Consider both gliders together as a single object, apply m=∑F a
! ! , and solve for a. Use a in a 

constant acceleration equation to find the required runway length. 
(b) Apply m=∑F a

! !  to the second glider and solve for the tension gT  in the towrope that connects the two 
gliders. 
SET UP: In part (a), set the tension tT  in the towrope between the plane and the first glider equal to its maximum 
value, t 12,000 NT = . 
EXECUTE: (a) The free-body diagram for both gliders as a single object of mass 2 1400 kgm =  is given in Figure 

5.22a. x xF ma=∑  gives t 2 (2 )T f m a− =  and 2t 2 12,000 N 5000 N 5.00 m/s
2 1400 kg

T fa
m
− −

= = = . Then 

25.00 m/sxa = , 0 0xv =  and 40 m/sxv =  in 2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2
0

0( ) 160 m
2

x x

x

v vx x
a
−

− = = . 

(b) The free-body diagram for the second glider is given in Figure 5.22b. 

x xF ma=∑  gives gT f ma− =  and 22500 N + (700 kg)(5.00 m/s ) 6000 NT f ma= + = = . 

EVALUATE: We can verify that x xF ma=∑ is also satisfied for the first glider. 

 
Figure 5.22a, b 

 5.23. IDENTIFY: The maximum tension in the chain is at the top of the chain. Apply m∑F = a
! ! to the composite 

object of chain and boulder. Use the constant acceleration kinematic equations to relate the acceleration to the time. 
SET UP: Let y+  be upward. The free-body diagram for the composite object is given in Figure 5.23. 

chain2.50T w= . tot chain boulder 1325 kgm m m= + = . 

EXECUTE: (a) y yF ma=∑ gives tot totT m g m a− = . tot chain tot chain

tot tot tot

2.50 2.50 1T m g m g m g ma g
m m m

⎛ ⎞− −
= = = −⎜ ⎟

⎝ ⎠
 

2 22.50[575 kg] 1 (9.80 m/s ) 0.832 m/s
1325 kg

a
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

. 
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(b) Assume the acceleration has its maximum value: 20.832 m/sya = , 0 125 my y− = and 0 0yv = . 

21
0 0 2y yy y v t a t− = + gives 0

2

2( ) 2(125 m) 17.3 s
0.832 m/sy

y yt
a
−

= = =  

EVALUATE: The tension in the chain is 41.41 10  NT = × and the total weight is 41.30 10  N× . The upward force 
exceeds the downward force and the acceleration is upward. 

 
Figure 5.23 

 5.24. IDENTIFY: Apply m∑F = a
! ! to the composite object of elevator plus student ( tot 850 kgm = ) and also to the 

student ( 550 Nw = ). The elevator and the student have the same acceleration. 
SET UP: Let y+  be upward. The free-body diagrams for the composite object and for the student are given in 
Figure 5.24a and b. T is the tension in the cable and n is the scale reading, the normal force the scale exerts on the 
student. The mass of the student is / 56.1 kgm w g= = . 

EXECUTE: (a) y yF ma=∑ applied to the student gives yn mg ma− = . 

2450 N 550 N 1.78 m/s
56.1 kgy

n mga
m
− −

= = = − . The elevator has a downward acceleration of 21.78 m/s . 

(b) 2670 N 550 N 2.14 m/s
56.1 kgya −

= = . 

(c) 0n = means ya g= − . The student should worry; the elevator is in free-fall. 

(d) y yF ma=∑ applied to the composite object gives tot totT m g m a− = . tot ( )yT m a g= + . In part (a), 
2 2(850 kg)( 1.78 m/s 9.80 m/s ) 6820 NT = − + = . In part (c), ya g= − and 0T = . 

EVALUATE: In part (b), 2 2(850 kg)(2.14 m/s 9.80 m/s ) 10,150 NT = + = . The weight of the composite object is 
8330 N. When the acceleration is upward the tension is greater than the weight and when the acceleration is 
downward the tension is less than the weight. 

 
Figure 5.24a, b 

 5.25. IDENTIFY: Apply m=∑F a
! ! to the puck. Use the information about the motion to calculate the acceleration. The 

table must slope downward to the right. 
SET UP: Let α be the angle between the table surface and the horizontal. Let the x+ -axis be to the right and 
parallel to the surface of the table. 
EXECUTE: x xF ma=∑ gives sin xmg maα = . The time of travel for the puck is 0/L v , where 1.75 mL = and 

0 3.80 m/sv = . 21
0 0 2x xx x v t a t− = + gives 

2
0

2 2

2 2
x

x xva
t L

= = , where 0.0250 mx = . 
2
0

2

2sin xa xv
g gL

α = = . 

( )
2 2

2 2

2(2.50 10 m)(3.80 m /s)arcsin 1.38
9.80 m /s (1.75 m)

α
−⎛ ⎞×⎜ ⎟= = °

⎜ ⎟
⎝ ⎠

. 
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EVALUATE: The table is level in the direction along its length, since the velocity in that direction is constant. The 
angle of slope to the right is small, so the acceleration and deflection in that direction are small. 

 5.26. IDENTIFY: Acceleration and velocity are related by y
y

dv
a

dt
= . Apply m∑F = a

! ! to the rocket. 

SET UP: Let y+  be upward. The free-body diagram for the rocket is sketched in Figure 5.26. F
!

is the thrust 
force. 
EXECUTE: (a) 2

yv At Bt= + . 2ya A Bt= + . At 0t = , 21.50 m/sya = so 21.50 m/sA = . Then 2.00 m/syv = at 

1.00 st = gives 2 22.00 m/s (1.50 m/s )(1.00 s) (1.00 s)B= + and 30.50 m/sB = . 

(b) At 4.00 st = , 2 3 21.50 m/s 2(0.50 m/s )(4.00 s) 5.50 m/sya = + = . 

(c) y yF ma=∑ applied to the rocket gives T mg ma− = and 
2 2 4( ) (2540 kg)(9.80 m/s 5.50 m/s ) 3.89 10  NT m a g= + = + = × . 1.56T w= . 

(d) When 21.50 m/sa = , 2 2 4(2540 kg)(9.80 m/s 1.50 m/s ) 2.87 10  NT = + = ×  

EVALUATE: During the time interval when 2( )v t At Bt= + applies the magnitude of the acceleration is increasing, 
and the thrust is increasing. 

 
Figure 5.26 

 5.27. IDENTIFY: Consider the forces in each case. There is the force of gravity and the forces from objects that touch 
the object in question. 
SET UP: A surface exerts a normal force perpendicular to the surface, and a friction force, parallel to the surface. 
EXECUTE: The free-body diagrams are sketched in Figure 5.27a-c. 
EVALUATE: Friction opposes relative motion between the two surfaces. When one surface is stationary the 
friction force on the other surface is directed opposite to its motion. 

 
Figure 5.27a�c 

 5.28. IDENTIFY: s sf nμ≤ and k kf nμ= . The normal force n is determined by applying m∑F = a
! ! to the block. 

Normally, k sμ μ≤ . sf is only as large as it needs to be to prevent relative motion between the two surfaces. 
SET UP: Since the table is horizontal, with only the block present 135 Nn = . With the brick on the 
block, 270 Nn = . 
EXECUTE: (a) The friction is static for 0P = to 75.0 NP = . The friction is kinetic for 75.0 NP > . 
(b) The maximum value of sf is snμ . From the graph the maximum sf is s 75.0 Nf = , so 

s
s

max 75.0 N 0.556
135 N

f
n

μ = = = . k kf nμ= . From the graph, k 50.0 Nf = and k
k

50.0 N 0.370
135 N

f
n

μ = = = . 

(c) When the block is moving the friction is kinetic and has the constant value k kf nμ= , independent of P. This is 
why the graph is horizontal for 75.0 NP > . When the block is at rest, sf P= since this prevents relative motion. 
This is why the graph for 75.0 NP < has slope 1.+  
(d) smax  f  and kf would double. The values of f on the vertical axis would double but the shape of the graph 
would be unchanged. 
EVALUATE: The coefficients of friction are independent of the normal force. 
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 5.29. (a) IDENTIFY: Constant speed implies 0.a =  Apply Newton�s 1st law to the box. The friction force is directed 
opposite to the motion of the box. 
SET UP: Consider the free-body diagram for the box, given in Figure 5.29a. Let F

!
 be the horizontal force 

applied by the worker. The friction is kinetic friction since the box is sliding along the surface. 

 

EXECUTE:  
y yF ma=∑  

0n mg− =  
n mg=  
So k k kf n mgμ μ= =  

Figure 5.29a  

x xF ma=∑  

k 0F f− =  
2

k k (0.20)(11.2 kg)(9.80 m/s ) 22 NF f mgμ= = = =  
(b) IDENTIFY: Now the only horizontal force on the box is the kinetic friction force. Apply Newton�s 2nd law to 
the box to calculate its acceleration. Once we have the acceleration, we can find the distance using a constant 
acceleration equation. The friction force is k k ,f mgμ=  just as in part (a). 
SET UP: The free-body diagram is sketched in Figure 5.29b. 

 

EXECUTE:  
x xF ma=∑  

k xf ma− =  

k xmg maμ− =  
2 2

k (0.20)(9.80 m/s ) 1.96 m/sxa gμ= − = − = −  

Figure 5.29b  
 

Use the constant acceleration equations to find the distance the box travels: 
0,xv =  0 3.50 m/s,xv =  21.96 m/s ,xa = −  0 ?x x− =  

2 2
0 02 ( )x x xv v a x x= + −  

2 2 2
0

0 2

0 (3.50 m/s) 3.1 m
2 2( 1.96 m/s )

x x

x

v vx x
a
− −

− = = =
−

 

EVALUATE: The normal force is the component of force exerted by a surface perpendicular to the surface. Its 
magnitude is determined by .m=∑F a

! !  In this case n and mg are the only vertical forces and 0,ya =  so .n mg=  

Also note that kf  and n are proportional in magnitude but perpendicular in direction. 

 5.30. IDENTIFY: Apply m=∑F a
! ! to the box. 

SET UP: Since the only vertical forces are n and w, the normal force on the box equals its weight. Static friction 
is as large as it needs to be to prevent relative motion between the box and the surface, up to its maximum possible 
value of max

s sf nμ= . If the box is sliding then the friction force is k kf nμ= . 
EXECUTE: (a) If there is no applied force, no friction force is needed to keep the box at rest. 
(b) max

s s (0.40)(40.0 N) 16.0 Nf nμ= = = . If a horizontal force of 6.0 N is applied to the box, then s 6.0 Nf =  in 
the opposite direction. 
(c) The monkey must apply a force equal to max

sf , 16.0 N. 
(d) Once the box has started moving, a force equal to k k 8.0 Nf nμ= =  is required to keep it moving at constant 
velocity. 
EVALUATE: k sμ μ< and less force must be applied to the box to maintain its motion than to start it moving. 
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 5.31. IDENTIFY: Apply m∑F = a
! ! to the crate. s sf nμ≤ and k kf nμ= . 

SET UP: Let y+  be upward and let x+  be in the direction of the push. Since the floor is horizontal and the push 
is horizontal, the normal force equals the weight of the crate: 441 Nn mg= = . The force it takes to start the crate 
moving equals smax  f and the force required to keep it moving equals kf  

EXECUTE: smax  313 Nf = , so s
313 N 0.710
441 N

μ = = . k 208 Nf = , so k
208 N 0.472
441 N

μ = = . 

(b) The friction is kinetic. x xF ma=∑ gives kF f ma− = and 2
k 208 (45.0 kg)(1.10 m/s ) 258 NF f ma= + = + = . 

(c) (i) The normal force now is 72.9 Nmg = . To cause it to move, s smax (0.710)(72.9 N) 51.8 NF f nμ= = = = . 

(ii) kF f ma= + and 2k 258 N (0.472)(72.9 N) 4.97 m/s
45.0 kg

F fa
m
− −

= = =  

EVALUATE: The kinetic friction force is independent of the speed of the object. On the moon, the mass of the 
crate is the same as on earth, but the weight and normal force are less. 

 5.32. IDENTIFY: Apply m=∑F a
! ! to the box and calculate the normal and friction forces. The coefficient of kinetic 

friction is the ratio kf
n

. 

SET UP: Let x+  be in the direction of motion. 20.90 m/sxa = − . The box has mass 8.67 kg. 
EXECUTE: The normal force has magnitude 85 N 25 N 110 N.+ =  The friction force, from H kF f ma− =  is 

2
k H 20 N (8.67 kg)( 0.90 m/s ) 28  Nf F ma= − = − − = . k

28 N 0.25.
110 N

μ = =  

EVALUATE: The normal force is greater than the weight of the box, because of the downward component of the 
push force. 

 5.33. IDENTIFY: Apply m∑F = a
! ! to the composite object consisting of the two boxes and to the top box. The friction 

the ramp exerts on the lower box is kinetic friction. The upper box doesn�t slip relative to the lower box, so the 
friction between the two boxes is static. Since the speed is constant the acceleration is zero. 
SET UP: Let x+  be up the incline. The free-body diagrams for the composite object and for the upper box are 

given in Figures 5.33a and b. The slope angle φ of the ramp is given by 2.50 mtan
4.75 m

φ = , so 27.76φ = ° . Since the 

boxes move down the ramp, the kinetic friction force exerted on the lower box by the ramp is directed up the 
incline. To prevent slipping relative to the lower box the static friction force on the upper box is directed up the 
incline. tot 32.0 kg 48.0 kg 80.0 kgm = + = . 

EXECUTE: (a) y yF ma=∑ applied to the composite object gives tot tot cosn m g φ= and k k tot cosf m gμ φ= . 

x xF ma=∑ gives k tot sin 0f T m g φ+ − = and 
2

k tot(sin cos ) (sin 27.76 [0.444]cos27.76 )(80.0 kg)(9.80 m/s ) 57.1 NT m gφ μ φ= − = − =° ° . 
The person must apply a force of 57.1 N, directed up the ramp. 
(b) x xF ma=∑ applied to the upper box gives 2

s sin (32.0 kg)(9.80 m/s )sin 27.76 146 Nf mg φ= = =° , directed up 
the ramp. 
EVALUATE: For each object the net force is zero. 

 
Figure 5.33a, b 
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 5.34. IDENTIFY: Use m=∑F a
! !  to find the acceleration that can be given to the car by the kinetic friction force. Then 

use a constant acceleration equation. 
SET UP: Take x+  in the direction the car is moving. 
EXECUTE: (a) The free-body diagram for the car is shown in Figure 5.34. y yF ma=∑  gives n mg= . 

x xF ma=∑  gives k xn maμ− = . k xmg maμ− =  and kxa gμ= − . Then 0xv =  and 2 2
0 02 ( )x x xv v a x x= + −  gives 

2 2 2
0 0

0 2
k

(29.1 m/s)( ) 54.0 m
2 2 2(0.80)(9.80 m/s )

x x

x

v vx x
a gμ

− = − = + = = . 

(b) 2
0 k 02 ( ) 2(0.25)(9.80 m/s )(54.0 m) 16.3 m/sxv g x xμ= − = =  

EVALUATE: For constant stopping distance 
2
0

k

xv
μ

is constant and 0xv is proportional to kμ . The answer to 

part (b) can be calculated as (29.1 m/s) 0.25/ 0.80 16.3 m/s= . 

 
Figure 5.34 

 5.35. IDENTIFY: For a given initial speed, the distance traveled is inversely proportional to the coefficient of kinetic 
friction. 
SET UP: From Table 5.1 the coefficient of kinetic friction is 0.04 for Teflon on steel and 0.44 for brass on steel. 

EXECUTE: The ratio of the distances is 0.44 11
0.04

= . 

EVALUATE: The smaller the coefficient of kinetic friction the smaller the retarding force of friction, and the 
greater the stopping distance. 

 5.36. IDENTIFY: Constant speed means zero acceleration for each block. If the block is moving the friction force the 
tabletop exerts on it is kinetic friction. Apply m∑F = a

! ! to each block. 
SET UP: The free-body diagrams and choice of coordinates for each block are given by Figure 5.36. 

4.59 kgAm = and 2.55 kgBm = . 

EXECUTE: (a) y yF ma=∑ with 0ya = applied to block B gives 0Bm g T− = and 25.0 NT = . x xF ma=∑ with 

0xa = applied to block A gives k 0T f− = and k 25.0 Nf = . 45.0 NA An m g= = and k
k

25.0 N 0.556
45.0 NA

f
n

μ = = = . 

(b) Now let A be block A plus the cat, so 9.18 kgAm = . 90.0 NAn = and k k (0.556)(90.0 N) 50.0 Nf nμ= = = . 

x xF ma=∑ for A gives k A xT f m a− = . y yF ma=∑ for block B gives B B ym g T m a− = . xa for A equals ya for B, 

so adding the two equations gives k ( )B A B ym g f m m a− = + and 2k 25.0 N 50.0 N 2.13 m/s
9.18 kg 2.55 kg

B
y

A B

m g fa
m m

− −
= = = −

+ +
. 

The acceleration is upward and block B slows down. 
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EVALUATE: The equation k ( )B A B ym g f m m a− = + has a simple interpretation. If both blocks are considered 

together then there are two external forces: Bm g that acts to move the system one way and kf that acts oppositely. 
The net force of kBm g f− must accelerate a total mass of A Bm m+ . 

 
Figure 5.36 

 5.37. IDENTIFY: Apply m=∑F a
! !  to each crate. The rope exerts force T to the right on crate A and force T to the left 

on crate B. The target variables are the forces T and F. Constant v implies 0.a =  
SET UP: The free-body diagram for A is sketched in Figure 5.37a 

 

EXECUTE:  
y yF ma=∑  

0A An m g− =  

A An m g=  

k k kA A Af n m gμ μ= =  

Figure 5.37a  

x xF ma=∑  

k 0AT f− =  

k AT m gμ=  
SET UP: The free-body diagram for B is sketched in Figure 5.37b. 

 

EXECUTE:  
y yF ma=∑  

0B Bn m g− =  

B Bn m g=  

k k kB B Bf n m gμ μ= =  

Figure 5.37b  

x xF ma=∑  

k 0BF T f− − =  

k BF T m gμ= +  
Use the first equation to replace T in the second: 

k k .A BF m g m gμ μ= +  
(a) k ( )A BF m m gμ= +  
(b) k AT m gμ=  

EVALUATE: We can also consider both crates together as a single object of mass ( ).A Bm m+  x xF ma=∑  for 

this combined object gives k k ( ) ,A BF f m m gμ= = +  in agreement with our answer in part (a). 
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 5.38. IDENTIFY: rf nμ= . Apply m=∑F a
! ! to the tire. 

SET UP: n mg= and f ma= . 

EXECUTE: 
2 2

0
x

v va
L
−

= , where L is the distance covered before the wheel�s speed is reduced to half its original 

speed and 0 / 2v v= . 
2 22 2 21
0 00 04

r
3

2 2 8
v va v v v

g Lg Lg Lg
μ

−−
= = = = . 

Low pressure, 18.1 mL = and 
2

2

3 (3.50 m /s) 0.0259
8 (18.1 m)(9.80 m /s )

= . 

High pressure, 92.9 mL = and 
2

2

3 (3.50 m /s) 0.00505
8 (3.50 m /s)

= . 

EVALUATE: rμ  is inversely proportional to the distance L, so r1 2

r2 1

L
L

μ
μ

= . 

 5.39. IDENTIFY: Apply m=∑F a
! ! to the box. Use the information about sliding to calculate the mass of the box. 

SET UP: k kf nμ= , r rf nμ= and n mg= . 
EXECUTE: Without the dolly: n mg= and k 0F nμ− =  ( 0xa =  since speed is constant). 

2
k

160 N 34.74 kg
(0.47) (9.80 m s )

Fm
gμ

= = =  

With the dolly: the total mass is 34.7 kg 5.3 kg 40.04 kg+ =  and friction now is rolling friction, r r .f mgμ=  

rF mg maμ− = . 2r 3.82 m sF mga
m
μ−

= = . 

EVALUATE: k k 160 Nf mgμ= =  and r r 4.36 Nf mgμ= = , or, r r

k k

f
f

μ
μ

= . The rolling friction force is much less 

than the kinetic friction force. 
 5.40. IDENTIFY: Apply m=∑F a

! ! to the truck. For constant speed, 0a =  and horiz rF f= . 

SET UP: r r rf n mgμ μ= = . Let 2 11.42m m= and r2 r10.81μ μ= . 
EXECUTE: Since the speed is constant and we are neglecting air resistance, we can ignore the 2.4 m/s, and netF in 
the horizontal direction must be zero. Therefore r r horiz 200 Nf n Fμ= = = before the weight and pressure changes 
are made. After the changes, r horiz(0.81 ) (1.42 ) ,n Fμ =  because the speed is still constant and net 0F = . We can 

simply divide the two equations: r horiz

r

(0.81 )(1.42 )
200 N

n F
μ n
μ

= and horiz(0.81) (1.42) (200 N) 230 NF= = . 

EVALUATE: The increase in weight increases the normal force and hence the friction force, whereas the decrease 
in rμ reduces it. The percentage increase in the weight is larger, so the net effect is an increase in the friction force. 

 5.41. IDENTIFY: Apply m=∑F a
! !  to each block. The target variables are the tension T in the cord and the 

acceleration a of the blocks. Then a can be used in a constant acceleration equation to find the speed of each block. 
The magnitude of the acceleration is the same for both blocks. 
SET UP: The system is sketched in Figure 5.41a. 

 

For each block take a positive 
coordinate direction to be the 
direction of the block�s acceleration. 

Figure 5.41a  
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block on the table: The free-body is sketched in Figure 5.41b. 

 

EXECUTE:  
y yF ma=∑  

0An m g− =  

An m g=  

k k k Af n m gμ μ= =  

Figure 5.41b  

x xF ma=∑  

k AT f m a− =  

k A AT m g m aμ− =  
SET UP: hanging block: The free-body is sketched in Figure 5.41c. 

 

EXECUTE:  
y yF ma=∑  

B Bm g T m a− =  

B BT m g m a= −  

Figure 5.41c  
(a) Use the second equation in the first 

kB B A Am g m a m g m aμ− − =  

k( ) ( )A B B Am m a m m gμ+ = −  

2
2k( ) (1.30 kg (0.45)(2.25 kg))(9.80 m/s ) 0.7937 m/s

2.25 kg 1.30 kg
B A

A B

m m ga
m m

μ− −
= = =

+ +
 

SET UP: Now use the constant acceleration equations to find the final speed. Note that the blocks have the same 
speeds. 0 0.0300 m,x x− =  20.7937 m/s ,xa =  0 0,xv =  ?xv =  

2 2
0 02 ( )x x xv v a x x= + −  

EXECUTE: 2
02 ( ) 2(0.7937 m/s )(0.0300 m) 0.218 m/s 21.8 cm/s.x xv a x x= − = = =  

(b) 2 2( ) 1.30 kg(9.80 m/s 0.7937 m/s ) 11.7 NB B BT m g m a m g a= − = − = − =  
Or, to check, k A AT m g m aμ− =  

2 2
k( ) 2.25 kg(0.7937 m/s (0.45)(9.80 m/s )) 11.7 N,AT m a gμ= + = + =  which checks. 

EVALUATE: The force T exerted by the cord has the same value for each block. BT m g<  since the hanging block 
accelerates downward. Also, k k 9.92 N.Af m gμ= =  kT f>  and the block on the table accelerates in the direction 
of T. 

 5.42. IDENTIFY: Apply m∑F = a
! ! to the box. When the box is ready to slip the static friction force has its maximum 

possible value, s sf nμ= . 
SET UP: Use coordinates parallel and perpendicular to the ramp. 
EXECUTE: (a) The normal force will be cos w θ  and the component of the gravitational force along the ramp 
is sin w θ . The box begins to slip when ssin cos ,w θ w θμ>  or stan 0.35,θ μ> =  so slipping occurs at 

arctan(0.35) 19.3θ = = ° . 
(b) When moving, the friction force along the ramp is k cosw θμ , the component of the gravitational force along 
the ramp is sinw θ , so the acceleration is 

2
k k( sin cos ) (sin cos ) 0.92 m s .w θ w θ m g θ θμ μ− = − =  

(c) Since 0 0xv = , 22ax v= , so 1 2(2 )v ax= , or 2 1 2[(2)(0.92m s )(5 m)] 3 m/sv = = . 
EVALUATE: When the box starts to move, friction changes from static to kinetic and the friction force becomes 
smaller. 
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 5.43. (a) IDENTIFY: Apply m=∑F a
! !  to the crate. Constant v implies 0.a =  Crate moving says that the friction is 

kinetic friction. The target variable is the magnitude of the force applied by the woman. 
SET UP: The free-body diagram for the crate is sketched in Figure 5.43. 

 

EXECUTE:  
y yF ma=∑  

sin 0n mg F θ− − =  
sinn mg F θ= +  

k k k k sinf n mg Fμ μ μ θ= = +  

Figure 5.43  

x xF ma=∑  

kcos 0F fθ − =  

k kcos sin 0F mg Fθ μ μ θ− − =  

k k(cos sin )F mgθ μ θ μ− =  

k

kcos sin
mgF μ

θ μ θ
=

−
 

(b) IDENTIFY and SET UP: �start the crate moving� means the same force diagram as in part (a), except that 

kμ  is replaced by s.μ Thus s

s

.
cos sin

mgF μ
θ μ θ

=
−

 

EXECUTE: F →∞  if scos sin 0.θ μ θ− =  This gives s
cos 1 .
sin tan

θμ
θ θ

= =  

EVALUATE: F
!

 has a downward component so .n mg>  If 0θ =  (woman pushes horizontally), n mg=  and 

k k .F f mgμ= =  

 5.44. IDENTIFY: Apply m∑F = a
! ! to the box. 

SET UP: Let y+  be upward and x+  be horizontal, in the direction of the acceleration. Constant speed means 0a = . 
EXECUTE: (a) There is no net force in the vertical direction, so sin 0,n F wθ+ − =  or 

sin sin .n w F θ mg F θ= − = −  The friction force is k k k ( sin ).f n mg F θμ μ= = −  The net horizontal force 
is k kcos cos ( sin )F θ f F θ mg F θμ− = − − , and so at constant speed, 

k

kcos sin
mgF

θ θ
μ
μ

=
+

 

(b) Using the given values, 
2(0.35)(90 kg)(9.80m s ) 290  N

(cos25 (0.35)sin 25 )
F = =

° + °
. 

EVALUATE: If 0θ = ° , kF mgμ= . 

 5.45. IDENTIFY: Apply m∑F = a
! ! to each block. 

SET UP: For block B use coordinates parallel and perpendicular to the incline. Since they are connected by ropes, 
blocks A and B also move with constant speed. 
EXECUTE: (a) The free-body diagrams are sketched in Figure 5.45. 
(b) The blocks move with constant speed, so there is no net force on block A; the tension in the rope connecting A 
and B must be equal to the frictional force on block A, k (0.35) (25.0 N) 9 N.μ = =  
(c) The weight of block C will be the tension in the rope connecting B and C; this is found by considering the 
forces on block B. The components of force along the ramp are the tension in the first rope (9 N, from part (a)), the 
component of the weight along the ramp, the friction on block B and the tension in the second rope. Thus, the 
weight of block C is 

k9 N (sin36.9 cos36.9 ) 9 N (25.0 N)(sin 36.9 (0.35)cos 36.9 ) 31.0 NC Bw w μ= + ° + ° = + ° + ° =  
The intermediate calculation of the first tension may be avoided to obtain the answer in terms of the common 
weight w of blocks A and B, k k( (sin cos )),Cw w μ θ θμ= + + giving the same result. 
(d) Applying Newton�s Second Law to the remaining masses (B and C) gives: 

( ) 2
k( cos sin ) 1.54m s .C B B B Ca g w w θ w w wμ θ= − − + =  
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EVALUATE: Before the rope between A and B is cut the net external force on the system is zero. When the rope is 
cut the friction force on A is removed from the system and there is a net force on the system of blocks B and C. 

 
Figure 5.45 

 5.46. IDENTIFY and SET UP: The derivative of yv gives ya as a function of time, and the integral of yv gives y as a 
function of time. 
EXECUTE: Differentiating Eq. (5.10) with respect to time gives the acceleration 

( ) ( )
t ,k m t k m tka v e ge

m
− −⎛ ⎞= =⎜ ⎟

⎝ ⎠
where Eq. (5.9), tv mg k= , has been used. Integrating Eq. (5.10) with respect to time 

with 0 0y =  gives 

( )( ) ( ) ( )
t t t t0
[1 ] 1

t k m t k m t k m tm m my v e dt v t e v v t e
k k k

− − −⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − = + − = − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦
∫ . 

EVALUATE: We can verify that / ydy dt v= . 
 5.47. IDENTIFY and SET UP: Apply Eq.(5.13). 

EXECUTE: (a) Solving for D in terms of tv , 
2

2 2
t

(80 kg) (9.80 m s ) 0.44 kg m.
(42 m s)

mgD
v

= = =  

(b) 
2

t
(45 kg)(9.80 m s ) 42 m s.

(0.25 kg m)
mgv
D

= = =  

EVALUATE: tv is less for the daughter since her mass is less. 

 5.48. IDENTIFY: Apply m∑F = a
! ! to the ball. At the terminal speed, f mg= . 

SET UP: The fluid resistance is directed opposite to the velocity of the object. At half the terminal speed, the 
magnitude of the frictional force is one-fourth the weight. 
EXECUTE: (a) If the ball is moving up, the frictional force is down, so the magnitude of the net force is (5/4)w 
and the acceleration is (5/4)g, down. 
(b) While moving down, the frictional force is up, and the magnitude of the net force is (3/4)w and the acceleration 
is (3/4)g, down. 
EVALUATE: The frictional force is less than mg in each case and in each case the net force is downward and the 
acceleration is downward. 

 5.49. IDENTIFY: Apply m∑F = a
! ! to one of the masses. The mass moves in a circular path, so has acceleration 

2

rad
va
R

= , directed toward the center of the path. 

SET UP: In each case, 0.200 mR = . In part (a), let x+  be toward the center of the circle, so radxa a= . In part (b) 
let y+  be toward the center of the circle, so radya a= . y+  is downward when the mass is at the top of the circle 

and y+  is upward when the mass is at the bottom of the circle. Since rada has its greatest possible value, F
!

is in 
the direction of rada

! at both positions. 

EXECUTE: (a) x xF ma=∑ gives 
2

rad
vF ma m
R

= = . 75.0 NF = and (75.0 N)(0.200 m) 3.61 m/s
1.15 kg

FRv
m

= = = . 

(b) The free-body diagrams for a mass at the top of the path and at the bottom of the path are given in figure 5.49. 
At the top, y yF ma=∑ gives radF ma mg= − and at the bottom it gives radF mg ma= + . For a given rotation rate 

and hence value of rada , the value of F required is larger at the bottom of the path. 

(c) radF mg ma= +  so 
2v F g

R m
= − and 

275.0 N(0.200 m) 9.80 m/s 3.33 m/s
1.15 kg

Fv R g
m

⎛ ⎞⎛ ⎞= − = − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
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EVALUATE: The maximum speed is less for the vertical circle. At the bottom of the vertical path F
!

and the 
weight are in opposite directions so F must exceed radma by an amount equal to mg. At the top of the vertical path 
F and mg are in the same direction and together provide the required net force, so F must be larger at the bottom. 

 
Figure 5.49 

 5.50. IDENTIFY: Since the car travels in an arc of a circle, it has acceleration 2
rad /a v R= , directed toward the center of 

the arc. The only horizontal force on the car is the static friction force exerted by the roadway. To calculate the 
minimum coefficient of friction that is required, set the static friction force equal to its maximum value, s sf nμ= . 
Friction is static friction because the car is not sliding in the radial direction. 
SET UP: The free-body diagram for the car is given in Figure 5.50. The diagram assumes the center of the curve 
is to the left of the car. 

EXECUTE: (a) y yF ma=∑ gives n mg= . x xF ma=∑  gives 
2

s
vn m
R

μ = . 
2

s
vmg m
R

μ =  and 

2 2

s 2

(25.0 m/s) 0.290
(9.80 m/s )(220 m)

v
gR

μ = = =  

(b) 
2

s

constantv Rg
μ

= = , so 
2 2
1 2

s1 s2

v v
μ μ

= . s2 s1
2 1

s1 s1

/3(25.0 m/s) 14.4 m/sv v μ μ
μ μ

= = = . 

EVALUATE: A smaller coefficient of friction means a smaller maximum friction force, a smaller possible 
acceleration and therefore a smaller speed. 

 
Figure 5.50 

 5.51. IDENTIFY: We can use the analysis done in Example 5.23. As in that example, we assume friction is negligible. 

SET UP: From Example 5.23, the banking angle β is given by 
2

tan v
gR

β = . Also, / cosn mg β= . 

65.0 mi/h 29.1 m/s= . 

EXECUTE: (a) 
2

2

(29.1 m/s)tan
(9.80 m/s )(225 m)

β = and 21.0β = ° . The expression for tanβ does not involve the mass 

of the vehicle, so the truck and car should travel at the same speed. 

(b) For the car, 
2

4
car

(1125 kg)(9.80 m/s ) 1.18 10  N
cos21.0

n = = ×
°

and 4
truck car2 2.36 10  Nn n= = × , since truck car2m m= . 

EVALUATE: The vertical component of the normal force must equal the weight of the vehicle, so the normal 
force is proportional to m. 

 5.52. IDENTIFY: The acceleration of the person is 2
rad /a v R= , directed horizontally to the left in the figure in the 

problem. The time for one revolution is the period 2 RT
v
π

= . Apply m=∑F a
! ! to the person. 
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SET UP: The person moves in a circle of radius 3.00 m (5.00 m)sin30.0 5.50 mR = + =° . The free-body diagram 

is given in Figure 5.52. F
!

is the force applied to the seat by the rod. 

EXECUTE: (a) y yF ma=∑  gives cos30.0F mg=°  and 
cos30.0

mgF =
°

. x xF ma=∑  gives 
2

sin30.0 vF m
R

=° . 

Combining these two equations gives 2tan (5.50 m)(9.80 m/s ) tan30.0 5.58 m/sv Rg θ= = =° . Then the period 

is 2 2 (5.50 m) 6.19 s
5.58 m/s

RT
v
π π

= = = . 

(b) The net force is proportional to m so in m=∑F a
! ! the mass divides out and the angle for a given rate of 

rotation is independent of the mass of the passengers. 
EVALUATE: The person moves in a horizontal circle so the acceleration is horizontal. The net inward force 
required for circular motion is produced by a component of the force exerted on the seat by the rod. 

 
Figure 5.52 

 5.53. IDENTIFY: Apply m∑F = a
! ! to the composite object of the person plus seat. This object moves in a horizontal 

circle and has acceleration rada , directed toward the center of the circle. 
SET UP: The free-body diagram for the composite object is given in Figure 5.53. Let x+  be to the right, in the 
direction of rada

! . Let y+  be upward. The radius of the circular path is 7.50 mR = . The total mass is 
2(255 N 825 N) /(9.80 m/s ) 110.2 kg+ = . Since the rotation rate is 32.0 rev/min 0.5333 rev/s= , the period T is 

1 1.875 s
0.5333 rev/s

= . 

EXECUTE: y yF ma=∑ gives cos40.0 0AT mg− =° and 255 N 825 N 1410 N
cos40.0 cos40.0A

mgT +
= = =

° °
. 

x xF ma=∑ gives radsin 40.0A BT T ma+ =° and 
2 2

2 2

4 4 (7.50 m)sin 40.0 (110.2 kg) (1410 N)sin 40.0 8370 N
(1.875 s)B A

RT m T
T
π π

= − = − =° ° . 

The tension in the horizontal cable is 8370 N and the tension in the other cable is 1410 N. 
EVALUATE: The weight of the composite object is 1080 N. The tension in cable A is larger than this since its 
vertical component must equal the weight. rad 9280 Nma = . The tension in cable B is less than this because part of 
the required inward force comes from a component of the tension in cable A. 

 
Figure 5.53 
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 5.54. IDENTIFY: Apply m∑F = a
! ! to the button. The button moves in a circle, so it has acceleration rada . 

SET UP: The situation is equivalent to that of Example 5.22. 

EXECUTE: (a) 
2

s
v
Rg

μ = . Expressing v in terms of the period T, 2 Rv
T
π

=  so 
2

s 2
4 R
T g
πμ = . A platform speed of 

40.0 rev/min corresponds to a period of 1.50 s, so 
2

s 2 2

4 (0.150 m) 0.269.
(1.50 s) (9.80 m s )

μ π
= =  

(b) For the same coefficient of static friction, the maximum radius is proportional to the square of the period 
(longer periods mean slower speeds, so the button may be moved further out) and so is inversely proportional to 

the square of the speed. Thus, at the higher speed, the maximum radius is (0.150 m) 
240.0 0 067 m

60.0
⎛ ⎞ = .⎜ ⎟
⎝ ⎠

. 

EVALUATE: 
2

rad 2

4 Ra
T
π

= . The maximum radial acceleration that friction can give is smgμ . At the faster rotation 

rate T is smaller so R must be smaller to keep rada the same. 

 5.55. IDENTIFY: The acceleration due to circular motion is 
2

rad 2

4 Ra
T
π

= . 

SET UP: 800 mR = . 1/T is the number of revolutions per second. 
EXECUTE: (a) Setting rada g=  and solving for the period T gives 

2

400 m2 2 40.1 s,
9.80 m s

RT π π
g

= = =  

so the number of revolutions per minute is (60 s min) (40.1 s) 1.5 rev min= . 
(b) The lower acceleration corresponds to a longer period, and hence a lower rotation rate, by a factor of the square 
root of the ratio of the accelerations, (1.5 rev min) 3.70 9.8 0.92 rev min.T ′ = × =  

EVALUATE: In part (a) the tangential speed of a point at the rim is given by 
2

rad
va
R

= , so 

rad 62.6 m/sv Ra Rg= = = ; the space station is rotating rapidly. 

 5.56. IDENTIFY: 2 RT
v
π

= . The apparent weight of a person is the normal force exerted on him by the seat he is sitting 

on. His acceleration is 2
rad /a v R= , directed toward the center of the circle. 

SET UP: The period is 60.0 s.T =  The passenger has mass / 90.0 kgm w g= = . 

EXECUTE: (a) 2 2 (50.0 m) 5.24 m/s
60.0 s

Rv
T
π π

= = = . Note that 
2 2

2
rad

(5.24 m/s) 0.549 m/s
50.0 m

va
R

= = = . 

(b) The free-body diagram for the person at the top of his path is given in Figure 5.56a. The acceleration is 
downward, so take y+  downward. y yF ma=∑  gives radmg n ma− = . 

2 2
rad( ) (90.0 kg)(9.80 m/s 0.549 m/s ) 833 Nn m g a= − = − = . 

The free-body diagram for the person at the bottom of his path is given in Figure 5.56b. The acceleration is 
upward, so take y+  upward. y yF ma=∑  gives radn mg ma− =  and rad( ) 931 Nn m g a= + = . 

(c) Apparent weight 0=  means 0n =  and radmg ma= . 
2vg

R
=  and 22.1 m/sv gR= = . The time for one 

revolution would be 2 2 (50.0 m) 14.2 s
22.1 m/s

RT
v
π π

= = = . Note that rada g= . 

(d) rad( ) 2 2(882 N) 1760 Nn m g a mg= + = = = , twice his true weight. 
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EVALUATE: At the top of his path his apparent weight is less than his true weight and at the bottom of his path 
his apparent weight is greater than his true weight. 

 
Figure 5.56a, b 

 5.57. IDENTIFY: Apply m=∑F a
! !  to the motion of the pilot. The pilot moves in a vertical circle. The apparent weight 

is the normal force exerted on him. At each point rada
!  is directed toward the center of the circular path. 

(a) SET UP: �the pilot feels weightless� means that the vertical normal force n exerted on the pilot by the chair on 
which the pilot sits is zero. The force diagram for the pilot at the top of the path is given in Figure 5.57a. 

 

EXECUTE:  
y yF ma=∑  

radmg ma=  
2vg

R
=  

Figure 5.57a  

Thus 2(9.80 m/s )(150 m) 38.34 m/sv gR= = =  

3

1 km 3600 s(38.34 m/s) 138 km/h
10  m 1 h

v ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) SET UP: The force diagram for the pilot at the bottom of the path is given in Figure 5.57b. Note that the 
vertical normal force exerted on the pilot by the chair on which the pilot sits is now upward. 

 

EXECUTE:  
y yF ma=∑  

2vn mg m
R

− =  

2vn mg m
R

= +  

This normal force is the pilot�s apparent weight. 
Figure 5.57b  

700 N,w =  so 71.43 kgwm
g

= =  

31 h 10  m(280 km/h) 77.78 m/s
3600 s 1 km

v
⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

Thus 
2(77.78 m/s)700 N 71.43 kg 3580 N.

150 m
n = + =  

EVALUATE: In part (b), n mg>  since the acceleration is upward. The pilot feels he is much heavier than when at 

rest. The speed is not constant, but it is still true that 2
rad /a v R=  at each point of the motion. 

 5.58. IDENTIFY: 2
rad /a v R= , directed toward the center of the circular path. At the bottom of the dive, rada

!  is upward. 
The apparent weight of the pilot is the normal force exerted on her by the seat on which she is sitting. 
SET UP: The free-body diagram for the pilot is given in Figure 5.58. 
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EXECUTE: (a) 
2

rad
va
R

=  gives 
2 2

2
rad

(95.0 m/s) 230 m
4.00(9.80 m/s )

vR
a

= = = . 

(b) y yF ma=∑ gives radn mg ma− = . 
2

rad( ) ( 4.00 ) 5.00 (5.00)(50.0 kg)(9.80 m/s ) 2450 Nn m g a m g g mg= + = + = = =  
EVALUATE: Her apparent weight is five times her true weight, the force of gravity the earth exerts on her. 

 
Figure 5.58 

 5.59. IDENTIFY: Apply m=∑F a
! !  to the water. The water moves in a vertical circle. The target variable is the speed 

v; we will calculate rada  and then get v from 2
rad /a v R=  

SET UP: Consider the free-body diagram for the water when the pail is at the top of its circular path, as shown in 
Figures 5.59a and b. 

 

The radial acceleration is in toward the center 
of the circle so at this point is downward. 
n is the downward normal force exerted on 
the water by the bottom of the pail. 

Figure 5.59a  
 

 

EXECUTE:  
y yF ma=∑  

2vn mg m
R

+ =  

Figure 5.59b  
At the minimum speed the water is just ready to lose contact with the bottom of the pail, so at this speed, 0.n →  
(Note that the force n cannot be upward.) 

With 0n →  the equation becomes 
2

.vmg m
R

=  2(9.80 m/s )(0.600 m) 2.42 m/s.v gR= = =  

EVALUATE: At the minimum speed rad .a g=  If v is less than this minimum speed, gravity pulls the water (and 
bucket) out of the circular path. 

 5.60. IDENTIFY: The ball has acceleration 2
rad /a v R= , directed toward the center of the circular path. When the ball is 

at the bottom of the swing, its acceleration is upward. 
SET UP: Take y+  upward, in the direction of the acceleration. The bowling ball has mass / 7.27 kgm w g= = . 

EXECUTE: (a) 
2 2

rad
(4.20 m/s) 4.64 m/s

3.80 m
va
R

= = = , upward. 

(b) The free-body diagram is given in Figure 5.60. y yF ma=∑  gives radT mg ma− = . 
2 2

rad( ) (7.27 kg)(9.80 m/s 4.64 m/s ) 105 NT m g a= + = + =  
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EVALUATE: The acceleration is upward, so the net force is upward and the tension is greater than the weight. 

 
Figure 5.60 

 5.61. IDENTIFY: Apply m∑F = a
! ! to the knot. 

SET UP: 0a = . Use coordinates with axes that are horizontal and vertical. 
EXECUTE: (a) The free-body diagram for the knot is sketched in Figure 5.61. 

1T  is more vertical so supports more of the weight and is larger. You can also see this from :x xF ma∑ =  

2 1cos40 cos60 0T T° − ° = . 2 1cos40 cos60 0T T° − ° = . 
(b) 1T  is larger so set 1 5000 N.T =  Then 2 1 1.532 3263.5  NT T= = . y yF ma∑ = gives 

1 2sin 60 sin 40T T w° + ° = and 6400 Nw = . 
EVALUATE: The sum of the vertical components of the two tensions equals the weight of the suspended object. 
The sum of the tensions is greater than the weight. 

 
Figure 5.61 

 5.62. IDENTIFY: Apply m∑F = a
! ! to each object . Constant speed means 0a = . 

SET UP: The free-body diagrams are sketched in Figure 5.62. 1T is the tension in the lower chain, 2T is the 
tension in the upper chain and T F= is the tension in the rope. 
EXECUTE: The tension in the lower chain balances the weight and so is equal to w. The lower pulley must have 
no net force on it, so twice the tension in the rope must be equal to w and the tension in the rope, which equals F, is 

2w . Then, the downward force on the upper pulley due to the rope is also w, and so the upper chain exerts a force 
w on the upper pulley, and the tension in the upper chain is also w. 
EVALUATE: The pulley combination allows the worker to lift a weight w by applying a force of only / 2w . 

 
Figure 5.62 

 5.63. IDENTIFY: Apply m∑F = a
! ! to the rope. 

SET UP: The hooks exert forces on the ends of the rope. At each hook, the force that the hook exerts and the 
force due to the tension in the rope are an action-reaction pair. 
EXECUTE: (a) The vertical forces that the hooks exert must balance the weight of the rope, so each hook exerts 
an upward vertical force of 2w  on the rope. Therefore, the downward force that the rope exerts at each end is 

end sin 2T θ w= , so end (2sin ) (2sin ).T w θ Mg θ= =  
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(b) Each half of the rope is itself in equilibrium, so the tension in the middle must balance the horizontal force that 
each hook exerts, which is the same as the horizontal component of the force due to the tension at the end; 

end middlecos ,T θ T=  so middle cos (2sin ) (2tan ).T Mg θ θ Mg θ= =  
(c) Mathematically speaking, 0θ ≠  because this would cause a division by zero in the equation for endT  or middleT . 
Physically speaking, we would need an infinite tension to keep a non-massless rope perfectly straight. 
EVALUATE: The tension in the rope is not the same at all points along the rope. 

 5.64. IDENTIFY: Apply m=∑F a
! !  to the combined rope plus block to find a. Then apply m=∑F a

! !  to a section of 
the rope of length x. First note the limiting values of the tension. The system is sketched in Figure 5.64a. 

 

At the top of the rope T F=  
At the bottom of the rope ( )T M g a= +  

Figure 5.64a  
SET UP: Consider the rope and block as one combined object, in order to calculate the acceleration: The free-
body diagram is sketched in Figure 5.64b. 

 

EXECUTE:  
y yF ma=∑  
( ) ( )F M m g M m a− + = +  

Fa g
M m

= −
+

 

Figure 5.64b  
SET UP: Now consider the forces on a section of the rope that extends a distance x L<  below the top. The 
tension at the bottom of this section is ( )T x  and the mass of this section is ( / ).m x L  The free-body diagram is 
sketched in Figure 5.64c. 

 

EXECUTE: 
y yF ma=∑  

( ) ( / ) ( / )F T x m x L g m x L a− − =  
( ) ( / ) ( / )T x F m x L g m x L a= − −  

Figure 5.64c  
Using our expression for a and simplifying gives 

( ) 1
( )

mxT x F
L M m

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

 

EVALUATE: Important to check this result for the limiting cases: 
0 :x =  The expression gives the correct value of .T F=  

:x L=  The expression gives ( /( )).T F M M m= +  This should equal ( ),T M g a= +  and when we use the 
expression for a we see that it does. 

 5.65. IDENTIFY: Apply m∑F = a
! ! to each block. 

SET UP: Constant speed means 0a = . When the blocks are moving, the friction force is kf and when they are at 
rest, the friction force is sf . 
EXECUTE: (a) The tension in the cord must be 2m g  in order that the hanging block move at constant speed. This 
tension must overcome friction and the component of the gravitational force along the incline, so 

( )2 1 1sin coskm g m g μ m gα α= +  and 2 1(sin cos )km m μα α= + . 

(b) In this case, the friction force acts in the same direction as the tension on the block of mass 1m , so 

2 1 k 1( sin cos )m g m g α μ m g α= − , or 2 1 k(sinα cos )m m μ α= − . 
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(c) Similar to the analysis of parts (a) and (b), the largest 2m  could be is 1 s(sin cos )m α μ α+  and the smallest 2m  
could be is 1 s(sin cos )m α μ α− . 
EVALUATE: In parts (a) and (b) the friction force changes direction when the direction of the motion of 

1m changes. In part (c), for the largest 2m the static friction force on 1m is directed down the incline and for the 
smallest 2m the static friction force on 1m is directed up the incline. 

 5.66. IDENTIFY: The system is in equilibrium. Apply Newton�s 1st law to block A, to the hanging weight and to the 
knot where the cords meet. Target variables are the two forces. 
(a) SET UP: The free-body diagram for the hanging block is given in Figure 5.66a. 

 

EXECUTE:  
y yF ma=∑  

3 0T w− =  

3 12.0 NT =  

Figure 5.66a  
SET UP: The free-body diagram for the knot is given in Figure 5.66b. 

 

EXECUTE:  
y yF ma=∑  

2 3sin 45.0 0T T° − =  

3
2

12.0 N
sin 45.0 sin 45.0

TT = =
° °

 

2 17.0 NT =  

Figure 5.66b  

x xF ma=∑  

2 1cos45.0 0T T° − =  

1 2 cos45.0 12.0 NT T= ° =  
SET UP: The free-body diagram for block A is given in Figure 5.66c. 

 

EXECUTE:  
x xF ma=∑  

1 s 0T f− =  

s 1 12.0 Nf T= =  

Figure 5.66c  

EVALUATE: Also can apply y yF ma=∑  to this block: 

0An w− =  

60.0 NAn w= =  

Then s (0.25)(60.0 N) 15.0 N;nμ = =  this is the maximum possible value for the static friction force. We see that 

s s ;f nμ<  for this value of w the static friction force can hold the blocks in place. 
(b) SET UP: We have all the same free-body diagrams and force equations as in part (a) but now the static 
friction force has its largest possible value, s s 15.0 N.f nμ= =  Then 1 s 15.0 N.T f= =  
EXECUTE: From the equations for the forces on the knot 

2 1cos45.0 0T T° − =  implies 2 1
15.0 N/ cos45.0 21.2 N

cos45.0
T T= ° = =

°
 

2 3sin 45.0 0T T° − =  implies 3 2 sin 45.0 (21.2 N)sin 45.0 15.0 NT T= ° = ° =  
And finally 3 0T w− =  implies 3 15.0 N.w T= =  
EVALUATE: Compared to part (a), the friction is larger in part (b) by a factor of (15.0/12.0) and w is larger by 
this same ratio. 
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 5.67. IDENTIFY: Apply m=∑F a
! ! to each block. Use Newton�s 3rd law to relate forces on A and on B. 

SET UP: Constant speed means 0a = . 
EXECUTE: (a) Treat A and B as a single object of weight 4.80 NA Bw w w= + = . The free-body diagram for this 

combined object is given in Figure 5.67a. y yF ma=∑  gives 4.80 Nn w= = . k k 1.44 Nf nμ= = . x xF ma=∑  

gives k 1.44 NF f= =  
(b) The free-body force diagrams for blocks A and B are given in Figure 5.67b. n and kf  are the normal and 
friction forces applied to block B by the tabletop and are the same as in part (a). kBf  is the friction force that A 
applies to B. It is to the right because the force from A opposes the motion of B. Bn  is the downward force that A 
exerts on B. kAf  is the friction force that B applies to A. It is to the left because block B wants A to move with it. 

An  is the normal force that block B exerts on A. By Newton�s third law, k kB Af f=  and these forces are in opposite 
directions. Also, A Bn n=  and these forces are in opposite directions. 

y yF ma=∑  for block A gives 1.20 NA An w= = , so 1.20 NBn = . 

k k (0.300)(1.20 N) 0.36 NA Af nμ= = = , and k 0.36 N.Bf =  

x xF ma=∑  for block A gives k 0.36 NAT f= = . 

x xF ma=∑  for block B gives k k 0.36 N 1.44 N 1.80 NBF f f= + = + =  
EVALUATE: In part (a) block A is at rest with respect to B and it has zero acceleration. There is no horizontal 
force on A besides friction, and the friction force on A is zero. A larger force F is needed in part (b), because of the 
friction force between the two blocks. 

 
Figure 5.67a�c 

 5.68. IDENTIFY: Apply m=∑F a
! !  to the brush. Constant speed means 0.a =  Target variables are two of the forces 

on the brush. 
SET UP: Note that the normal force exerted by the wall is horizontal, since it is perpendicular to the wall. The 
kinetic friction force exerted by the wall is parallel to the wall and opposes the motion, so it is vertically 
downward. The free-body diagram is given in Figure 5.68. 

 

EXECUTE:  
x xF ma=∑  

cos53.1 0n F− ° =  
cos53.1n F= °  

k k k cos53.1f n Fμ μ= = °  

Figure 5.68  

y yF ma=∑  

ksin53.1 0F w f° − − =  

ksin53.1 cos53.1 0F w Fμ° − − ° =  

k(sin53.1 cos53.1 )F wμ° − ° =  

ksin53.1 cos53.1
wF
μ

=
° − °

 



Applying Newton�s Laws  5-31 

(a) 
k

120 N 16.9 N
sin53.1 cos53.1 sin53.1 (0.15)cos53.1

wF
μ

= = =
° − ° ° − °

 

(b) cos53.1 (16.9 N)cos53.1 10.1 Nn F= ° = ° =  
EVALUATE: In the absence of friction sin53.1 ,w F= °  which agrees with our expression. 

 5.69. IDENTIFY: The net force at any time is netF ma= . 
SET UP: At 0t = , 62a g= . The maximum acceleration is 140g at 1.2 mst = . 

EXECUTE: (a) 9 2 4
net 62 62(210 10  kg)(9.80 m/s ) 1.3 10  NF ma mg − −= = = × = × . This force is 62 times the flea�s 

weight. 
(b) 4

net 140 2.9 10  NF mg −= = × . 
(c) Since the initial speed is zero, the maximum speed is the area under the -xa t graph. This gives 1.2 m/s. 
EVALUATE: a is much larger than g and the net external force is much larger than the flea's weight. 

 5.70. IDENTIFY: Apply m∑F = a
! ! to the instrument and calculate the acceleration. Then use constant acceleration 

equations to describe the motion. 
SET UP: The free-body diagram for the instrument is given in Figure 5.70. The instrument has mass 

1.531 kgm w g= = . 

EXECUTE: (a) For on the instrument, y yF ma∑ = gives T mg ma− = and 213.07 m sT mga
m
−

= = . 

2
0 0,  330 m s,  13.07 m s ,  ?y y yv v a t= = = =  Then 0y y yv v a t= +  gives 25.3 s t = . Consider forces on the 

rocket; rocket has the same ya . Let F be the thrust of the rocket engines. F mg ma− =  and 
2 2 5( ) (25,000 kg) (9.80 m s 13.07 m s ) 5.72 10 NF m g a= + = + = × . 

(b) 21
0 0 02  gives 4170 m.y yy y v t a t y y− = + − =  

EVALUATE: The rocket and instrument have the same acceleration. The tension in the wire is over twice the 
weight of the instrument and the upward acceleration is greater than g. 

 
Figure 5.70 

 5.71. IDENTIFY: /a dv dt= . Apply m∑F = a
! ! to yourself. 

SET UP: The reading of the scale is equal to the normal force the scale applies to you. 
EXECUTE: The elevator�s acceleration is 

2 3 2 3( ) 3.0 m s 2(0.20 m s ) 3.0 m s (0.40 m s )dv ta t t
dt

= = + = +  

At 2 3 24.0 s, 3.0 m s (0.40 m s )(4.0 s) 4.6  m st a= = + = . From Newton�s Second Law, the net force on you is 

net scaleF F w ma= − =  and 
2 2

scale  (72 kg)(9.8 m s ) (72 kg)(4.6 m s ) 1040 NF w ma= + = + =  

EVALUATE: a increases with time, so the scale reading is increasing. 
 5.72. IDENTIFY: Apply m∑F = a

! ! to the passenger to find the maximum allowed acceleration. Then use a constant 
acceleration equation to find the maximum speed. 
SET UP: The free-body diagram for the passenger is given in Figure 5.72. 
EXECUTE:  y yF ma∑ = gives n mg ma− = . 1.6n mg= , so 20.60 5.88 m sa  g= = . 

2
0 03.0 m, 5.88 m s ,  0y yy y a v− = = =  so 2 2

0 02 ( )y y yv v a y y= + − gives 5.0 m syv = . 
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EVALUATE: A larger final speed would require a larger value of ya , which would mean a larger normal force on 
the person. 

 
Figure 5.72 

 5.73. IDENTIFY: Apply m∑F = a
! ! to the package. Calculate a and then use a constant acceleration equation to 

describe the motion. 
SET UP: Let x+  be directed up the ramp. 
EXECUTE: (a) net k ksin37 sin37 cos37F mg f mg mg maμ= − ° − = − ° − ° = and 

2 2(9.8 m s )(0.602 (0.30)(0.799)) 8.25m sa = − + = −  

Since we know the length of the slope, we can use 2 2
0 02 ( )x x xv v a x x= + −  with 0 0x =  and 0xv =  at the top. 

2 2 2 2
0 2 2( 8.25 m s )(8.0 m) 132 m sv ax= − = − − = and 2 2

0 132 m s 11.5 m sv = =  
(b) For the trip back down the slope, gravity and the friction force operate in opposite directions to each other. 

net ksin37 cos37F mg μ mg ma= − ° + ° = and 
2 2( sin37 0.30 cos37 ) (9.8 m s )(( 0.602) (0.30)(0.799)) 3.55 m sa g= − ° + ° = − + = − . 

Now we have 0 00,  8.0 m, 0v x x= = − = and 2 2 2 2 2
0 02 ( ) 0 2( 3.55 m s )( 8.0 m) 56.8 m sv v a x x= + − = + − − = , so 

2 256.8 m s 7.54 m sv = = . 
EVALUATE: In both cases, moving up the incline and moving down the incline, the acceleration is directed down 
the incline. The magnitude of a is greater when the package is going up the incline, because sin37mg ° and kf are 
in the same direction whereas when the package is going down these two forces are in opposite directions. 

 5.74. IDENTIFY: Apply m∑F = a
! ! to the hammer. Since the hammer is at rest relative to the bus its acceleration 

equals that of the bus. 
SET UP: The free-body diagram for the hammer is given in Figure 5.74. 
EXECUTE:  gives sin74 0 so sin 74 .y yF ma T mg T mg∑ = ° − = ° =  gives cos74 .x xF ma T ma∑ = ° =  Divide the 

second equation by the first: 21 and 2.8 m s
tan74

a a
g
= =

°
. 

EVALUATE: When the acceleration increases the angle between the rope and the ceiling of the bus decreases, 
and the angle the rope makes with the vertical increases. 

 
Figure 5.74 

 5.75. IDENTIFY: Apply m∑F = a
! ! to the washer and to the crate. Since the washer is at rest relative to the crate, these 

two objects have the same acceleration. 
SET UP: The free-body diagram for the washer is given in Figure 5.75. 
EXECUTE: It�s interesting to look at the string�s angle measured from the perpendicular to the top of the crate. 
This angle is string 90 angle measured from the top of the crateθ = °− . The free-body diagram for the washer then 
leads to the following equations, using Newton�s Second Law and taking the upslope direction as positive: 

w slope string wsin sinm g θ T θ m a− + = and string w slopesin (  sin )T θ m a g θ= +  

w slope stringcos cos 0m g θ T θ− + = and string w slopecos cosT m g θθ =  
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Dividing the two equations: slope
string

slope

sin
tan

cos
a g θ

θ
g θ
+

=  

For the crate, the component of the weight along the slope is c slopesinm g θ−  and the normal force is c slopecos .m g θ  

Using Newton�s Second Law again: c slope k c slope csin  cosm g θ m g θ m aμ− + = . slope
k

slope

sin
cos

a g θ
g θ

μ
+

= . This leads to the 

interesting observation that the string will hang at an angle whose tangent is equal to the coefficient of kinetic 
friction: 

k stringtan tan(90 68 ) tan  22 0.40θμ = = ° − ° = ° = . 

EVALUATE: In the limit that k 0μ → , string 0θ → and the string is perpendicular to the top of the crate. 

As kμ increases, stringθ increases. 

 
Figure 5.75 

 5.76. IDENTIFY: Apply m∑F = a
! ! to yourself and calculate a. Then use constant acceleration equations to describe 

the motion. 
SET UP: The free-body diagram is given in Figure 5.76. 
EXECUTE: (a) y yF ma∑ = gives cosn mg α= . x xF ma∑ = gives ksinmg α f ma− = . Combining these two 

equations, we have 2
k(sin cos ) 3.094 m sa g α μ α= − = − . Find your stopping distance: 

2
00,  3.094 m s ,  20 m sx x xv a v= = − = . 2 2

0 0 02 ( ) gives 64.6 m, x x xv v a x x x x= + − − = which is greater than 40 m. 
You don�t stop before you reach the hole, so you fall into it. 
(b) 2

03.094 m s ,  40 m, 0x xa x x v= − − = = . 2 2
0 0 02 ( ) gives 16 m s.x x x xv v a x x v= + − =  

EVALUATE: Your stopping distance is proportional to the square of your initial speed, so your initial speed is 
proportional to the square root of your stopping distance. To stop in 40 m instead of 64.6 m your initial speed must 

be 40 m(20 m/s) 16 m/s
64.6 m

= . 

 
Figure 5.76 

 5.77. IDENTIFY: Apply m∑F = a
! ! to each block and to the rope. The key idea in solving this problem is to recognize 

that if the system is accelerating, the tension that block A exerts on the rope is different from the tension that block 
B exerts on the rope. (Otherwise the net force on the rope would be zero, and the rope couldn�t accelerate.) 
SET UP: Take a positive coordinate direction for each object to be in the direction of the acceleration of that 
object. All three objects have the same magnitude of acceleration. 
EXECUTE: The Second Law equations for the three different parts of the system are: 
Block A (The only horizontal forces on A are tension to the right, and friction to the left): k .A A Am g T m aμ− + =  
Block B (The only vertical forces on B are gravity down, and tension up): .B B Bm g T m a− =  
Rope (The forces on the rope along the direction of its motion are the tensions at either end and the weight of the 

portion of the rope that hangs vertically): ( ) .R B A R
dm g T T m aL + − =  
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To solve for a and eliminate the tensions, add the left hand sides and right hand sides of the three equations: 

( ) k
k

( / )( ) ,  or .( )
B R A

A B R A B R
A B R

m m d L mdm g m g m g m m m a a gL m m m
μμ + −

− + + = + + =
+ +

 

(a) When k
( / )0,  .( )

B R

A B R

m m d La g m m mμ +
= =

+ +
 As the system moves, d will increase, approaching L as a limit, and thus 

the acceleration will approach a maximum value of ( )
B R

A B R

m ma g m m m
+

=
+ +

. 

(b) For the blocks to just begin moving, 0,a >  so solve s0 [ ( / ) ]B R Am m d L mμ= + −  for d. Note that we must use 

static friction to find d for when the block will begin to move. Solving for d, s( )A B
R

Ld m m
m

μ= −  or 

1.0 m (0.25(2 kg) 0.4 kg) 0.63 m.0.160 kgd = − =  

(c) When 1.0 m0.04 kg,  (0.25(2 kg) 0.4 kg) 2.50 m0.04 kgRm d= = − = . This is not a physically possible situation 

since .d L>  The blocks won�t move, no matter what portion of the rope hangs over the edge. 
EVALUATE: For the blocks to move when released, the weight of B plus the weight of the rope that hangs 
vertically must be greater than the maximum static friction force on A, which is s 4.9 Nnμ = . 

 5.78. IDENTIFY: Apply Newton�s 1st law to the rope. Let 1m  be the mass of that part of the rope that is on the table, 
and let 2m  be the mass of that part of the rope that is hanging over the edge. ( 1 2 ,m m m+ =  the total mass of the 
rope). Since the mass of the rope is not being neglected, the tension in the rope varies along the length of the rope. 
Let T be the tension in the rope at that point that is at the edge of the table. 
SET UP: The free-body diagram for the hanging section of the rope is given in Figure 5.78a 

 

EXECUTE: 
y yF ma=∑  

2 0T m g− =  

2T m g=  

Figure 5.78a  
SET UP: The free-body diagram for that part of the rope that is on the table is given in Figure 5.78b. 

 

EXECUTE: 
y yF ma=∑  

1 0n m g− =  

1n m g=  

Figure 5.78b  
When the maximum amount of rope hangs over the edge the static friction has its maximum value: 

s s s 1f n m gμ μ= =  

x xF ma=∑  

s 0T f− =  

s 1T m gμ=  
Use the first equation to replace T: 

2 s 1m g m gμ=  

2 s 1m mμ=  

The fraction that hangs over is 2 s 1 s

1 s 1 s

.
1

m m
m m m

μ μ
μ μ

= =
+ +

 

EVALUATE: As s 0,μ →  the fraction goes to zero and as s ,μ →∞  the fraction goes to unity. 
 5.79. IDENTIFY: First calculate the maximum acceleration that the static friction force can give to the case. Apply 

m=∑F a
! !  to the case. 
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(a) SET UP: The static friction force is to the right in Figure 5.79a (northward) since it tries to make the case 
move with the truck. The maximum value it can have is s s .f Nμ=  

 

EXECUTE:  
y yF ma=∑  

0n mg− =  
n mg=  

s s sf n mgμ μ= =  

Figure 5.79a  

x xF ma=∑  

sf ma=  

smg maμ =  
2 2

s (0.30)(9.80 m/s ) 2.94 m/sa gμ= = =  
The truck�s acceleration is less than this so the case doesn�t slip relative to the truck; the case�s acceleration is 

22.20 m/sa =  (northward). Then 2
s (30.0 kg)(2.20 m/s ) 66 N,f ma= = =  northward. 

(b) IDENTIFY: Now the acceleration of the truck is greater than the acceleration that static friction can give the 
case. Therefore, the case slips relative to the truck and the friction is kinetic friction. The friction force still tries to 
keep the case moving with the truck, so the acceleration of the case and the friction force are both southward. The 
free-body diagram is sketched in Figure 5.79b. 
SET UP:  

 

EXECUTE:  
y yF ma=∑  

0n mg− =  
n mg=  

2
k k (0.20)(30.0 kg)(9.80 m/s )f mgμ= =  

k 59 N,f =  southward 
Figure 5.79b  

EVALUATE: kf ma=  implies 2k 59 N 2.0 m/s .
30.0 kg

fa
m

= = =  The magnitude of the acceleration of the case is less 

than that of the truck and the case slides toward the front of the truck. In both parts (a) and (b) the friction is in the 
direction of the motion and accelerates the case. Friction opposes relative motion between two surfaces in contact. 

 5.80. IDENTIFY: Apply m∑F = a
! ! to the car to calculate its acceleration. Then use a constant acceleration equation to 

find the initial speed. 
SET UP: Let x+  be in the direction of the car�s initial velocity. The friction force kf is then in the -directionx− . 
192 ft 58.52 m= . 
EXECUTE: n mg= and k kf mgμ= . x xF ma=∑ gives k xmg maμ− = and 

2 2
k (0.750)(9.80 m/s ) 7.35 m/sxa gμ= − = − = − . 0xv = (stops), 0 58.52 mx x− = . 2 2

0 02 ( )x x xv v a x x= + − gives 
2

0 02 ( ) 2( 7.35 m/s )(58.52 m) 29.3 m/s 65.5 mi/hx xv a x x= − − = − − = = . He was guilty. 

EVALUATE: 
2 2 2

0 0
0 2 2

x x x

x x

v v vx x
a a
−

− = = − . If his initial speed had been 45 mi/h he would have stopped in 

245 mi/h (192 ft) 91 ft
65.5 mi/h
⎛ ⎞ =⎜ ⎟
⎝ ⎠

. 

 5.81. IDENTIFY: Apply m∑F = a
! ! to the point where the three wires join and also to one of the balls. By symmetry 

the tension in each of the 35.0 cm wires is the same. 
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SET UP: The geometry of the situation is sketched in Figure 5.81a. The angle φ that each wire makes with the 

vertical is given by 12.5 cmsin
47.5 cm

φ = and 15.26φ = ° . Let AT be the tension in the vertical wire and let BT be the 

tension in each of the other two wires. Neglect the weight of the wires. The free-body diagram for the left-hand 
ball is given in Figure 5.81b and for the point where the wires join in Figure 5.81c. n is the force one ball exerts on 
the other. 
EXECUTE: (a) y yF ma=∑ applied to the ball gives cos 0BT mgφ − = . 

2(15.0 kg)(9.80 m/s ) 152 N
cos cos15.26B
mgT
φ

= = =
°

. Then y yF ma=∑ applied in Figure 5.81c gives 2 cos 0A BT T φ− = and 

2(152 N)cos 294 NAT φ= = . 

(b) x xF ma=∑ applied to the ball gives sin 0Bn T φ− = and (152 N)sin15.26 40.0 Nn = =° . 

EVALUATE: AT equals the total weight of the two balls. 

 
Figure 5.81a�c 

 5.82. IDENTIFY: Apply m∑F = a
! ! to the box. Compare the acceleration of the box to the acceleration of the truck and 

use constant acceleration equations to describe the motion. 
SET UP: Both objects have acceleration in the same direction; take this to be the x+ -direction. 
EXECUTE: If the block were to remain at rest relative to the truck, the friction force would need to cause an 
acceleration of 22.20 m s ;  however, the maximum acceleration possible due to static friction is 

2 2(0.19)(9.80 m s ) 1.86 m s ,=  and so the block will move relative to the truck; the acceleration of the box 

would be 2 2
k (0.15)(9.80 m s ) 1.47 m s .gμ = =  The difference between the distance the truck moves and the 

distance the box moves (i.e., the distance the box moves relative to the truck) will be 1.80 m after a time 

22
truck box

2 2(1.80 m) 2.221 s.
(2.20 m s 1.47 m s )

xt
a a

Δ
= = =

− −
 

In this time, the truck moves 2 2 21 1
truck2 2 (2.20m s ) (2.221 s) 5.43 m.a t = =  

EVALUATE: To prevent the box from sliding off the truck the coefficient of static friction would have to be 
2

s (2.20 m/s ) / 0.224gμ = = . 

 5.83. IDENTIFY: Apply m=∑F a
! !  to each block. Forces between the blocks are related by Newton�s 3rd law. The 

target variable is the force F. Block B is pulled to the left at constant speed, so block A moves to the right at 
constant speed and 0a =  for each block. 
SET UP: The free-body diagram for block A is given in Figure 5.83a. BAn  is the normal force that B exerts on A. 

kBA BAf nμ=  is the kinetic friction force that B exerts on A. Block A moves to the right relative to B, and BAf  
opposes this motion, so BAf  is to the left. 
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Note also that F acts just on B, not on A. 

 

EXECUTE:  
y yF ma=∑  

0BA An w− =  
1.40 NBAn =  

k (0.30)(1.40 N) 0.420 NBA BAf nμ= = =  

Figure 5.83a  

x xF ma=∑  

0BAT f− =  
0.420 NBAT f= =  

SET UP: The free-body diagram for block B is given in Figure 5.83b. 

 
Figure 5.83b 

EXECUTE: ABn  is the normal force that block A exerts on block B. By Newton�s third law ABn  and BAn  are equal 
in magnitude and opposite in direction, so 1.40 N.ABn =  ABf  is the kinetic friction force that A exerts on B. Block 
B moves to the left relative to A and ABf  opposes this motion, so ABf  is to the right. 

k (0.30)(1.40 N) 0.420 N.AB ABf nμ= = =   
n and kf  are the normal and friction force exerted by the floor on block B; k k .f nμ=  Note that block B moves to 
the left relative to the floor and kf  opposes this motion, so kf  is to the right. 

y yF ma=∑  

0B ABn w n− − =  
4.20 N 1.40 N 5.60 NB ABn w n= + = + =  

Then k k (0.30)(5.60 N) 1.68 N.f nμ= = =  

x xF ma=∑  

k 0ABf T f F+ + − =  

k 0.420 N 0.420 N 1.68 N 2.52 NABF T f f= + + = + + =  
EVALUATE: Note that ABf  and BAf  are a third law action-reaction pair, so they must be equal in magnitude and 
opposite in direction and this is indeed what our calculation gives. 

 5.84. IDENTIFY: Apply m∑F = a
! ! to the person to find the acceleration the PAPS unit produces. Apply constant 

acceleration equations to her free-fall motion and to her motion after the PAPS fires. 
SET UP: We take the upward direction as positive. 
EXECUTE: The explorer�s vertical acceleration is 23.7 m s−  for the first 20 s. Thus at the end of that time her 

vertical velocity will be 2( 3.7 m s )(20 s) 74 m s.y yv a t= = − = −  She will have fallen a distance 

av
74 m s (20 s) 740 m

2
d v t −⎛ ⎞= = = −⎜ ⎟

⎝ ⎠
 and will thus be 1200 m 740 m 460 m− = above the surface. Her vertical 

velocity must reach zero as she touches the ground; therefore, taking the ignition point of the PAPS as  
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0 0,y = 2 2
0 02 ( )y y yv v a y y= + −  gives 

2 2 2
0 2

0

0 ( 74 m s) 5.95 m s
2( ) 460 m

y y
y

v v
a

y y
− − −

= = =
− −

, which is the vertical 

acceleration that must be provided by the PAPS. The time it takes to reach the ground is given by 

0
2

0 ( 74 m s) 12.4 s
5.95 m s

y y

y

v v
t

a
− − −

= = =  

Using Newton�s Second Law for the vertical direction PAPSvF mg ma+ = . This gives 
2

PAPSv ( ) (150 kg)(5.95 ( 3.7)) m s 1450 NF ma mg m a g= − = + = − − = , 

which is the vertical component of the PAPS force. The vehicle must also be brought to a stop horizontally in 
12.4 seconds; the acceleration needed to do this is 

2
0 20 33 m s 2.66 m s

12.4 s
y y

y

v v
a

t
− −

= = =  

and the force needed is 2
PAPSh (150 kg)(2.66 m s ) 400 NF ma= = = , since there are no other horizontal forces. 

EVALUATE: The acceleration produced by the PAPS must bring to zero both her horizontal and vertical 
components of velocity. 

 5.85. IDENTIFY: Apply m=∑F a
! !  to each block. Parts (a) and (b) will be done together. 

 
Figure 5.85a 

Note that each block has the same magnitude of acceleration, but in different directions. For each block let the 
direction of a!  be a positive coordinate direction. 
SET UP: The free-body diagram for block A is given in Figure 5.85b. 

 

EXECUTE:  
y yF ma=∑  

AB A AT m g m a− =  
( )AB AT m a g= +  

2 24.00 kg(2.00 m/s 9.80 m/s ) 47.2 NABT = + =  

Figure 5.85b  
SET UP: The free-body diagram for block B is given in Figure 5.85b. 

 

EXECUTE: 
y yF ma=∑  

0Bn m g− =  

Bn m g=  

Figure 5.85c  
2

k k k (0.25)(12.0 kg)(9.80 m/s ) 29.4 NBf n m gμ μ= = = =  

x xF ma=∑  

kBC AB BT T f m a− − =  
2

k 47.2 N 29.4 N (12.0 kg)(2.00 m/s )BC AB BT T f m a= + + = + +  
100.6 NBCT =  
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SET UP: The free-body diagram for block C is sketched in Figure 5.85d. 

 

EXECUTE:  
y yF ma=∑  

C BC Cm g T m a− =  
( )C BCm g a T− =  

2 2

100.6 N 12.9 kg
9.80 m/s 2.00 m/s

BC
C

Tm
g a

= = =
− −

 

Figure 5.85d  

EVALUATE: If all three blocks are considered together as a single object and m=∑F a
! !  is applied to this 

combined object, k ( ) .C A B A B Cm g m g m g m m m aμ− − = + +  Using the values for k ,μ  Am  and Bm  given in the 

problem and the mass Cm  we calculated, this equation gives 22.00 m/s ,a =  which checks. 

 5.86. IDENTIFY: Apply m=∑F a
! ! to each block. They have the same magnitude of acceleration, a. 

SET UP: Consider positive accelerations to be to the right (up and to the right for the left-hand block, down and 
to the right for the right-hand block). 
EXECUTE: (a) The forces along the inclines and the accelerations are related by 

(100 kg) sin30 (100 kg)  and (50 kg) sin53 (50 kg) ,T g a g T a− ° = ° − =  where T is the tension in the cord and a the 
mutual magnitude of acceleration. Adding these relations, 
(50 kg sin 53 100 kg sin 30 ) (50 kg 100 kg) ,  or 0.067 .g a a g° − ° = + = −  Since a comes out negative, the blocks will 
slide to the left; the 100-kg block will slide down. Of course, if coordinates had been chosen so that positive 
accelerations were to the left, a would be 0.067 .g+  

(b) 220.067(9.80 m s ) 0.658 m s .a = =  
(c) Substituting the value of a (including the proper sign, depending on choice of coordinates) into either of the 
above relations involving T yields 424 N. 
EVALUATE: For part (a) we could have compared sinmg θ for each block to determine which direction the 
system would move. 

 5.87. IDENTIFY: Let the tensions in the ropes be 1T  and 2.T  

 
Figure 5.87a 

Consider the forces on each block. In each case take a positive coordinate direction in the direction of the 
acceleration of that block. 
SET UP: The free-body diagram for 1m  is given in Figure 5.87b. 

 

EXECUTE: 
x xF ma=∑  

1 1 1T m a=  

Figure 5.87b  
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SET UP: The free-body diagram for 2m  is given in Figure 5.87c. 

 

EXECUTE:  
y yF ma=∑  

2 2 2 2m g T m a− =  

Figure 5.87c  
This gives us two equations, but there are 4 unknowns ( 1,T  2 ,T  1,a  and 2a ) so two more equations are required. 
SET UP: The free-body diagram for the moveable pulley (mass m) is given in Figure 5.87d. 

 

EXECUTE:  
y yF ma=∑  

2 12mg T T ma+ − =  

Figure 5.87d  
But our pulleys have negligible mass, so 0mg ma= =  and 2 12 .T T=  Combine these three equations to eliminate 1T  
and 2 :T  2 2 2 2m g T m a− =  gives 2 1 2 22 .m g T m a− =  And then with 1 1 1T m a=  we have 2 1 1 2 22 .m g m a m a− =  
SET UP: There are still two unknowns, 1a  and 2.a  But the accelerations 1a  and 2a  are related. In any time 
interval, if 1m  moves to the right a distance d, then in the same time 2m  moves downward a distance / 2.d  One of 

the constant acceleration kinematic equations says 21
0 0 2 ,x xx x v t a t− = +  so if 2m  moves half the distance it must 

have half the acceleration of 1 :m  2 1 / 2,a a=  or 1 22 .a a=  
EXECUTE: This is the additional equation we need. Use it in the previous equation and get 

2 1 2 2 22 (2 ) .m g m a m a− =  

2 1 2 2(4 )a m m m g+ =  

2
2

1 24
m ga

m m
=

+
 and 2

1 2
1 2

22 .
4

m ga a
m m

= =
+

 

EVALUATE: If 2 0m →  or 1 ,m →∞  1 2 0.a a= =  If 2 1,m m>>  2a g=  and 1 2 .a g=  

 5.88. IDENTIFY: Apply m∑F = a
! ! to block B, to block A and B as a composite object and to block C. If A and B slide 

together all three blocks have the same magnitude of acceleration. 
SET UP: If A and B don�t slip the friction between them is static. The free-body diagrams for block B, for blocks 
A and B, and for C are given in Figures 5.88a-c. Block C accelerates downward and A and B accelerate to the right. 
In each case take a positive coordinate direction to be in the direction of the acceleration. Since block A moves to 
the right, the friction force sf on block B is to the right, to prevent relative motion between the two blocks. When C 
has its largest mass, sf has its largest value: s sf nμ= . 

EXECUTE: x xF ma=∑ applied to the block B gives s Bf m a= . Bn m g= and s s Bf m gμ= . s B Bm g m aμ = and 

sa gμ= . x xF ma=∑ applied to blocks A B+ gives sAB ABT m a m gμ= = . y yF ma=∑ applied to block C gives 

C Cm g T m a− = . s sC AB Cm g m g m gμ μ− = . s

s

0.750(5.00 kg 8.00 kg) 39.0 kg
1 1 0.750

AB
C

mm μ
μ

⎛ ⎞= = + =⎜ ⎟− −⎝ ⎠
. 
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EVALUATE: With no friction from the tabletop, the system accelerates no matter how small the mass of C is. 
If Cm is less than 39.0 kg, the friction force that A exerts on B is less than snμ . If Cm is greater than 39.0 kg, 
blocks C and A have a larger acceleration than friction can give to block B and A accelerates out from under B. 

 
Figure 5.88 

 5.89. IDENTIFY: Apply the method of Exercise 5.19 to calculate the acceleration of each object. Then apply constant 
acceleration equations to the motion of the 2.00 kg object. 
SET UP: After the 5.00 kg object reaches the floor, the 2.00 kg object is in free-fall, with downward acceleration g. 

EXECUTE: The 2.00-kg object will accelerate upward at 5.00 kg 2.00 kg 3 7,5.00 kg 2.00 kgg g− =
+

 and the 5.00-kg object will 

accelerate downward at 3 7.g  Let the initial height above the ground be 0h . When the large object hits the 

ground, the small object will be at a height 02h , and moving upward with a speed given by 2
0 0 02 6 7.v ah gh= =  

The small object will continue to rise a distance 2
0 02 3 7,v g h=  and so the maximum height reached will be 

0 0 02 3 7 17 7 1.46 mh h h+ = = above the floor , which is 0.860 m above its initial height. 
EVALUATE: The small object is 1.20 m above the floor when the large object strikes the floor, and it rises an 
additional 0.26 m after that. 

 5.90. IDENTIFY: Apply m=∑F a
! ! to the box. 

SET UP: The box has an upward acceleration of 21.90 m/sa = . 
EXECUTE: The floor exerts an upward force n on the box, obtained from ,n mg ma− =  or ( ).n m a g= +  The 
friction force that needs to be balanced is 

22
k k ( ) (0.32)(28.0 kg)(1.90 m s 9.80 m s ) 105 N.n m a gμ μ= + = + =  

EVALUATE: If the elevator wasn't accelerating the normal force would be n mg= and the friction force that 
would have to be overcome would be 87.8 N. The upward acceleration increases the normal force and that 
increases the friction force. 

 5.91. IDENTIFY: Apply m=∑F a
! !  to the block. The cart and the block have the same acceleration. The normal force 

exerted by the cart on the block is perpendicular to the front of the cart, so is horizontal and to the right. The 
friction force on the block is directed so as to hold the block up against the downward pull of gravity. We want to 
calculate the minimum a required, so take static friction to have its maximum value, s s .f nμ=  
SET UP: The free-body diagram for the block is given in Figure 5.91. 

 

EXECUTE:  
x xF ma=∑  

n ma=  
s s sf n maμ μ= =  

Figure 5.91  

y yF ma=∑  

s 0f mg− =  

sma mgμ =  

s/a g μ=  
EVALUATE: An observer on the cart sees the block pinned there, with no reason for a horizontal force on it 
because the block is at rest relative to the cart. Therefore, such an observer concludes that 0n =  and thus s 0,f =  
and he doesn�t understand what holds the block up against the downward force of gravity. The reason for this 
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difficulty is that m=∑F a
! !  does not apply in a coordinate frame attached to the cart. This reference frame is 

accelerated, and hence not inertial. The smaller sμ  is, the larger a must be to keep the block pinned against the 
front of the cart. 

 5.92. IDENTIFY: Apply m=∑F a
! ! to each block. 

SET UP: Use coordinates where x+  is directed down the incline. 
EXECUTE: (a) Since the larger block (the trailing block) has the larger coefficient of friction, it will need to be 
pulled down the plane; i.e., the larger block will not move faster than the smaller block, and the blocks will have 
the same acceleration. For the smaller block, (4.00 kg) (sin30 (0.25)cos  30 ) (4.00 kg) ,g T a° − ° − =  or 
11.11 N (4.00 kg) ,T a− =  and similarly for the larger, 15.44 N (8.00 kg)T a+ = . Adding these two relations, 

26.55 N (12.00 kg) ,a= 22.21 m s .a =  
(b) Substitution into either of the above relations gives 2.27  N.T =  
(c) The string will be slack. The 4.00-kg block will have 22.78 m sa =  and the 8.00-kg block will have 

21.93 m s ,a =  until the 4.00-kg block overtakes the 8.00-kg block and collides with it. 
EVALUATE: If the string is cut the acceleration of each block will be independent of the mass of that block and 
will depend only on the slope angle and the coefficient of kinetic friction. The 8.00-kg block would have a smaller 
acceleration even though it has a larger mass, since it has a larger kμ . 

 5.93. IDENTIFY: Apply m=∑F a
! ! to the block and to the plank. 

SET UP: Both objects have 0a = . 
EXECUTE: Let Bn  be the normal force between the plank and the block and An  be the normal force between the 
block and the incline. Then, cosBn w θ=  and 3 cos 4 cos .A Bn n w θ w θ= + =  The net frictional force on the block is 

k k( ) 5 cosA Bn n wμ μ θ+ = . To move at constant speed, this must balance the component of the block�s weight 
along the incline, so k3 sin 5 cos ,w θ w θμ=  and 3 3

k 5 5tan tan37 0.452.θμ = = ° =  
EVALUATE: In the absence of the plank the block slides down at constant speed when the slope angle and 
coefficient of friction are related by ktanθ μ= . For 36.9θ = ° , k 0.75μ = . A smaller kμ is needed when the plank 
is present because the plank provides an additional friction force. 

 5.94. IDENTIFY: Apply m∑F = a
! ! to the ball, to 1m and to 2m  

SET UP: The free-body diagrams for the ball, 1m and 2m are given in Figures 5.94a-c. All three objects have the 
same magnitude of acceleration. In each case take the direction of a! to be a positive coordinate direction. 
EXECUTE: (a) y yF ma=∑ applied to the ball gives cosT mgθ = . x xF ma=∑ applied to the ball gives 

sinT maθ = . Combining these two equations to eliminate T gives tan /a gθ = . 

(b) x xF ma=∑ applied to 2m gives 2T m a= . y yF ma=∑ applied to 1m gives 1 1m g T m a− = . Combining these 

two equations gives 1

1 2

ma g
m m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

. Then 1

1 2

250 kgtan
1500 kg

m
m m

θ = =
+

and 9.46θ = ° . 

(c) As 1m becomes much larger than 2m , a g→ and tan 1θ → , so 45θ → ° . 
EVALUATE: The device requires that the ball is at rest relative to the platform; any motion swinging back and 
forth must be damped out. When 1 2m m<< the system still accelerates, but with small a and 0θ → ° . 

 
Figure 5.94a�c 
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 5.95. IDENTIFY: Apply m=∑F a
! ! to the automobile. 

SET UP: The "correct" banking angle is for zero friction and is given by 
2
0tan v

gR
β = , as derived in Example 5.23. 

Use coordinates that are vertical and horizontal, since the acceleration is horizontal. 
EXECUTE: For speeds larger than 0v , a frictional force is needed to keep the car from skidding. In this case, the 
inward force will consist of a part due to the normal force n and the friction force rad;   sin cos .f n f maβ β+ =  The 
normal and friction forces both have vertical components; since there is no vertical acceleration, 

 cos  sin .n f mgβ β− =  Using sf nμ=  and 
22

0
rad

(1.5 ) 2.25 tan ,vva gR R β= = =  these two relations become 

ssin cos 2.25 tann n mgβ μ β β+ =  and scos sinn n mgβ μ β− = . Dividing to cancel n gives 

s

s

sin cos 2.25 tan .
cos sin

β μ β β
β μ β
+

=
−

 Solving for sμ  and simplifying yields s 2

1.25 sin  cos
1 1.25sin

β βμ
β

=
+

. Using 

2

2

(20 m s)arctan 18.79
(9.80 m s )(120 m)

β
⎛ ⎞

= = °⎜ ⎟
⎝ ⎠

 gives s 0.34.μ =  

EVALUATE: If sμ is insufficient, the car skids away from the center of curvature of the roadway, so the friction in 
inward. 

 5.96. IDENTIFY: Apply m=∑F a
! !  to the car. The car moves in the arc of a horizontal circle, so rad,=a a! !  directed 

toward the center of curvature of the roadway. The target variable is the speed of the car. rada  will be calculated 

from the forces and then v will be calculated from 2
rad / .a v R=  

(a) To keep the car from sliding up the banking the static friction force is directed down the incline. At maximum 
speed the static friction force has its maximum value s s .f nμ=  
SET UP: The free-body diagram for the car is sketched in Figure 5.96a. 

 

EXECUTE:  
y yF ma=∑  

scos sin 0n f mgβ β− − =  
But s s ,f nμ=  so 

scos sin 0n n mgβ μ β− − =  

scos sin
mgn

β μ β
=

−
 

Figure 5.96a  

x xF ma=∑  

s radsin cosn n maβ μ β+ =  

s rad(sin cos )n maβ μ β+ =  

Use the yF∑  equation to replace n: 

s rad
s

(sin cos )
cos sin

mg maβ μ β
β μ β

⎛ ⎞
+ =⎜ ⎟−⎝ ⎠

 

2 2s
rad

s

sin cos sin 25 (0.30)cos25 (9.80 m/s ) 8.73 m/s
cos sin cos25 (0.30)sin 25

a gβ μ β
β μ β

⎛ ⎞ ⎛ ⎞+ ° + °
= = =⎜ ⎟ ⎜ ⎟− ° − °⎝ ⎠⎝ ⎠

 

rad /a v R2=  implies 2
rad (8.73 m/s )(50 m) 21 m/s.v a R= = =  

(b) IDENTIFY: To keep the car from sliding down the banking the static friction force is directed up the incline. 
At the minimum speed the static friction force has its maximum value s s .f nμ=  
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SET UP: The free-body diagram for the car is sketched in Figure 5.96b. 

 

The free-body diagram is identical to that 
in part (a) except that now the components 
of sf  have opposite directions. The force 
equations are all the same except for the 
opposite sign for terms containing s.μ  

Figure 5.96b  

EXECUTE: 2 2s
rad

s

sin cos sin 25 (0.30)cos25 (9.80 m/s ) 1.43 m/s
cos sin cos25 (0.30)sin 25

a gβ μ β
β μ β

⎛ ⎞ ⎛ ⎞− ° − °
= = =⎜ ⎟ ⎜ ⎟+ ° + °⎝ ⎠⎝ ⎠

 

2
rad (1.43 m/s )(50 m) 8.5 m/s.v a R= = =  

EVALUATE: For v between these maximum and minimum values, the car is held on the road at a constant height 
by a static friction force that is less than s .nμ  When s 0,μ →  rad tan .a g β=  Our analysis agrees with the result of 
Example 5.23 in this special case. 

 5.97. IDENTIFY: Apply m=∑F a
! ! to the car. 

SET UP: 1 mi/h 0.447 m/s= . The acceleration of the car is 2
rad /a v r= , directed toward the center of curvature 

of the roadway. 
EXECUTE: (a) 80 mi h 35.7 m s= . The centripetal force needed to keep the car on the road is provided by 

friction; thus 
2

s
mvmg

r
μ = and 

2 2

2
s

(35.7 m s) 171 m
(0.76)(9.8 m s )

vr
gμ

= = = . 

(b) If s 0.20μ = , 

2
s (171 m) (0.20) (9.8 m/s ) 18.3 m s  or about 41 mi hv r gμ= = = . 

(c) If s 0.37μ = , 

2(171 m) (0.37) (9.8 m/s ) 24.9 m s  or about 56 mi hv = =  

The speed limit is evidently designed for these conditions. 
EVALUATE: The maximum safe speed is proportional to sμ . 0.20/ 0.76 0.51= , so the maximum safe speed 
for wet-ice conditions is about half what it is for a dry road. 

 5.98. IDENTIFY: The analysis of this problem is the same as that of Example 5.21. 

SET UP: From Example 5.21, 
2

radtan a v
g rg

β = = . 

EXECUTE: Solving for v in terms of β and R, 2tan (9.80 m s ) (50.0) tan 30.0 16.8 m sv gR β= = ° = , about 
60.6 km h.  
EVALUATE: The greater the speed of the bus the larger will be the angle β , so T will have a larger horizontal, 
inward component. 

 5.99. IDENTIFY and SET UP: The monkey and bananas have the same mass and the tension in the rope has the same 
upward value at the bananas and at the monkey. Therefore, the monkey and bananas will have the same net force 
and hence the same acceleration, in both magnitude and direction. 
EXECUTE: (a) For the monkey to move up, T mg> . The bananas also move up. 
(b) The bananas and monkey move with the same acceleration and the distance between them remains constant. 
(c) Both the monkey and bananas are in free fall. They have the same initial velocity and as they fall the distance 
between them doesn�t change. 
(d) The bananas will slow down at the same rate as the monkey. If the monkey comes to a stop, so will the 
bananas. 
EVALUATE: None of these actions bring the monkey any closer to the bananas. 
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5.100. IDENTIFY: Apply m=∑F a
! ! , with f kv= . 

SET UP: Follow the analysis that leads to Eq.(5.10), except now the initial speed is 0 t3 / 3yv mg k v= = rather than 
zero. 
EXECUTE: The separated equation of motion has a lower limit of t3v  instead of 0; specifically, 

t

( )t
t

t t t3

1 1ln ln ,   or 2  .
2 2 2 2

v
k m t

v

dv v v v k t v v e
v v v v m

−⎛ ⎞− ⎡ ⎤= = − = − = +⎜ ⎟ ⎢ ⎥− − ⎣ ⎦⎝ ⎠
∫  

EVALUATE: As t →∞  the speed approaches tv . The speed is always greater than tv and this limit is approached 
from above. 

5.101. IDENTIFY: Apply m=∑F a
! ! to the rock. 

SET UP: Equations 5.9 through 5.13 apply, but with 0a rather than g as the initial acceleration. 
EXECUTE: (a) The rock is released from rest, and so there is initially no resistive force and 

2
0 (18.0 N) (3.00 kg) 6.00 m s .a = =  

(b) 2(18.0 N (2.20 N s m) (3.00 m s)) (3.00 kg) 3.80 m s .− ⋅ =  
(c) The net force must be 1.80 N, so 16.2  Nkv =  and (16.2  N) (2.20 N s m) 7.36 m s.v = ⋅ =  
(d) When the net force is equal to zero, and hence the acceleration is zero, t 18.0 Nkv =  and 

t (18.0 N) (2.20 N s m) 8.18 m s.v = ⋅ =  
(e) From Eq.(5.12), 

( )((2.20 N s m) (3.00 kg))(2.00 s)3.00 kg(8.18 m s) (2.00 s) 1 7.78 m.
2.20 N s m

y e− ⋅⎡ ⎤
= − − = +⎢ ⎥⋅⎣ ⎦

 

From Eq. (5.10), ((2.20 N s m) (3.00 kg))(2.00 s)(8.18 m s)[1 ] 6.29 m s.v e− ⋅= − =  

From Eq.(5.11), but with 0a  instead of g, 2 ((2.20 N s m) (3.00 kg))(2.00 s) 2(6.00 m s ) 1.38 m s .a e− ⋅= =  

(f) ( )

t

1 0.1 k m tv e
v

−− = = and ln  (10) 3.14 s.mt
k

= =  

EVALUATE: The acceleration decreases with time until it becomes zero when tv v= . The speed increases with 
time and approaches tv as t →∞ . 

5.102. IDENTIFY: Apply m=∑F a
! ! to the rock. dva

dt
= and dxv

dt
= yield differential equations that can be integrated to 

give ( )v t and ( )x t . 
SET UP: The retarding force of the surface is the only horizontal force acting. 

EXECUTE: (a) Thus 
1 2

net RF F kv dva
m m m dt

−
= = = = and 1 2

dv k dt
v m

= − . Integrating gives 
0

1 2 0

v t

v

dv k dt
v m

= −∫ ∫ and 

0

1 22 v
v

ktv
m

= − . This gives 
1 2 2 2
0

0 24
v kt k tv v

m m
= − + . 

For the rock�s position: 
1 2 2 2
0

0 24
dx v kt k tv
dt m m

= − + and 
1 2 2 2
0

0 24
v ktdt k t dtdx v dt

m m
= − + . 

Integrating gives
1 2 2 2 3
0

0 22 12
v kt k tx v t

m m
= − + . 

(b) 
1 2 2 2
0

0 20
2

v kt k tv v
m m

= = − + . This is a quadratic equation in t; from the quadratic formula we can find the single 

solution 
1 2
02mvt

k
= . 

(c) Substituting the expression for t into the equation for x: 
1 2 1 2 2 2 3 3 2 3 2
0 0 0 0 0

0 2 2 3

2 4 8 2
2 12 3

mv v k m v k m v mvx v
k m k m k k

= ⋅ − ⋅ + ⋅ =  

EVALUATE: The magnitude of the average acceleration is 
1/ 2

0 0
av 1/ 2

0

1
(2 / ) 2

v v kva
t mv k m

Δ
= − =
Δ

. The average force is 

1/ 21
av av 02F ma kv= = , which is 1

2 times the initial value of the force. 
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5.103. IDENTIFY: Apply m=∑F a
! ! to the object, with and without including the buoyancy force. 

SET UP: At the terminal speed tv , 0a = . 

EXECUTE: Without buoyancy, t
t

,  so .
0.36 s

mg mgkv mg k
v

= = =  With buoyancy included there is the additional 

upward buoyancy force B, so tB kv mg+ = . t
0.24 m s1 3
0.36 m s

B mg kv mg mg
⎛ ⎞

= − = − =⎜ ⎟
⎝ ⎠

. 

EVALUATE: At the terminal speed, B and f kv=  together equal mg. The presence of B reduces the value of f 
required, so the presence of B reduces the terminal speed. 

5.104. IDENTIFY: The block has acceleration 2
rad /a v r= , directed to the left in the figure in the problem. Apply 

m=∑F a
! ! to the block. 

SET UP: The block moves in a horizontal circle of radius 2 2(1.25 m) (1.00 m) 0.75 mr = − = . Each string 

makes an angle θ  with the vertical. 1.00 mcos
1.25 m

θ = , so 36.9θ = ° . The free-body diagram for the block is given in 

Figure 5.104. Let x+  be to the left and let y+  be upward. 

EXECUTE: (a) y yF ma=∑  gives u lcos cos 0T T mgθ θ− − = . 
2

l u
(4.00 kg)(9.80 m/s )80.0 N 31.0 N

cos cos36.9
mgT T
θ

= − = − =
°

. 

(b) x xF ma=∑  gives 
2

u l( )sin vT T m
r

θ+ = . 

u l( )sin (0.75 m)(80.0 N 31.0 N)sin36.9 3.53 m/s
4.00 kg

r T Tv
m

θ+ +
= = =

° . The number of revolutions per second is 

3.53 m/s 0.749 rev/s 44.9 rev/min
2 2 (0.75 m)

v
rπ π
= = = . 

(c) If l 0T → , u cosT mgθ = and 
2

u
(4.00 kg)(9.80 m/s ) 49.0 N

cos cos36.9
mgT
θ

= = =
°

. 
2

u sin vT m
r

θ = . 

u sin (0.75 m)(49.0 N)sin36.9 2.35 m/s
4.00 kg

rTv
m

θ
= = =

° . The number of revolutions per minute is 

2.35 m/s(44.9 rev/min) 29.9 rev/min
3.53 m/s
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

EVALUATE: The tension in the upper string must be greater than the tension in the lower string so that together 
they produce an upward component of force that balances the weight of the block. 

 
Figure 5.104 

5.105. IDENTIFY: Apply m=∑F a
! ! to the falling object. 

SET UP: Follow the steps that lead to Eq.(5.10), except now 0 0yv v= and is not zero. 
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EXECUTE: (a) Newton�s 2nd law gives ,y
y

dv
m mg kv

dt
= −  where t

mg v
k

= .
0 t 0

yv t
y

yv

dv k dt
v v m

= −
−∫ ∫ . This is the same 

expression used in the derivation of Eq. (5.10), except the lower limit in the velocity integral is the initial speed 0v  

instead of zero. Evaluating the integrals and rearranging gives 0 t (1 )kt m kt mv v e v e− −= + − . Note that at 0t =  this 
expression says 0yv v=  and at t α→  it says t .yv v→  
(b) The downward gravity force is larger than the upward fluid resistance force so the acceleration is downward, 
until the fluid resistance force equals gravity when the terminal speed is reached. The object speeds up 
until tyv v= . Take y+  to be downward. The graph is sketched in Figure 5.105a. 
(c) The upward resistance force is larger than the downward gravity force so the acceleration is upward and the 
object slows down, until the fluid resistance force equals gravity when the terminal speed is reached. Take y+  to 
be downward. The graph is sketched in Figure 5.105b. 
(d) When 0 tv v= the acceleration at 0t = is zero and remains zero; the velocity is constant and equal to the 
terminal velocity. 
EVALUATE: In all cases the speed becomes tv as t →∞ . 

 
Figure 5.105a, b 

5.106. IDENTIFY: Apply m=∑F a
! ! to the rock. 

SET UP: At the maximum height, 0yv = . Let y+  be upward. Suppress the y subscripts on v and a. 

EXECUTE: (a) To find the maximum height and time to the top without fluid resistance: 2 2
0 02 ( )v v a y y= + −  and 

2 2 2
0

0 2

0 (6.0 m s) 1.84 m
2 2( 9.8 m s )

v vy y
a
− −

− = = =
−

. 0
2

0 6.0 m s 0.61 s
9.8 m s

v vt
a
− −

= = =
−

. 

(b) Starting from Newton�s Second Law for this situation dvm mg kv
dt

= − . We rearrange and integrate, taking 

downward as positive as in the text and noting that the velocity at the top of the rock�s flight is zero: 
0

t

 
v

dv k t
v v m

= −
−∫ . 0 t

t
t

2.0 m sln( ) ln ln ln(0.25) 1.386
6.0 m s 2.0 m sv

vv v
v v
− −

− = = = = −
− − −

 

From Eq.(5.9), 2 2
t (2.0 m s ) (9.8 m s ) 0.204 s,m k v g= = = and ( 1.386) (0.204 s) (1.386) 0.283 smt k= − − = =  

to the top. Equation 5.10 in the text gives us ( ) ( )
t t t(1 )k m t k m tdx v e v v e

dt
− −= − = − . 

( ) ( )t
t t t

0 0 0

( 1)
x t t

k m t k m tv mx dx v dt v e dt v t e
k

− −= = − = + −∫ ∫ ∫ . 

1.387(2.0 m s) (0.283 s) (2.0 m s) (0.204 s)(e 1) 0.26 mx −= + − = . 
EVALUATE: With fluid resistance present the maximum height is much less and the time to reach it is less. 

5.107. IDENTIFY: Apply m=∑F a
! ! to the car. 

SET UP: The forces on the car are the air drag force 2
Df Dv=  and the rolling friction force r .mgμ  Take the 

velocity to be in the x+ -direction. The forces are opposite in direction to the velocity. 
EXECUTE: (a) x xF ma∑ =  gives 2

rDv mg maμ− − = . We can write this equation twice, once with 32 m sv =  

and 2 0.42 m sa = −  and once with 24 m sv =  and 20.30 m/s .a = −  Solving these two simultaneous equations in 

the unknowns D and rμ  gives r 0.015μ =  and 2 20.36  N s m .D = ⋅  
(b) cosn mg β=  and the component of gravity parallel to the incline is sinmg β , where 2.2 .β = °  For constant 

speed, 2
rsin 2.2 cos2.2 0.mg mg Dvμ° − ° − =  Solving for v  gives 29 m s.v =  
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(c) For angle 2
r,  sin  cos 0mg mg Dvβ β μ β− − =  and r(sin  cos )mgv

D
β μ β−

= . The terminal speed for a falling 

object is derived from 2
t 0,Dv mg− =  so t .v mg D=  t rsin cosv v β μ β= − . And since 

r t0.015,  sin (0.015) cosv vμ β β= = − . 
EVALUATE: In part (c), tv v→ as 90β → ° , since in that limit the incline becomes vertical. 

5.108. IDENTIFY: Apply m=∑F a
! ! to the person and to the cart. 

SET UP: The apparent weight, appw , which is the same as the upward force on the person exerted by the car seat. 
EXECUTE: (a) The apparent weight is the actual weight of the person minus the centripetal force needed to keep 
him moving in its circular path: 

2 2
2

app
(12 m s)(70 kg) (9.8 m s ) 434  N

40 m
mvw mg
R

⎡ ⎤
= − = − =⎢ ⎥

⎣ ⎦
. 

(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when the road no longer has to 

exert any upward force on it: 
2

0mvmg
R

− = . 2(40 m) (9.8 m/s ) 19.8 m sv Rg= = = . The answer doesn�t 

depend on the cart�s mass, because the centripetal force needed to hold it on the road is proportional to its mass and 
so to its weight, which provides the centripetal force in this situation. 
EVALUATE: At the speed calculated in part (b), the downward force needed for circular motion is provided by 
gravity. For speeds greater than this more, downward force is needed and there is no source for it and the cart 
leaves the circular path. For speeds less than this, less downward force than gravity is needed, so the roadway must 
exert an upward vertical force. 

5.109. (a) IDENTIFY: Use the information given about Jena to find the time t for one revolution of the merry-go-round. 
Her acceleration is rad ,a  directed in toward the axis. Let 1F

!
 be the horizontal force that keeps her from sliding off. 

Let her speed be 1v  and let 1R  be her distance from the axis. Apply m=∑F a
! !  to Jena, who moves in uniform 

circular motion. 
SET UP: The free-body diagram for Jena is sketched in Figure 5.109a 

 

EXECUTE:  
x xF ma=∑  

1 radF ma=  
2
1

1
1

,vF m
R

=  1 1
1 1.90 m/sR Fv

m
= =  

Figure 5.109a  

The time for one revolution is 1
1

1 1 1

2 2 .R mt R
v R F
π π= =  Jackie goes around once in the same time but her speed 

2( )v  and the radius of her circular path 2( )R  are different. 

2 1 1 2 1 1
2 2

1 1

2 12 .
2

R R F R R Fv R
t R m R m
π π

π
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

IDENTIFY: Now apply m=∑F a
! !  to Jackie. She also moves in uniform circular motion. 

SET UP: The free-body diagram for Jackie is sketched in Figure 5.109b. 

 

EXECUTE:  
x xF ma=∑  

2 radF ma=  

Figure 5.109b  
2 2
2 2 1 1 2

2 12
2 2 1 1

3.60 m (60.0 N)
1.80 m

v m R R F RF m F
R R R m R

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

120.0 N=  

(b) 
2
2

2
2

,vF m
R

=  so 2 2
2

(120.0 N)(3.60 m) 3.79 m/s
30.0 kg

F Rv
m

= = =  
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EVALUATE: Both girls rotate together so have the same period T. By Eq.(5.16), rada  is larger for Jackie so the 
force on her is larger. Eq.(5.15) says 1 1 2 2/ /R v R v=  so 2 1 2 1( / );v v R R=  this agrees with our result in (a). 

5.110. IDENTIFY: Apply m=∑F a
! ! to the passenger. The passenger has acceleration rada , directed inward toward the 

center of the circular path. 
SET UP: The passenger�s velocity is 2 8.80 m s.v π R t= =  The vertical component of the seat�s force must 
balance the passenger�s weight and the horizontal component must provide the centripetal force. 

EXECUTE: (a) seat sin 833 NF mgθ = =  and 
2

seat cos 188 NmvF
R

θ = = . Therefore 

tan (833 N) (188 N) 4.43;θ = =  77.3θ = °  above the horizontal. The magnitude of the net force exerted by the 
seat (note that this is not the net force on the passenger) is 

2 2
seat (833 N) (188 N) 854 NF = + =  

(b) The magnitude of the force is the same, but the horizontal component is reversed. 

EVALUATE: At the highest point in the motion, 
2

seat 645 NvF mg m
R

= − = . At the lowest point in the motion, 

2

seat 1021 NvF mg m
R

= + = . The result in parts (a) and (b) lies between these extreme values. 

5.111. IDENTIFY: Apply m=∑F a
! !  to the person. The person moves in a horizontal circle so his acceleration is 

2
rad / ,a v R=  directed toward the center of the circle. The target variable is the coefficient of static friction between 

the person and the surface of the cylinder. 2 2 (2.5 m)(0.60 rev/s) (0.60 rev/s) 9.425 m/s
1 rev 1 rev

Rv π π⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(a) SET UP: The problem situation is sketched in Figure 5.111a. 

 

 

Figure 5.111a  

 

The free-body diagram for the person is 
sketched in Figure 5.111b. 
The person is held up against gravity by 
the static friction force exerted on him 
by the wall. The acceleration of the person 
is rad ,a  directed in towards the axis of rotation. 

Figure 5.111b  
(b) EXECUTE: To calculate the minimum sμ  required, take sf  to have its maximum value, s s .f nμ=  

y yF ma=∑  

s 0f mg− =  

sn mgμ =  

x xF ma=∑  
2 /n mv R=  

Combine these two equations to eliminate n: 
2

s /mv R mgμ =  
2

s 2 2

(2.5 m)(9.80 m/s ) 0.28
(9.425 m/s)

Rg
v

μ = = =  
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(c) EVALUATE: No, the mass of the person divided out of the equation for s.μ  Also, the smaller sμ  is, the larger 
v must be to keep the person from sliding down. For smaller sμ  the cylinder must rotate faster to make n larger 
enough. 

5.112. IDENTIFY: Apply m=∑F a
! ! to the combined object of motorcycle plus rider. 

SET UP: The object has acceleration 2
rad /a v r= , directed toward the center of the circular path. 

EXECUTE: (a) For the tires not to lose contact, there must be a downward force on the tires. Thus, the 

(downward) acceleration at the top of the sphere must exceed mg, so 
2

,vm mg
R
>  and 

2(9.80 m s ) (13.0 m) 11.3 m s.v gR> = =  
(b) The (upward) acceleration will then be 4g, so the upward normal force must be 

25 5(110 kg) (9.80 m s ) 5390  N.mg = =  
EVALUATE: At any nonzero speed the normal force at the bottom of the path exceeds the weight of the object. 

5.113. IDENTIFY: Apply m=∑F a
! !  to your friend. Your friend moves in the arc of a circle as the car turns. 

(a) Turn to the right. The situation is sketched in Figure 5.113a. 

 

As viewed in an inertial frame, 
in the absence of sufficient friction 
your friend doesn�t make the turn 
completely and you move to the right 
toward your friend. 

Figure 5.113a  
(b) The maximum radius of the turn is the one that makes rada  just equal to the maximum acceleration that static 
friction can give to your friend, and for this situation sf  has its maximum value s s .f nμ=  
SET UP: The free-body diagram for your friend, as viewed by someone standing behind the car, is sketched in 
Figure 5.113b. 

 

EXECUTE:  
y yF ma=∑  

0n mg− =  
n mg=  

Figure 5.113b  

x xF ma=∑  

s radf ma=  
2

s /n mv Rμ =  
2

s /mg mv Rμ =  
2 2

2
s

(20 m/s) 120 m
(0.35)(9.80 m/s )

vR
gμ

= = =  

EVALUATE: The larger sμ  is, the smaller the radius R must be. 
5.114. IDENTIFY: The tension F in the string must be the same as the weight of the hanging block, and must also 

provide the resultant force necessary to keep the block on the table in uniform circular motion. 
SET UP: The acceleration of the block is 2

rad /a v r= , directed toward the hole. 

EXECUTE: 
2

,vMg F m
r

= =  so .v gr M m=  

EVALUATE: The larger M is the greater must be the speed v, if r remains the same. 
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5.115. IDENTIFY: Apply m=∑F a
! !  to the circular motion of the bead. Also use Eq.(5.16) to relate rada  to the period of 

rotation T. 
SET UP: The bead and hoop are sketched in Figure 5.115a. 

 

The bead moves in a circle of radius 
sin .R r β=  

The normal force exerted on the bead by 
the hoop is radially inward. 

Figure 5.115a  
The free-body diagram for the bead is sketched in Figure 5.115b. 

 

EXECUTE:  
y yF ma=∑  

cos 0n mgβ − =  
/ cosn mg β=  

x xF ma=∑  

radsinn maβ =  

Figure 5.115b  
Combine these two equations to eliminate n: 

radsin
cos
mg maβ
β

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

radsin
cos

a
g

β
β
=  

2
rad /a v R=  and 2 / ,v R Tπ=  so 2 2

rad 4 / ,a R Tπ=  where T is the time for one revolution. 

sin ,R r β=  so 
2

rad 2

4 sinra
T

π β
=  

Use this in the above equation: 
2

2

sin 4 sin
cos

r
T g

β π β
β
=  

This equation is satisfied by sin 0,β =  so 0,β =  or by 
2

2

1 4 ,
cos

r
T g
π

β
=  which gives 

2

2cos
4
T g

r
β

π
=  

(a) 4.00 rev/s implies (1/ 4.00) s 0.250 sT = =  

Then 
2 2

2

(0.250 s) (9.80 m/s )cos
4 (0.100 m)

β
π

=  and 81.1 .β = °  

(b) This would mean 90 .β = °  But cos90 0,° =  so this requires 0.T →  So β  approaches 90°  as the hoop rotates 
very fast, but 90β = °  is not possible. 
(c) 1.00 rev/s implies 1.00 sT =  

The 
2

2cos
4
T g

r
β

π
=  equation then says 

2 2

2

(1.00 s) (9.80 m/s )cos 2.48,
4 (0.100 m)

β
π

= =  which is not possible. The only way to 

have the m=∑F a
! !  equations satisfied is for sin 0.β =  This means 0;β =  the bead sits at the bottom of the hoop. 
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EVALUATE: 90β → ° as 0T →  (hoop moves faster). The largest value T can have is given by 2 2/(4 ) 1T g rπ =  so 

2 / 0.635 s.T r gπ= =  This corresponds to a rotation rate of (1/ 0.635) rev/s 1.58 rev/s.=  For a rotation rate less 
than 1.58 rev/s, 0β =  is the only solution and the bead sits at the bottom of the hoop. Part (c) is an example of this. 

5.116. IDENTIFY: 
2

2x
d xa
dt

= and 
2

2y
d ya
dt

= . Then apply m=∑F a
! ! to calculate the components of the net force. 

SET UP: The components of F
!

determine its magnitude and direction. 
EXECUTE: (a) Differentiating twice, 6xa βt= −  and 2 ,ya δ= −  so 

(2.20 kg) ( 0.72 N s) (1.58 N/s)x xF ma t t= = − = −  and 2(2.20 kg) ( 2.00 m s ) 4.40 Ny yF ma= = − = − . 
(b) The graph is given in Figure 5.116. 
(c) At 3.00 s, 4.75 N and 4.40 N,x yt F F= = − = −  so 2 2( 4.75 N) ( 4.40  N) 6.48  NF = − + − =  at an angle of 

( )4.40arctan 223 .4.75
− = °
−

 

EVALUATE: yF is constant and negative. xF is zero at 0t = and becomes increasingly more negative as t 
increases. 

 
Figure 5.116 

5.117. IDENTIFY: The velocity is tangent to the path. The acceleration has a tangential component when the speed is 
changing and a radial component when the path is curving. 
SET UP: rada

! is toward the center of curvature of the path. tana
! is parallel to v! when the speed is increasing and 

antiparallel to v! when the speed is decreasing. The net force F
!

is proportional to a! . 
EXECUTE: The diagram is sketched in Figure 5.117. 
EVALUATE: v! , a! , and F

!
all change during the motion. 

 
Figure 5.117 

5.118. IDENTIFY: Apply m=∑F a
! ! to the car. It has acceleration rada

! , directed toward the center of the circular path. 
SET UP: The analysis is the same as in Example 5.24. 

EXECUTE: (a) 
2 2

2 (12.0 m/s)(1.60 kg) 9.80 m/s 61.8 N.
5.00 mA

vF m g
R

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(b) 
2 2

2 (12.0 m/s)(1.60 kg) 9.80 m/s 30.4 N.
5.00 mB

vF m g
R

⎛ ⎞ ⎛ ⎞
= − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, where the minus sign indicates that the track 

pushes down on the car. The magnitude of this force is 30.4 N. 
EVALUATE: A BF F> . 2AF mg− . 
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5.119. IDENTIFY: The analysis is the same as for Problem 5.96. 
SET UP: The speed is related to the period by 2 2 (tan ) /v R T h Tπ π β= = , or 2 (tan ) /T h vπ β= . 
EXECUTE: The maximum and minimum speeds are the same as those found in Problem 5.96, 

s
max

s

cos sintan
sin cos

v gh β μ ββ
β μ β
+

=
−

 and s
min

s

cos sintan
sin cos

v gh β μ ββ
β μ β
−

=
+

. 

The minimum and maximum values of the period T are then 

s
min

s

tan sin cos2
cos sin

hT
g
β β μ βπ

β μ β
−

=
+

 and s
max

s

tan sin cos2
cos sin

hT
g
β β μ βπ

β μ β
+

=
−

. 

EVALUATE: For s 0μ = the results for the speeds reduce to min maxv v gh= = . 
tan

Rh
β

= . The result for v then 

agrees with the result in Example 5.23, if we take into account that in this problem β is measured from the vertical 
whereas in Example 5.23 it is measured relative to the horizontal. 

5.120. IDENTIFY: Apply m=∑F a
! ! to the block and to the wedge. 

SET UP: For both parts, take the x-direction to be horizontal and positive to the right, and the y-direction to be 
vertical and positive upward. The normal force between the block and the wedge is n; the normal force between the 
wedge and the horizontal surface will not enter, as the wedge is presumed to have zero vertical acceleration. The 
horizontal acceleration of the wedge is A, and the components of acceleration of the block are xa  and ya . 

EXECUTE: (a) The equations of motion are then sinMA n α= − , sinxma n α=  and cosyma n mgα= − . Note 
that the normal force gives the wedge a negative acceleration; the wedge is expected to move to the left. These are 
three equations in four unknowns, A, ,  x ya a  and n. Solution is possible with the imposition of the relation between 

A, xa and ya . An observer on the wedge is not in an inertial frame, and should not apply Newton�s laws, but the 
kinematic relation between the components of acceleration are not so restricted. To such an observer, the vertical 
acceleration of the block is ,ya but the horizontal acceleration of the block is .xa A−  To this observer, the block 

descends at an angle ,α  so the relation needed is tan  .y

x

a
α

a A
= −

−
 At this point, algebra is unavoidable. A 

possible approach is to eliminate xa by noting that x
Ma A
m

= − , using this in the kinematic constraint to eliminate 

ya  and then eliminating n. The results are: 

( ) tan ( tan )
gmA

M m Mα α
−

=
+ +

 

( ) tan ( tan )x
gMa

M m Mα α
=

+ +
 

( m) tan
( ) tan ( tan )y

g Ma
M m M

α
α α

− +
=

+ +
 

(b) When , 0,M m A>> →  as expected (the large block won�t move). Also, 

2

tan  sin cos
tan  (1 tan ) tan 1x

ga g gα α α
α α α

→ = =
+ +

which is the acceleration of the block ( sing α  in this case), 

with the factor of cosα giving the horizontal component. Similarly, 2sinya g α→ − . 
(c) The trajectory is a spiral. 
EVALUATE: If m M>> , our general results give 0xa = and ya g= − . The massive block accelerates straight 
downward, as if it were in free-fall. 

5.121. IDENTIFY: Apply m=∑F a
! ! to the block and to the wedge. 

SET UP: From Problem 5.120, sinxma n α= and cosyma n mgα= − for the block. 0ya = gives tanxa g α= . 
EXECUTE: If the block is not to move vertically, both the block and the wedge have this horizontal acceleration 
and the applied force must be ( ) ( ) tanF M m a M m g α= + = + . 
EVALUATE: 0F → as 0α → and F →∞ as α →∞ . 
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5.122. IDENTIFY: Apply m=∑F a
! ! . 

SET UP: Let x+  be directed up the ramp. 
EXECUTE: The normal force that the ramp exerts on the box will be cos sinn w Tα α= − . The rope provides a force of 

cosT θ  up the ramp, and the component of the weight down the ramp is sinw α . Thus, the net force up the ramp is 

k k kcos sin ( cos sin ) (cos sin ) (sin cos )F T w w T T wθ α μ α θ θ μ θ α μ α= − − − = + − +  

The acceleration will be the greatest when the first term in parentheses is greatest and this occurs when ktan .θ μ=  
EVALUATE: Small θ means F is more nearly in the direction of the motion. But 90θ → °means F is directed to 
reduce the normal force and thereby reduce friction. The optimum value of θ is somewhere in between and 
depends on kμ . When k 0μ = , the optimum value of θ is 0θ = ° . 

5.123. IDENTIFY: Use the results of Problem 5.44. 

SET UP: ( )f x  is a minimum when 0df
dx

= and 
2

2 0d f
dx

> . 

EXECUTE: (a) k k/(cos sin )F wμ θ μ θ= +  
(b) The graph of F versus θ is given in Figure 5.123. 
(c) F is minimized at ktan .θ μ=  For k 0.25μ = , 14.0θ = ° . 
EVALUATE: Small θ means F is more nearly in the direction of the motion. But 90θ → °means F is directed to 
reduce the normal force and thereby reduce friction. The optimum value of θ is somewhere in between and 
depends on kμ . 

 
Figure 5.123 

5.124. IDENTIFY: Apply m=∑F a
! ! to the ball. At the terminal speed, 0a = . 

SET UP: For convenience, take the positive direction to be down, so that for the baseball released from rest, the 
acceleration and velocity will be positive, and the speed of the baseball is the same as its positive component of 
velocity. Then the resisting force, directed against the velocity, is upward and hence negative. 
EXECUTE: (a) The free-body diagram for the falling ball is sketched in Figure 5.124. 
(b) Newton�s Second Law is then 2.ma mg Dv= −  Initially, when 0,v =  the acceleration is g, and the speed 
increases. As the speed increases, the resistive force increases and hence the acceleration decreases. This continues 
as the speed approaches the terminal speed. 

(c) At terminal velocity, 0,a =  so t
mgv
D

=  in agreement with Eq. (5.13). 

(d) The equation of motion may be rewritten as 2 2
t2

t

( )dv g v v
dt v
= − . This is a separable equation and may be 

expressed as 2 2 2
t t

dv g dt
v v v

=
−∫ ∫ or 2

t t t

1  arctanh .v gt
v v v

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 ( )t ttanh .v v gt v=  

EVALUATE: tanh
x x

x x

e ex
e e

−

−

−
=

+
. At 0t → , ttanh( / ) 0gt v →  and 0v → . At t →∞ , ttanh( / )gt v →∞  and tv v→ . 

 
Figure 5.124 
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5.125. IDENTIFY: Apply m=∑F a
! ! to each of the three masses and to the pulley B. 

SET UP: Take all accelerations to be positive downward. The equations of motion are straightforward, but the 
kinematic relations between the accelerations, and the resultant algebra, are not immediately obvious. If the 
acceleration of pulley B is ,Ba  then 3,Ba a= −  and Ba  is the average of the accelerations of masses 1 and 2, 
or 1 2 32 2 .Ba a a a+ = = −  
EXECUTE: (a) There can be no net force on the massless pulley B, so 2 .C AT T=  The five equations to be solved 
are then 1 1 1Am g T m a− = , 2 2 2Am g T m a− = , 3 3 3Cm g T m a− = , 1 2 32 0a a a+ + = and 2 0A CT T− = . These are five 
equations in five unknowns, and may be solved by standard means. 
The accelerations 1a  and 2a  may be eliminated by using 3 1 2 1 22 ( ) (2 ((1 ) (1 ))).Aa a a g T m m= − + = − − +  
The tension AT  may be eliminated by using 3 3(1 2) (1 2) ( ).A CT T m g a= = −  

Combining and solving for 3a  gives 1 2 2 3 1 3
3

1 2 2 3 1 3

4 .
4

m m m m m ma g
m m m m m m

− + +
=

+ +
 

(b) The acceleration of the pulley B has the same magnitude as 3a  and is in the opposite direction. 

(c) 3
1 3

1 1 1

( ).
2 2

A CT T ma g g g g a
m m m

= − = − = − −  Substituting the above expression for 3a  gives 

1 2 2 3 1 3
1

1 2 2 3 1 3

4 3 .
4
m m m m m ma g
m m m m m m

− +
=

+ +
 

(d) A similar analysis (or, interchanging the labels 1 and 2) gives 1 2 1 3 2 3
2

1 2 2 3 1 3

4 3 .
4
m m m m m ma g
m m m m m m

− +
=

+ +
 

(e), (f) Once the accelerations are known, the tensions may be found by substitution into the appropriate equation 

of motion, giving 1 2 3 1 2 3

1 2 2 3 1 3 1 2 2 3 1 3

4 8,  .
4 4A C

m m m m m mT g T g
m m m m m m m m m m m m

= =
+ + + +

 

(g) If 1 2m m m= = and 3 2 ,m m=  all of the accelerations are zero, 2CT mg=  and .AT mg=  All masses and pulleys 
are in equilibrium, and the tensions are equal to the weights they support, which is what is expected. 
EVALUATE: It is useful to consider special cases. For example, when 1 2 3m m m= >>  our general result gives 

1 2a a g= = + and 3a g= − . 

5.126. IDENTIFY: Apply m=∑F a
! ! to each block. The tension in the string is the same at both ends. If T w< for a 

block, that block remains at rest. 
SET UP: In all cases, the tension in the string will be half of F. 
EXECUTE: (a) 2 62 N,F =  which is insufficient to raise either block; 1 2 0.a a= =  
(b) 2 62 N.F =  The larger block (of weight 196 N) will not move, so 1 0,a =  but the smaller block, of weight 

98 N, has a net upward force of 49 N applied to it, and so will accelerate upwards with 2
2

49 N 4.9 m s .
10.0 kg

a = =  

(c) 2 212 N,F =  so the net upward force on block A is 16 N and that on block B is 114 N, so 

2
1

16 N 0.8 m s
20.0 kg

a = =  and 2
2

114 N 11.4 m s .
10.0 kg

a = =  

EVALUATE: The two blocks need not have accelerations with the same magnitudes. 
5.127. IDENTIFY: Apply m=∑F a

! ! to the ball at each position. 
SET UP: When the ball is at rest, 0a = . When the ball is swinging in an arc it has acceleration component 

2

rad
va
R

= , directed inward. 

EXECUTE: Before the horizontal string is cut, the ball is in equilibrium, and the vertical component of the tension 
force must balance the weight, so cosAT wβ =  or cosAT w β= . At point B, the ball is not in equilibrium; its speed 
is instantaneously 0, so there is no radial acceleration, and the tension force must balance the radial component of 
the weight, so cosBT w β=  and the ratio 2( ) cosB AT T β= . 
EVALUATE: At point B the net force on the ball is not zero; the ball has a tangential acceleration. 
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 6.1. IDENTIFY: Apply Eq.(6.2). 
SET UP: The bucket rises slowly, so the tension in the rope may be taken to be the bucket�s weight. 
EXECUTE: (a) 2(6.75 kg) (9.80 m /s )(4.00 m) 265 J.W Fs mgs= = = =  
(b) Gravity is directed opposite to the direction of the bucket�s motion, so Eq.(6.2) gives the negative of the result of 
part (a), or 265 J− . 
(c) The total work done on the bucket is zero. 
EVALUATE: When the force is in the direction of the displacement, the force does positive work. When the force is 
directed opposite to the displacement, the force does negative work. 

 6.2. IDENTIFY: In each case the forces are constant and the displacement is along a straight line, so cosW Fs φ= . 
SET UP: In part (a), when the cable pulls horizontally 0φ = ° and when it pulls at 35.0° above the horizontal 

35.0φ = ° . In part (b), if the cable pulls horizontally 180φ = ° . If the cable pulls on the car at 35.0° above the 
horizontal it pulls on the truck at 35.0° below the horizontal and 145.0φ = ° . For the gravity force 90φ = ° , since the 
force is vertical and the displacement is horizontal. 
EXECUTE: (a) When the cable is horizontal, 3 6(850 N)(5.00 10  m)cos0 4.25 10  JW = × = ×° . When the cable is 

35.0° above the horizontal, 3 6(850 N)(5.00 10  m)cos35.0 3.48 10  JW = × = ×° . 

(b) cos180 cos0= −° ° and cos145.0 cos35.0= −° ° , so the answers are 64.26 10  J− × and 63.48 10  J− × . 
(c) Since cos cos90 0φ = =° , 0W = in both cases. 
EVALUATE: If the car and truck are taken together as the system, the tension in the cable does no net work. 

 6.3. IDENTIFY: Each force can be used in the relation ( cos )W F s F sφ= =! for parts (b) through (d). For part (e), apply 

the net work relation as net worker grav .n fW W W W W= + + +  
SET UP: In order to move the crate at constant velocity, the worker must apply a force that equals the force of 
friction, worker k k .F f nμ= =  
EXECUTE: (a) The magnitude of the force the worker must apply is: 

( )( )( )2
worker k k k 0.25 30.0 kg 9.80 m/s 74 NF f n mgμ μ= = = = =  

(b) Since the force applied by the worker is horizontal and in the direction of the displacement, 0φ = °  and the 
work is: 

( ) ( )( )[ ]( )
worker worker cos 74 N cos0 4.5 m 333 JW F sφ= = = +°  

(c) Friction acts in the direction opposite of motion, thus 180φ = °  and the work of friction is: 

( ) ( )( )[ ]( )
k cos 74 N cos180 4.5 m 333 JfW f sφ= = = −°  

(d) Both gravity and the normal force act perpendicular to the direction of displacement. Thus, neither force does any 
work on the crate and grav 0.0 J.nW W= =  
(e) Substituting into the net work relation, the net work done on the crate is: 

net worker grav 333 J 0.0 J 0.0 J 333 J 0.0 Jn fW W W W W= + + + = + + + − =  

EVALUATE: The net work done on the crate is zero because the two contributing forces, worker  and ,fF F  are equal in 
magnitude and opposite in direction. 

 6.4. IDENTIFY: The forces are constant so Eq.(6.2) can be used to calculate the work. Constant speed implies 0.a =  We 
must use m=∑F a

" "  applied to the crate to find the forces acting on it. 

6
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(a) SET UP: The free-body diagram for the crate is given in Figure 6.4. 
 

 

EXECUTE: y yF ma=∑  
sin30 0n mg F− − ° =  
sin30n mg F= + °  

k k k k sin30f n mg Fμ μ μ= = + °  

Figure 6.4  

x xF ma=∑  

kcos30 0F f° − =  

k kcos30 sin30 0F mg Fμ μ° − − ° =  
2

k

k

0.25(30.0 kg)(9.80 m/s ) 99.2 N
cos30 sin30 cos30 (0.25)sin30

mgF μ
μ

= = =
° − ° ° − °

 

(b) ( cos ) (99.2 N)(cos30 )(4.5 m) 387 JFW F sφ= = ° =  

( cos30F °  is the horizontal component of ;F
"

 the work done by F
"

 is the displacement times the component of F
"

 
in the direction of the displacement.) 
(c) We have an expression for kf  from part (a): 

2
k k ( sin30 ) (0.250)[(30.0 kg)(9.80 m/s ) (99.2 N)(sin30 )] 85.9 Nf mg Fμ= + ° = + ° =  

180φ = °  since kf  is opposite to the displacement. Thus k( cos ) (85.9 N)(cos180 )(4.5 m) 387 JfW f sφ= = ° = −  

(d) The normal force is perpendicular to the displacement so 90φ = °  and 0.nW =  The gravity force (the weight) is 
perpendicular to the displacement so 90φ = °  and 0wW =  
(e) tot 387 J ( 387 J) 0F f n wW W W W W= + + + = + + − =  
EVALUATE: Forces with a component in the direction of the displacement do positive work, forces opposite to the 
displacement do negative work and forces perpendicular to the displacement do zero work. The total work, obtained 
as the sum of the work done by each force, equals the work done by the net force. In this problem, net 0F =  since 

0a =  and tot 0,W =  which agrees with the sum calculated in part (e). 
 6.5. IDENTIFY: The gravity force is constant and the displacement is along a straight line, so cosW Fs φ= . 

SET UP: The displacement is upward along the ladder and the gravity force is downward, so 
180.0 30.0 150.0φ = − =° ° ° . 735 Nw mg= = . 

EXECUTE: (a) (735 N)(2.75 m)cos150.0 1750 JW = = −° . 
(b) No, the gravity force is independent of the motion of the painter. 
EVALUATE: Gravity is downward and the vertical component of the displacement is upward, so the gravity force 
does negative work. 

 6.6. IDENTIFY and SET UP: ( cos ) ,FW F sφ=  since the forces are constant. We can calculate the total work by summing 
the work done by each force. The forces are sketched in Figure 6.6. 

 

EXECUTE: 1 1 1cosW Fs φ=  
6 3

1 (1.80 10  N)(0.75 10  m)cos14W = × × °  
9

1 1.31 10  JW = ×  

2 2 2 1cosW F s Wφ= =  

Figure 6.6  
9 9

tot 1 2 2(1.31 10  J) 2.62 10  JW W W= + = × = ×  
EVALUATE: Only the component cosF φ  of force in the direction of the displacement does work. These 
components are in the direction of s"  so the forces do positive work. 
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 6.7. IDENTIFY: All forces are constant and each block moves in a straight line. so cosW Fs φ= . The only direction the 
system can move at constant speed is for the 12.0 N block to descend and the 20.0 N block to move to the right. 
SET UP: Since the 12.0 N block moves at constant speed, 0a = for it and the tension T in the string is 12.0 NT = . 
Since the 20.0 N block moves to the right at constant speed the friction force kf on it is to the left and 

k 12.0 Nf T= = . 
EXECUTE: (a) (i) 0φ = ° and (12.0 N)(0.750 m)cos0 9.00 JW = =° . (ii) 180φ = ° and 

(12.0 N)(0.750 m)cos180 9.00 JW = = −° . 
(b) (i) 90φ = ° and 0W = . (ii) 0φ = ° and (12.0 N)(0.750 m)cos0 9.00 JW = =° . (iii) 180φ = °  and 

(12.0 N)(0.750 m)cos180 9.00 JW = = −° . (iv) 90φ = ° and 0W = . 
(c) tot 0W = for each block. 
EVALUATE: For each block there are two forces that do work, and for each block the two forces do work of equal 
magnitude and opposite sign. When the force and displacement are in opposite directions, the work done is 
negative. 

 6.8. IDENTIFY: Apply Eq.(6.5). 
SET UP: � � � � 1⋅ = ⋅ =i i j j and � � � � 0⋅ = ⋅ =i j j i  

EXECUTE: The work you do is � � � �((30 N) (40 N) ) (( 9.0 m) (3.0 m) )⋅ = − ⋅ − −F s i j i j
" "  

(30 N)( 9.0 m) ( 40 N)( 3.0 m) 270 N m 120 N m 150 J⋅ = − + − − = − ⋅ + ⋅ = −F s
" " . 

EVALUATE: The x-component of F
"

does negative work and the y-component of F
"

does positive work. The total 
work done by F

"
is the sum of the work done by each of its components. 

 6.9. IDENTIFY: Apply Eq.(6.2) or (6.3). 
SET UP: The gravity force is in the -directiony− , so 2 1( )mg mg y y⋅ = − −F s

" "  
EXECUTE: (a) (i) Tension force is always perpendicular to the displacement and does no work. 
(ii) Work done by gravity is 2 1( ).mg y y− −  When 1 2y y= , 0mgW = . 

(b) (i) Tension does no work. (ii) Let l be the length of the string. 2 1( ) (2 ) 25.1 JmgW mg y y mg l= − − = − = −  
EVALUATE: In part (b) the displacement is upward and the gravity force is downward, so the gravity force does 
negative work. 

 6.10. IDENTIFY: 21
2K mv=  

SET UP: 65 mi/h 29.1 m/s=  
EXECUTE: (a) 2 51

2 (750 kg)(29.1 m/s) 3.18 10  JK = = ×  

(b) 21
1 12K mv= . 21

2 22K mv= , with 2 1 / 2v v= , so 2 21 1 1
2 1 1 12 4 2( / 2) ( ) / 4K m v mv K= = = . The change in kinetic energy is a 

decrease of 3
14 K . 

(c) 1
2 12K K= . 2  constant

2
K m
v
= = , so 1 2

2 2
1 2

K K
v v

= . 1
2 1 2 1 1 12/ (65 mi/h) / 46 mi/hv v K K K K= = = . 

EVALUATE: Since 2K v∼ , to have half the kinetic energy the speed must be less than half of the original speed. 
 6.11. IDENTIFY: 21

2K mv= . Since the meteor comes to rest the energy it delivers to the ground equals its original kinetic 
energy. 
SET UP: 412 km/s 1.2 10  m/sv = = × . A 1.0 megaton bomb releases 154.184 10  J× of energy. 
EXECUTE: (a) 8 4 2 161

2 (1.4 10  kg)(1.2 10  m/s) 1.0 10  JK = × × = × . 

(b) 
16

15

1.0 10  J 2.4
4.184 10  J

×
=

×
. The energy is equivalent to 2.4 one-megaton bombs. 

EVALUATE: Part of the energy transferred to the ground lifts soil and rocks into the air and creates a large 
crater. 

 6.12. IDENTIFY: 21
2K mv= . Use the equations for free-fall to find the speed of the weight when it reaches the ground. 

SET UP: Estimate that a person has speed 2 m/s when walking and 6 m/s when running. The mass of an electron is 
319.11 10  kg−× . In part (c) take y+  downward, so 29.80 m/sya = + . Estimate a shoulder height of 1.6 m. 

EXECUTE: (a) Walking: 21
2 (75 kg)(2 m/s) 150 JK = = . Running: 21

2 (75 kg)(6 m/s) 1400 JK = = . 

(b) 31 6 2 181
2 (9.11 10  kg)(2.19 10  m/s) 2.2 10  JK − −= × × = × . 

(c) 2 2
0 02 ( )y y yv v a y y= + − gives 22(9.80 m/s )(1.6 m) 5.6 m/syv = = . 21

2 (1.0 kg)(5.6 m/s) 16 JK = = . 



6-4 Chapter 6 

(d) 2 2(100 J) 2.6 m/s
30 kg

Kv
m

= = = . Yes, this is reasonable. 

EVALUATE: A walking speed of 2 m/s corresponds to walking a mile in about 13 min. A running speed of 6 m/s 
corresponds to running a 100 m dash in about 17 s. 

 6.13. IDENTIFY: 21
2K mv= . Set up a ratio that relates K, m and v. 

SET UP: p e1836m m=  

EXECUTE: (a) p eK K= gives 2 2
e e p pm v m v= . e p p e/ 1836 42.85v v m m V V= = = . 

(b) p ev v= gives p e

p e

K K
m m

= . p e p e( / ) 1836K K m m K= = . 

EVALUATE: The electron has less mass so must travel faster to have the same kinetic energy. And with equal speeds 
the proton has more kinetic energy. 

 6.14. IDENTIFY: Only gravity does work on the watermelon, so tot gravW W= . totW K= Δ and 21
2K mv= . 

SET UP: Since the watermelon is dropped from rest, 1 0K = . 

EXECUTE: (a) 2
grav (4.80 kg)(9.80 m/s )(25.0 m) 1180 JW mgs= = =  

(b) tot 2 1W K K= −  so 2 1180 JK = . 22 2(1180 J) 22.2 m/s
4.80 kg

Kv
m

= = = . 

(c) The work done by gravity would be the same. Air resistance would do negative work and totW would be less than 

gravW . The answer in (a) would be unchanged and both answers in (b) would decrease. 
EVALUATE: The gravity force is downward and the displacement is downward, so gravity does positive work. 

 6.15. IDENTIFY: tot 2 1W K K= − . In each case calculate totW from what we know about the force and the displacement. 
SET UP: The gravity force is mg, downward. The friction force is k k kf n mgμ μ= = and is directed opposite to the 
displacement. The mass of the object isn't given, so we expect that it will divide out in the calculation. 
EXECUTE: (a) 1 0K = . tot gravW W mgs= = . 21

22mgs mv= and 2
2 2 2(9.80 m/s )(95.0 m) 43.2 m/sv gs= = = . 

(b) 2 0K = (at the maximum height). tot gravW W mgs= = − . 21
12mgs mv− = − and 

2
1 2 2(9.80 m/s )(525 m) 101 m/sv gs= = = . 

(c) 21
1 12K mv= . 2 0K = . tot kfW W mgsμ= = − . 21

k 12mgs mvμ− = − . 
2 2
1

2
k

(5.00 m/s) 5.80 m
2 2(0.220)(9.80 m/s )
vs
gμ

= = = . 

(d) 21
1 12K mv= . 21

2 22K mv= . tot kfW W mgsμ= = − . 2 tot 1K W K= + . 2 21 1
2 k 12 2mv mgs mvμ= − +  

2 2 2
2 1 k2 (5.00 m/s) 2(0.220)(9.80 m/s )(2.90 m) 3.53 m/sv v gsμ= − = − = . 

(e) 21
1 12K mv= . 2 0K = . grav 2W mgy= − , where 2y is the vertical height. 21

2 12mgy mv− = − and 
2 2
1

2 2

(12.0 m/s) 7.35 m
2 2(9.80 m/s )
vy
g

= = = . 

EVALUATE: In parts (c) and (d), friction does negative work and the kinetic energy is reduced. In part (a), gravity 
does positive work and the speed increases. In parts (b) and (e), gravity does negative work and the speed decreases. 
The vertical height in part (e) is independent of the slope angle of the hill. 

 6.16. IDENTIFY: From the work-energy relation, grav rockW W K= = Δ . 
SET UP: As the rock rises, the gravitational force, ,F mg=  does work on the rock. Since this force acts in the 
direction opposite to the motion and displacement, s, the work is negative. Let h be the vertical distance the rock 
travels. 
EXECUTE: (a) Applying grav 2 1W K K= −  we obtain 2 21 1

2 12 2mgh mv mv− = − . Dividing by m and solving for 1v , 
2

1 2 2v v gh= + . Substituting 215.0 m and 25.0 m/s,h v= =  

( ) ( )( )2 2
1 25.0 m/s 2 9.80 m/s 15.0 m 30.3 m/sv = + =  

(b) Solve the same work-energy relation for h. At the maximum height 2 0v = . 

2 21 1
2 12 2mgh mv mv− = −  and 

( ) ( )
( )

2 22 2
1 2

2

30.3 m/s 0.0 m/s 46.8 m
2 2 9.80 m/s
v vh
g
− −

= = = . 
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EVALUATE: Note that the weight of 20 N was never used in the calculations because both gravitational potential 
and kinetic energy are proportional to mass, m. Thus any object, that attains 25.0 m/s at a height of 15.0 m, must have 
an initial velocity of 30.3 m/s. As the rock moves upward gravity does negative work and this reduces the kinetic 
energy of the rock. 

 6.17. IDENTIFY and SET UP: Apply Eq.(6.6) to the box. Let point 1 be at the bottom of the incline and let point 2 be at 
the skier. Work is done by gravity and by friction. Solve for 1K  and from that obtain the required initial speed. 
EXECUTE: tot 2 1W K K= −  

21
1 02 ,K mv=  2 0K =  

Work is done by gravity and friction, so tot .mg fW W W= +  

2 1( )mgW mg y y mgh= − − = −  

.fW fs= −  The normal force is cosn mg α=  and / sin ,s h α=  where s is the distance the box travels along the 
incline. 

k k( cos )( / sin ) / tanfW mg h mghμ α α μ α= − = −  
Substituting these expressions into the work-energy theorem gives 

21
k 02/ tan .mgh mgh mvμ α− − = −  

Solving for 0v  then gives 0 k2 (1 / tan ).v gh μ α= +  

EVALUATE: The result is independent of the mass of the box. As 90 ,α → °  h s=  and 0 2 ,v gh=  the same as 
throwing the box straight up into the air. For 90α = °  the normal force is zero so there is no friction. 

 6.18. IDENTIFY: Apply cosW Fs φ= and totW K= Δ . 
SET UP: Parallel to incline: force component sinW mg α=! , down incline; displacement sins h α= / , down incline. 
Perpendicular to the incline: 0s = . 
EXECUTE: (a) || ( sin )( / sin )W mg h mghα α= = . 0W⊥ = , since there is no displacement in this direction. 

||mgW W W mgh⊥= + = , same as falling height h. 

(b) tot 2 1W K K= −  gives 21
2mgh mv=  and 2v gh= , same as if had been dropped from height h. The work done by 

gravity depends only on the vertical displacement of the object. When the slope angle is small, there is a small force 
component in the direction of the displacement but a large displacement in this direction. When the slope angle is 
large, the force component in the direction of the displacement along the incline is larger but the displacement in this 
direction is smaller. 
(c) 15.0 mh = , so 2 17.1 sv gh= = . 
EVALUATE: The acceleration and time of travel are different for an object sliding down an incline and an object in 
free-fall, but the final velocity is the same in these two cases. 

 6.19. IDENTIFY: tot 2 1W K K= −  with tot fW W= . The car stops, so 2 0K = . In each case identify what is constant and set 
up a ratio. 
SET UP: fW fs= − , so 21

02fs mv− = − . 

EXECUTE: (a) 0 03b av v= . as D= . f is constant. 
2
0 2 constantv f
s m
= = , so 

2 2
0 0a b

a b

v v
s s

= . 
2

20

0

(3) 9b
b a

a

vs s D D
v
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

. 

(b) 3b af f= . 0v is constant. 21
02 constantfs mv= = , so a a b bf s f s= . /3a

b a
b

fs s D
f

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. 

EVALUATE: The stopping distance is proportional to the square of the initial speed. When the friction force 
increases, the stopping distance decreases. 

 6.20. IDENTIFY and SET UP: Apply Eq.(6.6). The relation between the speeds 1v  and 2v  tells us the relation between 1K  
and 2.K  
EXECUTE: (a) 2 1W K K= −  

21
1 12 ,K mv=  21

2 22K mv=  
1

2 14v v=  gives that ( ) ( )2 21 1 1 1 1
2 1 1 12 4 16 2 16K m v mv K= = =  

151
2 1 1 1 116 16W K K K K K= − = − = −  

(b) EVALUATE: K depends only on the magnitude of v"  not on its direction, so the answer for W in part (a) does not 
depend on the final direction of the electron�s motion. The electron slows down, so its kinetic energy decreases and 
the total work done on it is negative. 
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 6.21. IDENTIFY: Apply cosW Fs φ= and totW K= Δ . 
SET UP: 0φ = °  
EXECUTE: From Equations (6.1), (6.5) and (6.6), and solving for F, 

2 2 2 21 1
2 12 2( ) (8.00 kg)((6.00 m /s) (4.00 m /s) )

32.0 N.
(2.50 m)

m v vKF
s s

− −Δ
= = = =  

EVALUATE: The force is in the direction of the displacement, so the force does positive work and the kinetic energy 
of the object increases. 

 6.22. IDENTIFY and SET UP: Use Eq.(6.6) to calculate the work done by the foot on the ball. Then use Eq.(6.2) to find the 
distance over which this force acts. 
EXECUTE: tot 2 1W K K= −  

2 21 1
1 12 2 (0.420 kg)(2.00 m/s) 0.84 JK mv= = =  

2 21 1
2 22 2 (0.420 kg)(6.00 m/s) 7.56 JK mv= = =  

tot 2 1 7.56 J 0.84 J 6.72 JW K K= − = − =  
The 40.0 N force is the only force doing work on the ball, so it must do 6.72 J of work. ( cos )FW F sφ=  gives that  

6.72 J 0.168 m
cos (40.0 N)(cos0)
Ws

F φ
= = =  

EVALUATE: The force is in the direction of the motion so positive work is done and this is consistent with an 
increase in kinetic energy. 

 6.23. IDENTIFY: Apply totW K= Δ . 
SET UP: 1 0v = , 2v v= . k kf mgμ=  and kf does negative work. The force 36.0 NF = is in the direction of the 
motion and does positive work. 
EXECUTE: (a) If there is no work done by friction, the final kinetic energy is the work done by the applied force, 
and solving for the speed, 

2 2 2(36.0 N)(1.20 m) 4.48 m /s.
(4.30 kg)

W Fsv
m m

= = = =  

(b) The net work is k k( )Fs f s F mg sμ− = − , so 
2

k2( ) 2(36.0 N (0.30)(4.30 kg)(9.80 m /s ))(1.20 m) 3.61 m/s
(4.30 kg)

F mg sv
m
μ− −

= = =  

EVALUATE: The total work done is larger in the absence of friction and the final speed is larger in that case. 
 6.24. IDENTIFY: Apply cosW Fs φ= and totW K= Δ  

SET UP: The gravity force has magnitude mg and is directed downward. 
EXECUTE: (a) On the way up, gravity is opposed to the direction of motion, and so 

2(0.145 kg)(9.80 m /s )(20.0 m) 28.4 JW mgs= − = − = − . 

(b) 2 2
2 1

2( 28.4 J)2 (25.0 m /s) 15.3 m /s
(0.145 kg)

Wv v
m

−
= + = + = . 

(c) No; in the absence of air resistance, the ball will have the same speed on the way down as on the way up. On the 
way down, gravity will have done both negative and positive work on the ball, but the net work at this height will be 
the same. 
EVALUATE: As the baseball moves upward, gravity does negative work and the speed of the baseball decreases. 

 6.25. (a) IDENTIFY and SET UP: Use Eq.(6.2) to find the work done by the positive force. Then use Eq.(6.6) to find the 
final kinetic energy, and then 21

2 22K mv=  gives the final speed. 
EXECUTE: tot 2 1,W K K= −  so 2 tot 1K W K= +  

2 21 1
1 12 2 (7.00 kg)(4.00 m/s) 56.0 JK mv= = =  

The only force that does work on the wagon is the 10.0 N force. This force is in the direction of the displacement so 
0φ = °  and the force does positive work: 

( cos ) (10.0 N)(cos0)(3.0 m) 30.0 JFW F sφ= = =  

Then 2 tot 1 30.0 J 56.0 J 86.0 J.K W K= + = + =  

21
2 22 ;K mv=  2

2
2 2(86.0 J) 4.96 m/s

7.00 kg
Kv
m

= = =  
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(b) IDENTIFY: Apply m=∑F a
" "  to the wagon to calculate a. Then use a constant acceleration equation to calculate 

the final speed. The free-body diagram is given in Figure 6.25. 
SET UP:  

 

EXECUTE: x xF ma=∑  

xF ma=  

210.0 N 1.43 m/s
7.00 kgx

Fa
m

= = =  

Figure 6.25  
2 2
2 1 2 02 ( )x xv v a x x= + −  

2 2 2
2 1 02 ( ) (4.00 m/s) 2(1.43 m/s )(3.0 m) 4.96 m/sx x xv v a x x= + − = + =  

EVALUATE: This agrees with the result calculated in part (a). The force in the direction of the motion does positive 
work and the kinetic energy and speed increase. In part (b), the equivalent statement is that the force produces an 
acceleration in the direction of the velocity and this causes the magnitude of the velocity to increase. 

 6.26. IDENTIFY: Apply tot 2 1W K K= − . 
SET UP: 1 0K = . The normal force does no work. The work W done by gravity is W mgh= , where sinh L θ=  is 
the vertical distance the block has dropped when it has traveled a distance L down the incline and θ  is the angle the 
plane makes with the horizontal. 

EXECUTE: The work-energy theorem gives 2 2 2 2 sinK Wv gh gL
m m

θ= = = = . Using the given numbers, 

22(9.80 m /s )(0.75 m)sin36.9 2.97 m /s.v = ° =  
EVALUATE: The final speed of the block is the same as if it had been dropped from a height h. 

 6.27. IDENTIFY: tot 2 1W K K= − . Only friction does work. 

SET UP: 
ktot kfW W mgsμ= = − . 2 0K = (car stops). 21

1 02K mv= . 

EXECUTE: (a) tot 2 1W K K= − gives 21
k 02mgs mvμ− = − . 

2
0

k2
vs
gμ

= . 

(b) (i) k k2b aμ μ= . 
2
0

k constant
2
vs
g

μ = = so k ka a b bs sμ μ= . k

k

/ 2a
b a a

b

s s sμ
μ

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

. The minimum stopping distance 

would be halved. (ii) 0 02b av v= . 2
0 k

1 constant
2

s
v gμ
= = , so 2 2

0 0

a b

a b

s s
v v

= . 
2

0

0

4b
b a a

a

vs s s
v
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

. The stopping distance 

would become 4 times as great. (iii) 0 02b av v= , k k2b aμ μ= . k
2
0

1 constant
2

s
v g
μ

= = , so k k
2 2
0 0

a a b b

a b

s s
v v
μ μ

= . 

2
2k 0

k 0

1 (2) 2
2

a b
b a a a

b a

vs s s s
v

μ
μ

⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

. The stopping distance would double. 

EVALUATE: The stopping distance is directly proportional to the square of the initial speed and indirectly 
proportional to the coefficient of kinetic friction. 

 6.28. IDENTIFY: The work that must be done to move the end of a spring from 1x to 2x is 2 21 1
2 12 2W kx kx= − . The force 

required to hold the end of the spring at displacement x is xF kx= . 
SET UP: When the spring is at its unstretched length, 0x = . When the spring is stretched, 0x > , and when the 
spring is compressed, 0x < . 

EXECUTE: (a) 1 0x = and 21
22W kx= . 4

2 2
2

2 2(12.0 J) 2.67 10  N/m
(0.0300 m)

Wk
x

= = = × . 

(b) 4(2.67 10  N/m)(0.0300 m) 801 NxF kx= = × = . 

(c) 1 0x = , 2 0.0400 mx = − . 4 21
2 (2.67 10  N/m)( 0.0400 m) 21.4 JW = × − = . 

4(2.67 10  N/m)(0.0400 m) 1070 NxF kx= = × = . 
EVALUATE: When a spring, initially unstretched, is either compressed or stretched, positive work is done by the 
force that moves the end of the spring. 
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 6.29. IDENTIFY and SET UP: Use Eq.(6.8) to calculate k for the spring. Then Eq.(6.10), with 1 0,x =  can be used to 
calculate the work done to stretch or compress the spring an amount 2.x  
EXECUTE: Use the information given to calculate the force constant of the spring. 

xF kx=  gives 160 N 3200 N/m
0.050 m

xFk
x

= = =  

(a) (3200 N/m)(0.015 m) 48 NxF kx= = =  
(3200 N/m)( 0.020 m) 64 NxF kx= = − = −  (magnitude 64 N) 

(b) 2 21 1
2 2 (3200 N/m)(0.015 m) 0.36 JW kx= = =  
2 21 1

2 2 (3200 N/m)( 0.020 m) 0.64 JW kx= = − =  
Note that in each case the work done is positive. 
EVALUATE: The force is not constant during the displacement so Eq.(6.2) cannot be used. A force in the x+  
direction is required to stretch the spring and a force in the opposite direction to compress it. The force xF  is in the 
same direction as the displacement, so positive work is done in both cases. 

 6.30. IDENTIFY: The magnitude of the work can be found by finding the area under the graph. 
SET UP: The area under each triangle is 1/2 base height× . 0xF > , so the work done is positive when x increases 
during the displacement. 
EXECUTE: (a) 1/ 2 (8 m)(10 N) 40 J= . 
(b) 1/ 2 (4 m)(10 N) 20 J= . 
(c) 1/ 2 (12 m)(10 N) 60 J= . 
EVALUATE: The sum of the answers to parts (a) and (b) equals the answer to part (c). 

 6.31. IDENTIFY: Use the work-energy theorem and the results of Problem 6.30. 
SET UP: For 0x = to 8.0 mx = , tot 40 JW = . For 0x = to 12.0 mx = , tot 60 JW = . 

EXECUTE: (a) (2)(40 J) 2.83 m /s
10 kg

v = =  

(b) (2)(60 J) 3.46 m /s
10 kg

v = = . 

EVALUATE: F
"

is always in the -direction.x+  For this motion F
"

does positive work and the speed continually 
increases during the motion. 

 6.32. IDENTIFY: The force has only an x-component and the motion is along the x-direction, so 2

1

x

xx
W F dx= ∫ . 

SET UP: 1 0x = and 2 6.9 mx = . 
EXECUTE: The work you do with your changing force is 

2 2 2
2 2

1 1
1 1 1

2( ) ( 20.0 N) (3.0 N/m) ( 20.0 N) | (3.0 N/m)( /2) |
x x x x x

x xx x x
W F x dx dx xdx x x= = − − = − −∫ ∫ ∫

138 N m 71.4 N m 209 JW = − ⋅ − ⋅ = − . 
EVALUATE: The work is negative because the cow continues to move forward (in the -directionx+ ) as you vainly 
attempt to push her backward. 

 6.33. IDENTIFY: Apply Eq.(6.6) to the box. 
SET UP: Let point 1 be just before the box reaches the end of the spring and let point 2 be where the spring has 
maximum compression and the box has momentarily come to rest. 
EXECUTE: tot 2 1W K K= −  

21
1 02 ,K mv=  2 0K =  

Work is done by the spring force. 21
tot 22 ,W kx= −  where 2x  is the amount the spring is compressed. 

2 21 1
2 02 2kx mv− = −  and 2 0 / (3.0 m/s) (6.0 kg)/(7500 N/m) 8.5 cmx v m k= = =  

EVALUATE: The compression of the spring increases when either 0v  or m increases and decreases when k increases 
(stiffer spring). 

 6.34. IDENTIFY: The force applied to the springs is xF kx= . The work done on a spring to move its end from 1x to 2x  is 
2 21 1
2 12 2W kx kx= − . Use the information that is given to calculate k. 

SET UP: When the springs are compressed 0.200 m from their uncompressed length, 1 0x = and 2 0.200 mx = − . 
When the platform is moved 0.200 m farther, 2x  becomes 0.400 m− . 
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EVALUATE: (a) 2 2 2
2 1

2 2(80.0 J) 4000 N/m
(0.200 m) 0

Wk
x x

= = =
− −

. (4000 N/m)( 0.200 m) 800 NxF kx= = − = − . The 

magnitude of force that is required is 800 N. 
(b) To compress the springs from 1 0x = to 2 0.400 mx = − , the work required is 

2 2 21 1 1
2 12 2 2 (4000 N/m)( 0.400 m) 320 JW kx kx= − = − = . The additional work required is 320 J 80 J 240 J− = . For 

0.400 mx = − , 1600 NxF kx= = − . The magnitude of force required is 1600 N. 
EVALUATE: More work is required to move the end of the spring from 0.200 mx = − to 0.400 mx = − than to move 
it from 0x = to 0.200 mx = − , even though the displacement of the platform is the same in each case. The magnitude 
of the force increases as the compression of the spring increases. 

 6.35. IDENTIFY: Apply m=∑F a
" "  to calculate the sμ  required for the static friction force to equal the spring force. 

SET UP: (a) The free-body diagram for the glider is given in Figure 6.35. 

 

EXECUTE: y yF ma=∑  
0n mg− =  

n mg=  

s sf mgμ=  

Figure 6.35  

x xF ma=∑  

s spring 0f F− =  

s 0mg kdμ − =  

s 2

(20.0 N/m)(0.086 m) 1.76
(0.100 kg)(9.80 m/s )

kd
mg

μ = = =  

(b) IDENTIFY and SET UP: Apply m=∑F a
" "  to find the maximum amount the spring can be compressed and still 

have the spring force balanced by friction. Then use tot 2 1W K K= −  to find the initial speed that results in this 
compression of the spring when the glider stops. 
EXECUTE: smg kdμ =  

2
s (0.60)(0.100 kg)(9.80 m/s ) 0.0294 m

20.0 N/m
mgd
k

μ
= = =  

Now apply the work-energy theorem to the motion of the glider: 
tot 2 1W K K= −  

21
1 12 ,K mv=  2 0K =  (instantaneously stops) 

21
tot spring fric k2W W W kd mgdμ= + = − −  (as in Example 6.8) 

2 21
tot 2 (20.0 N/m)(0.0294 m) 0.47(0.100 kg)(9.80 m/s )(0.0294 m) 0.02218 JW = − − = −  

Then tot 2 1W K K= −  gives 21
120.02218 J .mv− = −  

1
2(0.02218 J) 0.67 m/s

0.100 kg
v = =  

EVALUATE: In Example 6.8 an initial speed of 1.50 m/s compresses the spring 0.086 m and in part (a) of this 
problem we found that the glider doesn�t stay at rest. In part (b) we found that a smaller displacement of 0.0294 m 
when the glider stops is required if it is to stay at rest. And we calculate a smaller initial speed (0.67 m/s) to produce 
this smaller displacement. 

 6.36. IDENTIFY: For the spring, 2 21 1
1 22 2W kx kx= − . Apply tot 2 1W K K= − . 

SET UP: 1 0.025 mx = − and 2 0x = . 

EXECUTE: (a) 2 21 1
12 2 (200 N / m)( 0.025 m) 0.060 JW kx= = − = . 

(b) The work-energy theorem gives 2
2 2(0.060 J) 0.18 m /s.

(4.0 kg)
Wv
m

= = =  

EVALUATE: The block moves in the direction of the spring force, the spring does positive work and the kinetic 
energy of the block increases. 
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 6.37. IDENTIFY and SET UP: The magnitude of the work done by xF  equals the area under the xF  versus x curve. The 
work is positive when xF  and the displacement are in the same direction; it is negative when they are in opposite 
directions. 
EXECUTE: (a) xF  is positive and the displacement xΔ  is positive, so 0.W >  

1
2 (2.0 N)(2.0 m) (2.0 N)(1.0 m) 4.0 JW = + = +  

(b) During this displacement 0,xF =  so 0.W =  
(c) xF  is negative, xΔ  is positive, so 0.W <  1

2 (1.0 N)(2.0 m) 1.0 JW = − = −  
(d) The work is the sum of the answers to parts (a), (b), and (c), so 4.0 J 0 1.0 J 3.0 JW = + − = +  
(e) The work done for 7.0 mx =  to 3.0 mx =  is 1.0 J.+  This work is positive since the displacement and the force 
are both in the -direction.x−  The magnitude of the work done for 3.0 mx =  to 2.0 mx =  is 2.0 J, the area under xF  
versus x. This work is negative since the displacement is in the -directionx−  and the force is in the -direction.x+  
Thus 1.0 J 2.0 J 1.0 JW = + − = −  
EVALUATE: The work done when the car moves from 2.0 mx =  to 0x =  is 1

2 (2.0 N)(2.0 m) 2.0 J.− = −  Adding 
this to the work for 7.0 mx =  to 2.0 mx =  gives a total of 3.0 JW = −  for 7.0 mx =  to 0.x =  The work for 

7.0 mx =  to 0x =  is the negative of the work for 0x =  to 7.0 m.x =  
 6.38. IDENTIFY: Apply tot 2 1W K K= − . 

SET UP: 1 0K = . From Exercise 6.37, the work for 0x = to 3.0 mx = is 4.0 J. W for 0x = to 4.0 mx = is also 
4.0 J. For 0x = to 7.0 mx = , 3.0 JW = . 
EXECUTE: (a) 4.0 JK = , so 2 2(4.0 J) (2.0 kg) 2.00 m /sv K m= = = . 
(b) No work is done between 3.0 mx =  and 4.0 mx = , so the speed is the same, 2.00 m/s. 

(c) 3.0 JK = , so 2 / 2(3.0 J) /(2.0 kg) 1.73 m /sv K m= = = . 
EVALUATE: In each case the work done by F is positive and the car gains kinetic energy. 

 6.39. IDENTIFY and SET UP: Apply Eq.(6.6). Let point 1 be where the sled is released and point 2 be at 0x =  for part (a) 
and at 0.200 mx = −  for part (b). Use Eq.(6.10) for the work done by the spring and calculate 2.K  Then 21

2 22K mv=  
gives 2.v  
EXECUTE: (a) tot 2 1W K K= −  so 2 1 totK K W= +  

1 0K =  (released with no initial velocity), 21
2 22K mv=  

The only force doing work is the spring force. Eq.(6.10) gives the work done on the spring to move its end from 1x  to 

2.x  The force the spring exerts on an object attached to it is ,F kx= −  so the work the spring does is 

( )2 2 2 21 1 1 1
spr 2 1 1 22 2 2 2 .W kx kx kx kx= − − = −  Here 1 0.375 mx = −  and 2 0.x =  Thus 21

spr 2 (4000 N/m)( 0.375 m) 0 281 J.W = − − =  

2 1 tot 0 281 J 281 JK K W= + = + =  

Then 21
2 22K mv=  implies 2

2
2 2(281 J) 2.83 m/s.

70.0 kg
Kv
m

= = =  

(b) 2 1 totK K W= +  

1 0K =  
2 21 1

tot spr 1 22 2 .W W kx kx= = −  Now 2 0.200 m,x =  so 
2 21 1

spr 2 2(4000 N/m)( 0.375 m) (4000 N/m)( 0.200 m) 281 J 80 J 201 JW = − − − = − =  

Thus 2 0 201 J 201 JK = + =  and 21
2 22K mv=  gives 2

2
2 2(201 J) 2.40 m/s.

70.0 kg
Kv
m

= = =  

EVALUATE: The spring does positive work and the sled gains speed as it returns to 0.x =  More work is done 
during the larger displacement in part (a), so the speed there is larger than in part (b). 

 6.40. IDENTIFY: xF kx=  
SET UP: When the spring is in equilibrium, the same force is applied to both ends of any segment of the spring. 
EXECUTE: (a) When a force F is applied to each end of the original spring, the end of the spring is displaced a 
distance x. Each half of the spring elongates a distance hx , where h / 2x x= . Since F is also the force applied to each 

half of the spring, F kx= and h hF k x= . h hkx k x= and h
h

2xk k k
x

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. 
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(b) The same reasoning as in part (a) gives seg 3k k= , where segk is the force constant of each segment. 
EVALUATE: For half of the spring the same force produces less displacement than for the original spring. Since 

/k F x= , smaller x for the same F means larger k. 
 6.41. IDENTIFY and SET UP: Apply Eq.(6.6) to the glider. Work is done by the spring and by gravity. Take point 1 to be 

where the glider is released. In part (a) point 2 is where the glider has traveled 1.80 m and 2 0.K =  There two points 
are shown in Figure 6.41a. In part (b) point 2 is where the glider has traveled 0.80 m. 
EXECUTE: (a) tot 2 1 0.W K K= − =  Solve for 1,x  the amount the spring is initially compressed. 

 

tot spr 0wW W W= + =  

So spr wW W= −  
(The spring does positive work on 
the glider since the spring force is 
directed up the incline, the same as 
the direction of the displacement.) 

Figure 6.41a  
The directions of the displacement and of the gravity force are shown in Figure 6.41b. 

 

( cos ) ( cos130.0 )wW w s mg sφ= = °  
2(0.0900 kg)(9.80 m/s )(cos130.0 )(1.80 m) 1.020 JwW = ° = −  

(The component of w parallel to the incline is  
directed down the incline, opposite to the  
displacement, so gravity does negative work.) 

Figure 6.41b  

spr 1.020 JwW W= − = +  

21
spr 12W kx=  so spr

1

2 2(1.020 J) 0.0565 m
640 N/m

W
x

k
= = =  

(b) The spring was compressed only 0.0565 m so at this point in the motion the glider is no longer in contact with the 
spring. Points 1 and 2 are shown in Figure 6.41c. 

 

tot 2 1W K K= −  

2 1 totK K W= +  

1 0K =  

Figure 6.41c  

tot spr wW W W= +  

From part (a), spr 1.020 JW =  and 
2( cos130.0 ) (0.0900 kg)(9.80 m/s )(cos130.0 )(0.80 m) 0.454 JwW mg s= ° = ° = −  

Then 2 spr 1.020 J 0.454 J 0.57 J.wK W W= + = + − = +  

EVALUATE: The kinetic energy in part (b) is positive, as it must be. In part (a), 2 0x =  since the spring force is no 
longer applied past this point. In computing the work done by gravity we use the full 0.80 m the glider moves. 

 6.42. IDENTIFY: Apply tot 2 1W K K= − to the brick. Work is done by the spring force and by gravity. 
SET UP: At the maximum height. 0v = . Gravity does negative work, gravW mgh= − . The work done by the spring 

is 21
2 kd , where d is the distance the spring is compressed initially. 

EXECUTE: The initial and final kinetic energies of the brick are both zero, so the net work done on the brick by the 
spring and gravity is zero, so 2(1 2) 0kd mgh− = , or 

22 / 2(1.80 kg)(9.80 m /s )(3.6 m) /(450 N / m) 0.53 m.d mgh k= = =  The spring will provide an upward force 
while the spring and the brick are in contact. When this force goes to zero, the spring is at its uncompressed length. 
But when the spring reaches its uncompressed length the brick has an upward velocity and leaves the spring. 
EVALUATE: Gravity does negative work because the gravity force is downward and the brick moves upward. The 
spring force does positive work on the brick because the spring force is upward and the brick moves upward. 
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 6.43. IDENTIFY: Apply the relation between energy and power. 

SET UP: Use WP
t

=
Δ

 to solve for W, the energy the bulb uses. Then set this value equal to 21
2mv  and solve for the 

speed. 
EXECUTE: 5(100 W)(3600 s) 3.6 10 JW P t= Δ = = ×  

53.6 10 JK = ×  so 
52 2(3.6 10 J) 100 m/s

70 kg
Kv
m

×
= = =  

EVALUATE: Olympic runners achieve speeds up to approximately 36 m/s, or roughly one third the result calculated. 
 6.44. IDENTIFY: Energy is power times time. 

SET UP: 1 W 1 J/s= . 71 yr 3.16 10  s= × . 

EXECUTE: (a) 
19

11
7

(1.0 10  J / yr) 3.2 10  W.
(3.16 10  s / yr)

×
= ×

×
 

(b) 
11

8

3.2 10  W 1.1 kW/person.
3.0 10  folks

×
=

×
 

(c) 
11

8 2 2
3 2

3.2 10  W 8.0 10  m 800 km .
(0.40)1.0 10  W / m

A ×
= = × =

×
 

EVALUATE: The area in part (c) corresponds to a square about 28 km on a side, which is about 18 miles. The space 
required is not an impediment. 

 6.45. IDENTIFY: av
WP
t

Δ
=
Δ

. WΔ is the energy released. 

SET UP: WΔ is to be the same. 71 y 3.156 10  s= × . 
EXECUTE: av constantP t WΔ = Δ = , so av-sun sun av-m mP t P tΔ = Δ . 

5 7
13sun

av-m av-sun
m

[2.5 10  y][3.156 10  s/y] 3.9 10
0.20 s

tP P P
t

⎛ ⎞ ⎛ ⎞Δ × ×
= = = ×⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠⎝ ⎠

. 

EVALUATE: Since the power output of the magnetar is so much larger than that of our sun, the mechanism by which 
it radiates energy must be quite different. 

 6.46. IDENTIFY: The thermal energy is produced as a result of the force of friction, k .F mgμ=  The average thermal 
power is thus the average rate of work done by friction or avP Fv= ! . 

SET UP: 2 1
av

8.00 m/s 0 4.00 m/s
2 2

v vv + +⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

EXECUTE: ( )( )( ) ( )2
av 0.200 20.0 kg 9.80 m/s 4.00 m/s 157 WP Fv ⎡ ⎤= = =⎣ ⎦  

EVALUATE: The power could also be determined as the rate of change of kinetic energy, ,K tΔ  where the time is 

calculated from f iv v at= +  and a is calculated from a force balance, k .F ma mgμ= =∑  

 6.47. IDENTIFY: Use the relation P Fv= !  to relate the given force and velocity to the total power developed. 
SET UP: 1 hp 746 W=  

EXECUTE: The total power is ( )( ) 3165 N 9.00 m/s 1.49 10  W.P Fv= = = ×!  Each rider therefore contributes 

( )3
each rider 1.49 10  W / 2 745 W 1 hp.P = × = ≈  

EVALUATE: The result of one horsepower is very large; a rider could not sustain this output for long periods of 
time. 

 6.48. IDENTIFY and SET UP: Calculate the power used to make the plane climb against gravity. Consider the vertical 
motion since gravity is vertical. 
EXECUTE: The rate at which work is being done against gravity is 

2(700 kg)(9.80 m/s )(2.5 m/s) 17.15 kW.P Fv mgv= = = =  
This is the part of the engine power that is being used to make the airplane climb. The fraction this is of the total is 
17.15 kW/75 kW 0.23.=  
EVALUATE: The power we calculate for making the airplane climb is considerably less than the power output of the 
engine. 
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 6.49. IDENTIFY: av
WP
t

Δ
=
Δ

. The work you do in lifting mass m a height h is mgh. 

SET UP: 1 hp 746 W=  
EXECUTE: (a) The number per minute would be the average power divided by the work (mgh) required to lift one 

box, 2

(0.50 hp) (746 W hp) 1.41 s,
(30 kg) (9.80 m s ) (0.90 m)

= or 84.6 min.  

(b) Similarly, 2

(100 W) 0.378 s,
(30 kg) (9.80 m s ) (0.90 m)

= or 22.7 min.  

EVALUATE: A 30-kg crate weighs about 66 lbs. It is not possible for a person to perform work at this rate. 
 6.50. IDENTIFY and SET UP: Use Eq.(6.15) to relate the power provided and the amount of work done against gravity in 

16.0 s. The work done against gravity depends on the total weight which depends on the number of passengers. 
EXECUTE: Find the total mass that can be lifted: 

av ,W mghP
t t

Δ
= =
Δ

 so avP tm
gh

=  

4
av

746 W(40 hp) 2.984 10  W
1 hp

P
⎛ ⎞

= = ×⎜ ⎟
⎝ ⎠

 

4
3av

2

(2.984 10  W)(16.0 s) 2.436 10  kg
(9.80 m/s )(20.0 m)

P tm
gh

×
= = = ×  

This is the total mass of elevator plus passengers. The mass of the passengers is 3 32.436 10  kg 600 kg 1.836 10  kg.× − = ×  

The number of passengers is 
31.836 10  kg 28.2.

65.0 kg
×

=  28 passengers can ride. 

EVALUATE: Typical elevator capacities are about half this, in order to have a margin of safety. 
 6.51. IDENTIFY: Calculate the gallons of gasoline consumed and from that the energy consumed. Find the time tΔ for the 

trip and use av
WP
t

Δ
=
Δ

, where WΔ is the energy consumed. 

SET UP: 200 km 124 mi=  

EXECUTE: (a) The gallons of gasoline consumed is 124 mi 4.13 gal
30 mi/gal

= . The energy consumed is 

9 9(4.13 gal)(1.3 10  J/gal) 5.4 10  J× = × . 

(b) The time for the trip is 124 mi 2.07 h 7450 s
60 mi/h

= = . 
9

5
av

5.4 10  J 7.2 10  W 720 kW
7450 s

WP
t

Δ ×
= = = × =
Δ

. 

EVALUATE: The rate of energy consumption is 
3720 10  W 970 hp

746 W/hp
×

= . 

 6.52. IDENTIFY: Apply P Fv= ! . F!  is the force F of water resistance. 
SET UP: 1 hp 746 W= . 1 km/h 0.228 m/s=  

EXECUTE: 6(0.70) (0.70) (280,000 hp)(746 W hp) 8.1 10  N.
(65 km h) ((0.228 m/s) (1 km/h))

PF
v

= = = ×  

EVALUATE: The power required depends on speed, because of the factor of v in P Fv= !  and also because the 
resistive force increases with speed. 

 6.53. IDENTIFY: To lift the skiers, the rope must do positive work to counteract the negative work developed by the 
component of the gravitational force acting on the total number of skiers, 

rope sinF Nmg α= . 

SET UP: ropeP Fv F v= =!  

EXECUTE: ( )rope rope cosP F v Nmg vφ⎡ ⎤= = +⎣ ⎦ . 

( )( )( )( ) ( )2
rope

1 m/s50 riders 70.0 kg 9.80 m/s cos75.0 12.0 km/h
3.60 km/h

P ⎡ ⎤⎛ ⎞⎡ ⎤= ⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦
º . 

4
rope 2.96 10  W 29.6 kWP = × = . 

EVALUATE: Some additional power would be needed to give the riders kinetic energy as they are accelerated from 
rest. 
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 6.54. IDENTIFY: Relate power, work and time. 
SET UP: Work done in each stroke is W Fs=  and avP W t= . 
EXECUTE: 100 strokes per second means av 100P Fs t= with 1.00 s, 2t F mg= = and 0.010 m.s =  av 0.20 W.P =  
EVALUATE: For a 70 kg person to apply a force of twice his weight through a distance of 0.50 m for 100 times per 
second, the average power output would be 57.0 10  W× . This power output is very far beyond the capability of a 
person. 

 6.55. IDENTIFY: For mass dm located a distance x from the axis and moving with speed v, the kinetic energy is 
21

2 ( )K dm v= . Follow the procedure specified in the hint. 
SET UP: The bar and an infinitesimal mass element along the bar are sketched in Figure 6.55. Let total massM =  

and  time for one revolutionT = . 2πxv
T

= . 

EXECUTE: 21 ( )
2

K dm v= ∫ . Mdm dx
L

= , so 

2 2 2 3
2 2 2 2

2 2
0 0

1 2 1 4 1 4 2     
2 2 2 3 3

L LM πx M π M π LK dx x dx π ML T
L T L T L T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫  

There are 5 revolutions in 3 seconds, so 3 5 s 0.60 sT = =  

2 2 22 (12.0 kg) (2.00 m) (0.60 s) 877 J.
3

K π= =  

EVALUATE: If a point mass 12.0 kg is 2.00 m from the axis and rotates at the same rate as the bar, 
2 (2.00 m) 20.9 m/s

0.60 s
v π
= = and 2 2 31 1

2 2 (12 kg)(20.9 m/s) 2.62 10  JK mv= = = × . K for the bar is smaller by a factor of 

0.33. The speed of a segment of the bar decreases toward the axis. 

 
Figure 6.55 

 6.56. IDENTIFY: Density is mass per unit volume, /m Vρ = , so we can calculate the mass of the asteroid. 21
2K mv= . 

Since the asteroid comes to rest, the kinetic energy it delivers equals its initial kinetic energy. 

SET UP: The volume of a sphere is related to its diameter by 31
6

V dπ= . 

EXECUTE: (a) 3 7 3(320 m) 1.72 10  m
6

V π
= = × . 3 7 3 10(2600 kg/m )(1.72 10  m ) 4.47 10  kgm Vρ= = × = × . 

2 10 3 2 181 1
2 2 (4.47 10  kg)(12.6 10  m/s) 3.55 10  JK mv= = × × = × . 

(b) The yield of a Castle/Bravo device is 15 16(1 s)(4.184 10  J) 6.28 10  J× = × . 
18

16

3.55 10  J 56.5 devices
6.28 10  J

×
=

×
. 

EVALUATE: If such an asteroid were to hit the earth the effect would be catastrophic. 
 6.57. IDENTIFY and SET UP: Since the forces are constant, Eq.(6.2) can be used to calculate the work done by each force. 

The forces on the suitcase are shown in Figure 6.57a. 

 
Figure 6.57a 

In part (f ) , Eq.(6.6) is used to relate the total work to the initial and final kinetic energy. 
EXECUTE: (a) ( cos )FW F sφ=  

Both F
"

 and s"  are parallel to the incline and in the same direction, so 90φ = °  and (140 N)(3.80 m) 532 JFW Fs= = =  
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(b) The directions of the displacement and of the gravity force are shown in Figure 6.57b. 

 

( cos )wW w sφ=  
115 ,φ = °  so 

(196 N)(cos115 )(3.80 m)wW = °  
315 JwW = −  

Figure 6.57b  
Alternatively, the component of w parallel to the incline is sin 25 .w °  This component is down the incline so its angle 
with s"  is 180 .φ = °  sin 25 (196 Nsin 25 )(cos180 )(3.80 m) 315 J.wW ° = ° ° = −  The other component of w, cos25 ,w °  is 
perpendicular to s"  and hence does no work. Thus sin 25 315 J,w wW W °= = −  which agrees with the above. 
(c) The normal force is perpendicular to the displacement ( 90 ),φ = °  so 0.nW =  
(d) cos25n w= °  so k k k cos25 (0.30)(196 N)cos25 53.3 Nf n wμ μ= = ° = ° =  

k( cos ) (53.3 N)(cos180 )(3.80 m) 202 JfW f xφ= = ° = −  

(e) tot 532 J 315 J 0 202 J 15 JF w n fW W W W W= + + + = + − + − =  

(f )  tot 2 1,W K K= −  1 0,K =  so 2 totK W=  

21
2 tot2mv W=  so tot

2
2 2(15 J) 1.2 m/s

20.0 kg
Wv
m

= = =  

EVALUATE: The total work done is positive and the kinetic energy of the suitcase increases as it moves up the incline. 
 6.58. IDENTIFY: The work he does to lift his body a distance h is W mgh= . The work per unit mass is ( ) .W m gh=  

SET UP: The quantity gh has units of N/kg. 
EXECUTE: (a) The man does work, (9.8 N kg) (0.4 m) 3.92 J kg.=  
(b) (3.92 J kg) (70 J kg) 100 5.6%.× =  
(c) The child does work (9.8 N kg)(0.2 m) 1.96 J kg.=  (1.96 J kg) (70  J kg) 100 2.8%.× =  
(d) If both the man and the child can do work at the rate of 70 J kg,  and if the child only needs to use 1.96 J kg  
instead of 3.92 J kg,  the child should be able to do more chin-ups. 
EVALUATE: Since the child has arms half the length of his father�s arms, the child must lift his body only 0.20 m to 
do a chin-up. 

 6.59. IDENTIFY: Apply the definitions of IMA and AMA given in the problem. 
SET UP: When the object moves a distance L along the ramp, it rises a vertical distance sinL α . 

EXECUTE: (a) in out,   sin ,s L s L α= =  so 1
sin  

IMA
α

= . 

(b) If out in in out,  ( ) ( )AMA IMA F F s s= =  and so out out in in( ) ( ) ( ) ( )F s F s= , or out in .W W=  
(c) The pulley is sketched in Figure 6.59. 

(d) out out out out in

in in in in out

( )( )
( )( )

W F s F F AMAe
W F s s s IMA

= = = = .  

EVALUATE: in sinF w α=  and outF w= . in in( )( ) ( sin )F s w Lα= . out out( )( ) (sin )F s w Lα= . Therefore, 

in in out out( )( ) ( )( )F s F s= . A smaller force acting over a larger distance does the same amount of work as a larger force 
acting over a smaller distance. 

 
Figure 6.59 

 6.60. IDENTIFY: Apply m∑F = a
"

to each block to find the tension in the string. Each force is constant and cos .W Fs φ=  

SET UP: The free-body diagram for each block is given in Figure 6.60. 20.0 N 2.04 kgAm g
= = and 

12.0 N 1.22 kgBm g
= = . 
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EXECUTE: k AT f m a− = . B Bw T m a− = . k ( )B A Bw f m m a− = + . 

k 0f = . B

A B

wa
m m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

and 7.50 NA A
B B

A B A B

m wT w w
m m w w

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

. 

20.0 N block: tot (7.50 N)(0.750 m) 5.62 JW Ts= = = . 
12.0 N block: tot ( ) (12.0 N 7.50 N)(0.750 m) 3.38 JBW w T s= − = − =  

(b) k k 6.50 NAf wμ= = . kB A

A B

w wa
m m

μ−
=

+
. k k k k( ) ( )A A

B A A B A
A B A B

m wT f w w w w w
m m w w

μ μ μ
⎛ ⎞ ⎛ ⎞

= + − = + −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
. 

6.50 N (5.50 N)(0.625) 9.94 NT = + = . 
20.0 N block: tot k( ) (9.94 N 6.50 N)(0.750 m) 2.58 JW T f s= − = − = . 
12.0 N block: tot ( ) (12.0 N 9.94 N)(0.750 m) 1.54 JBW w T s= − = − = . 
EVALUATE: Since the two blocks move with equal speeds, for each block tot 2 1W K K= − is proportional to the mass 
(or weight) of that block. With friction the gain in kinetic energy is less, so the total work on each block is less. 

   
Figure 6.60 

 6.61. IDENTIFY: 21
2K mv= . Find the speed of the shuttle relative to the earth and relative to the satellite. 

SET UP: Velocity is distance divided by time. For one orbit the shuttle travels a distance 2 Rπ . 

EXECUTE: (a) 
22 6

2 121 1 2 1 2 (6.66 10  m)(86,400 kg)  2.59 10  J.
2 2 2 (90.1 min) (60 s min)

πR πmv m
T

⎛ ⎞×⎛ ⎞= = = ×⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) 2 2 3(1 2) (1 2)  (86,400 kg) ((1.00 m) (3.00 s)) 4.80 10  J.mv = = ×  
EVALUATE: The kinetic energy of an object depends on the reference frame in which it is measured. 

 6.62. IDENTIFY: cosW Fs φ= . tot 2 1W K K= − . 
SET UP: k kf nμ= . The normal force is cosn mg θ= , with 12.0θ = ° . The component of the weight parallel to the 
incline is sinmg θ . 

EXECUTE: (a) 180φ = ° and 2
k k( cos ) (0.31)(5.00 kg)(9.80 m s )(cos 12.0 (1.50 m) 22.3 JfW f s μ mg θ s= − = − = − = −°)  

(b) 2(5.00 kg)(9.80 m s )(sin12.0 )(1.50 m) 15.3 J.° =  
(c) The normal force does no work. 
(d) tot 15.3 J 22.3 J 7.0  J.W = − = −  

(e) 2
2 1 tot (1 2)(5.00 kg)(2.2 m s) 7.0 J 5.1 JK K W= + = − = , and so 2 2(5.1 J) /(5.00 kg) 1.4 m /sv = = . 

EVALUATE: Friction does negative work and gravity does positive work. The net work is negative and the kinetic 
energy of the object decreases. 

 6.63. IDENTIFY: The effective force constant is defined by eff /k F x= , where F is the force applied to each end of the 
spring combination and x is the amount the spring combination is stretched. 
SET UP: Consider a force F applied to each end of the combination. Then 1F and 2F are the forces applied to each 
spring and 1 2F F F= + . Each spring stretches the same amount x. 
EXECUTE: (a) effF k x= . 1 2 1 2F F F k x k x= + = + . Equating the two expressions for F gives eff 1 2k k k= + . 
(b) The same procedure as in part (a) gives eff 1 2 Nk k k k= + + +$ . 
EVALUATE: The effective force constant of the configuration is greater than any of the force constants of the 
individual springs. More force is required to stretch the parallel combination that is required to stretch each separate 
spring the same amount. 
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 6.64. IDENTIFY: The effective force constant is defined by eff /k F x= , where F is the force applied to each end of the 
spring combination and x is the amount the spring combination is stretched. 
SET UP: Consider a force F applied to each end of the combination. The same force F is applied to each spring. 
Spring 1 stretches a distance 1x and spring 2 stretches a distance 2x , where 1 1/x F k= and 2 2/x F k= . The total 
distance the combination stretches is 1 2x x x= + . 

EXECUTE: (a) 1 2x x x= + gives 
eff 1 2

F F F
k k k

= = and 
eff 1 2

1 1 1
k k k

= + . 

(b) The same procedure as in part (a) gives 
eff 1 2

1 1 1 1

Nk k k k
= + + +$ . 

EVALUATE: For two springs the result in part (a) can be written as 1 2
eff

1 2

k kk
k k

=
+

. The effective force constant for 

the two springs in series is less than the force constant for each individual spring. It takes less force to stretch the 
combination an amount x than to stretch either separate spring an amount x. 

 6.65. IDENTIFY: Apply Eq.(6.7). 

SET UP: 2

1dx
x x
= −∫ . 

EXECUTE: (a) 
2

2 2

1 1
1

2
2 1

1 1 1 .
x

x x

xx x
x

dxW F dx k k k
x x x x

⎛ ⎞⎡ ⎤= = − = − − = −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
∫ ∫  The force is given to be attractive, so 0xF < , 

and k must be positive. If 2 1
2 1

1 1,  x x
x x

> < , and 0W < . 

(b) Taking �slowly� to be constant speed, the net force on the object is zero. The force applied by the hand is 

opposite xF , and the work done is negative of that found in part (a), or
1 2

1 1k
x x

⎛ ⎞
−⎜ ⎟

⎝ ⎠
, which is positive if 2 1x x> . 

(c) The answers have the same magnitude but opposite signs; this is to be expected, in that the net work done is zero. 
EVALUATE: Your force is directed away from the origin, so when the object moves away from the origin your force 
does positive work. 

 6.66. IDENTIFY: Apply Eq.(6.6) to the motion of the asteroid. 
SET UP: Let point 1 be at a great distance and let point 2 be at the surface of the earth. Assume 1 0.K =  From the 
information given about the gravitational force its magnitude as a function of distance r from the center of the earth 
must be 2

E( / ) .F mg R r=  This force is directed in the �−r  direction since it is a �pull�. F is not constant so Eq.(6.7) 
must be used to calculate the work it does. 

EXECUTE: ( )E
E

22 2E
E E21

  (1/ )
R RmgRW F ds dr mgR r mgR

r ∞∞

⎛ ⎞
= − = − = − − =⎜ ⎟

⎝ ⎠
∫ ∫  

tot 2 1,W K K= −  1 0K =  

This gives 12
2 E 1.25 10  JK mgR= = ×  

21
2 22K mv=  so 2 22 / 11,000 m/sv K m= =  

EVALUATE: Note that 2 E2 ,v gR=  the impact speed is independent of the mass of the asteroid. 

 6.67. IDENTIFY: Calculate the work done by friction and apply tot 2 1W K K= − . Since the friction force is not constant, 
use Eq.(6.7) to calculate the work. 
SET UP: Let x be the distance past P. Since kμ increases linearly with x, k 0.100 Axμ = + . When 12.5 mx = , 

k 0.600μ = , so 0.500/(12.5 m) 0 0400 mA . /= =  

EXECUTE: (a) tot 2 1W K K K= Δ = −  gives 2
k 1

10
2

μ mgdx mv− = −∫ . Using the above expression for kμ , 

2 2
10

1(0 100 )
2

x
g . Ax dx v+ =∫ and 

2
22

2 1
1(0.100)

2 2
xg x A v

⎡ ⎤
+ =⎢ ⎥

⎣ ⎦
. 

2
2 2f

f
1(9.80 m/s ) (0.100) (0.0400/m) (4.50 m/s)

2 2
xx

⎡ ⎤
+ =⎢ ⎥

⎣ ⎦
. 

Solving for 2x  gives 2 5.11 mx = . 

(b) k 0.100 (0.0400/m)(5 11 m) 0.304.μ = + =  
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(c) tot 2 1W K K= −  gives 2
k 2 1

10
2

μ mgx mv− = − . 
2 2
1

2 2
k

(4.50 m/s) 10.3 m
2 2(0.100)(9.80 m/s )
vx
μ g

= = = . 

EVALUATE: The box goes farther when the friction coefficient doesn�t increase. 
 6.68. IDENTIFY: Use Eq.(6.7) to calculate W. 

SET UP: 1 0x = . In part (a), 2 0.050 mx = . In part (b), 2 0.050 mx = − . 

EXECUTE: (a) 2 2 2 3 2 3 4
2 2 20 0

( )
2 3 4

x x k b cW Fdx kx bx cx dx x x x= = − + = − +∫ ∫ . 

2 2 3 3 4
2 2 2(50.0 N / m) (233 N / m ) (3000 N / m )W x x x= − + . When 2 0.050 mx = , 0.12 JW = . 

(b) When 2 0.050 m,x = − 0.17 JW = . 

(c) It�s easier to stretch the spring; the quadratic 2bx−  term is always in the x− -direction, and so the needed force, 
and hence the needed work, will be less when 2 0x > . 
EVALUATE: When 0.050 mx = , 4.75 NxF = . When 0.050 mx = − , 8.25 NxF = . 

 6.69. IDENTIFY and SET UP: Use m=∑F a
" "  to find the tension force T. The block moves in uniform circular motion and 

rad.=a a" "  
(a) The free-body diagram for the block is given in Figure 6.69. 

 

EXECUTE: x xF ma=∑  
2vT m
R

=  

2(0.70 m/s)(0.120 kg) 0.15 N
0.40 m

T = =  

Figure 6.69  

(b) 
2 2(2.80 m/s)(0.120 kg) 9.4 N

0.10 m
vT m
R

= = =  

(c) SET UP: The tension changes as the distance of the block from the hole changes. We could use 2

1

x

xx
W F dx= ∫  to 

calculate the work. But a much simpler approach is to use tot 2 1.W K K= −  
EXECUTE: The only force doing work on the block is the tension in the cord, so tot .TW W=  

2 21 1
1 12 2 (0.120 kg)(0.70 m/s) 0.0294 JK mv= = =  

2 21 1
2 22 2 (0.120 kg)(2.80 m/s) 0.470 JK mv= = =  

tot 2 1 0.470 J 0.029 J 0.44 JW K K= − = − =  

This is the amount of work done by the person who pulled the cord. 
EVALUATE: The block moves inward, in the direction of the tension, so T does positive work and the kinetic energy 
increases. 

 6.70. IDENTIFY: Use Eq.(6.7) to find the work done by F. Then apply tot 2 1W K K= − . 

SET UP: 2

1dx
x x
= −∫ . 

EXECUTE: 2

1
2

1 2

1 1x

x
W dx

x x x
α α

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∫ . 26 2 1 9 1 17(2.12 10  N m )((0.200 m ) (1.25 10  m )) 2.65 10  JW − − − −= × ⋅ − × = − × . 

Note that 1x  is so large compared to 2x that the term 11/ x  is negligible. Then, using Eq. (6.13)) and solving for 2v , 

17
2 5 2 5

2 1 27

2 2( 2.65 10  J)(3.00 10  m/s) 2.41 10  m/s.
(1.67 10  kg)

Wv v
m

−

−

− ×
= + = × + = ×

×
 

(b) With 2 10,K W K= = − . Using 
2

W
x
α

= − , 

26 2
10

2 2 27 5 2
1 1

2 2(2.12 10  N m ) 2.82 10  m.
(1.67 10  kg)(3.00 10  m/s)

x
K mv
α α −

−
−

× ⋅
= = = = ×

× ×
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(c) The repulsive force has done no net work, so the kinetic energy and hence the speed of the proton have their 
original values, and the speed is 53.00 10  m/s× . 
EVALUATE: As the proton moves toward the uranium nucleus the repulsive force does negative work and the 
kinetic energy of the proton decreases. As the proton moves away from the uranium nucleus the repulsive force does 
positive work and the kinetic energy of the proton increases. 

 6.71. IDENTIFY and SET UP: Use /xv dx dt=  and / .x xa dv dt=  Use m=∑F a
" "  to calculate F

"
 from .a"  

EXECUTE: (a) 2( ) ,x t t tα β 3= +  2( ) 2 3x
dxv t t t
dt

α β= = +  

4.00 s:t =  2 3 22(0.200 m/s )(4.00 s) 3(0.0200 m/s )(4.00 s) 2.56 m/s.xv = + =  

(b) ( ) 2 6x
x

dva t t
dt

α β= = +  

(2 6 )x xF ma m tα β= = +  

4.00 s:t =  2 36.00 kg(2(0.200 m/s ) 6(0.0200 m/s )(4.00 s)) 5.28 NxF = + =  
(c) IDENTIFY and SET UP: Use Eq.(6.6) to calculate the work. 
EXECUTE: tot 2 1W K K= −  
At 1 0,t =  1 0v =  so 1 0.K =  

tot FW W=  
2 21 1

2 22 2 (6.00 kg)(2.56 m/s) 19.7 JK mv= = =  
Then tot 2 1W K K= −  gives that 19.7 JFW =  
EVALUATE: v increases with t so the kinetic energy increases and the work done is positive. We can also calculate 

FW  directly from Eq.(6.7), by writing dx as xv dt  and performing the integral. 
 6.72. IDENTIFY: Since the capsule comes to rest, the amount of work the capsule does on the ground equals its original 

kinetic energy. Use constant acceleration kinematic equations to calculate the stopping time t; t tΔ = . 
SET UP: 311 km/h 86.4 m/s= . Let y+  be the direction the capsule is traveling before the crash. 

EXECUTE: 2 2 51 1
1 12 2 (210 kg)(86.4 m/s) 7.84 10  JW K mvΔ = = = = × . 0 0.810 my y− = , 0 86.4 m/syv = and 0yv = . 

0
0 2

y yv v
y y t

+⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
gives 0

0

2( ) 2(0.810 m) 0.01875 s
86.4 m/sy

y yt
v
−

= = = . 
5

77.84 10  J 4.18 10  W
0.01875 s

W
t

Δ ×
= = ×

Δ
 

EVALUATE: A large amount of work is done in a very small amount of time. 
 6.73. IDENTIFY and SET UP: Use Eq.(6.6). You do positive work and gravity does negative work. Let point 1 be at the 

base of the bridge and point 2 be at the top of the bridge. 
EXECUTE: (a) tot 2 1W K K= −  

2 21 1
1 12 2 (80.0 kg)(5.00 m/s) 1000 JK mv= = =  

2 21 1
2 22 2 (80.0 kg)(1.50 m/s) 90 JK mv= = =  

tot 90 J 1000 J 910 JW = − = −  
(b) Neglecting friction, work is done by you (with the force you apply to the pedals) and by gravity: 

tot you gravity.W W W= +  The gravity force is 2(80.0 kg)(9.80 m/s ) 784 N,w mg= = =  downward. The displacement is 
5.20 m, upward. Thus 180φ = °  and 

gravity ( cos ) (784 N)(5.20 m)cos180 4077 JW F sφ= = ° = −  

Then tot you gravityW W W= +  gives 

you tot gravity 910 J ( 4077 J) 3170 JW W W= − = − − − = +  

EVALUATE: The total work done is negative and you lose kinetic energy. 
 6.74. IDENTIFY: Use Eq.(6.7) to calculate W. 

SET UP: ( 1)1
1

n nx dx x
n

− − −= −
−∫  

EXECUTE: (a) 
0

0

 

1 1 
0

.
( 1)) ( 1)n n nx

x

b b bW dx
x n x n x

∞
∞

− −= = =
− −∫  Note that for this part, for 11, 0nn x −> →  as x→∞ . 
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(b) When 0 1n< < , the improper integral must be used, 
2

1 1
2 0lim ( ) ,

( 1)
n n

x

bW x x
n

− −

→∞

⎡ ⎤
= −⎢ ⎥−⎣ ⎦

 and because the exponent on 

the 1
2
nx −  is positive, the limit does not exist, and the integral diverges. This is interpreted as the force F doing an 

infinite amount of work, even though 0F →  as 2 .x →∞  
EVALUATE: The work-energy theorem says that an object gains an infinite amount of kinetic energy when an 
infinite amount of work is done on it. 

 6.75. IDENTIFY: The negative work done by the spring equals the change in kinetic energy of the car. 
SET UP: The work done by a spring when it is compressed a distance x from equilibrium is 21

2 kx− . 2 0K = . 

EXECUTE: 21
2 12 kx K K− = −  gives 2 21 1

12 2kx mv= and 

( ) ( )( ) ( )2 22 2 5
1 1200 kg 0.65 m/s 0.070 m 1.0 10  N/mk mv x ⎡ ⎤= = = ×⎣ ⎦ . 

EVALUATE: When the spring is compressed, the spring force is directed opposite to the displacement of the object 
and the work done by the spring is negative. 

 6.76. IDENTIFY: Apply tot 2 1W K K= − . 

SET UP: Let 0x be the initial distance the spring is compressed. The work done by the spring is 2 21 1
02 2kx kx− , where 

x is the final distance the spring is compressed. 
EXECUTE: (a) Equating the work done by the spring to the gain in kinetic energy, 2 21 1

02 2kx mv= , so 

0
400 N / m (0.060 m) 6.93 m/s.
0.0300 kg

kv x
m

= = =  

(b) totW  must now include friction, so 2 21 1
tot 0 02 2mv W kx fx= = − , where f is the magnitude of the friction force. Then, 

2 2
0 0

2 400 N/m 2(6.00 N)(0.060 m) (0.060 m) 4.90 m/s.
0.0300 kg (0.0300 kg)

k fv x x
m m

= − = − =  

(c) The greatest speed occurs when the acceleration (and the net force) are zero. Let x be the amount the spring is still 

compressed, so the distance the ball has moved is 0x x− . 6.00 N,  0.0150 m
400 N/m

fkx f x
k

= = = = . To find the speed, 

the net work is 2 21
tot 0 02 ( ) ( )W k x x f x x= − − − , so the maximum speed is 2 2

max 0 0
2( ) ( )k fv x x x x

m m
= − − − . 

2 2
max

400 N / m 2(6.00 N)((0.060 m) (0.0150 m) ) (0.060 m 0.0150 m) 5.20 m/s
(0.0300 kg) (0.0300 kg)

v = − − − =  

EVALUATE: The maximum speed with friction present (part (c)) is larger than the result of part (b) but smaller than 
the result of part (a). 

 6.77. IDENTIFY and SET UP: Use Eq.(6.6). Work is done by the spring and by gravity. Let point 1 be where the textbook 
is released and point 2 be where it stops sliding. 2 0x =  since at point 2 the spring is neither stretched nor 
compressed. The situation is sketched in Figure 6.77. 
EXECUTE:  

 

tot 2 1W K K= −  

1 0,K =  2 0K =  

tot fric sprW W W= +  

Figure 6.77  
21

spr 12 ,W kx=  where 1 0.250 mx =  (Spring force is in direction of motion of block so it does positive work.) 

fric kW mgdμ= −  

Then tot 2 1W K K= −  gives 21
1 k2 0kx mgdμ− =  

2 2
1

2
k

(250 N/m)(0.250 m) 1.1 m,
2 2(0.30)(2.50 kg)(9.80 m/s )
kxd
mgμ

= = =  measured from the point where the block was released. 

EVALUATE: The positive work done by the spring equals the magnitude of the negative work done by friction. The 
total work done during the motion between points 1 and 2 is zero and the textbook starts and ends with zero kinetic 
energy. 
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 6.78. IDENTIFY: Apply tot 2 1W K K= − to the cat. 
SET UP: Let point 1 be at the bottom of the ramp and point 2 be at the top of the ramp. 
EXECUTE: The work done by gravity is g sinW mgL θ= −  (negative since the cat is moving up), and the work done 
by the applied force is FL, where F is the magnitude of the applied force. The total work is 

2
tot (100 N)(2.00 m) (7.00 kg)(9.80 m/s )(2.00 m)sin30 131.4 JW = − ° = . 

The cat�s initial kinetic energy is 2 21 1
12 2 (7.00 kg)(2.40 m/s) 20.2 Jmv = = , and 

1
2

2( ) 2(20.2 J 131.4 J) 6.58 m/s.
(7.00 kg)

K Wv
m
+ +

= = =  

EVALUATE: The net work done on the cat is positive and the cat gains speed. Without your push, 
tot grav 68.6 JW W= = − and the cat wouldn�t have enough initial kinetic energy to reach the top of the ramp. 

 6.79. IDENTIFY: Apply tot 2 1W K K= − to the vehicle. 

SET UP: Call the bumper compression x and the initial speed 0v . The work done by the spring is 21
2 kx− and 

2 0K = . 

EXECUTE: (a) The necessary relations are 2 2
0

1 1 ,   5 .
2 2
kx mv kx mg= <  Combining to eliminate k and then x, the two 

inequalities are 
2 2

2  and  25 .
5
v mgx k
g v

> <  Using the given numerical values, 
2

2

(20.0 m/s) 8.16 m
5(9.80 m/s )

x > =  and 

2 2
4

2

(1700 kg)(9.80 m/s )25 1.02 10  N/m.
(20.0 m/s)

k < = ×  

(b) A distance of 8 m is not commonly available as space in which to stop a car. Also, the car stops only momentarily 
and then returns to its original speed when the spring returns to its original length. 
EVALUATE: If k were doubled, to 42.04 10  N/m× , then 5.77 mx = . The stopping distance is reduced by a factor of 
1/ 2 , but the maximum acceleration would then be 2/ 69.2 m/skx m = , which is 7.07g . 

 6.80. IDENTIFY: Apply tot 2 1W K K= − . cosW Fs φ= . 
SET UP: The students do positive work, and the force that they exert makes an angle of 30.0°  with the direction of 
motion. Gravity does negative work, and is at an angle of 120.0°  with the chair�s motion, 
EXECUTE: The total work done is 2

tot ((600 N)cos30.0 (85.0 kg)(9.80 m/s )cos120.0 )(2.50 m) 257.8 JW = ° + ° = , 

and so the speed at the top of the ramp is 2 2tot
2 1

2 2(257.8 J)(2.00 m/s) 3.17 m/s.
(85.0 kg)

Wv v
m

= + = + =  

EVALUATE: The component of gravity down the incline is sin30 417 Nmg =° and the component of the push up 
the incline is (600 N)cos30 520 N=° . The force component up the incline is greater than the force component down 
the incline, the net work done is positive and the speed increases. 

 6.81. IDENTIFY: Apply tot 2 1W K K= − to the blocks. 

SET UP: If X is the distance the spring is compressed, the work done by the spring is 21
2 kX− . At maximum 

compression, the spring (and hence the block) is not moving, so the block has no kinetic energy and 2 0x = . 
EXECUTE: (a) The work done by the block is equal to its initial kinetic energy, and the maximum compression is 

found from 2 21 1
02 2kX mv=  and 5.00 kg (6.00 m/s) 0.600 m.

500 N/m
mX v
k

= = =  

(b) Solving for 0v  in terms of a known X, 0
500 N/m (0.150 m) 1.50 m/s.
5.00 kg

kv X
m

= = =  

EVALUATE: The negative work done by the spring removes the kinetic energy of the block. 
 6.82. IDENTIFY: Apply tot 2 1W K K= − to the system of the two blocks. The total work done is the sum of that done by 

gravity (on the hanging block) and that done by friction (on the block on the table). 
SET UP: Let h be the distance the 6.00 kg block descends. The work done by gravity is (6.00 kg)gh and the work 
done by friction is k (8.00 kg)μ gh− . 
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EXECUTE: 2
tot (6.00 kg (0.25)(8.00 kg)) (9.80 m/s ) (1.50 m) 58.8 J.W = − =  This work increases the kinetic energy 

of both blocks: 2
tot 1 2

1 ( ) ,
2

W m m v= + so 2(58.8 J) 2.90 m/s.
(14.00 kg)

v = =  

EVALUATE: Since the two blocks are connected by the rope, they move the same distance h and have the same 
speed v. 

 6.83. IDENTIFY and SET UP: Apply tot 2 1W K K= −  to the system consisting of both blocks. Since they are connected by 
the cord, both blocks have the same speed at every point in the motion. Also, when the 6.00-kg block has moved 
downward 1.50 m, the 8.00-kg block has moved 1.50 m to the right. The target variable, k ,μ  will be a factor in the 
work done by friction. The forces on each block are shown in Figure 6.83. 

 

EXECUTE: 2 2 21 1 1
1 1 1 12 2 2 ( )A B A BK m v m v m m v= + = +  

2 0K =  

Figure 6.83  
The tension T in the rope does positive work on block B and the same magnitude of negative work on block A, so T 
does no net work on the system. Gravity does work mg AW m gd=  on block A, where 2.00 m.d =  (Block B moves 

horizontally, so no work is done on it by gravity.) Friction does work fric k BW m gdμ= −  on block B. Thus 

tot fric k .mg A BW W W m gd m gdμ= + = −  Then tot 2 1W K K= −  gives 21
k 12 ( )A B A Bm gd m gd m m vμ− = − +  and 

2 21
12

k 2

( ) 6.00 kg (6.00 kg 8.00 kg)(0.900 m/s) 0.786
8.00 kg 2(8.00 kg)(9.80 m/s )(2.00 m)

A BA

B B

m m vm
m m gd

μ
+ +

= + = + =  

EVALUATE: The weight of block A does positive work and the friction force on block B does negative work, so the 
net work is positive and the kinetic energy of the blocks increases as block A descends. Note that 1K  includes the 
kinetic energy of both blocks. We could have applied the work-energy theorem to block A alone, but then totW  
includes the work done on block A by the tension force. 

 6.84. IDENTIFY: Apply tot 2 1W K K= − . The work done by the force from the bow is the area under the graph of xF versus 
the draw length. 
SET UP: One possible way of estimating the work is to approximate the F versus x curve as a parabola which goes 
to zero at 0x =  and 0,x x=  and has a maximum of 0F  at 0 / 2x x= , so that 2

0 0 0( ) (4 / ) ( ).F x F x x x x= −  This may 
seem like a crude approximation to the figure, but it has the advantage of being easy to integrate. 

EXECUTE: 0 0
2 3

20 0 0 0
0 0 0 02 20 0

0 0

4 4 2( ) 
2 3 3

x xF F x xFdx x x x dx x F x
x x

⎛ ⎞
= − = − =⎜ ⎟

⎝ ⎠
∫ ∫ . With 0 200 NF =  and 0 0.75 m,x =  

100 J.W =  The speed of the arrow is then 2 2(100 J) 89 m/s
(0.025 kg)

W
m

= = . 

EVALUATE: We could alternatively represent the area as that of a rectangle 180 N by 0.55 m. This gives 99 JW = , 
in close agreement with our more elaborate estimate. 

 6.85. IDENTIFY: Apply Eq.(6.6) to the skater. 
SET UP: Let point 1 be just before she reaches the rough patch and let point 2 be where she exits from the patch. 
Work is done by friction. We don�t know the skater�s mass so can�t calculate either friction or the initial kinetic 
energy. Leave her mass m as a variable and expect that it will divide out of the final equation. 
EXECUTE: k 0.25f mg=  so tot (0.25 ) ,fW W mg s= = −  where s is the length of the rough patch. 

tot 2 1W K K= −  
21

1 02 ,K mv=  ( )2 2 21 1 1
2 2 0 02 2 2(0.45 ) 0.2025K mv m v mv= = =  

The work-energy relation gives ( ) 21
02(0.25 ) 0.2025 1mg s mv− = −  

The mass divides out, and solving gives 1.5 m.s =  
EVALUATE: Friction does negative work and this reduces her kinetic energy. 
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 6.86. IDENTIFY: av avP Fv= ! . Use F ma= to calculate the force. 

SET UP: av
0 6.00 m/s 3.00 m/s

2
v +

= =  

EXECUTE: Your friend�s average acceleration is 20 6.00 m/s 2.00 m/s
3.00 s

v va
t
−

= = = . Since there are no other 

horizontal forces acting, the force you exert on her is given by 2
net (65.0 kg)(2.00 m/s ) 130 NF ma= = = . 

av (130 N)(3.00 m/s) 390 WP = = . 

EVALUATE: We could also use the work-energy theorem: 21
2 1 2 (65.0 kg)(6.00 m/s) 1170 JW K K= − = = . 

av
1170 J 390 W
3.00 s

WP
t

= = = , the same as obtained by our other approach.  

 6.87. IDENTIFY: To lift a mass m a height h requires work W mgh= . To accelerate mass m from rest to speed v requires 

21
2 1 2W K K mv= − = . av

WP
t

Δ
=
Δ

. 

SET UP: 60 st =  
EXECUTE: (a) 2 5(800 kg)(9.80 m/s )(14.0 m) 1.10 10 J= ×  

(b) 2 5(1/ 2)(800 kg)(18.0 m/s ) 1.30 10 J.= ×  

(c) 
5 51.10 10 J 1.30 10 J 3.99 kW.

60 s
× + ×

=  

EVALUATE: Approximately the same amount of work is required to lift the water against gravity as to accelerate it 
to its final speed. 

 6.88. IDENTIFY: P Fv= !  and F ma=! . 

SET UP: From Problem 6.71, 22 3v t tα β= + and 2 6a tα β= + . 
EXECUTE: 2 2 2 2 3(2 6 )(2 3 ) (4 18 18 )P Fv mav m βt t βt m t βt β tα α α α= = = + + = + +! .  

2 2 3 3(0.96 N/s) (0.43 N/s ) (0.043 N/s )P t t t= + + . At 4.00 s,t =  the power output is 13.5 W. 
EVALUATE: P increases in time because v increase and because a increases. 

 6.89. IDENTIFY and SET UP: Energy is av .P t  The total energy expended in one day is the sum of the energy expended in 
each type of activity. 
EXECUTE: 41 day 8.64 10  s= ×  

Let walkt  be the time she spends walking and othert  be the time she spends in other activities; 4
other walk8.64 10  s .t t= × −  

The energy expended in each activity is the power output times the time, so 
7

walk other(280 W) (100 W) 1.1 10  JE Pt t t= = + = ×  
4 7

walk walk(280 W) (100 W)(8.64 10  s ) 1.1 10  Jt t+ × − = ×  
6

walk(180 W) 2.36 10  Jt = ×  
4

walk 1.31 10  s 218 min 3.6 h.t = × = =  

EVALUATE: Her average power for one day is 7(1.1 10  J)/([24][3600 s]) 127 W.× =  This is much closer to her 
100 W rate than to her 280 W rate, so most of her day is spent at the 100 W rate. 

 6.90. IDENTIFY and SET UP: W Pt=  
EXECUTE: (a) The hummingbird produces energy at a rate of 0.7 J/s to 1.75 J/s.  At 10 beats/s, the bird must 
expend between 0.07 J/beat and 0.175 J/beat. 
(b) The steady output of the athlete is (500 W)/(70 kg) 7 W/kg,= which is below the 10 W/kg necessary to stay aloft. 
Though the athlete can expend 1400 W/70 kg 20 W/kg=  for short periods of time, no human-powered aircraft could 
stay aloft for very long. 
EVALUATE: Movies of early attempts at human-powered flight bear out our results. 

 6.91. IDENTIFY and SET UP: Use Eq.(6.15). The work done on the water by gravity is mgh, where 170 m.h =  Solve for 
the mass m of water for 1.00 s and then calculate the volume of water that has this mass. 
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EXECUTE: The power output is 9
av 2000 MW 2.00 10  W.P = = ×  av

WP
t

Δ
=
Δ

 and 92% of the work done on the water 

by gravity is converted to electrical power output, so in 1.00 s the amount of work done on the water by gravity is 
9

9av (2.00 10  W)(1.00 s) 2.174 10  J
0.92 0.92
P tW Δ ×

= = = ×  

,W mgh=  so the mass of water flowing over the dam in 1.00 s must be  
9

6
2

2.174 10  J 1.30 10  kg
(9.80 m/s )(170 m)

Wm
gh

×
= = = ×  

density m
V

=  so 
6

3 3
3 3

1.30 10  kg 1.30 10  m .
density 1.00 10  kg/m
mV ×

= = = ×
×

 

EVALUATE: The dam is 1270 m long, so this volume corresponds to about a 3m  flowing over each 1 m length of 
the dam, a reasonable amount. 

 6.92. IDENTIFY: WP
t

= and 21
2W mv= , if the object starts from rest. dva

dt
=  and 0x x vdt− = ∫ . 

SET UP: 1/ 2 1/ 21
2

d t t
dt

−= . 1/ 2 3 / 22
3t dt t=∫ . 

EXECUTE: (a) The power P is related to the speed by 21
2 ,Pt K mv= =  so 2Ptv

m
= . 

(b) 2 2 2 1 .
22

dv d Pt P d P Pa t
dt dt m m dt m mtt

= = = = =  

(c) 
3 31

2 2 2
0

2 2 2 8 .
3 9

P P Px x v dt t dt t t
m m m

− = = = =∫ ∫  

EVALUATE: v, a, and 0x x− at a particular time are all proportional to 1/ 2P . The result in part (b) could also be 

obtained from P Fv= and /a F m= , so Pa
vm

= . 

 6.93. IDENTIFY and SET UP: For part (a) calculate m from the volume of blood pumped by the heart in one day. For 
part (b) use W calculated in part (a) in Eq.(6.15). 
EXECUTE: (a) ,W mgh=  as in Example 6.11. We need the mass of blood lifted; we are given the volume 

3 3
31 10  m(7500 L) 7.50 m .

1 L
V

−⎛ ⎞×
= =⎜ ⎟

⎝ ⎠
 

3 3 3 3density volume (1.05 10  kg/m )(7.50 m ) 7.875 10  kgm = × = × = ×  

Then 3 2 5(7.875 10  kg)(9.80 m/s )(1.63 m) 1.26 10  J.W mgh= = × = ×  

(b) 
5

av
1.26 10  J 1.46 W.

(24 h)(3600 s/h)
WP
t

Δ ×
= = =
Δ

 

EVALUATE: Compared to light bulbs or common electrical devices, the power output of the heart is rather small. 
 6.94. IDENTIFY: P Fv Mav= =! . To overcome gravity on a slope that is at an angle α above the horizontal, ( sin ) .P Mg vα=  

SET UP: 61 MW 10  W= . 31 kN 10  N= . When α is small, tan sinα α≈ . 
EXECUTE: (a) The number of cars is the total power available divided by the power needed per car, 

6

3

13.4 10 W 177,
(2.8 10 N)(27 m/s)

×
=

×
rounding down to the nearest integer. 

(b) To accelerate a total mass M at an acceleration a and speed v, the extra power needed is Mav. To climb a hill of 
angle α , the extra power needed is ( sin ) .Mg vα  This will be nearly the same if ~ sin ;a g α  if 

2sin ~ tan ~ 0.10 m/s ,g gα α  the power is about the same as that needed to accelerate at 20.10 m/s .  
(c) ( sin )P Mg vα= , where M is the total mass of the diesel units. 

6 2(1.10 10 kg)(9.80 m/s )(0.010)(27 m/s) 2.9 MW.P = × =  
(d) The power available to the cars is 13.4 MW, minus the 2.9 MW needed to maintain the speed of the diesel units 

on the incline. The total number of cars is then 
6 6

3 4 2

13.4 10 W 2.9 10 W 36,
(2.8 10 N (8.2 10 kg)(9.80 m/s )(0.010))(27 m/s)

× − ×
=

× + ×
 

rounding to the nearest integer. 
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EVALUATE: For a single car, 4 2 3sin (8.2 10  kg)(9.80 m/s )(0.010) 8.0 10  NMg α = × = × , which is over twice the 
2.8 kN required to pull the car at 27 m/s on level tracks. Even a slope as gradual as 1.0% greatly increases the power 
requirements, or for constant power greatly decreases the number of cars that can be pulled. 

 6.95. IDENTIFY: P Fv= ! . The force required to give mass m an acceleration a is F ma= . For an incline at an angle 
α above the horizontal, the component of mg down the incline is sinmg α . 
SET UP: For small α , sin tanα α≈ . 
EXECUTE: (a) 3

0 (53 10 N)(45 m/s) 2.4 MW.P Fv= = × =  

(b) 5 2
1 (9.1 10 kg)(1.5 m/s )(45 m/s) 61 MW.P mav= = × =  

(c) Approximating sin ,α  by tan ,α  and using the component of gravity down the incline as sin ,mg α  
5 2

2 ( sin ) (9.1 10 kg)(9.80 m/s )(0.015)(45 m/s) 6.0 MW.P mg vα= = × =  

EVALUATE: From Problem 6.94, we would expect that a 20.15 m/s acceleration and a 1.5% slope would require the 
same power. We found that a 21.5 m/s acceleration requires ten times more power than a 1.5% slope, which is 
consistent. 

 6.96. IDENTIFY: 2

1

x

xx
W F dx= ∫ , and xF depends on both x and y. 

SET UP: In each case, use the value of y that applies to the specified path. 21
2xdx x=∫ . 2 31

3x dx x=∫  

EXECUTE: (a) Along this path, y is constant, with the value 3.00 my = . 

2

1

2 2.00 m(2.50 N/m )(3.00 m) 15.0 J
2

x

x
W αy xdx ⎛ ⎞= = =⎜ ⎟

⎝ ⎠∫ , since 1 0x = and 2 2.00 mx = . 

(b) Since the force has no y-component, no work is done moving in the y-direction. 
(c) Along this path, y varies with position along the path, given by 1.5 ,y x=  so 2(1.5 ) 1.5 ,xF x x xα α= =  and  

2 2

1 1

3
2 2 (2.00 m)1.5 1.5(2.50 N/m ) 10.0 J.

3
x x

x x
W Fdx x dxα= = = =∫ ∫  

EVALUATE: The force depends on the position of the object along its path. 
 6.97. IDENTIFY and SET UP: Use Eq.(6.18) to relate the forces to the power required. The air resistance force is 

21
air 2 ,F CA vρ=  where C is the drag coefficient. 

EXECUTE: (a) tot ,P F v=  with tot roll airF F F= +  
2 3 3 21 1

air 2 2 (1.0)(0.463 m )(1.2 kg/m )(12.0 m/s) 40.0 NF CA vρ= = =  

roll r r (0.0045)(490 N 118 N) 2.74 NF n wμ μ= = = + =  

roll air( ) (2.74 N 40.0 N)(12.0 s) 513 WP F F v= + = + =  

(b) 2 3 3 21 1
air 2 2 (0.88)(0.366 m )(1.2 kg/m )(12.0 m/s) 27.8 NF CA vρ= = =  

roll r r (0.0030)(490 N 88 N) 1.73 NF n wμ μ= = = + =  

roll air( ) (1.73 N 27.8 N)(12.0 s) 354 WP F F v= + = + =  

(c) 2 3 3 21 1
air 2 2 (0.88)(0.366 m )(1.2 kg/m )(6.0 m/s) 6.96 NF CA vρ= = =  

roll r 1.73 NF nμ= =  (unchanged) 

roll air( ) (1.73 N 6.96 N)(6.0 s) 52.1 WP F F v= + = + =  

EVALUATE: Since airF  is proportional to 2v  and ,P Fv=  reducing the speed greatly reduces the power 
required. 

 6.98. IDENTIFY: P Fv= !  
SET UP: 1 m/s 3.6 km/h=  

EXECUTE: (a) 
3

328.0 10 W 1.68 10 N.
(60.0 km/h)((1 m/s)/(3.6 km/h))

PF
v

×
= = = ×  

(b) The speed is lowered by a factor of one-half, and the resisting force is lowered by a factor of (0.65 0.35/ 4),+  
and so the power at the lower speed is (28.0 kW)(0.50)(0.65 0.35/4) 10.3 kW 13.8 hp.+ = =  
(c) Similarly, at the higher speed, (28.0 kW)(2.0)(0.65 0.35 4) 114.8 kW 154 hp.+ × = =  
EVALUATE: At low speeds rolling friction dominates the power requirement but at high speeds air resistance 
dominates. 



6-26 Chapter 6 

 6.99. IDENTIFY and SET UP: Use Eq.(6.18) to relate F and P. In part (a), F is the retarding force. In parts (b) and (c), 
F includes gravity. 
EXECUTE: (a) ,P Fv=  so / .F P v=  

746 W(8.00 hp) 5968 W
1 hp

P
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

1000 m 1 h(60.0 km/h) 16.67 m/s
1 km 3600 s

v ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

5968 W 358 N.
16.67 m/s

PF
v

= = =  

(b) The power required is the 8.00 hp of part (a) plus the power gP  required to lift the car against gravity. The 
situation is sketched in Figure 6.99. 

 

10 mtan 0.10
100 m

α = =  

5.71α = °  

Figure 6.99  
The vertical component of the velocity of the car is sin (16.67 m/s)sin5.71 1.658 m/s.v α = ° =  

Then 2 4( sin ) sin (1800 kg)(9.80 m/s )(1.658 m/s) 2.92 10  WgP F v a mgv α= = = = ×  

4 1 hp2.92 10  W 39.1 hp
746 WgP
⎛ ⎞= × =⎜ ⎟
⎝ ⎠

 

The total power required is 8.00 hp 39.1 hp 47.1 hp.+ =  
(c) The power required from the engine is reduced by the rate at which gravity does positive work. The road incline 
angle α  is given by tan 0.0100,α =  so 0.5729 .α = °  

2 3( sin ) (1800 kg)(9.80 m/s )(16.67 m/s)sin 0.5729 2.94 10  W 3.94 hp.gP mg v α= = ° = × =  
The power required from the engine is then 8.00 hp 3.94 hp 4.06 hp.− =  
(d) No power is needed from the engine if gravity does work at the rate of 8.00 hp 5968 WgP = =  

sin ,gP mgv α=  so 2

5968 Wsin 0.02030
(1800 kg)(9.80 m/s )(16.67 m/s)

gP
mgv

α = = =  

1.163α = °  and tan 0.0203,α =  a 2.03% grade. 
EVALUATE: More power is required when the car goes uphill and less when it goes downhill. In part (d), at this angle 
the component of gravity down the incline is sin 358 Nmg α =  and this force cancels the retarding force and no force 
from the engine is required. The retarding force depends on the speed so it is the same in parts (a), (b), and (c). 

6.100. IDENTIFY: Apply tot 2 1W K K= − to relate the initial speed 0v to the distance x along the plank that the box moves 
before coming to rest. 
SET UP: The component of weight down the incline is sinmg α , the normal force is cosmg α and the friction force 
is cosf mgμ α= . 

EXECUTE: 2
0

0

10  and  ( sin cos ) .
2

x

K mv W mg μmg dxα αΔ = − = − −∫  Then, 

2

0

 (sin cos ) ,  sin cos .
2

x AxW mg Ax dx W mg xα α α α
⎡ ⎤

= − + = − +⎢ ⎥
⎣ ⎦

∫  

Set W K= Δ : 
2

2
0

1 sin cos .
2 2

Axmv mg xα α
⎡ ⎤

− = − +⎢ ⎥
⎣ ⎦

 To eliminate x, note that the box comes to a rest when the force of 

static friction balances the component of the weight directed down the plane. So, sin  cosmg Ax mgα α= . Solve this for 

x and substitute into the previous equation: sin .
cos

x
A

α
α

=  Then, 
2

2
0

1 sin 1 sinsin cos ,
2 cos 2 cos
v g A

A A
α αα α
α α

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 and 

upon canceling factors and collecting terms, 
2

2
0

3 sin .
cos
gv
A

α
α

=  The box will remain stationary whenever 
2

2
0

3 sin .
cos
gv
A

α
α

≥  
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EVALUATE: If 0v is too small the box stops at a point where the friction force is too small to hold the box in place. 
sinα increases and cosα decreases as α increases, so the 0v  required increases as α increases. 

6.101. IDENTIFY: In part (a) follow the steps outlined in the problem. For parts (b), (c) and (d) apply the work-energy theorem. 
SET UP: 2 31

3x dx x=∫  

EXECUTE: (a) Denote the position of a piece of the spring by l; 0l =  is the fixed point and l L=  is the moving end of 
the spring. Then the velocity of the point corresponding to l, denoted u, is ( ) (I/ )u l v L=  (when the spring is moving, l 
will be a function of time, and so u is an implicit function of time). The mass of a piece of length dl is ( / ) ,dm M L dl=  

and so 
2

2 2
3

1 1( ) ,
2 2

MvdK dm u l dl
L

= =  and 
2 2

2
3 02 6

LMv MvK dK l dl
L

= = =∫ ∫ . 

(b) 2 21 1
2 2 ,kx mv=  so 2( / ) (3200 N/m)/(0.053 kg)(2.50 10  m) 6.1 m/s.v k m x −= = × =  

(c) With the mass of the spring included, the work that the spring does goes into the kinetic energies of both the ball 
and the spring, so 2 2 21 1 1

2 2 6 .kx mv Mv= +  Solving for v, 

2(3200 N/m) (2.50 10 m) 3.9 m/s.
/3 (0.053 kg) (0.243 kg)/3

kv x
m M

−= = × =
+ +

 

(d) Algebraically, 
2

21 (1/2) 0.40 J
2 (1 /3 )

kxmv
M m

= =
+

 and 
2

21 (1/2) 0.60 J.
6 (1 3 / )

kxMv
m M

= =
+

 

EVALUATE: For this ball and spring, ball

spring

3 0.053 kg3 0.65
0.243 kg

K m
K M

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
. The percentage of the final kinetic energy 

that ends up with each object depends on the ratio of the masses of the two objects. As expected, when the mass of the 
spring is a small fraction of the mass of the ball, the fraction of the kinetic energy that ends up in the spring is small. 

6.102. IDENTIFY: In both cases, a given amount of fuel represents a given amount of work 0W  that the engine does in 
moving the plane forward against the resisting force. Write 0W in terms of the range R and speed v and in terms of the 
time of flight T and v. 
SET UP: In both cases assume v is constant, so 0W RF= and R vT= . 

EXECUTE: In terms of the range R and the constant speed v, 2
0 2 .W RF R v

v
βα⎛ ⎞= = +⎜ ⎟

⎝ ⎠
 

In terms of the time of flight , ,T R vt=  so 3
0 .βW vTF T v

v
α⎛ ⎞= = +⎜ ⎟
⎝ ⎠

 

(a) Rather than solve for R as a function of v, differentiate the first of these relations with respect to v, setting 
0 0dW

dv
=  to obtain 0.dR dFF R

dv dv
+ =  For the maximum range, 0,dR

dv
=  so 0.dF

dv
=  Performing the differentiation, 

32 2 / 0,dF v β v
dv

α= − =  which is solved for 

1 41 4 5 2 2

2 2

3.5 10  N m /s 32.9 m/s 118 km/h.
0.30 N s /m

v β
α

⎛ ⎞× ⋅⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠
 

(b) Similarly, the maximum time is found by setting ( ) 0;d Fv
dv

=  performing the differentiation, 2 23 / 0v vα β− = . 

1/41/4 5 2 2

2 2

3.5 10  N m /s 25 m/s 90 km/h.
3 3(0.30 N s /m )
βv
α

⎛ ⎞× ⋅⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠
 

EVALUATE: When 1/4( / )v β α= , airF has its minimum value air 2F αβ= . For this v, 0
1 (0.50) WR

αβ
= and 

1/ 4 3/ 4
1 (0.50)T α β− −= . When 1/4( /3 )v β α= , air 2.3F αβ= . For this v, 0

2 (0.43) WR
αβ

=  and 1/ 4 3/ 4
2 (0.57)T α β− −= . 

1 2R R> and 2 1T T> , as they should be. 
6.103. IDENTIFY: For each speed, calculate the time. Then use the graph to find the oxygen consumption and from that the 

energy consumption. 
SET UP: /t d v=  
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EXECUTE: (a) The walk will take one-fifth of an hour, 12 min. From the graph, the oxygen consumption rate 
appears to be about 312 cm /kg min,⋅  and so the total energy is 

3 3 5(12 cm /kg min) (70 kg) (12 min) (20 J/cm ) 2.0 10  J.⋅ = ×  

(b) The run will take 6 min. Using an estimation of the rate from the graph of about 333 cm /kg min⋅  gives an energy 

consumption of about 52.8 10  J.×  
(c) The run takes 4 min, and with an estimated rate of about 350 cm /kg min,⋅  the energy used is about 52.8 10  J.×  
(d) Walking is the most efficient way to go. In general, the point where the slope of the line from the origin to the 
point on the graph is the smallest is the most efficient speed; about 5 km/h.  
EVALUATE: In an exercise program, for a fixed distance, running burns more energy than walking. 

6.104. IDENTIFY: Write equations similar to (6.11) for each component. Eq.(6.12) will now involve the sum of three 
integrals, one for each component. 
SET UP: 2 2 2 2

x y zv v v v= + +  

EXECUTE: From ,  ,x x y ym F ma F ma= = =F a
" "  and .z zF ma=  The generalization of Eq. (6.11) is then 

,  ,   .yx z
x x y y z z

dvdv dva v a v a v
dx dy dz

= = =  The total work is then 

2 2 2 2 2 2

1 1 1 1 1 1

( , , )

tot ( , , )

x y z x y zyx z
x y z x y zx y z x y z

dvdv dvW F dx F dy F dz m v dx v dy v dz
dx dy dz

⎛ ⎞
= + + = + +⎜ ⎟

⎝ ⎠
∫ ∫ ∫ ∫ . 

2 2 2

1 1 1

2 2 2 2 2 2 2 2
tot 2 1 2 1 2 1 2 1

1 1 1( .
2 2 2

x y z

x y z

v v v

x x y y z z x x y y z zv v v
W m v dv v dv v dv m v v v v v v mv mv⎛ ⎞= + + = − + − + − = −⎜ ⎟

⎝ ⎠∫ ∫ ∫  

EVALUATE: F
"

and dl
"

are vectors and have components. W and K are scalars and we never speak of their 
components. 
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POTENTIAL ENERGY AND ENERGY CONSERVATION 

 7.1. IDENTIFY: gravU mgy= so grav 2 1( )U mg y yΔ = −  
SET UP: y+  is upward. 

EXECUTE: (a) 2 5(75 kg)(9.80 m/s )(2400 m 1500 m) 6.6 10  JUΔ = − = + ×  

(b) 2 5(75 kg)(9.80 m/s )(1350 m 2400 m) 7.7 10  JUΔ = − = − ×  
EVALUATE: gravU increases when the altitude of the object increases. 

 7.2. IDENTIFY: Apply m=∑F a
! ! to the sack to find the force. cosW Fs φ= . 

SET UP: The lifting force acts in the same direction as the sack�s motion, so 0φ = °  
EXECUTE: (a) For constant speed, the net force is zero, so the required force is the sack�s weight, 

2(5.00 kg)(9.80 m/s ) 49.0 N.=  
(b) (49.0 N) (15.0 m) 735 JW = = . This work becomes potential energy. 
EVALUATE: The results are independent of the speed. 

 7.3. IDENTIFY: Use the free-body diagram for the bag and Newton's first law to find the force the worker applies. 
Since the bag starts and ends at rest, 2 1 0K K− = and tot 0W = . 

SET UP: A sketch showing the initial and final positions of the bag is given in Figure 7.3a. 2.0 msin
3.5 m

φ = and 

34.85φ = ° . The free-body diagram is given in Figure 7.3b. F
!

is the horizontal force applied by the worker. In the 
calculation of gravU take y+  upward and 0y = at the initial position of the bag. 

EXECUTE: (a) 0yF =∑ gives cosT mgφ = and 0xF =∑ gives sinF T φ= . Combining these equations to 

eliminate T gives 2tan (120 kg)(9.80 m/s ) tan34.85 820 NF mg φ= = =° . 
(b) (i) The tension in the rope is radial and the displacement is tangential so there is no component of T in the 
direction of the displacement during the motion and the tension in the rope does no work. (ii) tot 0W = so 

2
worker grav grav,2 grav,1 2 1( ) (120 kg)(9.80 m/s )(0.6277 m) 740 JW W U U mg y y= − = − = − = = . 

EVALUATE: The force applied by the worker varies during the motion of the bag and it would be difficult to 
calculate workerW directly. 

  
Figure 7.3 

 7.4. IDENTIFY: Only gravity does work on him from the point where he has just left the board until just before he 
enters the water, so Eq.(7.4) applies. 
SET UP: Let point 1 be just after he leaves the board and point 2 be just before he enters the water. y+  is upward 
and 0y = at the water. 

7



7-2 Chapter 7 

EXECUTE: (a) 1 0K = . 2 0y = . 1 3.25 my = . 1 grav,1 2 grav,2K U K U+ = + gives grav,1 2U K= and 21
1 22mgy mv= . 

2
2 12 2(9.80 m/s )(3.25 m) 7.98 m/sv gy= = = . 

(b) 1 2.50 m/sv = , 2 0y = , 1 3.25 my = . 1 grav,1 2K U K+ = and 2 21 1
1 1 22 2mv mgy mv+ = . 

2 2 2
2 1 12 (2.50 m/s) 2(9.80 m/s )(3.25 m) 8.36 m/sv v gy= + = + = . 

(c) 1 2.5 m/sv = and 2 8.36 m/sv = , the same as in part (b). 
EVALUATE: Kinetic energy depends only on the speed, not on the direction of the velocity. 

 7.5. IDENTIFY and SET UP: Use energy methods. 
(a) 1 1 other 2 2.K U W K U+ + = +  Solve for 2K  and then use 21

2 22K mv=  to obtain 2.v  

 

other 0W =  (The only force on the 
ball while it is in the air is gravity.) 

21
1 12 ;K mv=  21

2 22K mv=  

1 1,U mgy=  1 22.0 my =  

2 2 0,U mgy= =  since 2 0y =  
for our choice of coordinates. 

Figure 7.5  

EXECUTE: 2 21 1
1 1 22 2mv mgy mv+ =  

2 2 2
2 1 12 (12.0 m/s) 2(9.80 m/s )(22.0 m) 24.0 m/sv v gy= + = + =  

EVALUATE: The projection angle of 53.1°  doesn�t enter into the calculation. The kinetic energy depends only on 
the magnitude of the velocity; it is independent of the direction of the velocity. 
(b) Nothing changes in the calculation. The expression derived in part (a) for 2v  is independent of the angle, so 

2 24.0 m/s,v =  the same as in part (a). 
(c) The ball travels a shorter distance in part (b), so in that case air resistance will have less effect. 

 7.6. IDENTIFY: The normal force does no work, so only gravity does work and Eq.(7.4) applies. 
SET UP: 1 0K = . The crate�s initial point is at a vertical height of sind α above the bottom of the ramp. 

EXECUTE: (a) 2 0,y =  1 sin .y d α=  1 grav,1 2 grav,2K U K U+ = +  gives grav,1 2.U K=  21
22sinmgd mvα =  and 

2 2 sin .v gd α=  

(b) 1 0y = , 2 siny d α= − . 1 grav,1 2 grav,2K U K U+ = + gives 2 grav,20 K U= + . 21
220 ( sin )mv mgd α= + − and 

2 2 sinv gd α= , the same as in part (a). 
(c) The normal force is perpendicular to the displacement and does no work. 
EVALUATE: When we use gravU mgy= we can take any point as 0y = but we must take y+  to be upward. 

 7.7. IDENTIFY: Apply Eq.(7.7) to points 2 and 3. Take results from Example 7.6. other ,W fs= −  the work done by friction. 
SET UP: As in Example 7.6, 2 20,  94  J,K U= =  and 3 0.U =  

EXECUTE: The work done by friction is (35 N) (1.6 m) 56 J− = − . 3 38 J,K =  and 3
2(38 J) 2.5 m/s.
12 kg

v = =  

EVALUATE: The value of 3v we obtained is the same as calculated in Example 7.6. For the motion from point 2 to 
point 3, gravity does positive work, friction does negative work and the net work is positive. 

 7.8. IDENTIFY and SET UP: Apply Eq.(7.7) and consider how each term depends on the mass. 
EXECUTE: The speed is v and the kinetic energy is 4K. The work done by friction is proportional to the normal 
force, and hence to the mass, and so each term in Eq. (7.7) is proportional to the total mass of the crate, and the 
speed at the bottom is the same for any mass. The kinetic energy is proportional to the mass, and for the same 
speed but four times the mass, the kinetic energy is quadrupled. 
EVALUATE: The same result is obtained if we apply m=∑F a

! ! to the motion. Each force is proportional to m 
and m divides out, so a is independent of m. 
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 7.9. IDENTIFY: tot B AW K K= − . The forces on the rock are gravity, the normal force and friction. 
SET UP: Let 0y = at point B and let y+  be upward. 0.50 mAy R= = . The work done by friction is negative; 

0.22 JfW = − . 0AK = . The free-body diagram for the rock at point B is given in Figure 7.9. The acceleration of 

the rock at this point is 2
rad /a v R= , upward. 

EXECUTE: (a) (i) The normal force is perpendicular to the displacement and does zero work.  
(ii) 2

grav grav, grav, (0.20 kg)(9.80 m/s )(0.50 m) 0.98 JA B AW U U mgy= − = = = . 

(b) tot grav 0 ( 0.22 J) 0.98 J 0.76 Jn fW W W W= + + = + − + = . tot B AW K K= −  gives 21
tot2 Bmv W= . 

tot2 2(0.76 J) 2.8 m/s
0.20 kgB

Wv
m

= = = . 

(c) Gravity is constant and equal to mg. n is not constant; it is zero at A and not zero at B. Therefore, k kf nμ= is 
also not constant. 
(d) y yF ma=∑ applied to Figure 7.9 gives radn mg ma− = . 

2 2
2 [2.8 m/s](0.20 kg) 9.80 m/s 5.1 N

0.50 m
vn m g
R

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

EVALUATE: In the absence of friction, the speed of the rock at point B would be 2 3.1 m/sgR = . As the rock 
slides through point B, the normal force is greater than the weight 2.0 Nmg = of the rock. 

 
Figure 7.9 

 7.10. IDENTIFY: Only gravity does work, so Eq.(7.4) applies. 
SET UP: Let point 1 be just after the rock leaves the thrower and point 2 be at the maximum height. Let 

1 0y = and y+  be upward. 1 0v v= . At the highest point, 2 0 cosv v θ= . 2 2sin cos 1θ θ+ = . 

EXECUTE: 1 grav,1 2 grav,2K U K U+ = + gives 2 21 1
0 0 22 2 ( cos )mv m v mgyθ= + . 

2 2 2
20 0

2
sin(1 cos )

2 2
v vy
g g

θθ= − = , was to 

be shown. 
EVALUATE: The initial kinetic energy is independent of the angle θ but the kinetic energy at the maximum 
height depends on θ , so the maximum height depends on θ . 

 7.11. IDENTIFY: Apply Eq.(7.7) to the motion of the car. 
SET UP: Take 0y =  at point A. Let point 1 be A and point 2 be B. 

1 1 other 2 2K U W K U+ + = +  

EXECUTE: 1 0,U =  2 (2 ) 28,224 J,U mg R= =  other fW W=  
21

1 12 37,500 J,K mv= =  21
2 22 3840 JK mv= =  

The work-energy relation then gives 2 2 1 5400 J.fW K U K= + − = −  

EVALUATE: Friction does negative work. The final mechanical energy 2 2( 32,064 J)K U+ =  is less than the 
initial mechanical energy 1 1( 37,500 J)K U+ =  because of the energy removed by friction work. 

 7.12. IDENTIFY: Only gravity does work, so apply Eq.(7.5). 
SET UP: 1 0v = , so 21

2 1 22 ( )mv mg y y= − . 
EXECUTE: Tarzan is lower than his original height by a distance 1 2 (cos30 cos45 )y y l− = −° °  so his speed is 

2 (cos30 cos45 ) 7.9 m/s,v gl= °− ° = a bit quick for conversation. 
EVALUATE: The result is independent of Tarzan�s mass. 
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 7.13.  

 

1 0y =  

2 (8.00 m)sin36.9y = °  

2 4.80 my =  

Figure 7.13a  
(a) IDENTIFY and SET UP: F

!
 is constant so Eq.(6.2) can be used. The situation is sketched in Figure 7.13a. 

EXECUTE: ( cos ) (110 N)(cos0 )(8.00 m) 880 JFW F sφ= = ° =  

EVALUATE: F
!

 is in the direction of the displacement and does positive work. 
(b) IDENTIFY and SET UP: Calculate W using Eq.(6.2) but first must calculate the friction force. Use the free-
body diagram for the oven sketched in Figure 7.13b to calculate the normal force n; then the friction force can be 
calculated from k k .f nμ=  For this calculation use coordinates parallel and perpendicular to the incline. 

 

EXECUTE: y yF ma=∑  
cos36.9 0n mg− ° =  
cos36.9n mg= °  

k k k cos36.9f n mgμ μ= = °  
2

k (0.25)(10.0 kg)(9.80 m/s )cos36.9 19.6 Nf = ° =  

Figure 7.13b  

k( cos ) (19.6 N)(cos180 )(8.00 m) 157 JfW f sφ= = ° = −  
EVALUATE: Friction does negative work. 
(c) IDENTIFY and SET UP: ;U mgy=  take 0y =  at the bottom of the ramp. 

EXECUTE: 2
2 1 2 1( ) (10.0 kg)(9.80 m/s )(4.80 m 0) 470 JU U U mg y yΔ = − = − = − =  

EVALUATE: The object moves upward and U increases. 
(d) IDENTIFY and SET UP: Use Eq.(7.7). Solve for .KΔ  
EXECUTE: 1 1 other 2 2K U W K U+ + = +  

2 1 1 2 otherK K K U U WΔ = − = − +  

otherK W UΔ = − Δ  

other 880 J 157 J 723 JF fW W W= + = − =  
470 JUΔ =  

Thus 723 J 470 J 253 J.KΔ = − =  
EVALUATE: otherW  is positive. Some of otherW  goes to increasing U and the rest goes to increasing K. 

(e) IDENTIFY: Apply m=∑F a
! !  to the oven. Solve for a!  and then use a constant acceleration equation to 

calculate 2.v  
SET UP: We can use the free-body diagram that is in part (b): 

x xF ma=∑  

k sin36.9F f mg ma− − ° =  

EXECUTE: k sin36.9F f mga
m

− − °
= =

2
2110 N 19.6 N (10 kg)(9.80 m/s )sin36.9 3.16 m/s

10.0 kg
− − °

=  

SET UP: 1 0,xv =  23.16 m/s ,xa =  0 8.00 m,x x− =  2 ?xv =  
2 2
2 1 02 ( )x x xv v a x x= + −  

EXECUTE: 2 2
2 02 ( ) 2(3.16 m/s )(8.00 m) 7.11 m/sx xv a x x= − = =  

Then 2 21 1
2 1 22 2 (10.0 kg)(7.11 m/s) 253 J.K K K mvΔ = − = = =  

EVALUATE: This agrees with the result calculated in part (d) using energy methods. 
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 7.14. IDENTIFY: Only gravity does work, so apply Eq.(7.4). Use m=∑F a
! ! to calculate the tension. 

SET UP: Let 0y = at the bottom of the arc. Let point 1 be when the string makes a 45° angle with the vertical and 

point 2 be where the string is vertical. The rock moves in an arc of a circle, so it has radial acceleration 2
rad /a v r=  

EXECUTE: (a) At the top of the swing, when the kinetic energy is zero, the potential energy (with respect to the 
bottom of the circular arc) is (1 cos  ),mgl θ−  where l is the length of the string and θ  is the angle the string makes 
with the vertical. At the bottom of the swing, this potential energy has become kinetic energy, so 

21
2(1 cos ) ,mgl θ mv− =  or 22 (1 cos ) 2(9 80 m/s ) (0 80 m) (1 cos45 ) 2.1 m/sv gl θ . .  = − = − ° = . 

(b) At 45° from the vertical, the speed is zero, and there is no radial acceleration; the tension is equal to the radial 
component of the weight, or 2cos (0.12 kg) (9.80 m/s ) cos 45 0.83 N.mg θ = ° =  
(c) At the bottom of the circle, the tension is the sum of the weight and the mass times the radial acceleration, 

2
2 (1 2(1 cos45 )) 1.9 Nmg mv l mg+ = + − ° =  

EVALUATE: When the string passes through the vertical, the tension is greater than the weight because the 
acceleration is upward. 

 7.15. IDENTIFY: Apply 21
el 2U kx= . 

SET UP: kx F= , so 1
2U Fx= ,where F is the magnitude of force required to stretch or compress the spring a 

distance x. 
EXECUTE: (a) (1 2)(800 N)(0.200 m) 80.0  J.=  
(b) The potential energy is proportional to the square of the compression or extension; 

2(80.0 J) (0.050 m 0.200 m) 5.0 J.=  

EVALUATE: We could have calculated 800 N 4000 N/m
0.200 m

Fk
x

= = = and then used 21
el 2U kx= directly. 

 7.16. IDENTIFY: Use the information given in the problem with F kx= to find k. Then 21
el 2U kx= . 

SET UP: x is the amount the spring is stretched. When the weight is hung from the spring, F mg= . 

EXECUTE: 
2(3.15 kg)(9.80 m/s ) 2205 N/m

0.1340 m 0.1200 m
F mgk
x x

= = = =
−

. 

el2 2(10.0 J) 0.0952 m 9.52 cm
2205 N/m

Ux
k

= ± = ± = ± = ± . The spring could be either stretched 9.52 cm or 

compressed 9.52 cm. If it were stretched, the total length of the spring would be 12.00 cm 9.52 cm 21.52 cm+ = . 
If it were compressed, the total length of the spring would be 12.00 cm 9.52 cm 2.48 cm− = . 
EVALUATE: To stretch or compress the spring 9.52 cm requires a force 210 NF kx= = . 

 7.17. IDENTIFY: Apply 21
el 2U kx= . 

SET UP: 21
0 02U kx= . x is the distance the spring is stretched or compressed. 

EXECUTE: (a) (i) 02x x= gives 2 21 1
el 0 0 02 2(2 ) 4( ) 4U k x kx U= = = . (ii) 0 / 2x x= gives 

2 21 1 1
el 0 0 02 4 2( / 2) ( ) / 4U k x kx U= = = . 

(b) (i) 02U U= gives 2 21 1
02 22( )kx kx= and 0 2x x= . (ii) 0 / 2U U= gives 2 21 1 1

02 2 2( )kx kx= and 0 / 2x x= . 

EVALUATE: U is proportional to 2x and x is proportional to U . 
 7.18. IDENTIFY: Apply Eq.(7.13). 

SET UP: Initially and at the highest point, 0v = , so 1 2 0K K= = . other 0W = . 
EXECUTE: (a) In going from rest in the slingshot�s pocket to rest at the maximum height, the potential energy 
stored in the rubber band is converted to gravitational potential energy; 

3 2(10 10  kg)(9.80 m/s ) (22.0 m) 2.16 J.U mgy −= = × =  
(b) Because gravitational potential energy is proportional to mass, the larger pebble rises only 8.8 m. 
(c) The lack of air resistance and no deformation of the rubber band are two possible assumptions. 
EVALUATE: The potential energy stored in the rubber band depends on k for the rubber band and the maximum 
distance it is stretched. 
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 7.19. IDENTIFY and SET UP: Use energy methods. There are changes in both elastic and gravitational potential energy; 
elastic; 21

2 ,U kx=  gravitational: .U mgy=  

EXECUTE: (a) 21
2U kx=  so 2 2(3.20 J) 0.0632 m 6.32 cm

1600 N/m
Ux
k

= = = =  

(b) Points 1 and 2 in the motion are sketched in Figure 7.19. 

 

1 1 other 2 2K U W K U+ + = +  

other 0W =  (Only work is that done 
by gravity and spring force) 

1 0,K =  2 0K =  
0y =  at final position of book 

( )1 ,U mg h d= +  21
2 2U kd=  

Figure 7.19  
21

20 ( ) 0mg h d kd+ + + =  
The original gravitational potential energy of the system is converted into potential energy of the compressed 
spring. 

21
2 0kd mgd mgh− − =  

21 1( ) 4 ( )
2

d mg mg k mgh
k

⎛ ⎞⎛ ⎞= ± +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

d must be positive, so ( )21 ( ) 2d mg mg kmgh
k

= + +  

21 ((1.20 kg)(9.80 m/s )
1600 N/m

d = +  

2 2 2((1.20 kg)(9.80 m/s )) 2(1600 N/m)(1.20 kg)(9.80 m/s )(0.80 m)+  
 

 
EVALUATE: It was important to recognize that the total displacement was ;h d+  gravity continues to do work as 
the book moves against the spring. Also note that with the spring compressed 0.12 m it exerts an upward force 
(192 N) greater than the weight of the book (11.8 N). The book will be accelerated upward from this position. 

 7.20. IDENTIFY: Use energy methods. There are changes in both elastic and gravitational potential energy. 
SET UP: 1 1 other 2 2.K U W K U+ + = +  Points 1 and 2 in the motion are sketched in Figure 7.20. 

  
 

 

 

The spring force and gravity are the 
only forces doing work on the cheese, 
so other 0W =  and grav el.U U U= +  

Figure 7.20  
EXECUTE: Cheese released from rest implies 1 0.K =  
At the maximum height 2 0v =  so 2 0.K =  

1 1,el 1,gravU U U= +  

1 0y =  implies 1,grav 0U =  
2 21 1

1,el 12 2 (1800 N/m)(0.15 m) 20.25 JU kx= = =  

(Here 1x  refers to the amount the spring is stretched or compressed when the cheese is at position 1; it is not the  
x-coordinate of the cheese in the coordinate system shown in the sketch.) 

2 2,el 2,gravU U U= +  

0.0074 m 0.1087 m 0.12 m 12 cmd = + = =
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2,grav 2 ,U mgy=  where 2y  is the height we are solving for. 2,el 0U =  since now the spring is no longer compressed. 

Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 1,el 2,gravU U=  

2 2

20.25 J 20.25 J 1.72 m
(1.20 kg)(9.80 m/s )

y
mg

= = =  

EVALUATE: The description in terms of energy is very simple; the elastic potential energy originally stored in the 
spring is converted into gravitational potential energy of the system. 

 7.21. IDENTIFY: Apply Eq.(7.13). 
SET UP: other 0W = . As in Example 7.7, 1 0K =  and 1 0.0250 J.U =  

EXECUTE: For 2 0.20 m s,v =  2 0.0040 JK = . 21
2 20.0210 J ,U kx= =  and 2(0.0210 J) 0.092 m.

5.00 N m
x = ± = ±  The 

glider has this speed when the spring is stretched 0.092 m or compressed 0.092 m. 
EVALUATE: Example 7.7 showed that 0.30 m/sxv =  when 0.0800 mx = . As x increases, xv decreases, so our 
result of 0.20 m/sxv = at 0.092 mx = is consistent with the result in the example. 

 7.22. IDENTIFY and SET UP: Use energy methods. The elastic potential energy changes. In part (a) solve for 2K  and 
from this obtain 2.v  In part (b) solve for 1U  and from this obtain 1.x  
(a) 1 1 other 2 2K U W K U+ + = +  
point 1: the glider is at its initial position, where 1 0.100 mx =  and 1 0v =  
point 2: the glider is at 0x =  
EXECUTE: 1 0K =  (released from rest), 21

2 22K mv=  
21

1 12 ,U kx=  2 0,U =  other 0W =  (only the spring force does work) 

Thus 2 21 1
1 22 2 .kx mv=  (The initial potential energy of the stretched spring is converted entirely into kinetic energy of 

the glider.) 

2 1
5.00 N/m(0.100 m) 0.500 m/s
0.200 kg

kv x
m

= = =  

(b) The maximum speed occurs at 0,x =  so the same equation applies. 
2 21 1
1 22 2kx mv=  

1 2
0.200 kg2.50 m/s 0.500 m
5.00 N/m

mx v
k

= = =  

EVALUATE: Elastic potential energy is converted into kinetic energy. A larger 1x  gives a larger 2.v  

 7.23. IDENTIFY: Only the spring does work and Eq.(7.11) applies. F kxa
m m

−
= = , where F is the force the spring exerts 

on the mass. 
SET UP: Let point 1 be the initial position of the mass against the compressed spring, so 1 0K = and 1 11.5 JU = . 
Let point 2 be where the mass leaves the spring, so el,2 0U = . 

EXECUTE: (a) 1 el,1 2 el,2K U K U+ = + gives el,1 2U K= . 21
2 el,12 mv U= and el,1

2

2 2(11.5 J) 3.03 m/s
2.50 kg

U
v

m
= = = .  

K is largest when elU is least and this is when the mass leaves the spring. The mass achieves its maximum speed of 
3.03 m/s as it leaves the spring and then slides along the surface with constant speed. 
(b) The acceleration is greatest when the force on the mass is the greatest, and this is when the spring has its 

maximum compression. 21
el 2U kx= so el2 2(11.5 J) 0.0959 m

2500 N/m
Ux
k

= − = − = − . The minus sign indicates 

compression. xF kx ma= − = and 2(2500 N/m)( 0.0959 m) 95.9 m/s
2.50 kgx

kxa
m

−
= − = − = . 

EVALUATE: If the end of the spring is displaced to the left when the spring is compressed, then xa in part (b) is to 
the right, and vice versa. 
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 7.24. (a) IDENTIFY and SET UP: Use energy methods. Both elastic and gravitational potential energy changes. Work is 
done by friction. 
Choose point 1 as in Example 7.9 and let that be the origin, so 1 0.y =  Let point 2 be 1.00 m below point 1, so 

2 1.00 m.y = −  
EXECUTE: 1 1 other 2 2K U W K U+ + = +  

2 21 1
1 12 2 (2000 kg)(25 m/s) 625,000 J,K mv= = =  1 0U =  

other 2 (17,000 N)(1.00 m) 17,000 JW f y= − = − = −  
21

2 22K mg=  
21

2 2,grav 2,el 2 22U U U mgy ky= + = +  
2 5 21

2 2(2000 kg)(9.80 m/s )( 1.00 m) (1.41 10  N/m)(1.00 m)U = − + ×  

2 19,600 J 70,500 J 50,900 JU = − + = +  

Thus 21
22625,000 J 17,000 J 50,900 Jmv− = +  

21
22 557,100 Jmv =  

2
2(557,100 J) 23.6 m/s

2000 kg
v = =  

EVALUATE: The elevator stops after descending 3.00 m. After descending 1.00 m it is still moving but has 
slowed down. 
(b) IDENTIFY: Apply m=∑F a

! !  to the elevator. We know the forces and can solve for .a!  
SET UP: The free-body diagram for the elevator is given in Figure 7.24. 

 

EXECUTE: spr ,F kd=  where d is the 
distance the spring is compressed 

y yF ma=∑  

k sprf F mg ma+ − =  

kf kd mg ma+ − =  

Figure 7.24  

5 2
k 17,000 N (1.41 10  N/m)(1.00 m) (2000 kg)(9.80 m/s )

2000 kg
f kd mga

m
+ − + × −

= = 269.2 m/s=  

We calculate that a is positive, so the acceleration is upward. 
EVALUATE: The velocity is downward and the acceleration is upward, so the elevator is slowing down at this 
point. Note that 7.1 ;a g=  this is unacceptably high for an elevator. 

 7.25. IDENTIFY: Apply Eq.(7.13) and F ma= . 
SET UP: other 0W = . There is no change in gravU . 1 0K = , 2 0U = . 

EXECUTE: 2 21 1
2 2 xkx mv= . The relations for m, xv , k and x are 2 2 and 5 .xkx mv kx mg= =  

Dividing the first equation by the second gives 
2

5
xvx
g

= , and substituting this into the second gives 
2

225
x

mgk
v

= . 

(a) 
2 2

5
2

(1160 kg)(9.80 m/s )25 4.46 10  N/m
(2.50 m/s)

k = = ×  

(b) 
2

2

(2.50 m/s) 0.128 m
5(9.80 m/s )

x = =  

EVALUATE: Our results for k and x do give the required values for xa and xv : 
5

2(4.46 10  N/m)(0.128 m) 49.2 m/s 5.0
1160 kgx

kxa g
m

×
= = = = and 2.5 m/sx

kv x
m

= = . 
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 7.26. IDENTIFY: grav cosW mg φ= . 

SET UP: When he moves upward, 180φ = ° and when he moves downward, 0φ = ° . When he moves parallel to 
the ground, 90φ = ° . 
EXECUTE: (a) 2

grav (75 kg)(9.80 m/s )(7.0 m)cos180 5100 JW = = −° . 

(b) 2
grav (75 kg)(9.80 m/s )(7.0 m)cos0 5100 JW = = +° . 

(c) 90φ = ° in each case and grav 0W = in each case. 
(d) The total work done on him by gravity during the round trip is 5100 J 5100 J 0− + = . 
(e) Gravity is a conservative force since the total work done for a round trip is zero. 
EVALUATE: The gravity force is independent of the position and motion of the object. When the object moves 
upward gravity does negative work and when the object moves downward gravity does positive work. 

 7.27. IDENTIFY: Apply 
k k cosfW f s φ= . k kf nμ= . 

SET UP: For a circular trip the distance traveled is 2d rπ= . At each point in the motion the friction force and the 
displacement are in opposite directions and 180φ = ° . Therefore, 

k k k (2 )fW f d f rπ= − = − . n mg= so k kf mgμ= . 

EXECUTE: (a) 
k

2
k 2 (0.250)(10.0 kg)(9.80 m/s )(2 )(2.00 m) 308 JfW mg rμ π π= − = − = − . 

(b) The distance along the path doubles so the work done doubles and becomes 616 J− . 
(c) The work done for a round trip displacement is not zero and friction is a nonconservative force. 
EVALUATE: The direction of the friction force depends on the direction of motion of the object and that is why 
friction is a nonconservative force. 

 7.28. IDENTIFY and SET UP: The force is not constant so we must use Eq.(6.14) to calculate W. The properties of work 
done by a conservative force are described in Section 7.3. 

2

1
,W d= ⋅∫ F l
!!

 2 �xα= −F i
!

 

EXECUTE: (a) �d dy=l j
!

 (x is constant; the displacement is in the -directiony+ ) 

0d⋅ =F l
!!

 (since � � 0)⋅ =i j  and thus 0.W =  

(b) �d dx=l i
!

 
2 2� �( ) ( )  d x dx x dxα α⋅ = − ⋅ = −F l i i

!!
 

2
2

1
1

2
2 3 3 3 31 1

2 13 3
12 N/m( ) ( ) ((0.300 m)

3
x x

xx
W x dx ax x xα α= − = − = − − = − −∫ 3(0.10 m) ) 0.10 J= −  

(c) �d dx=l i
!

 as in part (b), but now 1 0.30 mx =  and 2 0.10 mx =  
3 31
2 13 ( ) 0.10 JW x xα= − − = +  

(d) EVALUATE: The total work for the displacement along the x-axis from 0.10 m to 0.30 m and then back to 
0.10 m is the sum of the results of parts (b) and (c), which is zero. The total work is zero when the starting and 
ending points are the same, so the force is conservative. 
EXECUTE: 

1 2

3 3 3 31 1 1
2 1 1 23 3 3( )x xW x x x xα α α→ = − − = −  

The definition of the potential energy function is 
1 2 1 2.x xW U U→ = −  Comparison of the two expressions for W gives 

31
3 .U xα=  This does correspond to 0U =  when 0.x =  

EVALUATE: In part (a) the work done is zero because the force and displacement are perpendicular. In part (b) 
the force is directed opposite to the displacement and the work done is negative. In part (c) the force and 
displacement are in the same direction and the work done is positive. 

 7.29. IDENTIFY: Since the force is constant, use cosW Fs φ= . 
SET UP: For both displacements, the direction of the friction force is opposite to the displacement and 180φ = ° . 
EXECUTE: (a) When the book moves to the left, the friction force is to the right, and the work is  

(1.2 N)(3.0 m) 3.6 J.− = −  
(b) The friction force is now to the left, and the work is again 3.6 J.−  
(c) 7.2 J.−  
(d) The net work done by friction for the round trip is not zero, and friction is not a conservative force. 
EVALUATE: The direction of the friction force depends on the motion of the object. For the gravity force, which 
is conservative, the force does not depend on the motion of the object. 
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 7.30. IDENTIFY and SET UP: The friction force is constant during each displacement and Eq.(6.2) can be used to 
calculate work, but the direction of the friction force can be different for different displacements. 

2
k (0.25)(1.5 kg)(9.80 m/s ) 3.675 N;f mgμ= = =  direction of f

!
 is opposite to the motion. 

EXECUTE: (a) The path of the book is sketched in Figure 7.30a. 

 
Figure 7.30a 

For the motion from you to Beth the friction force is directed opposite to the displacement s!  and 
1 (3.675 N)(8.0 m) 29.4 J.W fs= − = − = −  

For the motion from Beth to Carlos the friction force is again directed opposite to the displacement and 
2 29.4 J.W = −  

tot 1 2 29.4 J 29.4 J 59 JW W W= + = − − = −  

(b) The path of the book is sketched in Figure 7.30b. 

 

22(8.0 m) 11.3 ms = =  

Figure 7.30b  

f
!

 is opposite to ,s!  so (3.675 N)(11.3 m) 42 JW fs= − = − = −  
(c)  

 

For the motion from Kim 
to you 

29.4 JW fs= − = −  

Figure 7.30d  
The total work for the round trip is 29.4 J 29.4 J 59 J.− − = −  
(d) EVALUATE: Parts (a) and (b) show that for two different paths between you and Carlos, the work done by 
friction is different. Part (c) shows that when the starting and ending points are the same, the total work is not zero. 
Both these results show that the friction force is nonconservative. 

 7.31. IDENTIFY: The work done by a spring on an object attached to its end when the object moves from ix to fx is 
2 21 1
i f2 2W kx kx= − . This result holds for any ix and fx . 

SET UP: Assume for simplicity that 1x , 2x and 3x are all positive, corresponding to the spring being stretched. 

EXECUTE: (a) 2 21
1 22 ( )k x x−  

(b) 2 21
1 22 ( ).k x x− −  The total work is zero; the spring force is conservative. 

(c) From 1x  to 3,x  2 21
3 12 ( ).W k x x= − −  From 3x  to 2x ,  2 21

2 32 ( ).W k x x= − −  The net work is 2 21
2 12 ( ).k x x− −  This is 

the same as the result of part (a). 
EVALUATE: The results of part (c) illustrate that the work done by a conservative force is path independent. 

 

For the motion from you to Kim 
W fs= −  

(3.675 N)(8.0 m) 29.4 JW = − = −  

Figure 7.30c  
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 7.32. IDENTIFY and SET UP: Use Eq.(7.17) to calculate the force from ( ).U x  Use coordinates where the origin is at 
one atom. The other atom then has coordinate x. 
EXECUTE: 

6 6
66 6 7

1 6
x

dU d C d CF C
dx dx x dx x x

⎛ ⎞ ⎛ ⎞= − = − − = + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The minus sign mean that xF  is directed in the -direction,x−  toward the origin. The force has magnitude 7
66 /C x  

and is attractive. 
EVALUATE: U depends only on x so F

!
 is along the x-axis; it has no y or z components. 

 7.33. IDENTIFY: Apply Eq.(7.16). 
SET UP: The sign of xF indicates its direction. 

EXECUTE: 43 34 (4.8 J m )x
dUF x x
dx

α= − = − = − . 4 3( 0.800 m) (4.8 J m )( 0.80 m) 2.46 N.xF − = − − =  The force is 

in the -direction.x+  
EVALUATE: 0xF > when 0x < and 0xF < when 0x > , so the force is always directed towards the origin. 

 7.34. IDENTIFY: Apply ( )( ) dU xF x
dx

= − . 

SET UP: 2

(1/ ) 1d x
dx x

= −  

EXECUTE: 1 2 1 2
1 2 2

( / ) (1/ )( )x
d Gm m x d x Gm mF x Gm m

dx dx x
− ⎡ ⎤= − = = −⎢ ⎥⎣ ⎦

. The force on 2m is in the -directionx− . This 

is toward 1m , so the force is attractive. 

EVALUATE: By Newton's 3rd law the force on 1m due to 2m is 2
1 2 /Gm m x , in the -directionx+  (toward 2m ). The 

gravitational potential energy belongs to the system of the two masses. 

 7.35. IDENTIFY: Apply x
UF
x

∂
= −

∂
and y

UF
y

∂
= −

∂
. 

SET UP: 2 2 1/ 2( )r x y= + . 2 2 3 / 2

(1/ )
( )

r x
x x y

∂
= −

∂ +
and 2 2 3 / 2

(1/ )
( )

r y
y x y

∂
= −

∂ +
. 

EXECUTE: (a) 1 2( ) Gm mU r
r

= − . 1 2
1 2 2 2 3 / 2

(1/ )
( )x

U r Gm m xF Gm m
x x x y

∂ ∂⎡ ⎤= − = + = −⎢ ⎥∂ ∂ +⎣ ⎦
 and 

1 2
1 2 2 2 3 / 2

(1/ )
( )y

U r Gm m yF Gm m
y y x y

⎡ ⎤∂ ∂
= − = + = −⎢ ⎥∂ ∂ +⎣ ⎦

. 

(b) 2 2 3 / 2 3( )x y r+ = so 1 2
3x

Gm m xF
r

= − and 1 2
3y

Gm m yF
r

= − . 2 2 2 21 2 1 2
3 2x y

Gm m Gm mF F F x y
r r

= + = + = . 

(c) xF and yF are negative. xF xα= and yF yα= , where α is a constant, so F
!

and the vector r! from 1m to 2m are 

in the same direction. Therefore, F
!

is directed toward 1m at the origin and F
!

is attractive. 

EVALUATE: If θ is the angle between the vector r! that points from 1m to 2m , then cosx
r

θ= and siny
r

θ= . This 

gives cosxF F θ= − and sinyF F θ= − , our more usual way of writing the components of a vector. 
 7.36. IDENTIFY: Apply Eq.(7.18). 

SET UP: 2 3

1 2d
dx x x
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

 and 2 3

1 2d
dy y y
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. 

EXECUTE: � �U U
x y

∂ ∂
− −
∂ ∂

F = i j
!

 since U has no z-dependence. 3 3
2 2 and    soU U ,x yx y
α α∂ − ∂ −= =

∂ ∂
 

3 3 3 3

2 2� �  2
x y x y

α α
⎛ ⎞⎛ ⎞− −

− = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

i jF = i + j +
! !!

. 

EVALUATE: xF and x have the same sign and yF and y have the same sign. When 0x > , xF is in the 
-direction,x+  and so forth. 
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 7.37. IDENTIFY and SET UP: Use Eq.(7.17) to calculate the force from U. At equilibrium 0.F =  
(a) EXECUTE: The graphs are sketched in Figure 7.37. 

 

12 6

a bU
r r

= −  

13 7

12 6dU a bF
dr r r

= − = + −  

Figure 7.37 

(b) At equilibrium 0,F =  so 0dU
dr

=  

0F =  implies 13 7

12 6 0a b
r r
+

− =  

66 12 ;br a=  solution is the equilibrium distance 1/ 6
0 (2 / )r a b=  

U is a minimum at this r; the equilibrium is stable. 
(c) At 1/ 6(2 / ) ,r a b=  12 6 2 2/ / ( / 2 ) ( / 2 ) / 4 .U a r b r a b a b b a b a= − = − = −  

At ,r →∞  0.U =  The energy that must be added is 2 / 4 .U b a−Δ =  
(d) 1/ 6 10

0 (2 / ) 1.13 10  mr a b −= = ×  gives that 
60 62 / 2.082 10  ma b −= ×  and 59 6/ 4 2.402 10  mb a −= ×  

2 18/ 4 ( / 4 ) 1.54 10  Jb a b b a −= = ×  
59 6 18(2.402 10  m ) 1.54 10  Jb − −× = ×  and 78 66.41 10  J m .b −= × ⋅  

Then 60 62 / 2.082 10  ma b −= ×  gives 60 6( / 2)(2.082 10  m )a b −= × =  
78 6 60 6 138 121

2 (6.41 10  J m )(2.082 10  m ) 6.67 10  J m− − −× ⋅ × = × ⋅  
EVALUATE: As the graphs in part (a) show, ( )F r  is the slope of ( )U r  at each r. ( )U r  has a minimum where 

0.F =  
 7.38. IDENTIFY: Apply Eq.(7.16). 

SET UP: dU
dx

is the slope of the U versus x graph. 

EXECUTE: (a) Considering only forces in the x-direction, x
dUF
dx

= −  and so the force is zero when the slope of 

the U vs x graph is zero, at points b and d. 
(b) Point b is at a potential minimum; to move it away from b would require an input of energy, so this point is 
stable. 
(c) Moving away from point d involves a decrease of potential energy, hence an increase in kinetic energy, and the 
marble tends to move further away, and so d is an unstable point. 
EVALUATE: At point b, xF is negative when the marble is displaced slightly to the right and xF is positive when 
the marble is displaced slightly to the left, the force is a restoring force, and the equilibrium is stable. At point d, a 
small displacement in either direction produces a force directed away from d and the equilibrium is unstable. 

 7.39. IDENTIFY: Apply m=∑F a
! ! to the bag and to the box. Apply Eq.(7.7) to the motion of the system of the box 

and bucket after the bag is removed. 
SET UP: Let 0y = at the final height of the bucket, so 1 2.00 my = and 2 0y = . 1 0K = . The box and the bucket 

move with the same speed v, so 21
2 box bucket2 ( )K m m v= + . other kW f d= − , with 2.00 md = and k k boxf m gμ= . 

Before the bag is removed, the maximum possible friction force the roof can exert on the box is 
2(0.700)(80.0 kg 50.0 kg)(9.80 m/s ) 892 N+ = . This is larger than the weight of the bucket (637 N), so before the 

bag is removed the system is at rest. 
EXECUTE: (a) The friction force on the bag of gravel is zero, since there is no other horizontal force on the bag 
for friction to oppose. The static friction force on the box equals the weight of the bucket, 637 N. 
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(b) Eq.(7.7) gives 21
bucket 1 k tot2m gy f d m v− = , with tot 145.0 kgm = . bucket 1 k box

tot

2 ( )v m gy m gd
m

μ= − . 

2 22 (65.0 kg)(9.80 m/s )(2.00 m) (0.400)(80.0 kg)(9.80 m/s )(2.00 m)
145.0 kg

v ⎡ ⎤= −⎣ ⎦ . 

2.99 m/sv = . 
EVALUATE: If we apply m=∑F a

! ! to the box and to the bucket we can calculate their common acceleration a. 
Then a constant acceleration equation applied to either object gives 2.99 m/sv = , in agreement with our result 
obtained using energy methods. 

 7.40. IDENTIFY: For the system of two blocks, only gravity does work. Apply Eq.(7.5). 
SET UP: Call the blocks A and B, where A is the more massive one. 1 1 0A Bv v= = . Let 0y =  for each block to be 
at the initial height of that block, so 1 1 0A By y= = . 2 1.20 mAy = − and 2 1.20 mBy = + . 2 2 2 3.00 m/sA Bv v v= = = . 

EXECUTE: Eq.(7.5) gives 21
220 ( ) (1.20 m)( )A B B Am m v g m m= + + − . 15.0 kgA Bm m+ = . 

2 21
2 (15.0 kg)(3.00 m/s) (9.80 m/s )(1.20 m)(15.0 kg 2 )Am+ − . Solving for Am gives 10.4 kgAm = . And then 

4.6 kgBm = . 
EVALUATE: The final kinetic energy of the two blocks is 68 J. The potential energy of block A decreases by 122 J. 
The potential energy of block B increases by 54 J. The total decrease in potential energy is 122 J 54 J 68 J,− =  and 
this equals the increase in kinetic energy of the system. 

 7.41. IDENTIFY: Apply 1 1 other 2 2K U W K U+ + = +  
SET UP: 1 2 2 0U U K= = = . other k  with  280 ft 85.3 mfW W mgs, sμ= = − = =  

EXECUTE: (a) The work-energy expression gives 21
1 k2 0mv mgsμ− = . 

1 k2 22.4 m/s 50 mph;v gsμ= = =  the driver was speeding. 
(b) 15 mph over speed limit so $150 ticket. 
EVALUATE: The negative work done by friction removes the kinetic energy of the object. 

 7.42. IDENTIFY: Apply Eq.(7.14). 
SET UP: Only the spring force and gravity do work, so other 0W = . Let 0y = at the horizontal surface. 

EXECUTE: (a) Equating the potential energy stored in the spring to the block's kinetic energy, 2 21 1
2 2kx mv ,=  or 

400 N/m (0.220 m) 3.11 m/s.
2.00 kg

kv x
m

= = =  

(b) Using energy methods directly, the initial potential energy of the spring equals the final gravitational potential 

energy, 21
2 sin ,kx mgL θ=  or 

2 21 1
2 2

2

(400 N/m)(0.220 m)
0.821 m.

sin (2.00 kg)(9.80 m/s )sin37.0
kx

L
mg θ

= = =
°

 

EVALUATE: The total energy of the system is constant. Initially it is all elastic potential energy stored in the 
spring, then it is all kinetic energy and finally it is all gravitational potential energy. 

 7.43. IDENTIFY: Use the work-energy theorem, Eq(7.7). The target variable kμ  will be a factor in the work done by 
friction. 
SET UP: Let point 1 be where the block is released and let point 2 be where the block stops, as shown in 
Figure 7.43. 

1 1 other 2 2K U W K U+ + = +  

 

Work is done on the 
block by the spring and 
by friction, so other fW W=  

and el.U U=  
Figure 7.43  

EXECUTE: 1 2 0K K= =  
2 21 1

1 1,el 12 2 (100 N/m)(0.200 m) 2.00 JU U kx= = = =  

2 2,el 0,U U= =  since after the block leaves the spring has given up all its stored energy 

other k k k( cos ) (cos ) ,fW W f s mg s mgsφ μ φ μ= = = = −  since 180φ = °  (The friction force is directed opposite to the 
displacement and does negative work.) 
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Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 

1,el 0fU W+ =  

k 1,elmgs Uμ =  

1,el
k 2

200 J 0.41.
(0.50 kg)(9.80 m/s )(1.00 m)

U
mgs

μ = = =  

EVALUATE: 1,el 0fU W+ =  says that the potential energy originally stored in the spring is taken out of the system 
by the negative work done by friction. 

 7.44. IDENTIFY: Apply Eq.(7.14). Calculate kf from the fact that the crate slides a distance 5.60 mx = before coming 
to rest. Then apply Eq.(7.14) again, with 2.00 mx = . 
SET UP: 1 el 360 JU U= = . 2 0U = . 1 0K = . other kW f x= − . 
EXECUTE: Work done by friction against the crate brings it to a halt: 1 otherU W= − . 

k potential energy of compressed springf x = , and k
360 J 64.29 N

5.60 m
f = = . 

The friction force working over a 2.00-m distance does work equal to k (64.29 N)(2.00 m) 128.6 J.f x− = − = −  The 
kinetic energy of the crate at this point is thus 360 J 128.6 J 231.4 J,− =  and its speed is found from 

2 / 2 231.4 Jmv = , so 2(231.4 J) 3.04 m/s
50 0 kg

v
.

= = . 

EVALUATE: The energy of the compressed spring goes partly into kinetic energy of the crate and is partly 
removed by the negative work done by friction. After the crate leaves the spring the crate slows down as friction 
does negative work on it. 

 7.45. IDENTIFY: At its highest point between bounces all the mechanical energy of the ball is in the form of 
gravitational potential energy. 
SET UP: E U mgh= = , where h is the height at the highest point of the motion. 

EXECUTE: (a) 2(0.650 kg)(9.80 m/s )(2.50 m) 15.9 Jmgh = =  
(b) The second height is 0.75(2.50 m) 1.875 m,=  so the second 11.9 J ;mgh =  it loses 15.9 J 11.9 J 4.0 J− =  on 
first bounce. This energy is converted to thermal energy. 
(c) The third height is 0.75(1.875 m) 1.40 m,= , so third 8.9 J ;mgh =  it loses 11.9 J 8.9 J 3.0 J− =  on second 
bounce. 
EVALUATE: In each bounce the ball loses 25% of its mechanical energy. 

 7.46. IDENTIFY: Apply Eq.(7.14) to relate h and Bv . Apply m=∑F a
! ! at point B to find the minimum speed required 

at B for the car not to fall off the track. 
SET UP: At B, 2 /Ba v R= , downward. The minimum speed is when 0n → and 2 /Bmg mv R= . The minimum 

speed required is Bv gR= . 1 0K = and other 0W = . 

EXECUTE: (a) Eq.(7.14) applied to points A and B gives 21
2A B BU U mv− = . The speed at the top must be at least 

.gR  Thus, 1 5( 2 )    or   .
2 2

mg h R mgR, h R− > >  

(b) Apply Eq.(7.14) to points A and C. (2.50)A C CU U Rmg K ,− = =  so 

2(5.00) (5.00)(9.80 m/s )(20.0 m) 31.3 m/s.Cv gR= = =  

The radial acceleration is 
2

2
rad 49.0 m/s .Cva

R
= =  The tangential direction is down, the normal force at point C is 

horizontal, there is no friction, so the only downward force is gravity, and 2
tan 9.80 m/s .a g= =  

EVALUATE: If 5
2h R> , then the downward acceleration at B due to the circular motion is greater than g and the 

track must exert a downward normal force n. n increases as h increases and hence Bv increases. 
 7.47. (a) IDENTIFY: Use work-energy relation to find the kinetic energy of the wood as it enters the rough bottom. 

SET UP: Let point 1 be where the piece of wood is released and point 2 be just before it enters the rough bottom. 
Let 0y =  be at point 2. 
EXECUTE: 1 2U K=  gives 2 1 78.4 J.K mgy= =  
IDENTIFY: Now apply work-energy relation to the motion along the rough bottom. 
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SET UP: Let point 1 be where it enters the rough bottom and point 2 be where it stops. 

1 1 other 2 2K U W K U+ + = +  

EXECUTE: other k ,fW W mgsμ= = −  2 1 2 0;K U U= = =  1 78.4 JK =  

k78.4 J 0;mgsμ− =  solving for s gives 20.0 m.s =  
The wood stops after traveling 20.0 m along the rough bottom. 
(b) Friction does 78.4 J−  of work. 
EVALUATE: The piece of wood stops before it makes one trip across the rough bottom. The final mechanical 
energy is zero. The negative friction work takes away all the mechanical energy initially in the system. 

 7.48. IDENTIFY: Apply Eq.(7.14) to the rock. 
kother fW W= . 

SET UP: Let 0y = at the foot of the hill, so 1 0U = and 2U mgh= , where h is the vertical height of the rock above 
the foot of the hill when it stops. 
EXECUTE: (a) At the maximum height, 2 0K = . Eq.(7.14) gives 

kBottom TopfK W U+ = . 

2
0 k

1 cos
2

mv mg θ d mghμ− = . sind h θ= , so 2
0 k

1 cos
2 sin

hv g ghμ θ
θ

− = . 

2 2 21 cos40(15 m/s) (0.20)(9.8 m/s ) (9.8 m/s )
2 sin 40

h h°
− =

°
 and 9.3 mh = . 

(b) Compare maximum static friction force to the weight component down the plane. 
2

s s cos (0.75)(28 kg)(9.8 m/s )cos40 158 Nf mgμ θ= = ° = . 2
ssin (28 kg)(9.8 m/s )(sin 40 ) 176 Nmg fθ = ° = > , so 

the rock will slide down. 
(c) Use same procedure as in part (a), with 9.3 mh = and Bv being the speed at the bottom of the hill. 

kTop BfU W K+ = . 2
k B

1cos
sin 2

hmgh mg mvμ θ
θ

− =  and 

B k2 2 cos sin  11.8 m/sv gh ghμ θ θ= − = . 
EVALUATE: For the round trip up the hill and back down, there is negative work done by friction and the speed 
of the rock when it returns to the bottom of the hill is less than the speed it had when it started up the hill. 

 7.49. IDENTIFY: Apply Eq.(7.7) to the motion of the stone. 
SET UP: 1 1 other 2 2K U W K U+ + = +  
Let point 1 be point A and point 2 be point B. Take 0y =  at point B. 

EXECUTE: 2 21 1
1 1 22 2 ,mgy mv mv+ =  with 20.0 mh =  and 1 10.0 m/sv =  

2
2 1 2 22.2 m/sv v gh= + =  

EVALUATE: The loss of gravitational potential energy equals the gain of kinetic energy. 
(b) IDENTIFY: Apply Eq.(7.8) to the motion of the stone from point B to where it comes to rest against the 
spring. 
SET UP: Use 1 1 other 2 2 ,K U W K U+ + = +  with point 1 at B and point 2 where the spring has its maximum 
compression x. 
EXECUTE: 1 2 2 0;U U K= = =  21

1 12K mv=  with 1 22.2 m/sv =  
21

other el k 2 ,fW W W mgs kxμ= + = − −  with 100 ms x= +  

The work-energy relation gives 1 other 0.K W+ =  
2 21 1
1 k2 2 0mv mgs kxμ− − =  

Putting in the numerical values gives 2 29.4 750 0.x x+ − =  The positive root to this equation is 16.4 m.x =  
EVALUATE: Part of the initial mechanical (kinetic) energy is removed by friction work and the rest goes into the 
potential energy stored in the spring. 
(c) IDENTIFY and SET UP: Consider the forces. 
EXECUTE: When the spring is compressed 16.4 mx =  the force it exerts on the stone is el 32.8 N.F kx= =  The 
maximum possible static friction force is 

2
s smax (0.80)(15.0 kg)(9.80 m/s ) 118 N.f mgμ= = =  

EVALUATE: The spring force is less than the maximum possible static friction force so the stone remains at rest. 
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 7.50. IDENTIFY: Once the block leaves the top of the hill it moves in projectile motion. Use Eq.(7.14) to relate the 
speed Bv  at the bottom of the hill to the speed Topv at the top and the 70 m height of the hill. 

SET UP: For the projectile motion, take y+  to be downward. 0xa = , ya g= . 0 Topxv v= , 0 0yv = . For the motion 
up the hill only gravity does work. Take 0y = at the base of the hill. 

EXECUTE: First get speed at the top of the hill for the block to clear the pit. 21
2

y gt= . 2 2120 m (9.8 m/s )
2

t= . 

2.0 st = . Then Top 40 mv t = gives Top
40 m 20 m/s
2.0 s

v = = . 

Energy conservation applied to the motion up the hill: Bottom Top TopK U K= +  gives 

2 2
B Top

1 1
2 2

mv mgh mv= + . 2 2 2
B Top 2 (20 m/s) 2(9.8 m/s )(70 m) 42 m/sv v gh= + = + = . 

EVALUATE: The result does not depend on the mass of the block. 
 7.51. IDENTIFY: Apply 1 1 other 2 2K U W K U+ + = +  to the motion of the person. 

SET UP: Point 1 is where he steps off the platform and point 2 is where he is stopped by the cord. Let 0y =  at 

point 2. 1 41.0 m.y =  21
other 2 ,W kx= −  where 11.0 mx =  is the amount the cord is stretched at point 2. The cord 

does negative work. 
EXECUTE: 1 2 2 0,K K U= = =  so 21

1 2 0mgy kx− =  and 631 N/m.k =  
Now apply F kx=  to the test pulls: 
F kx=  so / 0.602 m.x F k= =  
EVALUATE: All his initial gravitational potential energy is taken away by the negative work done by the force 
exerted by the cord, and this amount of energy is stored as elastic potential energy in the stretched cord. 

 7.52. IDENTIFY: Apply Eq.(7.14) to the motion of the skier from the gate to the bottom of the ramp. 
SET UP: other 4000 JW = − . Let 0y = at the bottom of the ramp. 
EXECUTE: For the skier to be moving at no more than 30.0 m/s ; his kinetic energy at the bottom of the ramp can be 

no bigger than 
2 2(85.0 kg)(30.0 m/s) 38,250 J

2 2
mv

= = . Friction does 4000 J−  of work on him during his run, which 

means his combined U and K at the top of the ramp must be no more than 38,250 J 4000 J 42,250 J.+ =  His K at the 

top is 
2 2(85.0 kg)(2.0 m/s) 170 J

2 2
mv

= = . His U at the top should thus be no more than 42,250 J 170 J 42,080 J,− =  

which gives a height above the bottom of the ramp of 2

42,080 J 42,080 J 50.5 m.
(85.0 kg)(9.80 m/s )

h
mg

= = =  

EVALUATE: In the absence of air resistance, for this h his speed at the bottom of the ramp would be 31.5 m/s. 
The work done by air resistance is small compared to the kinetic and potential energies that enter into the 
calculation. 

 7.53. IDENTIFY: Use the work-energy theorem, Eq.(7.7). Solve for 2K  and then for 2.v  
SET UP: Let point 1 be at his initial position against the compressed spring and let point 2 be at the end of the barrel, 
as shown in Figure 7.53. Use F kx=  to find the amount the spring is initially compressed by the 4400 N force. 

1 1 other 2 2K U W K U+ + = +  

 

Take 0y =  at his initial position. 

EXECUTE: 1 0,K =  21
2 22K mv=  

other fricW W fs= = −  

other (40 N)(4.0 m) 160 JW = − = −  

Figure 7.53  

1,grav 0,U =  21
1,el 2 ,U kd=  where d is the distance the spring is initially compressed. 

F kd=  so 4400 N 4.00 m
1100 N/m

Fd
k

= = =  

and 21
1,el 2 (1100 N/m)(4.00 m) 8800 JU = =  

2
2,grav 2 (60 kg)(9.80 m/s )(2.5 m) 1470 J,U mgy= = =  2,el 0U =  
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Then 1 1 other 2 2K U W K U+ + = +  gives 
21
228800 J 160 J 1470 Jmv− = +  

21
22 7170 Jmv =  and 2

2(7170 J) 15.5 m/s
60 kg

v = =  

EVALUATE: Some of the potential energy stored in the compressed spring is taken away by the work done by 
friction. The rest goes partly into gravitational potential energy and partly into kinetic energy. 

 7.54. IDENTIFY: To be at equilibrium at the bottom, with the spring compressed a distance 0x ,  the spring force must 
balance the component of the weight down the ramp plus the largest value of the static friction, or 

0 sin .kx w θ f= +  Apply Eq.(7.14) to the motion down the ramp. 

SET UP: 2 0K = , 21
1 2K mv= , where v is the speed at the top of the ramp. Let 2 0U = , so 1 sinU wL θ= , where L 

is the total length traveled down the ramp. 

EXECUTE: Eq.(7.14) gives 2 2
0

1 1( sin )
2 2

kx w f L mvθ= − + . With the given parameters, 21
02 248 Jkx =  and 

3
0 1.10 10  N.kx = ×  Solving for k gives 2440 N/m.k =  

EVALUATE: 0 0.451 mx = . sin 551 Nw θ = . The decrease in gravitational potential energy is only slightly larger 

than the amount of mechanical energy removed by the negative work done by friction. 21
2 243 Jmv = . The energy 

stored in the spring is only slightly larger than the initial kinetic energy of the crate at the top of the ramp. 
 7.55. IDENTIFY: Apply Eq.(7.7) to the system consisting of the two buckets. If we ignore the inertia of the pulley we 

ignore the kinetic energy it has. 
SET UP: 1 1 other 2 2.K U W K U+ + = +  Points 1 and 2 in the motion are sketched in Figure 7.55. 

 
Figure 7.55 

The tension force does positive work on the 4.0 kg bucket and an equal amount of negative work on the 12.0 kg 
bucket, so the net work done by the tension is zero. 
Work is done on the system only by gravity, so other 0W =  and gravU U=  

EXECUTE: 1 0K =  
2 21 1

2 ,2 ,22 2A A B BK m v m v= +  But since the two buckets are connected by a rope they move together and have the same 

speed: ,2 ,2 2.A Bv v v= =  

Thus 2 21
2 2 22 ( ) (8.00 kg) .A BK m m v v= + =  

2
1 ,1 (12.0 kg)(9.80 m/s )(2.00 m) 235.2 J.A AU m gy= = =  

2
2 ,2 (4.0 kg)(9.80 m/s )(2.00 m) 78.4 J.B BU m gy= = =  

Putting all this into 1 1 other 2 2K U W K U+ + = +  gives 

1 2 2U K U= +  
2
2235.2 J (8.00 kg) 78.4 Jv= +  

2
235.2 J 78.4 J 4.4 m/s

8.00 kg
v −
= =  

EVALUATE: The gravitational potential energy decreases and the kinetic energy increases by the same amount. 
We could apply Eq.(7.7) to one bucket, but then we would have to include in otherW  the work done on the bucket by 
the tension T. 
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 7.56. IDENTIFY: Apply 1 1 other 2 2K U W K U+ + = + to the motion of the rocket from the starting point to the base of the 
ramp. otherW is the work done by the thrust and by friction. 
SET UP: Let point 1 be at the starting point and let point 2 be at the base of the ramp. 1 0v = , 2 50.0 m/sv = . Let 

0y = at the base and take y+  upward. Then 2 0y = and 1 sin53y d= ° , where d is the distance along the ramp 
from the base to the starting point. Friction does negative work. 
EXECUTE: 1 0K = , 2 0U = . 1 other 2U W K+ = . other (2000 N) (500 N) (1500 N)W d d d= − = . 

21
22sin53 (1500 N)mgd d mv+ =° .  

2 2
2

2

(1500 kg)(50.0 m/s) 142 m
2[ sin53 1500 N] 2[(1500 kg)(9.80 m/s )sin53 1500 N]

mvd
mg

= = =
+ +° °

. 

EVALUATE: The initial height is 1 (142 m)sin53 113 my = =° . An object free-falling from this distance attains a 

speed 12 47.1 m/sv gy= = . The rocket attains a greater speed than this because the forward thrust is greater than 
the friction force. 

 7.57. IDENTIFY: The force exerted by a spring is xF kx= − . The acceleration of the object is given by x xF ma= . Apply 
Eq.(7.14) to relate position and speed. 
SET UP: Let x+  be when the spring is stretched. 
EXECUTE: (a) 21

2U kx= . Let point 1 be when the spring is initially compressed a distance 0x , so 1 0x x= − . 

1 0K = . other 0W = . 21
0 2 22 kx U K= + . The speed is maximum when 0x = , so 2 0U = . Then 2 21 1

0 22 2kx mv= and 

2 0 /v x k m= is this maximum speed. 

(b) xF kx= − and x xF ma= give x
ka x
m

= − . a is maximum when x is maximum, so 0
ka x
m

= . 

(c) The speed is maximum when 0x = , when the spring has returned to its natural length, and the acceleration is 
maximum when 0x x= − , at the initial compression of the spring. 

(d) When the spring has maximum extension, 2 0v = . 2 21 1
02 2kx kx= and 0x x= .The magnitude of the maximum 

extension equals the magnitude of the maximum compression. 
(e) The machine part oscillates between 0x x= − and 0x x= + and never stops permanently. 
EVALUATE: In any real system there are mechanical energy losses, for example due to negative work done by 
friction, and the object eventually comes to rest. 

 7.58. IDENTIFY: Conservation of energy says the decrease in potential energy equals the gain in kinetic energy. 
SET UP: Since the two animals are equidistant from the axis, they each have the same speed v. 
EXECUTE: One mass rises while the other falls, so the net loss of potential energy is 

2(0.500 kg 0.200 kg)(9.80 m/s )(0.400 m) 1.176 J.− =  This is the sum of the kinetic energies of the animals and is 

equal to 21
tot2 m v , and 2(1.176 J) 1.83 m/s.

(0.700 kg)
v = =  

EVALUATE: The mouse gains both gravitational potential energy and kinetic energy. The rat�s gain in kinetic 
energy is less than its decrease of potential energy, and the energy difference is transferred to the mouse. 

 7.59. (a) IDENTIFY and SET UP: Apply Eq.(7.7) to the motion of the potato. 
Let point 1 be where the potato is released and point 2 be at the lowest point in its motion, as shown in 
Figure 7.59a. 

1 1 other 2 2K U W K U+ + = +  

 

1 2.50 my =  

2 0y =  
The tension in the string is at all points in 
the motion perpendicular to the 
displacement, so 0TW =  
The only force that does work on the 
potato is gravity, so other 0.W =  

Figure 7.59a  
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EXECUTE: 1 0,K =  21
2 22 ,K mv=  1 1,U mgy=  2 0U =   

Thus 1 2.U K=  
21

1 22mgy mv=  
2

2 12 2(9.80 m/s )(2.50 m) 7.00 m/sv gy= = =  

EVALUATE: 2v  is the same as if the potato fell through 2.50 m. 

(b) IDENTIFY: Apply m=∑F a
! !  to the potato. The potato moves in an arc of a circle so its acceleration is rad ,a!  

where 2
rad /a v R=  and is directed toward the center of the circle. Solve for one of the forces, the tension T in the 

string. 
SET UP: The free-body diagram for the potato as it swings through its lowest point is given in Figure 7.59b. 

 

The acceleration rada
!  is directed in toward 

the center of the circular path, so at this 
point it is upward. 

Figure 7.59b  

EXECUTE: y yF ma=∑  

radT mg ma− =  
2
2

rad( ) ,vT m g a m g
R

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
 where the radius R for the circular motion is the length L of the string. 

It is instructive to use the algebraic expression for 2v  from part (a) rather than just putting in the numerical value: 

2 12 2 ,v gy gL= =  so 2
2 2v gL=  

Then 
2
2 2 3 ;v gLT m g m g mg

L L
⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 the tension at this point is three times the weight of the potato. 

23 3(0.100 kg)(9.80 m/s ) 2.94 NT mg= = =  

EVALUATE: The tension is greater than the weight; the acceleration is upward so the net force must be upward. 
 7.60. IDENTIFY: Eq.(7.14) says other 2 2 1 1( )W K U K U= + − + . otherW is the work done on the baseball by the force 

exerted by the air. 
SET UP: U mgy= . 21

2K mv= , where 2 2 2
x yv v v= + . 

EXECUTE: (a) The change in total energy is the work done by the air, 
2 2

other 2 2 1 1 2 1 2
1( ) ( ) ( )
2

W K U K U m v v gy⎛ ⎞= + − + = − +⎜ ⎟
⎝ ⎠

. 

( )2 2 2 2
other (0.145 kg) (1/ 2 (18.6 m/s) (30.0 m/s) (40.0 m/s) (9.80 m/s )(53.6 m)W ⎡ ⎤= − − +⎣ ⎦ . 

other 80.0 JW = − . 
(b) Similarly, other 3 3 2 2( ) ( )W K U K U= + − + . 

( )2 2 2 2
other (0.145 kg) (1/ 2) (11.9 m/s) ( 28.7 m/s) (18.6 m/s) (9.80 m/s )(53.6 m)W ⎡ ⎤= + − − −⎣ ⎦ . 

other 31.3 J.W = −  
(c) The ball is moving slower on the way down, and does not go as far (in the x-direction), and so the work done by 
the air is smaller in magnitude. 
EVALUATE: The initial kinetic energy of the baseball is 21

2 (0.145 kg)(50.0 m/s) 181 J= . For the total motion 
from the ground, up to the maximum height, and back down the total work done by the air is 111 J. The ball 
returns to the ground with 181 J 111 J 70 J− = of kinetic energy and a speed of 31 m/s, less than its initial speed of 
50 m/s. 
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 7.61. IDENTIFY and SET UP: There are two situations to compare: stepping off a platform and sliding down a pole. 
Apply the work-energy theorem to each. 
(a) EXECUTE: Speed at ground if steps off platform at height h: 

1 1 other 2 2K U W K U+ + = +  
21
22 ,mgh mv=  so 2

2 2v gh=  
Motion from top to bottom of pole: (take 0y =  at bottom) 

1 1 other 2 2K U W K U+ + = +  
21
22mgd fd mv− =  

Use 2
2 2v gh=  and get mgd fd mgh− =  

( )fd mg d h= −  
( ) / (1 / )f mg d h d mg h d= − = −  

EVALUATE: For h d=  this gives 0f =  as it should (friction has no effect). 
For 0,h =  2 0v =  (no motion). The equation for f gives f mg=  in this special case. When f mg=  the forces on 
him cancel and he doesn�t accelerate down the pole, which agrees with 2 0.v =  

(b) EXECUTE: 2(1 / ) (75 kg)(9.80 m/s )(1 1.0 m/2.5 m) 441 N.f mg h d= − = − =  
(c) Take 0y =  at bottom of pole, so 1y d=  and 2 .y y=  

1 1 other 2 2K U W K U+ + = +  
21

20 ( )mgd f d y mv mgy+ − − = +  
21

2 ( ) ( )mv mg d y f d y= − − −  

Using (1 / )f mg h d= −  gives 21
2 ( ) (1 / )( )mv mg d y mg h d d y= − − − −  

21
2 ( / )( )mv mg h d d y= −  and 2 (1 / )v gh y d= −  

EVALUATE: This gives the correct results for 0y =  and for .y d=  
 7.62. IDENTIFY: Apply Eq.(7.14) to each stage of the motion. 

SET UP: Let 0y = at the bottom of the slope. In part (a), otherW is the work done by friction. In part (b), otherW is 
the work done by friction and the air resistance force. In part (c), otherW is the work done by the force exerted by the 
snowdrift. 
EXECUTE: (a) The skier�s kinetic energy at the bottom can be found from the potential energy at the top minus 
the work done by friction, 1 (60.0 kg)(9.8 N/kg)(65.0 m) 10,500 J,fK mgh W= − = −  or 

1 38,200 J 10,500 J 27,720 JK = − = . Then 1
1

2 2(27,720 J) 30.4 m/s
60 kg

Kv
m

= = = . 

(b) 2 1 air k air( ) 27,720 J ( ).fK K W W mgd f dμ= − + = − +  2 27,720 J [(0.2)(588 N)(82 m) (160 N)(82 m)]K = − + or 

2 27,720 J 22,763 J 4957 JK = − = . Then, 2
2 2(4957 J) 12.9 m/s

60 kg
Kv
m

= = =  

(c) Use the Work-Energy Theorem to find the force. ,W K= Δ  / (4957 J) (2.5 m) 2000 NF K d= = = . 
EVALUATE: In each case, otherW is negative and removes mechanical energy from the system. 

 7.63. IDENTIFY and SET UP: First apply m=∑F a
! !  to the skier. 

Find the angle α  where the normal force becomes zero, in terms of the speed v2 at this point. Then apply the 
work-energy theorem to the motion of the skier to obtain another equation that relates v2 and .α  Solve these two 
equations for .α  

 

Let point 2 be where the skier loses contact 
with the snowball, as sketched in Figure 7.63a 
Loses contact implies 0.n→  

1 ,y R=  2 cosy R α=  

Figure 7.63a  
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First, analyze the forces on the skier when she is at point 2. The free-body diagram is given in Figure 7.63b. For 
this use coordinates that are in the tangential and radial directions. The skier moves in an arc of a circle, so her 
acceleration is 2

rad / ,a v R=  directed in towards the center of the snowball. 

 

EXECUTE: y yF ma=∑  
2
2cos /mg n mv Rα − =  

But 0n =  so 2
2cos /mg mv Rα =  

2
2 cosv Rg α=  

Figure 7.63b  
Now use conservation of energy to get another equation relating 2v  to :α  

1 1 other 2 2K U W K U+ + = +  
The only force that does work on the skier is gravity, so other 0.W =  

1 0,K =  21
2 22K mv=  

1 1 ,U mgy mgR= =  2 2 cosU mgy mgR α= =  

Then 21
22 cosmgR mv mgR α= +  

2
2 2 (1 cos )v gR α= −  

Combine this with the y yF ma=∑  equation: 
cos 2 (1 cos )Rg gRα α= −  

cos 2 2cosα α= −  
3cos 2α =  so cos 2/3α =  and 48.2α = °  
EVALUATE: She speeds up and her rada  increases as she loses gravitational potential energy. She loses contact 
when she is going so fast that the radially inward component of her weight isn�t large enough to keep her in the 
circular path. Note that α  where she loses contact does not depend on her mass or on the radius of the snowball. 

 7.64. IDENTIFY: Use conservation of energy to relate the speed at the lowest point to the speed at the highest point. 
Use m=∑F a

! ! to calculate the tension. 

SET UP: The rock has acceleration 2
rad /a v R= , directed toward the center of the circle. 

EXECUTE: If the speed of the rock at the top is tv , then conservation of energy gives the speed bv  at the bottom 

from 2 21 1
b t2 2 (2 )mv mv mg R= + , R being the radius of the circle, and so 2 2

b t 4v v gR= + . The tension at the top and 

bottom are found from 
2
t

t
mvT mg
R

+ =  and 
2
b

b
mvT mg
R

− = , so 2 2
b t b t( ) 2 6 6mT T v v mg mg w

R
− = − + = = . 

EVALUATE: The tensions tT and bT depend on the speed of the rock and on R, but the difference b tT T− is 
independent of the speed of the rock and the radius of the circle. 

 7.65. IDENTIFY and SET UP: 

 

Ay R=  
0B Cy y= =  

Figure 7.65  
(a) Apply conservation of energy to the motion from B to C: 

other .B B C CK U W K U+ + = +  The motion is described in Figure 7.65. 
EXECUTE: The only force that does work on the package during this part of the motion is friction, so 

other k k k(cos ) (cos180 )fW W f s mg s mgsφ μ μ= = = ° = −  
21

2 ,B BK mv=  0CK =  
0,BU =  0CU =  



7-22 Chapter 7 

Thus 0B fK W+ =  
21

k2 0Bmv mgsμ− =  
2 2

k 2

(4.80 m/s) 0.392
2 2(9.80 m/s )(3.00 m)

B

gs
μμ = = =  

EVALUATE: The negative friction work takes away all the kinetic energy. 
(b) IDENTIFY and SET UP: Apply conservation of energy to the motion from A to B: 

otherA A B BK U W K U+ + = +  

EXECUTE: Work is done by gravity and by friction, so other .fW W=  

0,AK =  2 21 1
2 2 (0.200 kg)(4.80 m/s) 2.304 JB BK mv= = =  

2(0.200 kg)(9.80 m/s )(1.60 m) 3.136 J,A AU mgy mgR= = = =  0BU =  
Thus A f BU W K+ =  

2.304 J 3.136 J 0.83 Jf B AW K U= − = − = −  

EVALUATE: fW  is negative as expected; the friction force does negative work since it is directed opposite to the 
displacement. 

 7.66. IDENTIFY: Apply Eq.(7.14) to the initial and final positions of the truck. 
SET UP: Let 0y = at the lowest point of the path of the truck. otherW is the work done by friction. 

r r r cosf n mgμ μ β= = . 

EXECUTE: Denote the distance the truck moves up the ramp by x. 21
1 02K mv= , 1 sinU mgL α= , 2 0K = , 

2 sinU mgx β=  and other r cosW mgxμ β= − . From other 2 2 1 1( ) ( )W K U K U= + − + , and solving for x, 
2

1 0

r r

sin ( /2 ) sin .
(sin cos ) sin cos
K mgL v g Lx

mg
α α

β μ β β μ β
+ +

= =
+ +

 

EVALUATE: x increases when 0v increases and decreases when rμ increases. 

 7.67. 2 ,xF x xα β= − −  60.0 N/mα =  and 218.0 N/mβ =  
(a) IDENTIFY: Use Eq.(6.7) to calculate W and then use W U= −Δ  to identify the potential energy function ( ).U x  

SET UP: 2

1
1 2 ( ) 

x

x

F xx
W U U F x dx= − = ∫  

Let 1 0x =  and 1 0.U =  Let 2x  be some arbitrary point x, so 2 ( ).U U x=  

EXECUTE: 2 2 2 31 1
2 30 0 0

( ) ( ) ( ) ( ) .
x x x

xU x F x dx x x dx x x dx x xα β α β α β= − = − − − = + = +∫ ∫ ∫  

EVALUATE: If 0,β =  the spring does obey Hooke�s law, with ,k α=  and our result reduces to 21
2 .kx  

(b) IDENTIFY: Apply Eq.(7.15) to the motion of the object. 
SET UP: The system at points 1 and 2 is sketched in Figure 7.67. 

 

1 1 other 2 2K U W K U+ + = +  
The only force that does work on the 
object is the spring force, so other 0.W =  

Figure 7.67  

EXECUTE: 1 0,K =  21
2 22K mv=  

2 3 2 2 31 1 1 1
1 1 1 12 3 2 3( ) (60.0 N/m)(1.00 m) (18.0 N/m )(1.00 m)U U x x xα β= = + = + 36.0 J=  

2 3 2 2 31 1 1 1
2 2 2 22 3 2 3( ) (60.0 N/m)(0.500 m) (18.0 N/m )(0.500 m)U U x x xα β= = + = + 8.25 J=  

Thus 21
2236.0 J 8.25 Jmv= +  

2
2(36.0 J 8.25 J) 7.85 m/s

0.900 kg
v −
= =  

EVALUATE: The elastic potential energy stored in the spring decreases and the kinetic energy of the object increases. 
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 7.68. IDENTIFY: Apply Eq.(7.14). otherW is the work done by F. 
SET UP: otherW K U= Δ + Δ . The distance the spring stretches is aθ . 2 1 siny y a θ− = . 
EXECUTE: The force increases both the gravitational potential energy of the block and the potential energy of the 
spring. If the block is moved slowly, the kinetic energy can be taken as constant, so the work done by the force is 
the increase in potential energy, 21

2sin ( )U mga k aθ θΔ = + . 
EVALUATE: The force is kept tangent to the surface so the block will stay in contact with the surface. 

 7.69. IDENTIFY: Apply Eq.(7.14) to the motion of the block. 
SET UP: Let 0y = at the floor. Let point 1 be the initial position of the block against the compressed spring and 
let point 2 be just before the block strikes the floor. 
EXECUTE: With 2 10, 0U K= = , 2 1K U= . 2 21 1

22 2mv kx mgh= + . Solving for 2v , 
2 2

2
2

(1900 N/m)(0.045 m)2 2(9.80 m/s )(1.20 m) 7.01 m/s
(0.150 kg)

kxv gh
m

= + = + = . 

EVALUATE: The potential energy stored in the spring and the initial gravitational potential energy all go into the 
final kinetic energy of the block. 

 7.70. IDENTIFY: Apply Eq.(7.14). U is the total elastic potential energy of the two springs. 
SET UP: Call the two points in the motion where Eq.(7.14) is applied A and B to avoid confusion with springs 1 
and 2, that have force constants 1k and 2k . At any point in the motion the distance one spring is stretched equals 
the distance the other spring is compressed. Let x+  be to the right. Let point A be the initial position of the block, 
where it is released from rest, so 1 0.150 mAx = + and 2 0.150 mAx = − . 
EXECUTE: (a) With no friction, other 0W = . 0AK = and A B BU K U= + . The maximum speed is when 0BU = and 

this is at 1 2 0B Bx x= = , when both springs are at their natural length. 2 2 21 1 1
1 1 2 22 2 2A A Bk x k x mv+ = . 

2 2 2
1 2 (0.150 m)A Ax x= = , so 1 2 2500 N/m 2000 N/m(0.150 m) (0.150 m) 5.81 m/s

3.00 kgB
k kv

m
+ +

= = = . 

(b) At maximum compression of spring 1, spring 2 has its maximum extension and 0Bv = . Therefore, at this point 

A BU U= . The distance spring 1 is compressed equals the distance spring 2 is stretched, and vice versa: 

1 2A Ax x= − and 1 2B Bx x= − . Then A BU U= gives 2 21 1
1 2 1 1 2 12 2( ) ( )A Bk k x k k x+ = +  and 1 1 0.150 mB Ax x= − = − . The 

maximum compression of spring 1 is 15.0 cm. 
EVALUATE: When friction is not present mechanical energy is conserved and is continually transformed between 
kinetic energy of the block and potential energy in the springs. If friction is present, its work removes mechanical 
energy from the system. 

 7.71. IDENTIFY: Apply conservation of energy to relate x and h. Apply m=∑F a
! ! to relate a and x. 

SET UP: The first condition, that the maximum height above the release point is h, is expressed as 21
2 kx mgh= . 

The magnitude of the acceleration is largest when the spring is compressed to a distance x; at this point the net 
upward force is kx mg ma− = , so the second condition is expressed as ( / )( )x m k g a= + . 
EXECUTE: (a) Substituting the second expression into the first gives  

2 2
21 ( )( ) , or .

2 2
m m g ak g a mgh k
k gh

+⎛ ⎞ + = =⎜ ⎟
⎝ ⎠

 

(b) Substituting this into the expression for x gives 2ghx
g a

=
+

. 

EVALUATE: When 0a → , our results become 
2
mgk

h
= and 2x h= . The initial spring force is kx mg= and the 

net upward force approaches zero. But 21
2 kx mgh= and sufficient potential energy is stored in the spring to move 

the mass to height h. 
 7.72. IDENTIFY: At equilibrium the upward spring force equals the weight mg of the object. Apply conservation of 

energy to the motion of the fish. 
SET UP: The distance that the mass descends equals the distance the spring is stretched. 1 2 0K K= = , so 

1 2(gravitational) (spring)U U=  
EXECUTE: Following the hint, the force constant k is found from mg kd= , or /k mg d= . When the fish falls 
from rest, its gravitational potential energy decreases by mgy; this becomes the potential energy of the spring, 

which is 2 21 1
2 2 ( / )ky mg d y= . Equating these, 21 , or 2 .

2
mg y mgy y d
d

= =  
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EVALUATE: At its lowest point the fish is not in equilibrium. The upward spring force at this point is 2ky kd= , 
and this is equal to twice the weight. At this point the net force is mg, upward, and the fish has an upward 
acceleration equal to g. 

 7.73. IDENTIFY: Apply Eq.(7.15) to the motion of the block. 
SET UP: The motion from A to B is described in Figure 7.73. 

 
Figure 7.73 

The normal force is cos ,n mg θ=  so k k k cos .f n mgμ μ θ= =  
0;Ay =  (60.0 m)sin30.0 3.00 mBy = ° =  

otherA A B BK U W K U+ + = +  
EXECUTE: Work is done by gravity, by the spring force, and by friction, so other fW W=  and el gravU U U= +  

0,AK =  2 21 1
2 2 (1.50 kg)(7.00 m/s) 36.75 JB BK mv= = =  

el, grav, el, ,A A A AU U U U= + =  since grav, 0AU =  
2

el, grav, 0 (1.50 kg)(9.80 m/s )(3.00 m) 44.1 JB B B BU U U mgy= + = + = =  

other k k k( cos ) cos (cos180 ) cosfW W f s mg s mg sφ μ θ μ θ= = = ° = −  
2

other (0.50)(1.50 kg)(9.80 m/s )(cos30.0 )(6.00 m) 38.19 JW = − ° = −  
Thus el, 38.19 J 36.75 J 44.10 JAU − = +  

el, 38.19 J 36.75 J 44.10 J 119 JAU = + + =  

EVALUATE: elU  must always be positive. Part of the energy initially stored in the spring was taken away by 
friction work; the rest went partly into kinetic energy and partly into an increase in gravitational potential energy. 

 7.74. IDENTIFY: Apply Eq.(7.14) to the motion of the package. 
kother fW W= , the work done by the kinetic friction 

force. 
SET UP: k k k cosf n mgμ μ θ= = , with 53.1θ = ° . Let 4.00 mL = , the distance the package moves before 
reaching the spring and let d be the maximum compression of the spring. Let point 1 be the initial position of the 
package, point 2 be just as it contacts the spring, point 3 be at the maximum compression of the spring, and point 4 
be the final position of the package after it rebounds. 
EXECUTE: (a) 1 0K = , 2 0U = , other k k cosW f L Lμ θ= − = − . 1 sinU mgL θ= . 21

2 2K mv= , where v is the speed 
before the block hits the spring. Eq.(7.14) applied to points 1 and 2, with 2 0y = , gives 1 other 2U W K+ = . Solving 
for v, 

2
k2 (sin cos ) 2(9.80 m/s )(4.00 m)(sin53.1 (0.20)cos53.1 ) 7.30 m/s.v gL θ μ θ= − = ° − ° =  

(b) Apply Eq.(7.14) to points 1 and 3. Let 3 0y = . 1 3 0K K= = . 1 ( )sinU mg L d θ= + . 21
2 2U kd= . 

other k ( )W f L d= − + . Eq.(7.14) gives 21
k 2( )sin cos ( )mg L d mg L d kdθ μ θ+ − + = . This can be written as 

2

k

0.
2 (sin cos )

kd d L
mg θ μ θ

− − =
−

 The factor multiplying 2d  is 14.504 m− , and use of the quadratic formula 

gives 1.06 md = . 
(c) The easy thing to do here is to recognize that the presence of the spring determines d, but at the end of the 
motion the spring has no potential energy, and the distance below the starting point is determined solely by how 
much energy has been lost to friction. If the block ends up a distance y below the starting point, then the block has 
moved a distance L d+  down the incline and L d y+ −  up the incline. The magnitude of the friction force is the 
same in both directions, k cosmg θμ , and so the work done by friction is k (2 2 ) cosL d y mg θμ− + − . This must be 
equal to the change in gravitational potential energy, which is sinmgy θ− . Equating these and solving for y gives 

k k

k k

2 cos 2( ) ( ) .
sin cos tan

y L d L dμ θ μ
θ μ θ θ μ

= + = +
+ +

 Using the value of d found in part (b) and the given values for kμ  

and θ  gives 1.32 my = . 
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EVALUATE: Our expression for y gives the reasonable results that 0y = when k 0μ = ; in the absence of friction 
the package returns to its starting point. 

 7.75. (a) IDENTIFY and SET UP: Apply otherA A B BK U W K U+ + = +  to the motion from A to B. 

EXECUTE: 0,AK =  21
2B BK mv=  

0,AU =  21
el, 2 ,B B BU U kx= =  where 0.25 mBx =  

other F BW W Fx= =  

Thus 2 21 1
2 2 .B B BFx mv kx= +  (The work done by F goes partly to the potential energy of the stretched spring and 

partly to the kinetic energy of the block.) 
(20.0 N)(0.25 m) 5.0 JBFx = =  and 2 21 1

2 2 (40.0 N/m)(0.25 m) 1.25 JBkx = =  

Thus 21
25.0 J 1.25 JBmv= +  and 2(3.75 J) 3.87 m/s

0.500 kgBv = =  

(b) IDENTIFY: Apply Eq.(7.15) to the motion of the block. Let point C be where the block is closest to the wall. 
When the block is at point C the spring is compressed an amount ,Cx  so the block is 0.60 m Cx−  from the wall, 

and the distance between B and C is .B Cx x+  
SET UP: The motion from A to B to C is described in Figure 7.75. 

 

otherB B C CK U W K U+ + = +  
EXECUTE: other 0W =  

21
2 5.0 J 1.25 J 3.75 JB BK mv= = − =  

 (from part (a)) 
21

2 1.25 JB BU kx= =  
0CK =  (instantaneously at rest at 

 point closest to wall) 
21

2C CU k x=  
Figure 7.75  

Thus 21
23.75 J 1.25 J Ck x+ =  

2(5.0 J) 0.50 m
40.0 N/mCx = =  

The distance of the block from the wall is 0.60 m 0.50 m 0.10 m.− =  
EVALUATE: The work (20.0 N)(0.25 m) 5.0 J=  done by F puts 5.0 J of mechanical energy into the system. No 
mechanical energy is taken away by friction, so the total energy at points B and C is 5.0 J. 

 7.76. IDENTIFY: Apply Eq.(7.14) to the motion of the student. 
SET UP: Let 0 0.18 mx = , 1 0.71 mx = . The spring constants (assumed identical) are then known in terms of the 
unknown weight w, 04kx w= . Let 0y = at the initial position of the student. 
EXECUTE: (a) The speed of the brother at a given height h above the point of maximum compression is then 

found from 2 2
1

1 1(4 ) ,
2 2

wk x v mgh
g

⎛ ⎞
= +⎜ ⎟

⎝ ⎠  
or 

2
2 2 1

1
0

(4 ) 2 2k g xv x gh g h
w x

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
. Therefore, 

2 2(9.80 m/s )((0.71 m) (0.18 m) 2(0.90 m)) 3.13 m/sv = − = , or 3.1 m/s  to two figures. 

(b) Setting 0v =  and solving for h, 
2 2
1 1

0

2 1.40 m,
2

kx xh
mg x

= = = or 1.4 m to two figures. 

(c) No; the distance 0x  will be different, and the ratio 
22 2

1 1
1

0 1 1

( 0.53 m) 0.53 m1x x x
x x x

⎛ ⎞+
= = +⎜ ⎟

⎝ ⎠
 will be different. 

Note that on a planet with lower g, 1x  will be smaller and h will be larger. 
EVALUATE: We are able to solve the problem without knowing either the mass of the student or the force 
constant of the spring. 
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 7.77. IDENTIFY: 2 2/xa d x dt= , 2 2/ya d y dt= . x xF ma= , y yF ma= . x yU F dx F dy= +∫ ∫ . 

SET UP: 0 0 0(cos ) sind t t
dt

ω ω ω= − . 0 0 0(sin ) cosd t t
dt

ω ω ω= . 0 0
0

1cos  sint dt tω ω
ω

=∫ , 0 0
0

1sin  cost dt tω ω
ω

= −∫ . 

/xv dx dt= , /yv dy dt= . E K U= + .  

EXECUTE: (a) 2 2 2 2
0 0/ ,  .x x xa d x dt x F ma m xω ω= = − = = −  2 2 2 2

0 0/ ,   y y ya d y dt y F ma m yω ω= = − = = −  

(b) 2 2 2 2
0 0

1 ( )
2x yU F dx F dy m xdx ydy m x yω ω⎡ ⎤ ⎡ ⎤= − + = + = +⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫  

(c) 0 0 0 0 0 0/ sin ( / ).xv dx dt x t x y yω ω ω= = − = −  0 0 0 0 0 0/ cos ( / ).yv dy dt y t y x xω ω ω= = + = +  

(i) When 0x x=  and 0, 0xy v= =  and 0 0yv y ω= , 

2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0

1 1 1 1( ) , and ( )
2 2 2 2x yK m v v my U mx E K U m x yω ω ω= + = = = + = +  

(ii) When 0x =  and 0 0 0, xy y v x ω= = −  and 0yv = , 

2 2 2 2 2 2 2
0 0 0 0 0 0 0

1 1 1, and ( )
2 2 2

K mx U m y E K U m x yω ω ω= = = + = +  

EVALUATE: The total energy is the same at the two points in part (c); the total energy of the system is constant. 
 7.78. IDENTIFY: Calculate the increase in kinetic energy for the car. 

SET UP: The car gets 8(0.15)(1.3 10  J)× of energy from one gallon of gasoline. 

EXECUTE: (a) The mechanical energy increase of the car is 2 61
2 1 2 (1500 kg)(37 m/s) 1.027 10  J.K K− = = ×  Let 

α be the number of gallons of gasoline consumed. 8 6(1.3 10 J)(0.15) 1.027 10 Jα × = ×  and 0.053gallonsα = . 
(b) (1.00 gallons) 19 accelerationsα =  
EVALUATE: The time over which the increase in velocity occurs doesn't enter into the calculation. 

 7.79. IDENTIFY: U mgh= . Use 150 mh = for all the water that passes through the dam. 
SET UP: m Vρ= and V A h= Δ is the volume of water in a height hΔ of water in the lake. 
EXECUTE: (a) Stored energy ( ) (1 m)mgh V gh A ghρ ρ= = = . 

3 6 2 2 12stored energy (1000 kg/m )(3.0 10  m )(1 m)(9.8 m/s )(150 m) 4.4 10  J.= × = ×  
(b) 90% of the stored energy is converted to electrical energy, so (0.90)( ) 1000 kWhmgh = . 

(0.90) 1000 kWhVghρ = . 3 3
3 2

(1000 kWh)((3600 s) (1 h)) 2 7 10  m
(0.90)(1000 kg/m )(150 m)(9.8 m/s )

V .= = × . 

Change in level of the lake: waterA h VΔ = . 
3 3

4
6 2

2.7 10 m 9.0 10 m
3.0 10 m

Vh
A

−×
Δ = = = ×

×
. 

EVALUATE: hΔ is much less than 150 m, so using 150 mh =  for all the water that passed through the dam was a 
very good approximation. 

 7.80. IDENTIFY and SET UP: The potential energy of a horizontal layer of thickness dy, area A, and height y is 
( ) .dU dm gy=  Let ρ  be the density of water. 

EXECUTE:  ,dm dV A dyρ ρ= =  so .dU Agy dyρ=  
The total potential energy U is 

21
20 0

 .
h h

U dU Ag y dy Aghρ ρ= = =∫ ∫  

6 23.0 10  mA = ×  and 150 m,h =  so 14 73.3 10  J 9.2 10  kWhU = × = ×  
EVALUATE: The volume is Ah and the mass of water is .V Ahρ ρ=  The average depth is av /2,h h=  so 

av.U mgh=  

 7.81. IDENTIFY: Apply x
UF
x

∂
= −

∂
, y

UF
y

∂
= −

∂
 and z

UF
z

∂
= −

∂
. 

SET UP: 2 2 2 1/ 2( )r x y z= + + . 2 2 3/ 2

(1/ )
( )

r x
x x y

∂
= −

∂ +
, 2 2 3/ 2

(1/ )
( )

r y
y x y

∂
= −

∂ +
 and 2 2 3/ 2

(1/ )
( )

r z
z x y

∂
= −

∂ +
. 
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EXECUTE: (a) 1 2( ) Gm mU r
r

= − . 1 2
1 2 2 2 2 3/ 2

(1/ )
( )x

U r Gm m xF Gm m
x x x y z

∂ ∂⎡ ⎤= − = + = −⎢ ⎥∂ ∂ + +⎣ ⎦
. Similarly, 

1 2
2 2 2 3/ 2( )y

Gm m yF
x y z

= −
+ +

 and 1 2
2 2 2 3/ 2( )z

Gm m zF
x y z

= −
+ +

. 

(b) 2 2 2 3/2 3( )x y z r+ + = so 1 2
3x

Gm m xF
r

= − , 1 2
3y

Gm m yF
r

= −  and 1 2
3z

Gm m zF
r

= − . 

2 2 2 2 2 21 2 1 2
3 2x y z

Gm m Gm mF F F F x y z
r r

= + + = + + = . 

(c) xF , yF and zF are negative. xF xα= , yF yα=  and zF zα= , where α is a constant, so F
!

and the vector r! from 

1m to 2m are in the same direction. Therefore, F
!

is directed toward 1m at the origin and F
!

is attractive. 
EVALUATE: When 2m moves to larger r, the work done on it by the attractive gravity force is negative. Since 
W U= −Δ , negative work done by gravity means the gravitational potential energy increases. 

1 2( ) Gm mU r
r

= − does increase (becomes less negative) as r increases. For an object near the surface of the earth, 

1 2( ) Gm mU r
r

= − will be shown in Chapter 12 to be equivalent to gravU mgy= . 

 7.82. IDENTIFY: Calculate the work W done by this force. If the force is conservative, the work is path independent. 

SET UP: 2

1

P

P
W d= ⋅∫ F l

!!
. 

EXECUTE: (a) 2 2

1 1

2P P

yP P
W F dy C y dy= =∫ ∫ . W doesn't depend on x, so it is the same for all paths between 1P and 

2P . The force is conservative. 

(b) 2 2

1 1

2P P

xP P
W F dx C y dx= =∫ ∫ . W will be different for paths between points 1P and 2P for which y has different 

values. For example, if y has the constant value 0y along the path, then 0 2 1( )W Cy x x= − . W depends on the value 
of 0y . The force is not conservative. 

EVALUATE: 2 �CyF = j
!

 has the potential energy function 
3

( )
3

CyU y = − . We cannot find a potential energy 

function for 2 �CyF = i
!

. 

 7.83. 2 �,xyα= −F j
!

 32.50 N/mα =  

IDENTIFY: F
!

 is not constant so use Eq.(6.14) to calculate W. F
!

 must be evaluated along the path. 
(a) SET UP: The path is sketched in Figure 7.83a. 

 

� �d dx dy= +l i j
!

 
2d xy dyα⋅ = −F l

!!
 

On the path, x y=  so 3d y dyα⋅ = −F l
!!

 

Figure 7.83a  

EXECUTE: ( )2 2

11

2 3 4 4 4
2 11

( ) ( / 4) ( / 4)( )|y y

yy
W d y dy y y yα α α= ⋅ = − = − = − −∫ ∫F l

!!
 

1 0,y =  2 3.00 m,y =  so 3 41
4 (2.50 N/m )(3.00 m) 50.6 JW = − = −  

(b) SET UP: The path is sketched in Figure 7.83b. 

 
Figure 7.83b 

For the displacement from point 1 to point 2, �,d dx=l i
!

 so 0d⋅ =F l
!!

 and 0.W =  (The force is perpendicular to 
the displacement at each point along the path, so 0.)W =  
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For the displacement from point 2 to point 3, �,d dy=l j
!

 so 2 .d xy dyα⋅ = −F l
!!

 On this path, 3.00 m,x =  so 
3 2 2 2(2.50 N/m )(3.00 m)  (7.50 N/m )  .d y dy y dy⋅ = − = −F l

!!
 

EXECUTE: 3

2

3 2 2 2 3 31
3 232

(7.50 N/m )  (7.50 N/m ) ( )
y

y
W d y dy y y= ⋅ = − = − −∫ ∫F l

!!
 

( )2 31
3(7.50 N/m ) (3.00 m) 67.5 JW = − = −  

(c) EVALUATE: For these two paths between the same starting and ending points the work is different, so the 
force is nonconservative. 

 7.84. IDENTIFY: Use 2

1

P

P
W d= ⋅∫ F l

!!
to calculate W for each segment of the path. 

SET UP:  xd F dx xy dxα⋅ =F l =
!!

 
EXECUTE: (a) The path is sketched in Figure 7.84. 
(b) (1): 0x =  along this leg, so 0=F

!
 and 0W = . (2): Along this leg, 1.50 my = , so (3.00 N m)d xdx⋅ =F l

!!
, 

and 2(1.50 N m)((1.50 m) 0) 3.38 JW = − =  (3) 0d⋅ =F l
!!

, so 0W =  (4) 0y = , so 0=F
!

 and 0W = . The work 
done in moving around the closed path is 3.38 J. 
(c) The work done in moving around a closed path is not zero, and the force is not conservative. 
EVALUATE: There is no potential energy function for this force. 

 
Figure 7.84 

 7.85. IDENTIFY: Use Eq.(7.16) to relate xF and ( )U x . The equilibrium is stable where ( )U x is a local minimum and 
the equilibrium is unstable where ( )U x is a local maximum. 
SET UP: The maximum and minimum values of x are those for which ( )U x E= . K E U= − , so the maximum 
speed is where U is a minimum. 

EXECUTE: (a) For the given proposed potential ( ), dUU x kx F
dx

− = − + , so this is a possible potential function. 

For this potential, 2(0) 2U F k= − , not zero. Setting the zero of potential is equivalent to adding a constant to the 
potential; any additive constant will not change the derivative, and will correspond to the same force. 
(b) At equilibrium, the force is zero; solving 0kx F− + =  for x gives 0 /x F k= . 2

0( ) /U x F k= − , and this is a 
minimum of U, and hence a stable point. 
(c) The graph is given in Figure 7.85. 
(d) No; tot 0F =  at only one point, and this is a stable point. 
(e) The extreme values of x correspond to zero velocity, hence zero kinetic energy, so ( )U x E± = , where x±  are 

the extreme points of the motion. Rather than solve a quadratic, note that 2 21
2 ( / ) /k x F k F k− − , so ( )U x E± =  

becomes 
2 2

21 /
2

F Fk x F k
k k±

⎛ ⎞− − =⎜ ⎟
⎝ ⎠

. 2 ,F Fx
k k± − = ± so 3 .F Fx x

k k+ −= = −  

(f) The maximum kinetic energy occurs when ( )U x  is a minimum, the point 0 /x F k=  found in part (b). At this 

point 2 2 2( / ) ( / ) 2 /K E U F k F k F k= − = − − = , so 2v F mk= . 
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EVALUATE: As E increases, the magnitudes of x+ and x−  increase. The particle cannot reach values of x for 
which ( )E U x< because K cannot be negative. 

 
Figure 7.85 

 7.86. IDENTIFY: Use Eq.(7.16) to relate xF and ( )U x . The equilibrium is stable where ( )U x is a local minimum and 
the equilibrium is unstable where ( )U x is a local maximum. 
SET UP: /dU dx is the slope of the graph of U versus x. K E U= − , so K is a maximum when U is a minimum. 
The maximum x is where E U= . 
EXECUTE: (a) The slope of the U vs. x curve is negative at point A, so xF  is positive (Eq. (7.16)). 
(b) The slope of the curve at point B is positive, so the force is negative. 
(c) The kinetic energy is a maximum when the potential energy is a minimum, and that figures to be at around 0.75 m. 
(d) The curve at point C looks pretty close to flat, so the force is zero. 
(e) The object had zero kinetic energy at point A, and in order to reach a point with more potential energy than 

( )U A , the kinetic energy would need to be negative. Kinetic energy is never negative, so the object can never be at 
any point where the potential energy is larger than ( )U A . On the graph, that looks to be at about 2.2 m. 
(f) The point of minimum potential (found in part (c)) is a stable point, as is the relative minimum near 1.9 m. 
(g) The only potential maximum, and hence the only point of unstable equilibrium, is at point C. 
EVALUATE: If E is less than U at point C, the particle is trapped in one or the other of the potential "wells" and 
cannot move from one allowed region of x to the other. 

 7.87. IDENTIFY: K E U= − determines ( )v x . 
SET UP: v is a maximum when U is a minimum and v is a minimum when U is a maximum. /xF dU dx= − . The 
extreme values of x are where ( )E U x= . 
EXECUTE: (a) Eliminating β  in favor of α  and 0 0( / )x β xα= , 

22
0 0 0

2 2 2 2
0 0 0

( ) .x x xU x
x x x x x x x x x
α β α α α ⎡ ⎤⎛ ⎞ ⎛ ⎞= − = − = −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 

0 2
0

( ) (1 1) 0U x
x
α⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

. ( )U x  is positive for 0x x<  and negative for 0x x>  (α  and β  must be taken as 

positive). The graph of ( )U x is sketched in Figure 7.87a. 

(b) 
2

0 0
2
0

2 2( ) x xv x U
m mx x x

α ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
. The proton moves in the positive x-direction, speeding up until it 

reaches a maximum speed (see part (c)), and then slows down, although it never stops. The minus sign in the 
square root in the expression for ( )v x  indicates that the particle will be found only in the region where 0U < , that 
is, 0x x> . The graph of ( )v x is sketched in Figure 7.87b. 
(c) The maximum speed corresponds to the maximum kinetic energy, and hence the minimum potential energy. 

This minimum occurs when 0dU
dx = , or 

3 2
0 0

0

3 2 0,dU x x
dx x x x

α ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

which has the solution 02x x= . 0 2
0

(2 )
4

U x
x
α

= − , so 2
02

v
mx
α

=  . 

(d) The maximum speed occurs at a point where 0dU
dx = , and from Eq. (7.15), the force at this point is zero. 
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(e) 1 03x x= , and 0 2
0

2(3 )
9

U x
x
α

= − . 

2 2
0 0 0 0

1 22 2
00 0

2 2 2 2( ) ( ( ) ( )) 2 9
9

x x x xv x U x U x x xmxm m x x x x
α α α⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞− ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − − = − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

. 

The particle is confined to the region where 1( ) ( )U x U x< . The maximum speed still occurs at 02x x= , but now 
the particle will oscillate between 1x  and some minimum value (see part (f)). 
(f) Note that 1( ) ( )U x U x−  can be written as 

2
0 0 0 0

2 2
0 0

2 1 2 ,
9 3 3

x x x x
x x x x x x
α α⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + = − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 

which is zero (and hence the kinetic energy is zero) at 0 13x x x= =  and 3
02x x= . Thus, when the particle is 

released from 0x , it goes on to infinity, and doesn�t reach any maximum distance. When released from 1x , it 
oscillates between 3

02 x  and 03x . 
EVALUATE: In each case the proton is released from rest and ( )iE U x= , where ix is the point where it is 
released. When 0ix x= the total energy is zero. When 1ix x=  the total energy is negative. ( ) 0U x →  as x →∞ , so 
for this case the proton can't reach x →∞ and the maximum x it can have is limited. 

  
Figure 7.87 
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MOMENTUM, IMPULSE, AND COLLISIONS 

 8.1. IDENTIFY and SET UP: .p mv=  21
2 .K mv=  

EXECUTE: (a) 5(10,000 kg)(12.0 m/s) 1.20 10  kg m/sp = = × ⋅  

(b) (i) 
51.20 10  kg m/s 60.0 m/s

2000 kg
pv
m

× ⋅
= = = . (ii) 2 21 1

T T SUV SUV2 2m v m v= , so  

T
SUV T

SUV

10,000 kg (12.0 m/s) 26.8 m/s
2000 kg

mv v
m

= = =  

EVALUATE: The SUV must have less speed to have the same kinetic energy as the truck than to have the same 
momentum as the truck. 

 8.2. IDENTIFY: Example 8.1 shows that the two iceboats have the same kinetic energy at the finish line. 21
2K mv= . 

p mv= . 
SET UP: Let A be the iceboat with mass m and let B be the iceboat with mass 2m, so 2B Am m= . 

EXECUTE: A BK K=  gives 2 21 1
2 2A Bmv mv= . 2B

A B B
A

mv v v
m

= = . 

A A Ap m v= . ( )(2 ) / 2 2 2B B B A A A A Ap m v m v m v p= = = = . 

EVALUATE: The more massive boat must have less speed but greater momentum than the other boat in order to 
have the same kinetic energy. 

 8.3. IDENTIFY and SET UP: p mv= . 21
2K mv= . 

EXECUTE: (a) pv
m

=  and 
2 2

1
2 2

p pK m
m m

⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 

(b) c bK K=  and the result from part (a) gives 
2 2
c b

c b2 2
p p
m m

= . b
b c c c

c

0.145 kg 1.90
0.040 kg

mp p p p
m

= = = . The baseball 

has the greater magnitude of momentum. c b/ 0.526p p = . 

(c) 2 2p mK=  so m wp p=  gives m m w w2 2m K m K= . w mg= , so m m w ww K w K= . 

m
w m m m

w

700 N 1.56
450 N

wK K K K
w

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

The woman has greater kinetic energy. m w/ 0.641K K = . 
EVALUATE: For equal kinetic energy, the more massive object has the greater momentum. For equal momenta, 
the less massive object has the greater kinetic energy. 

 8.4. IDENTIFY: Each momentum component is the mass times the corresponding velocity component. 
SET UP: Let +x be along the horizontal motion of the shotput. Let +y be vertically upward. cosxv v θ= , 

sinyv v θ= . 
EXECUTE: The horizontal component of the initial momentum is  

cos (7.30 kg)(15.0 m/s)cos40.0 83.9 kg m/sx xp mv mv θ= = = = ⋅° .  

The vertical component of the initial momentum is sin (7.30 kg)(15.0 m/s)sin40.0 70.4 kg m/sy yp mv mv θ= = = = ⋅°  

EVALUATE: The initial momentum is directed at 40.0°  above the horizontal. 

8
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 8.5. IDENTIFY: For each object, m! !p = v  and 21
2K mv= . The total momentum is the vector sum of the momenta of 

each object. The total kinetic energy is the scalar sum of the kinetic energies of each object. 
SET UP: Let object A be the 110 kg lineman and object B the 125 kg lineman. Let +x be the object to the right, so 

2.75 m/sAxv = +  and 2.60 m/sBxv = − . 
EXECUTE: (a) (110 kg)(2.75 m/s) (125 kg)( 2.60 m/s) 22.5 kg m/sx A Ax B BxP m v m v= + = + − = − ⋅ . The net 
momentum has magnitude 22.5 kg m/s⋅  and is directed to the left. 

(b) 2 2 2 21 1 1 1
2 2 2 2(110 kg)(2.75 m/s) (125 kg)(2.60 m/s) 838 JA A B BK m v m v= + = + =  

EVALUATE: The kinetic energy of an object is a scalar and is never negative. It depends only on the magnitude of 
the velocity of the object, not on its direction. The momentum of an object is a vector and has both magnitude and 
direction. When two objects are in motion, their total kinetic energy is greater than the kinetic energy of either one. 
But if they are moving in opposite directions, the net momentum of the system has a smaller magnitude than the 
magnitude of the momentum of either object. 

 8.6. IDENTIFY: For each object m! !p = v  and the net momentum of the system is A B

! ! !P = p + p . The momentum 
vectors are added by adding components. The magnitude and direction of the net momentum is calculated from its 
x and y components. 
SET UP: Let object A be the pickup and object B be the sedan. 14.0 m/sAxv = − , 0Ayv = . 0Bxv = , 23.0 m/sByv = + . 

EXECUTE: (a) 4(2500 kg)( 14.0 m/s) 0 3.50 10  kg m/sx Ax Bx A Ax B BxP p p m v m v= + = + = − + = − × ⋅  
4(1500 kg)( 23.0 m/s) 3.45 10  kg m/sy Ay By A Ay B ByP p p m v m v= + = + = + = + × ⋅  

(b) 2 2 44.91 10  kg m/sx yP P P= + = × ⋅ . From Figure 8.6, 
4

4

3.50 10  kg m/stan
3.45 10  kg m/s

x

y

P
P

θ × ⋅
= =

× ⋅
 and 45.4θ = ° . The net 

momentum has magnitude 44.91 10  kg m/s× ⋅  and is directed at 45.4°  west of north. 
EVALUATE: The momenta of the two objects must be added as vectors. The momentum of one object is west and 
the other is north. The momenta of the two objects are nearly equal in magnitude, so the net momentum is directed 
approximately midway between west and north. 

 
Figure 8.6 

 8.7. IDENTIFY: The average force on an object and the object�s change in momentum are related by Eq. 8.9. The 
weight of the ball is w mg= . 
SET UP: Let +x be in the direction of the final velocity of the ball, so 1 0xv =  and 2 25.0 m/sxv = . 

EXECUTE: av 2 1 2 1( ) ( )x x xF t t mv mv− = −  gives 2 1
av 3

2 1

(0.0450 kg)(25.0 m/s)( ) 562 N
2.00 10  s

x x
x

mv mvF
t t −

−
= = =

− ×
. 

2(0.0450 kg)(9.80 m/s ) 0.441 Nw = = . The force exerted by the club is much greater than the weight of the ball, 
so the effect of the weight of the ball during the time of contact is not significant. 
EVALUATE: Forces exerted during collisions typically are very large but act for a short time. 

 8.8. IDENTIFY: The change in momentum, the impulse and the average force are related by Eq. 8.9. 
SET UP: Let the direction in which the batted ball is traveling be the +x direction, so 1 45.0 m/sxv = −  and 

2 55.0 m/sxv = . 
EXECUTE: (a) 2 1 2 1( ) (0.145 kg)(55.0 m/s [ 45.0 m/s]) 14.5 kg m/sx x x x xp p p m v vΔ = − = − = − − = ⋅ . x xJ p= Δ , so 

14.5 kg m/sxJ = ⋅ . Both the change in momentum and the impulse have magnitude 14.5 kg m/s⋅ . 

(b) av 3

14.5 kg m/s( ) 7250 N
2.00 10  s

x
x

JF
t −

⋅
= = =

Δ ×
. 

EVALUATE: The force is in the direction of the momentum change. 
 8.9. IDENTIFY: Use Eq. 8.9. We know the intial momentum and the impluse so can solve for the final momentum and 

then the final velocity. 
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SET UP: Take the x-axis to be toward the right, so 1 3.00 m /s.xv = +  Use Eq. 8.5 to calculate the impulse, since 
the force is constant. 
EXECUTE: (a) 2 1x x xJ p p= −  

2 1( ) ( 25.0 N)(0.050 s) 1.25 kg m/sx xJ F t t= − = + = + ⋅  

Thus 2 1 1.25 kg m/s (0.160 kg)( 3.00 m/s)x x xp J p= + = + ⋅ + + = 1.73 kg m/s+ ⋅  

2
2

1.73 kg m/s 10.8 kg m/s (to the right)
0.160  kg

x
x

pv
m

⋅
= = = + ⋅  

(b) 2 1( ) ( 12.0 N)(0.050 s) 0.600 kg m/sx xJ F t t= − = − = − ⋅  (negative since force is to left) 

2 1 0.600 kg m/s (0.160 kg)( 3.00 m/s) 0.120 kg m/sx x xp J p= + = − ⋅ + + = − ⋅  

2
2

0.120 kg m/s 0.75 m/s (to the left)
0.160 kg

x
x

pv
m

− ⋅
= = = −  

EVALUATE: In part (a) the impulse and initial momentum are in the same direction and xv  increases. In part (b) the 
impulse and initial momentum are in opposite directions and the velocity decreases. 

 8.10. IDENTIFY: The impulse, change in momentum and change in velocity are related by Eq. 8.9. 
SET UP: 26,700 NyF =  and 0xF = . The force is constant, so av( ) y yF F= . 

EXECUTE: (a) 5(26,700 N)(3.90 s) 1.04 10  N sy yJ F t= Δ = = × ⋅ . 

(b) 51.04 10  kg m/sy yp JΔ = = × ⋅ . 

(c) y yp m vΔ = Δ . 
51.04 10  kg m/s 1.09 m/s

95,000 kg
y

y

p
v

m
Δ × ⋅

Δ = = = . 

(d) The initial velocity of the shuttle isn�t known. The change in kinetic energy is 2 21
2 1 2 12 ( )K K K m v vΔ = − = − . It 

depends on the initial and final speeds and isn�t determined solely by the change in speed. 
EVALUATE: The force in the +y direction produces an increase of the velocity in the +y direction. 

 8.11. IDENTIFY: The force is not constant so 2

1

t

t
dt∫J = F

! !
. The impulse is related to the change in velocity by Eq. 8.9. 

SET UP: Only the x component of the force is nonzero, so 2

1

t

x xt
J F dt= ∫  is the only nonzero component of 

!
J .  

2 1( )x x xJ m v v= − . 1 2.00 st = , 2 3.50 st = . 

EXECUTE: (a) 2
2 2

781.25 N 500 N/s
(1.25 s)

xFA
t

= = = . 

(b) 2

1

2 3 3 2 3 3 31 1
2 13 3( ) (500 N/s )([3.50 s] [2.00 s] ) 5.81 10  N s

t

x t
J At dt A t t= = − = − = × ⋅∫ . 

(c) 
3

2 1
5.81 10  N s 2.70 m/s

2150 kg
x

x x x
Jv v v
m

× ⋅
Δ = − = = = . The x component of the velocity of the rocket increases by 

2.70 m/s. 
EVALUATE: The change in velocity is in the same direction as the impulse, which in turn is in the direction of the net 
force. In this problem the net force equals the force applied by the engine, since that is the only force on the rocket. 

 8.12. IDENTIFY: Apply Eq. 8.9 to relate the change in momentum of the momentum to the components of the average 
force on it. 
SET UP: Let +x be to the right and +y be upward. 
EXECUTE: (a) 2 1 (0.145 kg)( [65.0 m/s]cos30 50.0 m/s) 15.4 kg m/sx x x xJ p mv mv= Δ = − = − − = − ⋅° . 

2 1 (0.145 kg)([65.0 m/s]sin30 0) 4.71 kg m/sy y y yJ p mv mv= Δ = − = − = ⋅°  

The horizontal component is 15.4 kg m/s⋅ , to the left and the vertical component is 4.71 kg m/s⋅ , upward. 

(b) av- 3

15.4 kg m/s 8800 N
1.75 10  s

x
x

JF
t −

− ⋅
= = = −

Δ ×
. av- 3

4.71 kg m/s 2690 N
1.75 10  s

y
y

J
F

t −

⋅
= = =

Δ ×
. 

The horizontal component is 8800 N, to the left, and the vertical component is 2690 N, upward. 
EVALUATE: The ball gains momentum to the left and upward and the force components are in these directions. 

 8.13. IDENTIFY: The force is constant during the 1.0 ms interval that it acts, so tΔ
! !
J = F . 2 1 ( )m        2 1J p p v v

! ! ! ! !
5 2 5 2 . 

SET UP: Let +x be to the right, so 1 5.00 m/sxv = + . Only the x component of 
!
J  is nonzero, and 

2 1( )x x xJ m v v= − . 
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EXECUTE: (a) The magnitude of the impulse is 3 3(2.50 10  N)(1.00 10  s) 2.50 N sJ F t −= Δ = × × = ⋅ . The direction 
of the impulse is the direction of the force. 

(b) (i) 2 1
x

x x
Jv v
m

= + . 2.50 N sxJ = + ⋅ . 2
2.50 N s 5.00 m/s 6.25 m/s
2.00 kgxv + ⋅

= + = . The stone�s velocity has magnitude 

6.25 m/s and is directed to the right. (ii) Now 2.50 N sxJ = − ⋅  and 2
2.50 N s 5.00 m/s 3.75 m/s
2.00 kgxv − ⋅

= + = . The 

stone�s velocity has magnitude 3.75 m/s and is directed to the right. 
EVALUATE: When the force and initial velocity are in the same direction the speed increases and when they are 
in opposite directions the speed decreases. 

 8.14. IDENTIFY: Apply conservation of momentum to the system of the astronaut and tool. 
SET UP: Let A be the astronaut and B be the tool. Let +x be the direction in which she throws the tool, so 

2 3.20 m/sB xv = + . Assume she is initially at rest, so 1 1 0A x B xv v= = . Solve for 2A xv . 
EXECUTE: 1 2x xP P= . 1 1 1 0x A A x B B xP m v m v= + = . 2 2 2 0x A A x B B xP m v m v= + =  and 

2
2

(2.25 kg)(3.20 m/s) 0.105 m/s
68.5 kg

B A x
A x

A

m vv
m

= − = − = − . Her speed is 0.105 m/s and she moves opposite to the 

direction in which she throws the tool. 
EVALUATE: Her mass is much larger than that of the tool so to have the same magnitude of momentum as the 
tool her speed is much less. 

 8.15. IDENTIFY: Since drag effects are neglected there is no net external force on the system of squid plus expelled 
water and the total momentum of the system is conserved. Since the squid is initially at rest, with the water in its 
cavity, the initial momentum of the system is zero. For each object, 21

2K mv= . 
SET UP: Let A be the squid and B be the water it expels, so 6.50 kg 1.75 kg 4.75 kgAm = − = . Let +x be the 
direction in which the water is expelled. 2 2.50 m/sA xv = − . Solve for 2B xv . 

EXECUTE: (a) 1 0xP = . 2 1x xP P= , so 2 20 A A x B B xm v m v= + . 2
2

(4.75 kg)( 2.50 m/s) 6.79 m/s
1.75 kg

A A x
B x

B

m vv
m

−
= − = − = + . 

(b) 2 2 2 21 1 1 1
2 2 2 2 22 2 2 2(4.75 kg)(2.50 m/s) (1.75 kg)(6.79 m/s) 55.2 JA B A A B BK K K m v m v= + = + = + =  The initial kinetic 

energy is zero, so the kinetic energy produced is 2 55.2 JK = . 
EVALUATE: The two objects end up with momenta that are equal in magnitude and opposite in direction, so the 
total momentum of the system remains zero. The kinetic energy is created by the work done by the squid as it 
expels the water. 

 8.16. IDENTIFY: Apply conservation of momentum to the system of you and the ball. In part (a) both objects have the 
same final velocity. 
SET UP: Let +x be in the direction the ball is traveling initially. 0.400 kgAm =  (ball). 70.0 kgBm =  (you). 
EXECUTE: (a) 1 2x xP P=  gives 2(0.400 kg)(10.0 m/s) (0.400 kg 70.0 kg)v= +  and 2 0.0568 m/sv = . 
(b) 1 2x xP P=  gives 2(0.400 kg)(10.0 m/s) (0.400 kg)( 8.00 m/s) (70.0 kg) Bv= − +  and 2 0.103 m/sBv = . 
EVALUATE: When the ball bounces off it has a greater change in momentum and you acquire a greater final speed. 

 8.17. IDENTIFY: Apply conservation of momentum to the system of the two pucks. 
SET UP: Let +x be to the right. 
EXECUTE: (a) 1 2x xP P=  says 1(0.250) (0.250 kg)( 0.120 m/s) (0.350 kg)(0.650 m/s)Av = − +  and 1 0.790 m/sAv = . 

(b) 21
1 2 (0.250 kg)(0.790 m/s) 0.0780 JK = = . 

2 21 1
2 2 2(0.250 kg)(0.120 m/s) (0.350 kg)(0.650 m/s) 0.0757 JK = + =  and 2 1 0.0023 JK K KΔ = − = − . 

EVALUATE: The total momentum of the system is conserved but the total kinetic energy decreases. 
 8.18. IDENTIFY: Since road friction is neglected, there is no net external force on the system of the two cars and the 

total momentum of the system is conserved. For each object, 21
2K mv= . 

SET UP: Let A be the 1750 kg car and B be the 1450 kg car. Let +x be to the right, so 1 1.50 m/sA xv = + , 

1 1.10 m/sB xv = − , and 2 0.250 m/sA xv = + . Solve for 2B xv . 

EXECUTE: (a) 1 2x xP P= . 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = + . 1 1 2
2

A A x B B x A A x
B x

B

m v m v m vv
m

+ −
= . 

2
(1750 kg)(1.50 m/s) (1450 kg)( 1.10 m/s) (1750 kg)(0.250 m/s) 0.409 m/s

1450 kgB xv + − −
= = . 

After the collision the lighter car is moving to the right with a speed of 0.409 m/s. 
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(b) 2 2 2 21 1 1 1
1 1 12 2 2 2(1750 kg)(1.50 m/s) (1450 kg)(1.10 m/s) 2846 JA A B BK m v m v= + = + = . 

2 2 2 21 1 1 1
2 2 22 2 2 2(1750 kg)(0.250 m/s) (1450 kg)(0.409 m/s) 176 JA A B BK m v m v= + = + = . 

The change in kinetic energy is 2 1 176 J 2846 J 2670 JK K KΔ = − = − = − . 
EVALUATE: The total momentum of the system is constant because there is no net external force during the 
collision. The kinetic energy of the system decreases because of negative work done by the forces the cars exert on 
each other during the collision. 

 8.19. IDENTIFY: Since the rifle is loosely held there is no net external force on the system consisting of the rifle, bullet 
and propellant gases and the momentum of this system is conserved. Before the rifle is fired everything in the 
system is at rest and the initial momentum of the system is zero. 
SET UP: Let +x be in the direction of the bullet�s motion. The bullet has speed 601 m/s 1.85 m/s 599 m/s− =  
relative to the earth. 2 r b gx x x xP p p p= + + , the momenta of the rifle, bullet and gases. r 1.85 m/sxv = −  and 

b 599 m/sxv = + . 
EXECUTE: 2 1 0x xP P= = . r b g 0x x xp p p+ + = . g r b (2.80 kg)( 1.85 m/s) (0.00720 kg)(599 m/s)x x xp p p= − − = − − −  

and g 5.18 kg m/s 4.31 kg m/s 0.87 kg m/sxp = + ⋅ − ⋅ = ⋅ . The propellant gases have momentum 0.87 kg m/s⋅ , in the 
same direction as the bullet is traveling. 
EVALUATE: The magnitude of the momentum of the recoiling rifle equals the magnitude of the momentum of the 
bullet plus that of the gases as both exit the muzzle. 

 8.20. IDENTIFY: In part (a) no horizontal force implies xP  is constant. In part (b) use the energy expression, Eq. 7.14, 
to find the potential energy intially in the spring. 
SET UP: Initially both blocks are at rest. 

 
Figure 8.20 

EXECUTE: (a) 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = +  

2 20 A A x B B xm v m v= +  

2 2
3.00 kg ( 1.20 m/s) 3.60 m/s
1.00 kg

B
A x B x

A

mv v
m

⎛ ⎞ ⎛ ⎞
= − = − + = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

Block A has a final speed of 3.60 m/s, and moves off in the opposite direction to B. 
(b) Use energy conservation: 1 1 other 2 2K U W K U+ + = + . 

Only the spring force does work so other el0 and .W U U= =  

1 0K =  (the blocks initially are at rest) 

2 0U =  (no potential energy is left in the spring) 

2 2 2 21 1 1 1
2 2 22 2 2 2(1.00 kg)(3.60 m/s) (3.00 kg)(1.20 m/s) 8.64 JA A B BK m v m v= + = + =  

1 1,elU U=  the potential energy stored in the compressed spring. 

Thus 1,el 2 8.64 JU K= =  
EVALUATE: The blocks have equal and opposite momenta as they move apart, since the total momentum is zero. 
The kinetic energy of each block is positive and doesn�t depend on the direction of the block�s velocity, just on its 
magnitude. 

 8.21. IDENTIFY: Since friction at the pond surface is neglected, there is no net external horizontal force and the 
horizontal component of the momentum of the system of hunter plus bullet is conserved. Both objects are initially 
at rest, so the initial momentum of the system is zero. Gravity and the normal force exerted by the ice together 
produce a net vertical force while the rifle is firing, so the vertical component of momentum is not conserved. 
SET UP: Let object A be the hunter and object B be the bullet. Let +x be the direction of the horizontal 
component of velocity of the bullet. Solve for 2A xv . 
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EXECUTE: (a) 2 965 m/sB xv = + . 1 2 0x xP P= = . 2 20 A A x B B xm v m v= +  and 
3

2 2
4.20 10  kg (965 m/s) 0.0559 m/s

72.5 kg
B

A x B x
A

mv v
m

−⎛ ⎞×
= − = − = −⎜ ⎟

⎝ ⎠
. 

(b) 2 2 cos (965 m/s)cos56.0 540 m/sB x Bv v θ= = =° . 
3

2
4.20 10  kg (540 m/s) 0.0313 m/s

72.5 kgA xv
−⎛ ⎞×

= − = −⎜ ⎟
⎝ ⎠

. 

EVALUATE: The mass of the bullet is much less than the mass of the hunter, so the final mass of the hunter plus 
gun is still 72.5 kg, to three significant figures. Since the hunter has much larger mass, her final speed is much less 
than the speed of the bullet. 

 8.22. IDENTIFY: Assume the nucleus is initially at rest. 21
2K mv= . 

SET UP: Let +x be to the right. 2A x Av v= −  and 2B x Bv v= + . 

EXECUTE: (a) 2 1 0x xP P= =  gives 2 2 0A A x B B xm v m v+ = . A
B A

B

mv v
m

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. 

(b) 
( )

2 21
2

221
2 /

A AA A A B

B B B AB A A B

m vK m v m
K m v mm m v m

= = = . 

EVALUATE: The lighter fragment has the greater kinetic energy. 
 8.23. IDENTIFY: Apply conservation of momentum to the nucleus and its fragments. The initial momentum is zero. 

The 214 Po  nucleus has mass 27 25214(1.67 10  kg) 3.57 10  kg− −× = × , where 271.67 10  kg−×  is the mass of a nucleon 

(proton or neutron). 21
2K mv= . 

SET UP: Let +x be the direction in which the alpha particle is emitted. The nucleus that is left after the decay has 
mass 25 25 27 25

n 3.75 10  kg 3.57 10  kg 6.65 10  kg 3.50 10  kgm mα
− − − −= × − = × − × = × . 

EXECUTE: 2 1 0x xP P= =  gives n n 0m v m vα α + = . n
n

mv v
m

α
α= . 

12
7

27

2 2(1.23 10  J) 1.92 10  m/s
6.65 10  kg

Kv
m

α
α

α

−

−

×
= = = ×

×
. 

27
7 5

n 25

6.65 10  kg (1.92 10  m/s) 3.65 10  m/s
3.50 10  kg

v
−

−

⎛ ⎞×
= × = ×⎜ ⎟×⎝ ⎠

. 

EVALUATE: The recoil velocity of the more massive nucleus is much less than the speed of the emitted alpha 
particle. 

 8.24. IDENTIFY and SET UP: Let the +x-direction be horizontal, along the direction the rock is thrown. There is no net 
horizontal force, so xP  is constant. Let object A be you and object B be the rock. 
EXECUTE: 0  cos35.0A A B Bm v m v= − + °  

 cos35.0 2.11 m/sB B
A

A

m vv
m

°
= =  

EVALUATE: yP  is not conserved because there is a net external force in the vertical direction; as you throw the 
rock the normal force exerted on you by the ice is larger than the total weight of the system. 

 8.25. IDENTIFY: Each horizontal component of momentum is conserved. 21
2K mv= . 

SET UP: Let +x be the direction of Rebecca�s initial velocity and let the +y axis make an angle of 36.9°  with 
respect to the direction of her final velocity. D1 D1 0x yv v= = . R1 13.0 m/sxv = ; R1 0yv = . 

R 2 (8.00 m/s)cos53.1 4.80 m/sxv = =° ; R 2 (8.00 m/s)sin53.1 6.40 m/syv = =° . Solve for D2xv  and D2 yv . 

EXECUTE: (a) 1 2x xP P=  gives R R1 R R 2 D D2x x xm v m v m v= + . 

R R1 R 2
D2

D

( ) (45.0 kg)(13.0 m/s 4.80 m/s) 5.68 m/s
65.0 kg

x x
x

m v vv
m

− −
= = = . 

1 2y yP P=  gives R R 2 D D20 y ym v m v= + . R
D2 R 2

D

45.0 kg (6.40 m/s) 4.43 m/s
65.0 kgy y

mv v
m

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
.  

The directions of R1
!v , R2

!v  and D2
!v  are sketched in Figure 8.25. D2

D2

4.43 m/stan
5.68 m/s

y

x

v
v

θ = =  and 38.0θ = ° . 

2 2
D D2 D2 7.20 m/sx yv v v= + = . 
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(b) 2 2 31 1
1 R R12 2 (45.0 kg)(13.0 m/s) 3.80 10  JK m v= = = × . 

2 2 2 2 31 1 1 1
2 R R2 D D22 2 2 2(45.0 kg)(8.00 m/s) (65.0 kg)(7.20 m/s) 3.12 10  JK m v m v= + = + = × . 

2 1 680 JK K KΔ = − = − . 
EVALUATE: Each component of momentum is separately conserved. The kinetic energy of the system increases. 

vR1

vR2

vD2

y

x
u

 
Figure 8.25 

 8.26. IDENTIFY: There is no net external force on the system of astronaut plus canister, so the momentum of the 
system is conserved. 
SET UP: Let object A be the astronaut and object B be the canister. Assume the astronaut is initially at rest. After 
the collision she must be moving in the same direction as the canister. Let +x be the direction in which the canister 
is traveling initially, so 1 0A xv = , 2 2.40 m/sA xv = + , 1 3.50 m/sB xv = + , and 2 1.20 m/sB xv = + . Solve for Bm . 

EXECUTE: 1 2x xP P= . 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = + . 2 1

1 2

( ) (78.4 kg)(2.40 m/s 0) 81.8 kg
3.50 m/s 1.20 m/s

A A x A x
B

B x B x

m v vm
v v

− −
= = =

− −
. 

EVALUATE: She must exert a force on the canister in the x−  direction to reduce its velocity component in the 
+x direction. By Newton�s third law, the canister exerts a force on her that is in the +x direction and she gains 
velocity in that direction. 

 8.27. IDENTIFY: The horizontal component of the momentum of the system of the rain and freight car is conserved. 
SET UP: Let +x be the direction the car is moving initially. Before it lands in the car the rain has no momentum along the 
x axis. 
EXECUTE: (a) 1 2x xP P=  says 2(24,000 kg)(4.00 m/s) (27,000 kg) xv=  and 2 3.56 m/sxv = . 
(b) After it lands in the car the water must gain horizontal momentum, so the car loses horizontal momentum. 
EVALUATE: The vertical component of the momentum is not conserved, because of the vertical external force 
exerted by the track. 

 8.28. IDENTIFY: The x and y components of the momentum of the system of the two asteroids are separately conserved. 
SET UP: The before and after diagrams are given in Figure 8.28 and the choice of coordinates is indicated. Each 
asteroid has mass m. 
EXECUTE: (a) 1 2x xP P=  gives 1 2 2cos30.0 cos45.0A A Bmv mv mv= +° ° . 2 240.0 m/s 0.866 0.707A Bv v= +  and 

2 20.707 40.0 m/s 0.866B Av v= − . 

2 2y yP P=  gives 2 20 sin30.0 sin 45.0A Bmv mv= −° °  and 2 20.500 0.707A Bv v= . 

Combining these two equations gives 2 20.500 40.0 m/s 0.866A Av v= −  and 2 29.3 m/sAv = . Then  

2
0.500 (29.3 m/s) 20.7 m/s
0.707Bv ⎛ ⎞= =⎜ ⎟

⎝ ⎠
. 

(b) 21
1 12 AK mv= . 2 21 1

2 2 22 2A BK mv mv= + . 
2 2 2 2

2 2 2
2 2

1 1

(29.3 m/s) (20.7 m/s) 0.804
(40.0 m/s)

A B

A

K v v
K v

+ +
= = = . 

2 1 2

1 1 1

1 0.196K K K K
K K K
Δ −

= = − = − .  

19.6% of the original kinetic energy is dissipated during the collision. 
EVALUATE: We could use any directions we wish for the x and y coordinate directions, but the particular choice 
we have made is especially convenient. 
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Figure 8.28 

 8.29. IDENTIFY: Since drag effects are neglected there is no net external force on the system of two fish and the momentum 
of the system is conserved. The mechanical energy equals the kinetic energy, which is 21

2K mv=  for each object. 
SET UP: Let object A be the 15.0 kg fish and B be the 4.50 kg fish. Let +x be the direction the large fish is 
moving initially, so 1 1.10 m/sA xv =  and 1 0B xv = . After the collision the two objects are combined and move with 
velocity 2

!v . Solve for 2xv . 
EXECUTE: (a) 1 2x xP P= . 1 1 2( )A A x B B x A B xm v m v m m v+ = + . 

1 1
2

(15.0 kg)(1.10 m/s) 0 0.846 m/s
15.0 kg 4.50 kg

A A x B B x
x

A B

m v m vv
m m

+ +
= = =

+ +
. 

(b) 2 2 21 1 1
1 1 12 2 2 (15.0 kg)(1.10 m/s) 9.08 JA A B BK m v m v= + = = . 2 21 1

2 22 2( ) (19.5 kg)(0.846 m/s) 6.98 JA BK m m v= + = = . 

2 1 2.10 JK K KΔ = − = − . 2.10 J of mechanical energy is dissipated. 
EVALUATE: The total kinetic energy always decreases in a collision where the two objects become combined. 

 8.30. IDENTIFY: There is no net external force on the system of the two otters and the momentum of the system is 
conserved. The mechanical energy equals the kinetic energy, which is 21

2K mv=  for each object. 
SET UP: Let A be the 7.50 kg otter and B be the 5.75 kg otter. After the collision their combined velocity is 2

!v . 
Let +x be to the right, so 1 5.00 m/sA xv = −  and 1 6.00 m/sB xv = + . Solve for 2xv . 
EXECUTE: (a) 1 2x xP P= . 1 1 2( )A A x B B x A B xm v m v m m v+ = + . 

1 1
2

(7.50 kg)( 5.00 m/s) (5.75)( 6.00 m/s) 0.226 m/s
7.50 kg 5.75 kg

A A x B B x
x

A B

m v m vv
m m

+ − + +
= = = −

+ +
. 

(b) 2 2 2 21 1 1 1
1 1 12 2 2 2(7.50 kg)(5.00 m/s) (5.75 kg)(6.00 m/s) 197.2 JA A B BK m v m v= + = + = . 

2 21 1
2 22 2( ) (13.25 kg)(0.226 m/s) 0.338 JA BK m m v= + = = . 

2 1 197 JK K KΔ = − = − . 197 J of mechanical energy is dissipated. 
EVALUATE: The total kinetic energy always decreases in a collision where the two objects become combined. 

 8.31. IDENTIFY: Treat the comet and probe as an isolated system for which momentum is conserved. 
SET UP: In part (a) let object A be the probe and object B be the comet. Let x−  be the direction the probe is 
traveling just before the collision. After the collision the combined object moves with speed 2v . The change in 
velocity is 2 1x B xv v vΔ = − . In part (a) the impact speed of 37,000 km/h is the speed of the probe relative to the 
comet just before impact: 1 1 37,000 km/hA x B xv v− = − . In part (b) let object A be the comet and object B be the 
earth. Let x−  be the direction the comet is traveling just before the collision. The impact speed is 40,000 km/h, so 

1 1 40,000 km/hA x B xv v− = − . 

EXECUTE: (a) 1 2x xP P= . 1 1
2

A A x B B x
x

A B

m v m vv
m m

+
=

+
.  

( )2 1 1 1 1 1
A B A B A

x B x A x B x A x B x
A B A B A B

m m m m mv v v v v v v
m m m m m m

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −
Δ = − = + = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

6
14

372 kg ( 37,000 km/h) 1.4 10  km/h
372 kg 0.10 10  kg

v −⎛ ⎞
Δ = − = − ×⎜ ⎟+ ×⎝ ⎠

. 

The speed of the comet decreased by 61.4 10  km/h−× . This change is not noticeable. 



Momentum, Impulse, and Collisions  8-9 

(b) 
14

8
14 24

0.10 10  kg ( 40,000 km/h) 6.7 10  km/h
0.10 10  kg 5.97 10  kg

v −⎛ ⎞×
Δ = − = − ×⎜ ⎟× + ×⎝ ⎠

. The speed of the earth would change 

by 86.7 10  km/h−× . This change is not noticeable. 
EVALUATE: 1 1A x B xv v−  is the velocity of the projectile (probe or comet) relative to the target (comet or earth). 
The expression for vΔ  can be derived directly by applying momentum conservation in coordinates in which the 
target is initially at rest. 

 8.32. IDENTIFY: The forces the two vehicles exert on each other during the collision are much larger than the 
horizontal forces exerted by the road, and it is a good approximation to assume momentum conservation. 
SET UP: Let +x be eastward. After the collision two vehicles move with a common velocity 2

!v . 
EXECUTE: (a) 1 2x xP P=  gives SC SC T T SC T 2( )x x xm v m v m m v+ = + . 

SC SC T T
2

SC T

(1050 kg)( 15.0 m/s) (6320 kg)( 10.0 m/s) 6.44 m/s
1050 kg 6320 kg

x x
x

m v m vv
m m

+ − + +
= = =

+ +
. 

The final velocity is 6.44 m/s, eastward. 

(b) 1 2 0x xP P= =  gives SC SC T T 0x xm v m v+ = . SC
T SC

T

1050 kg ( 15.0 m/s) 2.50 m/s
6320 kgx x

mv v
m

⎛ ⎞ ⎛ ⎞
= − = − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. The truck 

would need to have initial speed 2.50 m/s. 
(c) part (a): 2 2 2 51 1 1

2 2 2(7370 kg)(6.44 m/s) (1050 kg)(15.0 m/s) (6320 kg)(10.0 m/s) 2.81 10  JKΔ = − − = − ×  

part (b): 2 2 51 1
2 20 (1050 kg)(15.0 m/s) (6320 kg)(2.50 m/s) 1.38 10  JKΔ = − − = − × . The change in kinetic energy 

has the greater magnitude in part (a). 
EVALUATE: In part (a) the eastward momentum of the truck has a greater magnitude than the westward 
momentum of the car and the wreckage moves eastward after the collision. In part (b) the two vehicles have equal 
magnitudes of momentum, the total momentum of the system is zero, and the wreckage is at rest after the collision. 

 8.33. IDENTIFY: The forces the two players exert on each other during the collision are much larger than the horizontal 
forces exerted by the slippery ground and it is a good approximation to assume momentum conservation. Each 
component of momentum is separately conserved. 
SET UP: Let +x be east and +y be north. After the collision the two players have velocity 2

!v . Let the linebacker 
be object A and the halfback be object B, so 1 0A xv = , 1 8.8 m/sA yv = , 1 7.2 m/sB xv =  and 1 0B yv = . Solve for 

2xv and 2 yv . 

EXECUTE: 1 2x xP P=  gives 1 1 2( )A A x B B x A B xm v m v m m v+ = + . 

1 1
2

(85 kg)(7.2 m/s) 3.14 m/s
110 kg 85 kg

A A x B B x
x

A B

m v m vv
m m

+
= = =

+ +
. 

1 2y yP P=  gives 1 1 2( )A A y B B y A B ym v m v m m v+ = + . 

1 1
2

(110 kg)(8.8 m/s) 4.96 m/s
110 kg 85 kg

A A y B B y
y

A B

m v m v
v

m m
+

= = =
+ +

. 

2 2
2 2 5.9 m/sx yv v v= + = . 

2

2

4.96 m/stan
3.14 m/s

y

x

v
v

θ = =  and 58θ = ° . 

The players move with a speed of 5.9 m/s and in a direction 58°  north of east. 
EVALUATE: Each component of momentum is separately conserved. 

 8.34. IDENTIFY: There is no net external force on the system of the two skaters and the momentum of the system is 
conserved. 
SET UP: Let object A be the skater with mass 70.0 kg and object B be the skater with mass 65.0 kg. Let +x be to 
the right, so 1 2.00 m/sA xv = +  and 1 2.50 m/sB xv = − . After the collision the two objects are combined and move with 
velocity 2

!v . Solve for 2xv . 
EXECUTE: 1 2x xP P= . 1 1 2( )A A x B B x A B xm v m v m m v+ = + . 

1 1
2

(70.0 kg)(2.00 m/s) (65.0)( 2.50 m/s) 0.167 m/s
70.0 kg 65.0 kg

A A x B B x
x

A B

m v m vv
m m

+ + −
= = = −

+ +
. 

The two skaters move to the left at 0.167 m/s. 
EVALUATE: There is a large decrease in kinetic energy. 
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 8.35. IDENTIFY: Neglect external forces during the collision. Then the momentum of the system of the two cars is 
conserved. 
SET UP: S 1200 kgm = , L 3000 kgm = . The small car has velocity Sv  and the large car has velocity Lv . 
EXECUTE: (a) The total momentum of the system is conserved, so the momentum lost by one car equals the 
momentum gained by the other car. They have the same magnitude of change in momentum. Since m=

! !p v  and 
Δ
!p  is the same, the car with the smaller mass has a greater change in velocity.  

S S L Lm v m vΔ = Δ  and L
S L

S

3000 kg 2.50
1200 kg

mv v v v
m

⎛ ⎞ ⎛ ⎞
Δ = Δ = Δ = Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

(b) The acceleration of the small car is greater, since it has a greater change in velocity during the collision. The 
large acceleration means a large force on the occupants of the small car and they would sustain greater injuries. 
EVALUATE: Each car exerts the same magnitude of force on the other car but the force on the compact has a 
greater effect on its velocity since its mass is less. 

 8.36. IDENTIFY: The collision forces are large so gravity can be neglected during the collision. Therefore, the 
horizontal and vertical components of the momentum of the system of the two birds are conserved. 
SET UP: The system before and after the collision is sketched in Figure 8.36. Use the coordinates shown. 

 
Figure 8.36 

EXECUTE: There is no external force on the system so 1 2x xP P=  and 1 2y yP P= . 

1 2x xP P=  gives raven-2(1.5 kg)(9.0 m/s) (1.5 kg) cosv φ=  and raven-2 cos 9.0 m/sv φ = . 

1 2y yP P=  gives raven-2(0.600 kg)(20.0 m/s) (0.600 kg)( 5.0 m/s) (1.5 kg) sinv φ= − +  and raven-2 sin 10.0 m/sv φ = . 

Combining these two equations gives 10.0 m/stan
9.0 m/s

φ =  and 48φ = ° . 

EVALUATE: Due to its large initial speed the lighter falcon was able to produce a large change in the raven�s 
direction of motion. 

 8.37. IDENTIFY: Since friction forces from the road are ignored, the x and y components of momentum are conserved. 
SET UP: Let object A be the subcompact and object B be the truck. After the collision the two objects move 
together with velocity 2

!v . Use the x and y coordinates given in the problem. 1 1 0A y B yv v= = . 

2 (16.0 m/s)sin 24.0 6.5 m/sxv = =° ; 2 (16.0 m/s)cos24.0 14.6 m/syv = =° . 

EXECUTE: 1 2x xP P=  gives 1 2( )A A x A B xm v m m v= + . 

1 2
950 kg 1900 kg (6.5 m/s) 19.5 m/s

950 kg
A B

A x x
A

m mv v
m

⎛ ⎞ ⎛ ⎞+ +
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

1 2y yP P=  gives 1 2( )A B y A B ym v m m v= + . 

1 2
950 kg 1900 kg (14.6 m/s) 21.9 m/s

1900 kg
A B

B y y
A

m mv v
m

⎛ ⎞ ⎛ ⎞+ +
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

Before the collision the subcompact car has speed 19.5 m/s and the truck has speed 21.9 m/s. 
EVALUATE: Each component of momentum is independently conserved. 

 8.38. IDENTIFY: Apply conservation of momentum to the collision. Apply conservation of energy to the motion of the 
block after the collision. 
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SET UP: Conservation of momentum applied to the collision between the bullet and the block: Let object A be 
the bullet and object B be the block. Let Av  be the speed of the bullet before the collision and let V be the speed of 
the block with the bullet inside just after the collision. 

 
Figure 8.38a 

xP  is constant gives ( )A A A Bm v m m V= + . 
Conservation of energy applied to the motion of the block after the collision: 

V

y

A1B
x

#1 #2 v 5 0

0.230 m  
Figure 8.38b 

1 1 other 2 2K U W K U+ + = +  
EXECUTE: Work is done by friction so other k k k( cos )fW W f s f s mgsφ μ= = = − = −  

1 2 0U U= =  (no work done by gravity) 
21

1 2 ;K mV=  2 0K =  (block has come to rest) 

Thus 21
k2 0mV mgsμ− =  

2
k2 2(0.20)(9.80 m/s )(0.230 m) 0.9495 m/sV gsμ= = =  

Use this in the conservation of momentum equation 
3

3

5.00 10  kg 1.20 kg (0.9495 m/s) 229 m/s
5.00 10  kg

A B
A

A

m mv V
m

−

−

⎛ ⎞ ⎛ ⎞+ × +
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

EVALUATE: When we apply conservation of momentum to the collision we are ignoring the impulse of the 
friction force exerted by the surface during the collision. This is reasonable since this force is much smaller than 
the forces the bullet and block exert on each other during the collision. This force does work as the block moves 
after the collision, and takes away all the kinetic energy. 

 8.39. IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion after the 
collision. After the collision the kinetic energy of the combined object is converted to gravitational potential 
energy. 
SET UP: Immediately after the collision the combined object has speed V. Let h be the vertical height through 
which the pendulum rises. 
EXECUTE: (a) Conservation of momentum applied to the collision gives 

3 3(12.0 10  kg)(380 m/s) (6.00 kg 12.0 10  kg)V− −× = + ×  and 0.758 m/sV = . 

Conservation of energy applied to the motion after the collision gives 21
tot tot2 m V m gh=  and  

2 2

2

(0.758 m/s) 0.0293 m = 2.93 cm
2 2(9.80 m/s )
Vh

g
= = = . 

(b) 2 3 21 1
b b2 2 (12.0 10  kg)(380 m/s) 866 JK m v −= = × = . 

(c) 2 3 21 1
tot2 2 (6.00 kg 12.0 10  kg)(0.758 m/s) 1.73 JK m V −= = + × = . 

EVALUATE: Most of the initial kinetic energy of the bullet is dissipated in the collision. 
 8.40. IDENTIFY: Each component of horizontal momentum is conserved. 

SET UP: Let +x be east and +y be north. S1 A1 0y xv v= = . S2 (6.00 m/s)cos37.0 4.79 m/sxv = =° , 

S2 (6.00 m/s)sin37.0 3.61 m/syv = =° , 2 (9.00 m/s)cos23.0 8.28 m/sA xv = =°  and 

2 (9.00 m/s)sin 23.0 3.52 m/sA yv = − = −° . 

EXECUTE: 1 2x xP P=  gives S S1 S S2 A A2x x xm v m v m v= + .  

S S2 A A2
S1

S

(80.0 kg)(4.79 m/s) (50.0 kg)(8.28 m/s) 9.97 m/s
80.0 kg

x x
x

m v m vv
m
+ +

= = = .  

Sam�s speed before the collision was 9.97 m/s. 
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1 2y yP P=  gives A A1 S S2y A A2y ym v m v m v= + . 

S S2y A A2
A1

S

(80.0 kg)(3.61 m/s) (50.0 kg)( 3.52 m/s) 2.26 m/s
50.0 kg

y
y

m v m v
v

m
+ + −

= = = . 

Abigail�s speed before the collision was 2.26 m/s. 
(b) 2 2 2 21 1 1 1

2 2 2 2(80.0 kg)(6.00 m/s) (50.0 kg)(9.00 m/s) (80.0 kg)(9.97 m/s) (50.0 kg)(2.26 m/s) .KΔ = + − −  639 JKΔ = − . 
EVALUATE: The total momentum is conserved because there is no net external horizontal force. The kinetic 
energy decreases because the forces between the objects do negative work during the collision. 

 8.41. IDENTIFY: When the spring is compressed the maximum amount the two blocks aren�t moving relative to each 
other and have the same velocity 

!
V  relative to the surface. Apply conservation of momentum to find V and 

conservation of energy to find the energy stored in the spring. Since the collision is elastic, Eqs. 8.24 and 8.25 give 
the final velocity of each block after the collision. 
SET UP: Let +x be the direction of the initial motion of A. 
EXECUTE: (a) Momentum conservation gives (2.00 kg)(2.00 m/s) (12.0 kg)V=  and 0.333 m/sV = . Both 
blocks are moving at 0.333 m/s, in the direction of the initial motion of block A. Conservation of energy says the 
initial kinetic energy of A equals the total kinetic energy at maximum compression plus the potential energy bU  

stored in the bumpers: 2 21 1
b2 2(2.00 kg)(2.00 m/s) (12.0 kg)(0.333 m/s)U= +  and b 3.33 JU = . 

(b) 2 1
2.00 kg 10.0 kg (2.00 m/s) 1.33 m/s

12.0 kg
A B

A x A x
A B

m mv v
m m

⎛ ⎞ ⎛ ⎞− −
= = = −⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

. Block A is moving in the x−  direction at 

1.33 m/s. 

2 1
2 2(2.00 kg) (2.00 m/s) 0.667 m/s

12.0 kg
A

B x A x
A B

mv v
m m

⎛ ⎞
= = = +⎜ ⎟+⎝ ⎠

. Block B is moving in the +x direction at 0.667 m/s. 

EVALUATE: When the spring is compressed the maximum amount the system must still be moving in order to 
conserve momentum. 

 8.42. IDENTIFY: No net external horizontal force so xP  is conserved. Elastic collision so 1 2K K=  and can use Eq. 8.27. 
SET UP: 

 
Figure 8.42 

EXECUTE: From conservation of x-component of momentum: 

1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = +  

1 1 2 2A A B B A A x B B xm v m v m v m v− = +  

2 2(0.150 kg)(0.80 m/s) (0.300 kg)(2.20 m/s) (0.150 kg) (0.300 kg)A x B xv v− = +  

A2 23.60 m/s 2x B xv v− = +  

From the relative velocity equation for an elastic collision Eq. 8.27: 

2 2 1 1( ) ( 2.20 m/s 0.80 m/s) 3.00 m/sB x A x B x A xv v v v− = − − = − − − = +  

A2 23.00 m/s x B xv v= − +  

Adding the two equations gives 20.60 m/s 3 B xv− =  and 2 0.20 m/s.B xv = −  Then 2 2 3.00 m/s 3.20 m/s.A x B xv v= − = −  
The 0.150 kg glider (A) is moving to the left at 3.20 m/s and the 0.300 kg glider (B) is moving to the left at 
0.20 m/s. 
EVALUATE: We can use our 2A xv  and 2B xv  to show that xP  is constant and 1 2K K=  

 8.43. IDENTIFY: Since the collision is elastic, both momentum conservation and Eq. 8.27 apply. 
SET UP: Let object A be the 30.0 kg marble and let object B be the 10.0 g marble. Let +x be to the right. 
EXECUTE: (a) Conservation of momentum gives 

2 2(0.0300 kg)(0.200 m/s) (0.0100 kg)( 0.400 m/s) (0.0300 kg) (0.0100 kg)A x B xv v+ − = + . 

2 23 0.200 m/sA x B xv v+ = . Eq. 8.27 says 2 2 ( 0.400 m/s 0.200 m/s) 0.600 m/sB x A xv v− = − − − = + . Solving this pair of 
equations gives 2 0.100 m/sA xv = −  and 2 0.500 m/sB xv = + . The 30.0 g marble is moving to the left at 0.100 m/s 
and the 10.0 g marble is moving to the right at 0.500 m/s. 
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(b) For marble A, 2 1 (0.0300 kg)( 0.100 m/s 0.200 m/s) 0.00900 kg m/sAx A A x A A xP m v m vΔ = − = − − = − ⋅ . 
For marble B, 2 1 (0.0100 kg)(0.500 m/s [ 0.400 m/s]) 0.00900 kg m/sBx B B x B B xP m v m vΔ = − = − − = + ⋅ . 
The changes in momentum have the same magnitude and opposite sign. 
(c) For marble A, 2 2 2 2 41 1 1

2 12 2 2 (0.0300 kg)([0.100 m/s] [0.200 m/s] ) 4.5 10  JA A A A AK m v m v −Δ = − = − = − × . 

For marble B, 2 2 2 2 41 1 1
2 12 2 2 (0.0100 kg)([0.500 m/s] [0.400 m/s] ) 4.5 10  JB B B B BK m v m v −Δ = − = − = + × . 

The changes in kinetic energy have the same magnitude and opposite sign. 
EVALUATE: The results of parts (b) and (c) show that momentum and kinetic energy are conserved in the 
collision. 

 8.44. IDENTIFY and SET UP: Without rounding, the calculation in Example 8.12 gives 2 20  m/sBv = . 
EXECUTE: The two equations in Example 8.12 for α  and β  are 

(0.500 kg)(4.00 m/s) (0.500 kg)(2.00 m/s)(cos ) (0.300 kg)( 20 m/s)(cos )α β= +  Eq. 1 

and  

0 (0.500 kg)(2.00 m/s)(sin ) (0.300 kg)( 20  m/s)sinα β= −  Eq. 2. 

Dividing each equation by (0.500 kg)(1.00 m/s)  gives 

4.00 2.00cos 0.6 20 cosα β= +  Eq. 3 
and 

0 2.00sin 0.6 20 sinα β= −  Eq. 4. 

Eq. 3 gives 4.00 2.00coscos
0.6 20

αβ −
=  and 2 2cos 2.222 2.222cos 0.5556cosβ α α= − + .  

Eq. 4 gives sin 0.7454sinβ α=  and 2 2 2sin 0.5556sin 0.5556 0.5556cosβ α α= = − . 
Adding the two equations and using 2 2sin cos 1β β+ =  gives 1 2.778 2.222cosα= −  and cos 0.8002α = . 

36.9α = ° . Then sin 0.7454sinβ α=  gives 26.6β = ° . 
EVALUATE: For these values of α  and β , the x component of momentum, the y component of momentum and 
the kinetic energy are all conserved in the collision. 

 8.45. IDENTIFY: Eqs. 8.24 and 8.25 apply, with object A being the neutron. 
SET UP: Let +x be the direction of the initial momentum of the neutron. The mass of a neutron is n 1.0 um = . 

EXECUTE: (a) 2 1 1 1
1.0 u 2.0 u /3.0
1.0 u 2.0 u

A B
A x A x A x A x

A B

m mv v v v
m m

⎛ ⎞− −
= = = −⎜ ⎟+ +⎝ ⎠

. The speed of the neutron after the collision 

is one-third its initial speed. 

(b) 2 21 1
2 n n n 1 12 2

1( /3.0)
9.0AK m v m v K= = = . 

(c) After n collisions, 2 1
1

3.0

n

A Av v⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 1 1
3.0 59,000

n
⎛ ⎞ =⎜ ⎟
⎝ ⎠

, so 3.0 59,000n = . log3.0 log59,000n =  and 10n = . 

EVALUATE: Since the collision is elastic, in each collision the kinetic energy lost by the neutron equals the 
kinetic energy gained by the deuteron. 

 8.46. IDENTIFY: Elastic collision. Solve for mass and speed of target nucleus. 
SET UP: (a) Let A be the proton and B be the target nucleus. The collision is elastic, all velocities lie along a line, 
and B is at rest before the collision. Hence the results of Eqs. 8.24 and 8.25 apply. 
EXECUTE: Eq. 8.24: ( ) ( ),B x Ax A x Axm v v m v v+ = −  where xv  is the velocity component of A before the collision 

and Axv  is the velocity component of A after the collision. Here, 71.50 10  m/sxv = ×  (take direction of incident 

beam to be positive) and 71.20 10  m/sAxv = − ×  (negative since traveling in direction opposite to incident beam). 

7 7

7 7

1.50 10  m/s 1.20 10  m/s 2.70 9.00 .
1.50 10  m/s 1.20 10  m/s 0.30

x Ax
B A

x Ax

v vm m m m m
v v

⎛ ⎞ ⎛ ⎞− × + × ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ × − × ⎝ ⎠⎝ ⎠⎝ ⎠
 

(b) Eq. 8.25: 7 62 2 (1.50 10  m/s) 3.00 10  m/s.
9.00

A
Bx

A B

m mv v
m m m m

⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

EVALUATE: Can use our calculated Bxv  and Bm  to show that xP  is constant and that 1 2.K K=  
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 8.47. IDENTIFY: Apply Eq. 8.28. 
SET UP: 0.300 kgAm = , 0.400 kgBm = , 0.200 kgCm = . 

EXECUTE: cm
A A B B C C

A B C

m x m x m xx
m m m

+ +
=

+ +
. 

cm
(0.300 kg)(0.200 m) (0.400 kg)(0.100 m) (0.200 kg)( 0.300 m) 0.0444 m

0.300 kg 0.400 kg 0.200 kg
x + + −

= =
+ +

. 

cm
A A B B C C

A B C

m y m y m yy
m m m

+ +
=

+ +
. 

cm
(0.300 kg)(0.300 m) (0.400 kg)( 0.400 m) (0.200 kg)(0.600 m) 0.0556 m

0.300 kg 0.400 kg 0.200 kg
y + − +

= =
+ +

. 

EVALUATE: There is mass at both positive and negative x and at positive and negative y and therefore the center 
of mass is close to the origin. 

 8.48. IDENTIFY: Calculate cm.x  
SET UP: Apply Eq. 8.28 with the sun as mass 1 and Jupiter as mass 2. Take the origin at the sun and let Jupiter 
lie on the positive x-axis. 

 
Figure 8.48 

1 1 2 2
cm

1 2

m x m xx
m m

+
=

+
 

EXECUTE: 1 0x =  and 11
2 7.78 10  mx = ×  

( )( )27 11
8

cm 30 27

1.90 10  kg 7.78 10  m
7.42 10  m

1.99 10  kg 1.90 10  kg
x

× ×
= = ×

× + ×
 

The center of mass is 87.42 10  m×  from the center of the sun and is on the line connecting the centers of the sun 
and Jupiter. The sun�s radius is 86.96 10  m×  so the center of mass lies just outside the sun. 
EVALUATE: The mass of the sun is much greater than the mass of Jupiter so the center of mass is much closer to 
the sun. For each object we have considered all the mass as being at the center of mass (geometrical center) of the 
object. 

 8.49. IDENTIFY: The location of the center of mass is given by Eq. 8.48. The mass can be expressed in terms of the 
diameter. Each object can be replaced by a point mass at its center. 
SET UP: Use coordinates with the origin at the center of Pluto and the +x direction toward Charon, so P 0x =  

C 19,700 kmx = . 3 34 1
3 6m V r dρ ρ π ρπ= = = . 

EXECUTE: 
3 31
CP P C C C C6

cm C C C3 3 3 31 1
P C P C P C P C6 6

dm x m x m dx x x x
m m m m d d d d

ρπ
ρπ ρπ

⎛ ⎞⎛ ⎞ ⎛ ⎞+
= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

3
3

cm 3 3

[1250 km] (19,700 km) 2.52 10  km
[2370 km] [1250 km]

x
⎛ ⎞

= = ×⎜ ⎟+⎝ ⎠
. 

The center of mass of the system is 32.52 10  km×  from the center of Pluto. 
EVALUATE: The center of mass is closer to Pluto because Pluto has more mass than Charon. 

 8.50. IDENTIFY: Apply Eqs. 8.28, 8.30 and 8.32. There is only one component of position and velocity. 
SET UP: 1200 kgAm = , 1800 kgBm = . 3000 kgA BM m m= + = . Let +x be to the right and let the origin be at 
the center of mass of the station wagon. 

EXECUTE: (a) cm
0 (1800 kg)(40.0 m) 24.0 m.

1200 kg 1800 kg
A A B B

A B

m x m xx
m m

+ +
= = =

+ +
 

The center of mass is between the two cars, 24.0 m to the right of the station wagon and 16.0 m behind the lead 
car. 
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(b) 4
1 1 (1200 kg)(12.0 m/s) (1800 kg)(20.0 m/s) 5.04 10  kg m/s.x A A B BP m v m v= + = + = × ⋅  

(c) , ,
cm,

(1200 kg)(12.0 m/s) (1800 kg)(20.0 m/s) 16.8 m/s.
1200 kg 1800 kg

A A x B B x
x

A B

m v m v
v

m m
+ +

= = =
+ +

 

(d) 4
cm- (3000 kg)(16.8 m/s) 5.04 10  kg m/sx xP Mv= = = × ⋅ , the same as in part (b). 

EVALUATE: The total momentum can be calculated either as the vector sum of the momenta of the individual 
objects in the system, or as the total mass of the system times the velocity of the center of mass. 

 8.51. IDENTIFY: Use Eq. 8.28 to find the x and y coordinates of the center of mass of the machine part for each 
configuration of the part. In calculating the center of mass of the machine part, each uniform bar can be represented 
by a point mass at its geometrical center. 
SET UP: Use coordinates with the axis at the hinge and the +x and +y axes along the horizontal and vertical bars 
in the figure in the problem. Let i i( , )x y  and f f( , )x y  be the coordinates of the bar before and after the vertical bar 
is pivoted. Let object 1 be the horizontal bar, object 2 be the vertical bar and 3 be the ball. 

EXECUTE: 1 1 2 2 3 3
i

1 2 3

(4.00 kg)(0.750 m) 0 0 0.333 m
4.00 kg 3.00 kg 2.00 kg

m x m x m xx
m m m

+ + + +
= = =

+ + + +
. 

1 1 2 2 3 3
i

1 2 3

0 (3.00 kg)(0.900 m) (2.00 kg)(1.80 m) 0.700 m
9.00 kg

m y m y m yy
m m m

+ + + +
= = =

+ +
. 

f
(4.00 kg)(0.750 m) (3.00 kg)( 0.900 m) (2.00 kg)( 1.80 m) 0.366 m

9.00 kg
x + − + −

= = − . 

f 0y = . f i 0.700 mx x− = −  and f i 0.700 my y− = − . The center of mass moves 0.700 m to the right and 0.700 m 
upward. 
EVALUATE: The vertical bar moves upward and to the right so it is sensible for the center of mass of the machine 
part to move in these directions. 

 8.52. (a) IDENTIFY: Use Eq. 8.28. 
SET UP: The target variable is 1.m  
EXECUTE: cm 2.0 m,x =  cm 0y =  

( ) ( )( )
( )

11 1 2 2
cm

1 2 1 1

0 0.10 kg 8.0 m 0.80 kg m
0.10 kg 0.10 kg

mm x m xx
m m m m

++ ⋅
= = =

+ + +
. 

cm 2.0 mx =  gives 
1

0.80 kg m2.0 m
0.10 kgm

⋅
=

+
. 

1
0.80 kg m0.10 kg 0.40 kg.

2.0 m
m ⋅

+ = =  

1 0.30 kg.m =  

EVALUATE: The cm is closer to 1m  so its mass is larger then 2.m  

(b) IDENTIFY: Use Eq. 8.32 to calculate .P
!

 
SET UP: ( )cm

�5.0 m/s .  v j!
5  

( )( ) ( )cm
� �0.10 kg 0.30 kg 5.0 m/s 2.0 kg m/s .M    +   ⋅P v i i

! !
5 5 5  

(c) IDENTIFY: Use Eq. 8.31. 

SET UP: 1 1 2 2
cm

1 2

.m m
m m

+
  

+
v vv
! !!

5  The target variable is 1.v
!  Particle 2 at rest says 2 0.v =  

EXECUTE: ( ) ( )1 2
1 cm

1

0.30 kg 0.10 kg � �5.00 m/s 6.7 m/s .
0.30 kg

m m
m

⎛ ⎞ ⎛ ⎞+ +
      ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
v v i i! !
5 5 5  

EVALUATE: Using the result of part (c) we can calculate 1p
!  and 2p

!  and show that P
!

 as calculated in part (b) 
does equal 1 2.  p p! !

1  
 8.53. IDENTIFY: There is no net external force on the system of James, Ramon and the rope and the momentum of the 

system is conserved and the velocity of its center of mass is constant. Initially there is no motion, and the velocity 
of the center of mass remains zero after Ramon has started to move. 
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SET UP: Let +x be in the direction of Ramon�s motion. Ramon has mass R 60.0 kgm =  and James has mass 

J 90.0 kgm = . 

EXECUTE: R R J J
cm-

R J

0x x
x

m v m vv
m m

+
= =

+
. 

R
J R

J

60.0 kg (0.700 m/s) 0.47 m/s
90.0 kgx x

mv v
m

⎛ ⎞ ⎛ ⎞
= − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. James� speed is 0.47 m/s. 

EVALUATE: As they move, the two men have momenta that are equal in magnitude and opposite in direction, and 
the total momentum of the system is zero. Also, Example 8.14 shows that Ramon moves farther than James in the 
same time interval. This is consistent with Ramon having a greater speed. 

 8.54. (a) IDENTIFY and SET UP: Apply Eq. 8.28 and solve for 1m  and 2.m  

EXECUTE: 1 1 2 2
cm

1 2

m y m yy
m m

+
=

+
 

1 1 2 2 1
1 2

cm

(0) (0.50 kg)(6.0 m) 1.25 kg
2.4 m

m y m y mm m
y
+ +

+ = = =  and 1 0.75 kg.m =  

EVALUATE: cmy  is closer to 1m  since 1 2.m m>  
(b) IDENTIFY and SET UP: Apply /d dt  a v! !

5  for the cm motion. 

EXECUTE: ( )3cm
cm

�1.5 m/s .d t
dt

    
va i
!!

5 5  

(c) IDENTIFY and SET UP: Apply Eq. 8.34. 
EXECUTE: ( )( )3

ext cm
�1.25 kg 1.5 m/s .M t    ∑F a i

! !
5 5  

At 3.0 s,t =  ( )( )( ) ( )3
ext

� �1.25 kg 1.5 m/s 3.0 s 5.6 N .    ∑F i i
!
5 5  

EVALUATE: cm-xv  is positive and increasing so cm xa −  is positive and extF
!

 is in the -direction.x+  There is no 
motion and no force component in the y-direction. 

 8.55. IDENTIFY: Apply d
dt∑ PF =
!!

 to the airplane. 

SET UP: ( ) 1n nd t nt
dt

−= . 21 N 1 kg m/s= ⋅ . 

EXECUTE: 3 2[ (1.50 kg m/s ) ] (0.25 kg m/s )d t
dt

  − ⋅   ⋅
P i j
! ! !
5 1 . (1.50 N/s)xF t= − , 0.25 NyF = , 0zF = . 

EVALUATE: There is no momentum or change in momentum in the z direction and there is no force component 
in this direction. 

 8.56. IDENTIFY: Use Eq. 8.38, applied to a finite time interval. 
SET UP: ex 1600 m/sv =  

EXECUTE: (a) ex
0.0500 kg(1600 m/s) 80.0 N
1.00 s

mF v
t

Δ −
= − = − = +

Δ
. 

(b) The absence of atmosphere would not prevent the rocket from operating. The rocket could be steered by 
ejecting the gas in a direction with a component perpendicular to the rocket�s velocity and braked by ejecting it in a 
direction parallel (as opposed to antiparallel) to the rocket�s velocity. 
EVALUATE: The thrust depends on the speed of the ejected gas relative to the rocket and on the mass of gas 
ejected per second. 

 8.57. IDENTIFY: exv dma
m dt

= − . Assume that /dm dt  is constant over the 5.0 s interval, since m doesn�t change much 

during that interval. The thrust is ex
dmF v
dt

= − . 

SET UP: Take m to have the constant value 110 kg 70 kg 180 kg+ = . /dm dt  is negative since the mass of the 
MMU decreases as gas is ejected. 

EXECUTE: (a) 2

ex

180 kg (0.029 m/s ) 0.0106 kg/s
490 m/s

dm m a
dt v

⎛ ⎞= − = − = −⎜ ⎟
⎝ ⎠

. In 5.0 s the mass that is ejected is 

(0.0106 kg/s)(5.0 s) 0.053 kg= . 

(b) ex (490 m/s)( 0.0106 kg/s) 5.19 NdmF v
dt

= − = − − = . 
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EVALUATE: The mass change in the 5.0 s is a very small fraction of the total mass m, so it is accurate to take m 
to be constant. 

 8.58. IDENTIFY and SET UP: Apply Eq. 8.39: ex .v dma
m dt

= −  Solve for / .dm dt  

EXECUTE:  

( )( )2

ex

6000 kg 25.0 m/s
75.0 kg/s

2000 m/s
dm ma
dt v

= − = − = − . 

So in 1 s the rocket must eject 75.0 kg of gas. 
EVALUATE: We have approximated /dm dt  by / .m tΔ Δ  We have assumed that 225.0 m/s  is the average 
acceleration for the first second. 

 8.59. IDENTIFY: Use Eq. 8.39, applied to a finite time interval. Solve for exv . 

SET UP: 
160

m m
t

Δ
= −

Δ
. 

EXECUTE: exv ma
m t

Δ
= −

Δ
. 

2
3

ex
15.0 m/s 2.40 10  m/s 2.40 km/s

/ /
160

av
m mm m
t

−
= − = = × =

Δ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠

 

EVALUATE: The acceleration is proportional to the speed of the exhaust gas and to the rate at which mass is 
ejected. 

 8.60. IDENTIFY and SET UP: av( )F t JΔ =  relates the impulse J to the average thrust avF . Eq. 8.38 applied to a finite time 

interval gives av ex
mF v
t

Δ
= −

Δ
. 0

0 ex ln mv v v
m

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

. The remaining mass m after 1.70 s is 0.0133 kg. 

EXECUTE: (a) 10.0 N s 5.88 N
1.70 s

JF
t

⋅
= = =

Δ
. av max/ 0.442F F = . 

(b) av
ex 800 m/s

0.0125 kg
F tv Δ

= − =
−

. 

(c) 0 0v =  and 0
ex

0.0258 kgln (800 m/s)ln 530 m/s
0.0133 kg

mv v
m

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

EVALUATE: The acceleration of the rocket is not constant. It increases as the mass remaining decreases. 

 8.61. IDENTIFY: 0
0 ex ln mv v v

m
⎛ ⎞− = ⎜ ⎟
⎝ ⎠

. 

SET UP: 0 0v = . 

EXECUTE: 
3

0

ex

8.00 10  m/sln 3.81
2100 m/s

m v
m v

×⎛ ⎞ = = =⎜ ⎟
⎝ ⎠

 and 3.810 45.2m e
m

= = . 

EVALUATE: Note that the final speed of the rocket is greater than the relative speed of the exhaust gas. 
 8.62. IDENTIFY and SET UP: Use Eq. 8.40: ( )0 ex 0ln /v v v m m− = . 

0 0v =  (�fired from rest�), so ( )ex 0/ ln /v v m m= . 

Thus ex/
0 / ,v vm m e=  or ex/

0/ v vm m e−= . 
If v is the final speed then m is the mass left when all the fuel has been expended; 0/m m  is the fraction of the 
initial mass that is not fuel. 
(a) EXECUTE: 3 51.00 10 3.00 10  m/sv c−= × = ×  gives 

5(3.00 10 m/s) /(2000 m/s) 66
0/ 7.2 10m m e− × −= = × . 

EVALUATE: This is clearly not feasible, for so little of the initial mass to not be fuel. 
(b) EXECUTE: 3000 m/sv =  gives (3000 m/s)/(2000 m/s)

0/ 0.223m m e−= = . 
EVALUATE: 22.3% of the total initial mass not fuel, so 77.7% is fuel; this is possible. 

 8.63. IDENTIFY: Use the heights to find 1yv  and 2 yv , the velocity of the ball just before and just after it strikes the slab. 

Then apply y y yJ F t p= Δ = Δ . 
SET UP: Let +y be downward. 



8-18 Chapter 8 

EXECUTE: (a) 21
2 mv mgh=  so 2v gh= ± . 

2
1 2(9.80 m/s )(2.00 m) 6.26 m/syv = + = . 2

2 2(9.80 m/s )(1.60 m) 5.60 m/syv = − = − . 
3

2 1( ) (40.0 10  kg)( 5.60 m/s 6.26 m/s) 0.474 kg m/sy y y yJ p m v v −= Δ = − = × − − = − ⋅ . 

The impulse is 0.474 kg m/s⋅ , upward. 

(b) 3

0.474 kg m/s 237 N
2.00 10  s

y
y

J
F

t −

− ⋅
= = = −

Δ ×
. The average force on the ball is 237 N, upward. 

EVALUATE: The upward force on the ball changes the direction of its momentum. 
 8.64. IDENTIFY: Momentum is conserved in the explosion. At the highest point the velocity of the boulder is zero. 

Since one fragment moves horizontally the other fragment also moves horizontally. Use projectile motion to relate 
the initial horizontal velocity of each fragment to its horizontal displacement. 
SET UP: Use coordinates where +x is north. Since both fragments start at the same height with zero vertical 
component of velocity, the time in the air, t, is the same for both. Call the fragments A and B, with A being the one 
that lands to the north. Therefore, 3B Am m= . 

EXECUTE: Apply 1 2x xP P=  to the collision: 0 A Ax B Bxm v m v= + . /3A
Bx Ax Ax

B

mv v v
m

= − = − . Apply projectile motion 

to the motion after the collision: 0 0xx x v t− = . Since t is the same, 0 0( ) ( )A B

Ax Bx

x x x x
v v
− −

=  and 

0 0 0
/3( ) ( ) ( ) (274 m) /3 91.3 mBx Ax

B A A
Ax Ax

v vx x x x x x
v v

⎛ ⎞ ⎛ ⎞−
− = − = − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. The other fragment lands 91.3 m 

directly south of the point of explosion. 
EVALUATE: The fragment that has three times the mass travels one-third as far. 

 8.65. IDENTIFY: The impulse, force and change in velocity are related by Eq. 8.9 
SET UP: / 0.0571 kgm w g= = . Since the force is constant, avF = F

! !
. 

EXECUTE: (a) 3( 380 N)(3.00 10  s) 1.14 N sx xJ F t −= Δ = − × = − ⋅ . 3(110 N)(3.00 10  s) 0.330 N sy yJ F t −= Δ = × = ⋅ . 

(b) 2 1
1.14 N s 20.0 m/s 0.04 m/s

0.0571 kg
x

x x
Jv v
m

− ⋅
= + = + = . 2 1

0.330 N s ( 4.0 m/s) 1.8 m/s
0.0571 kg

y
y y

J
v v

m
⋅

= − = + − = + . 

EVALUATE: The change in velocity Δv!  is in the same direction as the force, so Δv!  has a negative x component 
and a positive y component. 

 8.66. IDENTIFY: The horizontal component of the momentum of the system of cars is conserved. 
SET UP: Let +x be the direction the cars are traveling. Each car has mass m. Let 1v  be the initial speed of the 
three cars. 1

2 15v v= . Let N be the number of cars in the final collection. 

EXECUTE: 1 2x xP P= . 1 2(3 ) ( )m v Nm v= . 1 1

2 1

3 3 15
/5

v vN
v v

= = = . 

EVALUATE: In the complete absence of friction or other external horizontal forces this process of adding cars and 
slowing down continues forever. 

 8.67. IDENTIFY: x Ax BxP p p= +  and y Ay ByP p p= + . 

SET UP: Let object A be the convertible and object B be the SUV. Let +x be west and +y be south, 0Axp =  and 
0Byp = . 

EXECUTE: (8000 kg m/s)sin 60.0 6928 kg m/sxP = ⋅ = ⋅° , so 6928 kg m/sBxp = ⋅  and 
6928 kg m/s 3.46 m/s

2000 kgBxv ⋅
= = . 

(8000 kg m/s)cos60.0 4000 kg m/syP = ⋅ = ⋅° , so 4000 kg m/sBxp = ⋅  and 4000 kg m/s 2.67 m/s
1500 kgAyv ⋅

= = . 

The convertible has speed 2.67 m/s and the SUV has speed 3.46 m/s. 
EVALUATE: Each component of the total momentum arises from a single vehicle. 

 8.68. IDENTIFY: The total momentum of the system is conserved and is equal to zero, since the pucks are released 
from rest. 
SET UP: Each puck has the same mass m. Let +x be east and +y be north. Let object A be the puck that moves 
west. All three pucks have the same speed v. 
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EXECUTE: 1 2x xP P=  gives 0 Bx Cxmv mv mv= − + +  and Bx Cxv v v= + . 1 2y yP P=  gives 0 By Cymv mv= +  and 

By Cyv v= − . Since B Cv v=  and the y components are equal in magnitude, the x components must also be equal: 

Bx Cxv v=  and Bx Cxv v v= +  says / 2Bx Cxv v v= = . If Byv  is positive then Cyv  is negative. The angle θ  that puck B 

makes with the x axis is given by / 2cos v
v

θ =  and 60θ = ° . One puck moves in a direction 60°  north of east and 

the other puck moves in a direction 60°  south of east. 
EVALUATE: Each component of momentum is separately conserved. 

 8.69. IDENTIFY: The x and y components of the momentum of the system are conserved. 
Set Up: After the collision the combined object with mass tot 0.100 kgm =  moves with velocity 2v

! . Solve for 

Cxv  and Cyv . 

EXECUTE: (a) 1 2x xP P=  gives tot 2A Ax B Bx C Cx xm v m v m v m v+ + = . 

tot 2A Ax B Bx x
Cx

C

m v m v m vv
m

+ −
= −  

(0.020 kg)( 1.50 m/s) (0.030 kg)( 0.50 m/s)cos60 (0.100 kg)(0.50 m/s)
0.050 kgCxv − + − −

= −
° . 

1.75 m/sCxv = . 

1 2y yP P=  gives tot 2A Ay B By C Cy ym v m v m v m v+ + = . 

tot 2 (0.030 kg)( 0.50 m/s)sin 60 0.260 m/s
0.050 kg

A Ay B By y
Cy

C

m v m v m v
v

m
+ − −

= − = − = +
° . 

(b) 2 2 1.77 m/sC Cx Cyv v v= + = . 2 1K K KΔ = − . 
2 2 2 21 1 1 1

2 2 2 2(0.100 kg)(0.50 m/s) [ (0.020 kg)(1.50 m/s) (0.030)(0.50 m/s) (0.050 kg)(1.77 m/s) ]KΔ = − + +
0.092 JKΔ = − . 

EVALUATE: Since there is no horizontal external force the vector momentum of the system is conserved. The 
forces the spheres exert on each other do negative work during the collision and this reduces the kinetic energy of 
the system. 

 8.70. IDENTIFY: Use a coordinate system attached to the ground. Take the x-axis to be east (along the tracks) and the 
y-axis to be north (parallel to the ground and perpendicular to the tracks). Then xP  is conserved and yP  is not 
conserved, due to the sideways force exerted by the tracks, the force that keeps the handcar on the tracks. 
(a) SET UP: Let A be the 25.0 kg mass and B be the car (mass 175 kg). After the mass is thrown sideways relative 
to the car it still has the same eastward component of velocity, 5.00 m/s,  as it had before it was thrown. 

 
Figure 8.70a 

xP  is conserved so ( ) 1 2 2A B A A x B B xm m v m v m v+ = +  

EXECUTE: ( )( ) ( )( ) ( ) 2200 kg 5.00 m/s 25.0 kg 5.00 m/s 175 kg B xv= + . 

2
1000 kg m/s 125 kg m/s 5.00 m/s.

175 kgB xv ⋅ − ⋅
= =  

The final velocity of the car is 5.00 m/s,  east (unchanged). 
EVALUATE: The thrower exerts a force on the mass in the y-direction and by Newton�s 3rd law the mass exerts 
an equal and opposite force in the -directiony−  on the thrower and car. 
(b) SET UP: We are applying Px = constant in coordinates attached to the ground, so we need the final velocity of 
A relative to the ground. Use the relative velocity addition equation. Then use Px = constant to find the final 
velocity of the car. 
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EXECUTE: / / /A E A B B E= +v v v! ! !  

/ 5.00 m/sB Ev = +  

/ 5.00 m/sA Bv = −  (minus since the mass is moving west relative to the car). This gives / 0;A Ev =  the mass is at rest 
relative to the earth after it is thrown backwards from the car. 
As in part (a), ( ) 1 2 2 .A B A A x B B xm m v m v m v+ = +  

Now 2 0,A xv =  so ( ) 1 2 .A B B B xm m v m v+ =  

( )2 1
200 kg 5.00 m/s 5.71 m/s.
175 kg

A B
B x

B

m mv v
m

⎛ ⎞ ⎛ ⎞+
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

The final velocity of the car is 5.71 m/s,  east. 
EVALUATE: The thrower exerts a force in the -directionx−  so the mass exerts a force on him in the -directionx+  
and he and the car speed up. 
(c) SET UP: Let A be the 25.0 kg mass and B be the car (mass 200 kg).Bm =  

 
Figure 8.70b 

xP  is conserved so ( )1 1 2A A x B B x A B xm v m v m m v+ = + . 

EXECUTE: ( )1 1 2A A B B A B xm v m v m m v− + = + . 

( )( ) ( )( )1 1
2

200 kg 5.00 m/s 25.0 kg 6.00 m/s
3.78 m/s.

200 kg 25.0 kg
B B A A

x
A B

m v m vv
m m

−−
= = =

+ +
 

The final velocity of the car is 3.78 m/s,  east. 
EVALUATE: The mass has negative xp  so reduces the total xP  of the system and the car slows down. 

 8.71. IDENTIFY: The horizontal component of the momentum of the sand plus railroad system is conserved. 
SET UP: As the sand leaks out it retains its horizontal velocity of 15.0 m/s. 
EXECUTE: The horizontal component of the momentum of the sand doesn�t change when it leaks out so the 
speed of the railroad car doesn�t change; it remains 15.0 m/s. In Exercise 8.27 the rain is falling vertically and 
initially has no horizontal component of momentum. Its momentum changes as it lands in the freight car. 
Therefore, in order to conserve the horizontal momentum of the system the freight car must slow down. 
EVALUATE: The horizontal momentum of the sand does change when it strikes the ground, due to the force that 
is external to the system of sand plus railroad car. 

 8.72. IDENTIFY: Kinetic energy is 21
2K mv=  and the magnitude of the momentum is p mv= . The force and the time t 

it acts are related to the change in momentum whereas the force and distance d it acts are related to the change in 
kinetic energy. 
SET UP: Assume the net forces are constant and let the forces and the motion be along the x axis. The impulse-
momentum theorem then says Ft p= Δ  and the work-energy theorem says Fd K= Δ . 

EXECUTE: (a) 2 41
N 2 (840 kg)(9.0 m/s) 3.40 10  JK = = × . 2 41

P 2 (1620 kg)(5.0 m/s) 2.02 10  JK = = × . The Nash has 

the greater kinetic energy and N

P

1.68K
K

= . 

(b) 3
N (840 kg)(9.0 m/s) 7.56 10  kg m/sp = = × ⋅ . 3

P (1620 kg)(5.0 m/s) 8.10 10  kg m/sp = = × ⋅ . The Packard has 

the greater magnitude of momentum and N

P

0.933p
p

= . 

(c) Since the cars stop the magnitude of the change in momentum equals the initial momentum. Since P Np p> , 

P NF F>  and N N

P P

0.933F p
F p

= = . 

(d) Since the cars stop the magnitude of the change in kinetic energy equals the initial kinetic energy. Since 

N PK K> , N PF F>  and N N

P P

1.68F K
F K

= = . 

EVALUATE: If the stopping forces were the same, the Packard would have a larger stopping time but would 
travel a shorter distance while stopping. This consistent with it having a smaller initial speed. 
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 8.73. IDENTIFY: Use the impulse-momentum theorem to relate the average force on the bullets to their rate of change 
in momentum. By Newton�s third law, the average force the weapon exerts on the bullets is equal in magnitude 
and opposite in direction to the recoil force the bullets exert on the weapon. 
SET UP: Consider a time interval of 1.00 minute. Let +x be the direction of motion of the bullets and use 
coordinated fixed to the ground. The bullets start from rest. 

EXECUTE: avF t pΔ = Δ  gives 
3

av
(1000)(7.45 10  kg)(293 m/s) 36.4 N

60.0 s
F

−×
= = . The recoil force is 36.4 N. 

EVALUATE: The change in momentum for each bullet is small since the mass is small, but over 16 bullets are 
fired per second. 

 8.74. IDENTIFY: Find k for the spring from the forces when the frame hangs at rest, use constant acceleration equations 
to find the speed of the putty just before it strikes the frame, apply conservation of momentum to the collision 
between the putty and the frame and then apply conservation of energy to the motion of the frame after the collision. 
SET UP: Use the free-body diagram for the frame when it hangs at rest on the end of the spring to find the force 
constant k of the spring. Let s be the amount the spring is stretched. 

 
Figure 8.74a 

EXECUTE: y yF ma=∑ . 

0mg ks− + = . 

( )( )20.150 kg 9.80 m/s
29.4 N/m

0.050 m
mgk
s

= = = . 

SET UP: Next find the speed of the putty when it reaches the frame. The putty falls with acceleration ,a g=  
downward. 

 
Figure 8.74b 

0 0v =  

0 0.300 my y− =  
29.80 m/sa = +  

?v =  
2 2

0 02 ( )v v a y y= + −  

EXECUTE: ( ) ( )( )2
02 2 9.80 m/s 0.300 m 2.425 m/sv a y y= − = = . 

SET UP: Apply conservation of momentum to the collision between the putty (A) and the frame (B): 

 
Figure 8.74c 

yP  is conserved, so ( )1 2A A A Bm v m m v− = − + . 

EXECUTE: ( )2 1
0.200 kg 2.425 m/s 1.386 m/s
0.350 kg

A
A

A B

mv v
m m

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

. 
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SET UP: Apply conservation of energy to the motion of the frame on the end of the spring after the collision. Let 
point 1 be just after the putty strikes and point 2 be when the frame has its maximum downward displacement. Let 
d be the amount the frame moves downward. 

 
Figure 8.74d 

When the frame is at position 1 the spring is stretched a distance 1 0.050 m.x =  When the frame is at position 2 the 
spring is stretched a distance 2 0.050 m .x d= +  Use coordinates with the y-direction upward and 0y =  at the 
lowest point reached by the frame, so that 1y d=  and 2 0.y =  Work is done on the frame by gravity and by the 
spring force, so other 0,W =  and el gravity.U U U= +  

EXECUTE: 1 1 other 2 2K U W K U+ + = + . 

other 0W = . 

( )( )221 1
1 12 2 0.350 kg 1.386 m/s 0.3362 JK mv= = = . 

( )( ) ( )( )22 21 1
1 1,el 1, grav 1 12 2 29.4 N/m 0.050 m 0.350 kg 9.80 m/sU U U kx mgy d= + = + = + . 

( )1 0.03675 J 3.43 NU d= + . 

( )( )221 1
2 2,el 2,grav 2 22 2 29.4 N/m 0.050 mU U U kx mgy d= + = + = + . 

( ) ( ) 2
2 0.03675 J 1.47 N 14.7 N/mU d d= + + . 

Thus ( ) ( ) ( ) 20.3362 J 0.03675 J 3.43 N 0.03675 J 1.47 N 14.7 N/md d d+ + = + + . 

( ) ( )214.7 N/m 1.96 N 0.3362 J 0d d− − = . 

( ) ( ) ( )( )21/ 29.4 1.96 1.96 4 14.7 0.3362  m 0.0667 m 0.1653 m.d ⎡ ⎤= ± − − = ±⎢ ⎥⎣ ⎦
 

The solution we want is a positive (downward) distance, so 0.0667 m 0.1653 m 0.232 m.d = + =  
EVALUATE: The collision is inelastic and mechanical energy is lost. Thus the decrease in gravitational potential 
energy is not equal to the increase in potential energy stored in the spring. 

 8.75. IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion after the 
collision. 
SET UP: Let +x be to the right. The total mass is bullet block 1.00 kgm m m= + = . The spring has force constant 

2

0.750 N 300 N/m
0.250 10  m

F
k

x −= = =
×

. Let V be the velocity of the block just after impact. 

EXECUTE: (a) Conservation of energy for the motion after the collision gives 1 el2K U= . 2 21 1
2 2mV kx=  and 

300 N/m(0.150 m) 2.60 m/s
1.00 kg

kV x
m

= = = . 

(b) Conservation of momentum applied to the collision gives bullet 1m v mV= . 

1 3
bullet

(1.00 kg)(2.60 m/s) 325 m/s
8.00 10  kg

mVv
m −= = =

×
. 

EVALUATE: The initial kinetic energy of the bullet is 422 J. The energy stored in the spring at maximum 
compression is 3.38 J. Most of the initial mechanical energy of the bullet is dissipated in the collision. 

 8.76. IDENTIFY: The horizontal components of momentum of the system of bullet plus stone are conserved. The 
collision is elastic if 1 2.K K=  
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SET UP: Let A be the bullet and B be the stone. 
(a)  

 
Figure 8.76 

EXECUTE: xP  is conserved so 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = + . 

1 2A A B B xm v m v= . 

( )
3

2 1
6.00 10  kg 350 m/s 21.0 m/s

0.100 kg
A

B x A
B

mv v
m

−⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

yP  is conserved so 1 1 2 2A A y B B y A A y B B ym v m v m v m v+ = + . 

2 20 A A B B ym v m v= − + . 

( )
3

2 2
6.00 10  kg 250 m/s 15.0 m/s

0.100 kg
A

B y A
B

mv v
m

−⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

( ) ( )2 22 2
2 2 2 21.0 m/s 15.0 m/s 25.8 m/sB B x B yv v v= + = + = . 

2

2

15.0 m/stan 0.7143;
21.0 m/s

B y

B x

v
v

θ = = =  35.5θ = °  (defined in the sketch). 

(b) To answer this question compare 1K  and 2K  for the system: 

( )( )22 2 31 1 1
1 1 12 2 2 6.00 10  kg 350 m/s 368 JA A B BK m v m v −= + = × = . 

( )( ) ( )( )2 22 2 31 1 1 1
2 2 22 2 2 26.00 10  kg 250 m/s 0.100 kg 25.8 m/s 221 JA A B BK m v m v −= + = × + = . 

2 1 221 J 368 J 147 JK K KΔ = − = − = − . 

EVALUATE: The kinetic energy of the system decreases by 147 J as a result of the collision; the collision is not 
elastic. Momentum is conserved because ext, 0xF =∑  and ext, 0.yF =∑  But there are internal forces between the 
bullet and the stone. These forces do negative work that reduces K. 

 8.77. IDENTIFY: Apply conservation of momentum to the collision between the two people. Apply conservation of 
energy to the motion of the stuntman before the collision and to the entwined people after the collision. 
SET UP: For the motion of the stuntman, 1 2 5.0 my y− = . Let Sv  be the magnitude of his horizontal velocity just 
before the collision. Let V be the speed of the entwined people just after the collision. Let d be the distance they 
slide along the floor. 
EXECUTE: (a) Motion before the collision: 1 1 2 2K U K U+ = + . 1 0K =  and 21

S 1 22 ( )mv mg y y= − . 
2

S 1 22 ( ) 2(9.80 m/s )(5.0 m) 9.90 m/sv g y y= − = = . 

Collision: S S totm v m V= . S
S

tot

80.0 kg (9.90 m/s) 5.28 m/s
150.0 kg

mV v
m

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
. 

(b) Motion after the collision: 1 1 other 2 2K U W K U+ + = +  gives 21
tot k tot2 0m V m gdμ− = . 

2 2

2
k

(5.28 m/s) 5.7 m
2 2(0.250)(9.80 m/s )
Vd

gμ
= = = . 

EVALUATE: Mechanical energy is dissipated in the inelastic collision, so the kinetic energy just after the collision 
is less than the initial potential energy of the stuntman. 

 8.78. IDENTIFY: Apply conservation of energy to the motion before and after the collision and apply conservation of 
momentum to the collision. 
SET UP: Let v be the speed of the mass released at the rim just before it strikes the second mass. Let each object 
have mass m. 
EXECUTE: Conservation of energy says 21

2 ;mv mgR=  2v gR= . 
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SET UP: This is speed 1v  for the collision. Let 2v  be the speed of the combined object just after the collision. 

EXECUTE: Conservation of momentum applied to the collision gives 1 22mv mv=  so 2 1 / 2 / 2v v gR= =  
SET UP: Apply conservation of energy to the motion of the combined object after the collision. Let 3y  be the 
final height above the bottom of the bowl. 
EXECUTE: ( ) ( )21

2 32 2 2m v m gy= . 
2
2

3
1 / 4

2 2 2
v gRy R
g g

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

. 

EVALUATE: Mechanical energy is lost in the collision, so the final gravitational potential energy is less than the 
initial gravitational potential energy. 

 8.79. IDENTIFY: Eqs. 8.24 and 8.25 give the outcome of the elastic collision. Apply conservation of energy to the 
motion of the block after the collision. 
SET UP: Object B is the block, initially at rest. If L is the length of the wire and θ  is the angle it makes with the 
vertical, the height of the block is (1 cos )y L θ= − . Initially, 1 0y = . 

EXECUTE: Eq. 8.25 gives 2 2 (5.00 m/s) 2.50 m/s
3

A
B A

A B

m Mv v
m m M M

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
. Conservation of energy gives 

21
2 (1 cos )B B Bm v m gL θ= − . 

2 2

2

(2.50 m/s)cos 1 1 0.362
2 2(9.80 m/s )(0.500 m)

Bv
gL

θ = − = − =  and 68.8θ = ° . 

EVALUATE: Only a portion of the initial kinetic energy of the ball is transferred to the block in the collision. 
 8.80. IDENTIFY: Apply conservation of energy to the motion before and after the collision. Apply conservation of 

momentum to the collision. 
SET UP: First consider the motion after the collision. The combined object has mass tot 25.0 kg.m =  Apply 

m  ∑F a
! !
5  to the object at the top of the circular loop, where the object has speed 3.v  The acceleration is 

2
rad 3 / ,a v R=  downward. 

EXECUTE: 
2
3vT mg m

R
+ = . 

The minimum speed 3v  for the object not to fall out of the circle is given by setting 0.T =  This gives 3 ,v Rg=  
where 3.50 m.R =  
SET UP: Next, use conservation of energy with point 2 at the bottom of the loop and point 3 at the top of the 
loop. Take 0y =  at point 2. Only gravity does work, so 2 2 3 3K U K U+ = +  

EXECUTE: ( )2 21 1
tot 2 tot 3 tot2 2 2m v m v m g R= + . 

Use 3v Rg=  and solve for 2:v  2 5 13.1 m/sv gR= = . 
SET UP: Now apply conservation of momentum to the collision between the dart and the sphere. Let 1v  be the 
speed of the dart before the collision. 
EXECUTE: ( ) ( )( )15.00 kg 25.0 kg 13.1 m/sv = . 

1 65.5 m/sv = . 
EVALUATE: The collision is inelastic and mechanical energy is removed from the system by the negative work 
done by the forces between the dart and the sphere. 

 8.81. IDENTIFY: Use Eq. 8.25 to find the speed of the hanging ball just after the collision. Apply m∑F = a
! !  to find 

the tension in the wire. After the collision the hanging ball moves in an arc of a circle with radius 1.35 mR =  and 
acceleration 2

rad /a v R= . 

SET UP: Let A be the 2.00 kg ball and B be the 8.00 kg ball. For applying m∑F = a
! !  to the hanging ball, let +y 

be upward, since rada
!  is upward. The free-body force diagram for the 8.00 kg ball is given in Figure 8.81. 

EXECUTE: 2 1
2 2[2.00kg] (5.00 m/s) 2.00 m/s

2.00 kg 8.00 kg
A

B x A x
A B

mv v
m m

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠

. Just after the collision the 8.00 kg 

ball has speed 2.00 m/sv = . Using the free-body diagram, y yF ma=∑  gives radT mg ma− = .  

2 2
2 [2.00 m/s](8.00 kg) 9.80 m/s 102 N

1.35 m
vT m g
R

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 
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EVALUATE: The tension before the collision is the weight of the ball, 78.4 N. Just after the collision, when the 
ball has started to move, the tension is greater than this. 

arad

mg

y

x

T

 
Figure 8.81 

 8.82. IDENTIFY: The impulse applied to the ball equals its change in momentum. The height of the ball and its speed 
are related by conservation of energy. 
SET UP: Let +y be upward. 
EXECUTE: Applying conservation of energy to the motion of the ball from its height h to the floor gives 

21
12 mv mgh= , where 1v  is its speed just before it hits the floor. Just before it hits, it is traveling downward, so the 

velocity of the ball just before it hits the floor is 1 2yv gh= − . Applying conservation of energy to the motion of the 

ball from just after it bounces off the floor with speed 2v  to its maximum height of 0.90h  gives 21
22 (0.90 )mv mg h= . 

It is moving upward, so 2 2 (0.90 )yv g h= + . The impulse applied to the ball is 2 1 2 1( )y y y y yJ p p m v v= − = − =  

2 (0.90 ) 2 2.76m g h m gh m gh+ = . The floor exerts an upward impulse of 2.76m gh  to the ball. 
EVALUATE: The impulse increases when m increases and when h increases. The ball does not return to its initial 
height because some mechanical energy is dissipated during the collision with the floor. 

 8.83. IDENTIFY: Apply conservation of momentum to the collision between the bullet and the block and apply 
conservation of energy to the motion of the block after the collision. 
(a) SET UP: Collision between the bullet and the block: Let object A be the bullet and object B be the block. 
Apply momentum conservation to find the speed 2Bv  of the block just after the collision. 

 
Figure 8.83a 

EXECUTE: xP  is conserved so 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = + . 

1 2 2A A A A B B xm v m v m v= + . 

( ) ( )3
1 2

2

4.00 10  kg 400 m/s 120 m/s
1.40 m/s

0.800 kg
A A A

B x
B

m v v
v

m

−− × −
= = = . 

SET UP: Motion of the block after the collision. 
Let point 1 in the motion be just after the collision, where the block has the speed 1.40 m/s  calculated above, and 
let point 2 be where the block has come to rest. 

 
Figure 8.83b 

1 1 other 2 2K U W K U+ + = + . 
EXECUTE: Work is done on the block by friction, so other .fW W=  

( )other k kcos ,f kW W f s f s mgsφ μ= = = − = −  where 0.450 ms =  

1 20, 0U U= =  
21

1 1 22 , 0K mv K= =  (block has come to rest) 

Thus 21
1 k2 0.mv mgsμ− =  

( )
( )( )

22
1

k 2

1.40 m/s
0.222

2 2 9.80 m/s 0.450 m
v
gs

μ = = = . 
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(b) For the bullet, 

( )( )22 31 1
1 12 2 4.00 10  kg 400 m/s 320 JK mv −= = × = . 

( )( )22 31 1
2 22 2 4.00 10  kg 120 m/s 28.8 JK mv −= = × = . 

2 1 28.8 J 320 J 291 JK K KΔ = − = − = − . 

The kinetic energy of the bullet decreases by 291 J. 
(c) Immediately after the collision the speed of the block is 1.40 m/s  so its kinetic energy is 

( )( )221 1
2 2 0.800 kg 1.40 m/s 0.784 J.K mv= = =  

EVALUATE: The collision is highly inelastic. The bullet loses 291 J of kinetic energy but only 0.784 J is gained 
by the block. But momentum is conserved in the collision. All the momentum lost by the bullet is gained by the 
block. 

 8.84. IDENTIFY: Apply conservation of momentum to the collision and conservation of energy to the motion of the 
block after the collision. 
SET UP: Let +x be to the right. Let the bullet be A and the block be B. Let V be the velocity of the block just after 
the collision. 
EXECUTE: Motion of block after the collision: 1 grav2K U= . 21

2 B Bm V m gh= . 

2 22 2(9.80 m/s )(0.450 10  m) 0.297 m/sV gh −= = × = . 

Collision: 2 0.297 m/sBv = . 1 2x xP P=  gives 1 2 2A A A A B Bm v m v m v= + . 
3

1 2
2 3

(5.00 10  kg)(450 m/s) (1.00 kg)(0.297 m/s) 391 m/s
5.00 10  kg

A A B B
A

A

m v m vv
m

−

−

− × −
= = =

×
. 

EVALUATE: We assume the block moves very little during the time it takes the bullet to pass through it. 
 8.85. IDENTIFY: Eqs. 8.24 and 8.25 give the outcome of the elastic collision. The value of M where the kinetic energy 

loss lossK  of the neutron is a maximum satisfies loss / 0dK dM = . 
SET UP: Let object A be the neutron and object B be the nucleus. Let the initial speed of the neutron be 1Av . All 

motion is along the x-axis. 21
0 12 AK mv= . 

EXECUTE: (a) 2 1A A
m Mv v
m M

−
=

+
. 

2 2
2 2 2 2 01 1 1

loss 1 2 1 12 2 2 2 2

2 41
( ) ( )A A A A

m M m M K mMK mv mv m v v
m M M m M m

⎛ ⎞−⎡ ⎤= − = − = =⎜ ⎟⎢ ⎥⎜ ⎟+ + +⎣ ⎦⎝ ⎠
, as 

was to be shown. 

(b) loss
0 2 3

1 24 0
( ) ( )

dK MK m
dM M m M m

⎡ ⎤
= − =⎢ ⎥+ +⎣ ⎦

. 2 1M
M m

=
+

 and M m= . The incident neutron loses the most 

kinetic energy when the target has the same mass as the neutron. 
(c) When A Bm m= , Eq. 8.24 says 2 0Av = . The final speed of the neutron is zero and the neutron loses all of its 
kinetic energy. 
EVALUATE: When M m>> , 2 1A x A xv v≈ −  and the neutron rebounds with speed almost equal to its initial speed. 
In this case very little kinetic energy is lost; loss 04 /K K m M= , which is very small. 

 8.86. IDENTIFY: Eqs. 8.24 and 8.25 give the outcome of the elastic collision. 
SET UP: Let all the motion be along the x axis. 1 0A xv v= . 

EXECUTE: (a) 2 0
A B

A x
A B

m mv v
m m

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

 and 2 0
2 A

B x
A B

mv v
m m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

. 21
1 02 AK m v= . 

2 2
2 21 1

2 2 0 12 2
A B A B

A A A x A
A B A B

m m m mK m v m v K
m m m m

⎛ ⎞ ⎛ ⎞− −
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 and 
2

2

1

A A B

A B

K m m
K m m

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

. 

( )

2
2 21 1

2 2 0 12 2 2

2 4A A B
B B B x B

A B A B

m m mK m v m v K
m m m m

⎛ ⎞
= = =⎜ ⎟+ +⎝ ⎠

 and 
( )

2
2

1

4B A B

A B

K m m
K m m

=
+

. 

(b) (i) For A Bm m= , 2

1

0AK
K

=  and 2

1

1BK
K

= . (ii) For 5A Bm m= , 2

1

4
9

AK
K

=  and 2

1

5
9

BK
K

= . 
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(c) Equal sharing of the kinetic energy means 2 2

1 1

1
2

A BK K
K K

= = . 
2

1
2

A B

A B

m m
m m

⎛ ⎞−
=⎜ ⎟+⎝ ⎠

. 

2 2 2 22 2 4 2A B A B A A B Bm m m m m m m m+ − = + + . 2 26 0A A B Bm m m m− + = . The quadratic formula gives 5.83A

B

m
m

=  or 

0.172A

B

m
m

= . We can also verify that these values give 2

1

1
2

BK
K

= . 

EVALUATE: When A Bm m<<  or when A Bm m>> , object A retains almost all of the original kinetic energy. 
 8.87. IDENTIFY: Apply conservation of energy to the motion of the package before the collision and apply 

conservation of the horizontal component of momentum to the collision. 
(a) SET UP: Apply conservation of energy to the motion of the package from point 1 as it leaves the chute to 
point 2 just before it lands in the cart. Take 0y =  at point 2, so 1 4.00 m.y =  Only gravity does work, so 

1 1 2 2K U K U+ = + . 

EXECUTE: 2 21 1
1 1 22 2mv mgy mv+ = . 

2
2 1 12 9.35 m/sv v gy= + = . 

(b) SET UP: In the collision between the package and the cart momentum is conserved in the horizontal direction. 
(But not in the vertical direction, due to the vertical force the floor exerts on the cart.) Take x+  to be to the right. 
Let A be the package and B be the cart. 
EXECUTE: xP  is constant gives ( )1 1 2A A x B B x A B xm v m v m m v+ = + . 

1 5.00 m/sB xv = − . 

( )1 3.00 m/s cos37.0A xv = ° . (The horizontal velocity of the package is constant during its free-fall.) 

Solving for 2xv  gives 2 3.29 m/s.xv = −  The cart is moving to the left at 3.29 m/s  after the package lands in it. 
EVALUATE: The cart is slowed by its collision with the package, whose horizontal component of momentum is in 
the opposite direction to the motion of the cart. 

 8.88. IDENTIFY: Eqs. 8.24, 8.25, and 8.27 give the outcome of the elastic collision. 
SET UP: The blue puck is object A and the red puck is object B. Let +x be the direction of the initial motion of A. 

1 0.200 m/sA xv = , 2 0.050 m/sA xv =  and 1 0B xv =  
EXECUTE: (a) Eq. 8.27 gives 2 2 1 1 0.250 m/sB x A x B x A xv v v v= − + = . 

(b) Eq. 8.25 gives 1

2

0.200 m/s2 1 (0.0400 kg) 2 1 0.024 kg
0.250 m/s

A x
B A

B x

vm m
v

⎛ ⎞ ⎛ ⎞⎡ ⎤= − = − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠
. 

EVALUATE: We can verify that our results give 1 2K K=  and 1 2x xP P= , as required in an elastic collision. 

 8.89. (a) IDENTIFY and SET UP: 2 21 1
2 2 .A A B BK m v m v= +  

Use cmA A′= +v v v! !  and cmB B′= +v v v! !  to replace Av  and Bv  in this equation. Note A′v
!  and B′v

!  as defined in the 
problem are the velocities of A and B in coordinates moving with the center of mass. Note also that 

cmA A B Bm m M′ ′ ′+ =v v v! ! !  where cm′v
!  is the velocity of the car in these coordinates. But that�s zero, so 

0;A A B Bm m′ ′    v v! !
1 5  we can use this in the proof. 

In part (b), use that P
!

 is conserved in a collision. 
EXECUTE: cm ,A A′= +v v v! !  so 2 2 2

cm cm2A A Av v v′ ′= + + ⋅v v! ! . 

cm ,B B′= +v v v! !  so 2 2 2
cm cm2B B Bv v v′ ′= + + ⋅v v! ! . 

(We have used that for a vector ,A
!

 2 .)A = ⋅A A
! !

 

Thus 2 2 2 21 1 1 1
cm cm cm cm2 2 2 2A A A A A B B B B BK m v m v m m v m v m′ ′ ′ ′= + + ⋅ + + + ⋅v v v v! ! ! ! . 

( ) ( ) ( )2 2 21 1
cm cm2 2A B A A B B A A B BK m m v m v m v m m′ ′ ′ ′= + + + + ⋅+v v v! ! ! . 

But A Bm m M+ =  and as noted earlier 0,A A B Bm m′ ′ =+v v! !  so ( )2 2 21 1
cm2 2 .A A B BK Mv m v m v′ ′= + +  This is the result the 

problem asked us to derive. 
(b) EVALUATE: In the collision cmM=P v

! !  is constant, so 21
cm2 Mv  stays constant. The asteroids can lose all their 

relative kinetic energy but the 21
cm2 Mv  must remain. 
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 8.90. IDENTIFY: Eq. 8.27 describes the elastic collision, with x replaced by y. Speed and height are related by 
conservation of energy. 
SET UP: Let +y be upward. Let A be the large ball and B be the small ball, so 1B yv v= −  and 1A yv v= + . If the 

large ball has much greater mass than the small ball its speed is changed very little in the collision and 2A yv v= + . 

EXECUTE: (a) 2 2 1 1( )B y A y B y A yv v v v− = − −  gives 2 2 1 1 ( ) 3B y A y B y A yv v v v v v v v= + − + = − − + = + . The small ball 
moves upward with speed 3v after the collision. 
(b) Let 1h  be the height the small ball fell before the collision. Conservation of energy applied to the motion from 

the release point to the floor gives 1 2U K=  and 21
1 2mgh mv= . 

2

1 2
vh
g

= . Conservation of energy applied to the 

motion of the small ball from immediately after the collision to its maximum height 2h  (rebound distance) gives 

1 2K U=  and 21
22 (3 )m v mgh= . 

2

2 1
9 9
2
vh h
g

= = . The ball�s rebound distance is nine times the distance it fell. 

EVALUATE: The mechanical energy gained by the small ball comes from the energy of the large ball. But since 
the large ball�s mass is much larger it can give up this energy with very little decrease in speed. 

 8.91. IDENTIFY: Apply conservation of momentum to the system consisting of Jack, Jill and the crate. The speed of 
Jack or Jill relative to the ground will be different from 4.00 m/s. 
SET UP: Use an inertial coordinate system attached to the ground. Let +x be the direction in which the people 
jump. Let Jack be object A, Jill be B, and the crate be C. 
EXECUTE: (a) If the final speed of the crate is v, 2C xv v= − , and 2 2 4.00 m/sA x B xv v v= = − . 2 1x xP P=  gives 

2 2 2 0A A x B Bx C Cxm v m v m v+ + = . (75.0 kg)(4.00 m/s ) (45.0 kg)(4.00 m/s ) (15.0 kg)( ) 0v v v− + − + − =  and 

(75.0 kg 45.0 kg)(4.00 m/s) 3.56 m/s
75.0 kg 45.0 kg 15.0 kg

v +
= =

+ +
. 

(b) Let v′  be the speed of the crate after Jack jumps. Apply momentum conservation to Jack jumping: 

(75.0 kg)(4.00 m/s ) (60.0 kg)( ) 0v v′ ′− + − =  and (75.0 kg)(4.00 m/s) 2.22 m/s
135.0 kg

v′ = = . Then apply momentum 

conservation to Jill jumping, with v being the final speed of the crate: 1 2x xP P=  gives 
(60.0 kg)( ) (45.0 kg)(4.00 m/s ) (15.0 kg)( )v v v′− = − + − . 

(45.0 kg)(4.00 m/s) (60.0 kg)(2.22 m/s) 5.22 m/s
60.0 kg

v +
= = . 

(c) Repeat the calculation in (b), but now with Jill jumping first. 
Jill jumps: (45.0 kg)(4.00 m/s ) (90.0 kg)( ) 0v v′ ′− + − =  and 1.33 m/sv′ = . 
Jack jumps: (90.0 kg)( ) (75.0 kg)(4.00 m/s ) (15.0 kg)( )v v v′− = − + − . 

(75.0 kg)(4.00 m/s) (90.0 kg)(1.33 m/s) 4.66 m/s
90.0 kg

v +
= = . 

EVALUATE: The final speed of the crate is greater when Jack jumps first, then Jill. In this case Jack leaves with a 
speed of 1.78 m/s relative to the ground, whereas when they both jump simultaneously Jack and Jill each leave 
with a speed of only 0.44 m/s relative to the ground. 

 8.92. IDENTIFY: Momentum is conserved in the explosion. The total kinetic energy of the two fragments is Q. 
SET UP: Let the final speed of the two fragments be Av  and Bv . They must move in opposite directions after the 
explosion. 
EXECUTE: (a) Since the initial momentum of the system is zero, conservation of momentum says A A B Bm v m v=  

and A
B A

B

mv v
m

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. A BK K Q+ =  gives 

2
2 21 1

2 2
A

A A B A
B

mm v m v Q
m

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
. 21

2 1 A
A A

B

mm v Q
m

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
. 

1 /
B

A
A B A B

Q mK Q
m m m m

⎛ ⎞
= = ⎜ ⎟+ +⎝ ⎠

. 1 B A
B A

A B A B

m mK Q K Q Q
m m m m

⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

. 

(b) If 4B Am m= , then 4
5AK Q=  and 1

5BK Q= . The lighter fragment gets 80% of the energy that is released. 

EVALUATE: If A Bm m=  the fragments share the energy equally. In the limit that B Am m>> , the lighter fragment 
gets almost all of the released energy. 
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 8.93. IDENTIFY: Apply conservation of momentum to the system of the neutron and its decay products. 
SET UP: Let the proton be moving in the +x direction with speed pv  after the decay. The initial momentum of the 
neutron is zero, so to conserve momentum the electron must be moving in the x−  direction after the decay. Let the 
speed of the electron be ev . 

EXECUTE: 1 2x xP P=  gives p p e e0 m v m v= −  and p
e p

e

m
v v

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. The total kinetic energy after the decay is 

2
p p2 2 2 2 21 1 1 1 1

tot e e p p e p p p p p2 2 2 2 2
e e

1
m m

K m v m v m v m v m v
m m

⎛ ⎞ ⎛ ⎞
= + = + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

Thus, p 4

tot p e

1 1 5.44 10 0.0544%
1 / 1 1836

K
K m m

−= = = × =
+ +

. 

EVALUATE: Most of the released energy goes to the electron, since it is much lighter than the proton. 
 8.94. IDENTIFY: Momentum is conserved in the decay. The results of Problem 8.92 give the kinetic energy of each 

fragment. 
SET UP: Let A be the alpha particle and let B be the radium nucleus, so / 0.0176A Bm m = . 136.54 10  JQ −= × . 

EXECUTE: 
13

136.54 10  J 6.43 10  J
1 / 1 0.0176A

A B

QK
m m

−
−×

= = = ×
+ +

 and 130.11 10  JBK −= × . 

EVALUATE: The lighter particle receives most of the released energy. 
 8.95. IDENTIFY: The momentum of the system is conserved. 

SET UP: Let +x be to the right. 1 0xP = . exp , nxp and anxp  are the momenta of the electron, polonium nucleus and 
antineutrino, respectively. 
EXECUTE: 1 2x xP P=  gives e n an 0x x xp p p+ + = . an e n( )x x xp p p= − + . 

22 25 3 22
an (5.60 10  kg m/s [3.50 10  kg][ 1.14 10  m/s]) 1.66 10  kg m/sxp − − −= − × ⋅ + × − × = − × ⋅ . 

The antineutrino has momentum to the left with magnitude 221.66 10  kg m/s−× ⋅ . 
EVALUATE: The antineutrino interacts very weakly with matter and most easily shows its presence by the 
momentum it carries away. 

 8.96. IDENTIFY: Momentum components in the x and y directions are separately conserved. For an elastic collision 
1 2K K= . 

SET UP: 1 1A x Av v= + , 1 0B xv = . 2 2 cosA x Av v α= , 2 2 sinA y Av v α= . 2 2 cosB x Bv v α= , 2 2 sinB y Bv v α= − . 
2 2sin cos 1θ θ+ = , for any angle θ . cos( ) cos cos sin sinα β α β α β+ = − . 

EXECUTE: (a) 1 2x xP P=  gives 1 2 2cos cosA A A A B Bm v m v m vα β= + . 

1 2y yP P=  gives 2 20 sin sinA A B Bm v m vα β= − . 

(b) 2 2 2 2 2 2 2 2
1 2 2 2 2cos cos 2 cos cosA A A A B B A B A Bm v m v m v m m v vα β α β= + +  and 

2 2 2 2 2 2
2 2 2 20 sin sin 2 sin sinA A B B A B A Bm v m v m m v vα β α β= + − . Adding these two equations and using the trig identities in 

the SET UP step gives 2 2 2 2 2 2
1 2 2 2 22 cos( )A A A A B B A B A Bm v m v m v m m v v α β= + + + . 

(c) 1 2K K=  says 2 2 21 1 1
1 2 22 2 2A A A A B Bm v m v m v= + . The result in part (b) agrees with this expression only if 

cos( ) 0α β+ = . This requires that 90  rad
2
πα β+ = =° . 

EVALUATE: The result of part (c) says that the two protons move in perpendicular directions after the collision. 
 8.97. IDENTIFY and SET UP:  

 
Figure 8.97 

xP  and yP  are conserved in the collision since there is no external horizontal force. 
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The result of Problem 8.96 part (d) applies here since the collision is elastic This says that 25.0 90 ,Bθ° + = °  so that 
65.0 .Bθ = °  (A and B move off in perpendicular directions.) 

EXECUTE: xP  is conserved so 1 1 2 2A A x B B x A A x B B xm v m v m v m v+ = + . 
But A Bm m=  so 1 2 2cos25.0 cos65.0A A Bv v v= ° + ° . 

yP  is conserved so 1 1 2 2A A y B B y A A y B B ym v m v m v m v+ = + . 

2 20 A y B yv v= + . 

2 20 sin 25.0 sin 65.0A Bv v= ° − ° . 

( )2 2sin 25.0 / sin65.0B Av v= ° ° . 

This result in the first equation gives 1 2 2
sin 25.0 cos65.0cos25.0

sin65.0A A Av v v° °⎛ ⎞= ° + ⎜ ⎟°⎝ ⎠
. 

1 21.103A Av v= . 

2 1 /1.103 (15.0 m/s)/1.103 13.6 m/sA Av v= = = . 
And then ( )( )2 sin 25.0 / sin65.0 13.6 m/s 6.34 m/s.Bv = ° ° =  

EVALUATE: We can use our numerical results to show that 1 2K K=  and that 1 2x xP P=  and 1 2 .y yP P=  
 8.98. IDENTIFY: Since there is no friction, the horizontal component of momentum of the system of Jonathan, Jane and 

the sleigh is conserved. 
SET UP: Let +x be to the right. 800 NAw = , 600 NBw =  and 1000 NCw = . 

EXECUTE: 1 2x xP P=  gives 2 2 20 A A x B B x C C xm v m v m v= + + . 2 2 2 2
2

A A x B B x A A x B B x
C x

C C

m v m v w v w vv
m w
+ +

= = . 

2
(800 N)( [5.00 m/s]cos30.0 (600 N)( [7.00 m/s]cos36.9 ) 0.105 m/s

1000 NC xv − + +
= = −

°) ° . 

The sleigh�s velocity is 0.105 m/s, to the left. 
EVALUATE: The vertical component of the momentum of the system consisting of the two people and the sleigh 
is not conserved, because of the net force exerted on the sleigh by the ice while they jump. 

 8.99. IDENTIFY: In Eq. 8.28 treat each straight piece as an object in the system. 
SET UP: The center of mass of each piece of length L is at its center. 
EXECUTE: (a) From symmetry, the center of mass is on the vertical axis, a distance ( / 2)cos( / 2)L α  below the 
apex. 
(b) The center of mass is on the vertical axis of symmetry, a distance 2( / 2) /3 /3L L=  above the center of the 
horizontal segment. 
(c) Using the wire frame as a coordinate system, the coordinates of the center of mass are equal and each is equal 
to ( / 2) / 2 / 4L L= . The center of mass is along the bisector of the angle, a distance / 8L  from the corner. 

(d) By symmetry, the center of mass is at the center of the equilateral triangle, a distance ( /3)sin60 / 12L L=°  
above the center of the horizontal segment. 
EVALUATE: The center of mass need not lie on any point of the object, it can be in empty space. 

8.100. IDENTIFY: There is no net horizontal external force so cmv  is constant. 
SET UP: Let +x be to the right, with the origin at the initial position of the left-hand end of the canoe. 

A 45.0 kgm = , 60.0 kgBm = . The center of mass of the canoe is at its center. 

EXECUTE: Initially, cm 0v = , so the center of mass doesn�t move. Initially, 1 1
cm1

A A B B

A B

m x m xx
m m

+
=

+
. After she 

walks, 2 2
cm2

A A B B

A B

m x m xx
m m

+
=

+
. cm1 cm2x x=  gives 1 1 2 2A A B B A A B Bm x m x m x m x+ = + . She walks to a point 1.00 m from 

the right-hand end of the canoe, so she is 1.50 m to the right of the center of mass of the canoe and 
2 2 1.50 mA Bx x= + . 

2 2(45.0 kg)(1.00 m) (60.0 kg)(2.50 m) (45.0 kg)( 1.50 m) (60.0 kg)B Bx x+ = + + . 

2(105.0 kg) 127.5 kg mBx = ⋅  and 2 1.21 mBx = . 2 1 1.21 m 2.50 m 1.29 mB Bx x− = − = − . The canoe moves 1.29 m 
to the left. 
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EVALUATE: When the woman walks to the right, the canoe moves to the left. The woman walks 3.00 m to the 
right relative to the canoe and the canoe moves 1.29 m to the left, so she moves 3.00 m 1.29 m 1.71 m− =  to the 
right relative to the water. Note that this distance is (60.0 kg / 45.0 kg)(1.29 m) . 

8.101. IDENTIFY: Take as the system you and the slab. There is no horizontal force, so horizontal momentum is 
conserved. By Eq. 8.32, P

!
 is constant cmv

!  is constant (for a system of constant mass). Use coordinates fixed to 
the ice, with the direction you walk as the x-direction. cmv

!  is constant and initially cm 0.=v!  

 
Figure 8.101 

p p s s
cm

p s

m m
m m

  
    

+
0

v v
v

! !
! 1
5 5 . 

p cm s sm m  = 0v v! !
1 . 

p p s s 0x xm v m v+ = . 

( ) ( )s p s p p p/ /5 2.00 m/s 0.400 m/sx xv m m v m m= − = − = − . 

The slab moves at 0.400 m/s,  in the direction opposite to the direction you are walking. 
EVALUATE: The initial momentum of the system is zero. You gain momentum in the -directionx+  so the slab 
gains momentum in the -direction.x−  The slab exerts a force on you in the -directionx+  so you exert a force on 
the slab in the -direction.x−  

8.102. IDENTIFY: Conservation of x and y components of momentum applies to the collision. At the highest point of the 
trajectory the vertical component of the velocity of the projectile is zero. 
SET UP: Let +y be upward and +x be horizontal and to the right. Let the two fragments be A and B, each with 
mass m. For the projectile before the explosion and the fragments after the explosion. 0xa = , 29.80 m/sya = − . 

EXECUTE: (a) 2 2
0 02 ( )y y yv v a y y= + −  with 0yv =  gives that the maximum height of the projectile is 

2 2
0

2

([80.0 m/s]sin 60.0 ) 244.9 m
2 2( 9.80 m/s )

y

y

v
h

a
= − = − =

−
° . Just before the explosion the projectile is moving to the right with 

horizontal velocity 0 0 cos60.0 40.0 m/sx xv v v= = =° . After the explosion 0Axv =  since fragment A falls vertically. 
Conservation of momentum applied to the explosion gives (2 )(40.0 m/s) Bxm mv=  and 80.0 m/sBxv = . Fragment B 

has zero initial vertical velocity so 21
0 0 2y yy y v t a t− = +  gives a time of fall of 

2

2 2(244.9 m) 7.07 s
9.80 m/sy

ht
a

= − = − =
−

. During this time the fragment travels horizontally a distance 

(80.0 m/s)(7.07 s) 566 m= . It also took the projectile 7.07 s to travel from launch to maximum height and during 
this time it travels a horizontal distance of ([80.0 m/s]cos60.0 )(7.07 s) 283 m=° . The second fragment lands 
283 m 566 m 849 m+ =  from the firing point. 
(b) For the explosion, 2 41

1 2 (20.0 kg)(40.0 m/s) 1.60 10  JK = = × . 2 41
2 2 (10.0 kg)(80.0 m/s) 3.20 10  JK = = × . The 

energy released in the explosion is 41.60 10  J× . 
EVALUATE: The kinetic energy of the projectile just after it is launched is 46.40 10  J× . We can calculate the 
speed of each fragment just before it strikes the ground and verify that the total kinetic energy of the fragments just 
before they strike the ground is 4 4 46.40 10  J 1.60 10  J 8.00 10  J× + × = × . Fragment A has speed 69.3 m/s just before 
it strikes the ground, and hence has kinetic energy 42.40 10  J× . Fragment B has speed 

2 2(80.0 m/s) (69.3 m/s) 105.8 m/s+ =  just before it strikes the ground, and hence has kinetic energy 45.60 10  J× . 

Also, the center of mass of the system has the same horizontal range 
2
0

0sin(2 ) 565 mvR
g

α= =  that the projectile 

would have had if no explosion had occurred. One fragment lands at / 2R  so the other, equal mass fragment lands 
at a distance 3 / 2R  from the launch point. 

8.103. IDENTIFY: The rocket moves in projectile motion before the explosion and its fragments move in projectile 
motion after the explosion. Apply conservation of energy and conservation of momentum to the explosion. 
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SET UP: Apply conservation of energy to the explosion. Just before the explosion the shell is at its maximum 
height and has zero kinetic energy. Let A be the piece with mass 1.40 kg and B be the piece with mass 0.28 kg. Let 

Av  and Bv  be the speeds of the two pieces immediately after the collision. 

EXECUTE: 2 21 1
2 2 860 JA A B Bm v m v+ =  

SET UP: Since the two fragments reach the ground at the same time, their velocities just after the explosion must 
be horizontal. The initial momentum of the shell before the explosion is zero, so after the explosion the pieces must 
be moving in opposite horizontal directions and have equal magnitude of momentum: .A A B Bm v m v=  
EXECUTE: Use this to eliminate Av  in the first equation and solve for :Bv  

( )21
2 1 / 860 JB B B Am v m m+ =  and 71.6 m/s.Bv =  

Then ( )/ 14.3 m/s.A B A Bv m m v= =  
(b) SET UP: Use the vertical motion from the maximum height to the ground to find the time it takes the pieces to 
fall to the ground after the explosion. Take y+  downward. 

0 0,yv =  29.80 m/s ,ya = +  0 80.0 m,y y− =  ?t =  

EXECUTE: 21
0 0 2y yy y v t a t− = +  gives 4.04 s.t =  

During this time the horizontal distance each piece moves is 57.8 mA Ax v t= =  and 289.1 m.B Bx v t= =  They move 
in opposite directions, so they are 347 mA Bx x+ =  apart when they land. 
EVALUATE: Fragment A has more mass so it is moving slower right after the collision, and it travels horizontally 
a smaller distance as it falls to the ground. 

8.104. IDENTIFY: Apply conservation of momentum to the collision. At the highest point of its trajectory the shell is 
moving horizontally. If one fragment received some upward momentum in the collision, the other fragment would 
have had to receive a downward component. Since they each the ground at the same time, each must have zero 
vertical velocity immediately after the explosion. 
SET UP: Let +x be horizontal, along the initial direction of motion of the projectile and let +y be upward. At its 
maximum height the projectile has 0 cos55.0 86.0 m/sxv v= =° . Let the heavier fragment be A and the lighter 
fragment be B. 9.00 kgAm =  and 3.00 kgBm = . 
EXECUTE: Since fragment A returns to the launch point, immediately after the explosion it has 86.0 m/sAxv = − . 
Conservation of momentum applied to the explosion gives 
(12.0 kg)(86.0 m/s) (9.00 kg)( 86.0 m/s) (3.00 kg) Bxv= − +  and 602 m/sBxv = . The horizontal range of the 

projectile, if no explosion occurred, would be 
2
0

0sin(2 ) 2157 mvR
g

α= = . The horizontal distance each fragment 

travels is proportional to its initial speed and the heavier fragment travels a horizontal distance / 2 1078 mR =  after 

the explosion, so the lighter fragment travels a horizontal distance 602 m (1078 m) 7546 m
86 m

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 from the point of 

explosion and 1078 m 7546 m 8624 m+ =  from the launch point. The energy released in the explosion is 
2 2 2 51 1 1

2 1 2 2 2(9.00 kg)(86.0 m/s) (3.00 kg)(602 m/s) (12.0 kg)(86.0 m/s) 5.33 10  JK K− = + − = × . 
EVALUATE: The center of mass of the system has the same horizontal range 2157 mR =  as if the explosion 
didn�t occur. This gives (12.0 kg)(2157 m) (9.00 kg)(0) (3.00 kg)d= +  and 8630 md = , where d is the distance 
from the launch point to where the lighter fragment lands. This agrees with our calculation. 

8.105. IDENTIFY: No external force, so P
!

 is conserved in the collision. 
SET UP: Apply momentum conservation in the x and y directions: 

 
Figure 8.105 

Solve for 1v  and 2.v  
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EXECUTE: xP  is conserved so ( )0 1 f 2cos45 cos10 cos30mv m v v v= ° + ° + ° . 

0 f 1 2cos10 cos45 cos30v v v v− ° = ° + ° . 

1 21030.4 m/s cos45 cos30v v= ° + ° . 

xP  is conserved so ( )1 2 f0 sin 45 sin30 sin10m v v v= ° − ° + ° . 

1 2sin 45 sin30 347.3 m/sv v° = ° − . 
sin 45 cos45° = °  so 

2 21030.4 m/s sin30 347.3 m/s cos30v v= ° − + ° . 

2
1030.4 m/s 347.3 m/s 1010 m/s

sin30 cos30.0
v +

= =
° + °

. 

And then 2
1

sin30 347.3 m/s 223 m/s.
sin 45

vv ° −
= =

°
 Then two emitted neutrons have speeds of 223 m/s  and 1010 m/s.  

The speeds of the Ba and Kr nuclei are related by zP  conservation. 

zP  is constant implies that Ba Ba Kr Kr0 m v m v= −  
25

Ba
Kr Ba Ba Ba25

Kr

2.3 10  kg 1.5 .
1.5 10  kg

mv v v v
m

−

−

⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

We can�t say what these speeds are but they must satisfy this relation. The value of Bav  depends on energy 
considerations. 

EVALUATE: ( ) ( )23 61
1 n n2 3.0 10  m/s 4.5 10  J/kg .K m m= × = ×  

( ) ( ) ( )
2 2 231 1 1

2 n n n Ba Kr2 2 22.0 10  m/s 223 m/s 1010 m/sK m m m K K= × + + + + ( )6
n Ba Kr2.5 10  J/kg .m K K= × + +  

We don�t know what BaK  and KrK  are, but they are positive. We will study such nuclear reactions further in 
Chapter 43 and will find that energy is released in this process; 2 1.K K>  Some of the potential energy stored in the 
235 U  nucleus is released as kinetic energy and shared by the collision fragments. 

8.106. IDENTIFY: The velocity of the center of mass of the system of the two blocks is given by Eq. 8.30. Conservation 
of momentum says the center of mass moves at constant speed. 
SET UP: 1 1A x Av v= , 1 0B xv = . The velocity u!  in the center of mass frame is related to the velocity v!  in the 

stationary frame by cm−u = v v! ! ! . We can express kinetic energy as 
2

2
pK
m

= . 

EXECUTE: (a) 1
cm-

A A
x

A B

m vv
m m

=
+

. 

(b) The center of mass moves with constant speed so this coordinate system is an inertial frame. 

(c) 1
1 1 cm-

B A
A x A x x

A B

m vu v v
m m

= − =
+

. 1
1 1 cm-

A A
B x B x x

A B

m vu v v
m m

= − = −
+

. In this frame 1 1 1 0x A A x B B xP m u m u= + = . 

(d) 2 1 0x xP P= =  gives 1 1 0A x B xp p+ =  and 2 2 0A x B xp p+ = , so 1 1B x A xp p= −  and 2 2B x A xp p= − . Conservation of 

kinetic energy gives 
2 2 2 2

2 2 1 1

2 2 2 2
A x B x A x B x

A B A B

p p p p
m m m m

+ = + . Using 2 2B x A xp p= −  and 1 1B x A xp p= −  gives 2 2
2 1A x A xp p=  and 

2 1A x A xp p= ± . If a collision occurs Axp  changes and 2 1A x A xp p= − . But 2 2B x A xp p= −  and 1 1B x A xp p= − , so 

2 1B x B xp p= − . In the center of mass frame the momentum and hence the velocity of each puck keeps the same 
magnitude and reverses direction. 

(e) cm-
0.400 kg (6.00 m/s) 4.00 m/s
0.600 kgxv

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. 1 6.00 m/s 4.00 m/s 2.00 m/sA xu = − = . 

1 0 4.00 m/s 4.00 m/sB xu = − = − . 2 2.00 m/sA xu = −  and 2 4.00 m/sB xu = + . 

2 2 cm- 2.00 m/s 4.00 m/s 2.00 m/sA x A x xv u v= + = − + = . 2 2 cm- 4.00 m/s 4.00 m/s 8.00 m/sB x B x xv u v= + = + = . 

Eq. 8.24 says 2
0.400 kg 0.200 kg (6.00 m/s) 2.00 m/s
0.400 kg 0.200 kgA xv

⎛ ⎞−
= =⎜ ⎟+⎝ ⎠

. Eq. 8.25 says 

2
2[0.400 kg] (6.00 m/s) 8.00 m/s

0.400 kg 0.200 kgA xv
⎛ ⎞

= =⎜ ⎟+⎝ ⎠
. Our result agrees with Eqs. 8.24 and 8.25. 
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EVALUATE: Eqs. 8.24 and 8.25 apply only when 1 0Bv = . The result that the velocity of each puck in the center 
of mass frame reverses direction and retains the same magnitude applies to all elastic collisions, even when both 
are moving initially. 

8.107. IDENTIFY and SET UP: Apply conservation of energy to find the total energy before and after the collision with 
the floor from the initial and final maximum heights. 
EXECUTE: (a) Objects stick together says that the relative speed after the collision is zero, so 0.=P  
(b) In an elastic collision the relative velocity of the two bodies has the same magnitude before and after the 
collision, so 1.=P  
(c) Speed of ball just before collision: 21

12mgh mv= . 

1 2v gh=  

Speed of ball just after collision: 21
1 22mgH mv= . 

2 12v gH=  

The second object (the surface) is stationary, so 2 1 1/ / .v v H h= =P  

(d) 1 /H h=P  implies ( )( )22
1 1.2 m 0.85 0.87 mH h= = =P . 

(e) 2
1H h= P . 

2 4
2 1H H h= =P P . 

( )2 4 2 6
3 2H H h h= = =P P P P . 

Generalize to 2 2( 1) 2 2
1

n n
n nH H h h−

−= = =P P P P . 
(f) 8th bounce implies 8n = . 

( )1616
8 1.2 m 0.85 0.089 mH h= = =P . 

EVALUATE: P  is a measure of the kinetic energy lost in the collision. The collision here is between a ball and the 
earth. Momentum lost by the ball is gained by the earth, but the velocity gained by the earth is very small and can 
be taken to be zero. 

8.108. IDENTIFY: Momentum is conserved in the collision. Conservation of energy says 2 1K K= + Δ . 

SET UP: For part (b) let 0v  be the common speed of each atom before the collision and let V
!

 and 3v
!  be the 

velocities after the collision of the molecule and the atom that remains. 271.67 10  kgm −= ×  is the mass of one 
hydrogen atom. 
EXECUTE: (a) In the center of mass frame 1 0xP =  so 2 0xP =  and cm2 0v = . But in this frame the potential energy 

decreases and the kinetic energy increases. This is inconsistent with 21
2cm tot cm22 0K m v= = . 

(b) Before the collision cm 0v = . After the collision the molecule and remaining atom move in opposite directions 

and 3(2 )m V mv= ; 3 2v V= . Conservation of energy gives 2 2 2 21 1 1
3 02 2 2(2 ) 3( )m V mv mv+ = + Δ . With 3 2v V=  this 

becomes 2 21
02 3

V v
m
Δ

= + . 
19

3 2 41
2 27

7.23 10  J(1.00 10  m/s) 1.20 10  m/s
3(1.67 10 )

V
−

−

×
= × + = ×

×
 and 4

3 2 2.40 10  m/sv V= = × . 

EVALUATE: ( )2 211
023 2.50 10  JK mv −= = × , which is much less than the binding energy of the molecule. Other 

initial conditions also lead to molecule formation; the one of zero initial momentum is just particularly simple to 
analyze. 

8.109. IDENTIFY: Apply conservation of energy to the motion of the wagon before the collision. After the collision the 
combined object moves with constant speed on the level ground. In the collision the horizontal component of 
momentum is conserved. 
SET UP: Let the wagon be object A and treat the two people together as object B. Let +x be horizontal and to the 
right. Let V be the speed of the combined object after the collision. 
EXECUTE: (a) The speed 1Av  of the wagon just before the collision is given by conservation of energy applied to 

the motion of the wagon prior to the collision. 1 2U K=  says 21
12([50 m][sin6.0 ])A A Am g m v=° . 1 10.12 m/sAv = . 

1 2x xP P=  for the collision says 1 ( )A A A Bm v m m V= +  and 300 kg (10.12 m/s) 6.98 m/s
300 kg 75.0 kg 60.0 kg

V
⎛ ⎞

= =⎜ ⎟+ +⎝ ⎠
. 

In 5.0 s the wagon travels (6.98 m/s)(5.0 s) 34.9 m= , and the people will have time to jump out of the wagon 
before it reaches the edge of the cliff. 
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(b) For the wagon, 2 41
1 2 (300 kg)(10.12 m/s) 1.54 10  JK = = × . Assume that the two heroes drop from a small 

height, so their kinetic energy just before the wagon can be neglected compared to 1K  of the wagon. 
2 41

2 2 (435 kg)(6.98 m/s) 1.06 10  JK = = × . The kinetic energy of the system decreases by 3
1 2 4.8 10  JK K− = × . 

EVALUATE: The wagon slows down when the two heroes drop into it. The mass that is moving horizontally 
increases, so the speed decreases to maintain the same horizontal momentum. In the collision the vertical 
momentum is not conserved, because of the net external force due to the ground. 

8.110. IDENTIFY: Gravity gives a downward external force of magnitude mg. The impulse of this force equals the 
change in momentum of the rocket. 
SET UP: Let +y be upward. Consider an infinitesimal time interval dt. In Example 8.15, ex 2400 m/sv =  and 

0

120 s
dm m
dt

= − . In Example 8.16, 0 / 4m m=  after 90 st = . 

EXECUTE: (a) The impulse-momentum theorem gives ex( )( ) ( )( )mgdt m dm v dv dm v v mv− = + + + − − . This 

simplifies to exmgdt mdv v dm− = +  and ex
dv dmm v mg
dt dt

= − − . 

(b) exdv v dma g
dt m dt

= = − − . 

(c) At 0t = , 2 2ex

0

1(2400 m/s) 9.80 m/s 10.2 m/s
120 s

v dma g
m dt

⎛ ⎞= − − = − − − =⎜ ⎟
⎝ ⎠

. 

(d) exvdv dm gdt
m

= − − . Integrating gives 0
0 ex ln mv v v gt

m
− = + − . 0 0v =  and 

2(2400 m/s)ln 4 (9.80 m/s )(90 s) 2445 m/sv = + − = . 
EVALUATE: Both the initial acceleration in Example 8.15 and the final speed of the rocket in Example 8.16 are 
reduced by the presence of gravity. 

8.111. IDENTIFY and SET UP: Apply Eq. 8.40 to the single-stage rocket and to each stage of the two-stage rocket. 
(a) EXECUTE: ( )0 ex 0ln / ;v v v m m− =  0 0v =  so ( )ex 0ln /v v m m=  

The total initial mass of the rocket is 0 12,000 kg 1000 kg 13,000 kg.m = + =  Of this, 9000 kg 700 kg 9700 kg+ =  
is fuel, so the mass m left after all the fuel is burned is 13,000 kg 9700 kg 3300 kg.− =  

( )ex exln 13,000 kg/3300 kg 1.37v v v= = . 

(b) First stage: ( )ex 0ln /v v m m=  

0 13,000 kgm =  
The first stage has 9000 kg of fuel, so the mass left after the first stage fuel has burned is 
13,000 kg 9000 kg 4000 kg.− =  

( )ex exln 13,000 kg/4000 kg 1.18v v v= = . 

(c) Second stage: 0 1000 kg,m =  1000 kg 700 kg 300 kgm = − = . 

( ) ( )0 ex 0 ex ex exln / 1.18 ln 1000 kg/300 kg 2.38v v v m m v v v= + = + = . 
(d) 7.00 km/sv =  

( )ex / 2.38 7.00 km/s / 2.38 2.94 km/sv v= = = . q 
EVALUATE: The two-stage rocket achieves a greater final speed because it jetisons the left-over mass of the first 
stage before the second-state fires and this reduces the final m and increases 0 / .m m  

8.112. IDENTIFY: During an interval where the mass is constant the speed of the rocket is constant. During an interval 
where the mass is changing at a constant rate, the equations of Section 8.6 apply. 

SET UP: For 0 90 st≤ ≤ , 0

120 s
dm m
dt

= − . From Example 8.15, ex 2400 m/sv = . 

EXECUTE: (a) For 0t ≤ , 0v = . For 0 90 st≤ ≤ , Eq. 8.40 says (2400 m/s)ln 4 3327 m/sv = = . For 90 st > , v 
has the constant value 3327 m/s. The graph of ( )v t  is given in Fig. 8.112a. 

(b) For 0 90 st≤ ≤ , Eq. 8.39 gives 
2

ex 0

0

2400 m/s 20 m/s
(1 /[120 s]) 120 s 1 /[120 s]

v dm ma
m dt m t t

⎛ ⎞= − = − − =⎜ ⎟− −⎝ ⎠
. 220 m/sa =  at 0t =  

(as in Example 8.15) and 280 m/sa =  at 90 st = . For 90 st > , 0a = . The graph of ( )a t  is given in Fig. 8.112b. 
(c) The astronaut has the same acceleration as the rocket. This is maximum at 90 st =  and 

2 3
max astronaut max (75 kg)(80 m/s ) 6.0 10  NF m a= = = × . This is 8.2 times her weight on earth, since maxa  is 8.2 times g. 
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EVALUATE: The acceleration increases because the mass decreases while the thrust ex
dmF v
dt

= −  remains constant. 

20
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Figure 8.112 

8.113. IDENTIFY and SET UP: dm dVρ= . dV Adx= . Since the thin rod lies along the x axis, cm 0y = . The mass of the 

rod is given by M dm= ∫ . 

EXECUTE: (a) 
2

cm 0 0

1
2

L L A Lx xdm A xdx
M M M

ρ ρ
= = =∫ ∫ . The volume of the rod is AL and M ALρ= . 

2

cm 2 2
AL Lx
AL

ρ
ρ

= = . The center of mass of the uniform rod is at its geometrical center, midway between its ends. 

(b) 
3

2
cm 0 0 0

1 1 .
3

L L LA A Lx xdm x Adx x dx
M M M M

α αρ= = = =∫ ∫ ∫  
2

0 0
.

2
L L ALM dm Adx A xdx αρ α= = = =∫ ∫ ∫  Therefore, 

3

cm 2

2 2 .
3 3

A L Lx
AL

α
α

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: When the density increases with x, the center of mass is to the right of the center of the rod. 

8.114. IDENTIFY: cm
1x xdm
M

= ∫  and cm
1 .y ydm
M

= ∫  At the upper surface of the plate, 2 2 2.y x a+ =  

SET UP: To find cmx , divide the plate into thin strips parallel to the y-axis, as shown in Fig. 8.114a. To find cmy , 
divide the plate into thin strips parallel to the x-axis as shown in Fig. 8.114b. The plate has volume one-half that of 
a circular disk, so 21

2V a tπ=  and 21
2 .M a tρπ=  

EXECUTE: In Fig.114a each strip has length 2 2 .y a x= −  cm
1 ,x xdm
M

= ∫  where 2 2 .dm tydx t a x dxρ ρ= = −  

2 2
cm 0,

a

a

tx x a x dx
M
ρ

−
= − =∫  since the integrand is an odd function of x. cm 0x =  because of symmetry. In 

Fig.114b each strip has length 2 22 2 .x a y= −  cm
1 ,y ydm
M

= ∫  where 2 22 2 .dm txdy t a y dyρ ρ= = −  

2 2
cm 0

2 aty y a y dy
M
ρ

= −∫ . The integral can be evaluated using 2 2u a y= − , 2du ydy= − . This substitution gives 

2

3 30 1/ 2
cm 2

2 1 2 2 2 4
2 3 3 3a

t ta ta ay u du
M M a t
ρ ρ ρ

ρπ π
⎛ ⎞⎛ ⎞⎛ ⎞= − = = =⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ . 

EVALUATE: 4 0.424.
3π

=  cmy  is less than /2,a  as expected, since the plate becomes wider as y decreases. 

dx

(a)

y

y

x

2x

x

dy

(b)

y

y

x

 
Figure 8.114 
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8.115. IDENTIFY: The work is related to the force by 2

1

x

x
W Fdx= ∫ . The force the person must apply equals the weight of 

the hanging portion. Since the rope is uniform, the center of mass of the hanging portion is at its geometrical 
center. 
SET UP: Let y be the length of the rope hanging over the edge and use coordinates where the origin is at the edge 
of the table and +y is downward. When the rope is pulled onto the table, y goes from / 4l  to zero. A length y of the 
rope has mass yλ . 
EXECUTE: (a) When a length y hangs over the edge, the person must apply an upward force 

( )yF m y g ygλ= − = − . 
20 0

/ 4 / 4
( )

32yl l

glW F y dy g ydy λλ= = − =∫ ∫ . 

(b) Initially, cm /8y l= . The work done to raise an object of mass M a distance cmy  is cmW Mgy= . 
2

4 8 32
l l glW gλ λ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

EVALUATE: The answers from methods (a) and (b) agree. The change in gravitational potential energy of the 
rope can be calculated by considering all its mass acting at its center of mass, and the work done by the person 
equals the increase in gravitational potential energy of the rope. 

8.116. IDENTIFY: From our analysis of motion with constant acceleration, if v at=  and a is constant, then 
21

0 0 2x x v t at− = + . 
SET UP: Take 0 0v = , 0 0x =  and let +x downward. 

EXECUTE: (a) dv a
dt

= , v at=  and 21
2x at= . Substituting into 2dvxg x v

dt
= +  gives 

2 2 2 2 2 231 1
2 2 2at g at a a t a t= + = . The nonzero solution is /3a g= . 

(b) 2 2 2 21 1 1
2 6 6 (9.80 m/s )(3.00 s) 14.7 mx at gt= = = = . 

(c) (2.00 g/m)(14.7 m) 29.4 gm kx= = = . 
EVALUATE: The acceleration is less than g because the small water droplets are initially at rest, before they 
adhere to the falling drop. The small droplets are suspended by buoyant forces that we ignore for the raindrops. 
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ROTATION OF RIGID BODIES 

 9.1. IDENTIFY: s rθ= , with θ  in radians. 
SET UP:  rad 180π = ° . 

EXECUTE: (a) 1.50 m 0.600 rad 34.4
2.50 m

s
r

θ = = = = °  

(b) 14.0 cm 6.27 cm
(128 )(  rad /180 )

sr
θ π

= = =
° °

 

(c) (1.50 m)(0.700 rad) 1.05 ms rθ= = =  
EVALUATE: An angle is the ratio of two lengths and is dimensionless. But, when s rθ= is used, θ must be in 
radians. Or, if /s rθ = is used to calculate θ , the calculation gives θ  in radians. 

 9.2. IDENTIFY: 0 tθ θ ω− = , since the angular velocity is constant. 
SET UP: 1 rpm (2 / 60) rad/sπ= . 
EXECUTE: (a) (1900)(2  rad / 60 s) 199 rad/sω π= =  

(b) 35 (35 )( /180 ) 0.611 radπ= =° ° ° . 30 0.611 rad 3.1 10  s
199 rad/s

t θ θ
ω

−−
= = = ×  

EVALUATE: In 0t θ θ
ω
−

= we must use the same angular measure (radians, degrees or revolutions) for both 

0θ θ− and ω . 

 9.3. IDENTIFY: ( ) z
z

dt
dt
ωα = . Writing Eq.(2.16) in terms of angular quantities gives 2

1

t

zt
dtθ θ ω− = ∫ . 

SET UP: 1n nd t nt
dt

−= and 11
1

n nt dt t
n

+=
+∫  

EXECUTE: (a) A must have units of rad/s and B must have units of 3rad/s . 
(b) 3( ) 2 (3.00 rad/s )z t Bt tα = = . (i) For 0t = , 0zα = . (ii) For 5.00 st = , 215.0 rad/szα = . 

(c) 2

1

2 3 31
2 1 2 1 2 13( ) ( ) ( )

t

t
A Bt dt A t t B t tθ θ− = + = − + −∫ . For 1 0t = and 2 2.00 st = , 

3 31
2 1 3(2.75 rad/s)(2.00 s) (1.50 rad/s )(2.00 s) 9.50 radθ θ− = + = . 

EVALUATE: Both zα and zω are positive and the angular speed is increasing.  

 9.4. IDENTIFY: /z zd dtα ω= . av-
z

z t
ωα Δ

=
Δ

. 

SET UP: 2( ) 2d t t
dt

=  

EXECUTE: (a) 3( ) 2  ( 1.60 rad s ) .z
z

dωα t βt t
dt

= = − = −  

(b) 3 2(3.0 s)  ( 1.60 rad s )(3.0 s) 4.80 rad s .zα = − = −  

2.
av-

(3.0 s)  (0) 2.20 rad s 5.00 rad s 2.40 rad s ,
3.0 s 3.0 s

z z
z
ω ωα − − −

= = = −  

which is half as large (in magnitude) as the acceleration at 3.0 s.t =  

EVALUATE: ( )z tα increases linearly with time, so av-
(0) (3.0 s)

2
z z

z
α αα +

= . (0) 0zα = . 

9
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 9.5. IDENTIFY and SET UP: Use Eq.(9.3) to calculate the angular velocity and Eq.(9.2) to calculate the average 
angular velocity for the specified time interval. 
EXECUTE: 3;t tθ γ β= +  0.400 rad/s,γ =  30.0120 rad/sβ =  

(a) 23z
d t
dt
θω γ β= = +  

(b) At 0,t =  0.400 rad/szω γ= =  

(c) At 5.00 s,t =  3 20.400 rad/s 3(0.0120 rad/s )(5.00 s) 1.30 rad/szω = + =  

2 1
av-

2 1
z t t t

θ θ θω Δ −
= =
Δ −

 

For 1 0,t =  1 0.θ =  

For 2 5.00 s,θ =  3 3
2 (0.400 rad/s)(5.00 s) (0.012 rad/s )(5.00 s) 3.50 radθ = + =  

So av-
3.50 rad 0 0.700 rad/s.
5.00 s 0zω −

= =
−

 

EVALUATE: The average of the instantaneous angular velocities at the beginning and end of the time interval is 
1
2 (0.400 rad/s 1.30 rad/s) 0.850 rad/s.+ =  This is larger than av- ,zω  because ( )z tω  is increasing faster than linearly. 

 9.6. IDENTIFY: ( )z
dt
dt
θω = . ( ) z

z
dt
dt
ωα = . av-z t

θω Δ
=
Δ

. 

SET UP: 2 3 2(250 rad s) (40.0 rad s ) (4.50 rad s )zω t t= − − . 2 3
z (40.0 rad s ) (9.00 rad s )α t= − − . 

EXECUTE: (a) Setting 0zω = results in a quadratic in t. The only positive root is 4.23 st = . 

(b) At 4.23 st = , 278.1 rad s .zα = −  
(c) At 4.23 st = , 586 rad 93.3 revθ = = . 
(d) At 0t = , 250 rad/szω = . 

(e) av-
586 rad 138 rad s.4.23 szω = =  

EVALUATE: Between 0t = and 4.23 st = , zω decreases from 250 rad/s to zero. zω is not linear in t, so av-zω is 
not midway between the values of zω at the beginning and end of the interval. 

 9.7. IDENTIFY: ( )z
dt
dt
θω = . ( ) z

z
dt
dt
ωα = . Use the values of θ and zω at 0t = and zα at 1.50 s to calculate a, b, 

and c. 

SET UP: 1n nd t nt
dt

−=  

EXECUTE: (a) 2( ) 3z t b ctω = − . ( ) 6z t ctα = − . At 0t = , / 4 radaθ π= = and 2.00 rad/sz bω = = . At 1.50 st = , 
26 (1.50 s) 1.25 rad/sz cα = − = and 30.139 rad/sc = − . 

(b) / 4 radθ π= and 0zα = at 0t = . 

(c) 23.50 rad/szα = at 
2

3

3.50 rad/s 4.20 s
6 6( 0.139 rad/s )

zt
c
α

= − = − =
−

. At 4.20 st = , 

3 3 rad (2.00 rad/s)(4.20 s) ( 0.139 rad/s )(4.20 s) 19.5 rad
4
πθ = + − − = . 

3 22.00 rad/s 3( 0.139 rad/s )(4.20 s) 9.36 rad/szω = − − = . 
EVALUATE: θ , zω and zα all increase as t increases. 

 9.8. IDENTIFY: z
z

d
dt
ωα = . 0 av-ztθ θ ω− = . When zω is linear in t, av-zω for the time interval 1t  to 2t  is 

1 2
av-

2 1

z z
z t t

ω ωω +
=

−
. 

SET UP: From the information given, 2( ) 6.00 rad/s (2.00 rad/s )z t tω = − +  
EXECUTE: (a) The angular acceleration is positive, since the angular velocity increases steadily from a negative 
value to a positive value. 
(b) It takes 3.00 seconds for the wheel to stop ( 0)zω = . During this time its speed is decreasing. For the next 
4.00 s its speed is increasing from 0 rad s to 8.00 rad s+ . 
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(c) The average angular velocity is 6.00 rad s 8.00 rad s 1.00 rad s
2

− +
= . 0 av-ztθ θ ω− = then leads to 

displacement of 7.00 rad after 7.00 s. 
EVALUATE: When zα and zω have the same sign, the angular speed is increasing; this is the case for 3.00 st = to 

7.00 st = . When zα and zω have opposite signs, the angular speed is decreasing; this is the case between 
0t = and 3.00 st = . 

 9.9. IDENTIFY: Apply the constant angular acceleration equations. 
SET UP: Let the direction the wheel is rotating be positive. 
EXECUTE: (a) 2

0 1.50 rad s (0.300 rad s )(2.50 s) 2.25  rad s.z z ztω ω α= + = + =  

(b) 2 2 21 1
0 0 2 2(1.50 rad/s)(2.50 s) (0.300 rad/s )(2.50 s) 4.69 radz zt tθ θ ω α− = + = + = . 

EVALUATE: 0
0

1.50 rad/s 2.25 rad/s (2.50 s) 4.69 rad
2 2

z z tω ωθ θ + +⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, the same as calculated with 

another equation in part (b). 
 9.10. IDENTIFY: Apply the constant angular acceleration equations to the motion of the fan. 

(a) SET UP: 0 (500 rev/min)(1 min/60 s) 8.333 rev/s,zω = =  (200 rev/min)(1 min/60 s) 3.333 rev/s,zω = =  
4.00 s,t =  ?zα =  

0z z ztω ω α= +  

EXECUTE: 20 3.333 rev/s 8.333 rev/s 1.25 rev/s
4.00 s

z z
z t

ω ωα − −
= = = −  

0 ?θ θ− =  
2 2 21 1

0 0 2 2(8.333 rev/s)(4.00 s) ( 1.25 rev/s )(4.00 s) 23.3 revz zt tθ θ ω α− = + = + − =  

(b) SET UP: 0zω =  (comes to rest); 0 3.333 rev/s;zω =  21.25 rev/s ;zα = −  
?t =  

0z z ztω ω α= +  

EXECUTE: 0
2

0 3.333 rev/s 2.67 s
1.25 rev/s

z z

z

t ω ω
α
− −

= = =
−

 

EVALUATE: The angular acceleration is negative because the angular velocity is decreasing. The average angular 
velocity during the 4.00 s time interval is 350 rev/min and 0 av-ztθ θ ω− =  gives 0 23.3 rev,θ θ− =  which checks. 

 9.11. IDENTIFY: Apply the constant angular acceleration equations to the motion. The target variables are t and 0.θ θ−  

SET UP: (a) 21.50 rad/s ;zα =  0 0zω =  (starts from rest); 36.0 rad/s;zω =  ?t =  

0z z ztω ω α= +  

EXECUTE: 0
2

36.0 rad/s 0 24.0 s
1.50 rad/s

z z

z

t ω ω
α
− −

= = =  

(b) 0 ?θ θ− =  
2 2 21 1

0 0 2 20 (1.50 rad/s )(2.40 s) 432 radz zt tθ θ ω α− = + = + =  

0 432 rad(1 rev/2  rad) 68.8 revθ θ π− = =  
EVALUATE: We could use 1

0 02 ( )z z tθ θ ω ω− = +  to calculate 1
0 2 (0 36.0 rad/s)(24.0 s) 432 rad,θ θ− = + =  which 

checks. 
 9.12. IDENTIFY: In part (b) apply the equation derived in part (a). 

SET UP: Let the direction the propeller is rotating be positive. 

EXECUTE: (a) Solving Eq. (9.7) for t gives 0z z

z

t ω ω
α
−

= . Rewriting Eq. (9.11) as 1
0 0 2( )z zt tθ θ ω ω− = +  and 

substituting for t gives 

2 20 0
0 0 0 0 0

1 1 1( ) ( ) ( ),
2 2 2

z z z z
z z z z z z z

z z z

ω ω ω ωθ θ ω ω ω ω ω ω ω
α α α

⎛ ⎞− +⎛ ⎞ ⎛ ⎞− = + − = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

which when rearranged gives Eq. (9.12). 

(b) ( ) ( ) ( )( )2 22 2 21 1
02 2

0

1 1 16.0 rad s 12.0 rad s 8.00 rad/s
7.00 radz z zα ω ω

θ θ
⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎝ ⎠
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EVALUATE: We could also use 0
0 2

z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

to calculate 0.500 st = . Then 0z z ztω ω α= +  gives 

28.00 rad/szα = , which agrees with our results in part (b). 
 9.13. IDENTIFY: Use a constant angular acceleration equation and solve for 0 .zω  

SET UP: Let the direction of rotation of the flywheel be positive. 

EXECUTE: 21
0 0 2z ztθ θ ω α− = +  gives 20 1 1

0 2 2
60.0 rad (2.25 rad/s )(4.00 s) 10.5 rad/s
4.00 sz zt

θ θω α−
= − = − = . 

EVALUATE: At the end of the 4.00 s interval, 0 19.5 rad/sz z ztω ω α= + = . 

0
0

10.5 rad/s 19.5 rad/s (4.00 s) 60.0 rad
2 2

z z tω ωθ θ + +⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, which checks. 

 9.14. IDENTIFY: Apply the constant angular acceleration equations. 
SET UP: Let the direction of the rotation of the blade be positive. 0 0zω = . 

EXECUTE: 0z z zω ω α= +  gives 20 140 rad/s 0 23.3 rad/s
6.00 s

z z
z t

ω ωα − −
= = = . 

0
0

0 140 rad/s( ) (6.00 s) 420 rad
2 2

z z tω ωθ θ + +⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: We could also use 21
0 0 2z zt tθ θ ω α− = + . This equation gives 

2 21
0 2 (23.3 rad/s )(6.00 s) 419 radθ θ− = = , in agreement with the result obtained above. 

 9.15. IDENTIFY: Apply constant angular acceleration equations. 
SET UP: Let the direction the flywheel is rotating be positive. 

0 0200 rev, 500 rev min 8.333 rev s,   30.0 sz tθ θ ω− = = = = . 

EXECUTE: (a) 0
0 gives 5.00 rev s 300 rpm

2
z z

ztω ωθ θ ω+⎛ ⎞− = = =⎜ ⎟
⎝ ⎠

 

(b) Use the information in part (a) to find :zα  0z z ztω ω α= + gives 20.1111 rev szα = − . Then 0,zω =  

2
00.1111 rev s ,  8.333 rev sz zα ω= − =  in 0z z ztω ω α= + gives 75.0 st = and 0

0 2
z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟

⎝ ⎠
gives 

0 312 revθ θ− = . 
EVALUATE: The mass and diameter of the flywheel are not used in the calculation. 

 9.16. IDENTIFY: Use the constant angular acceleration equations, applied to the first revolution and to the first two 
revolutions. 
SET UP: Let the direction the disk is rotating be positive. 1 rev 2  radπ= . Let t be the time for the first revolution. 
The time for the first two revolutions is 0.750 st + . 
EXECUTE: (a) 21

0 0 2z zt tθ θ ω α− = + applied to the first and to the first two revolutions gives 21
22  rad ztπ α= and 

21
24  rad ( 0.750 s)z tπ α= + . Eliminating zα between these equations gives 2

2

2  rad4  rad ( 0.750 s)t
t
ππ = + . 

2 22 ( 0.750 s)t t= + . 2 ( 0.750 s)t t= ± + . The positive root is 0.750 s 1.81 s
2 1

t = =
−

. 

(b) 21
22  rad ztπ α= and 1.81 st = gives 23.84 rad/szα =  

EVALUATE: At the start of the second revolution, 2
0 (3.84 rad/s )(1.81 s) 6.95 rad/szω = = . The distance the disk 

rotates in the next 0.750 s is 2 2 21 1
0 0 2 2(6.95 rad/s)(0.750 s) (3.84 rad/s )(0.750 s) 6.29 radz zt tθ θ ω α− = + = + = , 

which is two revolutions. 
 9.17. IDENTIFY: Apply Eq.(9.12) to relate zω to 0θ θ− . 

SET UP: Establish a proportionality. 
EXECUTE: From Eq.(9.12), with 0 0,  zω = the number of revolutions is proportional to the square of the initial 
angular velocity, so tripling the initial angular velocity increases the number of revolutions by 9, to 9.00 rev. 
EVALUATE: We don't have enough information to calculate zα ; all we need to know is that it is constant. 
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 9.18. IDENTIFY: In each case we apply constant acceleration equations to determine ( )tθ and ( )z tω . 
SET UP: Let 0 0θ = . The following table gives the revolutions and the angle θ (in degrees) through which the 
wheel has rotated for each instant in time (in seconds) and each of the three situations: 

 t  (a)
rev       θ

 (b)
rev       θ

 (c)
rev        θ

 

 0.05 0.50  180 0.03  11.3 0.44  158 
 0.10 1.00  360 0.13  45 0.75  270 
 0.15 1.50  540 0.28  101 0.94  338 
 0.20 2.00  720 0.50  180 1.00  360 

EXECUTE: The θ and zω graphs for each case are given in Figures 9.18 a�c. 
EVALUATE: The slope of the ( )tθ  graph is ( )z tω  and the slope of the ( )z tω  graph is ( )z tα . 

 

 

 
Figure 9.18 



9-6 Chapter 9 

 9.19. IDENTIFY: Apply the constant angular acceleration equations separately to the time intervals 0 to 2.00 s and  
2.00 s until the wheel stops. 
(a) SET UP: Consider the motion from 0t =  to 2.00 s:t =  

0 ?;θ θ− =  0 24.0 rad/s;zω =  230.0 rad/s ;zα =  2.00 st =  

EXECUTE: 2 2 21 1
0 0 2 2(24.0 rad/s)(2.00 s) (30.0 rad/s )(2.00 s)z zt tθ θ ω α− = + = +  

0 48.0 rad 60.0 rad 108 radθ θ− = + =  
Total angular displacement from 0t =  until stops: 108 rad 432 rad 540 rad+ =  
Note: At 2.00 s,t =  2

0 24.0 rad/s (30.0 rad/s )(2.00 s) 84.0 rad/s;z z ztω ω α= + = + =  angular speed when breaker trips. 
(b) SET UP: Consider the motion from when the circuit breaker trips until the wheel stops. For this calculation let 

0t =  when the breaker trips. 
?;t =  0 432 rad;θ θ− =  0;zω =  0 84.0 rad/szω =  (from part (a)) 

0
0 2

z z tω ωθ θ +⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 

EXECUTE: 0

0

2( ) 2(432 rad) 10.3 s
84.0 rad/s 0z z

t θ θ
ω ω

−
= = =

+ +
 

The wheel stops 10.3 s after the breaker trips so 2.00 s 10.3 s 12.3 s+ =  from the beginning. 
(c) SET UP: ?;zα =  consider the same motion as in part (b): 

0z z ztω ω α= +  

EXECUTE: 20 0 84.0 rad/s 8.16 rad/s
10.3 s

z z
z t

ω ωα − −
= = = −  

EVALUATE: The angular acceleration is positive while the wheel is speeding up and negative while it is slowing 

down. We could also use 2 2
0 02 ( )z z zω ω α θ θ= + −  to calculate 

2 2 2
20

0

0 (84.0 rad/s) 8.16 rad/s
2( ) 2(432 rad)

z z
z

ω ωα
θ θ
− −

= = = −
−

 for 

the acceleration after the breaker trips. 
 9.20. IDENTIFY: The linear distance the elevator travels, its speed and the magnitude of its acceleration are equal to the 

tangential displacement, speed and acceleration of a point on the rim of the disk. s rθ= , v rω= and a rα= . In 
these equations the angular quantities must be in radians. 
SET UP: 1 rev 2  radπ= . 1 rpm 0.1047 rad/s= . rad 180π = ° . For the disk, 1.25 mr = . 

EXECUTE: (a) 0.250 m/sv = so 0.250 m/s 0.200 rad/s 1.91 rpm
1.25 m

v
r

ω = = = = . 

(b) 21
8 1.225 m/sa g= = . 

2
21.225 m/s 0.980 rad/s

1.25 m
a
r

α = = = . 

(c) 3.25 ms = . 3.25 m 2.60 rad 149
1.25 m

s
r

θ = = = = ° . 

EVALUATE: When we use s rθ= , v rω= and tana rα=  to solve for θ , ω and α , the results are in rad, rad/s 

and 2rad/s . 
 9.21. IDENTIFY: When the angular speed is constant, / tω θ= . tanv rω= , tana rα= and 2

rada rω= . In these equations 
radians must be used for the angular quantities. 
SET UP: The radius of the earth is 6

E 6.38 10  mR = × and the earth rotates once in 1 day 86,400 s= . The orbit radius 

of the earth is 111.50 10  m× and the earth completes one orbit in 71 y 3.156 10  s= × . When ω is constant, / tω θ= . 

EXECUTE: (a) 1 rev 2  radθ π= = in 73.156 10  st = × . 7
7

2  rad 1.99 10  rad/s
3.156 10  s

πω −= = ×
×

. 

(b) 1 rev 2  radθ π= = in 86,400 st = . 52  rad 7.27 10  rad/s
86,400 s
πω −= = ×  

(c) 11 7 4(1.50 10  m)(1.99 10  rad/s) 2.98 10  m/sv rω −= = × × = × . 

(d) 6 5(6.38 10  m)(7.27 10  rad/s) 464 m/sv rω −= = × × = . 

(e) 2 6 5 2 2
rad (6.38 10  m)(7.27 10  rad/s) 0.0337 m/sa rω −= = × × = . tan 0a rα= = . 0α = since the angular velocity is 

constant. 
EVALUATE: The tangential speeds associated with these motions are large even though the angular speeds are 
very small, because the radius for the circular path in each case is quite large. 
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 9.22. IDENTIFY: Linear and angular velocities are related by v rω= . Use 0z z ztω ω α= +  to calculate zα . 
SET UP: /v rω = givesω in rad/s. 

EXECUTE: (a) 3

1.25 m/s 50.0 rad/s,
25.0 10  m− =

×
 3

1.25 m/s 21.6 rad/s.
58.0 10  m− =

×
 

(b) (1.25 m/s) (74.0 min) (60 s/min) = 5.55 km. 
(c) 3 221.55 rad/s 50.0 rad/s 6.41 10  rad/s .(74.0 min) (60 s/min)zα

−−= = − ×  

EVALUATE: The width of the tracks is very small, so the total track length on the disc is huge. 
 9.23. IDENTIFY: Use constant acceleration equations to calculate the angular velocity at the end of two revolutions. 

v rω= . 
SET UP: 2 rev 4  rad.π=  0.200 m.r =  

EXECUTE: (a) 2 2
0 02 ( ).z z zω ω α θ θ= + −  2

02 ( ) 2(3.00 rad/s )(4  rad) 8.68 rad/s.z zω α θ θ π= − = =  
2 2 2

rad (0.200 m)(8.68 rad/s) 15.1 m/s .a rω= = =  

(b) (0.200 m)(8.68 rad/s) 1.74 m/s.v rω= = =  
2 2

2
rad

(1.74 m/s) 15.1 m/s .
0.200 m

va
r

= = =  

EVALUATE: 2rω and 2 /v r are completely equivalent expressions for rada . 

 9.24. IDENTIFY: 2
rada rω= , with ω  in rad/s. Solve for ω . 

SET UP: 1 rpm (2 / 60) rad/sπ=  

EXECUTE: 
2

4 5rad (400,000)(9.80 m/s ) 1.25 10  rad/s 1.20 10  rpm
0.0250 m

a
r

ω = = = × = ×  

EVALUATE: In 2
rada rω= , ω must be in rad/s. 

 9.25. IDENTIFY and SET UP: Use constant acceleration equations to find ω  and α  after each displacement. The use 
Eqs.(9.14) and (9.15) to find the components of the linear acceleration. 
EXECUTE: (a) at the start 0t =  
flywheel starts from rest so 0 0z zω ω= =  

2 2
tan (0.300 m)(0.600 rad/s ) 0.180 m/sa rα= = =  

2
rad 0a rω= =  

2 2 2
rad tan 0.180 m/sa a a= + =  

(b) 0 60θ θ− = °  
2

tan 0.180 m/sa rα= =  
Calculate :ω  

0 60 (  rad/180 ) 1.047 rad;θ θ π− = ° ° =  0 0;zω =  20.600 rad/s ;zα =  ?zω =  
2 2

0 02 ( )z z zω ω α θ θ= + −  
2

02 ( ) 2(0.600 rad/s )(1.047 rad) 1.121 rad/sz zω α θ θ= − = =  and .zω ω=  

Then 2 2 2
rad (0.300 m)(1.121 rad/s) 0.377 m/s .a rω= = =  
2 2 2 2 2 2 2
rad tan (0.377 m/s ) (0.180 m/s ) 0.418 m/sa a a= + = + =  

(c) 0 120θ θ− = °  
2

tan 0.180 m/sa rα= =  
Calculate :ω  

0 120 (  rad/180 ) 2.094 rad;θ θ π− = ° ° =  0 0;zω =  20.600 rad/s ;zα =  ?zω =  
2 2

0 02 ( )z z zω ω α θ θ= + −  
2

02 ( ) 2(0.600 rad/s )(2.094 rad) 1.585 rad/sz zω α θ θ= − = =  and .zω ω=  

Then 2 2 2
rad (0.300 m)(1.585 rad/s) 0.754 m/s .a rω= = =  
2 2 2 2 2 2 2
rad tan (0.754 m/s ) (0.180 m/s ) 0.775 m/sa a a= + = + =  

EVALUATE: α  is constant so tanα  is constant. ω  increases so rada  increases. 
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 9.26. IDENTIFY: Apply constant angular acceleration equations. v rω= . A point on the rim has both tangential and 
radial components of acceleration. 
SET UP: tana rα=  and 2

rada rω= . 

EXECUTE: (a) 2
0  = 0.250 rev/s (0.900 rev/s )(0.200 s) 0.430 rev/sz z ztω ω α= + + =  

(Note that since 0 zω  and zα  are given in terms of revolutions, it�s not necessary to convert to radians). 
(b) av- (0.340 rev s)(0.2 s) 0.068 revz tω Δ = = . 
(c) Here, the conversion to radians must be made to use Eq. (9.13), and 

( )( )0.750 m 0.430 rev/s 2  rad rev 1.01 m s.
2

v rω π⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

(d) Combining equations (9.14) and (9.15), 
2 2 2 2 2
rad tan ( ) ( )a a a r rω α= + = + .

2 22 2((0.430 rev/s)(2  rad/rev)) (0.375 m) (0.900 rev/s )(2  rad/rev)(0.375 m)a π π⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ . 
23.46 m sa = . 

EVALUATE: If the angular acceleration is constant, tana is constant but rada increases as ω increases. 
 9.27. IDENTIFY: Use Eq.(9.15) and solve for r. 

SET UP: 2
rada rω=  so 2

rad / ,r a ω=  where ω  must be in rad/s 

EXECUTE: 2 2
rad 3000 3000(9.80 m/s ) 29,400 m/sa g= = =  

1 min 2  rad(5000 rev/min) 523.6 rad/s
60 s 1 rev

πω ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Then 
2

rad
2 2

29,400 m/s 0.107 m.
(523.6 rad/s)

ar
ω

= = =  

EVALUATE: The diameter is then 0.214 m, which is larger than 0.127 m, so the claim is not realistic. 
 9.28. IDENTIFY: In part (b) apply the result derived in part (a). 

SET UP: 2
rada rω= and v rω= ; combine to eliminate r. 

EXECUTE: (a) 2 2 
rad =     .va r vω ω ω

ω
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(b) From the result of part (a), 
2

rad 0.500 m s 0.250 rad s.2.00 m s
a
v

ω = = =  

EVALUATE: 2
rada rω= and v rω= both require that ω be in rad/s, so in rada vω= , ω is in rad/s. 

 9.29. IDENTIFY: v rω= and 2 2
rad /a r v rω= = . 

SET UP: 2  rad 1 revπ = , so  rad/s 30 rev/minπ = . 

EXECUTE: (a) ( )
312.7 10 m rad/s(1250 rev min ) 0.831 m s.30 rev/min 2

r πω
−⎛ ⎞×

= =⎜ ⎟
⎝ ⎠

 

(b) 
2 2

2
3

(0.831 m s) 109 m s .
(12.7 10  m) 2

v
r −= =

×
 

EVALUATE: In v rω= , ω must be in rad/s. 
 9.30. IDENTIFY: tana rα= , v rω= and 2

rad /a v r= . 0 av-ztθ θ ω− = . 

SET UP: When zα is constant, 0
av- 2

z z
z

ω ωω +
= . Let the direction the wheel is rotating be positive. 

EXECUTE: (a) 
2

2tan 10.0 m s 50.0 rad s
0.200 m

a
r

α −
= = = −  

(b) At 3.00 st = , 50.0 m sv = and 50.0 m s 250 rad s0.200 m
v
r

ω = = =  and at 0,t =  

250.0 m s ( 10.0 m s )(0 3.00 s) 80.0 m sv = + − − = , 400 rad s.ω =  
(c) av- (325 rad s)(3.00 s) 975 rad 155 revztω = = = . 
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(d) 2
rad (9.80 m/s )(0.200 m) 1.40 m/s.v a r= = =  This speed will be reached at time 50.0 m/s 1.40 m/s 4.86 s

10.0 m/s
−

=  

after 3.00 st = , or at 7.86 st = . (There are many equivalent ways to do this calculation.) 
EVALUATE: At 0t = , 2 4 2

rad 3.20 10  m/sa rω= = × . At 3.00 st = , 4 2
rad 1.25 10  m/sa = × . For rada g= the wheel 

must be rotating more slowly than at 3.00 s so it occurs some time after 3.00 s. 
 9.31. IDENTIFY and SET UP: Use Eq.(9.15) to relate ω  to rada  and m=∑F a

! !  to relate rada  to rad.F  Use Eq.(9.13) to 
relate ω  and v, where v is the tangential speed. 
EXECUTE: (a) 2

rada rω=  and 2
rad radF ma mrω= =  

2 2
rad,2 2

rad,1 1

640 rev/min 2.29
423 rev/min

F
F

ω
ω
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) v rω=  
2 2

1 1

640 rev/min 1.51
423 rev/min

v
v

ω
ω

= = =  

(c) v rω=  
1 min 2  rad(640 rev/min) 67.0 rad/s
60 s 1 rev

πω ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Then (0.235 m)(67.0 rad/s) 15.7 m/s.v rω= = =  
2 2 2

rad (0.235 m)(67.0 rad/s) 1060 m/sa rω= = =  
2

rad
2

1060 m/s 108;
9.80 m/s

a
g

= =  108a g=  

EVALUATE: In parts (a) and (b), since a ratio is used the units cancel and there is no need to convert ω  to rad/s. 
In part (c), v and rada  are calculated from ,ω  and ω  must be in rad/s. 

 9.32. IDENTIFY: v rω= and tana rα= . 
SET UP: The linear acceleration of the bucket equals tana for a point on the rim of the axle. 

EXECUTE: (a) v Rω= . 7.5 rev 1 min 2  rad2.00 cm s 
min 60 s 1 rev

R π⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 gives 2.55 cmR = . 

2 5.09 cmD R= = . 

(b) tana Rα= . 
2

2tan 0.400 m s 15.7 rad s
0.0255 m

a
R

α = = = . 

EVALUATE: In v Rω= and tana Rα= , ω and α must be in radians. 
 9.33. IDENTIFY: Apply v rω= . 

SET UP: Points on the chain all move at the same speed, so r r f fr rω ω= . 

EXECUTE: The angular velocity of the rear wheel is r
r

5.00 m s 15.15 rad s.
0.330 m

v
r

ω = = =  

The angular velocity of the front wheel is f 0.600 rev s 3.77 rad sω = = . ( )r f f r 2.99 cmr r ω ω= = . 
EVALUATE: The rear sprocket and wheel have the same angular velocity and the front sprocket and wheel have 
the same angular velocity. rω  is the same for both, so the rear sprocket has a smaller radius since it has a larger 
angular velocity. The speed of a point on the chain is 2

r r (2.99 10  m)(15.15 rad/s) 0.453 m/sv rω −= = × = . The linear 
speed of the bicycle is 5.50 m/s. 

 9.34. IDENTIFY and SET UP: Use Eq.(9.16). Treat the spheres as point masses and ignore I of the light rods. 
EXECUTE: The object is shown in Figure 9.34a. 
(a)  

 

2 2(0.200 m) (0.200 m) 0.2828 mr = + =  
2 24(0.200 kg)(0.2828 m)i iI m r= =∑  

20.0640 kg mI = ⋅  

Figure 9.34a  
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(b) The object is shown in Figure 9.34b. 

 

0.200 mr =  
2 24(0.200 kg)(0.200 m)i iI m r= =∑  

20.0320 kg mI = ⋅  

Figure 9.34b  
(c) The object is shown in Figure 9.34c. 

 

0.2828 mr =  
2 22(0.200 kg)(0.2828 m)i iI m r= =∑  

20.0320 kg mI = ⋅  

Figure 9.34c  
EVALUATE: In general I depends on the axis and our answer for part (a) is larger than for parts (b) and (c). It just 
happens that I is the same in parts (b) and (c). 

 9.35. IDENTIFY: Use Table 9.2. The correct expression to use in each case depends on the shape of the object and the 
location of the axis. 
SET UP: In each case express the mass in kg and the length in m, so the moment of inertia will be in 2kg m⋅ . 

EXECUTE: (a) (i) 2 2 21 1
3 3 (2.50 kg)(0.750 m) 0.469 kg mI ML= = = ⋅ . 

(ii) 2 2 21 1
12 4 (0.469 kg m ) 0.117 kg mI ML= = ⋅ = ⋅ . (iii) For a very thin rod, all of the mass is at the axis and 0I = . 

(b) (i) 2 2 22 2
5 5 (3.00 kg)(0.190 m) 0.0433 kg mI MR= = = ⋅ . 

(ii) 2 2 252
3 3 (0.0433 kg m ) 0.0722 kg mI MR= = ⋅ = ⋅ . 

(c) (i) 2 2 2(8.00 kg)(0.0600 m) 0.0288 kg mI MR= = = ⋅ . 

(ii) 2 2 21 1
2 2 (8.00 kg)(0.0600 m) 0.0144 kg mI MR= = = ⋅ . 

EVALUATE: I depends on how the mass of the object is distributed relative to the axis. 
 9.36. IDENTIFY: Treat each block as a point mass, so for each block 2I mr= , where r is the distance of the block from 

the axis. The total I for the object is the sum of the I for each of its pieces. 
SET UP: In part (a) two blocks are a distance / 2L from the axis and the third block is on the axis. In part (b) two 
blocks are a distance / 4L from the axis and one is a distance 3 / 4L from the axis. 
EXECUTE: (a) 2 21

22 ( / 2)I m L mL= = . 

(b) 2 2 2 21 112 ( / 4) (3 / 4) (2 9)
16 16

I m L m L mL mL= + = + = . 

EVALUATE: For the same object I is in general different for different axes. 
 9.37. IDENTIFY: I for the object is the sum of the values of I for each part. 

SET UP: For the bar, for an axis perpendicular to the bar, use the appropriate expression from Table 9.2. For a 
point mass, 2I mr= , where r is the distance of the mass from the axis. 

EXECUTE: (a) 
2

2
bar balls bar balls

1 2
12 2

LI I I M L m ⎛ ⎞= + = + ⎜ ⎟
⎝ ⎠

. 

( )( ) ( )( )2 2 21 4.00 kg 2.00 m 2 0.500 kg 1.00 m 2.33 kg m
12

I = + = ⋅  

(b) ( )( ) ( ) ( )2 22 2 2
bar ball

1 1 4.00 kg 2.00 m 0.500 kg  2.00 m 7.33 kg m
3 3

I m L m L= + = + = ⋅  

(c) 0I =  because all masses are on the axis. 
(d) All the mass is a distance 0.500 md = from the axis and 

2 2 2 2 2
bar ball Total2 (5.00 kg)(0.500 m) 1.25 kg mI m d m d M d= + = = = ⋅ . 

EVALUATE: I for an object depends on the location and direction of the axis. 
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 9.38. IDENTIFY and SET UP: According to Eq.(9.16), I for the entire object equals the sum of I for each piece, the rod 
plus the end caps. The object is shown in Figure 9.38. 

 

EXECUTE: rod cap2I I I= +  

( )2 2 21 1 1
12 12 22( )( / 2)I ML m L M m L= + = +  

Figure 9.38  

EVALUATE: Table 9.2 was used for rodI  and 2I mr=  for the end caps, since they are treated as point particles. 

 9.39. IDENTIFY and SET UP: 2
i iI m r=∑  implies rim spokesI I I= +  

EXECUTE: 2 2 2
rim (1.40 kg)(0.300 m) 0.126 kg mI MR= = = ⋅  

Each spoke can be treated as a slender rod with the axis through one end, so 
( )2 2 281

spokes 3 38 (0.280 kg)(0.300 m) 0.0672 kg mI ML= = = ⋅  
2 2 2

rim spokes 0.126 kg m 0.0672 kg m 0.193 kg mI I I= + = ⋅ + ⋅ = ⋅  

EVALUATE: Our result is smaller than 2 2 2
tot (3.64 kg)(0.300 m) 0.328 kg m ,m R = = ⋅  since the mass of each 

spoke is distributed between 0r =  and .r R=  
 9.40. IDENTIFY: Compare this object to a uniform disk of radius R and mass 2M. 

SET UP: With an axis perpendicular to the round face of the object at its center, I for a uniform disk is the same 
as for a solid cylinder. 
EXECUTE: (a) The total I for a disk of mass 2M and radius R, 2 21

2 (2 )I M R MR= = . Each half of the disk has the 

same I, so for the half-disk, 21
2I MR= . 

(b) The same mass M is distributed the same way as a function of distance from the axis. 
(c) The same method as in part (a) says that I for a quarter-disk of radius R and mass M is half that of a half-disk of 
radius R and mass 2M, so 2 21 1 1

2 2 2( [2 ] )I M R MR= = . 
EVALUATE: I depends on how the mass of the object is distributed relative to the axis, and this is the same for 
any segment of a disk. 

 9.41. IDENTIFY: I for the compound disk is the sum of I of the solid disk and of the ring. 
SET UP: For the solid disk, 21

d d2I m r= . For the ring, 2 21
r r 1 22 ( )I m r r= + , where 1 250.0 cm, 70.0  cmr r= = . The 

mass of the disk and ring is their area times their area density. 
EXECUTE: d rI I I= + . 

Disk: 2 2
d d(3.00 g cm ) 23.56 kgm rπ= = . 2 2

d d d
1 2.945 kg m
2

I m r= = ⋅ . 

Ring: 2 2 2
r 2 1(2.00 g cm ) ( ) 15.08 kgm r rπ= − = . 2 2 2

r r 1 2
1 ( ) 5.580 kg m
2

I m r r= + = ⋅ . 

2
d r 8.52 kg mI I I= + = ⋅ . 

EVALUATE: Even though r dm m< , r dI I> since the mass of the ring is farther from the axis. 

 9.42. IDENTIFY: 21
2K Iω= . Use Table 9.2b to calculate I. 

SET UP: 21
12I ML= . 1 rpm 0.1047 rad/s=  

EXECUTE: (a) 2 21
12 (117 kg)(2.08 m) 42.2 kg mI = = ⋅ . 0.1047 rad/s(2400 rev/min) 251 rad/s

1 rev/min
ω ⎛ ⎞= =⎜ ⎟

⎝ ⎠
. 

2 2 2 61 1
2 2 (42.2 kg m )(251 rad/s) 1.33 10  JK Iω= = ⋅ = × . 

(b) 2 21
1 1 1 112K M Lω= , 2 21

2 2 2 212K M L ω= . 1 2L L= and 1 2K K= , so 2 2
1 1 2 2M Mω ω= . 

1 1
2 1

2 1

(2400 rpm) 2770 rpm
0.750

M M
M M

ω ω= = =  

EVALUATE: The rotational kinetic energy is proportional to the square of the angular speed and directly 
proportional to the mass of the object. 

 9.43. IDENTIFY: 21
2K Iω= . Use Table 9.2 to calculate I. 

SET UP: 22
5I MR= . For the moon, 227.35 10  kgM = × and 61.74 10  mR = × . The moon moves through 

1 rev 2  radπ= in 27.3 d. 41 d 8.64 10  s= × .  
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EXECUTE: (a) 22 6 2 34 22
5 (7.35 10  kg)(1.74 10  m) 8.90 10  kg mI = × × = × ⋅ . 

6
4

2  rad 2.66 10  rad/s
(27.3 d)(8.64 10  s/d)

πω −= = ×
×

. 

2 34 2 6 2 231 1
2 2 (8.90 10  kg m )(2.66 10  rad/s) 3.15 10  JK Iω −= = × ⋅ × = × . 

(b) 
23

20

3.15 10  J 158 years
5(4.0 10  J)

×
=

×
. Considering the expense involved in tapping the moon�s rotational energy, this 

does not seem like a worthwhile scheme for only 158 years worth of energy. 
EVALUATE: The moon has a very large amount of kinetic energy due to its motion. The earth has even more, but 
changing the rotation rate of the earth would change the length of a day. 

 9.44. IDENTIFY: 21
2K Iω= . Use Table 9.2 to relate I to the mass M of the disk. 

SET UP: 45.0 rpm 4.71 rad/s= . For a uniform solid disk, 21
2I MR= . 

EXECUTE: (a) 2
2 2

2 2(0.250 J) 0.0225 kg m
(4.71 rad/s)

KI
ω

= = = ⋅ . 

(b) 21
2I MR= and 

2

2 2

2 2(0.0225 kg m ) 0.500 kg
(0.300 m)

IM
R

⋅
= = = . 

EVALUATE: No matter what the shape is, the rotational kinetic energy is proportional to the mass of the object. 
 9.45. IDENTIFY: 21

2K Iω= , with ω  in rad/s. Solve for I. 
SET UP: 1 rev/min (2 / 60) rad/sπ= . 500 JKΔ = −  

EXECUTE: i 650 rev/min 68.1 rad/sω = = . f 520 rev/min 54.5 rad/sω = = . 2 21
f i f i2 ( )K K K I ω ωΔ = − = −  and 

2
2 2 2 2
f i

2( ) 2( 500 J) 0.600 kg m
(54.5 rad/s) (68.1 rad/s)

KI
ω ω
Δ −

= = = ⋅
− −

. 

EVALUATE: In 21
2K Iω= , ω must be in rad/s. 

 9.46. IDENTIFY: The work done on the cylinder equals its gain in kinetic energy. 
SET UP: The work done on the cylinder is PL, where L is the length of the rope. 1 0K = . 21

2 2K Iω= . 

2 21 1
2 2

wI mr r
g

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
. 

EXECUTE: 
2 2

2
2

1 1 (40.0 N)(6.00 m s),   or  14.7 N.
2 2 2(9.80 m s )(5.00 m)

w w vPL v P
g g L

= = = =  

EVALUATE: The linear speed v of the end of the rope equals the tangential speed of a point on the rim of the 
cylinder. When K is expressed in terms of v, the radius r of the cylinder doesn't appear. 

 9.47. IDENTIFY and SET UP: Combine Eqs.(9.17) and (9.15) to solve for K. Use Table 9.2 to get I. 
EXECUTE: 21

2K Iω=  
2

rad ,a Rω=  so 2
rad / (3500 m/s ) /1.20 m 54.0 rad/sa Rω = = =  

For a disk, 2 2 21 1
2 2 (70.0 kg)(1.20 m) 50.4 kg mI MR= = = ⋅  

Thus 2 2 2 41 1
2 2 (50.4 kg m )(54.0 rad/s) 7.35 10  JK Iω= = ⋅ = ×  

EVALUATE: The limit on rada  limits ω  which in turn limits K. 
 9.48. IDENTIFY: Repeat the calculation in Example 9.9, but with a different expression for I. 

SET UP: For the solid cylinder in Example 9.9, 21
2I MR= . For the thin-walled, hollow cylinder, 2I MR= . 

EXECUTE: (a) With 2,I MR= the expression for v is 2 .
1

ghv
M m

=
+

 

(b) This expression is smaller than that for the solid cylinder; more of the cylinder�s mass is concentrated at its 
edge, so for a given speed, the kinetic energy of the cylinder is larger. A larger fraction of the potential energy is 
converted to the kinetic energy of the cylinder, and so less is available for the falling mass. 
EVALUATE: When M is much larger than m, v is very small. When M is much less than m, v becomes 2v gh= , 
the same as for a mass that falls freely from a height h. 
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 9.49. IDENTIFY: Apply conservation of energy to the system of stone plus pulley. v rω= relates the motion of the 
stone to the rotation of the pulley. 
SET UP: For a uniform solid disk, 21

2I MR= . Let point 1 be when the stone is at its initial position and point 2 be 
when it has descended the desired distance. Let y+  be upward and take 0y = at the initial position of the stone, so 

1 0y = and 2y h= − , where h is the distance the stone descends. 

EXECUTE: (a) 21
p p2K I ω= . 2 2 21 1

p p2 2 (2.50 kg)(0.200 m) 0.0500 kg mI M R= = = ⋅ . 

p
2

p

2 2(4.50 J) 13.4 rad/s
0.0500 kg m

K
I

ω = = =
⋅

. The stone has speed (0.200 m)(13.4 rad/s) 2.68 m/sv Rω= = = . The 

stone has kinetic energy 2 21 1
s 2 2 (1.50 kg)(2.68 m/s) 5.39 JK mv= = = . 1 1 2 2K U K U+ = + gives 2 20 K U= + . 

0 4.50 J 5.39 J ( )mg h= + + − . 2

9.89 J 0.673 m
(1.50 kg)(9.80 m/s )

h = = . 

(b) tot p s 9.89 JK K K= + = . p

tot

4.50 J 45.5%
9.89 J

K
K

= = . 

EVALUATE: The gravitational potential energy of the pulley doesn�t change as it rotates. The tension in the wire 
does positive work on the pulley and negative work of the same magnitude on the stone, so no net work on the 
system. 

 9.50. IDENTIFY: 21
p 2K Iω= for the pulley and 21

b 2K mv= for the bucket. The speed of the bucket and the rotational 
speed of the pulley are related by v Rω= . 
SET UP: 1

p b2K K=  

EXECUTE: 2 2 2 21 1 1 1
2 2 2 4( )I mv mRω ω= = . 21

2I mR= . 
EVALUATE: The result is independent of the rotational speed of the pulley and the linear speed of the mass. 

 9.51. IDENTIFY: The general expression for I is Eq.(9.16). 21
2K Iω= . 

SET UP: R will be multiplied by f. 
EXECUTE: (a) In the expression of Eq. (9.16), each term will have the mass multiplied by 3f and the distance 

multiplied by ,f  and so the moment of inertia is multiplied by 3 2 5( ) . f f f=  

(b) 5 8 (2.5 J)(48) 6.37 10  J.= ×  
EVALUATE: Mass and volume are proportional to each other so both scale by the same factor. 

 9.52. IDENTIFY: The work the person does is the negative of the work done by gravity. grav grav,1 grav,2W U U= − . 

grav cmU Mgy= . 
SET UP: The center of mass of the ladder is at its center, 1.00 m from each end. 

cm,1 (1.00 m)sin53.0 0.799 my = =° . cm,2 1.00 my = . 

EXECUTE: 2
grav (9.00 kg)(9.80 m/s )(0.799 m 1.00 m) 17.7 JW = − = − . The work done by the person is 17.7 J. 

EVALUATE: The gravity force is downward and the center of mass of the ladder moves upward, so gravity does 
negative work. The person pushes upward and does positive work. 

 9.53. IDENTIFY: cmU Mgy= . 2 1U U UΔ = − . 
SET UP: Half the rope has mass 1.50 kg and length 12.0 m. Let 0y = at the top of the cliff and take y+  to be 
upward. The center of mass of the hanging section of rope is at its center and cm,2 6.00 my = − . 

EXECUTE: 2
2 1 cm,2 cm,1( ) (1.50 kg)(9.80 m/s )( 6.00 m 0) 88.2 JU U U mg y yΔ = − = − = − − = − . 

EVALUATE: The potential energy of the rope decreases when part of the rope moves downward. 
 9.54. IDENTIFY: Apply Eq.(9.19), the parallel-axis theorem. 

SET UP: The center of mass of the hoop is at its geometrical center. 
EXECUTE: In Eq. (9.19), 2 2 2

cm and ,  so 2 .PI MR d R I MR= = =  
EVALUATE: I is larger for an axis at the edge than for an axis at the center. Some mass is closer than distance R 
from the axis but some is also farther away. Since I for each piece of the hoop is proportional to the square of the 
distance from the axis, the increase in distance has a larger effect. 

 9.55. IDENTIFY: Use Eq.(9.19) to relate I for the wood sphere about the desired axis to I for an axis along a diameter. 
SET UP: For a thin-walled hollow sphere, axis along a diameter, 22

3 .I MR=  

For a solid sphere with mass M and radius R, 22
cm 5 ,I MR=  for an axis along a diameter. 
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EXECUTE: Find d such that 2
cmPI I Md= +  with 22

3 :PI MR=  
2 2 22 2

3 5MR MR Md= +  

The factors of M divide out and the equation becomes ( ) 2 22 2
3 5 R d− =  

(10 6) /15 2 / 15 0.516 .d R R R= − = =  
The axis is parallel to a diameter and is 0.516R from the center. 
EVALUATE: cm cm(lead) (wood)I I>  even though M and R are the same since for a hollow sphere all the mass is a 
distance R from the axis. Eq.(9.19) says cm ,PI I>  so there must be a d where cm(wood) (lead).PI I=  

 9.56. IDENTIFY: Using the parallel-axis theorem to find the moment of inertia of a thin rod about an axis through its 
end and perpendicular to the rod. 
SET UP: The center of mass of the rod is at its center, and 21

cm 12I ML= . 

EXECUTE: 
2

2 2 2
cm .

12 2 3p
M L MI I Md L M L⎛ ⎞= + = + =⎜ ⎟

⎝ ⎠
 

EVALUATE: I is larger when the axis is not at the center of mass. 
 9.57. IDENTIFY and SET UP: Use Eq.(9.19). The cm of the sheet is at its geometrical center. The object is sketched in 

Figure 9.57. 
EXECUTE: 2

cm .PI I Md= +  

 

From part (c) of Table 9.2, 
2 21

cm 12 ( ).I M a b= +  
The distance d of P from 
the cm is 

2 2( / 2) ( / 2) .d a b= +  

Figure 9.57  

Thus ( ) ( )2 2 2 2 2 2 21 1 1 1 1
cm 12 4 4 12 4( ) ( )PI I Md M a b M a b M a b= + = + + + = + + =  

2 21
3 ( )M a b+  

EVALUATE: cm4 .PI I=  For an axis through P mass is farther from the axis. 
 9.58. IDENTIFY: Consider the plate as made of slender rods placed side-by-side. 

SET UP: The expression in Table 9.2(a) gives I for a rod and an axis through the center of the rod. 
EXECUTE: (a) I is the same as for a rod with length a: 21

12I Ma= . 

(b) I is the same as for a rod with length b: 21
12I Mb= . 

EVALUATE: I is smaller when the axis is through the center of the plate than when it is along one edge. 
 9.59. IDENTIFY: Use the equations in Table 9.2. I for the rod is the sum of I for each segment. The parallel-axis 

theorem says 2
p cmI I Md= + . 

SET UP: The bent rod and axes a and b are shown in Figure 9.59. Each segment has length / 2L and mass / 2M . 
EXECUTE: (a) For each segment the moment of inertia is for a rod with mass / 2M , length / 2L and the axis 

through one end. For one segment, 
2

2
s

1 1
3 2 2 24

M LI ML⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. For the rod, 2
a s

12
12

I I ML= = . 

(b) The center of mass of each segment is at the center of the segment, a distance of / 4L from each end. For each 

segment, 
2

2
cm

1 1
12 2 2 96

M LI ML⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. Axis b is a distance / 4L from the cm of each segment, so for each 

segment the parallel axis theorem gives I for axis b to be 
2

2 2
s

1 1
96 2 4 24

M LI ML ML⎛ ⎞= + =⎜ ⎟
⎝ ⎠

and 2
b s

12
12

I I ML= = . 
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EVALUATE: I for these two axes are the same. 

 
Figure 9.59 

 9.60. IDENTIFY: Apply the parallel-axis theorem. 

SET UP: ( ) ( )2
cmIn Eq 9 19  and  2

12
M . . , I L   d L h= = − . 

EXECUTE: 
2

2 2 2 2 2 21 1 1 1
12 2 12 4 3P

LI M L h M L L Lh h M L Lh h
⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤= + − = + − + = − +⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

, 

which is the same as found in Example 9.11. 
EVALUATE: Example 9.11 shows that this result gives the expected result for 0h = , h L= and / 2h L= . 

 9.61. IDENTIFY: Apply Eq.(9.20). 
SET UP: (2  )dm dV rL drρ ρ π= = , where L is the thickness of the disk. 2M L Rπ ρ= . 
EXECUTE: The analysis is identical to that of Example 9.12, with the lower limit in the integral being zero and 
the upper limit being R. The result is 21

2I MR= . 
EVALUATE: Our result agrees with Table 9.2(f). 

 9.62. IDENTIFY: Eq.(9.20), 2  I r dm= ∫  

SET UP:  

 
Figure 9.62 

Take the x-axis to lie along the rod, with the origin at the left end. Consider a thin slice at coordinate x and width 
dx, as shown in Figure 9.62. The mass per unit length for this rod is / ,M L  so the mass of this slice is 

( / ) .dm M L dx=  

EXECUTE: 2 2 3 21
30 0

( / ) ( / )  ( / )( /3)
L L

I x M L dx M L x dx M L L ML= = = =∫ ∫  

EVALUATE: This result agrees with Table 9.2. 
 9.63. IDENTIFY: Apply Eq.(9.20). 

SET UP: For this case,  .dm dxγ=  

EXECUTE: (a) 
2 2

0 02 2

LL x LM dm x dx γγ γ= = = =∫ ∫  

(b) 
4 4

2 2

0 0

( ) .24 4

LL x L MI x x dx Lγγ γ= = = =∫  This is larger than the moment of inertia of a uniform rod of the same 

mass and length, since the mass density is greater further away from the axis than nearer the axis. 

(c) 
2 3 4 4

2 2 2 3 2 2

0 0 0

( ) ( 2 ) 2
2 3 4 12 6

LL L x x x L MI L x xdx L x Lx x dx L L Lγ γ γ γ
⎛ ⎞

= − = − + = − + = =⎜ ⎟
⎝ ⎠

∫ ∫ . 

This is a third of the result of part (b), reflecting the fact that more of the mass is concentrated at the right end. 
EVALUATE: For a uniform rod with an axis at one end, 21

3I ML= . The result in (b) is larger than this and the 
result in (a) is smaller than this. 

 9.64. IDENTIFY: We know that v rω= and v! is tangential. We know that 2
rada rω= and rada

!  is in toward the center of 
the wheel. See if the vector product expressions give these results. 
SET UP: sinAB φ× =A B , where φ is the angle between A

!
and B

!
. 

EXECUTE: (a) For a counterclockwise rotation,ω! will be out of the page. 
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(b) The upward direction crossed into the radial direction is, by the right-hand rule, counterclockwise. !ω and r! are 
perpendicular, so the magnitude of × r! !ω is r vω = . 
(c) !ω  is perpendicular to v! and so × v! !ω  has magnitude rad,v aω =  and from the right-hand rule, the upward 

direction crossed into the counterclockwise direction is inward, the direction of rad.a!  
EVALUATE: If the wheel rotates clockwise, the directions of !ω  and v! are reversed, but rada

! is still inward. 
 9.65. IDENTIFY: Apply tθ ω= . 

SET UP: For alignment, the earth must move through 60°  more than Mars, in the same time t. e 360 / yrω = ° . 

M 360 /(1.9 yr)ω = ° . 
EXECUTE: e M 60θ θ= + ° . e M 60t tω ω= + ° . 

2

e M

60 60 (1/[0.9yr /1.9 yr ]) 0.352 yr 128 days360 360 360
1 yr 1.9 yr

t
ω ω

= = = = =
− −

° 60° °
° ° °

. 

EVALUATE: Earth has a larger angular velocity than Mars, and completes one orbit in less time. 
 9.66. IDENTIFY and SET UP: Use Eqs.(9.3) and (9.5). As long as 0,zα >  zω  increases. At the t when 0,zα =  zω  is at 

its maximum positive value and then starts to decrease when zα  becomes negative. 
2 3( ) ;t t tθ γ β= −  23.20 rad/s ,γ =  30.500 rad/sβ =  

EXECUTE: (a) 
2 3

2( )( ) 2 3z
d d t tt t t
dt dt
θ γ βω γ β−

= = = −  

(b) 
2(2 3 )( ) 2 6z

z
d d t tt t
dt dt
ω γ βα γ β−

= = = −  

(c) The maximum angular velocity occurs when 0.zα =  

2 6 0tγ β− =  implies 
2

3

2 3.20 rad/s 2.133 s
6 3 3(0.500 rad/s )

t γ γ
β β

= = = =  

At this t, 2 2 3 22 3 2(3.20 rad/s )(2.133 s) 3(0.500 rad/s )(2.133 s)z t tω γ β= − = − = 6.83 rad/s 
The maximum positive angular velocity is 6.83 rad/s and it occurs at 2.13 s. 
EVALUATE: For large t both zω  and zα  are negative and zω  increases in magnitude. In fact, zω → −∞  at 

.t →∞  So the answer in (c) is not the largest angular speed, just the largest positive angular velocity. 
 9.67. IDENTIFY: The angular acceleration α of the disk is related to the linear acceleration a of the ball by a Rα= . 

Since the acceleration is not constant, use 0 0

t

z z zdtω ω α− = ∫ and 0 0

t

zdtθ θ ω− = ∫  to relate θ , zω , zα and t for the 

disk. 0 0zω = . 

SET UP: 11  
1

n nt dt t
n

+=
+∫ . In a Rα= , α is in 2rad/s . 

EXECUTE: (a) 
2

31.80 m/s 0.600 m/s
3.00 s

aA
t

= = =  

(b) 
3

3(0.600 m/s ) (2.40 rad/s )
0.250 m

a t t
R

α = = =  

(c) 3 3 2

0
(2.40 rad/s ) (1.20 rad/s )

t

z tdt tω = =∫ . 15.0 rad/szω = for 3

15.0 rad/s 3.54 s
1.20 rad/s

t = = . 

(d) 3 2 3 3
0 0 0

(1.20 rad/s ) (0.400 rad/s )
t t

zdt t dt tθ θ ω− = = =∫ ∫ . For 3.54 st = , 0 17.7 radθ θ− = . 

EVALUATE: If the disk had turned at a constant angular velocity of 15.0 rad/s for 3.54 s it would have turned 
through an angle of 53.1 rad in 3.54 s. It actually turns through less than half this because the angular velocity is 
increasing in time and is less than 15.0 rad/s at all but the end of the interval. 

 9.68. IDENTIFY and SET UP: The translational kinetic energy is 21
2K mv=  and the kinetic energy of the rotating 

flywheel is 21
2 .K Iω=  Use the scale speed to calculate the actual speed v. From that calculate K for the car and 

then solve for ω  that gives this K for the flywheel. 
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EXECUTE: (a) toy toy

scale real

v L
v L

=  

toy
toy scale

real

0.150 m(700 km/h) 35.0 km/h
3.0 m

L
v v

L
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

toy (35.0 km/h)(1000 m/1 km)(1 h/3600 s) 9.72 m/sv = =  

(b) 2 21 1
2 2 (0.180 kg)(9.72 m/s) 8.50 JK mv= = =  

(c) 21
2K Iω=  gives that 5 2

2 2(8.50 J) 652 rad/s
4.00 10  kg m

K
I

ω −= = =
× ⋅

 

EVALUATE: 21
2K Iω=  gives ω  in rad/s. 652 rad/s 6200 rev/min= so the rotation rate of the flywheel is very 

large. 
 9.69. IDENTIFY: tana rα= , 2

rada rω= . Apply the constant acceleration equations and m=∑F a
! ! . 

SET UP: tana and rada  are perpendicular components of a! , so 2 2
rad tana a a= + . 

EXECUTE: (a) 
2

2tan 3.00 m s 0.050 rad s
60.0 m

a
r

α = = =  

(b) 2(0.05 rad s )(6.00 s) 0.300 rad s.tα = =  

(c) 2 2 2
rad (0.300 rad s) (60.0 m) 5.40 m s .a rω= = =  

(d) The sketch is given in Figure 9.69. 

(e) 22 2 2 2 2 2
rad tan (5.40 m s ) (3.00 m s ) 6.18 m s ,a a a= + = + = and the magnitude of the force is 

2(1240 kg)(6.18 m s ) 7.66 kN.F ma= = =  

(f) rad

tan

5.40arctan arctan 60.9 .
3.00

a
a

⎛ ⎞ ⎛ ⎞= = °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: tana  is constant and rada  increases as ω increases. At 0t = , a!  is parallel to v! . As t increases, 
a! moves toward the radial direction and the angle between a!  increases toward 90° . 

 
Figure 9.69 

 9.70. IDENTIFY: Apply conservation of energy to the system of drum plus falling mass, and compare the results for 
earth and for Mars. 
SET UP: 21

drum 2K Iω= . 21
mass 2K mv= . v Rω= so if drumK is the same, ω is the same and v is the same on both 

planets. Therefore, massK is the same. Let 0y = at the initial height of the mass and take y+  upward. 
Configuration 1 is when the mass is at its initial position and 2 is when the mass has descended 5.00 m, so 

1 0y = and 2y h= − , where h is the height the mass descends. 
EXECUTE: (a) 1 1 2 2K U K U+ = + gives drum mass0 K K mgh= + − . drum massK K+ are the same on both planets, so 

E E M Mmg h mg h= . 
2

E
M E 2

M

9.80 m/s(5.00 m) 13.2 m
3.71 m/s

gh h
g

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 
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(b) M M drum massmg h K K= + . 21
M M drum2 mv mg h K= − and 

2drum
M M

2 2(250.0 J)2 2(3.71 m/s )(13.2 m) 8.04 m/s
15.0 kg

Kv g h
m

= − = − =  

EVALUATE: We did the calculations without knowing the moment of inertia I of the drum, or the mass and radius 
of the drum. 

 9.71. IDENTIFY and SET UP: All points on the belt move with the same speed. Since the belt doesn�t slip, the speed of 
the belt is the same as the speed of a point on the rim of the shaft and on the rim of the wheel, and these speeds are 
related to the angular speed of each circular object by .v rω=  
EXECUTE:  

 
Figure 9.71 

(a) 1 1 1v rω=  

1 (60.0 rev/s)(2  rad/1 rev) 377 rad/sω π= =  
2

1 1 1 (0.45 10  m)(377 rad/s) 1.70 m/sv rω −= = × =  
(b) 1 2v v=  

1 1 2 2r rω ω=  

2 1 2 1( / ) (0.45 cm/2.00 cm)(377 rad/s) 84.8 rad/sr rω ω= = =  
EVALUATE: The wheel has a larger radius than the shaft so turns slower to have the same tangential speed for 
points on the rim. 

 9.72. IDENTIFY: The speed of all points on the belt is the same, so 1 1 2 2r rω ω= applies to the two pulleys. 
SET UP: The second pulley, with half the diameter of the first, must have twice the angular velocity, and this is 
the angular velocity of the saw blade. rad/s 30 rev/minπ = . 

EXECUTE: (a) 2
rad s 0.208 m(2(3450 rev min)) 75.1 m s.

30 rev min 2
v π⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) 
2

2 4 2
rad

rad s 0.208 m2(3450 rev min)  5.43 10  m s ,
30 rev min 2

a r πω
⎛ ⎞⎛ ⎞ ⎛ ⎞= = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

 

so the force holding sawdust on the blade would have to be about 5500 times as strong as gravity. 
EVALUATE: In v rω= and 2

rada rω= , ω must be in rad/s. 
 9.73. IDENTIFY and SET UP: Use Eq.(9.15) to relate rada  to ω  and then use a constant acceleration equation to 

replace .ω  
EXECUTE: (a) 2

rad ,a rω=  2
rad,1 1 ,a rω=  2

rad,2 2a rω=  
2 2

rad rad,2 rad,1 2 1( )a a a r ω ωΔ = − = −  
One of the constant acceleration equations can be written 

2 2
2 1 2 12 ( ),z zω ω α θ θ= + −  or 2 2

2 1 2 12 ( )z z zω ω α θ θ− = −  
Thus rad 2 1 2 12 ( ) 2 ( ),z za r rα θ θ α θ θΔ = − = −  as was to be shown. 

(b) 
2 2

2rad

2 1

85.0 m/s 25.0 m/s 8.00 rad/s
2 ( ) 2(0.250 m)(15.0 rad)z

a
r

α
θ θ
Δ −

= = =
−

 

Then 2 2
tan (0.250 m)(8.00 rad/s ) 2.00 m/sa rα= = =  

EVALUATE: 2ω  is proportional to zα  and 0( )θ θ−  so rada  is also proportional to these quantities. rada  increases 
while r stays fixed, zω  increases, and zα  is positive. 
IDENTIFY and SET UP: Use Eq.(9.17) to relate K and ω  and then use a constant acceleration equation to replace .ω  
EXECUTE: (c) 21

2 ;K Iω=  21
2 22 ,K Iω=  21

1 12K Iω=  
2 21 1

2 1 2 1 2 1 2 12 2( ) (2 ( )) ( ),z zK K K I I Iω ω α θ θ α θ θΔ = − = − = − = −  as was to be shown. 

(d) 2
2

2 1

45.0 J 20.0 J 0.208 kg m
( ) (8.00 rad/s )(15.0 rad)z

KI
α θ θ

Δ −
= = = ⋅

−
 

EVALUATE: zα  is positive, ω  increases, and K increases. 
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 9.74. IDENTIFY: wood lead.I I I= +  m Vρ= , where ρ is the volume density and m Aσ= , where σ is the area density. 

SET UP: For a solid sphere, 22
5I mR= . For the hollow sphere (foil), 22

3I mR= . For a sphere, 34
3V Rπ= and 

24A Rπ= . 3
w w w w

4
3

m V Rρ ρ π= = . 2
L L L L 4m A Rσ σ π= = . 

EXECUTE: 2 2 3 2 2 2 4 w
w L w L L

2 2 2 4 2 8( 4 )
5 3 5 3 3 3 5

RI m R m R R R R R R ρρ π σ π π σ⎛ ⎞ ⎛ ⎞= + = + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

3
4 2 28 (800 kg m )(0.20 m)(0.20 m) 20 kg m 0.70 kg m

3 5
I π ⎡ ⎤
= + = ⋅⎢ ⎥

⎣ ⎦
. 

EVALUATE: W 26.8 kgm = and 2
W 0.429 kg mI = ⋅ . L 10.1 kgm = and 2

L 0.268 kg mI = ⋅ . Even though the foil is 
only 27% of the total mass its contribution to I is about 38% of the total. 

 9.75. IDENTIFY: Estimate the shape and dimensions of your body and apply the approximate expression from 
Table 9.2. 
SET UP: I approximate my body as a vertical cylinder with mass 80 kg, length 1.7 m, and diameter 0.30 m 
(radius 0.15 m) 

EXECUTE: 2 2 21 1 (80 kg) (0.15 m) 0.9 kg m
2 2

I mR= = = ⋅  

EVALUATE: I depends on your mass and width but not on your height. 
 9.76. IDENTIFY: Treat the V like two thin 0.160 kg bars, each 25 cm long. 

SET UP: For a slender bar with the axis at one end, 21
3I mL= . 

EXECUTE: 2 2 3 21 12 2 (0.160 kg)(0.250 m) 6.67 10  kg m
3 3

I mL −⎛ ⎞ ⎛ ⎞= = = × ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: The value of I is independent of the angle between the two sides of the V; the angle 70.0° didn't 
enter into the calculation. 

 9.77. IDENTIFY: 21
2K Iω= . 2

rada rω= . m Vρ= . 

SET UP: For a disk with the axis at the center, 21
2I mR= . 2V t Rπ= , where 0.100 mt = is the thickness of the 

flywheel. 37800 kg mρ = is the density of the iron. 

EXECUTE: (a) 90.0 rpm 9.425 rad sω = = .
6

5 2
2 2

2 2(10 0 10 J) 2 252 10 kg m
(9 425 rad s)

 K . I .  
.ω

×
= = = × ⋅ . 

2m V R tρ ρπ= = . 2 41 1
2 2

I mR tRρπ= = . This gives 1 4(2 ) 3.68 mR I tρπ= =  and the diameter is 7.36 m. 

(b) 2 2
rad 327m sa Rω= =  

EVALUATE: In 21
2K Iω= , ω must be in rad/s. rada  is about 33g; the flywheel material must have large cohesive 

strength to prevent the flywheel from flying apart. 
 9.78. IDENTIFY: 21

2K Iω= . To have the same K for any ω the two parts must have the same I. Use Table 9.2 for I. 

SET UP: For a solid sphere, 22
solid solid5I M R= . For a hollow sphere, 22

hollow hollow3I M R= . 

EXECUTE: solid hollowI I= gives 2 22 2
solid hollow5 3M R M R= and 3 3

hollow solid5 5M M M= = . 
EVALUATE: The hollow sphere has less mass since all its mass is distributed farther from the rotation axis. 

 9.79. IDENTIFY: 21
2K Iω= . 2  rad

T
πω = , where T is the period of the motion. For the earth's orbital motion it can be 

treated as a point mass and 2I MR= . 
SET UP: The earth's rotational period is 24 h 86,164 s= . Its orbital period is 71 yr 3.156 10  s= × . 

245.97 10  kgM = × . 66.38 10  mR = × . 

EXECUTE: (a) 
2 2 24 6 2

29
2 2

2 2 (0.3308)(5.97 10  kg)(6.38 10 m) 2.14 10  J.
(86,164 s)

IK
T
π π × ×

= = = ×  

(b) 
2 2 24 11 2

33
7 2

1 2 2 (5.97 10  kg)(1.50 10  m) 2.66 10  J.
2 (3.156 10 s)

RM
T
π π × ×⎛ ⎞ = = ×⎜ ⎟ ×⎝ ⎠

 

(c) Since the Earth�s moment of inertia is less than that of a uniform sphere, more of the Earth�s mass must be 
concentrated near its center. 
EVALUATE: These kinetic energies are very large, because the mass of the earth is very large. 
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 9.80. IDENTIFY: Using energy considerations, the system gains as kinetic energy the lost potential energy, mgR. 

SET UP: The kinetic energy is 2 21 1
2 2

K I mvω= + , with 21
2I mR= for the disk. v Rω= . 

EXECUTE: 2 2 21 1 1( ) ( )
2 2 2

K I m R I mRω ω= + = + . 21
2Using  and solving for ,Ι mR ω=  2 4

3
g
R

ω = and 4 .
3

g
R

ω =  

EVALUATE: The small object has speed 2 2
3

v gR= . If it was not attached to the disk and was dropped from a 

height h, it would attain a speed 2gR . Being attached to the disk reduces its final speed by a factor of 2
3

. 

 9.81. IDENTIFY: Use Eq.(9.20) to calculate I. Then use 21
2K Iω=  to calculate K. 

(a) SET UP: The object is sketched in Figure 9.81. 

 

Consider a small strip of width dy 
and a distance y below the top of the 
triangle. 
The length of the strip is 

( / ) .x y h b=  

Figure 9.81  
EXECUTE: The strip has area  x dy and the area of the sign is 1

2 ,bh  so the mass of the strip is 

21
2

 2 2x dy yb dy Mdm M M y dy
bh h bh h

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

2
2 31

3 4

2( )  
3
MbdI dm x y dy
h

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

2 2
3 4 2

04 40 0

2 2 1 1 
3 3 6

h h hMb MbI dI y dy y Mb
h h h

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠∫ ∫  

(b) 2 21
6 2.304 kg mI Mb= = ⋅  

2.00 rev/s 4.00  rad/sω π= =  
21

2 182 JK Iω= =  

EVALUATE: From Table (9.2), if the sign were rectangular, with length b, then 21
3 .I Mb=  Our result is one-half 

this, since mass is closer to the axis for the triangular than for the rectangular shape. 
 9.82. IDENTIFY: Apply conservation of energy to the system. 

SET UP: For the falling mass 21
2K mv= . For the wheel 21

2K Iω= . 

EXECUTE: (a) The kinetic energy of the falling mass after 2.00 m is ( )( )221 1
2 2 8.00 kg 5.00 m/s 100 J.K mv= = =  

The change in its potential energy while falling is ( )( )( )28.00 kg 9.8 m/s 2.00 m 156.8 Jmgh = = . The wheel must 

have the �missing� 56.8 J in the form of rotational kinetic energy. Since its outer rim is moving at the same speed 

as the falling mass, 5.00 m/s , v rω= gives 5.00 m/s 13.51 rad/s
0.370 m

v
r

ω = = = . 21 ;  therefore
2

K Iω=  

( )
( )

2
22

2 56.8 J2 0.622 kg m
13.51 rad s

KI
ω

= = = ⋅ . 

(b) The wheel�s mass is 2(280 N) (9.8 m s ) 28.6 kg= . The wheel with the largest possible moment of inertia 
would have all this mass concentrated in its rim. Its moment of inertia would be 

( )( )22 228.6 kg 0.370 m 3.92 kg mI MR= = = ⋅ . The boss�s wheel is physically impossible. 
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EVALUATE: If the mass falls from rest in free-fall its speed after it has descended 2.00 m is 
2 (2.00 m) 6.26 m/sv g= = . Its actual speed is less because some of the energy of the system is in the form of 

rotational kinetic energy of the wheel. 
 9.83. IDENTIFY: Use conservation of energy. The stick rotates about a fixed axis so 21

2 .K Iω=  Once we have ω  use 
v rω=  to calculate v for the end of the stick. 
SET UP: The object is sketched in Figure 9.83. 

 

Take the origin of coordinates at the lowest point reached by 
the stick and take the positive y-direction to be upward. 

Figure 9.83  
EXECUTE: (a) Use Eq.(9.18): cmU Mgy=  

2 1 cm2 cm1( )U U U Mg y yΔ = − = −  
The center of mass of the meter stick is at its geometrical center, so 

cm1 1.00 my =  and cm2 0.50 my =  

Then 2(0.160 kg)(9.80 m/s )(0.50 m 1.00 m) 0.784 JUΔ = − = −  
(b) Use conservation of energy: 1 1 other 2 2K U W K U+ + = +  
Gravity is the only force that does work on the meter stick, so other 0.W =  

1 0.K =  
Thus 2 1 2 ,K U U U= − = −Δ  where UΔ  was calculated in part (a). 

21
2 22K Iω=  so 21

22 I Uω = −Δ  and 2 2( ) /U Iω = −Δ  

For stick pivoted about one end, 21
3I ML=  where 1.00 m,L =  so 

2 2 2

6( ) 6(0.784 J) 5.42 rad/s
(0.160 kg)(1.00 m)

U
ML

ω −Δ
= = =  

(c) (1.00 m)(5.42 rad/s) 5.42 m/sv rω= = =  
(d) For a particle in free-fall, with y+  upward, 

0 0;yv =  0 1.00 m;y y− = −  29.80 m/s ;ya = −  ?yv =  
2 2

0 02 ( )y y yv v a y y= + −  
2

02 ( ) 2( 9.80 m/s )( 1.00 m) 4.43 m/sy yv a y y= − − = − − − = −  

EVALUATE: The magnitude of the answer in part (c) is larger. 1,gravU  is the same for the stick as for a particle 

falling from a height of 1.00 m. For the stick ( )2 2 2 21 1 1 1
22 2 3 6( / ) .K I ML v L Mvω= = =  For the stick and for the 

particle, 2K  is the same but the same K gives a larger v for the end of the stick than for the particle. The reason is 
that all the other points along the stick are moving slower than the end opposite the axis. 

 9.84. IDENTIFY: Apply conservation of energy to the system of cylinder and rope. 
SET UP: Taking the zero of gravitational potential energy to be at the axle, the initial potential energy is zero (the 
rope is wrapped in a circle with center on the axle).When the rope has unwound, its center of mass is a distance 

Rπ below the axle, since the length of the rope is 2 Rπ and half this distance is the position of the center of the 
mass. Initially, every part of the rope is moving with speed 0 ,Rω  and when the rope has unwound, and the cylinder 
has angular speed ,ω the speed of the rope is Rω (the upper end of the rope has the same tangential speed at the 
edge of the cylinder). 2(1 2)I MR= for a uniform cylinder, 
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EXECUTE: 1 2 2K K U= + . 2 2 2 2
0  .

4 2 4 2
M m M mR R mg Rω ω π⎛ ⎞ ⎛ ⎞+ = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Solving forω gives 

( )
( )

2
0

4
2

mg R
M m
π

ω ω= +
+

, and the speed of any part of the rope is .v Rω=  

EVALUATE: When 0m → , 0ω ω→ . When m M>> , 2
0

2 g
R
πω ω= + and 2

0 2v v gRπ= + . This is the final 

speed when an object with initial speed 0v descends a distance Rπ . 
 9.85. IDENTIFY: Apply conservation of energy to the system consisting of blocks A and B and the pulley. 

SET UP: The system at points 1 and 2 of its motion is sketched in Figure 9.85. 

 
Figure 9.85 

Use the work-energy relation 1 1 other 2 2.K U W K U+ + = +  Use coordinates where y+  is upward and where the origin 
is at the position of block B after it has descended. The tension in the rope does positive work on block A and 
negative work of the same magnitude on block B, so the net work done by the tension in the rope is zero. Both 
blocks have the same speed. 
EXECUTE: Gravity does work on block B and kinetic friction does work on block A. Therefore 

other k .f AW W m gdμ= = −  

1 0K =  (system is released from rest) 

1 1 ;B B BU m gy m gd= =  2 2 0B BU m gy= =  
2 2 21 1 1

2 2 2 22 2 2 .A BK m v m v Iω= + +  
But (blocks) (pulley),v Rω=  so 2 2 /v Rω =  and 

2 2 2 21 1 1
2 2 2 22 2 2( ) ( / ) ( / )A B A BK m m v I v R m m I R v= + + = + +  

Putting all this into the work-energy relation gives 
2 21

k 22 ( / )B A A Bm gd m gd m m I R vμ− = + +  
2 2

2 k( / ) 2 ( )A B B Am m I R v gd m mμ+ + = −  

k
2 2

2 ( )
/

B A

A B

gd m mv
m m I R

μ−
=

+ +
 

EVALUATE: If B Am m>>  and 2/ ,I R  then 2 2 ;v gd=  block B falls freely. If I is very large, 2v  is very small. 

Must have kB Am mμ>  for motion, so the weight of B will be larger than the friction force on A. 2/I R  has units of 
mass and is in a sense the �effective mass� of the pulley. 

 9.86. IDENTIFY: Apply conservation of energy to the system of two blocks and the pulley. 
SET UP: Let the potential energy of each block be zero at its initial position. The kinetic energy of the system is 
the sum of the kinetic energies of each object. v Rω= , where v is the common speed of the blocks and ω is the 
angular velocity of the pulley. 
EXECUTE: The amount of gravitational potential energy which has become kinetic energy is 

( )( )( )24.00 kg 2.00 kg 9.80 m s 5.00 m 98.0 J.K = − =  In terms of the common speed v of the blocks, the kinetic 

energy of the system is 
2

2
1 2

1 1( )
2 2

vK m m v I
R

⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

. 

2
2 2

2

1 (0.480 kg m )4.00 kg 2 00 kg (12.4 kg).
2 (0.160 m)

K v . v
⎛ ⎞⋅

= + + =⎜ ⎟
⎝ ⎠

 Solving for v gives 98.0 J 2.81 m s.
12.4 kg

v = =  
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EVALUATE: If the pulley is massless, 21
298.0 J (4.00 kg 2.00 kg)v= + and 5.72 m/sv = . The moment of inertia 

of the pulley reduces the final speed of the blocks. 
 9.87. IDENTIFY and SET UP: Apply conservation of energy to the motion of the hoop. Use Eq.(9.18) to calculate grav.U  

Use 21
2K Iω=  for the kinetic energy of the hoop. Solve for .ω  The center of mass of the hoop is at its geometrical 

center. 

 

Take the origin to be at the original location 
of the center of the hoop, before it is rotated 
to one side, as shown in Figure 9.87. 

Figure 9.87  

cm1 cos (1 cos )y R R Rβ β= − = −  

cm2 0y =  (at equilibrium position hoop is at original position) 
EXECUTE: 1 1 other 2 2K U W K U+ + = +  

other 0W =  (only gravity does work) 

1 0K =  (released from rest), 21
2 22K Iω=  

For a hoop, 2
cm ,I MR=  so 2 2I Md MR= +  with d R=  and 22 ,I MR=  for an axis at the edge. Thus 

2 2 2 21
2 2 22 (2 ) .K MR MRω ω= =  

1 cm1 (1 cos ),U Mgy MgR β= = −  2 cm2 0U mgy= =  
Thus 1 1 other 2 2K U W K U+ + = +  gives 

2 2
2(1 cos )MgR MRβ ω− =  and (1 cos ) /g Rω β= −  

EVALUATE: If 0,β =  then 2 0.ω =  As β  increases, 2ω  increases. 

 9.88. IDENTIFY: 21
2K Iω= , with ω  in rad/s. energyP

t
=  

SET UP: For a solid cylinder, 21
2I MR= . 1 rev/min (2 / 60) rad/sπ=  

EXECUTE: (a) 3000 rev/min 314 rad/sω = = . 2 21
2 (1000 kg)(0.900 m) 405 kg mI = = ⋅  

2 2 71
2 (405 kg m )(314 rad/s) 2.00 10  JK = ⋅ = × . 

(b) 
7

3
4

2.00 10  J 1.08 10  s 17.9 min
1.86 10  W

Kt
P

×
= = = × =

×
. 

EVALUATE: In 21
2K Iω= , we must use ω in rad/s. 

 9.89. IDENTIFY: 1 2I I I= + . Apply conservation of energy to the system. The calculation is similar to Example 9.9. 

SET UP: 
1

v
R

ω = for part (b) and 
2

v
R

ω =  for part (c). 

EXECUTE: (a) 2 2 2 2 2 2
1 1 2 2

1 1 1 ((0.80 kg)(2.50 10  m) (1.60 kg)(5 00 10  m) )
2 2 2

I M R M R .− −= + = × + ×  

3 22.25 10  kg m .I −= × ⋅  

(b) The method of Example 9.9 yields 2
1

2
1 ( )

ghv
I mR

=
+

. 

2

3 2 2

2(9.80 m s )(2.00 m) 3.40 m s.
(1 ((2.25 10  kg m ) (1.50 kg)(0.025 m) ))

v −= =
+ × ⋅

 

The same calculation, with 2R  instead of 1R  gives 4.95 m s.v =  
EVALUATE: The final speed of the block is greater when the string is wrapped around the larger disk. v Rω= , so 
when 2R R=  the factor that relates v to ω is larger. For 2R R= a larger fraction of the total kinetic energy resides 
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with the block. The total kinetic energy is the same in both cases (equal to mgh), so when 2R R= the kinetic energy 
and speed of the block are greater. 

 9.90. IDENTIFY: Apply conservation of energy to the motion of the mass after it hits the ground. 

SET UP: From Example 9.9, the speed of the mass just before it hits the ground is 2
1 / 2

ghv
M m

=
+

. 

EXECUTE: (a) In the case that no energy is lost, the rebound height h′  is related to the speed v by 
2

2
vh
g

′ = , and 

with the form for v given in Example 9.9, .1  2
hh M m

′ =
+

 

(b) Considering the system as a whole, some of the initial potential energy of the mass went into the kinetic energy 
of the cylinder. Considering the mass alone, the tension in the string did work on the mass, so its total energy is not 
conserved. 
EVALUATE: If m M>> , h h′ =  and the mass does rebound to its initial height. 

 9.91. IDENTIFY: Apply conservation of energy to relate the height of the mass to the kinetic energy of the cylinder. 
SET UP: First use (cylinder) 250 JK =  to find ω  for the cylinder and v for the mass. 

EXECUTE: 2 21 1
2 2 (10.0 kg)(0.150 m) 0.1125 kg mI MR2= = = ⋅  

21
2K Iω=  so 2 / 66.67 rad/sK Iω = =  

10.0 m/sv Rω= =  
SET UP: Use conservation of energy 1 1 2 2K U K U+ = +  to solve for the distance the mass descends. Take 0y =  
at lowest point of the mass, so 2 0y =  and 1 ,y h=  the distance the mass descends. 
EXECUTE: 1 2 0K U= =  so 1 2.U K=  

2 21 1
2 2 ,mgh mv Iω= +  where 12.0 kgm =  

For the cylinder, 21
2I MR=  and / ,v Rω =  so 2 21 1

2 4 .I Mvω =  
2 21 1

2 4mgh mv Mv= +  
2

1 7.23 m
2 2
v Mh
g m
⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 

EVALUATE: For the cylinder ( )2 2 2 21 1 1 1
cyl 2 2 2 4( / ) .K I MR v R Mvω= = =  

21
mass 2 ,K mv=  so mass cyl(2 / ) [2(12.0 kg)/10.0 kg](250 J) 600 J.K m M K= = =  The mass has 600 J of kinetic energy 

when the cylinder has 250 J of kinetic energy and at this point the system has total energy 850 J since 2 0.U =  
Initially the total energy of the system is 1 1 850 J,U mgy mgh= = =  so the total energy is shown to be conserved. 

 9.92. IDENTIFY: Energy conservation: Loss of U of box equals gain in K of system. Both the cylinder and pulley have 

kinetic energy of the form 21
2K Iω= . 2 2 2

box box box pulley pulley cylinder cylinder
1 1 1
2 2 2

m gh m v I Iω ω= + + . 

SET UP: Box Box
pulley cylinder

p cylinder

 and v v
r r

ω ω= = . 

EXECUTE: 
2 2

2 2 2 B
B B B P p C C

p C

1 1 1 1 1    
2 2 2 2 2

Bv vm gh m v m r m r
r r

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
. 2 2 2

B B B P B C B
1 1 1
2 4 4

m gh m v m v m v= + +  and 

2
B

B 1 1 1 1
B p C2 4 4 4

(3.00 kg)(9.80 m s )(1.50 m) 3.68 m s
1.50 kg (7.00 kg)

m ghv
m m m

= = =
+ + +

. 

EVALUATE: If the box was disconnected from the rope and dropped from rest, after falling 1.50 m its speed 
would be 2 (1.50 m) 5.42 m/sv g= = . Since in the problem some of the energy of the system goes into kinetic 
energy of the cylinder and of the pulley, the final speed of the box is less than this. 

 9.93. IDENTIFY: disk holeI I I= − , where holeI is I for the piece punched from the disk. Apply the parallel-axis theorem to 
calculate the required moments of inertia. 
SET UP: For a uniform disk, 21

2I MR= . 
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EXECUTE: (a) The initial moment of inertia is 21
0 2 .I MR=  The piece punched has a mass of 

16
M  and a moment 

of inertia with respect to the axis of the original disk of  
2 2

21 9 .
16 2 4 2 512
M R R MR
⎡ ⎤⎛ ⎞ ⎛ ⎞+ =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

The moment of inertia of the remaining piece is then 2 2 21 9 247 .
2 512 512

I MR MR MR= − =  

(b) 2 2 2 23831 1
2 2 512 ( / 2) ( /16)( / 4) .I MR M R M R MR= + − =  

EVALUATE: For a solid disk and an axis at a distance / 2R from the disk's center, the parallel-axis theorem gives 
2 2 23 3841

2 4 512I MR MR MR= = = . For both choices of axes the presence of the hole reduces I, but the effect of the hole 
is greater in part (a), when it is farther from the axis. 

 9.94. IDENTIFY: In part (a) use the parallel-axis theorem to relate the moment of inertia cmI for an axis through the 
center of the sphere to PI , the moment of inertia for an axis at the pivot. 

SET UP: I for a uniform solid sphere and the axis through its center is 22
5 .MR  I for a slender rod and an axis at 

one end is 21
3 mL , where m is the mass of the rod and L is its length. 

EXECUTE: (a) From the parallel-axis theorem, the moment of inertia is 2 2(2 5) ,PI MR ML= + and 
2

2

21 .
5

PI R
ML L

⎛ ⎞⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
 If (0.05) ,R L=  the difference is 2(2 5)(0.05) 0.001 0.1%.= =  

(b) 2
rod rod ( ) ( 3 ),I ML m M=  which is 0.33% when rod (0.01) .m M=  

EVALUATE: In both these cases the correction to 2I ML= is very small. 
 9.95. IDENTIFY: Follow the instructions in the problem to derive the perpendicular-axis theorem. Then apply that 

result in part (b). 
SET UP: 2

i i
i

I m r=∑ . The moment of inertia for the washer and an axis perpendicular to the plane of the washer 

at its center is 2 21
1 22 ( )M R R+ . In part (b), I for an axis perpendicular to the plane of the square at its center is 

2 2 21 1
12 6( )M L L ML+ = . 

EXECUTE: (a) With respect to O, 2 2 2,i i ir x y= +  and so 
2 2 2 2 2( ) .O i i i i i i i i i x y

i i i i
I m r m x y m x m y I I= = + = + = +∑ ∑ ∑ ∑  

(b) Two perpendicular axes, both perpendicular to the washer�s axis, will have the same moment of inertia about 
those axes, and the perpendicular-axis theorem predicts that they will sum to the moment of inertia about the 
washer axis, which is 2 21

1 22 ( ),I M R R= +  and so xI yI= 2 21
1 24 ( ).M R R= +  

(c) 21
0 6 .I mL=  Since 1

0 12,  and ,  both  and  must be x y x y x yI I I I I  I I= + = 2.mL  
EVALUATE: The result in part (c) says that I is the same for an axis that bisects opposite sides of the square as for 
an axis along the diagonal of the square, even though the distribution of mass relative to the two axes is quite 
different in these two cases. 

 9.96. IDENTIFY: Apply the parallel-axis theorem to each side of the square. 
SET UP: Each side has length a and mass / 4,M  and the moment of inertia of each side about an axis 
perpendicular to the side and through its center is 2 21 1 1

12 4 48Ma Ma= . 
EXECUTE: The moment of inertia of each side about the axis through the center of the square is, from the 

perpendicular axis theorem, ( )22 2

48 4 2 12
Ma a MaM+ = . The total moment of inertia is the sum of the contributions 

from the four sides, or 
2 2

4 .12 3
Ma Ma× =  

EVALUATE: If all the mass of a side were at its center, a distance / 2a from the axis, we would have 
2

214
4 2 4
M aI Ma⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. If all the mass was divided equally among the four corners of the square, a distance 

/ 2a from the axis, we would have 
2

214
4 22
M aI Ma⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. The actual I is between these two values. 
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 9.97. IDENTIFY: Use Eq.(9.20) to calculate I. 
(a) SET UP: Let L be the length of the cylinder. Divide the cylinder into thin cylindrical shells of inner radius r 
and outer radius .r dr+  An end view is shown in Figure 9.97. 

 

rρ α=  
The mass of the thin cylindrical shell is 

2(2  ) 2  dm dV r dr L Lr drρ ρ π πα= = =  

Figure 9.97  

EXECUTE: ( )2 4 5 51 2
5 50

 2  2
R

I r dm L r dr L R LRπα πα πα= = = =∫ ∫  

Relate M to :α  ( )2 3 31 2
3 30

2  2 ,
R

M dm L r dr L R LRπα πα πα= = = =∫ ∫  so 3 3 / 2.LR Mπα =  

Using this in the above result for I gives 2 232
5 5(3 / 2) .I M R MR= =  

(b) EVALUATE: For a cylinder of uniform density 21
2 .I MR=  The answer in (a) is larger than this. Since the 

density increases with distance from the axis the cylinder in (a) has more mass farther from the axis than for a 
cylinder of uniform density. 

 9.98. IDENTIFY: Write K in terms of the period T and take derivatives of both sides of this equation to relate /dK dt to 
/dT dt . 

SET UP: 2
T
πω = and 21

2K Iω= . The speed of light is 83.00 10  m/sc = × . 

EXECUTE: (a) 
2

2

2 IK
T
π

= . 
2

3

4dK I dT
dt T dt

π
= − . The rate of energy loss is 

2

3

4 I dT
T dt
π . Solving for the moment of 

inertia  in terms of the power ,I P  
3 31 3

38 2
2 13 

1 (5 10  W)(0.0331 s) 1 s  1.09 10 kg m
4 4 4.22 10 s
PTI

dT dtπ π −

×
= = = × ⋅

×
 

(b) 
38 2

3 
30 

5 5(1.08 10 kg m ) 9.9 10 m,  about 10 km.
2 2(1.4)(1.99 10 kg)

IR
M

× ⋅
= = = ×

×
 

(c) 
3

6 32 2 (9.9 10 m) 1.9 10  m s 6.3 10 .
(0.0331 s)

Rv c
T
π π −×

= = = × = ×  

(d) 17 3
3 6.9 10 kg m ,

(4 3)
M M
V R

ρ
π

= = = × which is much higher than the density of ordinary rock by 14 orders of 

magnitude, and is comparable to nuclear mass densities. 
EVALUATE: I is huge because M is huge. A small rate of change in the period corresponds to a large release of 
energy. 

 9.99. IDENTIFY: In part (a), do the calculations as specified in the hint. In part (b) calculate the mass of each shell of 
inner radius 1R and outer radius 2R  and sum to get the total mass. In part (c) use the expression in part (a) to 
calculate I for each shell and sum to get the total I. 
SET UP: m Vρ= . For a solid sphere, 34

3V Rπ= . 
EXECUTE: (a) Following the hint, the moment of inertia of a uniform sphere in terms of the mass density is 

2 582
5 15 ,I MR Rπρ= =  and so the difference in the moments of inertia of two spheres with the same density ρ  but 

different radii 5 5
2 1 2 1 and  is  (8 15)( ).R R I R Rρ π= −  

(b) A rather tedious calculation, summing the product of the densities times the difference in the cubes of the radii 
that bound the regions and multiplying by 24 4 3,  gives 5.97 10 kg.Mπ = ×  
(c) A similar calculation, summing the product of the densities times the difference in the fifth powers of the radii 
that bound the regions and multiplying by 22 2 28 15,   gives 8.02 10  kg m 0.334 .I MRπ = × ⋅ =  

EVALUATE: The calculated value of 20.334I MR= agrees closely with the measured value of 20.3308MR . This 
simple model is fairly accurate. 
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9.100. IDENTIFY: Apply Eq.(9.20) 

SET UP: Let z be the coordinate along the vertical axis. ( ) zRr z
h

= . 
2 2

2

R zdm
h

πρ= and 
4

4
42

RdI z dz
h

πρ
= . 

EXECUTE: 
4 4

4 5 4
4 00

1
2 10 10

h h R RI dI z dz z R h .
h h

πρ πρ πρ⎡ ⎤= = = =⎣ ⎦∫ ∫  The volume of a right circular cone is 

2 21 1
3 3,  the mass is  and soV R h R hπ πρ=  

2
2 23 3 .

10 3 10
R hI R MRπρ⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

EVALUATE: For a uniform cylinder of radius R and for an axis through its center, 21
2I MR= . I for the cone is 

less, as expected, since the cone is constructed from a series of parallel discs whose radii decrease from R to zero 
along the vertical axis of the cone. 

9.101. IDENTIFY: Follow the steps outlined in the problem. 
SET UP: /z d dtω θ= . 2 2/z zd dtα ω= . 

EXECUTE: (a) 0  ds r d r d dθ θ βθ θ= = +  so 2
0( ) 2s r βθ θ θ= + . θ must be in radians. 

(b) Setting 2
0 2s vt r βθ θ= = + gives a quadratic in θ . The positive solution is 

2
0 0

1) 2(t r vt rθ β
β
⎡ ⎤= + −⎣ ⎦ . 

(The negative solution would be going backwards, to values of r smaller than 0r .) 

(c) Differentiating, 
2

0

( ) ,
2

z
d vt
dt r vt
θω

β
= =

+
 

( )
2

3 22
0

.
2

z
z

d v
dt r vt

ω βα
β

= = −
+

 The angular acceleration zα  is not 

constant. 
(d) 0 25.0 mm.r =  θ  must be measured in radians, so ( )( )1.55 m rev 1 rev 2 rad 0.247 m rad. β μ π μ= =  Using 

( )tθ  from part (b), the total angle turned in 74.0 min 4440 s=  is 

( )( )( ) ( )27 3 3
7

1 2 2.47 10 m/rad 1.25 m/s 4440 s 25.0 10 m 25.0 10  m  
2.47 10 m/rad

θ − − −
−

⎛ ⎞= × + × − ×⎜ ⎟× ⎝ ⎠
 

5= 1.337 10  radθ × , which is 42.13 10  rev× . 
(e) The graphs are sketched in Figure 9.101. 
EVALUATE: zω must decrease as r increases, to keep v rω= constant. For zω to decrease in time, zα must be 
negative. 

 
Figure 9.101 
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DYNAMICS OF ROTATIONAL MOTION 

 10.1. IDENTIFY: Use Eq.(10.2) to calculate the magnitude of the torque and use the right-hand rule illustrated in 
Fig.(10.4) to calculate the torque direction. 
(a) SET UP: Consider Figure 10.1a. 

 

EXECUTE: Flτ =  
sin (4.00 m)sin90l r φ= = °  

4.00 ml =  
(10.0 N)(4.00 m) 40.0 N mτ = = ⋅  

Figure 10.1a  
This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τ!  is 
directed out of the plane of the figure. 
(b) SET UP: Consider Figure 10.1b. 

 

EXECUTE: Flτ =  
sin (4.00 m)sin120l r φ= = °  

3.464 ml =  
(10.0 N)(3.464 m) 34.6 N mτ = = ⋅  

Figure 10.1b  
This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τ!  is 
directed out of the plane of the figure. 
(c) SET UP: Consider Figure 10.1c. 

 

EXECUTE: Flτ =  
sin (4.00 m)sin30l r φ= = °  

2.00 ml =  
(10.0 N)(2.00 m) 20.0 N mτ = = ⋅  

Figure 10.1c  
This force tends to produce a counterclockwise rotation about the axis; by the right-hand rule the vector τ!  is 
directed out of the plane of the figure. 
(d) SET UP: Consider Figure 10.1d. 

 

EXECUTE: Flτ =  
sin (2.00 m)sin 60 1.732 ml r φ= = ° =  

(10.0 N)(1.732 m) 17.3 N mτ = = ⋅  

Figure 10.1d  
This force tends to produce a clockwise rotation about the axis; by the right-hand rule the vector τ!  is directed into 
the plane of the figure. 
(e) SET UP: Consider Figure 10.1e. 

 

EXECUTE: Flτ =  
0r =  so 0l =  and 0τ =  

Figure 10.1e  

10
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(f) SET UP: Consider Figure 10.1f. 

 

EXECUTE: Flτ =  
sin ,l r φ=  180 ,φ = °  

so 0l =  and 0τ =  
Figure 10.1f  

EVALUATE: The torque is zero in parts (e) and (f) because the moment arm is zero; the line of action of the force 
passes through the axis. 

 10.2. IDENTIFY: Flτ =  with sinl r φ= . Add the two torques to calculate the net torque. 
SET UP: Let counterclockwise torques be positive. 
EXECUTE: 1 1 1 (8.00 N)(5.00 m) 40.0 N mFlτ = − = − = − ⋅ . 2 2 2 (12.0 N)(2.00 m)sin30.0 12.0 N mF lτ = + = = + ⋅° . 

1 2 28.0 N mτ τ τ= + = − ⋅∑ . The net torque is 28.0 N m⋅ , clockwise. 

EVALUATE: Even though 1 2F F< , the magnitude of 1τ  is greater than the magnitude of 2 ,τ  because 1F  has a 
larger moment arm. 

 10.3. IDENTIFY and SET UP: Use Eq.(10.2) to calculate the magnitude of each torque and use the right-hand rule 
(Fig.10.4) to determine the direction. Consider Figure 10.3 

 
Figure 10.3 

Let counterclockwise be the positive sense of rotation. 
EXECUTE: 2 2

1 2 3 (0.090 m) (0.090 m) 0.1273 mr r r= = = + =  

1 1 1Flτ = −  

1 1 1sin (0.1273 m)sin135 0.0900 ml r φ= = ° =  

1 (18.0 N)(0.0900 m) 1.62 N mτ = − = − ⋅  

1τ
!  is directed into paper 

2 2 2F lτ = +  

2 2 2sin (0.1273 m)sin135 0.0900 ml r φ= = ° =  

2 (26.0 N)(0.0900 m) 2.34 N mτ = + = + ⋅  

2τ
!  is directed out of paper 

3 3 3F lτ = +  

3 3 3sin (0.1273 m)sin90 0.1273 ml r φ= = ° =  

3 (14.0 N)(0.1273 m) 1.78 N mτ = + = + ⋅  

3τ
!  is directed out of paper 

1 2 3 1.62 N m 2.34 N m 1.78 N m 2.50 N mτ τ τ τ= + + = − ⋅ + ⋅ + ⋅ = ⋅∑  
EVALUATE: The net torque is positive, which means it tends to produce a counterclockwise rotation; the vector 
torque is directed out of the plane of the paper. In summing the torques it is important to include +  or −  signs to 
show direction. 

 10.4. IDENTIFY: Use sinFl rFτ φ= = to calculate the magnitude of each torque and use the right-hand rule to 
determine the direction of each torque. Add the torques to find the net torque. 
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SET UP: Let counterclockwise torques be positive. For the 11.9 N force ( 1F ), 0r = . For the 14.6 N force ( 2F ), 
0.350 mr = and 40.0φ = ° . For the 8.50 N force ( 3F ), 0.350 mr = and 90.0φ = °  

EXECUTE: 1 0τ = . 2 (14.6 N)(0.350 m)sin 40.0 3.285 N mτ = − = − ⋅° . 

3 (8.50 N)(0.350 m)sin90.0 2.975 N mτ = + = + ⋅° . 3.285 N m 2.975 N m 0.31 N mτ = − ⋅ + ⋅ = − ⋅∑ .The net torque 
is 0.31 N m⋅ and is clockwise. 
EVALUATE: If we treat the torques as vectors, 2τ

! is into the page and 3τ
! is out of the page. 

 10.5. IDENTIFY and SET UP: Calculate the torque using Eq.(10.3) and also determine the direction of the torque using 
the right-hand rule. 
(a) � �( 0.450 m) (0.150 m) ;= − +r i j!  � �( 5.00 N) (4.00 N) .= − +F i j

!
 The sketch is given in Figure 10.5. 

 
Figure 10.5 

EXECUTE: (b) When the fingers of your right hand curl from the direction of r!  into the direction of F
!

 (through 
the smaller of the two angles, angle )φ  your thumb points into the page (the direction of ,τ!  the -direction).z−  

(c) � � � �( 0.450 m) +(0.150 m) ( 5.00 N) (4.00 N)τ ⎡ ⎤ ⎡ ⎤= × = − × − +⎣ ⎦ ⎣ ⎦r F i j i j
!!!  

� � � � � � � �(2.25 N m) (1.80 N m) (0.750 N m) (0.600 N m)τ = + ⋅ × − ⋅ × − ⋅ × + ⋅ ×i i i j j i j j!  
� � � �× = × = 0i i j j  
� � �,×i j = k  � � �× = −j i k  

Thus � � �(1.80 N m) (0.750 N m)( ) ( 1.05 N m) .τ = − ⋅ − ⋅ − = − ⋅k k k!  
EVALUATE: The calculation gives that τ!  is in the -direction.z−  This agrees with what we got from the right-
hand rule. 

 10.6. IDENTIFY: Use sinFl rFτ φ= = for the magnitude of the torque and the right-hand rule for the direction. 
SET UP: In part (a), 0.250 mr = and 37φ = °  
EXECUTE: (a) (17.0 N)(0.250 m)sin37 2.56 N mτ = = ⋅° . The torque is counterclockwise. 
(b) The torque is maximum when 90φ = ° and the force is perpendicular to the wrench. This maximum torque is 
(17.0 N)(0.250 m) 4.25 N m= ⋅ . 
EVALUATE: If the force is directed along the handle then the torque is zero. The torque increases as the angle 
between the force and the handle increases. 

 10.7. IDENTIFY: Apply z zIτ α=∑ . 

SET UP: 0 0zω = . 2  rad/rev(400 rev/min) 41.9 rad/s
60 s/minz
πω ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

EXECUTE: ( )20 41.9 rad/s2.50 kg m 13.1 N m.
8.00 s

z z
z zIα I

t
ω ωτ −

= = = ⋅ = ⋅  

EVALUATE: In z zIτ α= , zα must be in 2rad/s . 

 10.8. IDENTIFY: Use a constant acceleration equation to calculate zα and then apply z zIτ α=∑ . 

SET UP: 2 22
3 2 ,  where 8.40 kg, 2.00 kgI MR mR M m= + = = , so 20.600 kg mI = ⋅ . 

0 75.0 rpm 7.854 rad s;  50.0 rpm 5.236 rad s;  30.0 sz zω ω t= = = = = . 

EXECUTE: 
z

2
0  gives 0.08726 rad sz z zω ω α t α= + = − . 0.0524 N mz zτ Iα= = − ⋅  

EVALUATE: The torque is negative because its direction is opposite to the direction of rotation, which must be 
the case for the speed to decrease. 

 10.9. IDENTIFY: Use z zIτ α=∑ to calculate α . Use a constant angular acceleration kinematic equation to relate zα , 

zω and t. 

SET UP: For a solid uniform sphere and an axis through its center, 22
5I MR= . Let the direction the sphere is 

spinning be the positive sense of rotation. The moment arm for the friction force is 0.0150 ml = and the torque due 
to this force is negative. 
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EXECUTE: (a) 2
22

5

(0.0200 N)(0.0150 m) 14.8 rad/s
(0.225 kg)(0.0150 m)

z
z I

τα −
= = = −  

(b) 0 22.5 rad/sz zω ω− = − . 0z z ztω ω α= + gives 0
2

22.5 rad/s 1.52 s
14.8 rad/s

z z

z

t ω ω
α
− −

= = =
−

. 

EVALUATE: The fact that zα is negative means its direction is opposite to the direction of spin. The negative 

zα causes zω to decrease. 

10.10. IDENTIFY: Apply z zIτ α=∑ to the wheel. The acceleration a of a point on the cord and the angular acceleration 
α of the wheel are related by a Rα= . 
SET UP: Let the direction of rotation of the wheel be positive. The wheel has the shape of a disk and 21

2I MR= . 
The free-body diagram for the wheel is sketched in Figure 10.10a for a horizontal pull and in Figure 10.10b for a 
vertical pull. P is the pull on the cord and F is the force exerted on the wheel by the axle. 

EXECUTE: (a) 2
21

2

(40.0 N)(0.250 m) 34.8 rad/s
(9.20 kg)(0.250 m)

z
z I

τα = = = . 2 2(0.250 m)(34.8 rad/s ) 8.70 m/sa Rα= = = . 

(b) xF P= − , yF Mg= − . 2 2 2 2 2( ) (40.0 N) ([9.20 kg][9.80 m/s ]) 98.6 NF P Mg= + = + = . 
2(9.20 kg)(9.80 m/s )tan

40.0 N
y

x

F Mg
F P

φ = = = and 66.1φ = ° . The force exerted by the axle has magnitude 98.6 N and 

is directed at 66.1° above the horizontal, away from the direction of the pull on the cord. 
(c) The pull exerts the same torque as in part (a), so the answers to part (a) don�t change. In part (b), 
F P Mg+ = and 2(9.20 kg)(9.80 m/s ) 40.0 N 50.2 NF Mg P= − = − = . The force exerted by the axle has 
magnitude 50.2 N and is upward. 
EVALUATE: The weight of the wheel and the force exerted by the axle produce no torque because they act at the 
axle. 

  
Figure 10.10 

10.11. IDENTIFY: Use a constant angular acceleration equation to calculate zα and then apply z zIτ α=∑ to the motion 

of the cylinder. k kf nμ= . 

SET UP: ( )( )22 21 1
2 2 8.25 kg 0.0750 m 0.02320 kg mI mR= = = ⋅ . Let the direction the cylinder is rotating be 

positive. 0 0220 rpm 23.04 rad/s; 0;  5.25 rev 33.0 radz zω ω θ θ= = = − = = . 

EXECUTE: ( )2 2
0 02z z zω ω α θ θ= + − gives 28.046 rad/szα = − . k kz fτ τ f R μ nR∑ = = − = − . Then z zIτ α=∑ gives 

k zμ nR Iα− = and 
k

7.47 NzIαn
μ R

= = . 

EVALUATE: The friction torque is directed opposite to the direction of rotation and therefore produces an angular 
acceleration that slows the rotation. 

10.12. IDENTIFY: Apply m=∑F a
! ! to the stone and z zIτ α=∑ to the pulley. Use a constant acceleration equation to 

find a for the stone. 
SET UP: For the motion of the stone take y+  to be downward. The pulley has 21

2I MR= . a Rα= . 
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EXECUTE: (a) 21
0 0 2y yy y v t a t− = + gives ( )21

212.6 m 3.00 sya= and 22.80 m sya = . Then y yF ma=∑ applied 

to the stone gives mg T ma− = . z zIτ α=∑ applied to the pulley gives ( )2 21 1
2 2 /TR MR MR a Rα= = . 1

2T Ma= . 
Combining these two equations to eliminate T gives 

2

2 2

10.0 kg 2.80 m/s 2.00 kg
2 2 9.80 m/s 2.80 m/s
M aM

g a
⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠ ⎝ ⎠

. 

(b) ( )( )21 1 10.0 kg 2.80 m/s 14.0 N
2 2

T Ma= = =  

EVALUATE: The tension in the wire is less than the weight 19.6 Nmg = of the stone, because the stone has a 
downward acceleration. 

10.13. IDENTIFY: Use the kinematic information to solve for the angular acceleration of the grindstone. Assume that the 
grindstone is rotating counterclockwise and let that be the positive sense of rotation. Then apply Eq.(10.7) to 
calculate the friction force and use k kf nμ=  to calculate k.μ  
SET UP: 0 850 rev/min(2  rad/1 rev)(1 min/60 s) 89.0 rad/szω π= =  

7.50 s;t =  0zω =  (comes to rest); ?zα =  
EXECUTE: 0z z ztω ω α= +  

20 89.0 rad/s 11.9 rad/s
7.50 szα

−
= = −  

SET UP: Apply z zIτ α=∑  to the grindstone. The free-body diagram is given in Figure 10.13. 

 
Figure 10.13 

The normal force has zero moment arm for rotation about an axis at the center of the grindstone, and therefore zero 
torque. The only torque on the grindstone is that due to the friction force kf  exerted by the ax; for this force the 
moment arm is l R=  and the torque is negative. 
EXECUTE: k kz f R nRτ μ= − = −∑  

21
2I MR=  (solid disk, axis through center) 

Thus z zIτ α=∑  gives ( )21
k 2 znR MRμ α− =  

2

k
(50.0 kg)(0.260 m)( 11.9 rad/s ) 0.483

2 2(160 N)
zMR

n
αμ −

= − = − =  

EVALUATE: The friction torque is clockwise and slows down the counterclockwise rotation of the grindstone. 
10.14. IDENTIFY: Apply y yF ma=∑  to the bucket, with y+  downward. Apply z zIτ α=∑  to the cylinder, with the 

direction the cylinder rotates positive. 
SET UP: The free-body diagram for the bucket is given in Fig.10.14a and the free-body diagram for the cylinder 
is given in Fig.10.14b. 21

2I MR= . (bucket) (cylinder)a Rα=  

EXECUTE: (a) For the bucket, mg T ma− = . For the cylinder, z zIτ α=∑  gives 21
2TR MR α= . /a Rα =  then 

gives 1
2T Ma= . Combining these two equations gives 1

2mg Ma ma− =  and 

2 215.0 kg (9.80 m/s ) 7.00 m/s
/ 2 15.0 kg 6.0 kg

mga
m M

⎛ ⎞
= = =⎜ ⎟+ +⎝ ⎠

. 

2 2( ) (15.0 kg)(9.80 m/s 7.00 m/s ) 42.0 NT m g a= − = − = . 

(b) 2 2
0 02 ( )y y yv v a y y= + −  gives 22(7.00 m/s )(10.0 m) 11.8 m/syv = = . 

(c) 27.00 m/sya = , 0 0yv = , 0 10.0 my y− = . 21
0 0 2y yy y v t tα− = +  gives 0

2

2( ) 2(10.0 m) 1.69 s
7.00 m/sy

y yt
a
−

= = =  
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(d) y yF ma=∑ applied to the cylinder gives 0n T Mg− − =  and 
242.0 N (12.0 kg)(9.80 m/s ) 160 Nn T mg= + = + = . 

EVALUATE: The tension in the rope is less than the weight of the bucket, because the bucket has a downward 
acceleration. If the rope were cut, so the bucket would be in free-fall, the bucket would strike the water in 

2

2(10.0 m) 1.43 s
9.80 m/s

t = = and would have a final speed of 14.0 m/s. The presence of the cylinder slows the fall of  

the bucket. 

  
Figure 10.14 

10.15. IDENTIFY: Apply m=∑F a
! ! to each book and apply z zIτ α=∑ to the pulley. Use a constant acceleration 

equation to find the common acceleration of the books. 
SET UP: 1 2.00 kgm = , 2 3.00 kgm = . Let 1T be the tension in the part of the cord attached to 1m and 2T be the 
tension in the part of the cord attached to 2m . Let the -directionx+  be in the direction of the acceleration of each 
book. a Rα= . 

EXECUTE: (a) 21
0 0 2x xx x v t a t− = + gives 20

2 2

2( ) 2(1.20 m) 3.75 m/s
(0.800 s)x

x xa
t
−

= = = . 2
1 3.75 m/sa = so 

1 1 1 7.50 NT m a= = and ( )2 2 1 18.2 NT m g a= − = . 

(b) The torque on the pulley is ( )2 1 0.803 N m,T T R− = ⋅ and the angular acceleration is 
2 2

1 50 rad/s ,  so 0.016 kg m .a R Iα τ α= = = = ⋅  
EVALUATE: The tensions in the two parts of the cord must be different, so there will be a net torque on the 
pulley. 

10.16. IDENTIFY: Apply m∑F = a
! ! to each box and z zIτ α=∑ to the pulley. The magnitude a of the acceleration of 

each box is related to the magnitude of the angular acceleration α of the pulley by a Rα= . 
SET UP: The free-body diagrams for each object are shown in Figure 10.16a-c. For the pulley, 0.250 mR = and 

21
2I MR= . 1T and 2T are the tensions in the wire on either side of the pulley. 1 12.0 kgm = , 2 5.00 kgm = and 

2.00 kgM = . F
!

is the force that the axle exerts on the pulley. For the pulley, let clockwise rotation be positive. 

EXECUTE: (a) x xF ma=∑ for the 12.0 kg box gives 1 1T m a= . y yF ma=∑ for the 5.00 kg weight gives 

2 2 2m g T m a− = . z zIτ α=∑ for the pulley gives 21
2 1 2( ) ( )T T R MR α− = . a Rα= and 1

2 1 2T T Ma− = . Adding these 

three equations gives 1
2 1 2 2( )m g m m M a= + + and 

2 22
1

1 2 2

5.00 kg (9.80 m/s ) 2.72 m/s
12.0 kg 5.00 kg 1.00 kg

ma g
m m M

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠⎝ ⎠

. Then 

2
1 1 (12.0 kg)(2.72 m/s ) 32.6 NT m a= = = . 2 2 2m g T m a− = gives 

2 2
2 2 ( ) (5.00 kg)(9.80 m/s 2.72 m/s ) 35.4 NT m g a= − = − = . The tension to the left of the pulley is 32.6 N and 

below the pulley it is 35.4 N. 
(b) 22.72 m/sa =  
(c) For the pulley, x xF ma=∑ gives 1 32.6 NxF T= = and y yF ma=∑ gives 

2
2 (2.00 kg)(9.80 m/s ) 35.4 N 55.0 NyF Mg T= + = + = . 
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EVALUATE: The equation 1
2 1 2 2( )m g m m M a= + + says that the external force 2m g must accelerate all three 

objects. 

 
 

 
Figure 10.16 

10.17. IDENTIFY: Apply z zIτ α=∑ to the post and m∑F = a
! ! to the hanging mass. The acceleration a! of the mass has 

the same magnitude as the tangential acceleration tana rα= of the point on the post where the string is attached; 
1.75 m 0.500 m 1.25 mr = − = . 

SET UP: The free-body diagrams for the post and mass are given in Figures 10.17a and b. The post has 
21

3I ML= , with 15.0 kgM = and 1.75 mL = . 

EXECUTE: (a) z zIτ α=∑ for the post gives ( )21
3Tr ML α= . a rα= so a

r
α = and 

2

23
MLT a

r
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. y yF ma=∑ for 

the mass gives mg T ma− = . These two equations give 2 2( /[3 ])mg m ML r a= + and 

2 2
2 2 2 2

5.00 kg (9.80 m/s ) 3.31 m/s
/[3 ] 5.00 kg [15.0 kg][1.75 m] /3[1.25 m]

ma g
m ML r

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

. 

2
23.31 m/s 2.65 rad/s

1.25 m
a
r

α = = = . 

(b) No. As the post rotates and the point where the string is attached moves in an arc of a circle, the string is no 
longer perpendicular to the post. The torque due to this tension changes and the acceleration due to this torque is 
not constant. 
(c) From part (a), 23.31 m/sa = . The acceleration of the mass is not constant. It changes as α for the post changes. 
EVALUATE: At the instant the cable breaks the tension in the string is less than the weight of the mass because 
the mass accelerates downward and there is a net downward force on it. 

   
Figure 10.17 

10.18. IDENTIFY: Apply z zIτ α=∑ to the rod. 

SET UP: For the rod and axis at one end, 21
3I Ml= . 

EXECUTE: 21
3

3 .Fl F
I Ml Ml
τα = = =  

EVALUATE: Note that α decreases with the length of the rod, even though the torque increases. 
10.19. IDENTIFY: Since there is rolling without slipping, cmv Rω= . The kinetic energy is given by Eq.(10.8). The 

velocities of points on the rim of the hoop are as described in Figure 10.13 in chapter 10. 
SET UP: 3.00 rad/sω = and 0.600 mR = . For a hoop rotating about an axis at its center, 2I MR= . 
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EXECUTE: (a) cm (0.600 m)(3.00 rad/s) 1.80 m/sv Rω= = = . 

(b) 2 2 2 2 2 2 21 1 1 1
cm cm cm cm2 2 2 2 ( )( / ) (2.20 kg)(1.80 m/s) 7.13 JK Mv I Mv MR v R Mvω= + = + = = =  

(c) (i) cm2 3.60 m/sv v= = . v! is to the right. (ii) 0v =  

(iii) 2 2 2 2
cm tan cm cm( ) 2 2.55 m/sv v v v R vω= + = + = = . v! at this point is at 45° below the horizontal. 

(d) To someone moving to the right at cmv v= , the hoop appears to rotate about a stationary axis at its center. 
(i) 1.80 m/sv Rω= = , to the right. (ii) 1.80 m/sv = , to the left. (iii) 1.80 m/sv = , downward. 
EVALUATE: For the special case of a hoop, the total kinetic energy is equally divided between the motion of the 
center of mass and the rotation about the axis through the center of mass. In the rest frame of the ground, different 
points on the hoop have different speed. 

10.20. IDENTIFY: Only gravity does work, so other 0W =  and conservation of energy gives i i f fK U K U+ = + . 
2 21 1

f cm cm2 2K Mv I ω= + . 
SET UP: Let f 0y = , so f 0U =  and i 0.750 my = . The hoop is released from rest so i 0K = . cmv Rω= . For a 

hoop with an axis at its center, 2
cmI MR= . 

EXECUTE: (a) Conservation of energy gives i fU K= . 2 2 2 2 2 21 1
f 2 2 ( )K MR MR MRω ω ω= + = , so 2 2

iMR Mgyω = . 
2

i (9.80 m/s )(0.750 m)
33.9 rad/s

0.0800 m
gy
R

ω = = = . 

(b) (0.0800 m)(33.9 rad/s) 2.71 m/sv Rω= = =  
EVALUATE: An object released from rest and falling in free-fall for 0.750 m attains a speed of 

2 (0.750 m) 3.83 m/sg = . The final speed of the hoop is less than this because some of its energy is in kinetic 
energy of rotation. Or, equivalently, the upward tension causes the magnitude of the net force of the hoop to be less 
than its weight. 

10.21. IDENTIFY: Apply Eq.(10.8). 
SET UP: For an object that is rolling without slipping, cmv Rω= . 
EXECUTE: The fraction of the total kinetic energy that is rotational is 

( )
( ) ( )

2
cm

2 2 2 2 2
cm cm cm cm cm

1 2 1 1
1 2 1 2 1( / ) / 1 ( / )

I
Mv I M I v MR I

ω
ω ω

= =
+ +

 

(a) 2
cm (1 2) ,  so the above ratio is 1 3.I MR=  

(b) 2
cm (2 5)I MR= so the above ratio is 2 7 . 

(c) 2
cm (2 3)I MR= so the ratio is 2 5 . 

(d) 2
cm (5 8)I MR= so the ratio is 5 13.  

EVALUATE: The moment of inertia of each object takes the form 2I MRβ= . The ratio of rotational kinetic 

energy to total kinetic energy can be written as 1
1 1/ 1

β
β β
=

+ +
. The ratio increases as β increases. 

10.22. IDENTIFY: Apply m=∑F a
! ! to the translational motion of the center of mass and z zIτ α=∑  to the rotation 

about the center of mass. 
SET UP: Let x+  be down the incline and let the shell be turning in the positive direction. The free-body diagram 
for the shell is given in Fig.10.22. From Table 9.2, 22

cm 3I mR= . 

EXECUTE: x xF ma=∑ gives cmsinmg f maβ − = . z zIτ α=∑  gives 22
3( )fR mR α= . With cm /a Rα =  this 

becomes 2
cm3f ma= . Combining the equations gives 2

cm cm3sinmg ma maβ − =  and 
2

2
cm

3 sin 3(9.80 m/s )(sin38.0 ) 3.62 m/s
5 5

ga β
= = =

° . 22 2
cm3 3 (2.00 kg)(3.62 m/s ) 4.83 Nf ma= = = . The friction is 

static since there is no slipping at the point of contact. cos 15.45 Nn mg β= = . s
4.83 N 0.313

15.45 N
f
n

μ = = = . 

(b) The acceleration is independent of m and doesn�t change. The friction force is proportional to m so will double; 
9.66 Nf = . The normal force will also double, so the minimum sμ required for no slipping wouldn�t change. 
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EVALUATE: If there is no friction and the object slides without rolling, the acceleration is sing β . Friction and 
rolling without slipping reduce a to 0.60 times this value. 

 
Figure 10.22 

10.23. IDENTIFY: Apply ext cmm=∑F a
! !  and cmz zIτ α=∑  to the motion of the ball. 

(a) SET UP: The free-body diagram is given in Figure 10.23a. 

 

EXECUTE: y yF ma=∑  

cosn mg θ=  and s s cosf mgμ θ=  

x xF ma=∑  

ssin cosmg mg maθ μ θ− =  

s(sin cos )g aθ μ θ− =  (eq. 1) 
Figure 10.23a  

SET UP: Consider Figure 10.23b. 

 

n and mg act at the 
center of the ball and 
provide no torque 

Figure 10.23b  

EXECUTE: s cos ;f mg Rτ τ μ θ= =∑  22
5I mR=  

cmz zIτ α=∑  gives 22
s 5cosmg R mRμ θ α=  

No slipping means / ,a Rα =  so 2
s 5cosg aμ θ =  (eq.2) 

We have two equations in the two unknowns a and s.μ  Solving gives 5
7 sina g θ=  and 

2 2
s 7 7tan tan 65.0 0.613μ θ= = ° =  

(b) Repeat the calculation of part (a), but now 22
3 .I mR=  3

5 sina g θ=  and 2 2
s 5 5tan tan65.0 0.858μ θ= = ° =  

The value of sμ  calculated in part (a) is not large enough to prevent slipping for the hollow ball. 
(c) EVALUATE: There is no slipping at the point of contact. More friction is required for a hollow ball since for a 
given m and R it has a larger I and more torque is needed to provide the same .α  Note that the required sμ  is 
independent of the mass or radius of the ball and only depends on how that mass is distributed. 

10.24. IDENTIFY: Apply conservation of energy to the motion of the marble. 
SET UP: 2 21 1

2 2K mv Iω= + , with 22
5I MR= . cm for no slippingv Rω= . Let 0y = at the bottom of the bowl. The 

marble at its initial and final locations is sketched in Figure 10.24. 
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EXECUTE: (a) Motion from the release point to the bottom of the bowl: 2 21 1
2 2

mgh mv Iω= + . 

2
2 21 1 2

2 2 5
vmgh mv mR
R

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

and 10
7 

v gh= . 

Motion along the smooth side: The rotational kinetic energy does not change, since there is no friction torque on 

the marble, 2
rot rot

1
2

mv K mgh K′+ = + . 
2 10

7 5
2 2 7

ghvh h
g g

′ = = =  

(b) mgh mgh′= so h h′ = . 
EVALUATE: (c) With friction on both halves, all the initial potential energy gets converted back to potential 
energy. Without friction on the right half some of the energy is still in rotational kinetic energy when the marble is 
at its maximum height. 

 
Figure 10.24 

10.25. IDENTIFY: Apply conservation of energy to the motion of the wheel. 
SET UP: The wheel at points 1 and 2 of its motion is shown in Figure 10.25. 

 

Take y = 0 at the center 
of the wheel when it is at 
the bottom of the hill. 

Figure 10.25  

The wheel has both translational and rotational motion so its kinetic energy is 2 21 1
cm cm2 2 .K I Mvω= +  

EXECUTE: 1 1 other 2 2K U W K U+ + = +  

other fric 3500 JW W= = −  (the friction work is negative) 
2 21 1

1 1 12 2 ;K I Mvω= +  v Rω=  and 20.800I MR=  so 
2 2 2 2 2 21 1

1 1 1 12 2(0.800) 0.900K MR MR MRω ω ω= + =  

2 0,K =  1 0,U =  2U Mgh=  

Thus 2 2
1 fric0.900MR W Mghω + =  

2/ 392 N/(9.80 m/s ) 40.0 kgM w g= = =  
2 2

1 fric0.900MR Wh
Mg
ω +

=  

2 2

2

(0.900)(40.0 kg)(0.600 m) (25.0 rad/s) 3500 J 11.7 m
(40.0 kg)(9.80 m/s )

h −
= =  

EVALUATE: Friction does negative work and reduces h. 
10.26. IDENTIFY: Apply z zIτ α=∑ and m=∑F a

! !  to the motion of the bowling ball. 

SET UP: cma Rα= . s sf nμ= . Let x+  be directed down the incline. 
EXECUTE: (a) The free-body diagram is sketched in Figure 10.26. 
The angular speed of the ball must decrease, and so the torque is provided by a friction force that acts up the hill. 
(b) The friction force results in an angular acceleration, given by .I fRα =  m=∑F a

! ! applied to the motion of the 

center of mass gives cm,sinmg f maβ − = and the acceleration and angular acceleration are related by cma Rα= . 

Combining, ( )2sin 1 7 5Img ma ma
mR

β ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. ( )cm 5 7 sina g β= . 
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(c) From either of the above relations between f and cm ,a  cm s s
2 2 sin cos
5 7

f ma mg n mgβ μ μ β= = ≤ = . 

( )s 2 7 tan .μ β≥  

EVALUATE: If s 0μ = , cm sina mg β= . cma is less when friction is present. The ball rolls farther uphill when 
friction is present, because the friction removes the rotational kinetic energy and converts it to gravitational 
potential energy. In the absence of friction the ball retains the rotational kinetic energy that is has initially. 

 
Figure 10.26 

10.27. (a) IDENTIFY: Use Eq.(10.7) to find zα  and then use a constant angular acceleration equation to find .zω  
SET UP: The free-body diagram is given in Figure 10.27. 

 

EXECUTE: Apply z zIτ α=∑  to find the angular 
acceleration: 

zFR Iα=  

2
2

(18.0 N)(2.40 m) 0.02057 rad/s
2100 kg mz

FR
I

α = = =
⋅

 

Figure 10.27  
SET UP: Use the constant zα  kinematic equations to find .zω  

?;zω =  0 zω  (initially at rest); 20.02057 rad/s ;zα =  15.0 st =  

EXECUTE: 2
0 0 (0.02057 rad/s )(15.0 s) 0.309 rad/sz z ztω ω α= + = + =  

(b) IDENTIFY and SET UP: Calculate the work from Eq.(10.21), using a constant angular acceleration equation to 
calculate 0,θ θ−  or use the work-energy theorem. We will do it both ways. 
EXECUTE: (1) zW τ θ= Δ  (Eq.(10.21)) 

2 2 21 1
0 0 2 20 (0.02057 rad/s )(15.0 s) 2.314 radz zt tθ θ θ ω αΔ = − = + = + =  

(18.0 N)(2.40 m) 43.2 N mzt FR= = = ⋅  
Then (43.2 N m)(2.314 rad) 100 J.zW τ θ= Δ = ⋅ =  
or 
(2) tot 2 1W K K= −  (the work-energy relation from chapter 6) 

tot ,W W=  the work done by the child 

1 0;K =  2 2 21 1
2 2 2 (2100 kg m )(0.309 rad/s) 100 JK Iω= = ⋅ =  

Thus 100 J,W =  the same as before. 
EVALUATE: Either method yields the same result for W. 
(c) IDENTIFY and SET UP: Use Eq.(6.15) to calculate avP  

EXECUTE: av
100 J 6.67 W
15.0 s

WP
t

Δ
= = =
Δ

 

EVALUATE: Work is in joules, power is in watts. 
10.28. IDENTIFY: Apply P τω= and W τ θ= Δ . 

SET UP: P must be in watts, θΔ must be in radians, and ω must be in rad/s. 1 rev 2  radπ= . 1 hp 746 W= . 
 rad/s 30 rev/minπ = . 

EXECUTE: (a) ( )( )

( )

175 hp 746 W / hp
519 N m.

rad/s2400 rev/min
30 rev/min

Pτ
πω

= = = ⋅
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(b) ( )( )519 N m 2  rad 3260 JW τ θ π= Δ = ⋅ =  
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EVALUATE: 40 rev/sω = , so the time for one revolution is 0.025 s. 51.306 10  WP = × , so in one revolution, 
3260 JW Pt= = , which agrees with our previous result. 

10.29. IDENTIFY: Apply z zIτ α=∑ and constant angular acceleration equations to the motion of the wheel. 
SET UP: 1 rev 2  radπ= .  rad/s 30 rev/minπ = . 

EXECUTE: (a) 0 z z
z zI I

t
ω ωτ α −

= = . 

( )( )( )( )( )2 rad s1 2 1.50 kg 0.100 m 1200 rev min
30 rev min

0.377 N m
2.5 sz

π

τ

⎛ ⎞
⎜ ⎟
⎝ ⎠= = ⋅  

(b) ( )( )
av

600 rev/min 2.5 s
25.0 rev 157 rad.

60 s/min
tω Δ = = =  

(c) (0.377 N m)(157 rad) 59.2 JW τ θ= Δ = ⋅ = . 

(d) ( )
2

2 21 1 rad/s (1/ 2)(1.5 kg)(0.100 m) (1200 rev/min) 59.2 J
2 2 30 rev/min

K I πω ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

the same as in part (c). 
EVALUATE: The agreement between the results of parts (c) and (d) illustrates the work-energy theorem 

10.30. IDENTIFY: The power output of the motor is related to the torque it produces and to its angular velocity by 
z zP τ ω= , where zω must be in rad/s. 

SET UP: The work output of the motor in 60.0 s is 2 (9.00 kJ) 6.00 kJ
3

= , so 6.00 kJ 100 W
60.0 s

P = = . 

2500 rev/min 262 rad/szω = = . 

EXECUTE: 100 W 0.382 N m
262 rad/sz

z

Pτ
ω

= = = ⋅  

EVALUATE: For a constant power output, the torque developed decreases and the rotation speed of the motor 
increases. 

10.31. IDENTIFY: Apply FRτ = and P τω= . 
SET UP: 1 hp 746 W= .  rad/s 30 rev/minπ =  
EXECUTE: (a) With no load, the only torque to be overcome is friction in the bearings (neglecting air friction), 
and the bearing radius is small compared to the blade radius, so any frictional torque can be neglected. 

(b) / (1.9 hp)(746 W/hp) 65.6 N.
rad/s(2400 rev/min) (0.086 m)

30 rev/min

PF
R R
τ ω

π
= = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

EVALUATE: In P Iω= , τ must be in watts and ω must be in rad/s. 
10.32. IDENTIFY: Apply z zIτ α=∑ to the motion of the propeller and then use constant acceleration equations to 

analyze the motion. W τ θ= Δ . 
SET UP: 2 2 21 1

2 2 (117 kg)(2.08 m) 42.2 kg mI mL= = = ⋅ . 

EXECUTE: (a) 2
2

1950 N m 46.2 rad/s .
42.2 kg mI

τα ⋅
= = =

⋅
 

(b) 2 2
0 02 ( )z z zω ω α θ θ= + − gives 22 2(46.2 rad/s )(5.0 rev)(2  rad/rev) 53.9 rad/s.ω αθ π= = =  

(c) 4(1950 N m)(5.00 rev)(2  rad/rev) 6.13 10  J.W τθ π= = ⋅ = ×  

(d) 0
2

53.9 rad/s 1.17 s
46.2 rad/s  

z z

z

t ω ω
α
−

= = = . 
4

av
6.13 10  J 52.5 kW

1.17 s
WP

t
×

= = =
Δ

. 

EVALUATE: P τω= . τ is constant andω is linear in t, so avP is half the instantaneous power at the end of the 

5.00 revolutions. We could also calculate W from 2 2 2 41 1
2 2 (42.2 kg m )(53.9 rad/s) 6.13 10  JW K Iω= Δ = = ⋅ = × . 

10.33. (a) IDENTIFY and SET UP: Use Eq.(10.23) and solve for .zτ  
,z zP τ ω=  where zω  must be in rad/s 

EXECUTE: (4000 rev/min)(2  rad/1 rev)(1 min/60 s) 418.9 rad/szω π= =  
51.50 10  W 358 N m

418.9 rad/sz
z

Pτ
ω

×
= = = ⋅  
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(b) IDENTIFY and SET UP: Apply m=∑F a
! !  to the drum. Find the tension T in the rope using zτ  from part (a). 

The system is sketched in Figure 10.33. 

 

EXECUTE: v constant implies 0a =  and T w=  
z TRτ =  implies 

/ 358 N m/0.200 m 1790 NzT Rτ= = ⋅ =  
Thus a weight 1790 Nw =  can be lifted. 

Figure 10.33  
(c) IDENTIFY and SET UP: Use .v Rω=  
EXECUTE: The drum has 418.9 rad/s,ω =  so (0.200 m)(418.9 rad/s) 83.8 m/sv = =  
EVALUATE: The rate at which T is doing work on the drum is (1790 N)(83.8 m/s) 150 kW.P Tv= = =  This 
agrees with the work output of the motor. 

10.34. IDENTIFY: L Iω=  and disk womanI I I= + . 

SET UP: 0.50 rev/s 3.14 rad/sω = = . 21
disk disk2I m R=  and 2

woman womanI m R= . 

EXECUTE: 2 2(55 kg 50.0 kg)(4.0 m) 1680 kg mI = + = ⋅ . 2 3 2(1680 kg m )(3.14 rad/s) 5.28 10  kg m /sL = ⋅ = × ⋅  
EVALUATE: The disk and the woman have similar values of I, even though the disk has twice the mass. 

10.35. (a) IDENTIFY: Use sinL mvr φ=  (Eq.(10.25)): 
SET UP: Consider Figure 10.35. 

 

EXECUTE: sinL mvr φ= =  
(2.00 kg)(12.0 m/s)(8.00 m)sin143.1°  

2115 kg m /sL = ⋅  

Figure 10.35  

To find the direction of L
!

 apply the right-hand rule by turning r!  into the direction of v!  by pushing on it with the 
fingers of your right hand. Your thumb points into the page, in the direction of .L

!
 

(b) IDENTIFY and SET UP: By Eq.(10.26) the rate of change of the angular momentum of the rock equals the 
torque of the net force acting on it. 
EXECUTE: 2 2(8.00 m)cos36.9 125 kg m /smgτ = ° = ⋅  

To find the direction of τ!  and hence of / ,d dtL
!

 apply the right-hand rule by turning r!  into the direction of the 
gravity force by pushing on it with the fingers of your right hand. Your thumb points out of the page, in the 
direction of / .d dtL

!
 

EVALUATE: L
!

 and /d dtL
!

 are in opposite directions, so L is decreasing. The gravity force is accelerating the 
rock downward, toward the axis. Its horizontal velocity is constant but the distance l is decreasing and hence L is 
decreasing. 

10.36. IDENTIFY: z zL Iω=  

SET UP: For a particle of mass m moving in a circular path at a distance r from the axis, 2I mr= and v rω= . For 
a uniform sphere of mass M and radius R and an axis through its center, 22

5I MR= . The earth has mass 
24

E 5.97 10  kgm = × , radius 6
E 6.38 10  mR = × and orbit radius 111.50 10  mr = × . The earth completes one rotation 

on its axis in 24 h 86,400 s= and one orbit in 71 y 3.156 10  s= × . 

EXECUTE: (a) 2 24 11 2 40 2
7

2  rad(5.97 10  kg)(1.50 10  m) 2.67 10  kg m /s
3.156 10  sz z zL I mr πω ω ⎛ ⎞= = = × × = × ⋅⎜ ⎟×⎝ ⎠

. 

The radius of the earth is much less than its orbit radius, so it is very reasonable to model it as a particle for this 
calculation. 

(b) ( )2 24 6 2 33 22 2
5 5

2  rad(5.97 10  kg)(6.38 10  m) 7.07 10  kg m /s
86,400 sz zL I MR πω ω ⎛ ⎞

= = = × × = × ⋅⎜ ⎟
⎝ ⎠

 

EVALUATE: The angular momentum associated with each of these motions is very large. 



10-14 Chapter 10 

10.37. IDENTIFY and SET UP: Use L Iω=  
EXECUTE: The second hand makes 1 revolution in 1 minute, so 

(1.00 rev/min)(2  rad/1 rev)(1 min/60 s) 0.1047 rad/sω π= =  
For a slender rod, with the axis about one end, 

2 3 2 5 21 1
3 3 (6.00 10  kg)(0.150 m) 4.50 10  kg mI ML − −= = × = × ⋅  

Then 5 2 6 2(4.50 10  kg m )(0.1047 rad/s) 4.71 10  kg m /s.L Iω − −= = × ⋅ = × ⋅  

EVALUATE: L
!

 is clockwise. 
10.38. IDENTIFY: /z d dtω θ= . z zL Iω= and z zdL dtτ = . 

SET UP: For a hollow, thin-walled sphere rolling about an axis through its center, 22
3I MR= . 0.240 mR = . 

EXECUTE: (a) 21.50 rad/sA = and 41.10 rad/sB = , so that ( )tθ will have units of radians. 

(b) (i) 32 4z
d At Bt
dt
θω = = + . At 3.00 st = , 2 4 32(1.50 rad/s )(3.00 s) 4(1.10 rad/s )(3.00 s) 128 rad/szω = + = . 

2 2 22 2
3 3( ) (12.0 kg)(0.240 m) (128 rad/s) 59.0 kg m /sz zL MR ω= = = ⋅ . 

(ii) 2(2 12 )z z
z

dL dI I A Bt
dt dt

ωτ = = = +  and 

2 2 4 22
3 (12.0 kg)(0.240 m) (2[1.50 rad/s ] 12[1.10 rad/s ][3.00 s] ) 56.1 N mzτ = + = ⋅ . 

EVALUATE: The angular speed of rotation is increasing. This increase is due to an acceleration zα that is 
produced by the torque on the sphere. When I is constant, as it is here, /z z z zdL dt Id dt Iτ ω α= = = and 
Equations (10.29) and (10.7) are identical. 

10.39. IDENTIFY: Apply conservation of angular momentum. 
SET UP: For a uniform sphere and an axis through its center, 22

5I MR= . 
EXECUTE: The moment of inertia is proportional to the square of the radius, and so the angular velocity will be 
proportional to the inverse of the square of the radius, and the final angular velocity is  

2 25
31

2 1
2

2  rad 7.0 10  km 4.6 10  rad s.
(30 d)(86,400 s d) 16 km

R
R

πω ω
⎛ ⎞ ⎛ ⎞⎛ ⎞ ×

= = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

EVALUATE: 21 1
2 2K I Lω ω= = . L is constant and ω increases by a large factor, so there is a large increase in the 

rotational kinetic energy of the star. This energy comes from potential energy associated with the gravity force 
within the star. 

10.40. IDENTIFY and SET UP: L
!

 is conserved if there is no net external torque. 
Use conservation of angular momentum to find ω  at the new radius and use 21

2K Iω=  to find the change in 
kinetic energy, which is equal to the work done on the block. 
EXECUTE: (a) Yes, angular momentum is conserved. The moment arm for the tension in the cord is zero so this 
force exerts no torque and there is no net torque on the block. 
(b) 1 2L L=  so 1 1 2 2.I Iω ω=  Block treated as a point mass, so 2,I mr=  where r is the distance of the block from the 
hole. 

2 2
1 1 2 2mr mrω ω=  

2 2
1

2 1
2

0.300 m (1.75 rad/s) 7.00 rad/s
0.150 m

r
r

ω ω
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(c) 2 2 2 21 1 1
1 1 1 1 1 12 2 2K I mr mvω ω= = =  

1 1 1 (0.300 m)(1.75 rad/s) 0.525 m/sv rω= = =  
2 21 1

1 12 2 (0.0250 kg)(0.525 m/s) 0.00345 JK mv= = =  
21

2 22K mv=  

2 2 2 (0.150 m)(7.00 rad/s) 1.05 m/sv r ω= = =  
2 21 1

2 22 2 (0.0250 kg)(1.05 m/s) 0.01378 JK mv= = =  

2 1 0.01378 J 0.00345 J 0.0103 JK K KΔ = − = − =  
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(d) totW K= Δ  
But tot ,W W=  the work done by the tension in the cord, so 0.0103 JW =  
EVALUATE: Smaller r means smaller I. L Iω=  is constant so ω  increases and K increases. The work done by 
the tension is positive since it is directed inward and the block moves inward, toward the hole. 

10.41. IDENTIFY: Apply conservation of angular momentum to the motion of the skater. 
SET UP: For a thin-walled hollow cylinder 2I mR= . For a slender rod rotating about an axis through its center, 

21
12I ml= . 

EXECUTE: i fL L=  so i i f fI Iω ω= . 
2 2 21

i 120.40 kg m (8.0 kg)(1.8 m) 2.56 kg mI = ⋅ + = ⋅ . 2 2 2
f 0.40 kg m (8.0 kg)(0.25 m) 0.90 kg mI = ⋅ + = ⋅ . 

2
i

f i 2
f

2.56 kg m (0.40 rev/s)=1.14 rev/s
0.90 kg m

I
I

ω ω
⎛ ⎞ ⎛ ⎞⋅

= =⎜ ⎟ ⎜ ⎟⋅⎝ ⎠⎝ ⎠
. 

EVALUATE: 21 1
2 2K I Lω ω= = . ω increases and L is constant, so K increases. The increase in kinetic energy 

comes from the work done by the skater when he pulls in his hands. 
10.42. IDENTIFY: Apply conservation of angular momentum to the diver. 

SET UP: The number of revolutions she makes in a certain time is proportional to her angular velocity. The ratio 
of her untucked to tucked angular velocity is 2 2(3.6 kg m ) /(18 kg m )⋅ ⋅ . 

EXECUTE: If she had tucked, she would have made 2 2(2 rev)(3.6 kg m ) (18 kg m ) 0.40 rev⋅ ⋅ =  in the last 1.0 s, 
so she would have made (0.40 rev)(1.5 1.0) 0.60  rev=  in the total 1.5 s. 
EVALUATE: Untucked she rotates slower and completes fewer revolutions. 

10.43. IDENTIFY and SET UP: There is no net external torque about the rotation axis so the angular momentum L Iω=  
is conserved. 
EXECUTE: (a) 1 2L L=  gives 1 1 2 2 ,I Iω ω=  so 2 1 2 1( / )I Iω ω=  

2 2 21 1
1 tt 2 2 (120 kg)(2.00 m) 240 kg mI I MR= = = = ⋅  

2 2 2 2 2
2 tt p 240 kg m 240 kg m (70 kg)(2.00 m) 520 kg mI I I mR= + = ⋅ + = ⋅ + = ⋅  

2 2
2 1 2 1( / ) (240 kg m /520 kg m )(3.00 rad/s) 1.38 rad/sI Iω ω= = ⋅ ⋅ =  

(b) 2 2 21 1
1 1 12 2 (240 kg m )(3.00 rad/s) 1080 JK I ω= = ⋅ =  

2 2 21 1
2 2 22 2 (520 kg m )(1.38 rad/s) 495 JK I ω= = ⋅ =  

EVALUATE: The kinetic energy decreases because of the negative work done on the turntable and the parachutist 
by the friction force between these two objects. 
The angular speed decreases because I increases when the parachutist is added to the system. 

10.44. IDENTIFY: Apply conservation of angular momentum to the collision. 
SET UP: Let the width of the door be l. The initial angular momentum of the mud is ( / 2)mv l , since it strikes the 

door at its center. For the axis at the hinge, 21
door 3I Ml= and 2

mud ( / 2)I m l= . 

EXECUTE: ( )
( ) ( )22

2
1 3 2

mv lL
I Ml m l

ω = =
+

. 

( )( )( )
( )( )( ) ( )( )2 2

0.500 kg 12.0 m s 0.500 m
0.223 rad s.

1 3 40.0 kg 1.00 m 0.500 kg 0.500 m
ω = =

+
 

Ignoring the mass of the mud in the denominator of the above expression gives 0.225 rad s,ω =  so the mass of 
the mud in the moment of inertia does affect the third significant figure. 
EVALUATE: Angular momentum is conserved but there is a large decrease in the kinetic energy of the system. 

10.45. (a) IDENTIFY and SET UP: Apply conservation of angular momentum ,L
!

 with the axis at the nail. Let object A 
be the bug and object B be the bar. Initially, all objects are at rest and 1 0.L =  Just after the bug jumps, it has 
angular momentum in one direction of rotation and the bar is rotating with angular velocity Bω  in the opposite 
direction. 
EXECUTE: 2 A A B BL m v r I ω= −  where 1.00 mr =  and 21

3B BI m r=  

1 2L L=  gives 21
3A A B Bm v r m r ω=  

3 0.120 rad/sA A
B

B

m v
m r

ω = =  
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(b) 1 0;K =  2 21 1
2 2 2A A B BK m v I ω= + =  

( )2 2 2 41 1 1
2 2 3(0.0100 kg)(0.200 m/s) [0.0500 kg][1.00 m] (0.120 rad/s) 3.2 10  J.−+ = ×  

The increase in kinetic energy comes from work done by the bug when it pushes against the bar in order to jump. 
EVALUATE: There is no external torque applied to the system and the total angular momentum of the system is 
constant. There are internal forces, forces the bug and bar exert on each other. The forces exert torques and change 
the angular momentum of the bug and the bar, but these changes are equal in magnitude and opposite in direction. 
These internal forces do positive work on the two objects and the kinetic energy of each object and of the system 
increases. 

10.46. IDENTIFY: Apply conservation of angular momentum to the system of earth plus asteroid. 
SET UP: Take the axis to be the earth�s rotation axis. The asteroid may be treated as a point mass and it has zero 
angular momentum before the collision, since it is headed toward the center of the earth. For the earth, 

z zL Iω= and 22
5I MR= ,where M is the mass of the earth and R is its radius. The length of a day is 2  radT π

ω
= , 

where ω is the earth�s angular rotation rate. 
EXECUTE: Conservation of angular momentum applied to the collision between the earth and asteroid gives 

2 2 22 2
1 25 5( )MR mR MRω ω= + and 1 22

5
2

m M ω ω
ω

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
. 2 11.250T T= gives 

2 1

1 1.250
ω ω

= and 1 21.250ω ω= . 

1 2

2

0.250ω ω
ω
−

= . 2
5 (0.250) 0.100m M M= = . 

EVALUATE: If the asteroid hit the surface of the earth tangentially it could have some angular momentum with 
respect to the earth�s rotation axis, and could either speed up or slow down the earth�s rotation rate. 

10.47. IDENTIFY: Apply conservation of angular momentum to the collision. 
SET UP: The system before and after the collision is sketched in Figure 10.47. Let counterclockwise rotation be 
positive. The bar has 21

23I m L= . 

EXECUTE: (a) Conservation of angular momentum: 21
1 0 1 23m v d m vd m Lω= − + .  

2
2

1 90.0 N(3.00 kg)(10.0 m s)(1.50 m) (3.00 kg)(6.00 m s)(1.50 m) (2.00 m)
3 9.80 m s

ω
⎛ ⎞

= − + ⎜ ⎟
⎝ ⎠

 

5 88 rad s.ω = . 
(b) There are no unbalanced torques about the pivot, so angular momentum is conserved. But the pivot exerts an 
unbalanced horizontal external force on the system, so the linear momentum is not conserved. 
EVALUATE: Kinetic energy is not conserved in the collision. 

 
Figure 10.47 

10.48. IDENTIFY: d dtτ=L
! ! , so dL

!
is in the direction of τ! . 

SET UP: The direction of ω! is given by the right-hand rule, as described in Figure 10.26 in the textbook. 
EXECUTE: The sketches are given in Figures 10.48a�d. 
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EVALUATE: In figures (a) and (c) the precession is counterclockwise and in figures (b) and (d) it is clockwise. 
When the direction of either ω! or τ! reverses, the direction of precession reverses. 

  

  
Figure 10.48 

10.49. IDENTIFY: The precession angular velocity is wr
Iω

Ω = , where ω is in rad/s. Also apply m=∑F a
! ! to the 

gyroscope. 
SET UP: The total mass of the gyroscope is r f 0.140 kg 0.0250 kg 0.165 kgm m+ = + = . 

2  rad 2  rad 2.856 rad/s
2.20 sT

π π
Ω = = = . 

EXECUTE: (a) 2
p tot (0.165 kg)(9.80 m/s ) 1.62 NF w= = =  

(b) 
2

3
4 2

(0.165 kg)(9.80 m/s )(0.0400 m) 189 rad/s 1.80 10  rev/min
(1.20 10  kg m )(2.856 rad/s)

wr
I

ω −= = = = ×
Ω × ⋅

 

(c) If the figure in the problem is viewed from above, τ!  is in the direction of the precession and L
!

 is along the 
axis of the rotor, away from the pivot. 
EVALUATE: There is no vertical component of acceleration associated with the motion, so the force from the 
pivot equals the weight of the gyroscope. The larger ω is, the slower the rate of precession. 

10.50. IDENTIFY: The precession angular speed is related to the acceleration due to gravity by Eq.(10.33), with w mg= . 
SET UP: E 0.50 rad/sΩ = , Eg g= and M 0.165g g= . For the gyroscope, m, r, I, and ω are the same on the moon 
as on the earth. 

EXECUTE: mgr
Iω

Ω = . constantmr
g Iω
Ω
= = , so E M

E Mg g
Ω Ω

= . 

M
M E E

E

0.165 (0.165)(0.50 rad/s) 0.0825 rad/sg
g

⎛ ⎞
Ω = Ω = Ω = =⎜ ⎟

⎝ ⎠
. 

EVALUATE: In the limit that 0g → the precession rate 0→ . 
10.51. IDENTIFY and SET UP: Apply Eq.(10.33). 

EXECUTE: (a) halved 
(b) doubled (assuming that the added weight is distributed in such a way that r and I are not changed) 
(c) halved (assuming that w  and r  are not changed) 
(d) doubled 
(e) unchanged. 
EVALUATE: Ω  is directly proportional to w and r and is inversely proportional to I and ω . 

10.52. IDENTIFY: Apply Eq.(10.33), where wrτ = . 
SET UP: 1 day 86,400 s= . 71 yr 3.156 10  s= × . The earth has mass 245.97 10  kgM = × and radius 

66.38 10  mR = × . For a uniform sphere and an axis through its center, 22
5I MR= . 

EXECUTE: (a) 2(2 /5) .I MRτ ω ω= Ω = Ω  Using 2  rad
86,400 s
πω =  and 7

2  rad
(26,000 y)(3.156 10  s/y)

πΩ =
×

, and the mass 

and radius of the earth from Appendix F, 5.4 N mτ = ⋅ . 
EVALUATE: If the torque is applied by the sun, 111.5 10  mr = × and 113.6 10  NF⊥ = × . 
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10.53. IDENTIFY: Apply z zIτ α=∑ and constant acceleration equations to the motion of the grindstone. 

SET UP: Let the direction of rotation of the grindstone be positive. The friction force is kf nμ= and produces 

torque fR . 2  rad 1 min 4  rad
1 rev 60  s
πω π⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. 2 21

2 1.69 kg mI MR= = ⋅ . 

EXECUTE: (a) The net torque must be 

20 4  rad/s(1.69 kg m ) 2.36 N m.
9.00 s

z zI I
t

ω ω πτ α −
= = = ⋅ = ⋅  

This torque must be the sum of the applied force FR  and the opposing frictional torques 

fτ  at the axle and kfR nRμ= due to the knife. f k
1 ( )F nR
R
τ τ μ= + + . 

( )1 (2.36 N m) (6.50 N m) (0.60)(160 N)(0.260 m) 67.6 N.
0.500 m

F = ⋅ + ⋅ + =  

(b) To maintain a constant angular velocity, the net torque τ is zero, and the force is F ′  
1 (6.50 N m 24.96 N m) 62.9 N.0.500 mF ′ = ⋅ + ⋅ =  

(c) The time t needed to come to a stop is found by taking the magnitudes in Eq.(10.27), with fτ τ=  constant; 

( )2

f f

(4  rad/s) 1.69 kg m
3.27 s.

6.50 N m
L It

πω
τ τ

⋅
= = = =

⋅
 

EVALUATE: The time for a given change inω is proportional toα , which is in turn proportional to the net torque, 

so the time in part (c) can also be found as ( ) 2.36 N m9.00 s .6.50 N mt ⋅=
⋅

 

10.54. IDENTIFY: Apply z zIτ α=∑ and use the constant acceleration equations to relateα to the motion. 
SET UP: Let the direction the wheel is rotating be positive. 100 rev/min 10.47 rad/s=  

EXECUTE: (a) 0z z ztω ω α= +  gives 20 10.47 rad/s 0 5.23 rad/s
2.00 s

z z
z t

ω ωα − −
= = = . 

2
2

5.00 N m 0.956 kg m
5.23 rad/s

z

z

I
τ

α
⋅

= = = ⋅∑  

(b) 0 10.47 rad/szω = , 0zω = , 125 st = . 0z z ztω ω α= +  gives 20 0 10.47 rad/s 0.0838 rad/s
125 s

z z
z t

ω ωα − −
= = = −  

2 2(0.956 kg m )( 0.0838 rad/s ) 0.0801 N mz zIτ α= = ⋅ − = − ⋅∑  

(c) 0 10.47 rad/s 0 (125 s) 654 rad 104 rev
2 2

z z tω ωθ + +⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: The applied net torque ( 5.00 N m⋅ ) is much larger than the magnitude of the friction torque 
( 0.0801 N m⋅ ), so the time of 2.00 s that it takes the wheel to reach an angular speed of 100 rev/min is much less 
than the 125 s it takes the wheel to be brought to rest by friction. 

10.55. IDENTIFY and SET UP: Apply .v rω=  v is the tangential speed of a point on the rim of the wheel and equals the 
linear speed of the car. 
EXECUTE: (a) 60 mph 26.82 m/sv = =  

12 in. 0.3048 mr = =  

88.0 rad/s 14.0 rev/s 840 rpmv
r

ω = = = =  

(b) Same ω  as in part (a) since speedometer reads same. 
15 in. 0.381 mr = =  

(0.381 m)(88.0 rad/s) 33.5 m/s 75 mphv rω= = = =  
(c) 50 mph 22.35 m/sv = =  

10 in. 0.254 mr = =  

88.0 rad/s.v
r

ω = =  This is the same as for 60 mph with correct tires, so speedometer read 60 mph. 

EVALUATE: For a given ,ω  v increases when r increases. 
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10.56. IDENTIFY: The kinetic energy of the disk is 2 21 1
cm2 2K Mv Iω= + . As it falls its gravitational potential energy 

decreases and its kinetic energy increases. The only work done on the disk is the work done by gravity, so 
1 1 2 2K U K U+ = + . 

SET UP: 2 21
cm 2 12 ( )I M R R= + , where 1 0.300 mR = and 2 0.500 mR = . cm 2v R ω= . Take 1 0y = , so 

2 1.20 my = − . 

EXECUTE: 1 1 2 2K U K U+ = + . 1 0K = , 1 0U = . 2 2K U= − . 2 21 1
cm cm 22 2Mv I Mgyω+ = − . 

( )2 2 2 21 1
cm 1 2 cm cm2 4 1 [ / ] 0.340I M R R v Mvω = + = . Then 2

cm 20.840Mv Mgy= − and 

2
2

cm
(9.80 m/s )( 1.20 m) 3.74 m/s

0.840 0.840
gyv − − −

= = =  

EVALUATE: A point mass in free-fall acquires a speed of 4.85 m/s after falling 1.20 m. The disk has a value of 
cmv that is less than this, because some of the original gravitational potential energy has been converted to 

rotational kinetic energy. 
10.57. IDENTIFY: Use z zIτ α=∑ to find the angular acceleration just after the ball falls off and use conservation of 

energy to find the angular velocity of the bar as it swings through the vertical position. 
SET UP: The axis of rotation is at the axle. For this axis the bar has 21

bar12I m L= , where bar 3.80 kgm = and 
0.800 mL = . Energy conservation gives 1 1 2 2K U K U+ = + . The gravitational potential energy of the bar doesn�t 

change. Let 1 0y = , so 2 / 2y L= − . 

EXECUTE: (a) ball ( / 2)z m g Lτ = and 2 21
ball bar bar ball12 ( / 2)I I I m L m L= + = + . z zIτ α=∑  gives 

ball ball
2 21

bar ball ball bar12

( / 2) 2
( / 2) /3z

m g L g m
m L m L L m m

α
⎛ ⎞

= = ⎜ ⎟+ +⎝ ⎠
and 

2
22(9.80 m/s ) 2.50 kg 16.3 rad/s

0.800 m 2.50 kg [3.80 kg]/3zα
⎛ ⎞

= =⎜ ⎟+⎝ ⎠
. 

(b) As the bar rotates, the moment arm for the weight of the ball decreases and the angular acceleration of the bar 
decreases. 
(c) 1 1 2 2K U K U+ = + . 2 20 K U= + . 21

bar ball ball2 ( ) ( / 2)I I m g Lω+ = − − . 
2

ball ball
2 2

ball bar ball bar

4 9.80 m/s 4[2.50 kg]
/ 4 /12 /3 0.800 m 2.50 kg [3.80 kg]/3
m gL g m

m L m L L m m
ω

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠⎝ ⎠

 

5.70 rad/sω = . 
EVALUATE: As the bar swings through the vertical, the linear speed of the ball that is still attached to the bar is 

(0.400 m)(5.70 rad/s) 2.28 m/sv = = . A point mass in free-fall acquires a speed of 2.80 m/s after falling 0.400 m; 
the ball on the bar acquires a speed less than this. 

10.58. IDENTIFY: Use z zIτ α=∑  to find ,zα  and then use the constant zα  kinematic equations to solve for t. 
SET UP: The door is sketched in Figure 10.58. 

 

EXECUTE: (220 N)(1.25 m) 275 N mz Flτ = = = ⋅∑  

From Table 9.2(d), 21
3I Ml=  

2 2 21
3 (750 N/9.80 m/s )(1.25 m) 39.9 kg mI = = ⋅  

Figure 10.58  

z zIτ α=∑  so 2
2

275 N m 6.89 rad/s
39.9 kg m

z
z I

τ
α ⋅

= = =
⋅

∑  

SET UP: 26.89 rad/s ;zα =  0 90 (  rad/180 ) /2 rad;θ θ π π− = ° ° =  0 0zω =  (door initially at rest); ?t =  
21

0 0 2z zt tθ θ ω α− = +  

EXECUTE: 0
2

2( ) 2( / 2 rad) 0.675 s
6.89 rad/sz

t θ θ π
α
−

= − =  

EVALUATE: The forces and the motion are connected through the angular acceleration. 
10.59. IDENTIFY: sinrFτ φ=  

SET UP: Let x be the distance from the left end of the rod where the string is attached. For the value of x 
where ( )f x is a maximum, / 0df dx = . 
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EXECUTE: (a) From geometric consideration, the lever arm and the sine of the angle between  and F r
""! !  are both 

maximum if the string is attached at the end of the rod. 
(b) In terms of the distance x where the string is attached, the magnitude of the torque is 2 2.Fxh x h+  This 
function attains its maximum at the boundary, where ,x h=  so the string should be attached at the right end of  
the rod. 

(c) As a function of x, l and h, the torque has magnitude
2 2

.
( 2)

xhF
x l h

τ =
− +

 Differentiatingτ with respect to x 

and setting equal to zero gives maxx 2( 2)(1 (2 ) ).l h l= +  This will be the point at which to attach the string unless 
2 ,h l>  in which case the string should be attached at the furthest point to the right, .x l=  
EVALUATE: In part (a) the maximum torque is independent of h. In part (b) the maximum torque is independent 
of l. In part (c) the maximum torque depends on both h and l. 

10.60. IDENTIFY: Apply z zIτ α=∑ , where zτ is due to the gravity force on the object. 

SET UP: rod clayI I I= + . 21
rod 3I ML= . In part (b), 2

clayI ML= . In part (c), clay 0I = . 

EXECUTE: (a) A distance 4L  from the end with the clay. 

(b) In this case 2(4 3)I ML= and the gravitational torque is (3 4)(2 )sin (3 2)sin ,L Mg Mg Lθ θ=  so 
(9 8 )sin .g Lα θ=  

(c) In this case 2(1 3)I ML= and the gravitational torque is ( 4)(2 )sin ( 2)sin ,L Mg Mg Lθ θ=  so (3 2 )sin .g Lα θ=  
This is greater than in part (b). 
(d) The greater the angular acceleration of the upper end of the cue, the faster you would have to react to overcome 
deviations from the vertical. 
EVALUATE: In part (b), I is 4 times larger than in part (c) and τ is 3 times larger. / Iα τ= , so the net effect is 
that α is smaller in (b) than in (c). 

10.61. IDENTIFY: Calculate W using the procedure specified in the problem. In part (c) apply the work-energy theorem. 
In part (d), tana Rα=  and z zIτ α=∑ . 2

rada Rω= . 
SET UP: Let θ be the angle the disk has turned through. The moment arm for F is cosR θ . 

EXECUTE: (a) The torque is cos .FRτ θ=  
2

0
cos  W FR d FR

π
θ θ= =∫ . 

(b) In Eq.(6.14), dl is the horizontal distance the point moves, and so ,W F dl FR= =∫  the same as part (a). 

(c) From 2 2
2 ( 4) ,  4 .K W MR F MRω ω= = =  

(d) The torque, and hence the angular acceleration, is greatest when 0,θ = at which point ( ) 2I F MRα τ= = , and 
so the maximum tangential acceleration is 2 .F M  

(e) Using the value for ω found in part (c), 2
rad 4 .a R F Mω= =  

EVALUATE: 2
tana Rω= is maximum initially, when the moment arm for F is a maximum, and it is zero after the 

disk has rotated one-quarter of a revolution. rada  is zero initially and is a maximum at the end of the motion, after 
the disk has rotated one-quarter of a revolution. 

10.62. IDENTIFY: Apply m=∑F a
! !  to the crate and z zIτ α=∑  to the cylinder. The motions are connected by 

(crate) (cylinder).a Rα=  
SET UP: The force diagram for the crate is given in Figure 10.62a. 

 

EXECUTE: y yF ma=∑  
T mg ma− =  

2 2( ) 50 kg(9.80 m/s 0.80 m/s ) 530 NT m g a= + = + =  

Figure 10.62a  
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SET UP: The force diagram for the cylinder is given in Figure 10.62b. 

 

EXECUTE: z zIτ α=∑  

,zFl TR Iα− =  where 0.12 ml =  and 0.25 mR =  
a Rα=  so /z a Rα =  

/Fl TR Ia R= +  

Figure 10.62b  
2 20.25 m (2.9 kg m )(0.80 m/s )530 N 1200 N

0.12 m (0.25 m)(0.12 m)
R IaF T
l Rl

⋅⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: The tension in the rope is greater than the weight of the crate since the crate accelerates upward. If F 
were applied to the rim of the cylinder (l = 0.25 m), it would have the value 567 N.F =  This is greater than T 
because it must accelerate the cylinder as well as the crate. And F is larger than this because it is applied closer to 
the axis than R so has a smaller moment arm and must be larger to give the same torque. 

10.63. IDENTIFY: Apply ext cmm=∑F a
! ! and cmz zIτ α=∑ to the roll. 

SET UP: At the point of contact, the wall exerts a friction force f directed downward and a normal force n 
directed to the right. This is a situation where the net force on the roll is zero, but the net torque is not zero. 
EXECUTE: (a) Balancing vertical forces, rod cos ,F f w Fθ = + + and balancing horizontal forces 

rod ksin .  With ,F n f nθ μ= =  these equations become rod kcos ,F n F wθ μ= + +  rod sin . F nθ = Eliminating n and 
solving for rodF  gives 

2

rod
k

(16.0 kg) (9.80 m/s ) (40.0 N) 266 N.
cos sin cos 30 (0.25)sin30

w FF
θ μ θ

+ +
= = =

− ° − °
 

(b) With respect to the center of the roll, the rod and the normal force exert zero torque. The magnitude of the net 
torque is k( ) ,  and F f R f nμ− =  may be found by insertion of the value found for rodF into either of the above 
relations; i.e., k rod sin 33.2 N. f Fμ θ= = Then, 

2
2

2

(40.0 N 31.54 N)(18.0 10  m) 4.71 rad/s .
(0.260 kg m )I

τα
−− ×

= = =
⋅

 

EVALUATE: If the applied force F is increased, rodF increases and this causes n and f to increase. The angle 
φ changes as the amount of paper unrolls and this affects α for a given F. 

10.64. IDENTIFY: Apply z zIτ α=∑  to the flywheel and m=∑F a
! !  to the block. The target variables are the tension in 

the string and the acceleration of the block. 
(a) SET UP: Apply z zIτ α=∑  to the rotation of the flywheel about the axis. The free-body diagram for the 
flywheel is given in Figure 10.64a. 

 

EXECUTE: The forces n and Mg act 
at the axis so have zero torque. 

z TRτ =∑  

zTR Iα=  

Figure 10.64a  
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SET UP: Apply m=∑F a
! !  to the translational motion of the block. The free-body diagram for the block is given 

in Figure 10.64b. 

 

EXECUTE: y yF ma=∑  
cos36.9 0n mg− ° =  
cos36.9n mg= °  

k k k cos36.9f n mgμ μ= = °  

Figure 10.64b  

x xF ma=∑  

ksin36.9 cos36.9mg T mg maμ° − − ° =  

k(sin36.9 cos36.9 )mg T maμ° − ° − =  

But we also know that block wheel ,a Rα=  so / .a Rα =  Using this in the z zIτ α=∑  equation gives /TR Ia R=  and 
2( / ) .T I R a=  Use this to replace T in the x xF ma=∑  equation: 

2
k(sin36.9 cos36.9 ) ( / )mg I R a maμ° − ° − =  

k
2

(sin36.9 cos36.9 )
/

mga
m I R

μ° − °
=

+
 

2
2

2 2

(5.00 kg)(9.80 m/s )(sin36.9 (0.25)cos36.9 ) 1.12 m/s
5.00 kg 0.500 kg m /(0.200 m)

a ° − °
= =

+ ⋅
 

(b) 
2

2
2

0.500 kg m (1.12 m/s ) 14.0 N
(0.200 m)

T ⋅
= =  

EVALUATE: If the string is cut the block will slide down the incline with 
2

ksin36.9 cos36.9 3.92 m/s .a g gμ= ° − ° =  The actual acceleration is less than this because sin36.9mg °  must also 
accelerate the flywheel. ksin36.9 19.6 N.mg f° − =  T is less than this; there must be more force on the block 
directed down the incline than up then incline since the block accelerates down the incline. 

10.65. IDENTIFY: Apply m=∑F a
! ! to the block and z zIτ α=∑ to the combined disks. 

SET UP: For a disk, 21
disk 2I MR= , so I for the disk combination is 3 22.25 10  kg m .I −= × ⋅  

EXECUTE: For a tension T in the string, and .amg T ma TR I I Rα− = = =  Eliminating T and solving for a gives 

2 2 ,
/ 1 /

m ga g
m I R I mR

= =
+ +

 where m is the mass of the hanging block and R is the radius of the disk to which the 

string is attached. 
(a) With 1.50m =  kg and 2 22.50 10 m, 2.88 m/s .R a−= × =  
(b) With 1.50m =  kg and 2 25.00 10 m, 6.13 m/s .R a−= × =  
The acceleration is larger in case (b); with the string attached to the larger disk, the tension in the string is capable 
of applying a larger torque. 
EVALUATE: /v Rω = , where v is the speed of the block and ω is the angular speed of the disks. When R is 
larger, in part (b), a smaller fraction of the kinetic energy resides with the disks. The block gains more speed as it 
falls a certain distance and therefore has a larger acceleration. 

10.66. IDENTIFY: Apply both m=∑F a
! !  and z zIτ α=∑  to the motion of the roller. Rolling without slipping means 

cm .a Rα=  Target variables are cma  and f. 
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SET UP: The free-body diagram for the roller is given in Figure 10.66. 

 

EXECUTE: Apply m=∑F a
! !  to the 

translational motion of the center of mass: 

x xF ma=∑  

cmF f Ma− =  

Figure 10.66  

Apply z zIτ α=∑  to the rotation about the center of mass: 

z fRτ =∑  

thin-walled hollow cylinder: 2I MR=  
Then z zIτ α=∑  implies 2 .fR MR α=  

But cm ,Rα α=  so cm.f Ma=  

Using this in the x xF ma=∑  equation gives cm cmF Ma Ma− =  

cm / 2 ,a F M=  and then cm ( / 2 ) / 2.f Ma M F M F= = =  
EVALUATE: If the surface were frictionless the object would slide without rolling and the acceleration would be 

cm / .a F M=  The acceleration is less when the object rolls. 

10.67. IDENTIFY: Apply m∑F = a
! ! to each object and apply z zIτ α=∑ to the pulley. 

SET UP: Call the 75.0 N weight A and the 125 N weight B. Let AT and BT be the tensions in the cord to the left 

and to the right of the pulley. For the pulley, 21
2I MR= , where 50.0 NMg = and 0.300 mR = . The 125 N weight 

accelerates downward with acceleration a, the 75.0 N weight accelerates upward with acceleration a and the pulley 
rotates clockwise with angular acceleration α , where a Rα= . 
EXECUTE: m∑F = a

! ! applied to the 75.0 N weight gives A A AT w m a− = . m∑F = a
! ! applied to the 125.0 N 

weight gives B B Bw T m a− = . z zIτ α=∑ applied to the pulley gives 21
2( ) ( )B A zT T R MR α− = and 1

2B AT T M− = . 

Combining these three equations gives ( / 2)B A A Bw w m m M a− = + + and 

pulley

125 N 75.0 N 0.222
/ 2 75.0 N 125 N 25.0 N

B A

A B

w wa g g g
w w w

⎛ ⎞− −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠
. (1 / ) 1.222 91.65 NA A AT w a g w= + = = . 

(1 / ) 0.778 97.25 NB B BT w a g w= − = = . m∑F = a
! ! applied to the pulley gives that the force F applied by the hook 

to the pulley is pulley 239 NA BF T T w= + + = . The force the ceiling applies to the hook is 239 N. 
EVALUATE: The force the hook exerts on the pulley is less than the total weight of the system, since the net 
effect of the motion of the system is a downward acceleration of mass. 

10.68. IDENTIFY: This problem can be done either with conservation of energy or with ext .m=∑F a
! !  We will do it both 

ways. 
(a) SET UP: (1) Conservation of energy: 1 1 other 2 2.K U W K U+ + = +  

 

Take position 1 to be the location of the disk 
at the base of the ramp and 2 to be where the 
disk momentarily stops before rolling back 
down, as shown in Figure 10.68a. 

Figure 10.68a  
Take the origin of coordinates at the center of the disk at position 1 and take y+  to be upward. Then 1 0y =  and 

2 sin30 ,y d= °  where d is the distance that the disk rolls up the ramp. �Rolls without slipping� and neglect rolling 
friction says 0;fW =  only gravity does work on the disk, so other 0W =  
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EXECUTE: 1 1 0U Mgy= =  
2 21 1

1 1 cm 12 2K Mv I ω= +  (Eq.10.11). But 1 1 /v Rω =  and 21
cm 2 ,I MR=  so ( )2 2 2 21 1 1 1

cm 1 1 12 2 2 4( / ) .I MR v R Mvω = =  Thus 
2 2 231 1

1 1 1 12 4 4 .K Mv Mv Mv= + =   

2 2 sin30U Mgy Mgd= = °  

2 0K =  (disk is at rest at point 2). 

Thus 23
14 sin30Mv Mgd= °  
2 2
1

2

3 3(2.50 m/s) 0.957 m
4 sin30 4(9.80 m/s )sin30

vd
g

= = =
° °

 

SET UP: (2) force and acceleration The free-body diagram is given in Figure 10.68b. 

 

EXECUTE: Apply x xF ma=∑  to the 
translational motion of the center of mass: 

cmsinMg f Maθ − =  

Apply z zIτ α=∑  to the rotation about the 
center of mass: 

( )21
2 zf R MR α=  

1
2 zf MRα=  

Figure 10.68b  

But cma Rα=  in this equation gives 1
cm2 .f Ma=  Use this in the x xF ma=∑  equation to eliminate f. 

1
cm cm2sinMg Ma Maθ − =  

M divides out and 3
cm2 sin .a g θ=  2 22 2

cm 3 3sin (9.80 m/s )sin30 3.267 m/sa g θ= = ° =  
SET UP: Apply the constant acceleration equations to the motion of the center of mass. Note that in our 
coordinates the positive x-direction is down the incline. 

0 2.50 m/sxv = −  (directed up the incline); 23.267 m/s ;xa = +  
0xv =  (momentarily comes to rest); 0 ?x x− =  

2 2
0 02 ( )x x xv v a x x= + −  

EXECUTE: 
2 2
0

0 2

( 2.50 m/s) 0.957 m
2 2(3.267 m/s )

x

x

vx x
a

−
− = − = − = −  

(b) EVALUATE: The results from the two methods agree; the disk rolls 0.957 m up the ramp before it stops. 
The mass M enters both in the linear inertia and in the gravity force so divides out. The mass M and radius R enter 
in both the rotational inertia and the gravitational torque so divide out. 

10.69. IDENTIFY: Apply ext cmm=∑F a
! ! to the motion of the center of mass and apply cmz zIτ α=∑ to the rotation about 

the center of mass. 
SET UP: ( )2 21

22I MR MR= = . The moment arm for T is b. 

EXECUTE: The tension is related to the acceleration of the yo-yo by (2 ) (2 ) ,m g T m a− =  and to the angular 

acceleration by .aTb I I bα= =  Dividing the second equation by b and adding to the first to eliminate T yields 

2 2 2

2 2 2,   
(2 ) 2 ( ) 2

ma g g g
m I b R b b R b

α= = =
+ + +

. The tension is found by substitution into either of the two 

equations: 
2

2 2 2

2 ( ) 2(2 )( ) (2 ) 1 2 .
2 ( ) 2 ( ) (2( ) 1)

R b mgT m g a mg mg
R b R b b R

⎛ ⎞
= − = − = =⎜ ⎟+ + +⎝ ⎠

 

EVALUATE: 0a → when 0b → . As b R→ , 2 /3a g→ . 
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10.70. IDENTIFY: Apply conservation of energy to the motion of the shell, to find its linear speed v at points A and B. 
Apply m∑F = a

! ! to the circular motion of the shell in the circular part of the track to find the normal force exerted 
by the track at each point. Since r R<< the shell can be treated as a point mass moving in a circle of radius R when 
applying m∑F = a

! ! . But as the shell rolls along the track, it has both translational and rotational kinetic energy. 

SET UP: 1 1 2 2K U K U+ = + . Let 1 be at the starting point and take 0y = to be at the bottom of the track, so 

1 0y h= . 2 21 1
2 2K mv Iω= + . 22

3I mr= and /v rω = , so 25
6K mv= . During the circular motion, 2

rad /a v R= . 

EXECUTE: (a) m∑F = a
! ! at point A gives 

2vn mg m
R

+ = . The minimum speed for the shell not to fall off the 

track is when 0n → and 2v gR= . Let point 2 be A, so 2 2y R= and 2
2v mR= . Then 1 1 2 2K U K U+ = + gives 

5
0 62 ( )mgh mgR m gR= + . 5 17

0 6 6(2 )h R R= + = . 

(b) Let point 2 be B, so 2y R= . Then 1 1 2 2K U K U+ = + gives 25
0 26mgh mgR mv= + . With 17

6h R= this gives 

2 11
5v gR= . Then m∑F = a

! ! at B gives 
2

11
5

vn m mg
R

= = . 

(c) Now 21
2K mv= instead of 25

6 mv . The shell would be moving faster at A than with friction and would still make 
the complete loop. 

(d) In part (c): 21
0 2(2 )mgh mg R mv= + . 17

0 6h R= gives 2 5
3v gR= . m∑F = a

! ! at point A gives 
2vmg n m

R
+ = and 

2
2
3

vn m g mg
R

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
. In part (a), 0n = , since at this point gravity alone supplies the net downward force that is 

required for the circular motion. 
EVALUATE: The normal force at A is greater when friction is absent because the speed of the shell at A is greater 
when friction is absent than when there is rolling without slipping. 

10.71. IDENTIFY: Consider the direction of the net force and the sense of the net torque in each case. 
SET UP: The free-body diagram in each case is shown in Figure 10.71. 

EXECUTE: In the first case, 
→

F and the friction force act in opposite directions, and the friction force causes a 
larger torque to tend to rotate the yo-yo to the right. The net force to the right is the difference ,F f−  so the net 
force is to the right while the net torque causes a clockwise rotation. For the second case, both the torque and the 
friction force tend to turn the yo-yo clockwise, and the yo-yo moves to the right. In the third case, friction tends to 
move the yo-yo to the right, and since the applied force is vertical, the yo-yo moves to the right. 
EVALUATE: In the first case the torque due to friction must be larger than the torque due to F, so the net torque is 
clockwise. In the third case the torque due to F must be larger than the torque due to f, so the net torque will be clockwise. 

 
Figure 10.71 

10.72. IDENTIFY: Apply ext cmm=∑F a
! ! to the motion of the center of mass and cmz zIτ α=∑ to the rotation about the 

center of mass. 
SET UP: For a hoop, 2I MR= . For a solid disk, 21

2I MR= . 
EXECUTE: (a) Because there is no vertical motion, the tension is just the weight of the hoop: 

( )( )0.180 kg 9.8 N kg 1.76 NT Mg= = = . 

(b) Use  to find .Iτ α α=  The torque is 2,  so / / ,  RT RT I RT MR T MR Mg MRα = = = = so 
2 2/ (9.8 m/s ) (0.08 m) 122.5 rad/sg Rα = = = . 

(c) 29.8 m sa Rα= =  

(d) T would be unchanged because the mass M is the same, and aα would be twice as great because I is now 21
2 .MR  

EVALUATE: tana for a point on the rim of the hoop or disk equals a for the free end of the string. Since I is 
smaller for the disk, the same value of T produces a greater angular acceleration. 
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10.73. IDENTIFY: Apply z zIτ α=∑ to the cylinder or hoop. Find a for the free end of the cable and apply constant 
acceleration equations. 
SET UP: tana for a point on the rim equals a for the free end of the cable, and tana Rα= . 

EXECUTE: (a) tan and z zI a Rτ α α= =∑  gives 2 2 tan1 1
2 2

aFR MR MR
R

α ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

. 2
tan

2 200 N 50 m/s
4.00 kg

Fa
M

= = = . 

Distance the cable moves: 21
0 0 2x xx x v t a t− = +  gives ( )2 2150 m 50 m/s

2
t=  and 1.41 st = . 

( )( )2
0 0 50 m/s 1.41 s 70.5 m sx x xv v a t= + = + = . 

(b) For a hoop, 2 ,I MR= which is twice as large as before, so tanand aα would be half as large. Therefore the time 

would be longer by a factor of 2 . For the speed, 2 2
0 2 ,x x xv v a x= + in which x is the same, so xv  would be half as 

large since xa  is smaller. 
EVALUATE: The acceleration a that is produced depends on the mass of the object but is independent of its 
radius. But a depends on how the mass is distributed and is different for a hoop versus a cylinder. 

10.74. IDENTIFY: Use projectile motion to find the speed v the marble needs at the edge of the pit to make it to the level 
ground on the other side. Apply conservation of energy to the motion down the hill in order to relate the initial 
height to the speed v at the edge of the pit. other 0W =  so conservation of energy gives i i f fK U K U+ = + . 
SET UP: In the projectile motion the marble must travel 36 m horizontally while falling vertically 20 m. Let y+  
be downward. For the motion down the hill, let f 0y =  so f 0U =  and iy h= . i 0K = . Rolling without slipping 

means v Rω= . 2 2 2 2 2 271 1 1 2 1
cm2 2 2 5 2 10( )K I mv mR mv mvω ω= + = + = . 

EXECUTE: (a) Projectile motion: 0 0yv = . 29.80 m/sya = . 0 20 my y− = . 21
0 0 2y yy y v t a t− = +  gives 

02( ) 2.02 s
y

y yt
a
−

= = . Then 0 0xx x v t− =  gives 0
0

36 m 17.8 m/s
2.02 sx

x xv v
t
−

= = = = . 

Motion down the hill: i fU K= . 27
10mgh mv= . 

2 2

2

7 7(17.8 m/s) 22.6 m
10 10(9.80 m/s )

vh
g

= = = . 

(b) 2 21 1
2 5I mvω = , independent of R. I is proportional to 2R  but 2ω is proportional to 21/ R  for a given 

translational speed v. 
(c) The object still needs 17.8 m/sv = at the bottom of the hill in order to clear the pit. But now 21

f 2K mv= and 
2

16.6 m
2
vh
g

= = . 

EVALUATE: The answer to part (a) also does not depend on the mass of the marble. But, it does depend on how 
the mass is distributed within the object. The answer would be different if the object were a hollow spherical shell. 
In part (c) less height is needed to give the object the same translational speed because in (c) none of the energy 
goes into rotational motion. 

10.75. IDENTIFY: Apply conservation of energy to the motion of the boulder. 
SET UP: 2 21 1

2 2K mv Iω= + and v Rω= when there is rolling without slipping. 22
5I mR= . 

EXECUTE: Break into 2 parts, the rough and smooth sections. 

Rough: 2 21 1
1 2 2mgh mv Iω= + . 

2
2 2

1
1 1 2
2 2 5

vmgh mv mR
R

⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 2
1

10
7

v gh= . 

Smooth: Rotational kinetic energy does not change. 2 2
2 rot Bottom rot

1 1
2 2

mgh mv K mv K+ + = + . 2
2 1 B

1 10 1
2 7 2

gh gh v⎛ ⎞+ =⎜ ⎟
⎝ ⎠

. 

2 2
B 1 2

10 102 (9.80 m/s )(25  m) 2(9.80 m/s )(25 m) 29.0 m/s
7 7

v gh gh= + = + = . 

EVALUATE: If all the hill was rough enough to cause rolling without slipping, B
10 (50 m) 26.5 m/s
7

v g= = . A 

smaller fraction of the initial gravitational potential energy goes into translational kinetic energy of the center of 
mass than if part of the hill is smooth. If the entire hill is smooth and the boulder slides without slipping, 

B 2 (50 m) 31.3 m/sv g= = . In this case all the initial gravitational potential energy goes into the kinetic energy of 
the translational motion. 
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10.76. IDENTIFY: Apply conservation of energy to the motion of the ball as it rolls up the hill. After the ball leaves the 
edge of the cliff it moves in projectile motion and constant acceleration equations can be used. 
(a) SET UP: Use conservation of energy to find the speed 2v  of the ball just before it leaves the top of the cliff. 
Let point 1 be at the bottom of the hill and point 2 be at the top of the hill. Take 0y =  at the bottom of the hill, so 

1 0y =  and 2 28.0 m.y =  
EXECUTE: 1 1 2 2K U K U= = +  

2 2 2 21 1 1 1
1 1 2 2 22 2 2 2mv I mgy mv Iω ω+ = + +  

Rolling without slipping means /v rω =  and ( )2 2 2 21 1 2 1
2 2 5 5( / )I mr v r mvω = =  

2 27 7
1 2 210 10mv mgy mv= +  

2 10
2 1 27 15.26 m/sv v gy= − =  

SET UP: Consider the projectile motion of the ball, from just after it leaves the top of the cliff until just before it 
lands. Take y+  to be downward. Use the vertical motion to find the time in the air: 

0 0,yv =  29.80 m/s ,ya =  0 28.0 m,y y− =  ?t =  

EXECUTE: 21
0 0 2y yy y v t a t− = +  gives 2.39 st =  

During this time the ball travels horizontally 
0 0 (15.26 m/s)(2.39 s) 36.5 m.xx x v t− = = =  

Just before it lands, 0 23.4 m/sy y yv v a t= + =  and 0 15.3 m/sx xv v= =  
2 2 28.0 m/sx yv v v= + =  

(b) EVALUATE: At the bottom of the hill, / (25.0 m/s) / .v r rω = =  The rotation rate doesn�t change while the ball 
is in the air, after it leaves the top of the cliff, so just before it lands (15.3 m/s) / .rω =  The total kinetic energy is 
the same at the bottom of the hill and just before it lands, but just before it lands less of this energy is rotational 
kinetic energy, so the translational kinetic energy is greater. 

10.77. IDENTIFY: Apply conservation of energy to the motion of the wheel. 2 21 1
2 2K mv Iω= + . 

SET UP: No slipping means that .v Rω =  Uniform density means r s2  and m R m Rλ π λ= = , where rm is the 

mass of the rim and sm is the mass of each spoke. For the wheel, rim spokesI I I= + . For each spoke, 21
s3I m R= . 

EXECUTE: (a) 2 21 1
2 2

mgh mv Iω= + . 2 2
rim spokes r s

1 6
3

I I I m R m R⎛ ⎞= + = + ⎜ ⎟
⎝ ⎠

 

Also, ( )r s 2 6 2 3m m m R R Rπ λ λ λ π= + = + = + . Substituting into the conservation of energy equation gives 

( ) ( )( )( )2 2 2 21 1 12 3 2 3 2 6
2 2 3

R gh R R R R RRλ π λ π ω π λ π ω⎡ ⎤⎛ ⎞+ = + + + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. 

( )
( )

( )( )( )
( ) ( )

2

22

3 9.80 m s 58.0 m3
124 rad s

2 0.210 m 2
gh

R
ππ

ω
π π

++
= = =

+ +
and 26.0 m sv Rω= =  

(b) Doubling the density would have no effect because it does not appear in the answer. ω is inversely proportional 
to R so doubling the diameter would double the radius which would reduce by half, butω v Rω= would be 
unchanged. 
EVALUATE: Changing the masses of the rim and spokes by different amounts would alter the speed v at the 
bottom of the hill. 

10.78. IDENTIFY: Apply v Rω= . 
SET UP: For the antique bike, v is the same for points on the rim of each wheel and equals the linear speed of the 
bike. 1 rev 2  radπ= . 
EXECUTE: (a) The front wheel is turning at 1.00 rev s 2  rad s.ω π= =  (0.330 m)(2  rad s) 2.07 sv rω π= = = . 
(b) (2.07 m s) (0.655 m) 3.16 rad s 0.503 rev sv rω = = = =  
(c) (2.07 m s) (0.220 m) 9.41 rad s 1.50 rev sv rω = = = =  
EVALUATE: Since the front wheel has a larger radius for the antique bike, that wheel doesn't have to rotate at as 
many rev/s to achieve the same linear speed of the bike. 
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10.79. IDENTIFY: Apply conservation of energy to the motion of the ball. Once the ball leaves the track the ball moves 
in projectile motion. 
SET UP: The ball has 22

5I mR= ; the silver dollar has 21
2I mR= . For the projectile motion take y+  downward, 

so 0xa = and ya g= + . 
EXECUTE: (a) The kinetic energy of the ball when it leaves the track (when it is still rolling without slipping) is 

2(7 10)mv and this must be the work done by gravity, W mgh= , so 10 7.v gh= The ball is in the air for a time 

2 ,  so 20 7.t y g x vt hy= = =  
(b) The answer does not depend on g, so the result should be the same on the moon. 
(c) The presence of rolling friction would decrease the distance. 
(e) For the dollar coin, modeled as a uniform disc, 2(3 4) ,  and so 8 3.K mv x hy= =  
EVALUATE: The sphere travels a little farther horizontally, because its moment of inertia is a smaller fraction of 

2MR than for the disk. The result is independent of the mass and radius of the object but it does depend on how 
that mass is distributed within the object. 

10.80. IDENTIFY and SET UP: Apply conservation of energy to the motion of the ball. The ball ends up with both 
translational and rotational kinetic energy. Use Fig.(10.13) in the textbook to relate the speed of different points on 
the ball to cm.v  

EXECUTE: (a) 2 21 1
el 2 2 (400 N m)(0.15 m) 4.50 JU kx= = ⋅ =  and 1 el0.800 3.60 JK U= =  

2 21 1
1 cm cm2 2K mv I ω= +  rolling without slipping says cm /v Rω =  

22
cm 5I mR=  

Thus ( ) ( )2 2 2 2 271 1 2 1 1
1 cm cm cm cm2 2 5 2 5 10( / )K mv mR v R mv mv= + = + =  

and 1
cm

10 10(3.60 J) 9.34 m/s.
7 7(0.0590 kg)

Kv
m

= = =  

(b) Consider Figure 10.80a. 

 

From Fig.(10.13) in the textbook, 
at the top of the ball 

cm2 18.7 m/sv v= =  

Figure 10.80a  
(c)  

 

From Fig.(10.13) in the textbook, 
0v =  at the bottom of the ball. 

Figure 10.80b  
(d) The problem says that 2 10.900 3.24 J.U K= =  Thus 2 3.24 JU mgh= =  and 

2

3.24 J 3.24 J 5.60 m
(0.0590 kg)(9.80 m/s )

h
mg

= = =  

EVALUATE: Not all the potential energy stored in the spring goes into kinetic energy at the base of the ramp or 
into gravitational potential energy at the top of the ramp because of loss of mechanical energy due to negative 
work done by friction. If the ball slides without rolling, then 21

1 cm2K mv=  and cm 11.0 m/s.v =  cmv  is less than this 
when the ball rolls and some of its total kinetic energy is rotational. 

10.81. IDENTIFY: /xv dx dt= , /yv dy dt= . /x xa dv dt= , /y ya dv dt= . 
SET UP: cos( ) / sin( )d t dt tω ω ω= − . sin( ) / cos( )d t dt tω ω ω= . 
EXECUTE: (a) The sketch is shown in Figure 10.81. 
(b) R is the radius of the wheel (y varies from 0 to 2R) and T is the period of the wheel�s rotation. 

(c) Differentiating, 2 21 cosx
R tv

T T
π π⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, 
22 2sinx

ta R
T T
π π⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 and 2 2siny

R tv
T T
π π⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 

22 2 cos .y
ta R

T T
π π⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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(d) 20 when 2x y
tv v

T
π π⎛ ⎞= = =⎜ ⎟

⎝ ⎠
or any multiple of 2 ,π  so the times are integer multiples of the period T. The 

acceleration components at these times are 
2

2

40,  .x y
Ra a

T
π

= =  

(e) 
2 2

2 2 2 2
2

2 2 2 4cos sin ,x y
t t Ra a a R

T T T T
π π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
independent of time. This is the magnitude of the 

radial acceleration for a point moving on a circle of radius R with constant angular velocity 2 /Tπ . For motion that 
consists of this circular motion superimposed on motion with constant velocity ( )0 ,=a!  the acceleration due to the 
circular motion will be the total acceleration. 
EVALUATE: a is independent of time, but v does depend on time. 

 
Figure 10.81 

10.82. IDENTIFY: Apply the work-energy theorem to the motion of the basketball. 2 21 1
2 2K mv Iω= + and v Rω= . 

SET UP: For a thin-walled, hollow sphere 22
3I mR= . 

EXECUTE: For rolling without slipping, the kinetic energy is ( )( ) ( )2 2 21 2 5 6 ;m I R v mv+ =  initially, this is 

32.0 J and at the return to the bottom it is 8.0 J. Friction has done 24.0 J−  of work, 12.0 J− each going up and 
down. The potential energy at the highest point was 20.0 J, so the height above the ground was 

( )( )2
20.0 J 3.40 m.

0.600 kg 9.80 m s
=  

EVALUATE: All of the kinetic energy of the basketball, translational and rotational, has been removed at the point 
where the basketball is at its maximum height up the ramp. 

10.83. IDENTIFY: Use conservation of energy to relate the speed of the block to the distance it has descended. Then use 
a constant acceleration equation to relate these quantities to the acceleration. 
SET UP: For the cylinder, 21

2 (2 )I M R= , and for the pulley, 21
2I MR= . 

EXECUTE: Doing this problem using kinematics involves four unknowns (six, counting the two angular 
accelerations), while using energy considerations simplifies the calculations greatly. If the block and the cylinder 
both have speed v, the pulley has angular velocity v/R and the cylinder has angular velocity v/2R, the total kinetic 
energy is 

2 2
2 2 2 2 21 (2 ) 3( 2 ) ( ) .

2 2 2 2
M R MRK Mv v R v R Mv Mv

⎡ ⎤
= + + + =⎢ ⎥

⎣ ⎦
 

This kinetic energy must be the work done by gravity; if the hanging mass descends a distance y, ,K Mgy=  or 
2 (2 3) .v gy=  For constant acceleration, 2 2 ,v ay=  and comparison of the two expressions gives 3.a g=  

EVALUATE: If the pulley were massless and the cylinder slid without rolling, 2Mg Ma= and / 2a g= . The 
rotation of the objects reduces the acceleration of the block. 

10.84. IDENTIFY: Apply z zIτ α=∑ to the drawbridge and calculate zα . For part (c) use conservation of energy. 

SET UP: The free-body diagram for the drawbridge is given in Fig.10.84. For an axis at the lower end, 21
3I ml= . 

EXECUTE: (a) z zIτ α=∑ gives 21
3(4.00 m)(cos60.0 ) zmg ml α=° and 2

2

3 (4.00 m)(cos60.0 ) 0.919 rad/s
(8.00 m)z

gα = =
° . 

(b) zα depends on the angle the bridge makes with the horizontal. zα is not constant during the motion and 

0z z ztω ω α= + cannot be used. 
(c) Use conservation of energy. Take 0y =  at the lower end of the drawbridge, so i (4.00 m)(sin60.0 )y = ° and 

f 0y = . f f i i otherK U K U W+ = + +  gives i fU K= , 21
i 2mgy Iω= . 2 21 1

i 2 3( )mgy ml ω=  and 
2

i6 6(9.80 m/s )(4.00 m)(sin60.0 )
1.78 rad/s

8.00 m
gy
l

ω = = =
°

. 



10-30 Chapter 10 

EVALUATE: If we incorrectly assume that zα is constant and has the value calculated in part (a), then 
2 2

0 02 ( )z z zω ω α θ θ= + −  gives 139 rad/sω = . The angular acceleration increases as the bridge rotates and the actual 
angular velocity is larger than this. 

 
Figure 10.84 

10.85. IDENTIFY: Apply conservation of energy to the motion of the first ball before the collision and to the motion of 
the second ball after the collision. Apply conservation of angular momentum to the collision between the first ball 
and the bar. 
SET UP: The speed of the ball just before it hits the bar is 2 15.34 m/s.v gy= =  Use conservation of angular 
momentum to find the angular velocity ω  of the bar just after the collision. Take the axis at the center of the bar. 
EXECUTE: 2

1 (5.00 kg)(15.34 m/s)(2.00 m) 153.4 kg mL mvr= = = ⋅  
Immediately after the collision the bar and both balls are rotating together. 

2 totL I ω=  
2 2 2 2 21 1

tot 12 122 (8.00 kg)(4.00 m) 2(5.00 kg)(2.00 m) 50.67 kg mI Ml mr= + = + = ⋅  
2

2 1 153.4 kg mL L= = ⋅  

2 tot/ 3.027 rad/sL Iω = =  
Just after the collision the second ball has linear speed (2.00 m)(3.027 rad/s) 6.055 m/sv rω= = =  and is moving 

upward. 21
2 mv mgy=  gives 1.87 my =  for the height the second ball goes. 

EVALUATE: Mechanical energy is lost in the inelastic collision and some of the final energy is in the rotation of the bar 
with the first ball stuck to it. As a result, the second ball does not reach the height from which the first ball was dropped. 

10.86. IDENTIFY: The rings and the rod exert forces on each other, but there is no net force or torque on the system, and 
so the angular momentum will be constant. 
SET UP: For the rod, 21

12I ML= . For each ring, 2I mr= , where r is their distance from the axis. 
EXECUTE: (a) As the rings slide toward the ends, the moment of inertia changes, and the final angular velocity is 

given by 
2 2 4 21

11 112
2 1 1 12 2 3 21

2 212

2 5.00 10  kg m ,
2 2.00 10  kg m 4

ML mrI
I ML mr

ωω ω ω ω
−

−

⎡ ⎤+ × ⋅
= = = =⎢ ⎥+ × ⋅⎣ ⎦

 so 2 7.5 rev min.ω =  

(b) The forces and torques that the rings and the rod exert on each other will vanish, but the common angular 
velocity will be the same, 7.5 rev/min. 
EVALUATE: Note that conversion from rev/min to rad/s was not necessary. The angular velocity of the rod 
decreases as the rings move away from the rotation axis. 

10.87. IDENTIFY: Apply conservation of angular momentum to the collision. Linear momentum is not conserved 
because of the force applied to the rod at the axis. But since this external force acts at the axis, it produces no 
torque and angular momentum is conserved. 
SET UP: The system before and after the collision is sketched in Figure 10.87. 
EXECUTE: (a) 1

rod4bm m=  

 

EXECUTE: 1
1 b rod4 ( / 2)L m vr m v L= =  

1
1 rod8L m vL=  

2 rod b( )L I I ω= +  
21

rod rod3I m L=  
2 21

b b rod4 ( / 2)I m r m L= =  
21

b rod16I m L=  
Figure 10.87  
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Thus 1 2L L=  gives ( )2 21 1 1
rod rod rod8 3 16m vL m L m L ω= +  

191
8 48v Lω=  

6
19 /v Lω =  

(b) 2 21 1
1 rod2 8K mv m v= =  

( )2 2 2 2 21 1 1 1 1
2 rod b rod rod2 2 2 3 16( ) (6 /19 )K I I I m L m L v Lω ω= = + = +  

( )( )2 2 219 6 31
2 rod rod2 48 19 152K m v m v= =  

Then 
23

rod2 152
21

1 rod8

3/19.
m vK

K m v
= =  

EVALUATE: The collision is inelastic and 2 1.K K<  
10.88. IDENTIFY: Apply Eq.(10.29). 

SET UP: The door has 21
3I ml= . The torque applied by the force is avrF , where / 2r l= . 

EXECUTE: av av, av and .rF L rF t rJτΣ = Δ = Δ =  The angular velocityω is then 

( ) avav av
21

3

2 3 ,
2

l F tL rF t F t
I I ml ml

ω
ΔΔ Δ Δ

= = = = where l  is the width of the door. Substitution of the given numeral 

values gives 0.514rad s.ω =  
EVALUATE: The final angular velocity of the door is proportional to both the magnitude of the average force and 
also to the time it acts. 

10.89. (a) IDENTIFY: Apply conservation of angular momentum to the collision between the bullet and the board: 
SET UP: The system before and after the collision is sketched in Figure 10.89a. 

 
Figure 10.89a 

EXECUTE: 1 2L L=  
3 2

1 sin (1.90 10  kg)(360 m/s)(0.125 m) 0.0855 kg m /sL mvr mvlφ −= = = × = ⋅  

2 2 2L I ω=  
2 21

2 board bullet 3I I I ML mr= + = +  
2 3 2 21

2 3 (0.750 kg)(0.250 m) (1.90 10  kg)(0.125 m) 0.01565 kg mI −= + × = ⋅  

Then 1 2L L=  gives that 
2

1
2 2

2

0.0855 kg m /s 5.46 rad/s
0.1565 kg m

L
I

ω ⋅
= = =

⋅
 

(b) IDENTIFY: Apply conservation of energy to the motion of the board after the collision. 
SET UP: The position of the board at points 1 and 2 in its motion is shown in Figure 10.89b. Take the origin of 
coordinates at the center of the board and y+  to be upward, so cm,1 0y =  and cm,2 ,y h=  the height being asked for. 

 

1 1 other 2 2K U W K U+ + = +  
EXECUTE: Only gravity does work, so other 0.W =  

21
1 2K Iω=  

1 cm,1 0U mgy= =  

2 0K =  

2 cm,2U mgy mgh= =  

Figure 10.89b  
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Thus 21
2 .I mghω =  

2 2 2

3 2

(0.01565 kg m )(5.46 rad/s) 0.0317 m 3.17 cm
2 2(0.750 kg 1.90 10  kg)(9.80 m/s )
Ih
mg
ω

−

⋅
= = = =

+ ×
 

(c) IDENTIFY and SET UP: The position of the board at points 1 and 2 in its motion is shown in Figure 10.89c. 

 

Apply conservation of energy as in part (b), 
except now we want cm,2 0.250 m.y h= =  
Solve for the ω  after the collision that is 
required for this to happen. 

Figure 10.89c  

EXECUTE: 21
2 I mghω =  

3 2

2

2 2(0.750 kg 1.90 10  kg)(9.80 m/s )(0.250 m)
0.01565 kg m

mgh
I

ω
−+ ×

= =
⋅

 

15.34 rad/sω =  
Now go back to the equation that results from applying conservation of angular momentum to the collision and 
solve for the initial speed of the bullet. 1 2L L=  implies bullet 2 2m vl I ω=  

2
2 2

3
bullet

(0.01565 kg m )(15.34 rad/s) 1010 m/s
(1.90 10  kg)(0.125 m)

Iv
m l
ω

−

⋅
= = =

×
 

EVALUATE: We have divided the motion into two separate events: the collision and the motion after the 
collision. Angular momentum is conserved in the collision because the collision happens quickly. The board 
doesn�t move much until after the collision is over, so there is no gravity torque about the axis. The collision is 
inelastic and mechanical energy is lost in the collision. Angular momentum of the system is not conserved during 
this motion, due to the external gravity torque. Our answer to parts (b) and (c) say that a bullet speed of 360 m/s 
causes the board to swing up only a little and a speed of 1010 m/s causes it to swing all the way over. 

10.90. IDENTIFY: Angular momentum is conserved, so 0 0 2 2I Iω ω= . 
SET UP: For constant mass the moment of inertia is proportional to the square of the radius. 
EXECUTE: 2 2

0 0 2 2R Rω ω= , or ( ) ( )22 2 2
0 0 0 0 0 0 0 0 0= 2 ,R R R R R R Rω ω ω ω ω ω= + Δ + Δ + Δ + Δ  where the terms in 

R ωΔ Δ  and 2( )ωΔ  have been omitted. Canceling the 2
0 0R ω  term gives 

0

0

1.1 cm.
2
R ωR
ω
Δ

Δ = − = −  

EVALUATE: 0/R RΔ and 0/ω ωΔ  are each very small so the neglect of terms containing R ωΔ Δ or 2( )ωΔ  is an 
accurate simplifying approximation. 

10.91. IDENTIFY: Apply conservation of angular momentum to the collision between the bird and the bar and apply 
conservation of energy to the motion of the bar after the collision. 
SET UP: For conservation of angular momentum take the axis at the hinge. For this axis the initial angular 
momentum of the bird is bird (0.500 m)m v , where bird 0.500 kgm = and 2.25 m/sv = . For this axis the moment of 

inertia is 2 2 21 1
bar3 3 (1.50 kg)(0.750 m) 0.281 kg mI m L= = = ⋅ . For conservation of energy, the gravitational 

potential energy of the bar is bar cmU m gy= , where cmy is the height of the center of the bar. Take cm,1 0y = , so 

cm,2 0.375 my = − . 

EXECUTE: (a) 1 2L L= gives 21
bird bar3(0.500 m) ( )m v m L ω= . 

bird
2 2

bar

3 (0.500 m) 3(0.500 kg)(0.500 m)(2.25 m/s) 2.00 rad/s
(1.50 kg)(0.750 m)

m v
m L

ω = = = . 
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(b) 1 1 2 2U K U K+ = + applied to the motion of the bar after the collision gives 2 21 1
1 bar 22 2( 0.375 m)I m g Iω ω= − + . 

2
2 1 bar

2 (0.375 m)m g
I

ω ω= +  . 2 2
2 2

2(2.00 rad/s) (1.50 kg)(9.80 m/s )(0.375 m) 6.58 rad/s
0.281 kg m

ω = + =
⋅

 

EVALUATE: Mechanical energy is not conserved in the collision. The kinetic energy of the bar just after the 
collision is less than the kinetic energy of the bird just before the collision. 

10.92. IDENTIFY: Angular momentum is conserved, since the tension in the string is in the radial direction and therefore 
produces no torque. Apply m=∑F a

! ! to the block, with 2
rad /a a v r= = . 

SET UP: The block�s angular momentum with respect to the hole is L mvr= . 

EXECUTE: The tension is related to the block�s mass and speed, and the radius of the circle, by
2

.vT m
r

=  

( )22 2 2 2
2

3 3 3

1 .
mvrm v r LT mv

r m r mr mr
= = = =  The radius at which the string breaks is 

( ) ( )( )( )( )
( )( )

222
1 13

max max

0.250 kg 4.00 m s 0.800 m
,

0.250 kg 30.0 N
mv rLr

mT mT
= = = from which 0.440 m.r =  

EVALUATE: Just before the string breaks the speed of the rock is 0.800 m(4.00 m/s) 7.27 m/s
0.440 m
⎛ ⎞ =⎜ ⎟
⎝ ⎠

. We can 

verify that 7.27 m/sv = and 0.440 mr = do give 30.0 NT = . 
10.93. IDENTIFY and SET UP: Apply conservation of angular momentum to the system consisting of the disk and train. 

SET UP: 1 2 ,L L=  counterclockwise positive. The motion is sketched in Figure 10.93. 

 

1 0L =  (before you switch on the train�s engine; 
both the train and the platform are at rest) 

2 train diskL L L= +  

Figure 10.93  
EXECUTE: The train is 1

2 (0.95 m) 0.475 m=  from the axis of rotation, so for it 
2 2 2

t t t (1.20 kg)(0.475 m) 0.2708 kg mI m R= = = ⋅  

rel rel t/ (0.600 m/s)/0.475 s 1.263 rad/sv Rω = = =  
This is the angular velocity of the train relative to the disk. Relative to the earth t rel d.ω ω ω= +  
Thus train t t t rel d( ).L I Iω ω ω= = +  

2 1L L=  says disk trainL L= −  

disk d d ,L I ω=  where 21
d d d2I m R=  

21
d d d t rel d2 ( )m R Iω ω ω= − +  

2
t rel

d 2 2 21 1
d d t2 2

(0.2708 kg m )(1.263 rad/s) 0.30 rad/s.
(7.00 kg)(0.500 m) 0.2708 kg m

I
m R I
ωω ⋅

= − = − = −
+ + ⋅

 

EVALUATE: The minus sign tells us that the disk is rotating clockwise relative to the earth. The disk and train 
rotate in opposite directions, since the total angular momentum of the system must remain zero. Note that we 
applied 1 2L L=  in an inertial frame attached to the earth. 

10.94. IDENTIFY: I for the wheel is the sum of the values of I for each of its parts, the rim and each spoke. The total 
length of wire is constant. The motion is related to the friction torque by z zIτ α=∑ . 

SET UP: 04 2R R Lπ+ = , where R is the radius of the wheel and therefore the length of each of the four spokes. 
The mass of a piece is proportional to the length of that piece. 

EXECUTE: (a) 0

4 2
LR
π

=
+

. 2
rim rimI m R= . rim 0 0

0

2 2
4 2

Rm M M
L
π π

π
⎛ ⎞= = ⎜ ⎟+⎝ ⎠

. 

2 3 2
rim 0 0 0 03

2 (5.778 10 )
(2 4)

I M L M Lπ
π

−= = ×
+

. 21
spoke spoke3I m R= . 0

spoke 0
0 2 4

R Mm M
L π

= =
+

and 

2 4 2
spoke 0 0 0 03

1 (3.065 10 )
3(2 4)

I M L M L
π

−= = ×
+

. 3 2
rim spoke 0 04 (7.00 10 )I I I M L−= + = × . 
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(b) 0z z ztω ω α= + gives 0
z T

ωα = − . Then z zIτ α=∑ gives 3 2 0
f 0 0(7.00 10 )M L

T
ωτ −= ×  

EVALUATE: If the wire were bent into a circle, without spokes, the moment of inertia would be 
2

2 3 20 0
0 0 02 (9.46 10 )

(4 2 )
M LM R M L

π
−= = ×

+
. The actual value of I for the wheel is less than this because the mass in the 

spokes is closer to the axis than the rim. 
10.95. IDENTIFY and SET UP: Use the methods stipulated in the problem. 

EXECUTE: (a) The initial angular momentum with respect to the pivot is ,mvr and the final total moment of 

inertia is 2I mr+ , so the final angular velocity is ( )2 .mvr mr Iω = +  

(b) The kinetic energy after the collision is converted to gravitational potential energy, so 

( ) ( )2 21
2

mr I M m ghω + = + , or ( )
( )2

2
 

M m gh
mr I

ω
+

=
+

. 

(c) Substitution of 2Ι Μr= into the result of part (a) gives ( ),m v r
m M

ω ⎛ ⎞= ⎜ ⎟+⎝ ⎠
 and into the result of part (b), 

2 (1 ),gh rω = which are consistent with the forms for v. 

EVALUATE: 2I Mr= applies approximately when the pendulum consists of a heavy catcher mounted on a light 
arm. In the actual apparatus some of the mass is distributed closer to the axis and 2I Mr< . 

10.96. IDENTIFY: Apply conservation of momentum to the system of the runner and turntable 
SET UP: Let the positive sense of rotation be the direction the turntable is rotating initially. 
EXECUTE: The initial angular momentum is 1 1I mRvω − , with the minus sign indicating that runner�s motion is 

opposite the motion of the part of the turntable under his feet. The final angular momentum is 2
2 ( ),  soI mRω +  

1 1
2 2

I mRv
I mR
ωω −

=
+

. 

2

2 2 2

(80 kg m )(0.200 rad s) (55.0 kg)(3.00 m)(2.8 m s) 0.776 rad s
(80 kg m ) (55.0 kg)(3.00 m)

ω ⋅ −
= = −

⋅ +
. 

EVALUATE: The minus sign indicates that the turntable has reversed its direction of motion. This happened 
because the man had the larger magnitude of angular momentum initially. 

10.97. IDENTIFY: Treat the moon as a point mass, so 2L I mrω ω= = , where r is the distance of the moon from the 
center of the earth. Conservation of angular momentum says / 0dL dt = . 
SET UP: 2/ 3.0 cm/y 3.0 10  m/ydr dt −= = × . The period of the moon�s orbital motion is 627.3 d 2.36 10  s= × . 

83.84 10  mr = × . 

EXECUTE: 2 2/ ( ) (2 ) 0d dr ddL dt mr m r mr
dt dt dt

ωω ω= = + = , so 2d dr
dt r dt
ω ω
= − . 

6
6

2  rad 2  rad 2.66 10  rad/s
2.36 10  sT

π πω −= = = ×
×

. 
6

2 16
8

2(2.66 10  rad/s) (3.0 10  m/y) 4.2 10  rad/s per year
3.84 10  m

d
dt
ω −

− −×
= − × = − ×

×
. 

d
dt
ω is negative, so the angular velocity is decreasing. 

EVALUATE: 2L mr ω= . If L is constant, then ω decreases when r increases. The fractional changes in r and 
ω are very, very small. 

10.98. IDENTIFY: Follow the method outlined in the hint. 
SET UP: cmJ m v= Δ . cm( )L J x xΔ = − . 
EXECUTE: The velocity of the center of mass will change by cm /v J mΔ = and the angular velocity will change by 

cm( )J x x
I

ω −
Δ = . The change is velocity of the end of the bat will then be end cm cmv v xωΔ = Δ − Δ = cm cm( )J J x x x

m I
−

− ⋅  

Setting end 0vΔ =  allows cancellation of J cm cmand gives ( ) , I x x x m= − which when solved for x is 
2 2

cm
cm

(5.30 10 kg m ) (0.600 m) 0.710 m.
(0.600 m)(0.800 kg)

Ix x
x m

−× ⋅
= + = + =  

EVALUATE: The center of percussion is farther from the handle than the center of mass. 
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10.99. IDENTIFY and SET UP: Follow the analysis that led to Eq.(10.33). 
EXECUTE: In Figure 10.33a in the textbook, if the vector r!  and hence the vector L

"!
 are not horizontal but make 

an angle β  with the horizontal, the torque will still be horizontal (the torque must be perpendicular to the vertical 
weight). The magnitude of the torque will be cosrω β , and this torque will change the direction of the horizontal 
component of the angular momentum, which has magnitude cos L β . Thus, the situation of Figure 10.35 in the 

textbook is reproduced, but with horizL
"!

 instead of L
"!

. Then, the expression found in Eq. (10.33) becomes 

horiz

horiz

  cos
cos

dd mgr wr
dt dt L I
φ τ β

β ω
Ω = = = = = ⋅

L L

L

"! "!

"!  

EVALUATE: The torque and the horizontal component of L
!

both depend on β  by the same factor, cosβ . 
10.100. IDENTIFY: Apply conservation of energy to the motion of the ball. 

SET UP: In relating 21
cm2 mv and 21

2 Iω , instead of cmv Rω= use the relation derived in part (a). 22
5I mR= . 

EXECUTE: (a) Consider the sketch in Figure 10.100. 
The distance from the center of the ball to the midpoint of the line joining the points where the ball is in contact 

with the rails is ( )22 2 ,R d− 2 2
cmso 4  v R dω= − . When 0,d =  this reduces to cm ,v Rω=  the same as rolling 

on a flat surface. When 2 ,d R= the rolling radius approaches zero, and cm 0 for any .v ω→  

(b) ( )
( ) ( )

2
2

2 2 2 2 cm cm
cm 2 22 2

1 1 1 22 5 5
2 2 2 10 1 44

v mvK mv I mv mR
d RR d

ω
⎡ ⎤⎛ ⎞ ⎡ ⎤⎢ ⎥⎜ ⎟ ⎢ ⎥= + = + = +⎢ ⎥⎜ ⎟ −⎢ ⎥⎜ ⎟−⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦

 

Setting this equal to mgh and solving for cmv gives the desired result. 
(c) The denominator in the square root in the expression for cmv is larger than for the case cm0,  so d v= is smaller. 
For a given speed,  is larger than in the  0dω =  case, so a larger fraction of the kinetic energy is rotational, and the 
translational kinetic energy, and hence cmv , is smaller. 
(d) Setting the expression in part (b) equal to 0.95 of that of the 0d =  case and solving for the ratio d R  gives 

1.05.d R =  Setting the ratio equal to 0.995 gives 0.37.d R =  

EVALUATE: If we set 0d = in the expression in part (b), cm
10

7
ghv = , the same as for a sphere rolling down a 

ramp. When 2d R→ , the expression gives cm 0v = , as it should. 

 
Figure 10.100 

10.101. IDENTIFY: Apply ext cmm=∑F a
! ! and cmz zIτ α=∑ to the motion of the cylinder. Use constant acceleration equations 

to relate xa to the distance the object travels. Use the work-energy theorem to find the work done by friction. 

SET UP: The cylinder has 21
cm 2I MR= . 

EXECUTE: (a) The free-body diagram is sketched in Figure 10.101. The friction force is 

k k k,   so  .f n Mg a gμ μ μ= = =  The magnitude of the angular acceleration is 
( )

k k
2

2 .
1 2

MgR gfR
I RMR

μ μ
= =  

(b) Setting ( )0v at R t Rω ω ω= = = −  and solving for t gives 0 0 0

k k k

,
2 3

R R Rt
a R g g g
ω ω ω
α μ μ μ

= = =
+ +

 

and ( )
2 2 2

2 0 0
k

k k

1 1 .
2 2 3 18

R Rd at g
g g

ω ωμ
μ μ

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
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(c) The final kinetic energy is ( ) ( ) ( )223 4 3 4 ,Mv M at= so the change in kinetic energy is 
2

2 2 2 20
k 0 0

k

3 1 1 .
4 3 4 6

RK M g MR MR
g

ωμ ω ω
μ

⎛ ⎞
Δ = − = −⎜ ⎟

⎝ ⎠
 

EVALUATE: The fraction of the initial kinetic energy that is removed by friction work is 
21
06
21
04

2
3

MR
MR

ω
ω

= . This 

fraction is independent of the initial angular speed 0ω . 

 
Figure 10.101 

10.102. IDENTIFY: The vertical forces must sum to zero. Apply Eq.(10.33). 
SET UP: Denote the upward forces that the hands exert as and L RF F . ( )L RF F rτ = − , where 0.200 mr = . 

EXECUTE: The conditions that  and L RF F must satisfy are L RF F w+ = and L R
IF F
r
ω

− = Ω , where the second 

equation is ,Lτ = Ω  divided by r. These two equations can be solved for the forces by first adding and then subtracting, 

yielding 1
2L

IF w
r
ω⎛ ⎞= +Ω⎜ ⎟

⎝ ⎠
and 1 .

2R
IF w
r
ω⎛ ⎞= −Ω⎜ ⎟

⎝ ⎠
 Using the values 2(8.00 kg)(9.80 m s ) 78.4 N andw mg= = =  

2(8.00 kg)(0.325 m) (5.00 rev s 2  rad rev) 132.7 kg m s
(0.200 m)

I
r
ω π×
= = ⋅  gives 

39.2 N (66.4 N s),  39.2 N (66.4 N s).L RF F= +Ω ⋅ = −Ω ⋅  
(a) 0, 39.2 NL RF FΩ = = = . 
(b) 0.05 rev s 0.314 rad s, 60.0 N, 18.4 N.L RF FΩ = = = =  
(c) 0.3 rev s 1.89 rad s, 165 N, 86.2 NL RF FΩ = = = = − , with the minus sign indicating a downward force. 

(e) 39.2 N0  gives  0.575 rad s,  which is 0.0916 rev s.
66.4  N sRF = Ω = =

⋅
 

EVALUATE: The larger the precession rate Ω , the greater the torque on the wheel and the greater the difference 
between the forces exerted by the two hands. 

10.103. IDENTIFY: The answer to part (a) can be taken from the solution to Problem 10.92. The work-energy theorem 
says W K= Δ . 
SET UP: Problem 10.92 uses conservation of angular momentum to show that 1 1 2 2rv r v= . 

EXECUTE: (a) 2 2 3
1 1 . T mv r r=  

(b)  and dT r
! !  are always antiparallel. d Tdr⋅ = −T r

! ! . 
2 1

1 2

2
2 2 21
1 1 13 2 2

2 1

1 1 .
2

r r

r r

dr mvW T dr mv r r
r r r

⎡ ⎤
= − = = −⎢ ⎥

⎣ ⎦
∫ ∫  

(c) 2 1 1 2( ),  sov v r r=
2

2 2 21
2 1 1 2

1 ( ) ( / )  1
2 2

mvK m v v r r⎡ ⎤Δ = − = −⎣ ⎦ , which is the same as the work found in part (b). 

EVALUATE: The work done by T is positive, since T
!

is toward the hole in the surface and the block moves 
toward the hole. Positive work means the kinetic energy of the object increases. 
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 11.1. IDENTIFY: Use Eq.(11.3) to calculate cmx . The center of gravity of the bar is at its center and it can be treated as 
a point mass at that point. 
SET UP: Use coordinates with the origin at the left end of the bar and the x+  axis along the bar. 1 2.40 kg,m =  

2 1.10 kg,m =  3 2.20 kg.m =  

EXECUTE: 1 1 2 2 3 3
cm

1 2 3

(2.40 kg)(0.250 m) 0 (2.20 kg)(0.500 m) 0.298 m
2.40 kg 1.10 kg 2.20 kg

m x m x m xx
m m m
+ + + +

= = =
+ + + +

. The fulcrum 

should be placed 29.8 cm to the right of the left-hand end. 
EVALUATE: The mass at the right-hand end is greater than the mass at the left-hand end. So the center of gravity 
is to the right of the center of the bar. 

 11.2. IDENTIFY: Use Eq.(11.3) to calculate cmx of the composite object. 
SET UP: Use coordinates where the origin is at the original center of gravity of the object and x+  is to the right. 
With the 1.50 g mass added, cm 2.20 cmx = − , 1 5.00 gm = and 2 1.50 gm = . 1 0x = . 

EXECUTE: 2 2
cm

1 2

m xx
m m

=
+

. 1 2
2 cm

2

5.00 g 1.50 g ( 2.20 cm) 9.53 cm
1.50 g

m mx x
m

⎛ ⎞ ⎛ ⎞+ +
= = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

The additional mass should be attached 9.53 cm to the left of the original center of gravity. 
EVALUATE: The new center of gravity is somewhere between the added mass and the original center of gravity. 

 11.3. IDENTIFY: The center of gravity of the combined object must be at the fulcrum. Use Eq.(11.3) to calculate cmx  
SET UP: The center of gravity of the sand is at the middle of the box. Use coordinates with the origin at the 
fulcrum and x+  to the right. Let 1 25.0 kgm = , so 1 0.500 mx = . Let 2 sandm m= , so 2 0.625 mx = − . cm 0x = . 

EXECUTE: 1 1 2 2
cm

1 2

0m x m xx
m m
+

= =
+

and 1
2 1

2

0.500 m(25.0 kg) 20.0 kg
0.625 m

xm m
x

⎛ ⎞= − = − =⎜ ⎟−⎝ ⎠
. 

EVALUATE: The mass of sand required is less than the mass of the plank since the center of the box is farther 
from the fulcrum than the center of gravity of the plank is. 

 11.4. IDENTIFY: Apply the first and second conditions for equilibrium to the trap door. 
SET UP: For 0zτ =∑  take the axis at the hinge. Then the torque due to the applied force must balance the 
torque due to the weight of the door. 
EXECUTE: (a) The force is applied at the center of gravity, so the applied force must have the same magnitude as 
the weight of the door, or 300 N.  In this case the hinge exerts no force. 
(b) With respect to the hinges, the moment arm of the applied force is twice the distance to the center of mass, so 
the force has half the magnitude of the weight, or 150 N . The hinges supply an upward force of 
300 N 150 N 150 N.− =  
EVALUATE: Less force must be applied when it is applied farther from the hinges. 

 11.5. IDENTIFY: Apply 0zτ =∑  to the ladder. 
SET UP: Take the axis to be at point A. The free-body diagram for the ladder is given in Figure 11.5. The torque 
due to F must balance the torque due to the weight of the ladder. 
EXECUTE: (8.0 m)sin 40 (2800 N)(10.0 m),  so 5.45 kNF F° = = . 

11
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EVALUATE: The force required is greater than the weight of the ladder, because the moment arm for F is less 
than the moment arm for w. 

 
Figure 11.5 

 11.6. IDENTIFY: Apply the first and second conditions of equilibrium to the board. 
SET UP: The free-body diagram for the board is given in Figure 11.6. Since the board is uniform its center of 
gravity is 1.50 m from each end. Apply 0yF =∑ , with y+  upward. Apply 0τ =∑  with the axis at the end 
where the first person applies a force and with counterclockwise torques positive. 
EXECUTE: 0yF =∑  gives 1 2 0F F w+ − =  and 2 1 160 N 60 N 100 NF w F= − = − = . 0τ =∑  gives 

2 (1.50 m) 0F x w− =  and 
2

160 N(1.50 m) (1.50 m) 2.40 m
100 N

wx
F

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. The other person lifts with a force of 

100 N at a point 2.40 m from the end where the other person lifts. 
EVALUATE: By considering the axis at the center of gravity we can see that a larger force is applied by the 
person who pushes closer to the center of gravity. 

 
Figure 11.6 

 11.7. IDENTIFY: Apply 0yF =∑ and 0zτ =∑  to the board. 
SET UP: Let y+  be upward. Let x be the distance of the center of gravity of the motor from the end of the board 
where the 400 N force is applied. 
EXECUTE: (a) If the board is taken to be massless, the weight of the motor is the sum of the applied forces, 

1000 N.  The motor is a distance (2.00 m)(600 N) 1.20 m(1000 N) =  from the end where the 400 N force is applied, and so 

is 0.800 m from the end where the 600 N force is applied. 
(b) The weight of the motor is 400 N 600 N 200 N 800 N.+ − =  Applying 0zτ =∑ with the axis at the end of the 
board where the 400 N acts gives (600 N)(2.00 m) (200 N)(1.00 m) (800 N)x= +  and 1.25 mx = . The center of 
gravity of the motor is 0.75 m from the end of the board where the 600 N force is applied. 
EVALUATE: The motor is closest to the end of the board where the larger force is applied. 

 11.8. IDENTIFY: Apply the first and second conditions of equilibrium to the shelf. 
SET UP: The free-body diagram for the shelf is given in Figure 11.8. Take the axis at the left-hand end of the 
shelf and let counterclockwise torque be positive. The center of gravity of the uniform shelf is at its center. 
EXECUTE: (a) 0zτ =∑ gives t s(0.200 m) (0.300 m) (0.400 m) 0w w T− − + = . 

(25.0 N)(0.200 m) (50.0 N)(0.300 m) 50.0 N
0.400 m

T +
= =  

0yF =∑ gives 1 2 t s 0T T w w+ − − = and 1 25.0 NT = . The tension in the left-hand wire is 25.0 N and the tension in 
the right-hand wire is 50.0 N. 
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EVALUATE: We can verify that 0zτ =∑ is zero for any axis, for example for an axis at the right-hand end of the 
shelf. 

 
Figure 11.8 

 11.9. IDENTIFY: Apply the conditions for equilibrium to the bar. Set each tension equal to its maximum value. 
SET UP: Let cable A be at the left-hand end. Take the axis to be at the left-hand end of the bar and x be the 
distance of the weight w from this end. The free-body diagram for the bar is given in Figure 11.9. 
EXECUTE: (a) 0yF =∑ gives bar 0A BT T w w+ − − = and 

bar 500.0 N 400.0 N 350.0 N 550 NA Bw T T w= + − = + − = . 

(b) 0zτ =∑ gives bar(1.50 m) (0.750 m) 0BT wx w− − = . 

bar(1.50 m) (0.750 m) (400.0 N)(1.50 m) (350 N)(0.750 m) 0.614 m
550 N

BT wx
w
− −

= = = . The weight should be placed 

0.614 m from the left-hand end of the bar. 
EVALUATE: If the weight is moved to the left, AT exceeds 500.0 N and if it is moved to the right BT exceeds 
400.0 N. 

 
Figure 11.9 

11.10. IDENTIFY: Apply the first and second conditions for equilibrium to the ladder. 
SET UP: Let 2n be the upward normal force exerted by the ground and let 1n  be the horizontal normal force 
exerted by the wall. The maximum possible static friction force that can be exerted by the ground is s 2nμ . 
EXECUTE: (a) Since the wall is frictionless, the only vertical forces are the weights of the man and the ladder, 
and the normal force 2n . For the vertical forces to balance, 2 1 m 160 N 740 N 900 N,n w w= + = + =  and the 
maximum frictional force is s 2 (0.40)(900N) 360Nμ n = = . 
(b) Note that the ladder makes contact with the wall at a height of 4.0 m above the ground. Balancing torques 
about the point of contact with the ground, 1(4.0 m) (1.5 m)(160 N) (1.0 m)(3 5)(740 N) 684 N m,n = + = ⋅  so 

1 171.0 Nn = . This horizontal force about must be balanced by the friction force, which must then be 170 N to two 
figures. 
(c) Setting the friction force, and hence 1n , equal to the maximum of 360 N and solving for the distance x along the 
ladder, (4.0 m)(360 N) (1.50 m)(160 N) (3 5)(740 N),x= +  so 2.7 m.x =  
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EVALUATE: The normal force exerted by the ground doesn�t change as the man climbs up the ladder. But the 
normal force exerted by the wall and the friction force exerted by the ground both increase as he moves up the ladder. 

11.11. IDENTIFY: The system of the person and diving board is at rest so the two conditions of equilibrium apply. 
(a) SET UP: The free-body diagram for the diving board is given in Figure 11.11. Take the origin of coordinates 
at the left-hand end of the board (point A). 

 

1F
!

 is the force applied at 

the support point and 2F
!

 is 
the force at the end that is 
held down. 

Figure 11.11  

EXECUTE: 0Aτ =∑  gives 1(1.0 m) (500 N)(3.00 m) (280 N)(1.50 m) 0F+ − − =  

1
(500 N)(3.00 m) (280 N)(1.50 m) 1920 N

1.00 m
F +
= =  

(b) y yF ma=∑  

1 2 280 N 500 N 0F F− − − =  

2 1 280 N 500 N 1920 N 280 N 500 N 1140 NF F= − − = − − =  
EVALUATE: We can check our answers by calculating the net torque about some point and checking that 0zτ =  
for that point also. Net torque about the right-hand of the board: 
(1140 N)(3.00 m)+(280 N)(1.50 m) (1920 N)(2.00 m)− = 3420 N m 420 N m 3840 N m 0,⋅ + ⋅ − ⋅ =  which checks. 

11.12. IDENTIFY: Apply the first and second conditions of equilibrium to the beam. 
SET UP: The boy exerts a downward force on the beam that is equal to his weight. 
EXECUTE: (a) The graphs are given in Figure 11.12. 
(b) 6.25 m when 0,Ax F= = which is 1.25 m beyond point B. 
(c) Take torques about the right end. When the beam is just balanced, 0, so 900 N.A BF F= = The distance that 

point B must be from the right end is then (300 N)(4.50 m) 1.50 m.(900 N) =  

EVALUATE: When the beam is on the verge of tipping it starts to lift off the support A and the normal force 
AF exerted by the support goes to zero. 

 
Figure 11.12 
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11.13. IDENTIFY: Apply the first and second conditions of equilibrium to the strut. 
(a) SET UP: The free-body diagram for the strut is given in Figure 11.13a. Take the origin of coordinates at the 
hinge (point A) and y+  upward. Let hF  and vF  be the horizontal and vertical components of the force F

!
 exerted 

on the strut by the pivot. The tension in the vertical cable is the weight w of the suspended object. The weight w of 
the strut can be taken to act at the center of the strut. Let L be the length of the strut. 

 

EXECUTE:  
y yF ma=∑  

v 0F w w− − =  

v 2F w=  

Figure 11.13a  
Sum torques about point A. The pivot force has zero moment arm for this axis and so doesn�t enter into the torque 
equation. 

0Aτ =  

( )sin30.0 ( / 2)cos30.0 ( cos30.0 ) 0TL w L w L° − ° − ° =  
sin30.0 (3 / 2)cos30.0 0T w° − ° =  

3 cos30.0 2.60
2sin30.0
wT w°

= =
°

 

Then x xF ma=∑  implies h 0T F− =  and h 2.60 .F w=  

We now have the components of F
!

 so can find its magnitude and direction (Figure 11.13b) 

 

2 2
h vF F F= +  

2 2(2.60 ) (2.00 )F w w= +  
3.28F w=  

v

h

2.00tan
2.60

F w
F w

θ = =  

37.6θ = °  
Figure 11.13b  

(b) SET UP: The free-body diagram for the strut is given in Figure 11.13c. 

 
Figure 11.13c 

The tension T has been replaced by its x and y components. The torque due to T equals the sum of the torques of its 
components, and the latter are easier to calculate. 
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EXECUTE: 0 ( cos30.0 )( sin 45.0 ) ( sin30.0 )( cos45.0 )A T L T Lτ = + ° ° − ° ° −∑  
(( / 2)cos45.0 ) ( cos45.0 ) 0w L w L° − ° =  

The length L divides out of the equation. The equation can also be simplified by noting that sin 45.0 cos45.0 .° = °  
Then (cos30.0 sin30.0 ) 3 / 2.T w° − ° =  

3 4.10
2(cos30.0 sin30.0 )

wT w= =
° − °

 

x xF ma=∑  

h cos30.0 0F T− ° =  

h cos30.0 (4.10 )(cos30.0 ) 3.55F T w w= ° = ° =  

y yF ma=∑  

v sin30.0 0F w w T− − − ° =  

v 2 (4.10 )sin30.0 4.05F w w w= + ° =  

 

From Figure 11.13d, 
2 2

h vF F F= +  
2 2(3.55 ) (4.05 ) 5.39F w w w= + =  

v

h

4.05tan
3.55

F w
F w

θ = =  

48.8θ = °  
Figure 11.13d  

EVALUATE: In each case the force exerted by the pivot does not act along the strut. Consider the net torque about 
the upper end of the strut. If the pivot force acted along the strut, it would have zero torque about this point. The 
two forces acting at this point also have zero torque and there would be one nonzero torque, due to the weight of 
the strut. The net torque about this point would then not be zero, violating the second condition of equilibrium. 

11.14. IDENTIFY: Apply the first and second conditions of equilibrium to the beam. 
SET UP: The free-body diagram for the beam is given in Figure 11.14. vH  and hH  are the vertical and 
horizontal components of the force exerted on the beam at the wall (by the hinge). Since the beam is uniform, its 
center of gravity is 2.00 m from each end. The angle θ  has cos 0.800θ =  and sin 0.600θ = . The tension T has 
been replaced by its x and y components. 
EXECUTE: (a) vH , hH  and cosxT T θ=  all produce zero torque. 0τ =∑  gives 

load(2.00 m) (4.00 m) sin (4.00 m) 0w w T θ− − + =  and (150 N)(2.00 m) (300 N)(4.00 m) 625 N
(4.00 m)(0.600)

T +
= = . 

(b) 0xF =∑  gives h cos 0H T θ= =  and h (625 N)(0.800) 500 NH = = . 0yF =∑  gives 

v load sin 0H w w T θ− − + =  and v load sin 150 N 300 N (625 N)(0.600) 75 NH w w T θ= + − = + − = . 
EVALUATE: For an axis at the right-hand end of the beam, only w and vH produce torque. The torque due to w is 
counterclockwise so the torque due to vH must be clockwise. To produce a counterclockwise torque, vH must be 

upward, in agreement with our result from 0yF =∑ . 

 
Figure 11.14 
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11.15. IDENTIFY: Apply the first and second conditions of equilibrium to the door. 
SET UP: The free-body diagram for the door is given in Figure 11.15. Let 1H

!
 and 2H

!
 be the forces exerted by 

the upper and lower hinges. Take the origin of coordinates at the bottom hinge (point A) and y+  upward. 

 

EXECUTE:  
We are given that 

1v 2v / 2 140 N.H H w= = =  

x xF ma=∑  

2h 1h 0H H− =  

1h 2hH H=  
The horizontal components of the 
hinge forces are equal in magnitude 
and opposite in direction. 

Figure 11.15  
Sum torques about point A. 1v ,H  2v ,H  and 2hH  all have zero moment arm and hence zero torque about an axis at 

this point. Thus 0Aτ =∑  gives 1h (1.00 m) (0.50 m) 0H w− =  

1
1h 2

0.50 m (280 N) 140 N.
1.00 m

H w⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

The horizontal component of each hinge force is 140 N. 
EVALUATE: The horizontal components of the force exerted by each hinge are the only horizontal forces so must 
be equal in magnitude and opposite in direction. With an axis at A, the torque due to the horizontal force exerted by 
the upper hinge must be counterclockwise to oppose the clockwise torque exerted by the weight of the door. So, 
the horizontal force exerted by the upper hinge must be to the left. You can also verify that the net torque is also 
zero if the axis is at the upper hinge. 

11.16. IDENTIFY: Apply the conditions of equilibrium to the wheelbarrow plus its contents. The upward force applied 
by the person is 650 N. 
SET UP: The free-body diagram for the wheelbarrow is given in Figure 11.16. 650 NF = , wb 80.0 Nw = and w is 
the weight of the load placed in the wheelbarrow. 
EXECUTE: (a) 0zτ =∑ with the axis at the center of gravity gives (0.50 m) (0.90 m) 0n F− = and 

0.90 m 1170 N
0.50 m

n F ⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 0yF =∑ gives wb 0F n w w+ − − = and 

wb 650 N 1170 N 80.0 N 1740 Nw F n w= + − = + − = . 
(b) The extra force is applied by the ground pushing up on the wheel. 
EVALUATE: You can verify that 0zτ =∑ for any axis, for example for an axis where the wheel contacts the 
ground. 

 
Figure 11.16 
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11.17. IDENTIFY: Apply the first and second conditions of equilibrium to Clea. 
SET UP: Consider the forces on Clea. The free-body diagram is given in Figure 11.17 

 

EXECUTE:  
r 89 N,n =  f 157 Nn =  

r fn n w+ =  so 246 Nw =  

Figure 11.17  

0,zτ =∑  axis at rear feet 
Let x be the distance from the rear feet to the center of gravity. 

f (0.95 m) 0n xw− =  
0.606 mx =  from rear feet so 0.34 m from front feet. 

EVALUATE: The normal force at her front feet is greater than at her rear feet, so her center of gravity is closer to 
her front feet. 

11.18. IDENTIFY: Apply the conditions for equilibrium to the crane. 
SET UP: The free-body diagram for the crane is sketched in Figure 11.18. hF and vF are the components of the 

force exerted by the axle. T
!

pulls to the left so hF is to the right. T
!

also pulls downward and the two weights are 
downward, so vF is upward. 

EXECUTE: (a) 0zτ =∑ gives c b([13 m]sin 25 ([7.0 m]cos55 ) ([16.0 m]cos55 0T w w− − =° ° ° . 

4(11,000 N)([16.0 m]cos55 ) (15,000 N)([7.0 m]cos55 2.93 10  N
(13.0 m)sin 25

T +
= = ×

° °)
°

. 

(b) 0xF =∑ gives h cos30 0F T− =° and 4
h 2.54 10  NF = × . 

0yF =∑ gives v c bsin30 0F T w w− − − =° and 4
v 4.06 10  NF = × . 

EVALUATE: 
4

v
4

h

4.06 10  Ntan
2.54 10  N

F
F

θ ×
= =

×
and 58θ = ° . The force exerted by the axle is not directed along the crane. 

 
Figure 11.18 

11.19. IDENTIFY: Apply the first and second conditions of equilibrium to the rod. 
SET UP: The force diagram for the rod is given in Figure 11.19. 

 
Figure 11.19 
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EXECUTE: 0,zτ =∑  axis at right end of rod, counterclockwise torque is positive 

1(240 N)(1.50 m) (90 N)(0.50 m) ( sin30.0 )(3.00 m) 0T+ − ° =  

1
360 N m 45 N m 270 N

1.50 m
T ⋅ + ⋅
= =  

x xF ma=∑  

2 1cos cos30 0T Tθ − ° =  and 2 cos 234 NT θ =  

y yF ma=∑  

1 2sin30 sin 240 N 90 N 0T T θ° + − − =  

2 sin 330 N (270 N)sin30 195 NT θ = − ° =  

Then 2

2

sin 195 N
cos 234 N

T
T

θ
θ
=  gives tan 0.8333θ =  and 40θ = °  

And 2
195 N 303 N.
sin 40

T = =
°

 

EVALUATE: The monkey is closer to the right rope than to the left one, so the tension is larger in the right rope. 
The horizontal components of the tensions must be equal in magnitude and opposite in direction. Since 2 1,T T>  the 
rope on the right must be at a greater angle above the horizontal to have the same horizontal component as the 
tension in the other rope. 

11.20. IDENTIFY: Apply the first and second conditions for equilibrium to the beam. 
SET UP: The free-body diagram for the beam is given in Figure 11.20. 
EXECUTE: The cable is given as perpendicular to the beam, so the tension is found by taking torques about the 
pivot point; (3.00 m) (1.00 kN)(2.00 m)cos25.0 (5.00 kN)(4.50 m)cos25.0T = ° + ° , and 7.40 kNT = . The vertical 
component of the force exerted on the beam by the pivot is the net weight minus the upward component of T, 
6.00 kN cos25.0 0.17 kN.T− ° =  The horizontal force is sin 25.0 3.13 kN.T ° =  
EVALUATE: The vertical component of the tension is nearly the same magnitude as the total weight of the object 
and the vertical component of the force exerted by the pivot is much less than its horizontal component. 

 
Figure 11.20 

11.21. (a) IDENTIFY and SET UP: Use Eq.(10.3) to calculate the torque (magnitude and direction) for each force and add 
the torques as vectors. See Figure 11.21a. 

 

EXECUTE: 
1 1 1 (8.00 N)(3.00 m)Flτ = = +  

1 24.0 N mτ = + ⋅  

2 2 2 (8.00 N)( 3.00 m)F l lτ = − = − +  

2 24.0 N m (8.00 N)lτ = − ⋅ −  

Figure 11.21a  

1 2 24.0 N m 24.0 N m (8.00 N) (8.00 N)z l lτ τ τ= + = + ⋅ − ⋅ − = −∑  

Want l that makes 6.40 N mzτ = − ⋅∑  (net torque must be clockwise) 
(8.00 N) 6.40 N ml− = − ⋅  

(6.40 N m)/8.00 N 0.800 ml = ⋅ =  
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(b) 2 1τ τ>  since 2F  has a larger moment arm; the net torque is clockwise. 
(c) See Figure 11.21b. 

 

1 1 1 (8.00 N)Fl lτ = − = −  

2 0τ =  since 2F
!

 is at the axis 

Figure 11.21b  

6.40 N mzτ = − ⋅∑  gives (8.00 N) 6.40 N ml− = − ⋅  
0.800 m,l =  same as in part (a). 

EVALUATE: The force couple gives the same magnitude of torque for the pivot at any point. 

11.22. IDENTIFY: 0l FY
A l

⊥=
Δ

 

SET UP: 2 4 250.0 cm 50.0 10  mA −= = × .  

EXECUTE: relaxed: 4
4 2 2

(0.200 m)(25.0 N) 3.33 10  Pa
(50.0 10  m )(3.0 10  m)

Y − −= = ×
× ×

 

maximum tension: 5
4 2 2

(0.200 m)(500 N) 6.67 10  Pa
(50.0 10  m )(3.0 10  m)

Y − −= = ×
× ×

 

EVALUATE: The muscle tissue is much more difficult to stretch when it is under maximum tension. 
11.23. IDENTIFY and SET UP: Apply Eq.(11.10) and solve for A and then use 2A rπ=  to get the radius and 2d r=  to 

calculate the diameter. 

EXECUTE: 0

 
l FY
A l

⊥=
Δ

 so 0

 
l FA
Y l

⊥=
Δ

 (A is the cross-section area of the wire) 

For steel, 112.0 10  PaY = ×  (Table 11.1) 

Thus 6 2
11 2

(2.00 m)(400 N) 1.6 10  m .
(2.0 10  Pa)(0.25 10  m)

A −
−= = ×

× ×
 

2 ,A rπ=  so 6 2 4/ 1.6 10  m / 7.1 10  mr A π π− −= = × = ×  
32 1.4 10  m 1.4 mmd r −= = × =  

EVALUATE: Steel wire of this diameter doesn�t stretch much; 0/ 0.12%.l lΔ =  
11.24. IDENTIFY: Apply Eq.(11.10). 

SET UP: From Table 11.1, for steel, 112.0 10  PaY = × and for copper, 111.1 10  PaY = × . 
2 4 2( / 4) 1.77 10  mA dπ −= = × . 4000 NF⊥ = for each rod. 

EXECUTE: (a) The strain is 
0

l F
l YA
Δ = . For steel 4

11 4 2
0

(4000N) 1.1 10 .
(2.0 10  Pa)(1.77 10  m )

l
l

−
−

Δ
= = ×

× ×
 Similarly, the 

strain for copper is 42.1 10 .−×  
(b) Steel: 4 5(1.1 10 )(0.750 m) 8.3 10  m− −× = × . Copper: 4 4(2.1 10 )(0.750 m) 1.6 10  m− −× = × . 
EVALUATE: Copper has a smaller Y and therefore a greater elongation. 

11.25. IDENTIFY: 0l FY
A l

⊥=
Δ

 

SET UP: 2 4 20.50 cm 0.50 10  mA −= = ×  

EXECUTE: 11
4 2 2

(4.00 m)(5000 N) 2.0 10  Pa
(0.50 10  m )(0.20 10 m)

Y − −= = ×
× ×

 

EVALUATE: Our result is the same as that given for steel in Table 11.1. 

11.26. IDENTIFY: 0l FY
A l

⊥=
Δ

 

SET UP: 2 3 2 5 2(3.5 10  m) 3.85 10  mA rπ π − −= = × = × . The force applied to the end of the rope is the weight of the 

climber: 2(65.0 kg)(9.80 m/s ) 637 NF⊥ = = . 

EXECUTE: 8
5 2

(45.0 m)(637 N) 6.77 10  Pa
(3.85 10  m )(1.10 m)

Y −= = ×
×

 

EVALUATE: Our result is a lot smaller than the values given in Table 11.1. An object made of rope material is 
much easier to stretch than if the object were made of metal. 



Equilibrium and Elasticity  11-11 

11.27. IDENTIFY: Use the first condition of equilibrium to calculate the tensions 1T  and 2T  in the wires (Figure 11.27a). 
Then use Eq.(11.10) to calculate the strain and elongation of each wire. 

 
Figure 11.27a 

SET UP: The free-body diagram for 2m  is given in Figure 11.27b. 

 

EXECUTE:  
y yF ma=∑  

2 2 0T m g− =  

2 98.0 NT =  

Figure 11.27b  
SET UP: The free-body-diagram for 1m  is given in Figure 11.27c 

 

EXECUTE:  
y yF ma=∑  

1 2 1 0T T m g− − =  

1 2 1T T m g= +  

1 98.0 N 58.8 N 157 NT = + =  

Figure 11.27c  

(a) stress
strain

Y =  so stressstrain F
Y AY

⊥= =  

upper wire: 31
7 2 11

157 Nstrain 3.1 10
(2.5 10  m )(2.0 10  Pa)

T
AY

−
−= = = ×

× ×
 

lower wire: 32
7 2 11

98 Nstrain 2.0 10
(2.5 10  m )(2.0 10  Pa)

T
AY

−
−= = = ×

× ×
 

(b) 0strain /l l= Δ  so 0 (strain)l lΔ =  

upper wire: 3 3(0.50 m)(3.1 10 ) 1.6 10  m 1.6 mml − −Δ = × = × =  

lower wire: 3 3(0.50 m)(2.0 10 ) 1.0 10  m 1.0 mml − −Δ = × = × =  
EVALUATE: The tension is greater in the upper wire because it must support both objects. The wires have the 
same length and diameter, so the one with the greater tension has the greater strain and elongation. 

11.28. IDENTIFY: Apply Eqs.(11.8), (11.9) and (11.10). 
SET UP: The cross-sectional area of the post is 2 2 2(0.125 m) 0.0491 mA rπ π= = = . The force applied to the end 

of the post is 2 4(8000 kg)(9.80 m/s ) 7.84 10  NF⊥ = = × . The Young�s modulus of steel is 112.0 10  PaY = × . 

EXECUTE: (a) 
4

6
2

7.84 10  Nstress 1.60 10  Pa
0.0491 m

F
A
⊥ ×

= = = ×  

(b) 
6

6
11

stress 1.60 10  Pastrain 8.0 10
2.0 10  PaY

−×
= = − = − ×

×
. The minus sign indicates that the length decreases. 

(c) 6 5
0 (strain) (2.50 m)( 8.0 10 ) 2.0 10  ml l − −Δ = = − × = − ×  

EVALUATE: The fractional change in length of the post is very small. 
11.29. IDENTIFY: F pA⊥ = , so net ( )F p A= Δ . 

SET UP: 51 atm 1.013 10  Pa= × . 
EXECUTE: 5 2 6(2.8 atm 1.0 atm)(1.013 10  Pa/atm)(50.0 m ) 9.1 10  N.− × = ×  
EVALUATE: This is a very large net force. 
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11.30. IDENTIFY: Apply Eq.(11.13). 

SET UP: 0V pV
B
Δ

Δ = − . pΔ is positive when the pressure increases. 

EXECUTE: (a) The volume would increase slightly. 
(b) The volume change would be twice as great. 
(c) The volume change is inversely proportional to the bulk modulus for a given pressure change, so the volume 
change of the lead ingot would be four times that of the gold. 
EVALUATE: For lead, 104.1 10  PaB = × , so /p BΔ is very small and the fractional change in volume is very 
small. 

11.31. IDENTIFY: /p F A=  

SET UP: 2 4 21 cm 1 10  m−= ×  

EXECUTE: (a) 6
4 2

250 N 3.33 10  Pa.
0.75 10  m− = ×

×
 

(b) 6 4 2(3.33 10  Pa)(2)(200 10  m ) 133 kN.−× × =  
EVALUATE: The pressure in part (a) is over 30 times larger than normal atmospheric pressure. 

11.32. IDENTIFY: Apply Eq.(11.13). Density /m V= . 

SET UP: At the surface the pressure is 51.0 10  Pa× , so 81.16 10  PapΔ = × . 3
0 1.00 mV = . At the surface 

31.00 m of water has mass 31.03 10  kg× . 

EXECUTE: (a) 0( )p VB
V

Δ
= −

Δ
 gives 

8 3
30

9

( ) (1.16 10  Pa)(1.00 m ) 0.0527 m
2.2 10  Pa

p VV
B

Δ ×
Δ = − = − = −

×
 

(b) At this depth 31.03 10  kg× of seawater has volume 3
0 0.9473 mV V+ Δ = . The density is 

3
3 3

3

1.03 10  kg 1.09 10  kg/m
0.9473 m

×
= × . 

EVALUATE: The density is increased because the volume is compressed due to the increased pressure. 
11.33. IDENTIFY and SET UP: Use Eqs.(11.13) and (11.14) to calculate B and k. 

EXECUTE: 
6 3

9
3

0

(3.6 10  Pa)(600 cm ) 4.8 10  Pa
/ ( 0.45 cm )
pB

V V
Δ ×

= − = − = + ×
Δ −

 

9 10 11/ 1/ 4.8 10  Pa 2.1 10  Pak B − −= = × = ×  
EVALUATE: k is the same as for glycerine (Table 11.2). 

11.34. IDENTIFY: Apply Eq.(11.17). 
SET UP: 59.0 10  NF = ×" . 2(0.100 m)(0.500 10  m)A −= × . 0.100 mh = . From Table 11.1, 107.5 10  PaS = × for 
steel. 

EXECUTE: (a) 
5

|| 2
2 10

(9 10  N)Shear strain 2.4 10 .
[(0.100 m)(0.500 10 m)][7.5 10  Pa]

F
AS

−
−

×
= = = ×

× ×
 

(b) Using Eq.(11.16), 3(Shear strain) (0.024)(0.100 m) 2.4 10 mx h −= ⋅ = = × . 
EVALUATE: This very large force produces a small displacement; / 2.4%x h = . 

11.35. IDENTIFY: The forces on the cube must balance. The deformation x is related to the force by 
F hS
A x

= " . 

F F=" since F is applied parallel to the upper face. 

SET UP: 2(0.0600 m)A = and 0.0600 mh = . Table 11.1 gives 104.4 10  PaS = × for copper and 100.6 10  Pa× for 
lead. 
EXECUTE: (a) Since the horizontal forces balance, the glue exerts a force F in the opposite direction. 

(b) 
2 3 10

5(0.0600 m) (0.250 10  m)(4.4 10  Pa) 6.6 10  N
0.0600 m

AxSF
h

−× ×
= = = ×  

(c) 
5

2 10

(6.6 10  N)(0.0600 m) 1.8 mm
(0.0600 m) (0.6 10  Pa)

Fhx
AS

×
= = =

×
 

EVALUATE: Lead has a smaller S than copper, so the lead cube has a greater deformation than the copper cube. 
11.36. IDENTIFY and SET UP: Use Eq.(11.17). Same material implies same S 

EXECUTE: stress
strain

S =  so 
/stressstrain

F A
S S

= = "  and same forces implies same .F"  
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For the smaller object, 1 1(strain) /F A S= "  

For the larger object, 2 2(strain) /F A S= "  

2 1 1

1 2 2

(strain)
(strain)

F A S A
A S F A

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

"

"

 

Larger solid has triple each edge length, so 2 19 ,A A=  and 2

1

(strain) 1
(strain) 9

=  

EVALUATE: The larger object has a smaller deformation. 
11.37. IDENTIFY and SET UP: Use Eq.(11.8). 

EXECUTE: 7
2 3 2

90.8 NTensile stress 3.41 10  Pa
(0.92 10  m)

F F
A rπ π
⊥ ⊥

−= = = = ×
×

 

EVALUATE: A modest force produces a very large stress because the cross-sectional area is small. 
11.38. IDENTIFY: The proportional limit and breaking stress are values of the stress, /F A⊥ . Use Eq.(11.10) to 

calculate lΔ . 
SET UP: For steel, 1020 10  PaY = × . F w⊥ = . 

EXECUTE: (a) 3 10 6 2 3(1.6 10 )(20 10  Pa)(5 10  m ) 1.60 10  N.w − −= × × × = ×  

(b) 30 (1.6 10 )(4.0 m) 6.4 mmF ll
A Y

−⊥⎛ ⎞Δ = = × =⎜ ⎟
⎝ ⎠

 

(c) 3 10 6 2 3(6.5 10 )(20 10  Pa)(5 10  m ) 6.5 10  N.− −× × × = ×  
EVALUATE: At the proportional limit, the fractional change in the length of the wire is 0.16%. 

11.39. IDENTIFY: The elastic limit is a value of the stress, /F A⊥ . Apply m=∑F a
! ! to the elevator in order to find the 

tension in the cable. 

SET UP: 8 81
3 (2.40 10  Pa) 0.80 10  PaF

A
⊥ = × = × . The free-body diagram for the elevator is given in Figure 11.39. 

F⊥  is the tension in the cable. 

EXECUTE: 8 4 2 8 4(0.80 10  Pa) (3.00 10  m )(0.80 10  Pa) 2.40 10  NF A −
⊥ = × = × × = × . y yF ma=∑  applied to the 

elevator gives F mg ma⊥ − =  and 
4

2 22.40 10  N 9.80 m/s 10.2 m/s
1200 kg

Fa g
m
⊥ ×

= − = − =  

EVALUATE: The tension in the cable is about twice the weight of the elevator. 

 
Figure 11.39 

11.40. IDENTIFY: The breaking stress of the wire is the value of /F A⊥  at which the wire breaks. 

SET UP: From Table 11.3, the breaking stress of brass is 84.7 10  Pa× . The area A of the wire is related to its 
diameter by 2 / 4A dπ= . 

EXECUTE: 7 2

8

350 N 7.45 10 m ,  so 4 0.97 mm.
4.7 10  Pa

A d A π−= = × = =
×

 

EVALUATE: The maximum force a wire can withstand without breaking is proportional to the square of its 
diameter. 
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11.41. IDENTIFY: Apply the conditions of equilibrium to the climber. For the minimum coefficient of friction the static 
friction force has the value s sf nμ= . 
SET UP: The free-body diagram for the climber is given in Figure 11.41. sf and n are the vertical and horizontal 
components of the force exerted by the cliff face on the climber. The moment arm for the force T is (1.4 m)cos10° . 

EXECUTE: (a) 0zτ =∑ gives (1.4 m)cos10 (1.1 m)cos35.0 0T w− =° ° . 

2(1.1 m)cos35.0 (82.0 kg)(9.80 m/s ) 525 N
(1.4 m)cos10

T = =
°
°

 

(b) 0xF =∑ gives sin 25.0 222 Nn T= =° . 0yF =∑ gives s cos25 0f T w+ − =° and 
2

s (82.0 kg)(9.80 m/s ) (525 N)cos25 328 Nf = − =° . 

(c) s
s

328 N 1.48
222 N

f
n

μ = = =  

EVALUATE: To achieve this large value of sμ the climber must wear special rough-soled shoes. 

 
Figure 11.41 

11.42. IDENTIFY: Apply 0zτ =∑  to the bridge. 
SET UP: Let the axis of rotation be at the left end of the bridge and let counterclockwise torques be positive. 
EXECUTE: If Lancelot were at the end of the bridge, the tension in the cable would be (from taking torques about 
the hinge of the bridge) obtained from 2 2(12.0 N) (600 kg)(9.80 m s )(12.0 m) (200 kg)(9.80 m s )(6.0 m)T = + , 
so 6860 NT = . This exceeds the maximum tension that the cable can have, so Lancelot is going into the drink. To 
find the distance x Lancelot can ride, replace the 12.0 m multiplying Lancelot�s weight by x and the tension 

3
max by 5.80 10 NT T = ×  and solve for x; 

3 2

2

(5.80 10  N)(12.0 m) (200 kg)(9.80 m s )(6.0 m) 9.84 m.
(600 kg)(9.80 m s )

x × −
= =  

EVALUATE: Before Lancelot goes onto the bridge, the tension in the supporting cable is 
2(6.0 m)(200 kg)(9.80 m/s ) 9800 N

12.0 m
T = = , well below the breaking strength of the cable. As he moves along the 

bridge, the increase in tension is proportional to x, the distance he has moved along the bridge. 
11.43. IDENTIFY: For the airplane to remain in level flight, both 0 and 0y zF τ∑ = ∑ = . 

SET UP: The free-body diagram for the airplane is given in Figure 11.43. Let y+  be upward. 
EXECUTE: tail wing 0F W F− − + = . Taking the counterclockwise direction as positive, and taking torques about the 

point where the tail force acts, wing(3.66 m)(6700 N) (3.36 m) 0.F− + =  This gives wing 7300 N(up)F = and 

tail 7300 N 6700 N 600 N(down).F = − =  
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EVALUATE: We assumed that the wing force was upward and the tail force was downward. When we solved for 
these forces we obtained positive values for them, which confirms that they do have these directions. Note that the 
rear stabilizer provides a downward force. It does not hold up the tail of the aircraft, but serves to counter the 
torque produced by the wing. Thus balance, along with weight, is a crucial factor in airplane loading. 

 
Figure 11.43 

11.44. IDENTIFY: Apply the first and second conditions of equilibrium to the truck. 
SET UP: The weight on the front wheels is fn , the normal force exerted by the ground on the front wheels. The 
weight on the rear wheels is rn , the normal force exerted by the ground on the rear wheels. When the front wheels 
come off the ground, f 0n → . The free-body diagram for the truck without the box is given in Figure 11.44a and 
with the box in Figure 11.44b. The center of gravity of the truck, without the box, is a distance x from the rear 
wheels. 
EXECUTE: 0yF =∑ in Fig.11.44a gives r f 8820 N 10,780 N 19,600 Nw n n= + = + =  

0τ =∑  in Fig.11.44a, with the axis at the rear wheels and counterclockwise torques positive, gives 

f (3.00 m) 0n wx− =  and f (3.00 m) 10,780 N (3.00 m) 1.65 m
19,600 N

nx
w

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
. 

(a) 0τ =∑  in Fig.11.44b, with the axis at the rear wheels and counterclockwise torques positive, gives 

box f(1.00 m) (3.00 m) (1.65 m) 0w n w+ − = . 

f
(3600 N)(1.00 m) (19,600 N)(1.65 m) 9,580 N

3.00 m
n − +
= =  

0yF =∑  gives r f boxn n w w+ = +  and r 3600 N 19,600 N 9580 N 13,620 Nn = + − = . There is 9,580 N on the 
front wheels and 13,620 N on the rear wheels. 
(b) f 0n → . 0τ =∑  gives box (1.00 m) (1.65 m) 0w w− =  and 4

box 1.65 3.23 10  Nw w= = × . 
EVALUATE: Placing the box on the tailgate in part (b) reduces the normal force exerted at the front wheels. 

   
Figure 11.44a, b 

11.45. IDENTIFY: In each case, to achieve balance the center of gravity of the system must be at the fulcrum. Use 
Eq.(11.3) to locate cmx , with im  replaced by iw . 
SET UP: Let the origin be at the left-hand end of the rod and take the x+  axis to lie along the rod. Let 

1 255 Nw = (the rod) so 1 1.00 mx = , let 2 225 Nw = so 2 2.00 mx = and let 3w W= . In part (a) 3 0.500 mx = and 
in part (b) 3 0.750 mx = . 

EXECUTE: (a) cm 1.25 mx = . 1 1 2 2 3 3
cm

1 2 3

w x w x w xx
w w w
+ +

=
+ +

gives 1 2 cm 1 1 2 2
3

3 cm

( )w w x w x w xw
x x

+ − −
=

−
and 

(480 N)(1.25 m) (255 N)(1.00 m) (225 N)(2.00 m) 140 N
0.500 m 1.25 m

W − −
= =

−
. 

(b) Now 3 140 Nw W= = and 3 0.750 mx = . 

cm
(255 N)(1.00 m) (225 N)(2.00 m) (140 N)(0.750 m) 1.31 m

255 N 225 N 140 N
x + +

= =
+ +

. W must be moved 

1.31 m 1.25 m 6 cm− = to the right. 
EVALUATE: Moving W to the right means cmx for the system moves to the right. 
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11.46. IDENTIFY: The center of gravity of the object must have the same x coordinate as the hook. Use Eq.(11.3) for 
cmx . The mass of a segment is proportional to its length. Define α to be the mass per unit length, so i im lα= , 

where il is the length of a piece that has mass im . 
SET UP: Use coordinates with the origin at the right-hand edge of the object and x+  to the left. cmx L= . The 
mass of each piece can be taken at its center of gravity, which is at its geometrical center. Let 1 be the horizontal 
piece of length L, 2 be the vertical piece of length L and 3 be the horizontal piece with length x. 

EXECUTE: 1 1 2 2 3 3
cm

1 2 3

m x m x m xx
m m m
+ +

=
+ +

gives ( / 2) ( / 2)L L x xL
L L x

α α
α α α

+
=

+ +
. α divides out and the equation reduces to 

2 22 3 0x xL L− − = . 1
2 (2 4 )x L L= ± . x must be positive, so 3x L= . 

EVALUATE: cmx L= is equivalent to saying that the net torque is zero for an axis at the hook. 
11.47. IDENTIFY: Apply the conditions of equilibrium to the horizontal beam. Since the two wires are symmetrically 

placed on either side of the middle of the sign, their tensions are equal and are each equal to w / 2 137 NT mg= = . 
SET UP: The free-body diagram for the beam is given in Figure 11.47. vF and hF are the horizontal and vertical 
forces exerted by the hinge on the sign. Since the cable is 2.00 m long and the beam is 1.50 m long, 

1.50 mcos
2.00 m

θ = and 41.4θ = ° . The tension cT in the cable has been replaced by its horizontal and vertical 

components. 
EXECUTE: (a) 0zτ =∑ gives c beam w w(sin 41.4 )(1.50 m) (0.750 m) (1.50 m) (0.60 m) 0T w T T− − − =° . 

2

c
(18.0 kg)(9.80 m/s )(0.750 m) (137 N)(1.50 m 0.60 m) 423 N

(1.50 m)(sin 41.4 )
T + +
= =

°
. 

(b) 0yF =∑ gives v c beam wsin 41.4 2 0F T w T+ − − =°  and 
2

v w beam c2 sin 41.4 2(137 N) (18.0 kg)(9.80 m/s ) (423 N)(sin 41.4 ) 171 NF T w T= + − = + − =° ° . The hinge must be 
able to supply a vertical force of 171 N. 
EVALUATE: The force from the two wires could be replaced by the weight of the sign acting at a point 0.60 m to 
the left of the right-hand edge of the sign. 

 
Figure 11.47 

11.48. IDENTIFY: Apply 0zτ =∑  to the hammer. 
SET UP: Take the axis of rotation to be at point A. 
EXECUTE: The force 1F

!
 is directed along the length of the nail, and so has a moment arm of (0.800 m)sin 60° . 

The moment arm of 2F
!

 is 0.300 m, so 

2 1
(0.0800 m)sin 60 (500 N)(0.231) 116 N.

(0.300 m)
F F °
= = =  

EVALUATE: The force 2F that must be applied to the hammer handle is much less than the force that the hammer 
applies to the nail, because of the large difference in the lengths of the moment arms. 

11.49. IDENTIFY: Apply the first and second conditions of equilibrium to the bar. 
SET UP: The free-body diagram for the bar is given in Figure 11.49. n is the normal force exerted on the bar by 
the surface. There is no friction force at this surface. hH  and vH  are the components of the force exerted on the  
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bar by the hinge. The components of the force of the bar on the hinge will be equal in magnitude and opposite in 
direction. 

 

EXECUTE:  
x xF ma=∑  

h 120 NF H= =  

y yF ma=∑  

v 0n H− =  

v ,H n=  but we don�t know 
either of these forces. 

Figure 11.49  

0Bτ =∑  gives (4.00 m) (3.00 m) 0F n− =  
4
3(4.00 m/3.00 m) (120 N) 160 Nn F= = =  and then v 160 NH =  

Force of bar on hinge: 
horizontal component 120 N, to right 
vertical component 160 N, upward 
EVALUATE: h v/ 120/160 3.00/ 4.00,H H = =  so the force the hinge exerts on the bar is directed along the bar. n!  

and F
!

 have zero torque about point A, so the line of action of the hinge force H
!

 must pass through this point 
also if the net torque is to be zero. 

11.50. IDENTIFY: Apply 0zτ =∑ to the piece of art. 
SET UP: The free-body diagram for the piece of art is given in Figure 11.50. 

EXECUTE: 0zτ =∑ gives (1.25 m) (1.02 m) 0BT w− = . 1.02 m(358 N) 292 N
1.25 mBT ⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 0yF =∑ gives 

0A BT T w+ − = and 358 N 292 N 66 NA BT w T= − = − = . 
EVALUATE: If we consider the sum of torques about the center of gravity of the piece of art, AT has a larger 
moment arm than BT , and this is why A BT T< . 

 
Figure 11.50 

11.51. IDENTIFY: Apply the conditions of equilibrium to the beam. 
SET UP: The free-body diagram for the beam is given in Figure 11.51. Let Tφ and Tθ be the tension in the two 
cables. Each tension has been replaced by its horizontal and vertical components. 
EXECUTE: (a) The center of gravity of the beam is a distance / 2L from each end and 0zτ =∑  with the axis at 

the center of gravity of the beam gives sin ( / 2) sin ( / 2) 0T L T Lφ θφ θ− + = . sin sinT Tφ θφ θ= . 0xF =∑ gives 

cos cosT Tφ θφ θ= . Dividing the first equation by the second gives tan tanφ θ= and φ θ= . Then the equations also 

say T Tφ θ= . 
(b) The center of gravity of the beam is a distance 3 / 4L from the left-hand end so a distance / 4L from the right-
hand end. 0zτ =∑  with the axis at the center of gravity of the beam gives sin (3 / 2) sin ( / 2) 0T L T Lφ θφ θ− + = and 

3 sin sinT Tφ θφ θ= . 0xF =∑ gives cos cosT Tφ θφ θ= . Dividing the first equation by the second gives 
3tan tanφ θ= . 
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EVALUATE: 3tan tanφ θ= requires θ φ> . The cable closest to the center of gravity must be closer to the vertical 

direction. cos
cos

T Tθ φ
φ
θ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

and θ φ> means the tension is greater in the wire that is closest to the center of gravity. 

 
Figure 11.51 

11.52. IDENTIFY: Apply the first and second conditions for equilibrium to the bridge. 
SET UP: Find torques about the hinge. Use L as the length of the bridge and T Band  w w for the weights of the 
truck and the raised section of the bridge. Take y+  to be upward and x+  to be to the right. 

EXECUTE: (a) ( ) ( )3 1
T B4 2sin70 cos30 cos30TL w L w L° = ° + ° , so 

( ) 23 1
T B 54 2 (9.80 m s )cos30

2.57 10  N.
sin 70

m m
T

+ °
= = ×

°
 

(b) Horizontal: ( ) 5cos 70 30 1 97 10  NT .° − ° = ×  (to the right). Vertical: 5 
T B sin 40 2.46 10 Nw w T+ − ° = ×  (upward). 

EVALUATE: If φ  is the angle of the hinge force above the horizontal, 
5

5

2.46 10  Ntan
1.97 10  N

φ ×
=

×
 and 51.3φ = ° . The 

hinge force is not directed along the bridge. 
11.53. IDENTIFY: Apply the conditions of equilibrium to the cylinder. 

SET UP: The free-body diagram for the cylinder is given in Figure 11.53. The center of gravity of the cylinder is 
at its geometrical center. The cylinder has radius R. 
EXECUTE: (a) T produces a clockwise torque about the center of gravity so there must be a friction force, that 
produces a counterclockwise torque about this axis. 
(b) Applying 0zτ =∑ to an axis at the center of gravity gives 0TR fR− + = and T f= . 0zτ =∑ applied to an 
axis at the point of contact between the cylinder and the ramp gives (2 ) sin 0T R MgR θ− + = . ( / 2)sinT Mg θ= . 

EVALUATE: We can show that 0xF =∑ and 0yF =∑ , for x and y axes parallel and perpendicular to the ramp, 
or for x and y axes that are horizontal and vertical. 

 
Figure 11.53 
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11.54. IDENTIFY: Apply the first and second conditions of equilibrium to the ladder. 
SET UP: Take torques about the pivot. Let y+  be upward. 

EXECUTE: (a) The force VF  that the ground exerts on the ladder is given to be vertical, so 0zτ =∑  

gives V (6.0 m)sin (250 N)(4.0 m)sin (750 N)(1.50 m)sinF θ θ θ= + , so V 354 N.F =  
(b) There are no other horizontal forces on the ladder, so the horizontal pivot force is zero. The vertical force that 
the pivot exerts on the ladder must be (750 N) (250 N) (354 N) 646 N,+ − =  up, so the ladder exerts a downward 
force of 646 N  on the pivot. 
(c) The results in parts (a) and (b) are independent of θ.  
EVALUATE: All the forces on the ladder are vertical, so all the moment arms are vertical and are proportional to 
sinθ . Therefore, sinθ divides out of the torque equations and the results are independent of θ . 

11.55. IDENTIFY: Apply the first and second conditions for equilibrium to the strut. 
SET UP: Denote the length of the strut by L . 
EXECUTE: (a)   and .V mg w H T= + =  To find the tension, take torques about the pivot point. 

2 2sin cos cos
3 3 6

LT L θ w L θ mg θ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 and cot
4

mgT w θ⎛ ⎞= +⎜ ⎟
⎝ ⎠

. 

(b) Solving the above for w , and using the maximum tension for ,T  

2 tan (700 N) tan55 0 (5.0 kg)(9.80  m s ) 951 N.
4

mgw T θ .= − = ° − =  

(c) Solving the expression obtained in part (a) for tan θ and letting 0,  tan 0.700,  so 4 00 .4
mgω θ θ .T→ = = = °  

EVALUATE: As the strut becomes closer to the horizontal, the moment arm for the horizontal tension force 
approaches zero and the tension approaches infinity. 

11.56. IDENTIFY: Apply the first and second conditions of equilibrium to each rod. 
SET UP: Apply 0yF =∑  with y+  upward and apply 0τ =∑  with the pivot at the point of suspension for each 
rod. 
EXECUTE: (a) The free-body diagram for each rod is given in Figure 11.56. 
(b) 0τ =∑ for the lower rod: (6.0 N)(4.0 cm) (8.0 cm)Aw=  and 3.0 NAw = . 

0yF =∑ for the lower rod: 3 6.0 N 9.0 NAS w= + =  

0τ =∑ for the middle rod: 3(3.0 cm) (5.0 cm)Bw S=  and 5.0 (9.0 N) 15.0 N
3.0Bw ⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 

0yF =∑ for the middle rod: 2 39.0 N 24.0 NS S= + =  

0τ =∑ for the upper rod: 2 (2.0 cm) (6.0 cm)CS w=  and 2.0 (24.0 N) 8.0 N
6.0Cw ⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 

0yF =∑ for the upper rod: 1 2 32.0 NCS S w= + = . 

In summary, 3.0 NAw = , 15.0 NBw = , 8.0 NCw = . 1 32.0 NS = , 2 24.0 NS = , 3 9.0 NS = . 
(c) The center of gravity of the entire mobile must lie along a vertical line that passes through the point where 1S is 
located. 
EVALUATE: For the mobile as a whole the vertical forces must balance, so 1 6.0 NA B CS w w w= + + + . 

 
Figure 11.56 
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11.57. IDENTIFY: Apply 0zτ =∑  to the beam. 
SET UP: The free-body diagram for the beam is given in Figure 11.57. 
EXECUTE: 0,  axis at hingezτΣ = , gives (6.0 m)(sin 40 ) (3.75 m)(cos30 ) 0T w° − ° =  and  7600 NT = . 
EVALUATE: The tension in the cable is less than the weight of the beam. sin 40T °  is the component of T that is 
perpendicular to the beam. 

 
Figure 11.57 

11.58. IDENTIFY: Apply the first and second conditions of equilibrium to the drawbridge. 
SET UP: The free-body diagram for the drawbridge is given in Figure 11.58. vH and hH are the components of 
the force the hinge exerts on the bridge. 
EXECUTE: (a) 0zτ =∑  with the axis at the hinge gives (7.0 m)(cos37 ) (3.5 m)(sin37 ) 0w T− + =° °  and 

5cos37 (45,000 N)2 1.19 10  N
sin37 tan37

T w= = = ×
°
° °

 

(b) 0xF =∑  gives 5
h 1.19 10  NH T= = × . 0yF =∑  gives 4

v 4.50 10  NH w= = × . 

2 2 5
h v 1.27 10  NH H H= + = × . v

h

tan H
H

θ =  and 20.7θ = ° . The hinge force has magnitude 51.27 10  N × and is 

directed at 20.7°  above the horizontal. 
EVALUATE: The hinge force is not directed along the bridge. If it were, it would have zero torque for an axis at 
the center of gravity of the bridge and for that axis the tension in the cable would produce a single, unbalanced 
torque. 

 
Figure 11.58 

11.59. IDENTIFY: Apply the first and second conditions of equilibrium to the beam. 
SET UP: The free-body diagram for the beam is given in Figure 11.59. 

 
Figure 11.59 
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EXECUTE: (a) 0,zτ =∑  axis at lower end of beam 
Let the length of the beam be L. 

(sin 20 ) cos40 0
2
LT L mg ⎛ ⎞° = − ° =⎜ ⎟

⎝ ⎠
 

1
2 cos40

2700 N
sin 20

mg
T

°
= =

°
 

(b) Take y+  upward. 

0yF =∑  gives sin60 0n w T− + ° =  so 73.6 Nn =  

0xF =∑  gives s cos60 1372 Nf T= ° =  

s s ,f nμ=  s
s

1372 N 19
73.6 N

f
n

μ = = =  

EVALUATE: The floor must be very rough for the beam not to slip. The friction force exerted by the floor is to 
the left because T has a component that pulls the beam to the right. 

11.60. IDENTIFY: Apply 0zτ =∑  to the beam. 
SET UP: The center of mass of the beam is 1.0 m from the suspension point. 
EXECUTE: (a) Taking torques about the suspension point, 

(4.00 m)sin30 (140.0 N)(1.00 m)sin30 (100 N)(2.00 m)sin30w + =° ° ° . The common factor of sin30° divides out, 
from which 15.0 N.w =  
(b) In this case, a common factor of sin 45°would be factored out, and the result would be the same. 
EVALUATE: All the forces are vertical, so the moments are all horizontal and all contain the factor sinθ , where 
θ  is the angle the beam makes with the horizontal. 

11.61. IDENTIFY: Apply 0zτ =∑  to the flagpole. 
SET UP: The free-body diagram for the flagpole is given in Figure 11.61. Let clockwise torques be positive. θ  is 
the angle the cable makes with the horizontal pole. 
EXECUTE: (a) Taking torques about the hinged end of the pole 
(200 N)(2.50 m) (600 N)(5.00 m) (5.00 m) 0yT+ − = . 700 NyT = . The x-component of the tension is then 

2 2(1000 N) (700 N) 714 NxT = − = . tan
5.00 m

y

x

Th
T

θ = = . The height above the pole that the wire must be 

attached is 700(5.00 m) 4.90 m714 = . 

(b) The y-component of the tension remains 700 N. Now 4.40 mtan
5.00 m

θ = and 41.35θ = ° , so 

700 N 1060 N
sin sin 41.35

yT
T

θ
= = =

°
, an increase of 60 N. 

EVALUATE: As the wire is fastened closer to the hinged end of the pole, the moment arm for T decreases and T 
must increase to produce the same torque about that end. 

 
Figure 11.61 

11.62. IDENTIFY: Apply 0=∑F
!

 to each object, including the point where D, C and B are joined. Apply 0zτ =∑  to 
the rod. 
SET UP: To find  and ,C DT T  use a coordinate system with axes parallel to the cords. 
EXECUTE: A and B are straightforward, the tensions being the weights suspended: 

2(0.0360 kg)(9.80 m/s ) 0.353 NAΤ = =  and 2(0.0240 kg 0.0360 kg)(9.80 m s ) 0.588 NBT = + = . Applying 

0xF =∑ and 0yF =∑  to the point where the cords are joined, cos36.9 0.470 NC BT T= ° =  and 

cos53.1 0.353 ND BT T= ° = . To find ,ET  take torques about the point where string F is attached. 
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2(1.00 m) sin36.9 (0.800 m) sin53.1 (0.200 m) (0 120 kg)(9 80 m s )(0 500 m)E D CT T T . . .= ° + ° + and 0.833 N.ET =  

FT may be found similarly, or from the fact that E FT T+ must be the total weight of the ornament. 
2(0.180kg)(9.80m s ) 1.76 N, from which 0.931 N.FT= =  

EVALUATE: The vertical line through the spheres is closer to F than to E, so we expect F ET T> , and this is 
indeed the case. 

11.63. IDENTIFY: Apply the equilibrium conditions to the plate. sinFrτ φ= . 
SET UP: The free-body diagram for the plate is sketched in Figure 11.63. For the force T (tension in the cable), 

2 2sin sinT Tr T h dτ φ φ= = + . 

EXECUTE: (a) 0zτ =∑ gives 2 2 sin 0
2
dT h d Wφ+ − = . T is least for 90φ = ° , and in that case tan h

d
θ = so 

1tan h
d

θ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. Then 
2 22
dT W

h d
=

+
. 

(b) 0xF =∑ gives h 2 22 2 2 2
sin

2( )2
Wd h WhdF T

h dh d h d
θ

⎛ ⎞
= = =⎜ ⎟

++ +⎝ ⎠
. 0yF =∑ gives v cos 0F T Wθ+ − = and 

2 2 2

v 2 2 2 22 2 2 2

21
2( ) 2( )2

Wd d d h dF W W W
h d h dh d h d

⎛ ⎞⎛ ⎞ ⎛ ⎞ +
= − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟+ ++ + ⎝ ⎠⎝ ⎠⎝ ⎠

 

EVALUATE: The angle α that the net force exerted by the hinge makes with the horizontal is given by 
2 2 2 2 2 2

v
2 2

h

(2 ) 2( ) 2tan
2( )

F W h d h d h d
F h d Whd hd

α + + +
= = =

+
. This force does not lie along the diagonal of the plate. 

 
Figure 11.63 

11.64. IDENTIFY: Apply Eq.(11.10) and the relation 0 0/ /w w l lσΔ = − Δ that is given in the problem. 

SET UP: The steel rod in Example 11.5 has 4
0/ 9.0 10l l −Δ = × . For nickel, 112.1 10  PaY = × . The width 0w is 

0 4 /w A π= . 

EXECUTE: (a) 4 4 2
0 ( ) (0.23)(9.0 10 ) 4(0.30 10 m ) 1.3 m.w σ l l w μπ− −Δ = − Δ = − × × =  

(b) 1  l wF AY AY
l σ w⊥

Δ Δ
= =  and 

11 2 2 3
6

2 

(2.1 10  Pa) (  (2.0 10 m) ) 0.10 10 m 3.1 10  N
0.42 2.0 10 m
πF

− −

⊥ −

× × ×
= = ×

×
. 

EVALUATE: For nickel and steel, 1σ < and the fractional change in width is less than the fractional change in length. 
11.65. IDENTIFY: Apply the equilibrium conditions to the crate. When the crate is on the verge of tipping it touches the 

floor only at its lower left-hand corner and the normal force acts at this point. The minimum coefficient of static 
friction is given by the equation s sf nμ= . 
SET UP: The free-body diagram for the crate when it is ready to tip is given in Figure 11.65. 

EXECUTE: (a) 0zτ =∑ gives (1.50 m)sin53.0 (1.10 m) 0P w− =° . 31.10 m 1.15 10  N
[1.50 m][sin53.0 ]

P w⎛ ⎞
= = ×⎜ ⎟

⎝ ⎠°
 

(b) 0yF =∑  gives cos53.0 0n w P− − =° . 3 3cos53.0 1250 N (1.15 10  N)cos53 1.94 10  Nn w P= + = + × = ×° °  

(c) 0xF =∑ gives 3
s sin53.0 (1.15 10  N)sin53.0 918 Nf P= = × =° ° . 

(d) s
s 3

918 N 0.473
1.94 10  N

f
n

μ = = =
×
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EVALUATE: The normal force is greater than the weight because P has a downward component. 

 
Figure 11.65 

11.66. IDENTIFY: Apply 0zτ =∑  to the meter stick. 
SET UP: The wall exerts an upward static friction force f and a horizontal normal force n on the stick. Denote the 
length of the stick by l. sf nμ= . 
EXECUTE: (a) Taking torques about the right end of the stick, the friction force is half the weight of the 
stick, / 2f w= . Taking torques about the point where the cord is attached to the wall (the tension in the cord and 
the friction force exert no torque about this point), and noting that the moment arm of the normal force is tanl θ , 

tan / 2  Then, ( / ) tan 0.40,  so arctan (0.40) 22 .n w f n  θ θ θ= ⋅ = < < = °  

(b) Taking torques as in part (a), ( ) and n  tan .
2 2
l lfl w w l x l θ w wx= + − = +  In terms of the coefficient of friction 

s ,μ  s
/ 2 ( ) 3 2tan tan .

/ 2 2
f l l x l xθ θ
n l x l x

μ + − −
> = =

+ +
 Solving for x, s

s

 3tan 30 2 cm.
2 tan
l θ μx .
μ θ

−
> =

+
 

(c) In the above expression, setting s10 cm and solving for  givesx μ=  s
(3 20 ) tan 0.625.

1 20
l θμ

l
−

> =
+

 

EVALUATE: For 15θ = ° and without the block suspended from the stick, a value of s 0.268μ ≥ is required to 
prevent slipping. Hanging the block from the stick increases the value of sμ that is required. 

11.67. IDENTIFY: Apply the first and second conditions of equilibrium to the crate. 
SET UP: The free-body diagram for the crate is given in Figure 11.67. 

 

(0.375 m)cos45wl = °  

2 (1.25 m)cos45l = °  

Let 1F
!

 and 2F
!

 be the vertical 
forces exerted by you and your 
friend. Take the origin at the 
lower left-hand corner of the 
crate (point A). 

Figure 11.67  
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EXECUTE: y yF ma=∑  gives 1 2 0F F w+ − =  
2

1 2 (200 kg)(9.80 m/s ) 1960 NF F w+ = = =  

0Aτ =∑  gives 2 2 0wF l wl− =  

2
2

0.375 mcos451960 N 590 N
1.25 mcos45

wlF w
l

⎛ ⎞ °⎛ ⎞= = =⎜ ⎟ ⎜ ⎟°⎝ ⎠⎝ ⎠
 

Then 1 2 1960 N 590 N 1370 N.F w F= − = − =  
EVALUATE: The person below (you) applies a force of 1370 N. The person above (your friend) applies a force of 
590 N. It is better to be the person above. As the sketch shows, the moment arm for 1F

!
 is less than for 2 ,F

!
 so must 

have 1 2F F>  to compensate. 
11.68. IDENTIFY: Apply the first and second conditions for equilibrium to the forearm. 

SET UP: The free-body diagram is given in Figure 11.68a, and when holding the weight in Figure 11.68b. Let 
y+  be upward. 

EXECUTE: (a) Elbow 0τΣ =  gives B(3.80 cm) (15.0 N)(15.0 cm)F = and B 59.2 NF = . 
(b) 0EτΣ =  gives B(3.80 cm) (15.0 N)(15.0 cm) (80.0 N)(33.0 cm)F = + and B 754 NF = . The biceps force has a 
short lever arm, so it must be large to balance the torques. 
(c) 0yFΣ = gives E B 15.0 N 80.0 N 0F F− + − − = and E 754N 15.0 N 80.0 N 659 NF = − − = . 
EVALUATE: (d) The biceps muscle acts perpendicular to the forearm, so its lever arm stays the same, but those of 
the other two forces decrease as the arm is raised. Therefore the tension in the biceps muscle decreases. 

   
Figure 11.68a, b 

11.69. IDENTIFY: Apply 0zτ =∑  to the forearm. 
SET UP: The free-body diagram for the forearm is given in Fig. 11.10 in the textbook. 

EXECUTE: (a) 0,  axis at elbowzτΣ = gives ( )sin 0wL T  θ D− = . 
2 2 2 2

sin  so h hD θ w T
h D L h D

= =
+ +

. 

max max 2 2

hDw T
L h D

=
+

. 

(b) 
2

max max
2 22 2

1 ;  the derivative is positivedw T h D
dD h DL h D

⎛ ⎞
= −⎜ ⎟++ ⎝ ⎠

 

EVALUATE: (c) The result of part (b) shows that maxw increases when D increases, since the derivative is positive. 

maxw is larger for a chimp since D is larger. 
11.70. IDENTIFY: Apply the first and second conditions for equilibrium to the table. 

SET UP: Label the legs as shown in Figure 11.70a. Legs A and C are 3.6 m apart. Let the weight be placed closest 
to legs C and D. By symmetry, A B= and C D= . Redraw the table as viewed from the AC side. The free-body 
diagram in this view is given in Figure 11.70b. 
EXECUTE: (about right end) 0zτ =∑ gives ( ) ( )2 (3.6 m) 90.0 N (1.8 m) 1500 N (0.50 m)A = + and 

130 NA B= = . 0yF =∑ gives 1590 NA B C D+ + + = . Using 130 NA B= =  and C D= gives  670 NC D= = . 
By Newton�s third law of motion, the forces A, B, C, and D on the table are the same magnitude as the forces the 
table exerts on the floor. 
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EVALUATE: As expected, the legs closest to the 1500 N weight exert a greater force on the floor. 

   
Figure 11.70a, b 

11.71. IDENTIFY: Apply 0zτ =∑  first to the roof and then to one wall. 
(a) SET UP: Consider the forces on the roof; see Figure 11.71a. 

 

V and H are the vertical 
and horizontal forces each 
wall exerts on the roof. 

20,000 Nw =  is the total 
weight of the roof. 
2V w=  so / 2V w=  

Figure 11.71a  

Apply 0zτ =∑  to one half of the roof, with the axis along the line where the two halves join. Let each half have 
length L. 
EXECUTE: ( / 2)( / 2)(cos35.0 ) sin35.0 cos35 0w L HL VL° + ° − ° =  
L divides out, and use / 2V w=  

1
4sin35.0 cos35.0H w° = °  

7140 N
4tan35.0

wH = =
°

 

EVALUATE: By Newton�s 3rd law, the roof exerts a horizontal, outward force on the wall. For torque about an 
axis at the lower end of the wall, at the ground, this force has a larger moment arm and hence larger torque the 
taller the walls. 
(b) SET UP: The force diagram for one wall is given in Figure 11.71b. 

 

Consider the torques 
on this wall. 

Figure 11.71b  
H is the horizontal force exerted by the roof, as considered in part (a). B is the horizontal force exerted by the 

buttress. Now the angle is 40 ,°  so 5959 N
4tan 40

wH = =
°

 

EXECUTE: 0,zτ =∑  axis at the ground 
(40 m) (30 m) 0H B− =  and 7900 N.B =  

EVALUATE: The horizontal force exerted by the roof is larger as the roof becomes more horizontal, since for 
torques applied to the roof the moment arm for H decreases. The force B required from the buttress is less the 
higher up on the wall this force is applied. 

11.72. IDENTIFY: Apply 0zτ =∑ to the wheel. 
SET UP: Take torques about the upper corner of the curb. 
EXECUTE: The force F

!
acts at a perpendicular distance R h−  and the weight acts at a perpendicular distance 

( )22 22 .R R h Rh h− − = − Setting the torques equal for the minimum necessary force, 
22 .Rh hF mg

R h
−

=
−
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(b) The torque due to gravity is the same, but the forceF
!

acts at a perpendicular distance 2 ,R h− so the minimum 

force is ( ) 2 /(2 ).mg Rh hv R h− −  

EVALUATE: (c) Less force is required when the force is applied at the top of the wheel, since in this case F
#

has a 
larger moment arm. 

11.73. IDENTIFY: Apply the first and second conditions of equilibrium to the gate. 
SET UP: The free-body diagram for the gate is given in Figure 11.73. 

 
Figure 11.73 

Use coordinates with the origin at B. Let AH
!

 and BH
!

 be the forces exerted by the hinges at A and B. The problem 

states that AH
!

 has no horizontal component. Replace the tension T
!

 by its horizontal and vertical components. 

EXECUTE: (a) 0Bτ =∑  gives ( sin30.0 )(4.00 m) ( cos30.0 )(2.00 m) (2.00 m) 0T T w+ ° + ° − =  
(2sin30.0 cos30.0 )T w° + ° =  

500 N 268 N
2sin30.0 cos30.0 2sin30.0 cos30.0

wT = = =
° + ° ° + °

 

(b) x xF ma=∑  says h cos30.0 0BH T− ° =  

h cos30.0 (268 N)cos30.0 232 NBH T= ° = ° =  

(c) y yF ma=∑  says v v sin30.0 0A BH H T w+ + ° − =  

v v sin30.0 500 N (268 N)sin30.0 366 NA BH H w T+ = − ° = − ° =  
EVALUATE: T has a horizontal component to the left so hBH  must be to the right, as these are the only two 
horizontal forces. Note that we cannot determine vAH  and vBH  separately, only their sum. 

11.74. IDENTIFY: Use Eq.(11.3) to locate the x-coordinate of the center of gravity of the block combinations. 
SET UP: The center of mass and the center of gravity are the same point. For two identical blocks, the center of 
gravity is midway between the center of the two blocks. 
EXECUTE: (a) The center of gravity of top block can be as far out as the edge of the lower block. The center of 
gravity of this combination is then 3 4L  to the left of the right edge of the upper block, so the overhang is 3 4.L  
(b) Take the two-block combination from part (a), and place it on top of the third block such that the overhang of 
3 4L  is from the right edge of the third block; that is, the center of gravity of the first two blocks is above the right 
edge of the third block. The center of mass of the three-block combination, measured from the right end of the 
bottom block, is 6L−  and so the largest possible overhang is (3 4) ( 6) 11 12.L L L+ =  Similarly, placing this 
three-block combination with its center of gravity over the right edge of the fourth block allows an extra overhang 
of 8,L  for a total of 25 24.L  
(c) As the result of part (b) shows, with only four blocks, the overhang can be larger than the length of a single 
block. 

EVALUATE: The sequence of maximum overhangs is 18
24

L , 22
24

L , 25
24

L ,�. The increase of overhang when one 

more block is added is decreasing. 
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11.75. IDENTIFY: Apply the first and second conditions of equilibrium, first to both marbles considered as a composite 
object and then to the bottom marble. 
(a) SET UP: The forces on each marble are shown in Figure 11.75. 

 

EXECUTE:  
2 1.47 NBF w= =  

sin / 2R Rθ =  so 30θ = °  
0,zτ =∑  axis at P 

(2 cos ) 0CF R wRθ − =  

0.424 N
2cos30C

mgF = =
°

 

0.424 NA CF F= =  

Figure 11.75  
(b) Consider the forces on the bottom marble. The horizontal forces must sum to zero, so 

sinAF n θ=  

0.848 N
sin30

AFn = =
°

 

Could use instead that the vertical forces sum to zero 
cos 0BF mg n θ− − =  

0.848 N,
cos30

BF mgn −
= =

°
 which checks. 

EVALUATE: If we consider each marble separately, the line of action of every force passes through the center of 
the marble so there is clearly no torque about that point for each marble. We can use the results we obtained to 
show that 0xF =∑  and 0yF =∑  for the top marble. 

11.76. IDENTIFY: Apply 0zτ =∑  to the right-hand beam. 

SET UP: Use the hinge as the axis of rotation and take counterclockwise rotation as positive. If wireF is the tension 
in each wire and 200 Nw = is the weight of each beam, wire2 2 0F w− = and wireF w= . Let L be the length of each 
beam. 

EXECUTE: (a) 0zτ =∑  gives wire csin cos sin 0
2 2 2 2 2

L LF L F wθ θ θ
− − = , whereθ  is the angle between the beams 

and cF  is the force exerted by the cross bar. The length drops out, and all other quantities except cF  are known, so 
1

wire 2
c wire1

2

sin( /2)  sin( /2)
(2 ) tan

 cos( /2) 2
F w

F F w
θ θ θ

θ
−

= = − . Therefore 53(260 N) tan 130 N
2

F °
= =  

(b) The crossbar is under compression, as can be seen by imagining the behavior of the two beams if the crossbar 
were removed. It is the crossbar that holds them apart. 
(c) The upward pull of the wire on each beam is balanced by the downward pull of gravity, due to the symmetry 
of the arrangement. The hinge therefore exerts no vertical force. It must, however, balance the outward push of 
the crossbar. The hinge exerts a force 130 N horizontally to the left for the right-hand beam and 130 N to the 
right for the left-hand beam. Again, it�s instructive to visualize what the beams would do if the hinge were 
removed. 
EVALUATE: The force exerted on each beam increases as θ increases and exceeds the weight of the beam for 

90θ ≥ ° . 
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11.77. IDENTIFY: Apply the first and second conditions of equilibrium to the bale. 
(a) SET UP: Find the angle where the bale starts to tip. When it starts to tip only the lower left-hand corner of the 
bale makes contact with the conveyor belt. Therefore the line of action of the normal force n passes through the 
left-hand edge of the bale. Consider 0Aτ =∑  with point A at the lower left-hand corner. Then 0nτ =  and 0,fτ =  

so it must be that 0mgτ =  also. This means that the line of action of the gravity must pass through point A. Thus 
the free-body diagram must be as shown in Figure 11.77a 

 

EXECUTE:  
0.125 mtan
0.250 m

β =  

27 ,β = °  angle where tips 

Figure 11.77a  
SET UP: At the angle where the bale is ready to slip down the incline sf  has its maximum possible value, 

s s .f nμ=  The free-body diagram for the bale, with the origin of coordinates at the cg is given in Figure 11.77b 

 

EXECUTE:  
y yF ma=∑  

cos 0n mg β− =  
cosn mg β=  

s s cosf mgμ β=  

s( f  has maximum value when 
bale ready to slip) 

x xF ma=∑  

s sin 0f mg β− =  

s cos sin 0mg mgμ β β− =  

stanβ μ=  

s 0.60μ =  gives that 31β = °  
Figure 11.77b  

27β = °  to tip; 31β = °  to slip, so tips first 
(b) The magnitude of the friction force didn�t enter into the calculation of the tipping angle; still tips at 27 .β = °  
For s 0.40μ =  tips at arctan(0.40) 22β = = °  
Now the bale will start to slide down the incline before it tips. 
EVALUATE: With a smaller sμ  the slope angle β  where the bale slips is smaller. 

11.78. IDENTIFY: Apply 0zτ =∑  and 0xF =∑ to the bale. 
SET UP: Let x+  be horizontal to the right. Take the rotation axis to be at the forward edge of the bale, where it 
contacts the horizontal surface. When the bale just begins to tip, the only point of contact is this point and the 
normal force produces no torque. 
EXECUTE: (a) 2

k k (0.35)(30.0 kg)(9.80 m s ) 103 NF f n mgμ μ= = = = =  

(b) With respect to the forward edge of the bale, the lever arm of the weight is 0.250 m 0.125 m2 =  and the lever 

arm h of the applied force is then 
k

0.125 m1(0.125 m) (0.125 m) 0.36 m0.35
mgh F μ= = = = . 

EVALUATE: As kμ increases, F must increase and the bale tips at a smaller h. 
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11.79. IDENTIFY: Apply the first and second conditions of equilibrium to the door. 
(a) SET UP: The free-body diagram for the door is given in Figure 11.79. 

 
Figure 11.79 

Take the origin of coordinates at the center of the door (at the cg). Let An  k ,Af  ,Bn  and kBf  be the normal and 
friction forces exerted on the door at each wheel. 
EXECUTE: y yF ma=∑  

0A Bn n w+ − =  
950 NA Bn n w+ = =  

x xF ma=∑  

k k 0A Bf f F+ − =  

k kA BF f f= +  

k k ,A Af nμ=  k k ,B Bf nμ=  so k k( ) (0.52)(950 N) 494 NA BF n n wμ μ= + = = =  

0Bτ =∑  

,Bn  k ,Af  and kBf  all have zero moment arms and hence zero torque about this point.  
Thus (1.00 m) (2.00 m) ( ) 0Aw n F h+ − − =  

(1.00 m) ( ) (950 N)(1.00 m) (494 N)(1.60 m) 80 N
2.00 m 2.00 mA

w F hn − −
= = =  

And then 950 N 950 N 80 N 870 N.B An n= − = − =  
(b) SET UP: If h is too large the torque of F will cause wheel A to leave the track. When wheel A just starts to lift 
off the track An  and kAf  both go to zero. 
EXECUTE: The equations in part (a) still apply. 

0A Bn n w+ − =  gives 950 NBn w= =  
Then k k 0.52(950 N) 494 NB Bf nμ= = =  

k k 494 NA BF f f= + =  
(1.00 m) (2.00 m) ( ) 0Aw n F h+ − − =  

(1.00 m) (950 N)(1.00 m) 1.92 m
494 N

wh
F

= = =  

EVALUATE: The result in part (b) is larger than the value of h in part (a). Increasing h increases the clockwise 
torque about B due to F and therefore decreases the clockwise torque that An  must apply. 

11.80. IDENTIFY: Apply the first and second conditions for equilibrium to the boom. 
SET UP: Take the rotation axis at the left end of the boom. 
EXECUTE: (a) The magnitude of the torque exerted by the cable must equal the magnitude of the torque due to the 
weight of the boom. The torque exerted by the cable about the left end is sinTL θ . For any angle ,θ  
sin (180 ) sin ,θ θ° − =  so the tension T will be the same for either angle. The horizontal component of the force that 
the pivot exerts on the boom will be cos  or cos(180 ) cosT T Tθ θ θ° − = − . 

(b) From the result of part (a), T is proportional to 1
sinθ

 and this becomes infinite as 0 or  180 .θ θ→ → °  

(c) The tension is a minimum when sinθ  is a maximum, or 90 ,θ = °  a vertical cable. 
(d) There are no other horizontal forces, so for the boom to be in equilibrium, the pivot exerts zero horizontal force 
on the boom. 
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EVALUATE: As the cable approaches the horizontal direction, its moment arm for the axis at the pivot approaches zero, 
so T must go to infinity in order for the torque due to the cable to continue to equal the gravity torque. 

11.81. IDENTIFY: Apply the first and second conditions of equilibrium to the pole. 
(a) SET UP: The free-body diagram for the pole is given in Figure 11.81. 

 

n and f are the vertical and 
horizontal components of the force 
the ground exerts on the pole. 

x xF ma=∑  
0f =  

The force exerted by the ground 
has no horizontal component. 

Figure 11.81  

EXECUTE: 0Aτ =∑  
(7.0 m)cos (4.5 m)cos 0T mgθ θ+ − =  

(4.5 m/7.0 m) (4.5/ 7.0)(5700 N) 3700 NT mg= = =  

0yF =∑  
0n T mg+ − =  
5700 N 3700 N 2000 Nn mg T= − = − =  

The force exerted by the ground is vertical (upward) and has magnitude 2000 N. 
EVALUATE: We can verify that 0zτ =∑  for an axis at the cg of the pole. T n>  since T acts at a point closer to 
the cg and therefore has a smaller moment arm for this axis than n does. 
(b) In the 0Aτ =∑  equation the angle θ  divided out. All forces on the pole are vertical and their moment arms 
are all proportional to cos .θ  

11.82. IDENTIFY: Apply the equilibrium conditions to the pole. The horizontal component of the tension in the wire is 
22.0 N. 
SET UP: The free-body diagram for the pole is given in Figure 11.82. The tension in the cord equals the weight 
W. vF and hF are the components of the force exerted by the hinge. If either of these forces is actually in the 
opposite direction to what we have assumed, we will get a negative value when we solve for it. 
EXECUTE: (a) sin37.0 22.0 NT =° so 36.6 NT = . 0zτ =∑ gives ( sin37.0 )(1.75 m) (1.35 m) 0T W− =° . 

(22.0 N)(1.75 m) 28.5 N
1.35 m

W = = . 

(b) 0yF =∑ gives v cos37.0 0F T W− − =°  and v (36.6 N)cos37.0 55.0 N 84.2 NF = + =° . 0xF =∑ gives 

hsin37.0 0W T F− − =° and h 28.5 N 22.0 N 6.5 NF = − = . The magnitude of the hinge force is 
2 2

h v 84.5 NF F F= + = . 

EVALUATE: If we consider torques about an axis at the top of the plate, we see that hF must be to the left in order 
for its torque to oppose the torque produced by the force W. 

 
Figure 11.82 
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11.83. IDENTIFY: Apply 0zτ =∑ to the slab. 

SET UP: The free-body diagram is given in Figure 11.83a. 3.75 mtan
1.75 m

β = so 65.0β = ° . 20.0 90β α+ + =° ° so 

5.0α = ° . The distance from the axis to the center of the block is 
2 23.75 m 1.75 m 2.07 m

2 2
⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

EXECUTE: (a) (2.07 m)sin5.0 (3.75 m)sin52.0 0w T− =° ° . 0.061T w= . Each worker must exert a force of 
0.012w , where w is the weight of the slab. 
(b) As θ increases, the moment arm for w decreases and the moment arm for T increases, so the worker needs to 
exert less force. 
(c) 0T → when w passes through the support point. This situation is sketched in Figure 11.83b. 

(1.75 m) / 2tan
(3.75 m) / 2

θ = and 25.0θ = ° . If θ exceeds this value the gravity torque causes the slab to tip over. 

EVALUATE: The moment arm for T is much greater than the moment arm for w, so the force the workers apply is 
much less than the weight of the slab. 

   
Figure 11.83a, b 

11.84. IDENTIFY: For a spring, F kx= . 0F lY
A l
⊥=
Δ

. 

SET UP: F F W⊥ = = and l xΔ = . For copper, 1011 10  PaY = × . 

EXECUTE: (a) 
0 0

YA YAF l x
l l

⎛ ⎞ ⎛ ⎞
= Δ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. This in the form of F kx= , with 
0

YAk
l

= . 

(b) 
10 4 2

5

0

(11 10  Pa) (6.455 10  m) 1.9 10  N/m
0.750 m

YAk
l

π −× ×
= = = ×  

(c) 5 3(1.9 10  N/m)(1.25 10  m) 240 NW kx −= = × × =  
EVALUATE: For the wire the force constant is very large, much larger than for a typical spring. 

11.85. IDENTIFY: Apply Newton�s 2nd law to the mass to find the tension in the wire. Then apply Eq.(11.10) to the wire 
to find the elongation this tensile force produces. 
(a) SET UP: Calculate the tension in the wire as the mass passes through the lowest point. The free-body diagram 
for the mass is given in Figure 11.85a. 

 

The mass moves in an arc of a circle 
with radius 0.50 m.R =  It has 
acceleration rada

!  directed in toward 
the center of the circle, so at this point 

rada
!  is upward. 

Figure 11.85a  

EXECUTE: y yF ma=∑  
2T mg mRω− =  so that 2( ).T m g Rω= +  
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But ω  must be in rad/s: 
(120 rev/min)(2  rad/1 rev)(1 min/60 s) 12.57 rad/s.ω π= =  

Then 2 2(12.0 kg)(9.80 m/s (0.50 m)(12.57 rad/s) ) 1066 N.T = + =  
Now calculate the elongation lΔ  of the wire that this tensile force produces: 

0

 
F lY
A l
⊥=
Δ

 so 0
10 4 2

(1066 N)(0.50 m) 0.54 cm.
(7.0 10  Pa)(0.014 10  m )

F ll
YA
⊥

−Δ = = =
× ×

 

(b) SET UP: The acceleration rada
!  is directed in towards the center of the circular path, and at this point in the 

motion this direction is downward. The free-body diagram is given in Figure 11.85b. 

 

EXECUTE:  
y yF ma=∑  

2mg T mRω+ =  
2( )T m R gω= −  

Figure 11.85b  
2 2(12.0 kg)((0.50 m)(12.57 rad/s) 9.80 m/s ) 830 NT = − =  

0
10 4 2

(830 N)(0.50 m) 0.42 cm.
(7.0 10  Pa)(0.014 10  m )

F ll
YA
⊥

−Δ = = =
× ×

 

EVALUATE: At the lowest point T and w are in opposite directions and at the highest point they are in the same 
direction, so T is greater at the lowest point and the elongation is greatest there. The elongation is at most 1% of the 
length. 

11.86. IDENTIFY: 
0

YAF l
l⊥

⎛ ⎞
= Δ⎜ ⎟
⎝ ⎠

 so the slope of the graph in part (a) depends on Young�s modulus. 

SET UP: F⊥  is the total load, 20 N plus the added load. 
EXECUTE: (a) The graph is given in Figure 11.86. 

(b) The slope is 4
2

60 N 2.0 10  N/m
(3.32 3.02) 10  m− = ×

− ×
. 

4 4 110
2 3 2

3.50 m(2.0 10  N/m)= (2.0 10  N/m) 1.8 10  Pa
[0.35 10  m]

lY
rπ π −

⎛ ⎞⎛ ⎞= × × = ×⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
 

(c) The stress is /F A⊥ . The total load at the proportional limit is 60 N 20 N 80 N+ = . 

8
3 2

80 Nstress 2.1 10  Pa
(0.35 10  m)π −= = ×

×
 

EVALUATE: The value of Y we calculated is close to the value for iron, nickel and steel in Table 11.1. 

 
Figure 11.86 
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11.87. IDENTIFY: Use the second condition of equilibrium to relate the tension in the two wires to the distance w is from 
the left end. Use Eqs.(11.8) and (11.10) to relate the tension in each wire to its stress and strain. 
(a) SET UP: stress / ,F A⊥=  so equal stress implies /T A  same for each wire. 

2 2/ 2.00 mm / 4.00 mmA BT T=  so 2.00B AT T=  
The question is where along the rod to hang the weight in order to produce this relation between the tensions in the 
two wires. Let the weight be suspended at point C, a distance x to the right of wire A. The free-body diagram for 
the rod is given in Figure 11.87. 

 

EXECUTE:  
0Cτ =∑  

(1.05 m ) 0B AT x T x+ − − =  

Figure 11.87  
But 2.00B AT T=  so 2.00 (1.05 m ) 0A AT x T x− − =  
2.10 m 2.00x x− =  and 2.10 m/3.00 0.70 mx = =  (measured from A). 
(b) SET UP: stress/strainY =  gives that strain stress / / .Y F AY⊥= =  
EXECUTE: Equal strain thus implies 

2 11 2 11(2.00 mm )(1.80 10  Pa) (4.00 mm )(1.20 10  Pa)
A BT T

=
× ×

 

4.00 1.20 1.333 .
2.00 1.80B A AT T T⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

The 0Cτ =∑  equation still gives (1.05 m ) 0.B AT x T x− − =  

But now 1.333B AT T=  so (1.333 )(1.05 m ) 0A AT x T x− − =  
1.40 m 2.33x=  and 1.40 m/2.33 0.60 mx = =  (measured from A). 
EVALUATE: Wire B has twice the diameter so it takes twice the tension to produce the same stress. For equal 
stress the moment arm for BT  (0.35 m) is half that for AT  (0.70 m), since the torques must be equal. The smaller Y 
for B partially compensates for the larger area in determining the strain and for equal strain the moment arms are 
closer to being equal. 

11.88. IDENTIFY: Apply Eq.(11.10) and calculate lΔ . 
SET UP: When the ride is at rest the tension F⊥  in the rod is the weight 1900 N of the car and occupants. When 

the ride is operating, the tension F⊥  in the rod is obtained by applying m=∑F a
! ! to a car and its occupants. The 

free-body diagram is shown in Figure 11.88. The car travels in a circle of radius sinr l θ= , where l is the length of 
the rod and θ  is the angle the rod makes with the vertical. For steel, 112.0 10  PaY = × . 

8.00 rev/min 0.838 rad/sω = = . 

EXECUTE: (a) 40
11 4 2

(15.0 m)(1900 N) 1.78 10  m 0.18 mm
(2.0 10  Pa)(8.00 10  m )

l Fl
YA

−⊥
−Δ = = = × =

× ×
 

(b) x xF ma=∑ gives 2 2sin sinF mr mlθ ω θω⊥ = =  and 

2 2 3
2

1900 N (15.0 m)(0.838 rad/s) 2.04 10  N
9.80 m/s

F mlω⊥
⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

. 
32.04 10  N (0.18 mm) 0.19 mm

1900 N
l

⎛ ⎞×
Δ = =⎜ ⎟

⎝ ⎠
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EVALUATE: y y
F ma=∑  gives cosF mgθ⊥ =  and cos /mg Fθ ⊥= . As ω increases F⊥ increases and cosθ  

becomes small. Smaller cosθ means θ increases, so the rods move toward the horizontal as ω increases. 

 
Figure 11.88 

11.89. IDENTIFY and SET UP: The tension is the same at all points along the composite rod. Apply Eqs.(11.8) and 
(11.10) to relate the elongations, stresses, and strains for each rod in the compound. 
EXECUTE: Each piece of the composite rod is subjected to a tensile force of 44.00 10  N.×  

(a) 0

 
F lY
A l
⊥=
Δ

 so 0F ll
YA
⊥Δ =  

b nl lΔ = Δ  gives that 0,b 0,n

b b n n

F l F l
Y A Y A
⊥ ⊥=  (b for brass and n for nickel); 0,nl L=  

But the F⊥  is the same for both, so 

n n
0,n 0,b

b b

Y Al l
Y A

=  

10 2

10 2

21 10  Pa 1.00 cm (1.40 m) 1.63 m
9.0 10  Pa 2.00 cm

L
⎛ ⎞⎛ ⎞×

= =⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠
 

(b) stress / /F A T A⊥= =  

brass: 4 4 2 8stress / (4.00 10  N)/(2.00 10  m ) 2.00 10  PaT A −= = × × = ×  

nickel: 4 4 2 8stress / (4.00 10  N)/(1.00 10  m ) 4.00 10  PaT A −= = × × = ×  
(c) stress/strainY =  and strain stress/Y=  
brass: 8 10 3strain (2.00 10  Pa)/(9.0 10  Pa) 2.22 10−= × × = ×  

nickel: 8 10 3strain (4.00 10  Pa)/(21 10  Pa) 1.90 10−= × × = ×  
EVALUATE: Larger Y means less lΔ  and smaller A means greater ,lΔ  so the two effects largely cancel and the 
lengths don�t differ greatly. Equal lΔ  and nearly equal l means the strains are nearly the same. But equal tensions 
and A differing by a factor of 2 means the stresses differ by a factor of 2. 

11.90. IDENTIFY: Apply 
0

F lY
A l
⊥ ⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠
. The height from which he jumps determines his speed at the ground. The 

acceleration as he stops depends on the force exerted on his legs by the ground. 
SET UP: In considering his motion take y+  downward. Assume constant acceleration as he is stopped by the floor. 

EXECUTE: (a) 4 2 9 4

0

(3.0 10  m )(14 10  Pa)(0.010) 4.2 10  NlF YA
l

−
⊥

⎛ ⎞Δ
= = × × = ×⎜ ⎟

⎝ ⎠
 

(b) As he is stopped by the ground, the net force on him is netF F mg⊥= − , where F⊥  is the force exerted on him by 

the ground. From part (a), 4 42(4.2 10  N) 8.4 10  NF⊥ = × = ×  and 4 2 48.4 10  N (70 kg)(9.80 m/s ) 8.33 10  NF = × − = × . 

netF ma=  gives 3 21.19 10  m/sa = × . 3 21.19 10  m/sya = − ×  since the acceleration is upward. 0y y yv v a t= +  gives 
3 2

0 ( 1.19 10  m/s )(0.030 s) 35.7 m/sy yv a t= − = − × = . His speed at the ground therefore is 35.7 m/sv = . This speed is 

related to his initial height h above the floor by 21
2 mv mgh=  and 

2 2

2

(35.7 m/s) 65 m
2 2(9.80 m/s )
vh
g

= = = . 



Equilibrium and Elasticity  11-35 

EVALUATE: Our estimate is based solely on compressive stress; other injuries are likely at a much lower height. 
11.91. IDENTIFY and SET UP: 0 /  Y F l A l⊥= Δ  (Eq.11.10 holds since the problem states that the stress is proportional to 

the strain.) Thus 0 / .l F l AY⊥Δ =  Use proportionality to see how changing the wire properties affects .lΔ  
EXECUTE: (a) Change 0l  but F⊥  (same floodlamp), A (same diameter wire), and Y (same material) all stay the 
same. 

0

constant,l F
l AY

⊥Δ
= =  so 1 2

01 02

l l
l l
Δ Δ

=
Δ Δ

 

2 1 02 01 1( / ) 2 2(0.18 mm) 0.36 mml l l l lΔ = Δ = Δ = =  

(b) 2 21
4( / 2) ,A d dπ π= =  so 0

21
4

F ll
d Yπ
⊥Δ =  

,F⊥  0 ,l  Y all stay the same, so ( )2 1
0 4( ) / constantl d F l Yπ⊥Δ = =  

2 2
1 1 2 2( ) ( )l d l dΔ = Δ  

2 2
2 1 1 2( / ) (0.18 mm)(1/2) 0.045 mml l d dΔ = Δ = =  

(c) ,F⊥  0 ,l  A all stay the same so 0 / constantlY F l A⊥Δ = =  

1 1 2 2l Y l YΔ = Δ  
10 10

2 1 1 2( / ) (0.18 mm)(20 10  Pa/11 10  Pa) 0.33 mml l Y YΔ = Δ = × × =  
EVALUATE: Greater l means greater ,lΔ  greater diameter means less ,lΔ  and smaller Y means greater .lΔ  

11.92. IDENTIFY: Apply Eq.(11.13) and calculate VΔ . 
SET UP: The pressure increase is /w A , where w is the weight of the bricks and A is the area 2rπ  of the piston. 

EXECUTE: 
2

5
2

(1420 kg)(9.80 m/s ) 1.97 10  Pa
(0.150 m)

p
π

Δ = = ×  

0

Vp B
V
Δ

Δ = −  gives 
5

0
8

( ) (1.97 10  Pa)(250 L) 0.0542 L
9.09 10  Pa

p VV
B

Δ ×
Δ = − = − = −

×
 

EVALUATE: The fractional change in volume is only 0.022%, so this attempt is not worth the effort. 
11.93. IDENTIFY and SET UP: Apply Eqs.(11.8) and (11.15). The tensile stress depends on the component of F

!
 

perpendicular to the plane and the shear stress depends on the component of F
!

 parallel to the plane. The forces 
are shown in Figure 11.93a 

 
Figure 11.93a 

(a) EXECUTE: The components of F are shown in Figure 11.93b. 

 

The area of the diagonal 
face is / cos .A θ  

Figure 11.93b  
2costensile stress cos /( / cos ) .

( / cos )
F FF A

A A
θθ θ

θ
⊥= = =  

(b) sin cos sin 2shear stress sin /( / cos )
( / cos ) 2

F F FF A
A A A

θ θ θθ θ
θ

= = = ="  (using a trig identity). 

EVALUATE: (c) From the result of part (a) the tensile stress is a maximum for cos 1,θ =  so 0 .θ = °  
(d) From the result of part (b) the shear stress is a maximum for sin 2 1,θ =  so for 2 90θ = °  and thus 45θ = °  
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11.94. IDENTIFY: Apply the first and second conditions of equilibrium to the rod. Then apply Eq.(11.10) to relate the 
compressive force on the rod to its change in length. 
SET UP: For copper, 111.1 10  PaY = × . 
EXECUTE: (a) Taking torques about the pivot, the tensionT in the cable is related to the weight by 

0 0(sin ) 2,  so .
2sin

mgT l mgl Tθ
θ

= =  The horizontal component of the force that the cable exerts on the rod, and 

hence the horizontal component of the force that the pivot exerts on the rod, is cot
2

mg θ and the stress is cot .
2
mg

A
θ  

(b) 0 0 cot .
2

l F mgll
AY AY

θ
Δ = =  lΔ corresponds to a decrease in length. 

(c) In terms of the density and length, 0( ) ,m A lρ=  so the stress is 0( 2)cotl gρ θ  and the change in length is 
2
0( 2 )cotl g Yρ θ . 

(d) Using the numerical values, the stress is 51.4 10×  Pa and the change in length is 62.2 10  m.−×  
(e) The stress is proportional to the length and the change in length is proportional to the square of the length, and 
so the quantities change by factors of 2 and 4. 
EVALUATE: The compressive force and therefore the decrease in length increase as θ decreases and the cable 
becomes more nearly horizontal. 

11.95. IDENTIFY: Apply the first and second conditions for equilibrium to the bookcase. 
SET UP: When the bookcase is on the verge of tipping, it contacts the floor only at its lower left-hand edge and 
the normal force acts at this point. When the bookcase is on the verge of slipping, the static friction force has its 
largest possible value, snμ . 
EXECUTE: (a) Taking torques about the left edge of the left leg, the bookcase would tip when 

(1500 )(0.90 m) 750 (1.80 m)F Ν= = Ν  and would slip when s( )(1500 ) 600 ,F μ= Ν = Ν  so the bookcase slides before 

tipping. 
(b) If F is vertical, there will be no net horizontal force and the bookcase could not slide. Again taking torques 

about the left edge of the left leg, the force necessary to tip the case is (1500 )(0.90 m) 13.5 kN(0.10 m)
Ν = . 

(c) To slide, the friction force is s (  cos ),f w Fμ θ= +  and setting this equal to sinF θ  and solving for F  gives 

s

ssin  cos
wF μ

θ μ θ
=

−
(to slide). To tip, the condition is that the normal force exerted by the right leg is zero, and 

taking torques about the left edge of the left leg, sin (1.80 m) cos (0.10 m) (0.90 m),F F wθ θ+ =  and solving for 

F  gives 
(1 9)cos  2sin

wF
θ θ

=
+

 (to tip). Setting the two expressions equal to each other gives 

s s((1 9)cos  2sin ) sin cosμ θ θ θ μ θ+ = − and solving forθ gives s

s

(10 9)arctan 66 .
(1 2 )

μθ
μ

⎛ ⎞
= = °⎜ ⎟−⎝ ⎠

 

EVALUATE: The result in (c) depends not only on the numerical value of sμ but also on the width and height of 
the bookcase. 

11.96. IDENTIFY: Apply 0zτ =∑  to the post, for various choices of the location of the rotation axis. 

SET UP: When the post is on the verge of slipping, sf  has its largest possible value, s sf nμ= . 
EXECUTE: (a) Taking torques about the point where the rope is fastened to the ground, the lever arm of the applied 
force is / 2h and the lever arm of both the weight and the normal force is tan ,h θ  and so ( ) tan .2

hF n w h θ= −  

Taking torques about the upper point (where the rope is attached to the post), .2
hfh F= Using sf nμ≤  and solving 

for F, 
1 1

s

1 1 1 12 2(400 N) 400 N
tan 0.30 tan36.9

F w
μ θ

− −⎛ ⎞ ⎛ ⎞≤ − = − =⎜ ⎟ ⎜ ⎟°⎝ ⎠⎝ ⎠
. 

(b) The above relations between ,  and  becomeF n f 3 2( )  tan ,  ,
5 5

F h n w h f Fθ= − =  and eliminating f and n and 

solving for F gives 
1

s

2 5 3 5 ,
tan

F w
μ θ

−
⎛ ⎞

≤ −⎜ ⎟
⎝ ⎠

 and substitution of numerical values gives 750 N to two figures. 
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(c) If the force is applied a distance y above the ground, the above relations become 

( ) tan ,   ( ) ,Fy n w h F h y fhθ= − − = which become, on eliminating and ,n f  ( ) ( )
s

1 / /
.

tan
y h y h

w F
μ θ

⎡ ⎤−
≥ −⎢ ⎥

⎣ ⎦
 As the 

term in square brackets approaches zero, the necessary force becomes unboundedly large. The limiting value of y 
is found by setting the term in square brackets equal to zero. Solving for y gives 

tan tan36.9 0.71.
tan 0.30 tan36.9s

y
h

θ
μ θ

°
= = =

+ + °
 

EVALUATE: For the post to slip, for an axis at the top of the post the torque due to F must balance the torque due 
to the friction force. As the point of application of F approaches the top of the post, its moment arm for this axis 
approaches zero. 

11.97. IDENTIFY: Apply 0zτ =∑  to the girder. 

SET UP: Assume that the center of gravity of the loaded girder is at 2,L  and that the cable is attached a distance 

x to the right of the pivot. The sine of the angle between the lever arm and the cable is then 2 2(( 2) )h h L x+ − . 
EXECUTE: The tension is obtained from balancing torques about the pivot; 

2 2
2,

(( 2) )
hxT wL

h L x

⎡ ⎤
⎢ ⎥ =
⎢ ⎥+ −⎣ ⎦

where w is the total load . The minimum tension will occur when the term in 

square brackets is a maximum; differentiating and setting the derivative equal to zero gives a maximum, and hence 
a minimum tension, at 2

min ( ) ( 2).x h L L= +  However, if min ,  which occurs if 2,x L h L> >  the cable must be 
attached at L, the farthest point to the right. 
EVALUATE: Note that minx  is greater than / 2L but approaches / 2L as 0h → . The tension is a minimum when 
the cable is attached somewhere on the right-hand half of the girder. 

11.98. IDENTIFY: Apply the equilibrium conditions to the ladder combination and also to each ladder. 
SET UP: The geometry of the 3-4-5 right triangle simplifies some of the intermediate algebra. Denote the forces 
on the ends of the ladders by  and L RF F (left and right). The contact forces at the ground will be vertical, since the 
floor is assumed to be frictionless. 
EXECUTE: (a) Taking torques about the right end, (5.00 m) (480 N)(3.40 m) (360 N)(0.90 m)LF = + , so 

391 NLF = . RF  may be found in a similar manner, or from 840 N 449 N.R LF F= − =  
(b) The tension in the rope may be found by finding the torque on each ladder, using the point A as the origin. The 
lever arm of the rope is 1.50 m. For the left ladder, (1.50 m) (3.20 m) (480 N)(1.60 m),  so 322.1 NLT F T= − =  
(322 N to three figures). As a check, using the torques on the right ladder, (1.50 m) (1.80 m) (360 N)(0.90 m)RT F= −  
gives the same result. 
(c) The horizontal component of the force at A must be equal to the tension found in part (b). The vertical force 
must be equal in magnitude to the difference between the weight of each ladder and the force on the bottom of 
each ladder, 480 N 391 N 449 N 360 N 89 N.− = − =  The magnitude of the force at A is then 

2 2(322.1 N) (89 N) 334 N.+ =  
(d) The easiest way to do this is to see that the added load will be distributed at the floor in such a way that 

(0.36)(800 N) 679 N, and (0.64)(800 N) 961 N.L L R RF F F F′ ′= + = = + =  Using these forces in the form for the 
tension found in part (b) gives 

(3.20 m) (480 N)(1.60 m) (1.80 m) (360 N)(0.90 m) 937 N
(1.50 m) (1.50 m)

L RF FT
′ ′− −

= = = . 

EVALUATE: The presence of the painter increases the tension in the rope, even though his weight is vertical and 
the tension force is horizontal. 

11.99. IDENTIFY: Apply Eq.(11.14) to each material, the oil and the sodium. For each material, /p F AΔ = . 
SET UP: The total volume change, totVΔ , is related to the distance the piston moves by totV AxΔ = . 
EXECUTE: The change in the volume of the oil is O Ok v pΔ and the change in the volume of the sodium is s s .k v pΔ  
Setting the total volume change equal to Ax (x is positive) and using ,p F AΔ =  O O s s( )( ),Ax k V k V F A= +  and 

solving for sk  gives 
2

s O O
s

1A xk k V
F V

⎛ ⎞
= − ⋅⎜ ⎟
⎝ ⎠

 



11-38 Chapter 11 

EVALUATE: Neglecting the volume change of the oil corresponds to setting O 0k = , and in that case 
2

s
s

A xk
FV

= . In 

either case, x is larger when sk is larger. 

11.100. IDENTIFY: Write ( )pVΔ or ( )pV γΔ  in terms of pΔ and VΔ and use the fact that pV or pV γ is constant. 
SET UP: B is given by Eq.(11.13). 

EXECUTE: (a) For constant temperature ( )0TΔ = , ( ) ( ) ( ) 0pV p V p VΔ = Δ + Δ = and 
( )
( )p VB p

V
Δ

= − =
Δ

. 

(b) In this situation, ( ) 1( )  0,  ( ) 0,γ Vp V γp V V p γp
V

γ − Δ
Δ + Δ = Δ + =  and ( ) .p VB γp

V
Δ

= − =
Δ

 

EVALUATE: We will see later that 1γ > , so B is larger in part (b). 
11.101. IDENTIFY: Apply Eq.(11.10) to calculate lΔ . 

SET UP: For steel, 112.0 10  PaY = × . 

EXECUTE: (a) From Eq.(11.10), 
2

4
10 7

2

(4.50 kg)(9.80 m/s )(1.50 m) 6.62 10  m, or 0.66 mm
(20 10  Pa)(5.00 10 m )

l −
−Δ = = ×

× ×
to two figures. 

(b) 2 2(4.50 kg)(9.80 m s )(0.0500 10  m) 0.022 J.−× =  
(c) The magnitude F will vary with distance; the average force is 0(0.0250 cm ) 16.7 N,YA l = and so the work 

done by the applied force is 2 3(16.7 N)(0.0500 10  m) 8.35 10  J.− −× = ×  
(d) The average force the wire exerts is (450 kg) 16.7 N 60.8 N.g + =  The work done is negative, and equal to 

2 2(60.8 N)(0.0500 10  m) 3.04 10  J.− −− × = − ×  

(e) Eq.(11.10) is in the form of Hooke�s law, with 
0

YAk
l

= . 21
el 2U kx= , so 2 21

el 2 12 ( )U k x xΔ = − . 

4
1 6.62 10  mx −= × and 3 4

2 10.500 10  m 11.62 10  mx x− −= × + = × . The change in elastic potential energy is 

( )
10 7 2

4 2 4 2 2(20 10  Pa)(5.00 10  m ) ((11.62 10  m) (6.62 10  m) ) 3.04 10  J,
2 1.50 m

−
− − −× ×

× − × = ×  the negative of the result of 

part (d). 
EVALUATE: The tensile force in the wire is conservative and obeys the relation W U= −Δ . 
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GRAVITATION 

 12.1. IDENTIFY and SET UP: Use the law of gravitation, Eq.(12.1), to determine g.F  

EXECUTE: S M
S on M 2

SM

(S sun, M moon);m mF G
r

= =  E M
E on M 2

EM

(E earth)m mF G
r

= =  

22
EMS on M S M S EM

2
E on M SM E M E SM

rF m m m rG
F r Gm m m r

⎛ ⎞⎛ ⎞ ⎛ ⎞
= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

 

EM ,r the radius of the moon�s orbit around the earth is given in Appendix F as 83.84 10  m.×  The moon is much 
closer to the earth than it is to the sun, so take the distance SMr  of the moon from the sun to be SE ,r  the radius of 
the earth�s orbit around the sun. 

230 8
S on M

24 11
E on M

1.99 10  kg 3.84 10  m 2.18.
5.98 10  kg 1.50 10  m

F
F

⎛ ⎞⎛ ⎞× ×
= =⎜ ⎟⎜ ⎟× ×⎝ ⎠⎝ ⎠

 

EVALUATE: The force exerted by the sun is larger than the force exerted by the earth. The moon�s motion is a 
combination of orbiting the sun and orbiting the earth. 

 12.2. IDENTIFY: The gravity force between spherically symmetric spheres is 1 2
g 2

Gm mF
r

= , where r is the separation 

between their centers. 
SET UP: 11 2 26.67 10  N m /kgG −= × ⋅ . The moment arm for the torque due to each force is 0.150 m. 

EXECUTE: (a) For each pair of spheres, 
11 2 2

7
g 2

(6.67 10  N m /kg )(1.10 kg)(25.0 kg) 1.27 10  N
(0.120 m)

F
−

−× ⋅
= = × . From 

Figure 12.4 in the textbook we see that the forces for each pair are in opposite directions, so net 0F = . 

(b) The net torque is 7 8
net g2 2(1.27 10  N)(0.150 m) 3.81 10  N mF lτ − −= = × = × ⋅ . 

(c) The torque is very small and the apparatus must be very sensitive. The torque could be increased by increasing 
the mass of the spheres or by decreasing their separation. 
EVALUATE: The quartz fiber must twist through a measurable angle when a small torque is applied to it. 

 12.3. IDENTIFY: The force exerted on the particle by the earth is w mg= , where m is the mass of the particle. The 

force exerted by the 100 kg ball is 1 2
g 2

Gm mF
r

= , where r is the distance of the particle from the center of the ball. 

SET UP: 11 2 26.67 10  N m /kgG −= × ⋅ , 29.80 m/sg = . 

EXECUTE: gF w= gives ball
2

Gmm mg
r

= and 

11 2 2
5ball

2

(6.67 10  N m /kg )(100 kg) 2.61 10  m 0.0261 mm
9.80 m/s

Gmr
g

−
−× ⋅

= = = × = . It is not feasible to do this; a 

100 kg ball would have a radius much larger than 0.0261 mm. 
EVALUATE: The gravitational force between ordinary objects is very small. The gravitational force exerted by 
the earth on objects near its surface is large enough to be important because the mass of the earth is very large. 

 12.4. IDENTIFY: Apply Eq.(12.2), generalized to any pair of spherically symmetric objects. 
SET UP: The separation of the centers of the spheres is 2R.  
EXECUTE: The magnitude of the gravitational attraction is 2 2 2 2/(2 ) /4 .GM R GM R=  
EVALUATE: Eq.(12.2) applies to any pair of spherically symmetric objects; one of the objects doesn't have to be 
the earth. 

12
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 12.5. IDENTIFY: Use Eq.(12.1) to calculate gF  exerted by the earth and by the sun and add these forces as vectors. 
(a) SET UP: The forces and distances are shown in Figure 12.5. 

 

Let EF
!

 and SF
!

 be the 
gravitational forces exerted 
on the spaceship by the 
earth and by the sun. 

Figure 12.5  

EXECUTE: The distance from the earth to the sun is 111.50 10  m.r = ×  Let the ship be a distance x  from the 
earth; it is then a distance r x−  from the sun. 

E SF F=  says that 2 2
E S/ /( )Gmm x Gmm r x= −  

( )22
E/ /m x ms r x= −  and 2 2

S E( ) ( / )r x x m m− =  

S E/r x x m m− =  and S E(1 / )r x m m= +  
11

8

30 24
S E

1.50 10  m 2.59 10  m
1 / 1+ 1.99 10  kg/5.97 10  kg

rx
m m

×
= = = ×

+ × ×
 (from center of earth) 

(b) EVALUATE: At the instant when the spaceship passes through this point its acceleration is zero. Since 
S Em m"  this equal-force point is much closer to the earth than to the sun. 

 12.6. IDENTIFY: Apply Eq.(12.1) to calculate the magnitude of the gravitational force exerted by each sphere. Each 
force is attractive. The net force is the vector sum of the individual forces. 
SET UP: Let +x be to the right. 

EXECUTE: (a) ( )( ) ( )
( )

( )
( )

11 2 2 11
g 2 2

5.00 kg 10.0 kg
6.673 10  N m /kg 0.100 kg 2.32 10

0.400 m 0.600 mxF − −
⎡ ⎤

= × ⋅ − + = − × Ν⎢ ⎥
⎢ ⎥⎣ ⎦

, with the 

minus sign indicating a net force to the left. 
(b) No, the force found in part (a) is the net force due to the other two spheres. 
EVALUATE: The force from the 5.00 kg sphere is greater than for the 10.0 kg sphere even though its mass is less, 
because r is smaller for this mass. 

 12.7. IDENTIFY: The force exerted by the moon is the gravitational force, M
g 2

Gm mF
r

= . The force exerted on the 

person by the earth is w mg= . 

SET UP: The mass of the moon is 22
M 7.35 10  kgm = × . 11 2 26.67 10  N m /kgG −= × ⋅ . 

EXECUTE: (a) 
22

11 2 2 3
moon g 8 2

(7.35 10 kg)(70 kg)(6.67 10  N m /kg ) 2.4 10  N
(3.78 10  m)

F F − −×
= = × ⋅ = ×

×
. 

(b) 2
earth (70 kg)(9.80 m/s ) 690 NF w= = = . 6

moon earth/ 3.5 10F F −= × . 
EVALUATE: The force exerted by the earth is much greater than the force exerted by the moon. The mass of the 
moon is less than the mass of the earth and the center of the earth is much closer to the person than is the center of 
the moon. 

 12.8. IDENTIFY: Use Eq.(12.2) to find the force each point mass exerts on the particle, find the net force, and use 
Newton�s second law to calculate the acceleration. 
SET UP: Each force is attractive. The particle (mass m) is a distance 1 0.200 mr = from 1 8.00 kgm = and 
therefore a distance 2 0.300 mr = from 2 15.0 kgm = . Let +x be toward the 15.0 kg mass. 

EXECUTE: 11 2 2 81
1 2 2

1

(8.00 kg)(6.67 10  N m /kg ) (1.334 10  N/kg)
(0.200 m)

Gm m mF m
r

− −= = × ⋅ = × , in the x− -direction. 

11 2 2 82
2 2 2

2

(15.0 kg)(6.67 10  N m /kg ) (1.112 10  N/kg)
(0.300 m)

Gm m mF m
r

− −= = × ⋅ = × , in the x+ -direction. The net force is 

8 8 9
1 2 ( 1.334 10  N/kg 1.112 10  N/kg) ( 2.2 10  N/kg)x x xF F F m m− − −= + = − × + × = − × . 9 22.2 10  m/sx

x
Fa
m

−= = − × . The 

acceleration is 9 22.2 10  m/s−× , toward the 8.00 kg mass.  
EVALUATE: The smaller mass exerts the greater force, because the particle is closer to the smaller mass. 
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 12.9. IDENTIFY: Apply Eq.(12.1) to calculate the magnitude of each gravitational force. Each force is attractive. 
SET UP: The masses are 22

M 7.35 10  kgm = × , 30
S 1.99 10  kgm = × and 24

E 5.97 10  kgm = × . Denote the earth-sun 
separation as 1r  and the earth-moon separation as 2r . 

EXECUTE: (a) ( ) 20S E
M 2 2

1 2 2

 6.30 10  ,
( )

m mGm
r r r

⎡ ⎤
+ = × Ν⎢ ⎥+⎣ ⎦

 toward the sun. 

(b) The earth-moon distance is sufficiently small compared to the earth-sun distance (r2 << r1) that the vector from 
the earth to the moon can be taken to be perpendicular to the vector from the sun to the moon. The gravitational 

forces are then 20M S
2

1

4.34 10  Gm m
r

= × Ν  and 20M E
2

2

1.99 10Gm m
r

= × Ν , and so the force has magnitude 204.77 10  × Ν  

and is directed 24.6°  from the direction toward the sun. 

(c) ( )
( )

20S E
M 2 2

21 2

 2.37 10  ,m mGm
rr r

⎡ ⎤
− = × Ν⎢ ⎥

−⎢ ⎥⎣ ⎦
toward the sun. 

EVALUATE: The net force is very different in each of these three positions, even though the magnitudes of the 
forces from the sun and earth change very little. 

12.10. IDENTIFY: Apply Eq.(12.1) to calculate the magnitude of each gravitational force. Each force is attractive. 
SET UP: The forces on one of the masses are sketched in Figure 12.10. The figure shows that the vector sum of 
the three forces is toward the center of the square. 

EXECUTE: A B A D
onA B D 2 2

AB AD

 cos 452 cos 45 F 2 Gm m Gm mF F
r r

°
= ° + = + . 

11 2 2 2 11 2 2 2
3

onA 2 2

2(6.67 10  N m /kg )(800 kg) cos  45 (6.67 10  N m /kg )(800 kg) 8.2 10  N
(0.10 m) (0.10 m)

F
− −

−× ⋅ ° × ⋅
= + = × toward the 

center of the square. 
EVALUATE: We have assumed each mass can be treated as a uniform sphere. Each mass must have an unusually 
large density in order to have mass 800 kg and still fit into a square of side length 10.0 cm. 

 
Figure 12.10 

12.11. IDENTIFY: Use Eq.(12.2) to calculate the gravitational force each particle exerts on the third mass. The 
equilibrium is stable when for a displacement from equilibrium the net force is directed toward the equilibrium 
position and it is unstable when the net force is directed away from the equilibrium position. 
SET UP: For the net force to be zero, the two forces on M must be in opposite directions. This is the case only 
when M is on the line connecting the two particles and between them. The free-body diagram for M is given in 
Figure 12.11. 1 3m m=  and 2m m= . If M is a distance x from 1m , it is a distance 1.00 m x− from 2m . 

EXECUTE: (a) 1 2 2 2

3 0
(1.00 m )x x x

mm mMF F F G G
x x

= + = − + =
−

. 2 23(1.00 m )x x− = . 1.00 m / 3x x− = ± . Since 

M is between the two particles, x must be less than 1.00 m and 1.00 m 0.634 m
1 1/ 3

x = =
+

. M must be placed at a 

point that is 0.634 m from the particle of mass 3m and 0.366 m from the particle of mass m. 
(b) (i) If M is displaced slightly to the right in Figure 12.11, the attractive force from m is larger than the force 
from 3m  and the net force is to the right. If M is displaced slightly to the left in Figure 12.11, the attractive force 
from 3m is larger than the force from m  and the net force is to the left. In each case the net force is away from 
equilibrium and the equilibrium is unstable. 
(ii) If M is displaced a very small distance along the y axis in Figure 12.11, the net force is directed opposite to the 
direction of the displacement and therefore the equilibrium is stable. 
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EVALUATE: The point where the net force on M is zero is closer to the smaller mass. 

 
Figure 12.11 

12.12. IDENTIFY: The force 1F
!

exerted by m on M and the force 2F
!

exerted by 2m on M are each given by Eq.(12.2) and 
the net force is the vector sum of these two forces. 
SET UP: Each force is attractive. The forces on M in each region are sketched in Figure 12.12a. Let M be at 
coordinate x on the x-axis. 
EXECUTE: (a) For the net force to be zero, 1F

!
and 2F

!
must be in opposite directions and this is the case only for 

0 x L< < . 1 2 0F + F =
! !

then requires 1 2F F= . 2 2

(2 )
( )

GmM G m M
x L x

=
−

. 2 22 ( )x L x= − and 2L x x− = ± . x must be less 

than L, so 0.414
1 2

Lx L= =
+

. 

(b) For 0x < , 0xF > . 0xF → as x → −∞ and xF → +∞ as 0x → . For x L> , 0xF < . 0xF → as x → ∞ and 

xF → −∞ as x L→ . For 0 0.414x L< < , 0xF < and xF increases from −∞ to 0 as x goes from 0 to 0.414L. For 
0.414L x L< < , 0xF > and xF increases from 0 to +∞ as x goes from 0.414L to L. The graph of xF versus x is 
sketched in Figure 12.12b. 
EVALUATE: Any real object is not exactly a point so it is not possible to have both m and M exactly at 0x = or 
2m and M both exactly at x L= . But the magnitude of the gravitational force between two objects approaches 
infinity as the objects get very close together. 

 

 
Figure 12.12 
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12.13. IDENTIFY: Use Eq.(12.1) to find the force exerted by each large sphere. Add these forces as vectors to get the net 
force and then use Newton�s 2nd law to calculate the acceleration. 
SET UP: The forces are shown in Figure 12.13. 

 

sin 0.80θ =  
cos 0.60θ =  
Take the origin of coordinate at 
point P. 

Figure 12.13  

EXECUTE: 11
2 2

(0.26 kg)(0.010 kg) 1.735 10  N
(0.100 m)

A
A

m mF G G
r

−= = = ×  

11
2 1.735 10  NB

B
m mF G
r

−= = ×  

11 11sin (1.735 10  N)(0.80) 1.39 10  NAx AF F θ − −= − = − × = − ×  
11 11cos (1.735 10 N)(0.60) 1.04 10  NAy AF F θ − −= − = + × = + ×  

11sin 1.39 10  NBx BF F θ −= + = + ×  
11cos 1.04 10  NBy BF F θ −= + = + ×  

x xF ma=∑  gives Ax Bx xF F ma+ =  

0 xma=  so 0xa =   

y yF ma=∑  gives Ay By yF F ma+ =  
112(1.04 10  N) (0.010 kg) ya−× =  

9 22.1 10  m/s ,ya −= × directed downward midway between A and B 
EVALUATE: For ordinary size objects the gravitational force is very small, so the initial acceleration is very 
small. By symmetry there is no x-component of net force and the y-component is in the direction of the two large 
spheres, since they attract the small sphere. 

12.14. IDENTIFY: Apply Eq.(12.4) to Pluto. 
SET UP: Pluto has mass 221.5 10  kgm = × and radius 61.15 10  mR = × . 

EXECUTE: Equation (12.4) gives 
( )( )

( )

11 2 2 22
2 2

26

6.763 10  N m /kg 1.5 10 kg
0.757 m /s .

1.15 10 m
g

−× ⋅ ×
= =

×
 

EVALUATE: g at the surface of Pluto is much less than g at the surface of Earth. Eq.(12.4) applies to any 
spherically symmetric object. 

12.15. IDENTIFY: E
g 2

mmF G
r

= , so E
g 2

ma G
r

= , where r is the distance of the object from the center of the earth. 

SET UP: Er h R= + , where h is the distance of the object above the surface of the earth and 6
E 6.38 10  mR = ×  is 

the radius of the earth. 
EXECUTE: To decrease the acceleration due to gravity by one-tenth, the distance from the center of the earth 
must be increased by a factor of 10, and so the distance above the surface of the earth is 

( ) 7
E10 1 1.38 10 m.R− = ×  

EVALUATE: This height is about twice the radius of the earth. 
12.16. IDENTIFY: Apply Eq.(12.4) to the earth and to Venus. w mg= . 

SET UP: 2E
2
E

9.80 m/sGmg
R

= = . V E0.815m m= and V E0.949R R= . E E 75.0 Nw mg= = . 

EXECUTE: (a) V E E
V E2 2 2

V E E

(0.815 ) 0.905 0.905
(0.949 )

Gm G m Gmg g
R R R

= = = = . 

(b) V V E0.905 (0.905)(75.0 N) 67.9 Nw mg mg= = = = . 
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EVALUATE: The mass of the rock is independent of its location but its weight equals the gravitational force on it 
and that depends on its location. 

12.17. (a) IDENTIFY and SET UP: Apply Eq.(12.4) to the earth and to Titania. The acceleration due to gravity at the 
surface of Titania is given by 2

T T T/ ,g Gm R=  where Tm  is its mass and TR  is its radius. 

For the earth, 2
E E E/ .g Gm R=  

EXECUTE: For Titania, T E/1700m m=  and T E/8,R R=  so T E E
T E2 2 2

T E E

( /1700) 64 0.0377 .
( /8) 1700

Gm G m Gmg g
R R R

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

Since 2
E 9.80 m/s ,g =  2 2

T (0.0377)(9.80 m/s ) 0.37 m/s .g = =  
EVALUATE: g on Titania is much smaller than on earth. The smaller mass reduces g and is a greater effect than 
the smaller radius, which increases g. 
(b) IDENTIFY and SET UP: Use density mass/volume.= Assume Titania is a sphere. 

EXECUTE: From Section 12.2 we know that the average density of the earth is 35500 kg/m .  For Titania 

3 3T
T E3 34 4

T E3 3

/1700 512 512 (5500 kg/m ) 1700 kg/m
( /8) 1700 1700
Em m

R R
ρ ρ

π π
= = = = =  

EVALUATE: The average density of Titania is about a factor of 3 smaller than for earth. We can write Eq.(12.4) 
for Titania as 4

T T T3 .g GRπ ρ=  T Eg g<  both because T Eρ ρ<  and T E .R R<  
12.18. IDENTIFY: Apply Eq.(12.4) to Rhea. 

SET UP: /m Vρ = . The volume of a sphere is 34
3V Rπ= . 

EXECUTE: 
2

212.44 10  kggRM G= = × and 
( )

3 3
3 1.30 10  kg/m .

4 /3
M

R
ρ

π
= = ×  

EVALUATE: The average density of Rhea is about one-fourth that of the earth. 
12.19. IDENTIFY: Apply Eq.(12.2) to the astronaut. 

SET UP: 24
E 5.97 10  kgm = × and 6

E 6.38 10  mR = × . 

EXECUTE: E
g 2

mmF G
r

= . 3
E600 10 mr R= × +  so g 610 NF = . At the surface of the earth, g 735 N.w m= =  The 

gravity force is not zero in orbit. The satellite and the astronaut have the same acceleration so the astronaut�s 
apparent weight is zero. 
EVALUATE: In Eq.(12.2), r is the distance of the object from the center of the earth. 

12.20. IDENTIFY: n
n 2

n

mg G
R

= , where the subscript n refers to the neutron star. w mg= . 

SET UP: 3
n 10.0 10  mR = × . 30

n 1.99 10  kgm = × . Your mass is 2

675 N 68.9 kg.
9.80 m/s

wm
g

= = =  

EXECUTE: 
30

11 2 2 12 2
n 3 2

1.99 10  kg(6.673 10  N m /kg ) 1.33 10  m/s
(10.0 10  m)

g − ×
= × ⋅ = ×

×
 

Your weight on the neutron star would be 12 2 13
n n (68.9 kg)(1.33 10  m/s ) 9.16 10  Nw mg= = × = × . 

EVALUATE: Since nR is much less than the radius of the sun, the gravitational force exerted by the neutron star 
on an object at its surface is immense. 

12.21. IDENTIFY and SET UP: Use the measured gravitational force to calculate the gravitational constant G, using 
Eq.(12.1). Then use Eq.(12.4) to calculate the mass of the earth: 

EXECUTE: 1 2
g 2

m mF G
r

=  so 
2 10 2

g 11 2 2
3

1 2

(8.00 10  N)(0.0100 m) 6.667 10  N m /kg .
(0.400 kg)(3.00 10  kg)

F r
G

m m

−
−

−

×
= = = × ⋅

×
 

E
2
E

Gmg
R

=  gives 
2 6 2 2

24E
E 11 2 2

(6.38 10  m) (9.80 m/s ) 5.98 10  kg.
6.667 10  N m /kg

R gm
G −

×
= = = ×

× ⋅
 

EVALUATE: Our result agrees with the value given in Appendix F. 
12.22. IDENTIFY: Use Eq.(12.4) to calculate g for Europa. The acceleration of a particle moving in a circular path is 

2
rada rω= . 

SET UP: In 2
rada rω= , ω must be in rad/s. For Europa, 61.569 10  m.R = ×  
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EXECUTE: 
11 2 2 22

2
2 6 2

(6.67 10  N m /kg )(4.8 10  kg) 1.30 m/s
(1.569 10  m)

Gmg
R

−× ⋅ ×
= = =

×
. radg a= gives 

21.30 m/s 60 s 1 rev(0.553 rad/s) 5.28 rpm
4.25 m 1 min 2  rad

g
r

ω
π

⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

EVALUATE: The radius of Europa is about one-fourth that of the earth and its mass is about one-hundredth that of 
earth, so g on Europa is much less than g on earth. The lander would have some spatial extent so different points 
on it would be different distances from the rotation axis and rada would have different values. For the ω we 
calculated, rada g= at a point that is precisely 4.25 m from the rotation axis. 

12.23. IDENTIFY and SET UP: Example 12.5 gives the escape speed as 1 2 / ,v GM R=  where M and R are the mass and 
radius of the astronomical object. 
EXECUTE: 11 2 2 12

1 2(6.673 10  N m /kg )(3.6 10  kg)/700 m 0.83 m/s.v −= × ⋅ × =  
EVALUATE: At this speed a person can walk 100 m in 120 s; easily achieved for the average person. We can 
write the escape speed as 24

1 3 ,v GRπρ=  where ρ  is the average density of Dactyl. Its radius is much smaller 
than earth�s and its density is about the same, so the escape speed is much less on Dactyl than on earth. 

12.24. IDENTIFY: In part (a) use the expression for the escape speed that is derived in Example 12.5. In part (b) apply 
conservation of energy. 
SET UP: 34.5 10  mR = × . In part (b) let point 1 be at the surface of the comet. 

EXECUTE: (a) The escape speed is 2GMv
R

= so 
2 3 2

13
11 2 2

(4.5 10  m)(1.0 m/s) 3.37 10  kg
2 2(6.67 10  N m /kg )
RvM

G −

×
= = = ×

× ⋅
. 

(b) (i) 21
1 12K mv= . 2 10.100K K= . 1

GMmU
R

= − ; 2
GMmU

r
= − . 1 1 2 2K U K U+ = + gives 

2 21 1
1 12 2(0.100)( )GMm GMmmv mv

R r
− = − . Solving for r gives 

2 2
1

3 11 2 2 13

1 1 0.450 1 0.450(1.0 m/s)
4.5 10  m (6.67 10  N m /kg )(3.37 10  kg)

v
r R GM −= − = −

× × ⋅ ×
and 45 kmr = . (ii) The debris never 

loses all of its initial kinetic energy, but 2 0K → as r → ∞ . The farther the debris are from the comet�s center, the 
smaller is their kinetic energy. 
EVALUATE: The debris will have lost 90.0% of their initial kinetic energy when they are at a distance from the 
comet�s center of about ten times the radius of the comet. 

12.25. IDENTIFY: The escape speed, from the results of Example 12.5, is 2 / .GM R  
SET UP: For Mars, 236.42 10  kgM = ×  and 63.40 10  mR = × . For Jupiter, 271.90 10  kgM = × and 

76.91 10  mR = × . 

EXECUTE: (a) 11 2 2 23 6 32(6.673 10   N m /kg )(6.42 10  kg)/(3.40 10  m) 5.02 10  m/s.v −= × ⋅ × × = ×  

(b) 11 2 2 27 7 42(6.673 10   N m /kg (1.90 10  kg)/(6.91 10  m) 6.06 10  m/s.v −= × ⋅ × × = ×  
(c) Both the kinetic energy and the gravitational potential energy are proportional to the mass of the spacecraft. 
EVALUATE: Example 12.5 calculates the escape speed for earth to be 41.12 10  m/s× . This is larger than our 
result for Mars and less than our result for Jupiter. 

12.26. IDENTIFY: The kinetic energy is 21
2K mv=  and the potential energy is GMmU

r
= −  

SET UP: The mass of the earth is 24
E 5.97 10  kgM = × . 

EXECUTE: (a) 3 2 91
2 (629 kg)(3.33 10  m/s) 3.49 10  JK = × = ×  

(b) 
11 2 2 24

7E
9

(6.673 10  N m /kg )(5.97 10  kg)(629 kg) 8.73 10  J
2.87 10  m

GM mU
r

−× ⋅ ×
= − = − = − ×

×
. 

EVALUATE: The total energy K U+ is positive. 
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12.27. IDENTIFY: Apply Newton�s 2nd law to the motion of the satellite and obtain and equation that relates the orbital 
speed v  to the orbital radius r. 
SET UP: The distances are shown in Figure 12.27a. 

 

The radius of the orbit is E .r h R= +  
5 6 67.80 10  m 6.38 10  m 7.16 10  m.r = × + × = ×  

Figure 12.27a  
The free-body diagram for the satellite is given in Figure 12.27b. 

 

(a) EXECUTE: y yF ma=∑  

g radF ma=  
2

2
Emm vG m

r r
=  

Figure 12.27b  
11 2 2 24

3E
6

(6.673 10  N m /kg )(5.97 10  kg) 7.46 10  m/s
7.16 10  m

Gmv
r

−× ⋅ ×
= = = ×

×
 

(b) 
6

3
2 2 (7.16 10  m) 6030 s 1.68 h.

7.46 10  m/s
rT

v
π π ×

= = = =
×

 

EVALUATE: Note that Er h R= +  is the radius of the orbit, measured from the center of the earth. For this 
satellite r is greater than for the satellite in Example 12.6, so its orbital speed is less. 

12.28. IDENTIFY: The time to complete one orbit is the period T, given by Eq.(12.12). The speed v of the satellite is 

given by 2 rv
T
π

= . 

SET UP: If h is the height of the orbit above the earth�s surface, the radius of the orbit is Er h R= + . 
6

E 6.38 10  mR = × and 24
E 5.97 10  kgm = × . 

EXECUTE: (a) 
3 / 2 5 6 3 / 2

3

11 2 2 24
E

2 2 (7.05 10  m 6.38 10  m) 5.94 10  s 99.0 min
(6.67 10  N m /kg )(5.97 10  kg)

rT
Gm
π π

−

× + ×
= = = × =

× ⋅ ×
 

(b) 
5 6

3
3

2 (7.05 10  m 6.38 10  m) 7.49 10  m/s 7.49 km/s
5.94 10  s

v π × + ×
= = × =

×
 

EVALUATE: The satellite in Example 12.6 is at a lower altitude and therefore has a smaller orbit radius than the 
satellite in this problem. Therefore, the satellite in this problem has a larger period and a smaller orbital speed. But 
a large percentage change in h corresponds to a small percentage change in r and the values of T and v for the two 
satellites do not differ very much. 

12.29. IDENTIFY: Apply m=∑F a
! ! to the motion of the earth around the sun. 

SET UP: For the earth, 7365.3 days 3.156 10  sT = = ×  and 111.50 10  m.r = ×  2 .rT
v
π

=  

EXECUTE: 
11

4
7

2 2 (1.50 10  m) 2.99 10  s.
3.156 10  s

rv
T
π π ×

= = = ×
×

 g radF ma=  gives 
2

E S
E2 .m m vG m

r r
=  

2 4 2 11
30

S 11 2 2

(2.99 10  s) (1.50 10  m) 2.01 10  kg
6.673 10  N m /kg

v rm
G −

× ×
= = = ×

× ⋅
 

EVALUATE: Appendix F gives 30
S 1.99 10  kgm = × , in good agreement with our calculation. 

12.30. IDENTIFY: We can calculate the orbital period T from the number of revolutions per day. Then the period and the 
orbit radius are related by Eq.(12.12). 
SET UP: 24

E 5.97 10  kgm = × and 6
E 6.38 10  mR = × . The height h of the orbit above the surface of the earth is 

related to the orbit radius r by Er h R= + . 41 day 8.64 10  s= × . 
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EXECUTE: The satellite moves 15.65 revolutions in 48.64 10  s× , so the time for 1.00 revolution is 
4

38.64 10 s 5.52 10  s
15.65

T ×
= = × . 

3 / 2

E

2 rT
Gm
π

= gives 

1/ 3 1/ 32 11 2 2 24 3 2
E

2 2

[6.67 10  N m /kg ][5.97 10  kg][5.52 10 s]
4 4

Gm Tr
π π

−⎛ ⎞ ⎛ ⎞× ⋅ × ×
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 66.75 10  mr = × and 

5
E 3.7 10  m 370 kmh r R= − = × = . 

EVALUATE: The period of this satellite is slightly larger than the period for the satellite in Example 12.6 and the 
altitude of this satellite is therefore somewhat greater. 

12.31. IDENTIFY: Apply m=∑F a
! !  to the motion of the baseball. 2 rv

T
π

= . 

SET UP: 3
D 6 10  mr = × . 

EXECUTE: (a) g radF ma=  gives 
2

D
2

D D

m m vG m
r r

= . 
11 2 2 15

D
3

D

(6.673 10  N m /kg )(2.0 10  kg) 4.7 m/s
6 10  m

Gmv
r

−× ⋅ ×
= = =

×
 

4.7 m/s 11 mph= , which is easy to achieve. 

(b) 
32 2 (6 10  m) 8020 s 134 min

4.7 m/s
rT

v
π π ×

= = = = . The game would last a long time. 

EVALUATE: The speed v is relative to the center of Deimos. The baseball would already have some speed before 
we throw it, because of the rotational motion of Deimos. 

12.32. IDENTIFY: 2 rT
v
π

=  and g radF ma= . 

SET UP: The sun has mass 30
S 1.99 10  kgm = × . The radius of Mercury�s orbit is 105.79 10  m× , so the radius of 

Vulcan�s orbit is 103.86 10  m× . 

EXECUTE: g radF ma=  gives 
2

S
2

m m vG m
r r

=  and 2 SGmv
r

= . 

3 / 2 10 3/2
6

11 2 2 30
S S

2 2 (3.86 10  m)2 4.13 10  s 47.8 days
(6.673 10  N m /kg )(1.99 10  kg)

r rT r
Gm Gm

π ππ
−

×
= = = = × =

× ⋅ ×
 

EVALUATE: The orbital period of Mercury is 88.0 d, so we could calculate T for Vulcan as 
3 / 2(88.0 d)(2 /3) 47.9 daysT = = . 

12.33. IDENTIFY: The orbital speed is given by /v Gm r= , where m is the mass of the star. The orbital period is given 

by 2 rT
v
π

= . 

SET UP: The sun has mass 30
S 1.99 10  kgm = × . The orbit radius of the earth is 111.50 10  m× . 

EXECUTE: (a) / .v Gm r=  
11 2 2 30 11 4(6.673 10  N m /kg )(0.85 1.99 10  kg)/((1.50 10  m)(0.11)) 8.27 10  m/s.v −= × ⋅ × × × = ×  

(b) 62 / 1.25 10  s 14.5 daysr vπ = × = (about two weeks). 
EVALUATE: The orbital period is less than the 88 day orbital period of Mercury; this planet is orbiting very close 
to its star, compared to the orbital radius of Mercury. 

12.34. IDENTIFY: The period of each satellite is given by Eq.(12.12). Set up a ratio involving T and r. 

SET UP: 
3 / 2

p

2 rT
Gm
π

= gives 3/ 2
p

2 constantT
r Gm

π
= = , so 1 2

3 / 2 3 / 2
1 2

T T
r r

= . 

EXECUTE: 
3 / 2 3 / 2

2
2 1

1

48,000 km(6.39 days) 24.5 days
19,600 km

rT T
r

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. For the other satellite, 

3 / 2

2
64,000 km(6.39 days) 37.7 days
19,600 km

T ⎛ ⎞
= =⎜ ⎟

⎝ ⎠
. 

EVALUATE: T increases when r increases. 
12.35. IDENTIFY: In part (b) apply the results from part (a). 

SET UP: For Pluto, 0.248e = and 125.92 10  ma = × . For Neptune, 0.010e = and 124.50 10  ma = × . The orbital 
period for Pluto is 247.9 yT = . 
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EXECUTE: (a) The result follows directly from Figure 12.19 in the textbook. 
(b) The closest distance for Pluto is 12 12(1 0.248)(5.92 10 m) 4.45 10 m− × = × . The greatest distance for Neptune is 

12 12(1 0.010)(4.50 10 m) 4.55 10 m+ × = × . 
(c) The time is the orbital period of Pluto, 248 yT = . 

EVALUATE: Pluto's closest distance calculated in part (a) is 12 80.10 10  m 1.0 10  km× = × , so Pluto is about 
100 million km closer to the sun than Neptune, as is stated in the problem. The eccentricity of Neptune's orbit is 
small, so its distance from the sun is approximately constant. 

12.36. IDENTIFY: 
3 / 2

star

2 rT
Gm
π

= , where starm is the mass of the star. 2 rv
T
π

= . 

SET UP: 53.09 days 2.67 10  s= × . The orbit radius of Mercury is 105.79 10  m× . The mass of our sun is 
301.99 10  kg× . 

EXECUTE: (a) 52.67 10  sT = × . 10 9(5.79 10  m)/9 6.43 10  mr = × = × . 
3 / 2

star

2 rT
Gm
π

= gives 

2 3 2 9 3
30

star 2 5 2 11 2 2

4 4 (6.43 10  m) 2.21 10  kg
(2.67 10  s) (6.67 10  N m /kg )

rm
T G
π π

−

×
= = = ×

× × ⋅
. star

sun

1.11m
m

= , so star sun1.11m m= . 

(b) 
9

5
5

2 2 (6.43 10  m) 1.51 10  m/s
2.67 10  s

rv
T
π π ×

= = = ×
×

 

EVALUATE: The orbital period of Mercury is 88.0 d. The period for this planet is much less primarily because the 
orbit radius is much less and also because the mass of the star is greater than the mass of our sun. 

12.37. (a) IDENTIFY: If the orbit is circular, Newton�s 2nd law requires a particular relation between its orbit radius and 
orbital speed. 
SET UP: The gravitational force exedrted on the spacecraft by the sun is 2

g S H/ ,F Gm m r=  where Sm  is the mass 

of the sun and Hm  is the mass of the Helios B spacecraft. 

For a circular orbit, 2
rad /a v r=  and 2

H / .F m v r=∑  If we neglect all forces on the spacecraft except for the force 

exerted by the sun, 2
g H / ,F F m v r= =∑  so 2 2

S H H/ /Gm m r m v r=  

EXECUTE: 11 2 2 30 9
S/ (6.673 10  N m /kg )(1.99 10  kg)/43 10  mv Gm r −= = × ⋅ × × 45.6 10  m/s 56 km/s= × =  

EVALUATE: The actual speed is 71 km/s, so the orbit cannot be circular. 
(b) IDENTIFY and SET UP: The orbit is a circle or an ellipse if it is closed, a parabola or hyperbola if open. The 
orbit is closed if the total energy (kinetic potential)+  is negative, so that the object cannot reach .r → ∞  
EXECUTE: For Helios B, 

2 3 2 9 2 21 1
H H H2 2 (71 10  m/s) (2.52 10 m /s )K m v m m= = × = ×  

11 2 2 30
S H H/ ( (6.673 10  N m /kg )(1.99 10  kg)/(43U Gm m r m −= − = − × ⋅ × × 9 9 2 2

H10  m)) (3.09 10  m /s )m= − ×  
9 2 2 9 2 2

H H(2.52 10  m /s ) (3.09 10  m /s )E K U m m= + = × − × 8 2 2
H(5.7 10  m /s )m= − ×  

EVALUATE: The total energy E is negative, so the orbit is closed. We know from part (a) that it is not circular, so 
it must be elliptical. 

12.38. IDENTIFY: Section 12.6 states that for a point mass outside a spherical shell the gravitational force is the same as 
if all the mass of the shell were concentrated at its center. It also states that for a point inside a spherical shell the 
force is zero. 
SET UP: For 5.01 mr = the point mass is outside the shell and for 4.99 mr = and 2.12 mr = the point mass is 
inside the shell. 

EXECUTE: (a) (i) 11 2 2 91 2
g 2 2

(1000.0 kg)(2.00 kg)(6.67 10  N m /kg ) 5.31 10  N
(5.01 m)

Gm mF
r

− −= = × ⋅ = × . (ii) g 0F = . (iii) 

g 0F = . 

(b) For 5.00 mr < the force is zero and for 5.00 mr > the force is proportional to 21/ r . The graph of gF versus r 
is sketched in Figure 12.38. 
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EVALUATE: Inside the shell the gravitational potential energy is constant and the force on a point mass inside the 
shell is zero. 

 
Figure 12.38 

12.39. IDENTIFY: Section 12.6 states that for a point mass outside a uniform sphere the gravitational force is the same as 
if all the mass of the sphere were concentrated at its center. It also states that for a point mass a distance r from the 
center of a uniform sphere, where r is less than the radius of the sphere, the gravitational force on the point mass is 
the same as though we removed all the mass at points farther than r from the center and concentrated all the 
remaining mass at the center. 

SET UP: The density of the sphere is 34
3

M
R

ρ
π

= , where M is the mass of the sphere and R is its radius. The mass 

inside a volume of radius r R< is ( )
3

34
334

3
r r

M rM V r M
R R

ρ π
π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 5.01 mr = is outside the sphere and 

2.50 mr = is inside the sphere. 

EXECUTE: (a) (i) 11 2 2 9
g 2 2

(1000.0 kg)(2.00 kg)(6.67 10  N m /kg ) 5.31 10  N
(5.01 m)

GMmF
r

− −= = × ⋅ = × . 

(ii) g 2

GM mF
r

′
= . 

3 32.50 m(1000.0 kg) 125 kg
5.00 m

rM M
R

⎛ ⎞ ⎛ ⎞′ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

11 2 2 9
g 2

(125 kg)(2.00 kg)(6.67 10  N m /kg ) 2.67 10  N
(2.50 m)

F − −= × ⋅ = × . 

(b) 
3

g 2 3

( / )GM r R m GMmF r
r R

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

for r R< and g 2

GMmF
r

= for r R> . The graph of gF versus r is sketched in 

Figure 12.39. 
EVALUATE: At points outside the sphere the force on a point mass is the same as for a shell of the same mass and 
radius. For r R< the force is different in the two cases of uniform sphere versus hollow shell. 

 
Figure 12.39 

12.40. IDENTIFY: The gravitational potential energy of a point of point masses is 1 2m mU G
r

= − . Divide the rod into 

infinitesimal pieces and integrate to find U. 
SET UP: Divide the rod into differential masses dm at position l, measured from the right end of the rod. 

( / )dm dl M L= . 

EXECUTE: (a)  .Gm dm GmM dlU
l x L l x

= − = −
+ +

  

Integrating, 
0

ln 1 .
LGmM dl GmM LU

L l x L x
⎛ ⎞− = − +⎜ ⎟+ ⎝ ⎠∫  For x L>> , the natural logarithm is ( )~ /L x , and  

U / .GmM x→ −  
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(b) The x-component of the gravitational force on the sphere is 
2

2

( / ) ,
(1 ( / )) ( )x

U GmM L x GmMF
x L L x x Lx

∂ −
= − = = −

∂ + +
 with 

the minus sign indicating an attractive force. As x L>> , the denominator in the above expression approaches 2x , 
and xF 2/GmM x→ − , as expected. 
EVALUATE: When x is much larger than L the rod can be treated as a point mass, and our results for U and xF do 
reduce to the correct expression when x L>> . 

12.41. IDENTIFY: Find the potential due to a small segment of the ring and integrate over the entire ring to find the  
total U. 
(a) SET UP: 

 

Divide the ring up into small 
segments dM, as indicated in 
Figure 12.41. 

Figure 12.41  
EXECUTE: The gravitational potential energy of dM and m is / .dU GmdM r= −  
The total gravitational potential energy of the ring and particle is / .U dU Gm dM r= = −∫ ∫  

But 2 2r x a= +  is the same for all segments of the ring, so  

2 2

Gm GmM GmMU dM
r r x a

= − = − = −
+∫  

(b) EVALUATE: When ,x a>>  2 2 2x a x x+ → =  and / .U GmM x= −  This is the gravitational potential 
energy of two point masses separated by a distance x. This is the expected result. 
(c) IDENTIFY and SET UP: Use /xF dU dx= −  with ( )U x  from part (a) to calculate .xF  

EXECUTE: 
2 2x

dU d GmMF
dx dx x a

⎛ ⎞
= − = − −⎜ ⎟

+⎝ ⎠
 

2 2 1 2 2 2 3 21( ) ( (2 )( ) )
2x

dF GmM x a GmM x x a
dx

− −= + + = − +  

2 2 3 2/( ) ;xF GmMx x a= − +  the minus sign means the force is attractive. 

EVALUATE: (d) For ,x a>>  2 2 3 2 2 3 2 3( ) ( )x a x x+ → =  

Then 3 2/ / .xF GmMx x GmM x= − = −  This is the force between two point masses separated by a distance x and is the 
expected result. 
(e) For 0,x =  / .U GMm a= −  Each small segment of the ring is the same distance from the center and the potential 
is the same as that due to a point charge of mass M located at a distance a. 
For 0,x =  0.xF =  When the particle is at the center of the ring, symmetrically placed segments of the ring exert 
equal and opposite forces and the total force exerted by the ring is zero. 

12.42. IDENTIFY: At the equator the object has inward acceleration 
2

E

v
R

and the reading w of the balance is related to the 

true weight 0w (the gravitational force exerted by the earth) by 
2

0
E

mvw w
R

− = . At the North Pole, rad 0a = and 

0.w w=  

SET UP:  As shown in Section 12.7, 465 m/sv = . 6
E 6.38 10  mR = × . 

EXECUTE:  0 875 Nw = and 0 89.29 kgwm
g

= = . 
2 2

0 6
E

(465 m/s)875 N (89.29 kg) 872 N
6.38 10  m

mvw w
R

= − = − =
×

 

EVALUATE: The rotation of the earth causes the scale reading to be slightly less than the true weight, since there 
must be a net inward force on the object. 

12.43. IDENTIFY and SET UP: Ate the north pole, g 0 0 ,F w mg= =  where 0g  is given by Eq.(12.4) applied to Neptune. 
At the equator, the apparent weight is given by Eq.(12.28). The orbital speed v  is obtained from the rotational 
period using Eq.(12.12). 
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EXECUTE: (a) 2 11 2 2 26 7 2
0 / (6.673 10  N m /kg )(1.0 10  kg)/(2.5 10  m)g Gm R −= = × ⋅ × × 210.7 m/s .=  This agrees with 

the value of g given in the problem. 
2

0 0 (5.0 kg)(10.7 m/s ) 53 N;F w mg= = = =  this is the true weight of the object. 

(b) From Eq.(23.28), 2
0 /w w mv R= −  

2 rT
v
π

=   gives 
7

32 2 (2.5 10  m) 2.727 10  m/s
(16 h)(3600 s/1 h)

rv
T
π π ×

= = = ×  

2 3 2 7 2/ (2.727 10  s) /2.5 10  m 0.297 m/sv R = × × =  

Then 253 N (5.0 kg)(0.297 m/s ) 52 N.w = − =  
EVALUATE: The apparent weight is less than the true weight. This effect is larger on Neptune than on earth. 

12.44. IDENTIFY: The radius of a black hole and its mass are related by S 2

2GMR
c

= . 

SET UP: 15
S 0.50 10  mR −= × , 11 2 26.67 10  N m /kgG −= × ⋅ and 83.00 10  m/sc = × . 

EXECUTE: 
2 8 2 15

11S
11 2 2

(3.00 10  m/s) (0.50 10  m) 3.4 10  kg
2 2(6.67 10  N m /kg )

c RM
G

−

−

× ×
= = = ×

× ⋅
 

EVALUATE: The average density of the black hole would be 
11

56 3
3 15 34 4
S3 3

3.4 10  kg 6.49 10  kg/m
(0.50 10  m)

M
R

ρ
π π −

×
= = = ×

×
. We can combine 34

S3

M
R

ρ
π

= and S 2

2GMR
c

= to give 

6

3 2

3
32

c
G M

ρ
π

= . The average density of a black hole increases when its mass decreases. The average density  

of this mini black hole is much greater than the average density of the much more massive black hole in  
Example 12.11. 

12.45. IDENTIFY and SET UP: A black hole with the earth�s mass M has the Schwarzschild radius SR  given by 
Eq.(12.30). 
EXECUTE: 2 11 2 2 24

S 2 / 2(6.673 10  N m /kg )(5.97 10  kg)/(2.998R GM c −= = × ⋅ × × 8 2 310  m/s) 8.865 10  m−= ×  

The ratio of SR  to the current radius R is 3 6
S/ 8.865 10  m/6.38 10  mR R −= × × = 91.39 10 .−×  

EVALUATE: A black hole with the earth�s radius is very small. 
12.46. IDENTIFY: Apply Eq.(12.1) to calculate the gravitational force. For a black hole, the mass M and Schwarzschild 

radius SR are related by Eq.(12.30). 

SET UP: The speed of light is 83.00 10  m/sc = × . 

EXECUTE: (a) 
( )2 2

S S
2 2 2

/2
.

2
R cGMm mc R

r r r
= =  

(b) 
( )( ) ( )

( )

28 2

26

5.00 kg 3.00 10  m/s 1.4 10 m
350 N.

2 3.00 10  m

−× ×
=

×
 

(c) Solving Eq.(12.30) for M, 
( ) ( )

( )

23 82
24S

11 2 2

14.00 10 m  3.00 10  m/s
9.44 10  kg.

2 2 6.673 10  N m /kg
R cM

G

−

−

× ×
= = = ×

× ⋅
 

EVALUATE: The mass of the black hole is about twice the mass of the earth. 

12.47. IDENTIFY: The orbital speed for an object a distance r from an object of mass M is GMv
r

= . The mass M of a 

black hole and its Schwarzschild radius SR are related by Eq.(12.30). 

SET UP: 83.00 10  m/sc = × . 151 ly 9.461 10  m= × . 
EXECUTE: (a) 

( )( )( )
( )

215 32
37 7

S11 2 2

7.5 ly 9.461 10  m/ly 200 10  m/s
4.3 10  kg 2.1 10  .

6.673 10  N m /kg
RvM M
G −

× ×
= = = × = ×

× ⋅
 

(b) No, the object has a mass very much greater than 50 solar masses. 

(c) 
2

10
S 2 2

2 2 6.32 10  m,GM v rR
c c

= = = ×  which does fit. 

EVALUATE: The Schwarzschild radius of a black hole is approximately the same as the radius of Mercury's orbit 
around the sun. 
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12.48. IDENTIFY: The clumps orbit the black hole. Their speed, orbit radius and orbital period are related by 2 rv
T
π

= . 

Their orbit radius and period are related to the mass M of the black hole by 
3/ 22 rT

GM
π

= . The radius of the black 

hole's event horizon is related to the mass of the black hole by S 2

2GMR
c

= . 

SET UP: 73.00 10  m/sv = × . 427 h 9.72 10  sT = = × . 83.00 10  m/sc = × . 

EXECUTE: (a) 
7 4

11(3.00 10  m/s)(9.72 10  s) 4.64 10  m
2 2
vTr
π π

× ×
= = = × . 

(b) 
3 / 22 rT

GM
π

= gives 
2 3 2 11 3

36
2 11 2 2 4 2

4 4 (4.64 10  m) 6.26 10  kg
(6.67 10  N m /kg )(9.72 10  s)

rM
GT
π π

−

×
= = = ×

× ⋅ ×
. 

(c) 
11 2 2 36

9
S 2 8 2

2 2(6.67 10  N m /kg )(6.26 10  kg) 9.28 10  m
(3.00 10  m/s)

GMR
c

−× ⋅ ×
= = = ×

×
 

EVALUATE: The black hole has a mass that is about 63 10×  solar masses. 
12.49. IDENTIFY: Use Eq.(12.1) to find each gravitational force. Each force is attractive. In part (b) apply conservation 

of energy. 

SET UP: For a pair of masses 1m and 2m  with separation r, 1 2m mU G
r

= − . 

EXECUTE: (a) From symmetry, the net gravitational force will be in the direction 45°  from the x-axis (bisecting 
the x and y axes), with magnitude 

11 2 2 12
2 2

(2.0 kg) (1.0 kg)(6.673 10 N m /kg )(0.0150 kg) 2  sin 45 9.67 10  N
(2(0.50 m) ) (0.50 m)

F − −⎡ ⎤
= × ⋅ + ° = ×⎢ ⎥

⎣ ⎦
 

(b) The initial displacement is so large that the initial potential may be taken to be zero. From the work-energy 

theorem, 21 (2.0 kg) (1.0 kg)2
2 (0.50 m)2  (0.50 m)

mv Gm
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

. Canceling the factor of m and solving for v, and using the 

numerical values gives 53.02 10  m/s.v −= ×  
EVALUATE: The result in part (b) is independent of the mass of the particle. It would take the particle a long time 
to reach point P. 

12.50. IDENTIFY: Use Eq.(12.1) to calculate each gravitational force and add the forces as vectors. 
(a) SET UP: The locations of the masses are sketched in Figure 12.50a. 

 

Section 12.6 proves that any two spherically 
symmetric masses interact as though they 
were point masses with all the mass 
concentrated at their centers. 

Figure 12.50a  
The force diagram for 3m  is given in Figure 12.50b 

 

cos 0.800θ =  
sin 0.600θ =  

Figure 12.50b  

EXECUTE: 
11 2 2

1 3
1 2 2

13

(6.673 10  N m /kg )(60.0 kg)(0.500 kg)
(4.00 m)

m mF G
r

−× ⋅
= = 101.251 10  N−= ×  

11 2 2
2 3

2 2 2
23

(6.673 10  N m /kg )(80.0 kg)(0.500 kg)
(5.00 m)

m mF G
r

−× ⋅
= = 101.068 10  N−= ×  

10
1 1.251 10  N,xF −= − ×  1 0yF =  
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10 11
2 2 cos (1.068 10  N)(0.800) 8.544 10  NxF F θ − −= − = − × = − ×  

10 11
2 2 sin (1.068 10  N)(0.600) 6.408 10  NyF F θ − −= + = + × = + ×  

10 11 10
1 2 1.251 10  N 8.544 10  N 2.105 10  Nx x xF F F − − −= + = − × − × = − ×  

11 11
1 2 0 6.408 10  N 6.408 10  Ny y yF F F − −= + = + × = + ×  

 

F and its components are sketched in Figure 12.50c. 
2 2
x yF F F= +  

10 2 11 2( 2.105 10  N) ( 6.408 10  N)F − −= − × + + ×  
102.20 10  NF −= ×  

11

10

6.408 10  Ntan ;
2.105 10  N

y

x

F
F

θ
−

−

+ ×
= =

− ×
 163θ = °  

Figure 12.50c  
EVALUATE: Both spheres attract the third sphere and the net force is in the second quadrant. 
(b) SET UP: For the net force to be zero the forces from the two spheres must be equal in magnitude and opposite 
in direction. For the forces on it to be opposite in direction the third sphere must be on the y-axis and between the 
other two spheres. The forces on the third sphere are shown in Figure 12.50d. 

 

EXECUTE: net 0F =  if 1 2F F=  

1 3 2 3
2 2(3.00 m )

m m m mG G
y y

=
−

 

2 2

60.0 80.0
(3.00 m )y y

=
−

 

Figure 12.50d  

80.0 60.0(3.00 m )y y= −  

( 80.0 60.0) (3.00 m) 60.0y+ =  and 1.39 my =  
Thus the sphere would have to be placed at the point 0,x =  1.39 my =  
EVALUATE: For the forces to have the same magnitude the third sphere must be closer to the sphere that has 
smaller mass. 

12.51. IDENTIFY: sinFrτ φ= . The net torque is the sum of the torques due to each force. 
SET UP: From Example 12.3, using Newton's third law, the forces of the small star on each large star are 

25
1 6.67 10  NF = × and 26

2 1.33 10  NF = × . Let counterclockwise torques be positive.  
EXECUTE: (a) The direction from the origin to the point midway between the two large stars is 

0.100 marctan( ) 26.6 ,  which is not the angle (14.6 )0.200 m = ° °  found in the example. 

(b) The common lever arm is 0.100 m, and the force on the upper mass is at an angle of 
45  from the lever arm. The net torque is° 12 12 37

1 2(1.00 10  m)sin 45 (1.00 10  m) 8.58 10  N mF Fτ = + × × = − × ⋅°− , 
with the minus sign indicating a clockwise torque. 
EVALUATE: (c) There can be no net torque due to gravitational fields with respect to the center of gravity, and so 
the center of gravity in this case is not at the center of mass. For the center of gravity to be the same point as the 
center of mass, the gravity force on each mass must be proportional to the mass, with the same constant of 
proportionality, and that is not the case here. 

12.52. IDENTIFY: The gravity force for each pair of objects is given by Eq.(12.1). The work done is W U= −Δ . 
SET UP: The simplest way to approach this problem is to find the force between the spacecraft and the center of 
mass of the earth-moon system, which is 64.67 10  m× from the center of the earth. The distance from the 
spacecraft to the center of mass of the earth-moon system is 3.82 810 m× (Figure 12.52). 24

E 5.97 10  kgm = × , 
22

M 7.35 10  kgm = × . 
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EXECUTE: (a) Using the Law of Gravitation, the force on the spacecraft is 3.4 N, an angle of 0.61° from the 
earth-spacecraft line.  

(b) A Bm mU G
r

= − . 2 0U =  and 8
1 3.84 10  mr = × for the spacecraft and the earth, and the spacecraft and the moon. 

11 2 2 24 22

2 1 8
1

(6.673 10  N m / kg )(5.97 10  kg 7.35 10  kg)(1250 kg) .
3.84 10  m

GMmW U U r

−× ⋅ × + ×
= − = + = +

×
91.31 10  J.W = − ×  

 
Figure 12.52 

12.53. IDENTIFY: Apply conservation of energy and conservation of linear momentum to the motion of the two spheres. 
SET UP: Denote the 25-kg sphere by a subscript 1 and the 100-kg sphere by a subscript 2. 
EXECUTE: (a) Linear momentum is conserved because we are ignoring all other forces, that is, the net external 
force on the system is zero. Hence, 1 1 2 2.m v m v=   
(b) From the work-energy theorem in the form i i f fK U K U+ = + , with the initial kinetic energy i 0K =  and 

1 2m mU G
r

= − , ( )2 2
1 2 1 1 2 2

f i

1 1 1
2

Gm m m v m v
r r

⎡ ⎤
− = +⎢ ⎥

⎣ ⎦
. Using the conservation of momentum relation 1 1 2 2m v m v= to 

eliminate 2v  in favor of 1v  and simplifying yields 
2

2 2
1

1 2 f i

2 1 1 ,Gmv
m m r r

⎡ ⎤
= −⎢ ⎥+ ⎣ ⎦

 with a similar expression for 2v . 

Substitution of numerical values gives 5 6
1 21.63 10  m/s, 4.08 10  m/s.v v− −= × = ×  The magnitude of the relative 

velocity is the sum of the speeds, 52.04 10  m/s.−×  
(c) The distance the centers of the spheres travel ( )1 2and x x  is proportional to their acceleration, and 

1

2

1 2
1 2

2 1
,  or 4 .x ma x xx a m= = =  When the spheres finally make contact, their centers will be a distance of 

1 22  apart, or 2 40 m, r x x r+ + = 2 2or 4 2 40 m.x x r+ + =  Thus, 2 18 m 0.4 ,  and 32 m 1.6 .x r x r= − = −  The point of 
contact of the surfaces is 32 m 0.6 31.9 mr− = from the initial position of the center of the 25.0 kg sphere. 

EVALUATE: The result 1 2/ 4x x = can also be obtained from the conservation of momentum result that 1 2

2 1

v m
v m

= , 

at every point in the motion. 
12.54. IDENTIFY: Apply Eq.(12.12). 

SET UP: 24
E 5.97 10  kgm = ×  

EXECUTE: Solving Eq. (12.14) for R,
2

3
E  

2
TR Gm
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

2
11 2 2 24 25 3(27.3 d)(86,400 s/d)(6.673 10  N m /kg )(5.97 10  kg) 5.614 10  m ,

2
R

π
− ⎛ ⎞= × ⋅ × = ×⎜ ⎟

⎝ ⎠
 

from which 83.83 10  m.r = ×  
EVALUATE: The result we calculated is in very good agreement with the orbit radius given in Appendix F. 
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12.55. IDENTIFY and SET UP: (a) To stay above the same point on the surface of the earth the orbital period of the 
satellite must equal the orbital period of the earth: 

41 d(24 h/1 d)(3600 s/1 h) 8.64 10  sT = = ×  
Eq.(12.14) gives the relation between the orbit radius and the period: 

EXECUTE: 
3/2

E

2 rT
Gm
π

=  and 
2 3

2

E

4 rT
Gm
π

=  

1 32
E

24
T Gmr

π
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

1 34 2 11 2 2 24
7

2

(8.64 10  s) (6.673 10  N m /kg )(5.97 10  kg) 4.23 10  m
4π

−⎛ ⎞× × ⋅ ×
= ×⎜ ⎟

⎝ ⎠
 

This is the radius of the orbit; it is related to the height h above the earth�s surface and the radius ER  of the earth 

by E.r h R= +  Thus 7 6 7
E 4.23 10  m 6.38 10  m 3.59 10  m.h r R= − = × − × = ×  

EVALUATE: The orbital speed of the geosynchronous satellite is 2 / 3080 m/s.r Tπ =  The altitude is much larger 
and the speed is much less than for the satellite in Example 12.6. 
(b) Consider Figure 12.55. 

 

6
E

7

6.38 10  mcos
4.23 10  m

R
r

θ ×
= =

×
 

81.3θ = °  

Figure 12.55  
A line from the satellite is tangent to a point on the earth that is at an angle of 81.3°  above the equator. The sketch 
shows that points at higher latitudes are blocked by the earth from viewing the satellite. 

12.56. IDENTIFY: Apply Eq.(12.12) to relate the orbital period T and PM , the planet's mass, and then use Eq.(12.2) 
applied to the planet to calculate the astronaut's weight. 
SET UP: The radius of the orbit of the lander is 5 65.75 10  m 4.80 10  m× + × . 

EXECUTE: From Eq.(12.14), 
2 3

2

P

4 rT
GM
π

=  and 

2 3 2 5 6 3
24

P 2 11 2 2 3 2

4 4 (5.75 10  m 4.80 10  m) 2.731 10  kg
(6.673 10  N m /kg )(5.8 10  s)

rM
GT
π π

−

× + ×
= = = ×

× ⋅ ×
,  

or about half the earth's mass. Now we can find the astronaut�s weight on the surface from Eq.(12.2). (The landing 
on the north pole removes any need to account for centripetal acceleration.) 

( )( )( )
( )

11 2 2 24
p a

22 6
p

6.673 10  N m /kg 2.731 10  kg 85.6 kg
677 N

4.80 10  m

GM m
w

r

−× ⋅ ×
= = =

×
. 

EVALUATE: At the surface of the earth the weight of the astronaut would be 839 N. 

12.57. IDENTIFY: From Example 12.5, the escape speed is 2GMv
R

= . Use /M Vρ = to write this expression in terms 

of ρ . 
SET UP: For a sphere 34

3V Rπ= . 

EXECUTE: In terms of the density ,ρ the ratio ( ) 2is 4 3 ,M R Rπ ρ  and so the escape speed is 

( )( )( )( )211 2 2 3 38 /3 6.673 10  N m /kg 2500 kg/m 150 10  m 177 m/s.v π −= × ⋅ × =  

EVALUATE: This is much less than the escape speed for the earth, 11,200 m/s. 

12.58. IDENTIFY: From Example 12.5, the escape speed is 2GMv
R

= . Use /M Vρ = to write this expression in terms 

of ρ . On earth, the height h you can jump is related to your jump speed by 2v gh=  For part (b), apply Eq.(12.4) 
to Europa. 
SET UP: For a sphere 34

3V Rπ=  
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EXECUTE: 34
3/( )M Rρ π= , so the escape speed can be written as 

28
3

G Rv π ρ
= . Equating the two expressions 

for v and squaring gives 2 28 32 ,   or ,
3 4
π ghgh GR R

G
ρ

π ρ
= =  where 29.80 m/sg = is for the surface of the earth, not 

the asteroid. Estimate 1 mh = (variable for different people, of course), 3.7 km.R =  For Europa, 

2

4
3

GM RGg
R

πρ
= = . 

2
3 3

6 11 2 2

3 3(1.33 m/s ) 3.03 10  kg/m
4 4 (1.57 10  m)(6.673 10  N m /kg )

g
RG

ρ
π π −= = = ×

× × ⋅
. 

EVALUATE: The earth has average density 35500 kg/m . The average density of Europa is about half that of the 
earth but a little larger than the average density of most asteroids. 

12.59. IDENTIFY and SET UP: The observed period allows you to calculate the angular velocity of the satellite relative 
to you. You know your angular velocity as you rotate with the earth, so you can find the angular velocity of the 
satellite in a space-fixed reference frame. v rω=  gives the orbital speed of the satellite and Newton�s second law 
relates this to the orbit radius of the satellite. 
EXECUTE: (a) The satellite is revolving west to east, in the same direction the earth is rotating. If the angular 
speed of the satellite is Sω  and the angular speed of the earth is E ,ω  the angular speed relω  of the satellite relative 
to you is rel s E.ω ω ω= −  

1
rel 12(1 rev)/(12 h) ( ) rev/hω = =  

1
E 24( ) rev/hω =  

41
s rel E 8( ) rev/h 2.18 10  rad/sω ω ω −= + = = ×  

m=∑F a
! !  says 

2
E

2

mm vG m
r r

=  

2 EGmv
r

=  and with v rω=  this gives 3 E
2 ;Gmr

ω
=  72.03 10  mr = ×  

This is the radius of the satellite�s orbit. Its height h above the surface of the earth is 7
E 1.39 10  m.h r R= − = ×  

EVALUATE: In part (a) the satellite is revolving faster than the earth�s rotation and in part (b) it is revolving 
slower. Slower v and ω  means larger orbit radius r. 
(b) Now the satellite is revolving opposite to the rotation of the earth. If west to east is positive, then 

1
rel 12( ) rev/hω = −  

51
s rel E 24( ) rev/h 7.27 10  rad/sω ω ω −= + = − = − ×  

3 E
2

Gmr
ω

=  gives 74.22 10  mr = ×  and 73.59 10  mh = ×  

12.60. IDENTIFY: Apply the law of gravitation to the astronaut at the north pole to calculate the mass of planet . Then 

apply m=∑F a
! !  to the astronaut, with 

2

rad 2

4 Ra
T
π

= , toward the center of the planet, to calculate the period T. 

Apply Eq.(12.12) to the satellite in order to calculate its orbital period. 
SET UP: Get radius of ( )1

4X: 2 18,850 kmRπ = and 71.20 10  mR = × . Astronaut mass: 

2
943 N 96.2 kg

9.80 m/s
m g

ω= = = . 

EXECUTE: X
2

GmM w
R

= , where 915.0 Nw = . 
2 7 2

25x
x 11 2 2

(915 N)(1.20 10  m) 2.05 10  kg
(6.67 10  N m /kg )(96.2 kg)

mg RM
Gm −

×
= = = ×

× ⋅
 

Apply Newton�s second law to astronaut on a scale at the equator of X. grav scale radF F ma− = , so 
2

grav scale 2

4 mRF F
T

π
− = . 

2 7

2

4 (96.2 kg)(1.20 10  m)915.0 N 850.0 N
T

π ×
− =  and 4 1 h2.65 10 s 7.36 h

3600 s
T ⎛ ⎞= × =⎜ ⎟

⎝ ⎠
. 

(b) For the satellite, 
2 3 2 7 6 3

3
11 2 2 25

X

4 4 (1.20 10  m 2.0 10  m) 8.90 10  s 2.47 hours
(6.67 10  N m /kg )(2.05 10  kg)

rT
Gm
π π

−

× + ×
= = = × =

× ⋅ ×
. 

EVALUATE: The acceleration of gravity at the surface of the planet is 2
X

915.0 N 9.51 m/s
96.2 kg

g = = , similar to the 

value on earth. The radius of the planet is about twice that of earth. The planet rotates more rapidly than earth and 
the length of a day is about one-third what it is on earth. 
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12.61. IDENTIFY: Use E
2
E

Gmg
R

=  and follow the procedure specified in the problem. 

SET UP: 6
E 6.38 10  mR = ×  

EXECUTE: The fractional error is 
( ) E E

E E E E

1 1 ( )( ).
1/ 1/( )

mgh g R h R
Gmm R R h Gm

− = − +
− +

 

Using Eq.(12.4) for g the fractional difference is E E E1 ( )/ / ,R h R h R− + = −  so if the fractional difference is 1%− . 
4

E(0.01) 6.4 10  mh R= = × . 
EVALUATE: For 1 kmh = , the fractional error is only 0.016%. Eq.(7.2) is very accurate for the motion of objects 
near the earth's surface. 

12.62. IDENTIFY: Use the measurements of the motion of the rock to calculate Mg , the value of g on Mongo. Then use 

this to calculate the mass of Mongo. For the ship, g radF ma=  and 2 rT
v
π

= . 

SET UP:  Take +y upward. When the stone returns to the ground its velocity is 12.0 m/s, downward. M
M 2

M

mg G
R

= . 

The radius of Mongo is 
8

7
M

2.00 10  m 3.18 10  m
2 2
cR
π π

×
= = = × . The ship moves in an orbit of radius 

7 7 73.18 10  m 3.00 10  m 6.18 10  mr = × + × = × . 
EXECUTE: (a) 0 12.0 m/syv = + , 12.0 m/syv = − , Mya g= − and 8.00 st = . 0y y yv v a t= +  gives 

0
M

12.0 m/s 12.0 m/s
8.00 s

y yv v
g

t
− − −

− = =  and 2
M 3.00 m/sg = . 

2 2 7 2
25M M

M 11 2 2

(3.00 m/s )(3.18 10  m) 4.55 10  kg
6.673 10  N m /kg

g Rm
G −

×
= = = ×

× ⋅
 

(b) g radF ma=  gives 
2

M
2

m m vG m
r r

=  and 2 MGmv
r

= . 

3 / 2 7 3/2

11 2 2 25
M M

2 2 2 (6.18 10  m)2
(6.673 10  N m /kg )(4.55 10  kg)

r r rT r
v Gm Gm
π π ππ

−

×
= = = =

× ⋅ ×
 

45.54 10  s 15.4 hT = × =  

EVALUATE: M E5.0R R=  and M E7.6m m= , so M E E2

7.6 0.30
(5.0)

g g g= = , which agrees with the value calculated 

in part (a). 
12.63. IDENTIFY and SET UP: Use Eq.(12.2) to calculate the gravity force at each location. For the top of Mount Everest 

write Er h R= +  and use the fact that Eh R<<  to obtain an expression for the difference in the two forces. 

EXECUTE: At Sacramento, the gravity force on you is E
1 2

E

.mmF G
R

=  

At the top of Mount Everest, a height of 8800 mh =  above seal level, the gravity force on you is 
E E

2 2 2 2
E E E( ) (1 / )
mm mmF G G

R h R h R
= =

+ +
 

2
E

E

2(1 / ) 1 ,hh R
R

−+ ≈ −  2 1
E

21 hF F
R

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

1 2

1 E

2 0.28%F F h
F R
−

= =  

EVALUATE: The change in the gravitational force is very small, so for objects near the surface of the earth it is a 
good approximation to treat it as a constant. 

12.64. IDENTIFY: Apply Eq.(12.9) to the particle-earth and particle-moon systems. 
SET UP: When the particle is a distance r from the center of the earth, it is a distance EMR r− from the center of 
the moon. 
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EXECUTE: (a) The total gravitational potential energy in this model is E M

EM

 m mU Gm
r R r

⎡ ⎤
= − + ⋅⎢ ⎥−⎣ ⎦

 

(b) See Exercise 12.5. The point where the net gravitational force vanishes is 8EM

M E

3.46 10  m.
1 /

Rr
m m

= = ×
+

 

Using this value for r in the expression in part (a) and the work-energy theorem, including the initial potential 
energy of E E M EM E( / /( ))Gm m R m R R− + −  gives 11.1 km s.  
(c) The final distance from the earth is not MR , but the Earth-moon distance minus the radius of the moon, or 

83.823 10  m.× From the work-energy theorem, the rocket impacts the moon with a speed of 2.9 km/s.  
EVALUATE: The spacecraft has a greater gravitational potential energy at the surface of the moon than at the 
surface of the earth, so it reaches the surface of the moon with a speed that is less than its launch speed on earth. 

12.65. IDENTIFY and SET UP: First use the radius of the orbit to find the initial orbital speed, from Eq.(12.10) applied to 
the moon. 
EXECUTE: /v Gm r=  and 6 3 6

M 1.74 10  m 50.0 10  m 1.79 10  mr R h= + = × + × = ×  

Thus 
11 2 2 22

3
6

(6.673 10  N m /kg )(7.35 10  kg) 1.655 10  m/s
1.79 10  m

v
−× ⋅ ×

= = ×
×

 

After the speed decreases by 20.0 m/s it becomes 31.655 10  m/s 20.0 m/s× − = 31.635 10 m/s.×  
IDENTIFY and SET UP: Use conservation of energy to find the speed when the spacecraft reaches the lunar 
surface. 

1 1 other 2 2K U W K U+ + = +  
Gravity is the only force that does work so other 0W =  and 2 1 1 2K K U U= + −  
EXECUTE: 1 m / ;U Gm m r= −  2 m m/U Gm m R= −  

2 21 1
2 1 m m2 2 (1/ 1/ )mv mv Gmm R r= + −  

And the mass m divides out to give 2
2 1 m m2 (1/ 1/ )v v Gm R r= + −  

3
2 1.682 10  m/s(1 km/1000 m)(3600 s/1 h) 6060 km/hv = × =  

EVALUATE: After the thruster fires the spacecraft is moving too slowly to be in a stable orbit; the gravitational 
force is larger than what is needed to maintain a circular orbit. The spacecraft gains energy as it is accelerated 
toward the surface. 

12.66. IDENTIFY: 0g = means the apparent weight is zero, so 2
rad 9.80 m/sa = . 

2

rad 2

4 Ra
T
π

= . 

SET UP: The radius of the earth is 6
E 6.38 10  mR = × . 

EXECUTE: 3

rad

2 5.07 10  s,RT
a

π= = × which is 84.5 min, or about an hour and a half. 

EVALUATE: At the poles, g would still be 29.80 m/s . 
12.67. IDENTIFY and SET UP: Apply conservation of energy. Must use Eq.(12.9) for the gravitational potential energy 

since h is not small compared to E.R  

 

As indicated in Figure 12.67, 
take point 1 to be where the 
hammer is released and point 2 
to be just above the surface of 
the earth, so 1 Er R h= +  and 

2 E.r R=  

Figure 12.67  
EXECUTE: 1 1 other 2 2K U W K U+ + = +  
Only gravity does work, so other 0.W =  

1 0,K =  21
2 22K mv=  

E E
1

1 E

,mm GmmU G
r h R

= − = −
+

 E E
2

2 E

mm GmmU G
r R

= − = −  
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Thus, 2E E
2

E E

1
2

mm mmG mv G
h R R

− = −
+

 

2 E E
2 E E E

E E E E E E

1 1 2 22 ( )
( ) ( )
Gm Gm hv Gm R h R

R R h R R h R R h
⎛ ⎞

= − = + − =⎜ ⎟+ + +⎝ ⎠
 

E
2

E E

2
( )
Gm hv

R R h
=

+
 

EVALUATE: If ,h → ∞  2 E E2 / ,v Gm R→  which equals the escape speed. In this limit this event is the reverse of an 

object being projected upward from the surface with the escape speed. If E ,h R#  then 2
2 E E2 / 2 ,v Gm h R gh= =  the 

same result if used Eq.(7.2) for U. 

12.68. IDENTIFY: In orbit the total mechanical energy of the satellite is E

E2
Gm mE

R
= − . Em mU G

r
= − . f iW E E= − . 

SET UP: 0U → as r → ∞ . 

EXECUTE: (a) The energy the satellite has as it sits on the surface of the Earth is E
i

E

GmME
R

−
= . The energy it has 

when it is in orbit at a radius E
E f

E

 is 
2

GmMR R E
R

−
≈ = . The work needed to put it in orbit is the difference between 

these: E
f i

E2
GmMW E E

R
= − = . 

(b) The total energy of the satellite far away from the Earth is zero, so the additional work needed is 

E E

E E

0
2 2

GmM GmM
R R

⎛ ⎞−
− =⎜ ⎟

⎝ ⎠
. 

EVALUATE: (c) The work needed to put the satellite into orbit was the same as the work needed to put the 
satellite from orbit to the edge of the universe. 

12.69. IDENTIFY: At the escape speed, 0E K U= + = . 
SET UP: At the surface of the earth the satellite is a distance 6

E 6.38 10  mR = × from the center of the earth and a 

distance 11
ES 1.50 10  mR = ×  from the sun. The orbital speed of the earth is ES2 R

T
π , where 73.156 10  sT = ×  is the 

orbital period. The speed of a point on the surface of the earth at an angle φ from the equator is E2 cosRv
T

π φ
= , 

where 86,400 sT = is the rotational period of the earth. 

EXECUTE: (a) The escape speed will be 4E s

E ES

2 4.35 10  m/s.m mv G
R R

⎡ ⎤
= + = ×⎢ ⎥

⎣ ⎦
 Making the simplifying 

assumption that the direction of launch is the direction of the earth�s motion in its orbit, the speed relative to the 

center of the earth is 
11

4 4ES
7

2 2 (1.50 10  m)4.35 10  m/s 1.37 10  m/s.
(3.156 10 s)

Rv
T

π π ×
− = × − = ×

×
 

(b) The rotational speed at Cape Canaveral is 
6

22 (6.38 10  m) cos 28.5 4.09 10  m/s,
86,400 s

π × °
= ×  so the speed relative to 

the surface of the earth is 41.33 10  m/s.×  
(c) In French Guiana, the rotational speed is 24.63 10  m/s,×  so the speed relative to the surface of the earth is 

41.32 10  m/s.×  
EVALUATE: The orbital speed of the earth is a large fraction of the escape speed, but the rotational speed of a 
point on the surface of the earth is much less. 

12.70. IDENTIFY: From the discussion of Section 12.6, the force on a point mass at a distance r from the center of a 
spherically symmetric mass distribution is the same as though we removed all the mass at points farther than r 
from the center and concentrated all the remaining mass at the center. 
SET UP: The mass M of a hollow sphere of density ρ , inner radius 1R and outer radius 2R is 3 34

2 13 ( )M R Rρ π= − . 
From Figure 12.9 in the textbook, the inner core has outer radius 61.2 10  m× , inner radius zero and density 

4 31.3 10  kg/m× . The outer core has inner radius 61.2 10  m× , outer radius 63.6 10  m×  and density 4 31.1 10  kg/m× . 
The total mass of the earth is 24

E 5.97 10  kgm = × and its radius is 6
E 6.38 10  mR = × . 
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EXECUTE: (a) 2E
g 2

E

(10.0 kg)(9.80 m/s ) 98.0 Nm mF G mg
R

= = = = . 

(b) The mass of the inner core is 3 3 4 3 6 3 224 4
inner inner 2 13 3( ) (1.3 10  kg/m ) (1.2 10  m) 9.4 10  kgm R Rρ π π= − = × × = × . The 

mass of the outer core is 4 3 6 3 6 3 244
outer 3(1.1 10  kg/m ) ([3.6 10  m]  [1.2 10  m] ) 2.1 10  kgm π= × × − × = × . Only the inner 

and outer cores contribute to the force. 
22 24

11 2 2
g 6 2

(9.4 10  kg 2.1 10  kg)(10.0 kg)(6.67 10  N m /kg ) 110 N
(3.6 10  m)

F − × + ×
= × ⋅ =

×
. 

(c) Only the inner core contributes to the force and 
22

11 2 2
g 6 2

(9.4 10  kg)(10.0 kg)(6.67 10  N m /kg ) 44 N
(1.2 10  m)

F − ×
= × ⋅ =

×
. 

(d) At 0r = , g 0F = . 
EVALUATE: In this model the earth is spherically symmetric but not uniform, so the result of Example 12.10 
doesn't apply. In particular, the force at the surface of the outer core is greater than the force at the surface of the 
earth. 

12.71. IDENTIFY: Eq.(12.12) relates orbital period and orbital radius for a circular orbit. 
SET UP: The mass of the sun is 301.99 10  kgM = × . 

EXECUTE: (a) The period of the asteroid is 
3 2

112 . Inserting 3 10  maT
GM
π

= ×  for a gives 112.84 y and 5 10  m×  

gives a period of 6.11 y. 
(b) If the period is 115.93 y,  then 4.90 10 m. a = ×  
(c) This happens because 0.4 2 5,=  another ratio of integers. So once every 5 orbits of the asteroid and 2 orbits of 

Jupiter, the asteroid is at its perijove distance. Solving when 114.74 , 4.22 10  m.T y a= = ×  

EVALUATE: The orbit radius for Jupiter is 117.78 10  m× and for Mars it is 112.21 10  m× . The asteroid belt lies 
between Mars and Jupiter. The mass of Jupiter is about 3000 times that of Mars, so the effect of Jupiter on the 
asteroids is much larger. 

12.72. IDENTIFY: Apply the work-energy relation in the form W E= Δ , where E K U= + . The speed v is related to the 
orbit radius by Eq.(12.10). 
SET UP: 24

E 5.97 10  kgm = ×  
EXECUTE: (a) In moving to a lower orbit by whatever means, gravity does positive work, and so the speed does increase. 

(b) ( )1/ 2 1/ 2
Ev Gm r−= , so ( )1/ 2 3 / 2 E

E 32 2
r r Gmv Gm r

r
−−Δ Δ⎛ ⎞ ⎛ ⎞Δ = − = ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 Note that a positive rΔ is given as a 

decrease in radius. Similarly, the kinetic energy is ( ) ( )2
E1/2 1/2 /K mv Gm m r= = , and so 

( )( )2
E1/2 /K Gm m r rΔ = Δ and ( )2

E /U Gm m r rΔ = − Δ . 

( )2
E /2  W U K Gm m r r= Δ + Δ = − Δ  

(c) 3
E/ 7.72 10  m/s,v Gm r= = × \ ( ) 3

E/2 / 28.9 m/s,v r Gm rΔ = Δ =  10
E /2 8.95 10  JE Gm m r= − = − × (from Eq.(12.15)), 

( )( )2 8
E /2 6.70 10  J,K Gm m r rΔ = Δ = ×  92 1.34 10  JU KΔ = − Δ = − × , and 86.70 10  J.W K= −Δ = − ×  

(d) As the term �burns up� suggests, the energy is converted to heat or is dissipated in the collisions of the debris 
with the ground. 
EVALUATE: When r decreases, K increases and U decreases (becomes more negative). 

12.73. IDENTIFY: Use Eq.(12.2) to calculate g.F  Apply Newton�s 2nd law to circular motion of each star to find the 
orbital speed and period. Apply the conservation of energy expression, Eq.(7.13), to calculate the energy input 
(work) required to separate the two stars to infinity. 
(a) SET UP: The cm is midway between the two stars since they have equal masses. Let R be the orbit radius for 
each star, as sketched in Figure 12.73. 

 

The two stars are separated by a distance 2R, 
so 2 2 2 2

g /(2 ) /4F GM R GM R= =  

Figure 12.73  
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(b) EXECUTE: g radF ma=  
2 2 2/4 ( / )GM R M v R=  so /4v GM R=  

And 32 / 2 4 / 4 /T R v R R GM R GMπ π π= = =  
(c) SET UP: Apply 1 1 other 2 2K U W K U+ + = +  to the system of the two stars. Separate to infinity implies 2 0K =  
and 2 0.U =  

EXECUTE: 2 2 21 1 1
1 2 2 22( )( /4 ) /4K Mv Mv M GM R GM R= + = =  

2
1 /2U GM R= −  

Thus the energy required is 2 2
other 1 1( ) ( /4 /2 )W K U GM R GM R= − + = − − = 2/4 .GM R  

EVALUATE: The closer the stars are and the greater their mass, the larger their orbital speed, the shorter their 
orbital period and the greater the energy required to separate them. 

12.74. IDENTIFY: In the center of mass coordinate system, cm 0r = . Apply m=F a
! ! to each star, where F is the 

gravitational force of one star on the other and 
2

rad 2

4 Ra a
T
π

= = . 

SET UP: 2 Rv
T
π

= allows R to be calculated from v and T. 

IDENTIFY: (a) The radii 1 2 and R R  are measured with respect to the center of mass, and so 1 1 2 2 ,M R M R=  and 

1 2 2 1/ / .R R M M=  
(b) The forces on each star are equal in magnitude, so the product of the mass and the radial accelerations are 

equal: 
2 2

1 1 2 2
2 2

1 2

4 4 .M R M R
T T

π π
=  From the result of part (a), the numerators of these expressions are equal, and so the 

denominators are equal, and the periods are the same. To find the period in the symmetric form desired, there are 
many possible routes. An elegant method, using a bit of hindsight, is to use the above expressions to relate the 

periods to the force 1 2
g 2

1 2( )
GM MF
R R

=
+

, so that equivalent expressions for the period are 
2 2

2 1 1 2
2

4 ( )π R R RM T
G

+
=  and 

2 2
2 2 1 2

1
4 ( ) .R R RM T

G
π +

=  Adding the expressions gives 
2 3 3 2

2 1 2 1 2
1 2

1 2

4 ( ) 2 ( )( )   or  .
( )

R R R RM M T T
G G M M

π π+ +
+ = =

+
 

(c) First we must find the radii of each orbit given the speed and period data. In a circular orbit,  

2 ,Rv T
π=  or 2

vTR π= . Thus 
3

10(36 10  m/s)(137 d)(86,400 s/d) 6.78 10  m
2αR
π

×
= = ×  and 

3
10(12 10  m/s)(137 d)(86,400 s/d) 2.26 10  m

2βR
π

×
= = × . Now find the sum of the masses . Use ,M R M Rα α β β= and 

the fact that 
2 3

2

4 ( )
3 ( ) ,

R R
R R M M

T G
α β

α β α β

π +
= + =  inserting the values of T, and the radii. This gives 

2 10 10 3
30

2 11 2 2

4 (6.78 10 m 2.26 10  m)( ) . 3.12 10  kg.
[(137 d)(86,400 s/d)] (6.673 10  N m /kg )

M M M Mα β α β
π

−

× + ×
+ = + = ×

× ⋅
 Since 

/ 3β α α β αM M R R M= = , 304 3.12 10  kgαM = × , or 297.80 10  kgαM = ×  and 302.34 10  kgβM = × . 
(d) Let  refer to the star and   refer to the βα black hole. Use the relationships derived in parts (a) and (b): 

( / ) (0.67/3.8) (0.176)R M M R R Rβ α β α α α= = = , 
2

3
2

( )
R  

4
α β

β

M M T G
Rα π

+
+ = . For Monocerotis, inserting the values 

for M and T and βR  gives 9 21.9 10  m, 4.4 10  km/sα αR v= × = × and for the black hole 834 10  m, 77 km/s.β βR v= × =  
EVALUATE: Since T is the same, v is smaller when R is smaller. 

12.75. IDENTIFY and SET UP: Use conservation of energy, 1 1 other 2 2.K U W K U+ + = +  The gravity force exerted by the 
sun is the only force that does work on the comet, so other 0.W =  

EXECUTE: 21
1 12 ,K mv=  4

1 2.0 10  m/sv = ×  

1 S 1/ ,U Gm m r= −  11
1 2.5 10  mr = ×  

21
2 22K mv=  

2 S 2/ ,U Gm m r= −  10
2 5.0 10  mr = ×  
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2 21 1
1 S 1 2 S 22 2/ /mv Gm m r mv Gm m r− = −  

2 2 2 1 2
2 1 S 1 S

2 1 1 2

1 12 2 r rv v Gm v Gm
r r rr

⎛ ⎞ ⎛ ⎞−
= + − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

4
2 6.8 10  m/sv = ×  

EVALUATE: The comet has greater speed when it is closer to the sun. 
12.76. IDENTIFY: Apply conservation of energy. 

SET UP: Let Mm be the mass of Mars and SM be the mass of the sun. The subscripts a and p denote aphelion and 
perihelion. 

EXECUTE: 2 2S M S M
M a M p

a p

1 1 ,  or
2 2

GM m GM mm v m v
r r

− = −  2 4 
p a S

a p

1 12 2.650 10  m/s.v v GM
r r

⎛ ⎞
= − − = ×⎜ ⎟⎜ ⎟

⎝ ⎠
 

EVALUATE: We could instead use conservation of angular momentum. Note that at the extremes of distance 
(periheleion and aphelion), Mars� velocity vector must be perpendicular to its radius vector, and so the magnitude 
of the angular momentum is L mrv= . Since L is constant, the product rv  must be a constant, and so 

11
4 4 a

p a 11
p

(2.492 10  m)(2.198 10  m/s) 2.650 10  m/s
(2.067 10  m)

rv v
r

×
= = × = ×

×
. Mars has larger speed when it is closer to the sun. 

12.77. (a) IDENTIFY and SET UP: Use Eq.(12.17), applied to the satellites orbiting the earth rather than the sun. 
EXECUTE: Find the value of a for the elliptical orbit: 

a p E a E p2 ,a r r R h R h= + = + + +  where ah  and ph  are the heights at apogee and perigee, respectively. 

E a p( )/2a R h h= + +  
6 3 3 66.38 10  m (400 10  m 4000 10  m)/2 8.58 10  ma = × + × + × = ×  

3 2 6 3 2
3

11 2 2 24
E

2 2 (8.58 10  m) 7.91 10  s
(6.673 10  N m /kg )(5.97 10  kg)

aT
GM
π π

−

×
= = = ×

× ⋅ ×
 

(b) Conservation of angular momentum gives a a p pr v r v=  
6 6

p a
6 5

a p

6.38 10  m 4.00 10  m 1.53
6.38 10  m 4.00 10  m

v r
v r

× + ×
= = =

× + ×
 

(c) Conservation of energy applied to apogee and perigee gives a a p pK U K U+ = +  
2 21 1

E a P E p2 2/ /amv Gm m r mv Gm m r− = −  
2 2
P a E p a E a p a p2 (1/ 1/ ) 2 ( )/v v Gm r r Gm r r r r− = − = −  

But p a1.532 ,v v=  so 2
a E a p a p1.347 2 ( )/v Gm r r r r= −  

3
a 5.51 10  m/s,v = ×  3

p 8.43 10  m/sv = ×  
(d) Need v so that 0,E =  where .E K U= +  
at perigee: 21

p E p2 / 0mv Gm m r− =  

p E p2 /v Gm r= = 11 2 2 24 6 42(6.673 10  N m /kg )(5.97 10  kg) / 6.78 10  m 1.084 10  m/s−× ⋅ × × = ×  

This means an increase of 4 3 31.084 10  m/s 8.43 10  m/s 2.41 10  m/s.× − × = ×  

at apogee: a E a2 /v Gm r= = 11 2 2 24 7 32(6.673 10  N m /kg )(5.97 10  kg)/1.038 10  m 8.761 10  m/s−× ⋅ × × = ×  

This means an increase of 3 3 38.761 10  m/s 5.51 10  m/s 3.25 10  m/s.× − × = ×  
EVALUATE: Perigee is more efficient. At this point r is smaller so v is larger and the satellite has more kinetic 
energy and more total energy. 

12.78. IDENTIFY: 2

GMg
R

= , where M and R are the mass and radius of the planet. 

SET UP: Let Um and UR be the mass and radius of Uranus and let Ug be the acceleration due to gravity at its 

poles. The orbit radius of Miranda is Ur h R= + , where 81.04 10  mh = × is the altitude of Miranda above the 
surface of Uranus. 
EXECUTE: (a) From the value of g at the poles, 

( ) ( )
( )

22 7 2
26U U

U 11 2 2

11.1 m/s  2.556 10 m
1.09 10  kg.

6.673 10 N m /kg
g Rm

G −

×
= = = ×

× ⋅
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(b) ( )22 2
U U U/ / 0.432 m/sGm r g R r= = . 

(c) 2 2
M M/ 0.080 m/sGm R = . 

EVALUATE: (d) No. Both the object and Miranda are in orbit together around Uranus, due to the gravitational 
force of Uranus. The object has additional force toward Miranda. 

12.79. IDENTIFY and SET UP: Apply conservation of energy (Eq.7.13) and solve for other .W  Only Er h R= +  is given, so 
use Eq.(12.10) to relate r and v. 
EXECUTE: 1 1 other 2 2K U W K U+ + = +  

1 M 1/ ,U Gm m r= −  where Mm  is the mass of Mars and 1 M ,r R h= +  where MR  is the radius of Mars and 
32000 10  mh = ×  

23
11 2 2 10

1 6 3
(6.42 10  kg)(3000 kg)(6.673 10  N m /kg ) 2.380 10  J

3.40 10  m 2000 10  m
U − ×

= − × ⋅ = − ×
× + ×

 

2 M 2/ ,U Gm m r= −  where 2r  is the new orbit radius. 
23

11 2 2 10
2 6 3

(6.42 10  kg)(3000 kg)(6.673 10  N m /kg ) 1.737 10  J
3.40 10  m 4000 10  m

U − ×
= − × ⋅ = − ×

× + ×
 

For a circular orbit M/v Gm r=  (Eq.(12.10), with the mass of Mars rather than the mass of the earth). 

Using this gives 21 1 1
M M2 2 2( / ) / ,K mv m Gm r Gm m r= = =  so 1

2K U= −  
101

1 12 1.190 10  JK U= − = + ×  and 91
2 22 8.685 10  JK U= − = + ×  

Then 1 1 other 2 2K U W K U+ + = +  gives 
9 10

other 2 1 2 1( ) ( ) (8.685 10  J 1.190 10  J) ( 2.380W K K U U= − + − = × − × + − × 10 1010  J 1.737 10  J)+ ×  
9 9 9

other 3.215 10  J 6.430 10  J 3.22 10  JW = − × + × = ×  
EVALUATE: When the orbit radius increases the kinetic energy decreases and the gravitational potential energy 
increases. 2K U= −  so 2E K U U= + = −  and the total energy also increases (becomes less negative). Positive 
work must be done to increase the total energy of the satellite. 

12.80. IDENTIFY and SET UP: Use Eq.(12.17) to calculate a. 7 1130,000 y(3.156 10  s/1 y) 9.468 10  sT = × = ×  

EXECUTE: Eq.(12.17): 
3 2

S

2 ,aT
Gm
π

=  
2 3

2

S

4 aT
Gm
π

=  

1 32
14S

2 1.4 10  m.
4

Gm Ta
π

⎛ ⎞
= = ×⎜ ⎟

⎝ ⎠
 

EVALUATE: The average orbit radius of Pluto is 125.9 10  m×  (Appendix F); the semi-major axis for this comet is 
larger by a factor of 24. 

15 164.3 light years 4.3 light years(9.461 10  m/1 light year) 4.1 10  m= × = ×  
The distance of Alpha Centauri is larger by a factor of 300. 
The orbit of the comet extends well past Pluto but is well within the distance to Alpha Centauri. 

12.81. IDENTIFY: Integrate dm dVρ= to find the mass of the planet. Outside the planet, the planet behaves like a point 
mass, so at the surface 2/g GM R= . 

SET UP: A thin spherical shell with thickness dr has volume 24dV r drπ= . The earth has radius 
6

E 6.38 10  mR = × . 

EXECUTE: Get 2
0:    4 . The density is ,  where M M dm dV r dr ρ ρ brρ ρ π= ∫ = ∫ = ∫ = −  

3 3
0 15.0 10  kg/mρ = × at the center and at the surface, 3 3

S 2.0 10  kg/mρ = × , so 0 sb
R

ρ ρ−
= . 

( ) 2 3 4 3 4 30 s
0 0 0 0 0

4 4 1 4
3 3 3

R
s

π ρ ρM ρ br πr dr ρ R πbR πR ρ πR πR ρ ρ
R
−⎛ ⎞ ⎛ ⎞= ∫ − = − = − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
and 245.71 10  kg.M = ×  

Then ( )3 1
03

02 2

1 .
3

s
s

GπR ρ ρGMg πRG ρ ρ
R R

+ ⎛ ⎞= = = +⎜ ⎟
⎝ ⎠

 

( )( )
3 3

6 11 2 2 3 315.0 10  kg/m6.38 10 m 6.67 10  N m /kg 2.0 10  kg/m
3

g π − ⎛ ⎞×
= × × ⋅ + ×⎜ ⎟

⎝ ⎠
. 

29.36 m/s .g =  
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EVALUATE: The average density of the planet is 
24

3 3
av 3 6 34

3

3(5.71 10  kg) 5.25 10  kg/m
4 (6.38 10  m)

M M
V R

ρ
π π

×
= = = = ×

×
. Note 

that this is not 0 s( ) / 2ρ ρ+ . 
12.82. IDENTIFY and SET UP: Use Eq.(12.1) to calculate the force between the point mass and a small segment of the 

semicircle. 
EXECUTE: The radius of the semicircle is /R L π=  
Divide the semicircle up into small segments of length ,R dθ  as shown in Figure 12.82. 

 
Figure 12.82 

( / )  ( / ) dM M L R d M dθ π θ= =  

dF
!

 is the gravity force on m exerted by dM 
0;ydF =∫  the y-components from the upper half of the semicircle cancel the y-components from the lower half. 

The x-components are all in the -directionx+  and all add. 

2

mdMdF G
R

=  

2 2cos cos  x
mdM Gm MdF G d

R L
πθ θ θ= =  

2 2

2 22 2
cos  (2)x x

Gm M Gm MF dF d
L L

π π

π π

π πθ θ
− −

= = =∫ ∫  

2

2 GmMF
L

π
=  

EVALUATE: If the semicircle were replaced by a point mass M at ,x R=  the gravity force would be 
2 2 2/ / .GmM R GmM Lπ=  This is /2π  times larger than the force exerted by the semicirclar wire. For the semicircle 

it is the x-components that add, and the sum is less than if the force magnitudes were added. 
12.83. IDENTIFY: The direct calculation of the force that the sphere exerts on the ring is slightly more involved than the 

calculation of the force that the ring exerts on the sphere. These forces are equal in magnitude but opposite in 
direction, so it will suffice to do the latter calculation. By symmetry, the force on the sphere will be along the axis 
of the ring in Figure 12.35 in the textbook, toward the ring.  
SET UP: Divide the ring into infinitesimal elements with mass dM. 

EXECUTE: Each mass element dM of the ring exerts a force of magnitude 2 2

( )Gm dM
a x+

 on the sphere, and the  

x-component of this force is 
( )3 / 22 2 2 2 2 2

.GmdM x GmdMx
a x a x a x

=
+ + +

 

Therefore, the force on the sphere is ( )3 / 22 2/ ,GmMx a x+  in the -direction.x− The sphere attracts the ring with a 

force of the same magnitude.  

EVALUATE: As x >> a the denominator approaches 3
2 and GMmx F

x
→ , as expected. 

12.84. IDENTIFY: Use Eq.(12.1) for the force between a small segment of the rod and the particle. Integrate over the 
length of the rod to find the total force. 
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SET UP: Use a coordinate system with the origin at the left-hand end of the rod and the -axisx′  along the rod, as 
shown in Figure 12.84. Divide the rod into small segments of length .dx′  (Use x′  for the coordinate so not to 
confuse with the distance x from the end of the rod to the particle.) 

 
Figure 12.84 

EXECUTE: The mass of each segment is ( / ).dM dx M L′=  Each segment is a distance L x x′− +  from mass m, so 

the force on the particle due to a segment is 2 2

 .
( ) ( )

Gm dM GMm dxdF
L x x L L x x

′
= =

′ ′− + − +
 

0 0 0
2

1
( ) LL L

GMm dx GMmF dF
L L x x L L x x

′ ⎛ ⎞= = = −⎜ ⎟′ ′− + − +⎝ ⎠∫ ∫  

1 1 ( )
( ) ( )

GMm GMm L x x GMmF
L x L x L x L x x L x

+ −⎛ ⎞= − = =⎜ ⎟+ + +⎝ ⎠
 

EVALUATE: For x L>>  this result become 2/ ,F GMm x=  the same as for a pair of point masses. 
12.85. IDENTIFY: Compare EF to Hooke�s law. 

SET UP: The earth has mass 24
E 5.97 10  kgm = × and radius 6

E 6.38 10  mR = × . 

EXECUTE: For xF kx= − , 21
2U kx= . The force here is in the same form, so by analogy ( ) 2E

3
E

.
2

Gm mU r r
R

=  This is 

also given by the integral of g  from 0 to F r  with respect to distance.  

(b) From part (a), the initial gravitational potential energy is E

E

.
2

Gm m
R

 Equating initial potential energy and final 

kinetic energy (initial kinetic energy and final potential energy are both zero) gives 
2 3E

E

,  so 7.90 10  m/s.Gmv v
R

= = ×  

EVALUATE: When 0r = , ( ) 0U r = , as specified in the problem. 
12.86. IDENTIFY: In Eqs.(12.12) and (12.16) replace T by T T+ Δ and r by r r+ Δ . Use the expression in the hint to 

simplifying the resulting equations. 
SET UP: The earth has 24

E 5.97 10  kgm = ×  and 66.38 10  mR = × . Er h R= + , where h is the altitude above the 
surface of the earth. 

EXECUTE: (a) 
3 2

E

2  rT
GM
π

=  therefore 

3 23 2 3 2 1/2
3 2

E E E E

2 2  2  3 3  ( ) 1 1
2

π π r r π r r π r rT T r r T
r rGM GM GM GM

Δ Δ Δ⎛ ⎞ ⎛ ⎞+ Δ = + Δ = + ≈ + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

Since 1 2E
E

3  , .   ,GM rv T v GM rr v
π −Δ= Δ = =  and therefore 

( ) 1 2
1 2 1 2 ( )  1E E

rv v GM r r GM r r
−

− − Δ− Δ = + Δ = +  and ( )1 2
E 3 21 .2 2

EGMrv GM r v rr r
− Δ≈ − = − Δ  Since 

3 2

E

2  ,  .π r rT v TGM
πΔ= Δ =  

(b) Starting with 
3 22  rT

GM
π

=  (Eq.(12.12)), 2  /T r vπ= , and GMv r=  (Eq.(12.10)), find the velocity and 

period of the initial orbit: 
11 2 2 24

3
6

(6.673 10 N m /kg )(5.97 10 kg) 7.672 10  m/s,
6.776 10 m

v
−× ⋅ ×

= = ×
×

 and 

2  / 5549 s 92.5T r vπ= = =  min. We then can use the two derived equations to approximate  and T vΔ Δ : 
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3

3  (100 m)3 0.1228 s
7.672 10  m/s

π rT v
πΔΔ = = =

×
 and (100 m) 0.05662 m/s(5549 s)

ππ rv T
ΔΔ = = = . Before the cable breaks, the 

shuttle will have traveled a distance d, 2 2(125 m ) (100 m ) 75 md = − = . 
(75 m) (0.05662 m/s) 1324.7 s 22 mint = = = . It will take 22 minutes for the cable to break. 

(c) The ISS is moving faster than the space shuttle, so the total angle it covers in an orbit must be 2π radians more 

than the angle that the space shuttle covers before they are once again in line. Mathematically, ( ) 2( )
v v tvt πr r r

− Δ− =
+ Δ

. 

Using the binomial theorem and neglecting terms of order ( ) ( )1

2
( ),  1  2v v tvt v v rrv r t πr r r r r

−− Δ Δ ΔΔΔ Δ − + ≈ + = . 

Therefore, 2
 

r vTt π r v rv rv
T rr

π= =
Δ ΔΔ⎛ ⎞ +Δ +⎜ ⎟

⎝ ⎠

. Since 2   and 3
v Tr vT r ππ Δ= Δ = , 

2
2

3  3

vT Tt Tv T v T
t T
π π

π π

= =
ΔΔ Δ⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

, as 

was to be shown. 
22 8(5549 s) 2.5 10  s 2900 d 7.9 y.(0.1228 s)

Tt T= = = × = =
Δ

 It is highly doubtful the shuttle crew would 

survive the congressional hearings if they miss! 
EVALUATE: When the orbit radius increases, the orbital period increases and the orbital speed decreases. 

12.87. IDENTIFY: Apply Eq.(12.19) to the transfer orbit. 
SET UP: The orbit radius for Earth is 11

E 1.50 10  mr = × and for Mars it is 11
M 2.28 10  mr = × . From Figure 12.19 

in the textbook, 1
E M2 ( )a r r= +  

EXECUTE: (a) To get from the circular orbit of the earth to the transfer orbit, the spacecraft�s energy must 
increase, and the rockets are fired in the direction opposite that of the motion, that is, in the direction that increases 
the speed. Once at the orbit of Mars, the energy needs to be increased again, and so the rockets need to be fired in 
the direction opposite that of the motion. From Figure 12.38 in the textbook, the semimajor axis of the transfer 
orbit is the arithmetic average of the orbit radii of the earth and Mars, and so from Eq.(12.13), the energy of the 
spacecraft while in the transfer orbit is intermediate between the energies of the circular orbits. Returning from 
Mars to the earth, the procedure is reversed, and the rockets are fired against the direction of motion. 
(b) The time will be half the period as given in Eq. (12.17), with the semimajor axis equal to 

111
E M2 ( ) 1.89 10  ma r r= + = ×  so 

11 3 2
7

11 2 2 30

 (1.89 10  m) 2.24 10  s 263 days
2 (6.673 10  N m /kg )(1.99 10  kg)
Tt π

−

×
= = = × =

× ⋅ ×
, 

which is more than 1
28  months. 

(c) During this time, Mars will pass through an angle of 
7(2.24 10  s)(360 ) 135.9(687 d)(86,400 s/d)

×° = ° , and the spacecraft 

passes through an angle of 180° , so the angle between the earth-sun line and the Mars-sun line must be 44.1° . 
EVALUATE: The period T for the transfer orbit is 526 days, the average of the orbital periods for Earth and Mars. 

12.88. IDENTIFY: Apply m=∑F a
! ! to each ear. 

SET UP: Denote the orbit radius as r  and the distance from this radius to either ear as δ . Each ear, of mass m , 
can be modeled as subject to two forces, the gravitational force from the black hole and the tension force (actually 
the force from the body tissues), denoted by .F   

EXECUTE: The force equation for either ear is 2
2 ( ),

( )
GMm F m r
r

ω δ
δ

− = +
+

 where δ can be of either sign. 

Replace the product 2mω with the value for 0δ = , 2 3/mω GMm r= , and solve for F: 

( ) 2
3 2 3

1( )  1 ( / )
( )

r GMmF GMm r r δ r
r r r

δ δ
δ

−⎡ ⎤+ ⎡ ⎤= − = + − + ⋅⎢ ⎥ ⎣ ⎦+⎣ ⎦
 

Using the binomial theorem to expand the term in square brackets in powers of / ,rδ  

( )3 31 2( / ) (3 ) 2.1 kNGMm GMmF r r r
r r

δ δ δ≈ + − − = =⎡ ⎤⎣ ⎦ . 

This tension is much larger than that which could be sustained by human tissue, and the astronaut is in trouble.  
(b) The center of gravity is not the center of mass. The gravity force on the two ears is not the same. 
EVALUATE: The tension between her ears is proportional to their separation. 

12.89. IDENTIFY: As suggested in the problem, divide the disk into rings of radius r and thickness dr.  

SET UP: Each ring has an area 2  dA r drπ= and mass 2 2

2 .
 
M MdM dA r dr
a aπ

= =   
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EXECUTE: The magnitude of the force that this small ring exerts on the mass m is then 
2 2 3 2(   )( /( ) )G m dM x r x+ . The contribution dF to the force is 2 2 2 3 2

2 .
( )

GMmx rdrdF
a x r

=
+

  

The total force F is then the integral over the range of r; 

2 2 2 3 20

2 .
( )

aGMmx rF dF dr
a x r

= =
+∫ ∫  

The integral (either by looking in a table or making the substitution 2 2u r a= + ) is  

2 2 3 2 2 2 2 20

1 1 1 1 .
( )

a r xdr
x r x xa x a x

⎡ ⎤ ⎡ ⎤
= − = −⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦

∫  

Substitution yields the result 2 2 2

2 1 .GMm xF
a a x

⎡ ⎤
= −⎢ ⎥

+⎣ ⎦
 The force on m is directed toward the center of the ring. 

The second term in brackets can be written as  
2

2 1 2

2

1 1(1 ( / ) ) 1
21 ( / )

aa x
xa x

− ⎛ ⎞= + ≈ − ⎜ ⎟
⎝ ⎠+

 

if x >> a, where the binomial expansion has been used. Substitution of this into the above form gives 2 ,GMmF
x

≈  

as it should. 
EVALUATE: As 0x → , the force approaches a constant. 

12.90. IDENTIFY: Divide the rod into infinitesimal segments. Calculate the force each segment exerts on m and integrate 
over the rod to find the total force. 
SET UP: From symmetry, the component of the gravitational force parallel to the rod is zero. To find the 
perpendicular component, divide the rod into segments of length dx and mass ,2

Mdm dx L=  positioned at a distance 

x from the center of the rod.  
EXECUTE: The magnitude of the gravitational force from each segment is 

2 2 2 2

 .
2

Gm dM GmM dxdF
x a L x a

= =
+ +

 The component of dF perpendicular to the rod is 
2 2

adF
x a+

 and so the net 

gravitational force is 2 2 3 2 .
2 ( )

L L

L L

GmMa dxF dF
L x a− −

= =
+∫ ∫  

The integral can be found in a table, or found by making the substitution tanx a θ.=  Then, 
2 2 2 2 2 sec  ,  ( )  sec ,dx a d x a aθ θ θ= + =  and so 

2

2 2 3 2 3 3 2 2 2 2 2

 sec  1 1cos  sin ,
( )  sec

dx a d xd
x a a a a a x a

θ θ θ θ θ
θ

= = = =
+ +

∫ ∫ ∫  

and the definite integral is
2 2

.GmMF
a a L

=
+

 

EVALUATE: When a >> L, the term in the square root approaches 2
2and ,GmMa F

a
→  as expected. 
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PERIODIC MOTION 

 13.1. IDENTIFY and SET UP: The target variables are the period T and angular frequency .ω  We are given the frequency 
f, so we can find these using Eqs.(13.1) and (13.2) 
EXECUTE: (a) 220 Hzf =  

31/ 1/220 Hz 4.54 10  sT f −= = = ×  
2 2 (220 Hz) 1380 rad/sfω π π= = =  

(b) 2(220 Hz) 440 Hzf = =  
31/ 1/440 Hz 2.27 10  sT f −= = = ×  (smaller by a factor of 2) 

2 2 (440 Hz) 2760 rad/sfω π π= = =  (factor of 2 larger) 
EVALUATE: The angular frequency is directly proportional to the frequency and the period is inversely proportional 
to the frequency. 

 13.2. IDENTIFY and SET UP: The amplitude is the maximum displacement from equilibrium. In one period the object 
goes from x A= +  to x A= −  and returns. 
EXECUTE: (a) 0.120 mA =   
(b) 0.800 s / 2T=  so the period is 1.60 s  

(c) 1 0.625 Hzf
T

= =  

EVALUATE: Whenever the object is released from rest, its initial displacement equals the amplitude of its SHM. 

 13.3. IDENTIFY: The period is the time for one vibration and 2
T
πω = . 

SET UP: The units of angular frequency are rad/s. 
EXECUTE: The period is 30.50 s 1.14 10  s440

−= ×  and the angular frequency is 32 5.53 10  rad s.πω T= = ×  

EVALUATE: There are 880 vibrations in 1.0 s, so 880 Hzf = . This is equal to 1/T . 
 13.4. IDENTIFY: The period is the time for one cycle and the amplitude is the maximum displacement from equilibrium. 

Both these values can be read from the graph. 
SET UP: The maximum x is 10.0 cm. The time for one cycle is 16.0 s. 

EXECUTE: (a) 16.0 sT = so 1 0.0625 Hzf
T

= = . 

(b) 10.0 cmA = . 
(c) 16.0 sT =  
(d) 2 0.393 rad/sfω π= =  
EVALUATE: After one cycle the motion repeats.  

 13.5. IDENTIFY: This displacement is 1
4  of a period. 

SET UP: 1/ 0.200 sT f= = . 
EXECUTE: 0.0500 st =  
EVALUATE: The time is the same for x A= to 0x = , for 0x = to x A= − , for x A= −  to 0x = and for 0x = to 
x A= . 

 13.6. IDENTIFY: Apply Eq.(13.12). 
SET UP: The period will be twice the interval between the times at which the glider is at the equilibrium position. 

EXECUTE: 
22

2 2 2 (0.200 kg) 0.292 N m.
2(2.60 s)

π πk ω m m
T

⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: 21 N 1 kg m/s= ⋅ , so 21 N/m 1 kg/s= . 

13
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 13.7. IDENTIFY and SET UP: Use Eq.(13.1) to calculate T, Eq.(13.2) to calculate ,ω  and Eq.(13.10) for m. 
EXECUTE: (a) 1/ 1/6.00 Hz 0.167 sT f= = =  
(b) 2 2 (6.00 Hz) 37.7 rad/sfω π π= = =  

(c) /k mω =  implies 2 2/ (120 N/m)/(37.7 rad/s) 0.0844 kgm k ω= = =  

EVALUATE: We can verify that 2/k ω  has units of mass. 

 13.8. IDENTIFY: The mass and frequency are related by 1
2

kf
mπ

= . 

SET UP:  constant
2

kf m
π

= = , so 1 1 2 2f m f m= . 

EXECUTE: (a) 1 0.750 kgm = , 1 1.33 Hzf = and 2 0.750 kg 0.220 kg 0.970 kgm = + = . 

1
2 1

2

0.750 kg(1.33 Hz) 1.17 Hz
0.970 kg

mf f
m

= = = . 

(b) 2 0.750 kg 0.220 kg 0.530 kgm = − = . 2
0.750 kg(1.33 Hz) 1.58 Hz
0.530 kg

f = =   

EVALUATE: When the mass increases the frequency decreases and when the mass decreases the frequency increases. 
 13.9. IDENTIFY: Apply Eqs.(13.11) and (13.12). 

SET UP: f = 1/T 

EXECUTE: (a) 0.500 kg2 0.375 s140 N/mT π= = . 

(b) 1 2.66 Hzf T= = . (c) 2 16.7 rad/s.ω πf= =  

EVALUATE: We can verify that 21 kg/(N/m) 1 s= . 
13.10. IDENTIFY and SET UP: Use Eqs. (13.13), (13.15), and (13.16). 

EXECUTE: 440 Hz,f =  3.0 mm,A =  0φ =  
(a) cos( )x A tω φ= +  

32 2 (440 hz) 2.76 10  rad/sfω π π= = = ×  
3 3(3.0 10  m)cos((2.76 10  rad/s) )x t−= × ×  

(b) sin( )xv A tω ω φ= − +  
3 3

max (2.76 10  rad/s)(3.0 10  m) 8.3 m/sv Aω −= = × × =  (maximum magnitude of velocity) 
2 cos( )xa A tω ω φ= − +  
2 3 2 3 4 2

max (2.76 10  rad/s) (3.0 10  m) 2.3 10  m/sa Aω −= = × × = ×  (maximum magnitude of acceleration) 

(c) 2 cosxa A tω ω= −  
3 3 3 3/ sin [2 (440 Hz)] (3.0 10  m)sin([2.76 10  rad/s] )xda dt A t tω ω π −= + = × × 7 3 3(6.3 10  m/s )sin([2.76 10 rad/s] )t= × ×  

Maximum magnitude of the jerk is 3 7 36.3 10  m/sAω = ×  
EVALUATE: The period of the motion is small, so the maximum acceleration and jerk are large. 

13.11. IDENTIFY: Use Eq.(13.19) to calculate A. The initial position and velocity of the block determine φ . ( )x t is given 
by Eq.(13.13). 
SET UP: cosθ is zero when / 2θ π= ± and sin( / 2) 1π = . 

EXECUTE: (a) From Eq. (13.19), 0 0 0.98 m.
/

v vA ω k m
= = =  

(b) Since (0) 0x = , Eq.(13.14) requires 2
πφ = ± . Since the block is initially moving to the left, 0 0xv <  and Eq.(13.7) 

requires that sin 0,  so .2
πφ φ> = +  

(c) cos ( ( /2)) sin ,  so ( 0.98 m) sin((12.2  rad/s) ).ωt π ωt x t+ = − = −  
EVALUATE: The ( )x t result in part (c) does give 0x = at 0t = and 0x < for t slightly greater than zero. 

13.12. IDENTIFY and SET UP: We are given k, m, 0,x  and 0.v  Use Eqs.(13.19), (13.18), and (13.13). 

EXECUTE: (a) Eq.(13.19): 2 2 2 2 2
0 0 0 0/ /x xA x v x mv kω= + = +  

2 2(0.200 m) (2.00 kg)( 4.00 m/s) /(300 N/m) 0.383 mA = + − =  
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(b) Eq.(13.18): 0 0arctan( / )xv xφ ω= −  

/ (300 N/m)/2.00 kg 12.25 rad/sk mω = = =  

( 4.00 m/s)arctan arctan( 1.633) 58.5
(12.25 rad/s)(0.200 m)

φ
⎛ ⎞−

= − = + = °⎜ ⎟
⎝ ⎠

 (or 1.02 rad) 

(c) cos( )x A tω φ= +  gives (0.383 m)cos([12.2rad/s] 1.02 rad)x t= +  
EVALUATE: At 0t =  the block is displaced 0.200 m from equilibrium but is moving, so 0.200 m.A >  According 
to Eq.(13.15), a phase angleφ  in the range 0 90φ< < °  gives 0 0.xv <  

13.13. IDENTIFY: For SHM, 2 2(2 )xa ω x πf x= − = − . Apply Eqs.(13.13), (13.15) and (13.16), with A and φ from Eqs.(13.18) 
and (13.19). 
SET UP: 1.1 cmx = , 0 15 cm/sxv = − . 2 fω π= , with 2.5 Hzf = . 

EXECUTE: (a) ( )2 2 22 (2.5 Hz) (1.1 10  m) 2.71 m/s .xa π −= − × = −  
(b) From Eq. (13.19) the amplitude is 1.46 cm, and from Eq. (13.18) the phase angle is 0.715 rad. The angular 
frequency is 2 15.7 rad/s,πf = so (1.46 cm) cos ((15.7 rad/s) 0.715 rad)x t= + , 

( 22.9 cm s) sin ((15.7 rad/s) 0.715 rad)xv t= − + and 2( 359 cm/s ) cos ((15.7 rad/s) 0.715 rad) .xa t= − +  
EVALUATE: We can verify that our equations for x, xv and xa give the specified values at 0t = . 

13.14. IDENTIFY and SET UP: Calculate x using Eq.(13.13). Use T to calculate ω  and 0x  to calculate .φ  
EXECUTE: 0x =  at 0t =  implies that /2 radφ π= ±  
Thus cos( /2).x A tω π= ±  

2 /T π ω=  so 2 / 2 /1.20 s 5.236 rad/sTω π π= = =  
(0.600 m)cos([5.236 rad/s][0.480 s] /2)= 0.353 m.x π= ± ∓  

The distance of the object from the equilibrium position is 0.353 m. 
EVALUATE: The problem doesn't specify whether the object is moving in the x+  or x−  direction at 0.t =  

13.15. IDENTIFY: Apply 2 mT
k

π= . Use the information about the empty chair to calculate k. 

SET UP: When 42.5 kgm = , 1.30 sT = . 

EXECUTE: Empty chair: 2 mT π k= gives 
2 2

2 2
4 4 (42.5 kg) 993 N/m

(1.30 s)
π m πk
T

= = =  

With person in chair: 2 mT
k

π= gives 
2 2

2 2
(2.54 s) (993 N/m) 162 kg

4 4
T km
π π

= = = and 

person 162 kg 42.5 kg 120 kgm = − = . 
EVALUATE: For the same spring, when the mass increases, the period increases. 

13.16. IDENTIFY and SET UP: Use Eq.(13.12) for T and Eq.(13.4) to relate xa  and k. 

EXECUTE: 2 / ,T m kπ=  0.400 kgm =  

Use 22.70 m/sxa = −  to calculate k: xkx ma− =  gives 
2(0.400 kg)( 2.70 m/s ) 3.60 N/m

0.300 m
xmak

x
−

= − = − = +  

2 / 2.09 sT m kπ= =  

EVALUATE: ax  is negative when x is positive. /xma x  has units of N/m and /m k  has units of s. 

13.17. IDENTIFY: 2 mT
k

π= . x
ka x
m

= − so max
ka A
m

= . F kx= − . 

SET UP: xa  is proportional to x so xa  goes through one cycle when the displacement goes through one cycle. From 
the graph, one cycle of ax extends from 0.10 st =  to 0.30 s,t =  so the period is 0.20 s.T =  2.50 N/cm 250 N/m.k = =  
From the graph the maximum acceleration is 212.0 m/s . 

EXECUTE: (a) 2 mT
k

π= gives 
2 20.20 s(250 N/m) 0.253 kg

2 2
Tm k
π π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) 
2

max (0.253 kg)(12.0 m/s ) 0.0121 m 1.21 cm
250 N/m

maA
k

= = = =  

(c) max (250 N/m)(0.0121 m) 3.03 NF kA= = =  
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EVALUATE: We can also calculate the maximum force from the maximum acceleration: 
2

max max (0.253 kg)(12.0 m/s ) 3.04 N,F ma= = =  which agrees with our previous results. 

13.18. IDENTIFY: The general expression for ( )xv t is ( ) sin( )xv t A tω ω φ= − + . We can determine ω and A by comparing 
the equation in the problem to the general form. 
SET UP: 4.71 rad/sω = . 3.60 cm/s 0.0360 m/sAω = = . 

EXECUTE: (a) 2 2  rad 1.33 s
4.71 rad/s

T π π
ω

= = =  

(b) 30.0360 m/s 0.0360 m/s 7.64 10  m 7.64 mm
4.71 rad/s

A
ω

−= = = × =  

(c) 2 2 3 2
max (4.71 rad/s) (7.64 10  m) 0.169 m/sa Aω −= = × =  

(d) k
m

ω = so 2 2(0.500 kg)(4.71 rad/s) 11.1 N/mk mω= = = . 

EVALUATE: The overall positive sign in the expression for ( )xv t and the factor of / 2π− both are related to the 
phase factor φ  in the general expression. 

13.19. IDENTIFY: Compare the specific ( )x t given in the problem to the general form of Eq.(13.13). 
SET UP: 7.40 cmA = , 4.16 rad/sω = , and 2.42 radφ = − . 

EXECUTE: (a) 2 2 1.51 s
4.16 rad/s

T π π
ω

= = = . 

(b) k
m

ω = so 2 2(1.50 kg)(4.16 rad/s) 26.0 N/mk mω= = =  

(c) max (4.16 rad/s)(7.40 cm) 30.8 cm/sv Aω= = =  
(d) xF kx= − so (26.0 N/m)(0.0740 m) 1.92 NF kA= = = . 
(e) ( )x t evaluated at 1.00 st = gives 0.0125 mx = − . sin( ) 30.4 cm/sxv A tω ω φ= − + = . 

2 2/ 0.216 m/sxa kx m xω= − = − = + . 
EVALUATE: The maximum speed occurs when 0x = and the maximum force is when x A= ± . 

13.20. IDENTIFY:  Apply ( ) cos( )x t A tω φ= +  

SET UP: x A= at 0t = , so 0φ = . 6.00 cmA = . 2 2 20.9 rad/s
0.300 sT

π πω = = = , so 

( ) (6.00 cm)cos([20.9 rad/s] )x t t= . 
EXECUTE: 0t = at 6.00 cmx = . 1.50 cmx = − when 1.50 cm (6.00 cm)cos([20.9 rad/s] )t− = . 

1 1.50 cmarccos 0.0872 s
20.9 rad/s 6.00 cm

t ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. It takes 0.0872 s. 

EVALUATE: It takes / 4 0.075 st T= = to go from 6.00 cmx = to 0x = and 0.150 s to go from 6.00 cmx = + to 
6.00 cmx = − . Our result is between these values, as it should be. 

13.21. IDENTIFY: max 2v A fAω π= = . 21
max max2K mv=  

SET UP: The fly has the same speed as the tip of the tuning fork. 
EXECUTE: (a) 3

max 2 2 (392 Hz)(0.600 10  m) 1.48 m/sv fAπ π −= = × =  

(b) 2 3 2 51 1
max max2 2 (0.0270 10  kg)(1.48 m/s) 2.96 10  JK mv − −= = × = ×  

EVALUATE: maxv is directly proportional to the frequency and to the amplitude of the motion. 

13.22. IDENTIFY and SET UP: Use Eq.(13.21) to relate K and U. U depends on x and K depends on .xv  
EXECUTE: (a) ,U K E+ =  so U K=  says that 2U E=  

( )2 21 1
2 22 kx kA=  and / 2;x A= ±  magnitude is / 2A  

But U K=  also implies that 2K E=  
2 21 1

2 22( )xmv kA=  and / / 2 / 2;xv k mA Aω= ± = ±  magnitude is / 2.Aω  

(b) In one cycle x goes from A to 0 to A−  to 0 to .A+  Thus 2x A= +  twice and / 2x A= −  twice in each cycle. 
Therefore, U K=  four times each cycle. The time between U K=  occurrences is the time atΔ  for 1 / 2x A= +  to 
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2 2,x A= −  time btΔ  for 1 / 2x A= −  to 2 / 2,x A= +  time ctΔ  for 1 / 2x A= +  to 2 2,x A= +  or the time dtΔ  for 

1 / 2x A= −  to 2 / 2,x A= −  as shown in Figure 13.22. 

 

a bt tΔ = Δ  

c dt tΔ = Δ  

Figure 13.22  
Calculation of :atΔ  
Specify x in cosx A tω=  (choose 0φ =  so x A=  at 0t = ) and solve for t. 

1 / 2x A= +  implies 1/ 2 cos( )A A tω=  

1cos 1/ 2tω =  so 1 arccos(1/ 2) /4 radtω π= =  

1 /4t π ω=  

2 / 2x A= −  implies 2/ 2 cos( )A A tω− =  

2cos 1/ 2tω = −  so 1 3 /4 radtω π=  

2 3 /4t π ω=  

2 1 3 /4 /4 /2at t t π ω π ω π ωΔ = − = − =  (Note that this is /4,T  one fourth period.) 
Calculation of :dtΔ  

1 / 2x A= −  implies 1 3 /4t π ω=  

2 / 2,x A= −  2t  is the next time after 1t  that gives 2cos 1/ 2tω = −  
Thus 2 1 /2 5 /4t tω ω π π= + =  and 2 5 /4t π ω=  

2 1 5 /4 3 /4 /2 ,dt t t π ω π ω π ωΔ = − = − =  so is the same as .atΔ  
Therfore the occurrences of K U=  are equally spaced in time, with a time interval between them of /2 .π ω  
EVALUATE: This is one-fourth T, as it must be if there are 4 equally spaced occurrences each period. 
(c) EXECUTE: /2x A=  and U K E+ =  

2 2 2 2 2 2 21 1 1 1 1 1
2 2 2 2 2 8( /2) 3 /8K E U kA kx kA k A kA kA kA= − = − = − = − =  

Τhen 
2

21
2

3 /8 3
4

K kA
E kA

= =  and 
21

8
21

2

1
4

U kA
E kA

= =  

EVALUATE: At 0x =  all the energy is kinetic and at x A= ±  all the energy is potiential. But K U=  does not occur 
at /2,x A= ±  since U is not linear in x. 

13.23. IDENTIFY: Velocity and position are related by 2 2 21 1 1
2 2 2xE kA mv kx= = + . Acceleration and position are related by 

xkx ma− = .  
SET UP: The maximum speed is at 0x = and the maximum magnitude of acceleration is at x A= ± , 

EXECUTE: (a) For 0x = , 2 21 1
max2 2mv kA=  and max

450 N/m(0.040 m) 1.20 m/s
0.500 kg

kv A
m

= = =  

(b) 2 2 2 2450 N/m (0.040 m) (0.015 m) 1.11 m/s
0.500 kgx

kv A x
m

= ± − = ± − = ± .  

The speed is 1.11 m/sv = . 

(c) For x A= ± , 2
max

450 N/m (0.040 m) 36 m/s
0.500 kg

ka A
m

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

(d) 2(450 N/m)( 0.015 m) 13.5 m/s
0.500 kgx

kxa
m

−
= − = − = +  

(e) 2 21 1
2 2 (450 N/m)(0.040 m) 0.360 JE kA= = =  

EVALUATE: The speed and acceleration at 0.015 mx = − are less than their maximum values. 
13.24. IDENTIFY and SET UP: xa  is related to x by Eq.(13.4) and xv  is related to x by Eq.(13.21). xa  is a maximum when 

x A= ±  and xv  is a maximum when 0.x =  t is related to x by Eq.(13.13). 
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EXECUTE: (a) xkx ma− =  so ( / )xa k m x= −  (Eq.13.4). But the maximum x  is A, so 2
max ( / ) .a k m A Aω= =  

0.850 Hzf =  implies / 2 2 (0.850 Hz) 5.34 rad/s.k m fω π π= = = =  
2 2 2

max (5.34 rad/s) (0.180 m) 5.13 m/s .a Aω= = =  
2 2 21 1 1

2 2 2xmv kx kA+ =  

maxxv v=  when 0x =  so 2 21 1
max2 2mv kA=  

max / (5.34 rad/s)(0.180 m) 0.961 m/sv k mA Aω= = = =  

(b) 2 2 2( / ) (5.34 rad/s) (0.090 m) 2.57 m/sxa k m x xω= − = − = − = −  
2 2 21 1 1

2 2 2xmv kx kA+ =  says that 2 2 2 2/xv k m A x A xω= ± − = ± −  
2 2(5.34 rad/s) (0.180 m) (0.090 m) 0.832 m/sxv = ± − = ±  

The speed is 0.832 m/s. 
(c) cos( )x A tω φ= +  
Let /2φ π= −  so that 0x =  at 0.t =  
Then cos( /2) sin( )x A t A tω π ω= − =  [Using the trig identity cos( /2) sina aπ− = ] 
Find the time t that gives 0.120 m.x =  
0.120 m (0.180 m)sin( )tω=  
sin 0.6667tω =  

arcsin(0.6667)/ =0.7297 rad/(5.34 rad/s) 0.137 st ω= =  
EVALUATE: It takes one-fourth of a period for the object to go from 0x =  to 0.180 m.x A= =  So the time we have 
calculated should be less than /4.T  1/ 1/0.850 Hz 1.18 s,T f= = =  /4 0.295 s,T =  and the time we calculated is less 
than this. Note that the xa  and xv  we calculated in part (b) are smaller in magnitude than the maximum values we 
calculated in part (b). 
(d) The conservation of energy equation relates v and x and F ma=  relates a and x. So the speed and acceleration 
can be found by energy methods but the time cannot. 
Specifying x uniquely determines xa  but determines only the magnitude of ;xv  at a given x the object could be 
moving either in the x+  or x−  direction. 

13.25. IDENTIFY: Use the results of Example 13.15 and also that 21
2E kA= . 

SET UP: In the example, 2 1
MA A M m=
+

 and now we want 1
2 12A A= . Therefore, 1  

2
M

M m=
+

, or 3 .m M=  For 

the energy, 21
2 22E kA= , but since 1

2 12A A= , 1
2 14 E E= , and 3

14 E  is lost to heat. 
EVALUATE: The putty and the moving block undergo a totally inelastic collision and the mechanical energy of the 
system decreases. 

13.26. IDENTIFY and SET UP: Use Eq.(13.21). x Aω= ±  when 0xv =  and maxxv v= ±  when 0.x =  

EXECUTE: (a) 2 21 1
2 2E mv kx= +  

2 21 1
2 2(0.150 kg)(0.300 m/s) (300 N/m)(0.012 m) 0.0284 JE = + =  

(b) 21
2E kA=  so 2 / 2(0.0284 J)/300 N/m 0.014 mA E k= = =  

(c) 21
max2E mv=  so max 2 / 2(0.0284 J)/0.150 kg 0.615 m/sv E m= = =  

EVALUATE: The total energy E is constant but is transferred between kinetic and potential energy during the 
motion. 

13.27. IDENTIFY: Conservation of energy says 2 2 21 1 1
2 2 2mv kx kA+ = and Newton�s second law says xkx ma− = . 

SET UP: Let +x be to the right. Let the mass of the object be m. 

EXECUTE: 
2

28.40 m/s (14.0 s )
0.600 m

xmak m m
x

−⎛ ⎞−
= − = − =⎜ ⎟

⎝ ⎠
. 

2 2 2 2
2( / ) (0.600 m) (2.20 m/s) 0.840 m

[14.0 s ]
mA x m k v

m−

⎛ ⎞
= + = + =⎜ ⎟

⎝ ⎠
. The object will therefore 

travel 0.840 m 0.600 m 0.240 m− = to the right before stopping at its maximum amplitude. 
EVALUATE: The acceleration is not constant and we cannot use the constant acceleration kinematic equations. 
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13.28. IDENTIFY: When the box has its maximum speed all of the energy of the system is in the form of kinetic energy. 
When the stone is removed the oscillating mass is decreased and the speed of the remaining mass is unchanged. The 

period is given by 2 mT
k

π= . 

SET UP: The maximum speed is max
kv A A
m

ω= = . With the stone in the box 8.64 kgm = and 0.0750 mA = . 

EXECUTE: (a) 5.20 kg2 2 0.740 s
375 N/m

mT
k

π π= = =  

(b) Just before the stone is removed, the speed is max
375 N/m (0.0750 m) 0.494 m/s
8.64 kg

v = = . The speed of the box 

isn't altered by removing the stone but the mass on the spring decreases to 5.20 kg. The new amplitude is 

max
5.20 kg (0.494 m/s) 0.0582 m
375 N/m

mA v
k

= = = . The new amplitude can also be calculated as 

5.20 kg (0.0750 m) 0.0582 m
8.64 kg

= . 

(c) 2 mT
k

π= . The force constant remains the same. m decreases, so T decreases. 

EVALUATE: After the stone is removed, the energy left in the system is 
2 21 1

box max2 2 (5.20 kg)(0.494 m/s) 0.6345 Jm v = = . This then is the energy stored in the spring at its maximum extension 

or compression and 21
2 0.6345 JkA = . This gives the new amplitude to be 0.0582 m, in agreement with our previous 

calculation. 
13.29. IDENTIFY: Work in an inertial frame moving with the vehicle after the engines have shut off. The acceleration 

before engine shut-off determines the amount the spring is initially stretched. The initial speed of the ball relative to 
the vehicle is zero. 
SET UP: Before the engine shut-off the ball has acceleration 25.00 m/sa = . 

EXECUTE: (a) x xF kx ma= − = gives 
2(3.50 kg)(5.00 m/s ) 0.0778 m

225 N/m
maA
k

= = = . This is the amplitude of the 

subsequent motion. 

(b) 1 1 225 N/m 1.28 Hz
2 2 3.50 kg

kf
mπ π

= = =  

(c) Energy conservation gives 2 21 1
max2 2kA mv= and max

225 N/m (0.0778 m) 0.624 m/s
3.50 kg

kv A
m

= = = . 

EVALUATE: During the simple harmonic motion of the ball its maximum acceleration, when x A= ± , continues to 
have magnitude 25.00 m/s . 

13.30. IDENTIFY: Use the amount the spring is stretched by the weight of the fish to calculate the force constant k of the 
spring. 2 / .T m kπ=  max 2 .v A fAω π= =  
SET UP: When the fish hangs at rest the upward spring force xF kx= equals the weight mg of the fish. 1/f T= . The 
amplitude of the SHM is 0.0500 m. 

EXECUTE: (a) mg kx=  so 
2

3(65.0 kg)(9.80 m/s ) 5.31 10  N/m
0.120 m

mgk
x

= = = × . 

(b) 3

65.0 kg2 2 0.695 s
5.31 10  N/m

mT
k

π π= = =
×

. 

(c) max
2 2 (0.0500 m)2 0.452 m/s

0.695 s
Av fA

T
π ππ= = = =  

EVALUATE: Note that T depends only on m and k and is independent of the distance the fish is pulled down. But 
maxv does depend on this distance. 

13.31. IDENTIFY: Initially part of the energy is kinetic energy and part is potential energy in the stretched spring. When 
x A= ± all the energy is potential energy and when the glider has its maximum speed all the energy is kinetic energy. 
The total energy of the system remains constant during the motion. 
SET UP: Initially 0.815 m/sxv = ± and 0.0300 mx = ± . 
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EXECUTE: (a) Initially the energy of the system is 
2 2 2 21 1 1 1

2 2 2 2(0.175 kg)(0.815 m/s) (155 N/m)(0.0300 m) 0.128 JE mv kx= + = + = . 21
2 kA E= and 

2 2(0.128 J) 0.0406 m 4.06 cm
155 N/m

EA
k

= = = = . 

(b) 21
max2 mv E= and max

2 2(0.128 J) 1.21 m/s
0.175 kg

Ev
m

= = = . 

(c) 155 N/m 29.8 rad/s
0.175 kg

k
m

ω = = =  

EVALUATE: The amplitude and the maximum speed depend on the total energy of the system but the angular 
frequency is independent of the amount of energy in the system and just depends on the force constant of the spring 
and the mass of the object. 

13.32. IDENTIFY: 21
2K mv= , gravU mgy=  and 21

el 2U kx= . 
SET UP: At the lowest point of the motion, the spring is stretched an amount 2A. 
EXECUTE: (a) At the top of the motion, the spring is unstretched and so has no potential energy, the cat is not 
moving and so has no kinetic energy, and the gravitational potential energy relative to the bottom is 

22 2(4.00 kg)(9.80 m/s )(0.050 m) 3.92  JmgA = = . This is the total energy, and is the same total for each part. 
(b) grav spring0, 0,  so 3.92  JU K U= = = . 

(c) At equilibrium the spring is stretched half as much as it was for part (a), and so 1
spring 4 (3.92 J) 0.98  J,U = =  

1
grav 2 (3.92 J) 1.96 J,U = =  and so 0.98 J.K =  

EVALUATE: During the motion, work done by the forces transfers energy among the forms kinetic energy, 
gravitational potential energy and elastic potential energy. 

13.33. IDENTIFY: The location of the equilibrium position, the position where the downward gravity force is balanced by 
the upward spring force, changes when the mass of the suspended object changes. 
SET UP: At the equilibrium position, the spring is stretched a distance d. The amplitude is the maximum distance of 
the object from the equilibrium position. 
EXECUTE: (a) The force of the glue on the lower ball is the upward force that accelerates that ball upward. The 
upward acceleration of the two balls is greatest when they have the greatest downward displacement, so this is when 
the force of the glue must be greatest. 
(b) With both balls, the distance 1d that the spring is stretched at equilibrium is given by 1 (1.50 kg 2.00 kg)kd g= +  
and 1 20.8 cmd = . At the lowest point the spring is stretched 20.8 cm 15.0 cm 35.8 cm+ = . After the 1.50 kg ball 
falls off the distance 2d that the spring is stretched at equilibrium is given by 2 (2.00 kg)kd g= and 2 11.9 cmd = . 

The new amplitude is 35.8 cm 11.9 cm 23.9 cm− = . The new frequency is 1 1 165 N/m 1.45 Hz
2 2 2.00 kg

kf
mπ π

= = = . 

EVALUATE: The potential energy stored in the spring doesn�t change when the lower ball comes loose. 

13.34. IDENTIFY: The torsion constant κ is defined by zτ κθ= − . 1
2

f
I
κ

π
= and 1/T f= . ( ) cos( )t tθ ω φ= Θ + . 

SET UP: For the disk, 21
2I MR= . z FRτ = − . At 0t = , 3.34 0.0583 radθ = Θ = =° , so 0φ = . 

EXECUTE: (a) (4.23 N)(0.120 m) 8.71 N m/rad
0.0583 rad 0.0583 rad

z FRτκ
θ

−
= − = − = + = ⋅  

(b) 2 2
1 1 2 1 2(8.71 N m/rad) 2.71 Hz

2 2 2 (6.50 kg)(0.120 m)
f

I MR
κ κ

π π π
⋅

= = = = . 1/ 0.461 sT f= = . 

(c) 2 13.6 rad/sfω π= = . ( ) (3.34 )cos([13.6 rad/s] )t tθ = ° . 
EVALUATE: The frequency and period are independent of the initial angular displacement, so long as this 
displacement is small. 

13.35. IDENTIFY and SET UP: The number of ticks per second tells us the period and therefore the frequency. We can use a 
formula form Table 9.2 to calculate I. Then Eq.(13.24) allows us to calculate the torsion constant .κ  
EXECUTE: Ticks four times each second implies 0.25 s per tick. Each tick is half a period, so 0.50 sT =  and 

1/ 1/0.50 s 2.00 Hzf T= = =  

(a) Thin rim implies 2I MR=  (from Table 9.2). 3 2 2 8 2(0.900 10  kg)(0.55 10  m) 2.7 10  kg mI − − −= × × = × ⋅  

(b) 2 /T Iπ κ=  so 2 8 2 2(2 / ) (2.7 10  kg m )(2 /0.50 s)I Tκ π π−= = × ⋅ 64.3 10  N m/rad−= × ⋅  
EVALUATE: Both I and κ  are small numbers. 
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13.36. IDENTIFY: Eq.(13.24) and 1/T f= says 2 IT π
κ

= . 

SET UP: 21
2I mR= . 

EXECUTE: Solving Eq. (13.24) for κ in terms of the period, 
2 2

3 2 2 52 2 ((1 2)(2.00 10  kg)(2.20 10  m) ) 1.91 10  N m/rad.
1.00 s

π πI
T

κ − − −⎛ ⎞ ⎛ ⎞= = × × = × ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: The longer the period, the smaller the torsion constant. 

13.37. IDENTIFY: 1
2

f
I
κ

π
= . 

SET UP: 125/(265 s)f = , the number of oscillations per second. 

EXECUTE: 
( )

2
22

0.450 N m/rad 0.0152 kg m .
(2 ) 2 (125) (265 s)

I
πf π
κ ⋅

= = = ⋅  

EVALUATE: For a larger I, f is smaller. 
13.38. IDENTIFY: ( )tθ  is given by ( ) cos( )t tθ ω φ= Θ + . Evaluate the derivatives specified in the problem. 

SET UP: (cos ) / sind t dt tω ω ω= − . (sin ) / cosd t dt tω ω ω= . 2 2sin cos 1θ θ+ =  
In this problem, 0.φ =  

EXECUTE: (a) 
2 2

2 sin(  ) and  cos(  ).d dt tdt dt
θ θω ω ω ω ω= = − Θ = − Θ  

(b) When the angular displacement is Θ , cos( )tωΘ = Θ . This occurs at 0,t = so 0ω = . 2α ω= − Θ .   When the 

angular displacement is 1
22,  cos( ),  or cos( ).2 t tω ωΘΘ = Θ =  3

2
ωω − Θ

=  since 3sin( )
2

tω = . 
2

2
ωα − Θ

= , since 

cos( ) 1 2tω = . 
EVALUATE: 1

2cos( )tω =  when /3 rad 60tω π= = ° . At this t, cos( )tω is decreasing and θ is decreasing, as 
required. There are other, larger values of tω for which / 2θ = Θ , but θ is increasing. 

13.39. IDENTIFY and SET UP: Follow the procedure outlined in the problem. 
EXECUTE: Eq.(13.25): 12 6

0 0 0[( / ) 2( / ) ].U U R r R r= −  Let 0 .r R x= +  
12 6 12 6

0 0
0 0

0 0 0 0

1 12 2
1 / 1 /

R RU U U
R x R x x R x R

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 

12
12

0
0

1 (1 / ) ;
1 /

x R
x R

−⎛ ⎞
= +⎜ ⎟+⎝ ⎠

 0/ 1x R <<  

Apply Eq.(13.28) with 12n = −  and 0/ :u x R= +  
12

2 2
0 0

0

1 1 12 / 66 /
1 /

x R x R
x R

⎛ ⎞
= − + −⎜ ⎟+⎝ ⎠

…  

For 
6

0

1
1 /x R

⎛ ⎞
⎜ ⎟+⎝ ⎠

 apply Eq.(13.28) with 6n = −  and 0/ :u x R= +  

6
2 2

0 0
0

1 1 6 / 15 /
1 /

x R x R
x R

⎛ ⎞
= − + −⎜ ⎟+⎝ ⎠

…  

Thus 2 2 2 2 2 2
0 0 0 0 0 0 0 0(1 12 / 66 / 2 12 / 30 / ) 36 / .U U x R x R x R x R U U x R= − + − + − = − +  This is in the form 21

02U kx U= −  with 
2

0 072 / ,k U R=  which is the same as the force constant in Eq.(13.29). 
EVALUATE: /xF dU dx= −  so ( )U x  contains an additive constant that can be set to any value we wish. If 0 0U =  
then 0U =  when 0.x =  

13.40. IDENTIFY: Example 13.7 tells us that 1
2 ( / 2)

kf
mπ

= .  

SET UP: 271 u 1.66 10  kg−= ×  

EXECUTE: 
( ) ( )

14
27

1 1 2(580 N/m) 1.33 10  Hz.
2 2 2 1.008 (1.66 10  kg)

kf
mπ π −= = = ×

×
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EVALUATE: This frequency is much larger than f calculated in Example 13.7. Here m is smaller by a factor of 1/40 
but k is smaller by a factor of 1/700. 

13.41. IDENTIFY: 2 /T L gπ= is the time for one complete swing. 
SET UP: The motion from the maximum displacement on either side of the vertical to the vertical position is one-
fourth of a complete swing. 
EXECUTE: (a)  To the given precision, the small-angle approximation is valid. The highest 

speed is at the bottom of the arc, which occurs after a quarter period, 0.25 s.4 2
T L

g
π= =  

(b) The same as calculated in (a), 0.25 s. The period is independent of amplitude. 
EVALUATE: For small amplitudes of swing, the period depends on L and g. 

13.42. IDENTIFY: Since the rope is long compared to the height of a person, the system can be modeled as a simple 

pendulum. Since the amplitude is small, the period of the motion is 2 LT
g

π= . 

SET UP: From his initial position to his lowest point is one-fourth of a cycle. He returns to this lowest point in time 
/ 2T from when he was previously there. 

EXECUTE: (a) 2

6.50 m2 5.12 s
9.80 m/s

T π= = . / 4 1.28 st T= = . 

(b) 3 / 4 3.84 st T= = . 
EVALUATE: The period is independent of his mass. 

13.43. IDENTIFY: Since the cord is much longer than the height of the object, the system can be modeled as a simple 

pendulum. We will assume the amplitude of swing is small, so that 2 LT
g

π= . 

SET UP: The number of swings per second is the frequency 1 1
2

gf
T Lπ

= = . 

EXECUTE: 
21 9.80 m/s 0.407 swings per second

2 1.50 m
f

π
= = . 

EVALUATE: The period and frequency are both independent of the mass of the object. 
13.44. IDENTIFY: Use Eq.(13.34) to relate the period to g. 

SET UP: Let the period on earth be E E2 / ,T L gπ=  where 2
E 9.80 m/s ,g =  the value on earth. 

Let the period on Mars be M M2 / ,T L gπ=  where 2
M 3.71 m/s ,g =  the value on Mars. 

We can eliminate L, which we don�t know, by taking a ratio: 

EXECUTE: M E E

E M M

12 .
2

T L g g
T g L g

π
π

= =  

2
E

M E 2
M

9.80 m/s(1.60 s) 2.60 s.
g 3.71 m/s
gT T= = =  

EVALUATE: Gravity is weaker on Mars so the period of the pendulum is longer there. 
13.45. IDENTIFY and SET UP: The bounce frequency is given by Eq.(13.11) and the pendulum frequency by Eq.(13.33). 

Use the relation between these two frequencies that is specified in the problem to calculate the equilibrium length L 
of the spring, when the apple hangs at rest on the end of the spring. 

EXECUTE: vertical SHM: b
1

2
kf
mπ

=  

pendulum motion (small amplitude): p
1

2
gf
Lπ

=  

The problem specifies that 1
p b2 .f f=  

1 1 1
2 2 2

g k
L mπ π

=  

/ /4g L k m=  so 4 / 4 / 4(1.00 N)/1.50 N/m 2.67 mL gm k w k= = = =  
EVALUATE: This is the stretched length of the spring, its length when the apple is hanging from it. (Note: Small 
angle of swing means v is small as the apple passes through the lowest point, so rada  is small and the component of 
mg perpendicular to the spring is small. Thus the amount the spring is stretched changes very little as the apple 
swings back and forth.) 
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IDENTIFY: Use Newton�s second law to calculate the distance the spring is stretched form its unstretched length 
when the apple hangs from it. 
SET UP: The free-body diagram for the apple hanging at rest on the end of the spring is given in Figure 13.45. 

 

EXECUTE: y yF ma=∑  
0k L mgΔ − =  

/ / 1.00 N/1.50 N/m 0.667 mL mg k w kΔ = = = =  

Figure 13.45  
Thus the unstretched length of the spring is 2.67 m 0.67 m 2.00 m.− =  
EVALUATE: The spring shortens to its unstretched length when the apple is removed. 

13.46. IDENTIFY: tana Lα= , 2
rada Lω= and 2 2

tan rada a a= + . Apply conservation of energy to calculate the speed in 
part (c).  
SET UP: Just after the sphere is released, 0ω = and rad 0a = . When the rod is vertical, tan 0a = . 
EXECUTE: (a) The forces and acceleration are shown in Figure 13.46a. rad 0a =  and tan sina a g θ= = . 
(b) The forces and acceleration are shown in Figure 13.46b. 
(c) The forces and acceleration are shown in Figure 13.46c. i fU K= gives 21

2(1 cos )mgL mv− Θ = and 

2 (1 cos )v gL= − Θ . 
EVALUATE: As the rod moves toward the vertical, v increases, rada  increases and tana  decreases. 

   
Figure 13.46 

13.47. IDENTIFY: Apply 2 /T L gπ=  
SET UP: The period of the pendulum is ( )136 s 100 1.36 s.T = =  

EXECUTE: ( )
( )

22
2

22

4 0.500 m4 10.7 m s .
1.36 s

ππ Lg
T

= = =  

EVALUATE: The same pendulum on earth, where g is smaller, would have a larger period. 

13.48. IDENTIFY: If a small amplitude is assumed, 2 LT
g

π= . 

SET UP: The fourth term in Eq.(13.35) would be 
2 2 2

6
2 2 2

1 3 5 sin
2 4 6 2

⋅ ⋅ Θ
⋅ ⋅

. 

EXECUTE: (a) 2

2.00 m2 2.84 s
9.80 m/s

T π= =  

(b) 2 4 61 9 225(2.84 s) 1 sin 15.0 sin 15.0 sin 15.0 2.89 s
4 64 2305

T ⎛ ⎞= + + + =⎜ ⎟
⎝ ⎠

° ° °  

(c) Eq.(13.35) is more accurate. Eq.(13.34) is in error by 2.84 s 2.89 s 2%
2.89 s

−
= − . 

EVALUATE: As Figure 13.22 in Section 13.5 shows, the approximation F mgθ θ= − is larger in magnitude than the 
true value as θ increases. Eq.(13.34) therefore over-estimates the restoring force and this results in a value of T that is 
smaller than the actual value. 



13-12 Chapter 13 

13.49. IDENTIFY: 2 /T I mgdπ= . 
SET UP: 0.200 md = . (120 s) /100T = . 

EXECUTE: ( )( )( )
2 2

2 2120 s 1001.80 kg 9.80 m s 0.200 m 0.129 kg.m .
2 2
TI mgd
π π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: If the rod were uniform, its center of gravity would be at its geometrical center and it would have 
length 0.400 ml = . For a uniform rod with an axis at one end, 2 21

3 0.096 kg mI ml= = ⋅ . The value of I for the actual 
rod is about 34% larger than this value. 

13.50. IDENTIFY: 2 /T I mgdπ=  
SET UP: From the parallel axis theorem, the moment of inertia of the hoop about the nail is 

2 2 22I MR MR MR= + = . d R= .  

EXECUTE: Solving for R, 22 8 0.496 m.R gT π= =  

EVALUATE: A simple pendulum of length L R= has period 2 /T R gπ= . The hoop has a period that is larger by a 

factor of 2 . 
13.51. IDENTIFY: For a physical pendulum, 2 /T I mgdπ= and for a simple pendulum 2 /T L gπ= . 

SET UP: For the situation described, 2  and I mL d L= = . 

EXECUTE: 
2

2 2 /mLT L g
mgL

π π= = , so the two expressions are the same. 

EVALUATE: Eq.(13.39) applies to any pendulum and reduces to Eq.(13.34) when the conditions for the object to be 
a simple pendulum are satisfied. 

13.52. IDENTIFY: Apply Eq.(13.39) to calculate I and conservation of energy to calculate the maximum angular speed, 
maxΩ . 

SET UP: 0.250 md = . In part (b), i (1 cos )y d= − Θ , with 0.400 radΘ = and f 0y = . 
EXECUTE: (a) Solving Eq.(13.39) for I, 

 ( )( )( )
2 2

2 20.940 s 1.80 kg 9.80 m s 0.250 m 0.0987 kg m .
2 2
TI mgd
π π

⎛ ⎞ ⎛ ⎞= = = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) The small-angle approximation will not give three-figure accuracy for Θ 0.400 rad.=  From energy 

considerations, ( ) 2
max

11 cos Ω .
2

mgd I− Θ =  Expressing maxΩ in terms of the period of small-angle oscillations, this 

becomes 

 ( ) ( )( )
2 2

max
2 22 1 cos 2 1 cos 0.400 rad 2.66 rad s.

0.940 s
π π

T
⎛ ⎞ ⎛ ⎞Ω = − Θ = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: The time for the motion in part (b) is / 4t T= , so av / (0.400 rad) /(0.235 s) 1.70 rad/stθΩ = Δ Δ = = . 
Ω  increases during the motion and the final Ω is larger than the average Ω . 

13.53. IDENTIFY: Pendulum A can be treated as a simple pendulum. Pendulum B is a physical pendulum. 

SET UP: For pendulum B the distance d from the axis to the center of gravity is 3 / 4L . ( ) 21 / 2
3

I m L=  for a bar of 

mass m/2 and the axis at one end. For a small ball of mass m/2 at a distance L from the axis, 2
ball ( / 2)I m L= . 

EXECUTE: Pendulum A: 2A
LT
g

π= .  

Pendulum B: 2 2 2
bar ball

1 2( / 2) ( / 2)
3 3

I I I m L m L mL= + = + = . 

22
3 2 4 82 2 2 2 0.943
(3 / 4) 3 3 9B A

I mL L LT T
mgd mg L g g

π π π π
⎛ ⎞

= = = ⋅ = =⎜ ⎟⎜ ⎟
⎝ ⎠

. The period is longer for pendulum A. 

EVALUATE: Example 13.9 shows that for the bar alone, 2 0.816
3 A AT T T= = . Adding the ball of equal mass to the 

end of the rod increases the period compared to that for the rod alone. 
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13.54. IDENTIFY:  The ornament is a physical pendulum: 2 /T I mgdπ=  (Eq.13.39). T is the target variable. 

SET UP: 25 /3,I MR=  the moment of inertia about an axis at the edge of the sphere. d is the distance from the axis 
to the center of gravity, which is at the center of the sphere, so .d R=  

EXECUTE: 22 5/3 / 2 5/3 0.050 m/(9.80m/s ) 0.58 s.T R gπ π= = =  
EVALUATE: A simple pendulum of length 0.050 mR =  has period 0.45 s; the period of the physical pendulum is 
longer. 

13.55. IDENTIFY: Pendulum A can be treated as a simple pendulum. Pendulum B is a physical pendulum. Use the parallel-
axis theorem to find the moment of inertia of the ball in B for an axis at the top of the string. 
SET UP: For pendulum B the center of gravity is at the center of the ball, so d L= . For a solid sphere with an axis 
through its center, 22

cm 5I MR= . /2R L=  and 21
cm 10I ML= . 

EXECUTE: Pendulum A: 2A
LT
g

π= .  

Pendulum B: The parallel-axis theorem says 2 211
cm 10I I ML ML= + = . 

211 11 112 2 2 1.05
10 10 10 A A

I ML LT T T
mgd MgL g

π π π
⎛ ⎞

= = = = =⎜ ⎟⎜ ⎟
⎝ ⎠

. It takes pendulum B longer to complete a swing. 

EVALUATE: The center of the ball is the same distance from the top of the string for both pendulums, but the mass 
is distributed differently and I is larger for pendulum B, even though the masses are the same. 

13.56. IDENTIFY: If the system is critically damped or overdamped it doesn�t oscillate. With no damping, /m kω = . 

With underdamping, the angular frequency has the smaller value 
2

24
k b
m m

ω′ = − . 

SET UP: 2.20 kgm = , 250.0 N/mk = . 2T π
ω

′ =
′

and 2 2 10.22 rad/s
0.615 sT

π πω′ = = =
′

. 

EXECUTE: (a) 250.0 N/m 10.66 rad/s
2.20 kg

k
m

ω = = = . ω ω′ <  so the system is damped. 
2

24
k b
m m

ω′ = − gives 

2 2250.0 N/m2 2(2.20 kg) (10.22 rad/s) 13.3 kg/s
2.20 kg

kb m
m

ω′= − = − = . 

(b) Since the motion has a period the system oscillates and is underdamped. 
EVALUATE: The critical value of the damping constant is 2 2 (250.0 N/m)(2.20 kg) 46.9 kg/sb km= = = . In this 
problem b is much less than its critical value. 

13.57. IDENTIFY and SET UP: Use Eq.(13.43) to calculate ,ω′  and then /2 .f ω π′ ′=  

(a) EXECUTE: 2 2
2

2.50 N/m (0.900 kg/s)( / ) ( /4 ) 2.47 rad/s
0.300 kg 4(0.300 kg)

k m b mω
2

′ = − = − =  

/2 (2.47 rad/s)/2 0.393 Hzf ω π π′ ′= = =  

(b) IDENTIFY and SET UP: The condition for critical damping is 2b km=  (Eq.13.44) 
EXECUTE: 2 (2.50 N/m)(0.300 kg) 1.73 kg/sb = =  
EVALUATE: The value of b in part (a) is less than the critical damping value found in part (b). With no damping, the 
frequency is 0.459 Hz;f =  the damping reduces the oscillation frequency. 

13.58. IDENTIFY: From Eq.(13.42) ( )2 1  exp 2
bA A tm= − . 

SET UP: ln( )xe x− = −  

EXECUTE: 1

2

2 2(0.050 kg) 0.300 m ln ln 0.0220 kg/s.
(5.00 s) 0.100 m

m Ab
t A

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: As a check, note that the oscillation frequency is the same as the undamped frequency to 
34.8 10 %, so Eq. (13.42) is valid.−×  

13.59. IDENTIFY: ( )x t is given by Eq.(13.42). /xv dx dt= and /x xa dv dt= . 

SET UP: (cos )/ sind t dt tω ω ω′ ′ ′= − . (sin )/ cosd t dt tω ω ω′ ′ ′= . ( )/t td e dt eα αα− −= − . 
EXECUTE: (a) With 0φ = , (0)x A= . 
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(b) ( 2 )  cos  sin ,
2

b m t
x

dx bv Ae ω t ω ω t
dt m

− ⎡ ⎤′ ′ ′= = − −⎢ ⎥⎣ ⎦
 and at 0,  /2 ;xt v Ab m= = −  the graph of x versus t near 0t =  

slopes down. 

(c) 
2

( 2 ) 2
2 cos  sin ,

4 2
b m tx

x
dv b ω ba Ae ω ω t ω t
dt m m

− ⎡ ⎤′⎛ ⎞
′ ′ ′= = − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 and at 0,t =  

2 2
2

2 2 .
4 2x
b b ka A ω A
m m m

⎛ ⎞ ⎛ ⎞
′= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(Note that this is 0 0( ) .)bv kx m− −  This will be negative if 2 ,  zero if 2   and positive if 2 .b km b km b km< = >  
The graph in the three cases will be curved down, not curved, or curved up, respectively. 
EVALUATE: (0) 0xa = corresponds to the situation of critical damping. 

13.60. IDENTIFY: Apply Eq.(13.46). 
SET UP: d /k mω = corresponds to resonance, and in this case Eq.(13.46) reduces to max dA F bω= . 
EXECUTE: (a) 1/3A  
(b) 12A  
EVALUATE: Note that the resonance frequency is independent of the value of b. (See Figure 13.28 in the textbook). 

 13.61 IDENTIFY and SET UP: Apply Eq.(13.46): max
2 2 2 2
d d( )

FA
k m bω ω

=
− +

 

EXECUTE: (a) Consider the special case where 2
d 0,k mω− =  so max d/A F bω=  and max d/ .b F Aω=  Units of max

d

F
Aω

 are 

2

1
kg m/s kg/s.
(m)(s )−

⋅
=  For units consistency the units of b must be kg/s.  

(b) Units of :km  1 2 1 2 2 1 2[(N/m)kg] (N kg/m) [(kg m/s )(kg)/m]= = ⋅ = 2 2 1 2(kg /s ) kg/s,=  the same as the units for b. 

(c) For d /k mω =  (at resonance) max( / ) / .A F b m k=  

(i) 0.2b km=  

max max
max

1 5.0 .
0.20.2

m F FA F
k k kkm

= = =  

(ii) 0.4b km=  

max max
max

1 2.5 .
0.40.4

m F FA F
k k kkm

= = =  

EVALUATE: Both these results agree with what is shown in Figure 13.28 in the textbook. As b increases the 
maximum amplitude decreases. 

13.62. IDENTIFY: Calculate the resonant frequency and compare to 35 Hz. 
SET UP: ω in rad/s is related to f in Hz by 2 fω π= . 

EXECUTE: The resonant frequency is 6/ (2.1 10  N/m) 108 kg  139 rad/s 22.2 Hz,k m = × = =  and this package does 
not meet the criterion. 
EVALUATE: To make the package meet the requirement, increase the resonant frequency by increasing the force 
constant k. 

13.63. IDENTIFY: xma kx= −  so 2
max

ka A A
m

ω= = is the magnitude of the acceleration when x A= ± . max
kv A A
m

ω= = . 

W KP
t t

Δ
= = . 

SET UP: 0.0500 mA = . 3500 rpm 366.5 rad/sω = = .  

EXECUTE: (a) 2 2 3 2
max (366.5 rad/s) (0.0500 m) 6.72 10  m/sa Aω= = = ×  

(b) 3 2 3
max max (0.450 kg)(6.72 10  m/s ) 3.02 10  NF ma= = × = ×  

(c) max (366.5 rad/s)(0.0500 m) 18.3 m/sv Aω= = = . 2 21 1
max max2 2 (0.450 kg)(18.3 m/s) 75.4 JK mv= = =  

(d) 
21

2 mvP
t

= . 32 4.286 10  s
4 4
Tt π

ω
−= = = × . 

2
4

3
(0.450 kg)(18.3 m/s) 1.76 10  W

2(4.286 10  s)
P −= = ×

×
. 

(e) maxa is proportional to 2ω , so maxF increases by a factor of 4, to 41.21 10  N× . maxv is proportional to ω , so 

maxv doubles, to 36.6 m/s, and maxK increases by a factor of 4, to 302 J. In part (d). t is halved and K is quadrupled, so 

maxP increases by a factor of 8 and becomes 51.41 10  W× . 
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EVALUATE: For a given amplitude, the maximum acceleration and maximum velocity increase when the frequency 
of the motion increases and the period decreases. 

13.64. IDENTIFY: 2 mT
k

π= . The period changes when the mass changes. 

SET UP: M is the mass of the empty car and the mass of the loaded car is 250 kgM + . 

EXECUTE: The period of the empty car is E 2 MT
k

π= . The period of the loaded car is L
250 kg2 MT
k

π +
= . 

2
4

2
(250 kg)(9.80 m/s ) 6.125 10  N/m

4.00 10  m
k −= = ×

×
 

2 2
4 3L 1.08 s250 kg (6.125 10  N/m) 250 kg 1.56 10  kg

2 2
TM k
π π

⎛ ⎞ ⎛ ⎞= − = × − = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
3

E 4

1.56 10  kg2 1.00 s
6.125 10  N/m

T π ×
= =

×
. 

EVALUATE: When the mass decreases, the period decreases. 
13.65. IDENTIFY and SET UP: Use Eqs. (13.12), (13.21) and (13.22) to relate the various quantities to the amplitude. 

EXECUTE: (a) 2 / ;T m kπ= independent of A so period doesn't change 
1/ ;f T=  doesn't change 
2 ;fω π=  doesn't change 

(b) 21
2E kA=  when .x A= ±  When A is halved E decreases by a factor of 4; 2 1/4.E E=  

(c) max 2v A fAω π= =  

max,1 12 ,v fAπ=  max,2 22v fAπ=  ( f  doesn�t change) 

Since 1 1 1 1
2 1 max,2 1 1 max,1 max2 2 2 2, 2 ( ) 2 ;A A v f A fA v vπ π= = = =  is one-half as great 

(d) 2 2/xv k m A x= ± −  

1/4x A= ±  gives 2 2
1/ /16xv k m A A= ± −  

With the original amplitude 2 2
1 1 1 1/ /16 15/16( / )xv k m A A k m A= ± − = ±  

With the reduced amplitude 2 2 2 2
2 2 1 1 1 1/ /16 / ( /2) /16 3/16( / )xv k m A A k m A A k m A= ± − = ± − = ±  

1 2/ 15/3 5,x xv v = =  so 2 1 / 5;v v=  the speed at this x is 1/ 5  times as great. 

(e) 21
2 ;U kx=  same x so same U. 

21
2 ;xK mv=  21

1 12 xK mv=  
2 2 21 1 1 1

2 2 1 1 12 2 5 2( / 5) ( ) /5;x x xK mv m v mv K= = = =  1/5 times as great.  
EVALUATE: Reducing A reduces the total energy but doesn't affect the period and the frequency. 

13.66. (a) IDENTIFY and SET UP: Combine Eqs. (13.12) and (13.21) to relate xv  and x to T. 

EXECUTE: 2 /T m kπ=  
We are given information about xv  at a particular x. The expression relating these two quantities comes from 

conservation of energy: 2 2 21 1 1
2 2 2xmv kx kA+ =  

We can solve this equation for / ,m k  and then use that result to calculate T. 2 2 2( )xmv k A x= −  

m
k

2 22 2 (0.100 m) (0.060 m) 0.267 s
0.300 m/sx

A x
v

−−
= = =  

Then ( )2 / 2 0.267 s 1.68 s.T m kπ π= = =  

(b) IDENTIFY and SET UP: We are asked to relate x and ,xv  so use conservation of energy equation: 
2 2 21 1 1

2 2 2xmv kx kA+ =  
2 2 2

xkx kA mv= −  
2 2 2 2 2( / ) (0.100 m) (0.267 s) (0.160 m/s) 0.090 mxx A m k v= − = − =  

EVALUATE: Smaller xv  means larger x. 
(c) IDENTIFY: If the slice doesn't slip the maximum acceleration of the plate (Eq.13.4) equals the maximum 
acceleration of the slice, which is determined by applying Newton's 2nd law to the slice. 
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SET UP: For the plate, xkx ma− =  and ( / ) .xa k m x= −  The maximum x  is A, so max ( / ) .a k m A=  If the carrot slice 
doesn't slip then the static friction force must be able to give it this much acceleration. The free-body diagram for the 
carrot slice (mass m′ ) is given in Figure 13.66. 

 

EXECUTE: y yF ma=∑  
0n m g′− =  

n m g′=  

Figure 13.66  

x xF ma=∑  

sn m aμ ′=  

sm g m aμ ′ ′=  and sa gμ=  

But we require that max ( / ) sa a k m A gμ= = =  and 
2

2
1 0.100 m 0.143

0.267 s 9.80 m/ss
k A
m g

μ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: We can write this as 2
s / .A gμ ω=  More friction is required if the frequency or the amplitude is 

increased. 
13.67. IDENTIFY: The largest downward acceleration the ball can have is g whereas the downward acceleration of the tray 

depends on the spring force. When the downward acceleration of the tray is greater than g, then the ball leaves the 
tray. ( ) cos( )y t A tω φ= + . 
SET UP: The downward force exerted by the spring is F kd= , where d is the distance of the object above the 

equilibrium point. The downward acceleration of the tray has magnitude F kd
m m

= , where m is the total mass of the 

ball and tray. x A= at 0t = , so the phase angle φ  is zero and +x is downward. 

EXECUTE: (a) kd g
m

= gives 
2(1.775 kg)(9.80 m/s ) 9.40 cm

185 N/m
mgd
k

= = = . This point is 9.40 cm above the 

equilibrium point so is 9.40 cm 15.0 cm 24.4 cm+ = above point A. 

(b) 185 N/m 10.2 rad/s
1.775 kg

k
m

ω = = = . The point in (a) is above the equilibrium point so 9.40 cmx = − . 

cos( )x A tω= gives 9.40 cmarccos arccos 2.25 rad
15.0 cm

xt
A

ω −⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 2.25 rad 0.221 s
10.2 rad/s

t = = . 

(c) 2 2 21 1 1
2 2 2kx mv kA+ = gives 2 2 2 2185 N/m( ) ([0.150 m] [ 0.0940 m] ) 1.19 m/s

1.775 kg
kv A x
m

= − = − − = .  

EVALUATE: The period is 2 0.615 smT
k

π= = . To go from the lowest point to the highest point takes time 

/ 2 0.308 sT = . The time in (b) is less than this, as it should be. 

13.68. IDENTIFY: In SHM, max
tot

ka A
m

= . Apply m∑F = a
# #  to the top block. 

SET UP: The maximum acceleration of the lower block can�t exceed the maximum acceleration that can be given to 
the other block by the friction force. 
EXECUTE: For block m, the maximum friction force is s s sf n mgμ μ= = . x xF ma=∑  gives smg maμ =  and 

sa gμ= . Then treat both blocks together and consider their simple harmonic motion. max
ka A

M m
⎛ ⎞= ⎜ ⎟+⎝ ⎠

. Set 

maxa a=  and solve for A: s
kg A

M m
μ ⎛ ⎞= ⎜ ⎟+⎝ ⎠

 and s ( )g M mA
k

μ +
= . 

EVALUATE: If A is larger than this the spring gives the block with mass M a larger acceleration than friction can 
give the other block, and the first block accelerates out from underneath the other block. 

13.69. IDENTIFY: Apply conservation of linear momentum to the collision and conservation of energy to the motion after 

the collision. 1
2

kf
mπ

= and 1T
f

= . 
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SET UP: The object returns to the equilibrium position in time / 2T . 

EXECUTE: (a) Momentum conservation during the collision: 0 (2 )mv m V= . 0
1 1 (2.00 m s) 1.00 m s
2 2

V v= = = . 

Energy conservation after the collision: 2 21 1
2 2

MV kx= .  

2 2(20.0 kg)(1.00 m s)   0.500 m (amplitude)
80.0 N m

MVx
k

= = =  

2  ω πf k M= = . 1 1 80.0 N m 0.318 Hz
2 2 20.0 kg

f k M
π π

= = = . 1 1 3.14 s
0.318 Hz

T
f

= = = . 

(b) It takes 1 2  period to first return: 1
2 (3.14 s) 1.57 s=  

EVALUATE: The total mechanical energy of the system determines the amplitude. The frequency and period depend 
only on the force constant of the spring and the mass that is attached to the spring. 

13.70. IDENTIFY: The upward acceleration of the rocket produces an effective downward acceleration for objects in its 
frame of reference that is equal to g a g′ = + . 
SET UP: The amplitude is the maximum displacement from equilibrium and is unaffected by the motion of the 

rocket. The period is affected and is given by 2 LT
g

π=
′

. 

EXECUTE:  The amplitude is 8.50° . 2 2

1.10 m2 1.77 s
4.00 m/s 9.80 m/s

T π= =
+

. 

EVALUATE: For a pendulum of the same length and with its point of support at rest relative to the earth, 

2 2.11 sLT
g

π= = . The upward acceleration decreases the period of the pendulum. If the rocket were instead 

accelerating downward, the period would be greater than 2.11 s. 

13.71. IDENTIFY: The object oscillates as a physical pendulum, so object1
2

m gd
f

Iπ
= . Use the parallel-axis theorem, 

2
cmI I Md= + , to find the moment of inertia of each stick about an axis at the hook. 

SET UP: The center of mass of the square object is at its geometrical center, so its distance from the hook is 
cos45 / 2L L=° . The center of mass of each stick is at its geometrical center. For each stick, 21

cm 12I mL= . 
EXECUTE: The parallel-axis theorem gives I for each stick for an axis at the center of the square to be 

2 2 21 1
12 3( / 2)mL m L mL+ = and the total I for this axis is 24

3 mL . For the entire object and an axis at the hook, applying 

the parallel-axis theorem again to the object of mass 4m gives 2 2 2104
3 34 ( / 2)I mL m L mL= + = . 

object
210

3

1 1 4 / 2 6 1 10.921
2 2 2 25 2

m gd mgL g gf
I mL L Lπ π π π

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

EVALUATE: Just as for a simple pendulum, the frequency is independent of the mass. A simple pendulum of length 

L has frequency 1
2

gf
Lπ

= and this object has a frequency that is slightly less than this. 

13.72. IDENTIFY: Conservation of energy says K U E+ = . 
SET UP: 21

2U kx= and 21
max 2E U kA= = . 

EXECUTE: (a) The graph is given in Figure 13.72. The following answers are found algebraically, to be used as a 
check on the graphical method. 

(b) 2 2(0.200 J) 0.200 m.
(10.0 N/m)

EA
k

= = =  

(c) 0.050 J4
E = . 

(d) 1
2U E= . 0.141 m

2
Ax = = . 

(e) From Eq. (13.18), using 0 0
0 0

2 2and ,K Uv xm k= − =  00 0

0 00

(2 / )
0.429

( / ) (2 / )
K mv K

x Uk m U kω
− = = = and 

( )arctan 0.429 0.580 radφ = = . 
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EVALUATE: The dependence of U on x is not linear and 1
max2U U= does not occur at 1

max2x x= . 

 
Figure 13.72 

13.73. IDENTIFY: 2 mT
k

π= so the period changes because the mass changes.  

SET UP: 32.00 10  kg/sdm
dt

−= − × . The rate of change of the period is dT
dt

. 

EXECUTE: (a) When the bucket is half full, 7.00 kgm = . 7.00 kg2 1.49 s
125 N/m

T π= = . 

(b) 1/ 2 1/ 21
2

2 2( )dT d dm dmm m
dt dt dt dtk k mk

π π π−= = = . 

3 4( 2.00 10  kg/s) 2.12 10  s per s
(7.00 kg)(125 N/m)

dT
dt

π − −= − × = − × . dT
dt

is negative; the period is getting shorter. 

(c) The shortest period is when all the water has leaked out and 2.00 kgm = . Then 0.795 sT = . 
EVALUATE: The rate at which the period changes is not constant but instead increases in time, even though the rate 
at which the water flows out is constant. 

13.74. IDENTIFY: Use xF kx= − to determine k for the wire. Then 1
2

kf
mπ

= . 

SET UP: F mg=  moves the end of the wire a distance lΔ . 

EXECUTE: The force constant for this wire is mgk l=
Δ

, so 
2

3

1 1 1 9.80 m s 11.1 Hz.
2 2 2 2.00 10 m

k gf
π m π l π −= = = =

Δ ×
 

EVALUATE: The frequency is independent of the additional distance the ball is pulled downward, so long as that 
distance is small. 

13.75. IDENTIFY and SET UP: Measure x from the equilibrium position of the object, where the gravity and spring forces 
balance. Let x+  be downward. 
(a) Use conservation of energy (Eq.13.21) to relate xv and x. Use Eq. (13.12) to relate T to k/m. 

EXECUTE: 2 2 21 1 1
2 2 2xmv kx kA+ =  

For 2 21 1
2 20, xx mv kA= =  and / ,v A k m= just as for horizontal SHM. We can use the period to calculate 

/ : 2 /k m T m kπ=  implies / 2 / .k m Tπ=  Thus ( )2 / 2 0.100 m /4.20 s 0.150 m/s.v A Tπ π= = =  

(b) IDENTIFY and SET UP: Use Eq.(13.4) to relate xa  and x. 
EXECUTE:  so ( / )x xma kx a k m x= − = −  

x+ -direction is downward, so here 0.050 mx = −  
2 2 2(2 / ) ( 0.050 m) (2 /4.20 s) (0.050 m) 0.112 m/sxa Tπ π= − − = + =  (positive, so direction is downward) 

(c) IDENTIFY and SET UP: Use Eq.(13.13) to relate x and t. The time asked for is twice the time it takes to go from 
0x =  to 0.050 m.x = +  
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EXECUTE: ( ) cos( )x t A tω φ= +  
Let /2,  so 0 at 0.x tφ π= − = =  Then cos( /2) sin sin(2 / ).x A t A t A t Tω π ω π= − = =  Find the time t that gives 

0.050 m:x = +  0.050 m (0.100 m) sin(2 / )t Tπ=  
2 / arcsin(0.50) /6 and /12 4.20 s/12 0.350 st T t Tπ π= = = = =  
The time asked for in the problem is twice this, 0.700 s. 
(d) IDENTIFY: The problem is asking for the distance d that the spring stretches when the object hangs at rest from it. 
Apply Newton's 2nd law to the object. 
SET UP:  The free-body diagram for the object is given in Figure 13.75. 

 

EXECUTE: x xF ma=∑  
0mg kd− =  

( / )d m k g=  

Figure 13.75  

But / 2 /k m Tπ=  (part (a)) and m/k 2( /2 )T π=  
2 2

24.20 s (9.80 m/s ) 4.38 m.
2 2
Td g
π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: When the displacement is upward (part (b)), the acceleration is downward. The mass of the partridge is 
never entered into the calculation. We used just the ratio k/m, that is determined from T. 

13.76. IDENTIFY: ( ) cos( )x t A tω φ= + , sin( )xv A tω ω φ= − + and 2
xa xω= − . 2 /Tω π= . 

SET UP: x A= when 0t = gives 0φ = . 

EXECUTE: ( ) 20.240 m cos
1.50 s

tx π⎛ ⎞= ⎜ ⎟
⎝ ⎠

. ( )
( ) ( )2 0.240 m 2 2sin 1.00530 m s sin
1.50 s 1.50 s 1.50 sx

t tv
π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

( ) ( )
2

22 2 20.240 m cos 4.2110 m s cos
1.50 s 1.50 s 1.50 sx

t ta π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

(a) Substitution gives 0.120 m,x = −  or using 3
Tt = gives  cos 120 2

Ax A −= ° = . 

(b) Substitution gives ( )( )2 20.0200 kg 2.106 m s 4.21 10  N, in the -direction.xma x−= + = × +  

(c) 3 4 arccos 0.577 s.2
ATt π A

−⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(d) Using the time found in part (c), 0.665 m/s.v =  
EVALUATE: We could also calculate the speed in part (d) from the conservation of energy expression, Eq.(13.22). 

13.77. IDENTIFY: Apply conservation of linear momentum to the collision between the steak and the pan. Then apply 
conservation of energy to the motion after the collision to find the amplitude of the subsequent SHM. Use Eq.(13.12) 
to calculate the period. 
(a) SET UP: First find the speed of the steak just before it strikes the pan. Use a coordinate system with y+  
downward. 

0 0yv = (released from the rest); 2
0 0.40 m; 9.80 m/s ;yy y a− = = +  ?yv =  

2 2
0 02 ( )

yy yv v a y y= + −  

EXECUTE: 2
02 ( ) 2(9.80 m/s )(0.40 m) 2.80 m/sy yv a y y= + − = + = +  

SET UP: Apply conservation of momentum to the collision between the steak and the pan. After the collision the 
steak and the pan are moving together with common velocity 2v . Let A be the steak and B be the pan. The system 
before and after the collision is shown in Figure 13.77. 

 
Figure 13.77 
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EXECUTE: yP  conserved: 1 1 2( )A A y B B y A B ym v m v m m v+ = +  

1 2( )A A A Bm v m m v= +  

2 1
2.2 kg (2.80 m/s) 2.57 m/s

2.2 kg 0.20 kg
A

A
A B

mv v
m m

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

(b) SET UP: Conservation of energy applied to the SHM gives: 2 2 21 1 1
0 02 2 2mv kx kA+ =  where 0v  and 0x  are the initial 

speed and displacement of the object and where the displacement is measured from the equilibrium position of the object. 
EXECUTE: The weight of the steak will stretch the spring an additional distance d given by kd mg=  so 

2(2.2 kg)(9.80 m/s ) 0.0539 m.
400 N/m

mgd
k

= = =  So just after the steak hits the pan, before the pan has had time to move, 

the steak plus pan is 0.0539 m above the equilibrium position of the combined object. Thus 0x 0.0539 m.= From part 
(a) 0 2.57 m/s,v =  the speed of the combined object just after the collision. Then 2 2 21 1 1

0 02 2 2mv kx kA+ =  gives 
2 2 2 2
0 0 2.4 kg(2.57 m/s) (400 N/m)(0.0539 m) 0.21 m

400 N/m
mv kxA

k
+ +

= = =  

(c) 2.4 kg2 / 2 0.49 s
400 N/m

T m kπ π= = =  

EVALUATE: The amplitude is less than the initial height of the steak above the pan because mechanical energy is 
lost in the inelastic collision. 

13.78. IDENTIFY: 1
2

kf
mπ

= . Use energy considerations to find the new amplitude. 

SET UP: 1
20.600 Hz, 400 kg;   gives 5685 N/m.kf m f km= = = =  This is the effective force constant of the two springs. 

(a) After the gravel sack falls off, the remaining mass attached to the springs is 225 kg. The force constant of the 
springs is unaffected, so 0.800 Hz.f =  To find the new amplitude use energy considerations to find the distance 
downward that the beam travels after the gravel falls off.  Before the sack falls off, the amount x0 that the spring is 
stretched at equilibrium is given by 2

0 0,  so / (400 kg)(9.80 m/s )/(5685 N/m) 0.6895 m.mg kx x mg k− = = =  The 
maximum upward displacement of the beam is 0.400 mA =  above this point, so at this point the spring is  
stretched 0.2895 m. With the new mass, the mass 225 kg of the beam alone, at equilibrium the spring is stretched 

2/ (225 kg)(9.80 m/s ) /(5685 N/m) 0.6895 m.mg k = = The new amplitude is therefore 0.3879 m 0.2895 m 0.098 m.− =  
The beam moves 0.098 m above and below the new equilibrium position. Energy calculations show that 0v = when 
the beam is 0.098 m above and below the equilibrium point. 
(b) The remaining mass and the spring constant is the same in part (a), so the new frequency is again 0.800 Hz.  
The sack falls off when the spring is stretched 0.6895 m. And the speed of the beam at this point is /v A k m= =  
(0.400 m) (5685 N/m)/(400 kg) 1.508 m/s.=  Take 0y = at this point. The total energy of the beam at this point, just 
after the sack falls off, is 2 21 1

el grav 2 2(225 kg)(1.508 m/s ) (5695 N/m)(0.6895 m) 0 1608 J.E K U U= + + = + + =  Let 
this be point 1. Let point 2 be where the beam has moved upward a distance d and where 0v = . 

( )21
2 1 22 0.6985 m .  E k d mgd E E= − + =  gives 0.7275 md = . At this end point of motion the spring is compressed 

0.7275 m � 0.6895 m = 0.0380 m. At the new equilibrium position the spring is stretched 0.3879 m, so the new 
amplitude is 0.3789 m + 0.0380 m = 0.426 m. Energy calculations show that v is also zero when the beam is 0.426 m 
below the equilibrium position. 
EVALUATE: The new frequency is independent of the point in the motion at which the bag falls off. The new 
amplitude is smaller than the original amplitude when the sack falls off at the maximum upward displacement of the 
beam. The new amplitude is larger than the original amplitude when the sack falls off when the beam has maximum 
speed. 

13.79. IDENTIFY and SET UP: Use Eq.(13.12) to calculate g and use Eq.(12.4) applied to Newtonia to relate g to the mass 
of the planet. 
EXECUTE: The pendulum swings through 1

2  cycle in 1.42 s, so T = 2.84 s. L = 1.85 m. Use T to find g: 
2 22 /g  so g (2 / ) 9.055 m/sT L L Tπ π= = =  

Use g to find the mass pM  of Newtonia: 2
p p/g GM R=  

7 6
p p2 5.14 10  m, so 8.18 10  mR Rπ = × = ×  

2
p 24

p 9.08 10  kg
gR

m
G

= = ×  
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EVALUATE:  g is similar to that at the surface of the earth. The radius of Newtonia is a little less than earth's radius 
and its mass is a little more. 

13.80. IDENTIFY: xF kx= −  allows us to calculate k. 2 /T m kπ= . ( ) cos( )x t A tω φ= + . netF kx= − . 
SET UP: Let / 2φ π=  so ( ) sin( )x t A tω= . At 0t = , 0x = and the object is moving downward. When the object is 
below the equilibrium position, springF is upward. 

EXECUTE: (a) Solving Eq. (13.12) for m , and using Fk l=
Δ  

2 21 40.0 N 4.05 kg.
2 2 0.250 m
T Fm

lπ π
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠

 

(b) (0.35) ,  and so sin[2 (0.35)] 0.0405 m. Since / 4,t T x A t Tπ= = − = − > the mass has already passed the lowest point 
of its motion, and is on the way up.  
(c) Taking upward forces to be positive, spring ,  where F mg kx x− = −  is the displacement from equilibrium, 
so 2

spring (160 N/m)( 0.030 m) (4.05  kg)(9.80 m/s ) 44.5 N.F = − − + =  
EVALUATE: When the object is below the equilibrium position the net force is upward and the upward spring force 
is larger in magnitude than the downward weight of the object. 

13.81. IDENTIFY: Use Eq.(13.13) to relate x and t. T = 3.5 s. 
SET UP: The motion of the raft is sketched in Figure 13.81. 

 

Let the raft be at x A= +  
when 0.t =  Then 0φ =  and 

( ) cos .x t A tω=  

Figure 13.81  
EXECUTE: Calculate the time it takes the raft to move from 0.200 m to 0.100 m 0.100 m.x A x A= + = + = − =  
Write the equation for x(t) in terms of T rather than :ω  2 /Tω π=  gives that ( ) cos(2 / )x t A t Tπ=  
x A=  at 0t =  

0.100x =  m implies 0.100 m (0.200 m) cos(2 / )t Tπ=  
cos (2 / ) 0.500 so 2 / arccos(0.500) 1.047t T t Tπ π= = =  rad 

( /2 )(1.047 rad) (3.5 s/2 )(1.047 rad) 0.583 st T π π= = =  
This is the time for the raft to move down from 0.200x = m to 0.100x =  m. But people can also get off while the raft 
is moving up from 0.100x =  m to 0.200x =  m, so during each period of the motion the time the people have to get 
off is 2 2(0.583 s) 1.17t = =  s. 
EVALUATE: The time to go from 0x =  to x A=  and return is /2 1.75T =  s. The time to go from /2x A=  to A and 
return is less than this. 

13.82. IDENTIFY: 2 /T π ω= . ( )rF r kr= − to determine k. 

SET UP: Example 12.10 derives E
3
E

( )r
GM mF r r

R
= − . 

EXECUTE: /r ra F m= is in the form of Eq.(13.8), with x replaced by r, so the motion is simple harmonic. 

E
3
E

GM mk
R

= . 2 E
3
E E

k GM g
m R R

ω = = = . The period is then 
6

E
2

2 6.38 10  m2 2 5070 s,
9.80 m/s

π RT π π
ω g

×
= = = = or 84.5 min. 

EVALUATE: The period is independent of the mass of the object but does depend on ER , which is also the 
amplitude of the motion. 

13.83. IDENTIFY: If netF kx= , then k
m

ω = . Calculate netF . If it is of this form, calculate k. 

SET UP: The gravitational force between two point masses is 1 2
g 2

m mF G
r

= and is attractive. The forces on M are 

sketched in Figure 13.83. 

 
Figure 13.83 
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EXECUTE: (a) 2 2( / 2) / 2r d x d= + ≈ , if x d<< . 2tan
/ 2
x x

d d
θ = = . The net force is toward the original position 

of M and has magnitude net 22 sin
( / 2)

mMF G
d

θ= . Since θ is small, 2sin tan x
d

θ θ≈ = and net 3

16GmMF x
d

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. This is a 

restoring force. 

(b) Comparing the result in part (a) to netF kx= gives 3

16GmMk
d

= . 4k GM
m d d

ω = = . 2
2
d dT

GM
π π

ω
= = . 

(c) 3
11 2 2

(0.250 m) 0.250 m 2.40 10  s 40 min
2 (6.67 10  N m /kg )(100 kg)

T π
−= = × =

× ⋅
. This period is short enough that a 

patient person could measure it. The experiment would have to be done such that the gravitational forces are much 
larger than any other forces on M. The gravitational forces are very weak, so other forces, such as friction, forces 
from air currents, etc., would have to be kept extremely small. 
(d) If M is displaced toward one of the fixed masses there is a net force on M toward that mass and therefore away 
from the equilibrium position of M. The net force is not a restoring force and M would not oscillate, it would continue 
to move in the direction in which it was displaced.  
EVALUATE: The period is very long because the restoring force is very small. 

13.84. IDENTIFY: 
0

 

0  
( ) ( )

x

xx
U x U x F dx− = ∫ . In part (b) follow the steps outlined in the hint. 

SET UP: In part (a), let 0 0x = and 0( ) (0) 0U x U= = . The time for the object to go from 0x = to x A= is / 4T . 

EXECUTE: (a) 
  3 4

 0  0 4
x x

x
cU F dx c x dx x= − = =∫ ∫ . 

(b) From conservation of energy, 2 4 41
2 ( )4x

cmv A x= − . x
dxv
dt

= , so 
4 4

.
2

dx c dt
mA x

=
−

 Integrating from 0 to A  with 

respect to x and from 0 to 4T  with respect to ,t  
 

4 4 0 2 4
A dx c T

mA x
=

−∫  To use the hint, let ,xu
A

=  so that 

 dx a du=  and the upper limit of the u-integral is 1.u =  Factoring 2A  out of the square root, 
 1

4 0

1 1.31
321

du c T
A A mu

= =
−∫ , which may be expressed as 7.41 .mT A c=   

(c) The period does depend on amplitude, and the motion is not simple harmonic. 
EVALUATE: Simple harmonic motion requires xF kx= − , where k is a constant, and that is not the case here.  

13.85. IDENTIFY: Find the x-component of the vector Qv
# in Figure 13.6a in the textbook. 

SET UP: tansinxv v θ= − and tθ ω φ= + . 
EXECUTE: tansinxv v θ= − . Substituting for tanv and θ gives Eq. ( )13.15 .  

EVALUATE: At 0t = , Q is on the x-axis and has zero component of velocity. This corresponds to 0xv = in Eq.(13.15). 

13.86. IDENTIFY: cm totmV P= . 2/2K p m= for a single object and the total kinetic energy of the two masses is just the sum 
of their individual kinetic energies. 
SET UP: Momentum is a vector and kinetic energy is a scalar. 
EXECUTE: (a) For the center of mass to be at rest, the total momentum must be zero, so the momentum vectors 
must be of equal magnitude but opposite directions, and the momenta can be represented as  and .−p p# #  

(b) 
2 2

tot 2 .
2 2( /2)
p pK
m m

= =  

(c) The argument of part (a) is valid for any masses. The kinetic energy is 
2 2 2 2

1 2
tot

1 2 1 2 1 2 1 2

.
2 2 2 2( /( ))
p p p m m pK
m m m m m m m m

⎛ ⎞+
= + = =⎜ ⎟ +⎝ ⎠

 

EVALUATE: If 1 2m m m= = , the reduced mass is /2m . If 1 2m m>> , then the reduced mass is 2m . 
13.87. IDENTIFY: /rF dU dr= − . The equilibrium separation eqr  is given by eq( ) 0F r = . The force constant k is defined by 

rF kx= − . 1
2

kf
mπ

= , where m is the reduced mass. 
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SET UP: ( 1)( ) /n nd r dr nr− − += − , for 1n ≥ . 

EXECUTE: (a) 
7
0
9 2

1 .r
dU RF Α
dr r r

⎡ ⎤⎛ ⎞
= − = −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

(b) Setting the above expression for rF  equal to zero, the term in square brackets vanishes, so that 
7
0
9 2

eq eq

1 ,R
r r

=  or 

7 7
0 eq ,R r=  and eq 0.r R=  

(c) 19
0

0

7( ) 7.57 10  J.
8

AU R
R

−= − = − ×  

(d) The above expression for rF  can be expressed as  
9 2

9 2
0 02 2

0 0 0 0

(1 ( / )) (1 ( / ))r
A r r AF x R x R

R R R R

− −

− −
⎡ ⎤⎛ ⎞ ⎛ ⎞

⎡ ⎤⎢ ⎥= − = + − +⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

0 0 02 2 3
0 0 0

7[(1 9( / )) (1 2( / ))] ( 7 / ) .r
A A AF x R x R x R x

R R R
⎛ ⎞

≈ − − − = − = −⎜ ⎟
⎝ ⎠

 

(e) 12
3
0

1 1 7/ 8.39 10 Hz.
2 2

Af k m
R mπ π

= = = ×  

EVALUATE: The force constant depends on the parameters A and 0R  in the expression for ( ).U r  The minus sign in 
the expression in part (d) shows that for small displacements from equilibrium, rF  is a restoring force. 

13.88. IDENTIFY: Apply cmz zIτ α=∑  and cmx xF Ma −=∑ to the cylinders. Solve for cm .xa − Compatre to Eq.(13.8) to find the 
angular frequency and period, 2T πω= .  
SET UP: 

 

Let the origin of coordinate be at the 
center of the cylinders when they are 
at their equilibrium position. 

Figure 13.88a  
The free-body diagram for the cylinders when they are displaced a distance x to the left is given in Figure 13.88b. 

 

EXECUTE: 
cmz zIτ α=∑  

21
2( )sf R MR α=  

1
2sf MRα=  

But cmR aα = so  
1

cm2sf Ma=  

Figure 13.88b  

x xF ma=∑  

cmsf kx Ma− = −  
1

cm cm2 Ma kx Ma− = −  
3

cm2kx Ma=  

cm(2 /3 )k M x a=  

Eq. (13.8): 2
xa xω= −  (The minus sign says that x and xa  have opposite directions, as our diagram shows.) Our 

result for cma  is of this form, with 2 2 /3k Mω =  and 2 /3 .k Mω =  Thus 2 / 2 /2 .T M kπ ω π= = 3  

EVALUATE:  If there were no friction and the cylinder didn�t roll, the period would be 2 / .M kπ  The period when 
there is rolling without slipping is larger than this. 
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13.89. IDENTIFY: Apply conservation of energy to the motion before and after the collision. Apply conservation of linear 
momentum to the collision. After the collision the system moves as a simple pendulum. If the maximum angular 

displacement is small, 1
2

gf
Lπ

= . 

SET UP: In the motion before and after the collision there is energy conversion between gravitational potential 
energy mgh , where h is the height above the lowest point in the motion, and kinetic energy. 

EXECUTE: Energy conservation during downward swing: 21
2 0 22m gh m v=  and 

2
02  2(9.8 m/s )(0.100 m) 1.40 m/sv gh= = = . 

Momentum conservation during collision: 2 2 3( )m v m m V= + and 2

2 3

(2.00 kg)(1.40 m/s) 0.560 m/s
5.00 kg

m vV
m m

= = =
+

. 

Energy conservation during upward swing: 2
f

1
2

Mgh MV= and 
2

2
f 2

(0.560 m/s)/2 0.0160 m 1.60 cm
2(9.80 m/s )

h V g= = = = . 

Figure 13.89 shows how the maximum angular displacement is calculated from fh . 48.4 cmcos
50.0 cm

θ =  and 14.5θ = ° . 

21 1 9.80 m/s 0.705 Hz
2 2 0.500 m

gf
lπ π

= = = . 

EVALUATE: 14.5 0.253 rad=° . sin(0.253 rad) 0.250= . sinθ θ≈ and Eq.(13.34) is accurate. 

 
Figure 13.89 

13.90. IDENTIFY: 2 /T I mgdπ=  

SET UP: The model for the leg is sketched in Figure 13.90. 2 ,  3T I mgd m Mπ= = . 1 1 2 2
cg

1 2

m y m yd y
m m

+
= =

+
. For a 

rod with the axis at one end, 21
3I ML= . For a rod with the axis at its center, 21

12I ML= .  

EXECUTE: 2 ([1.55 m]/2) (1.55 m [1.55 m]/2) 1.292 m
3

M Md
M

+ +
= = . 1 2I I I+ + . 

2 21
1 3 (2 )(1.55 m) (1.602 m )I M M= = . 21

2,cm 12 (1.55 m)I M= . The parallel-axis theorem (Eq. 9.19) gives 
2 2

2 2,cm (1.55 m [1.55 m]/2) (5.06 m )I I M M= + + = . 2
1 2 (7.208 m )I I I M= + = . Then 

2(7.208 m )2 / 2 2.74 s.
(3 )(9.80 m/s )(1.292 m)

MT I mgd
M

π π 2= = =  

EVALUATE: This is a little smaller than 2.9 sT = found in Example 13.10. 

 
Figure 13.90 

13.91: IDENTIFY: The motion is simple harmonic if the equation of motion for the angular oscillations is of the form 
2

2
d
dt I

θ κ θ= − , and in this case the period is 2 /T Iπ κ=  

SET UP: For a slender rod pivoted about its center, 21
12I ML=  
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EXECUTE: The torque on the rod about the pivot is 
2 2
L Lkτ θ⎛ ⎞= −⎜ ⎟

⎝ ⎠
. 

2

2
dI I
dt

θτ α= =  gives 

2 2

2
4 3d L kk

dt I M
θ θ θ= − = − . 

2

2
d
dt

θ  is proportional to θ and the motion is angular SHM. 3k
I M
κ

= , 2 .3
MT kπ=  

EVALUATE: The expression we used for the torque, 
2 2
L Lkτ θ⎛ ⎞= −⎜ ⎟

⎝ ⎠
, is valid only when θ is small enough for 

sinθ θ≈ and cos 1θ ≈ . 
13.92. IDENTIFY and SET UP:  Eq. (13.39) gives the period for the bell and Eq. (13.34) gives the period for the clapper. 

EXECUTE:  The bell swings as a physical pendulum so its period of oscillation is given by 
2 /T I mgdπ= = 2 22 18.0 kg m /(34.0 kg)(9.80 m/s )(0.60 m)π ⋅ = 1.885 s  

The clapper is a simple pendulum so its period is given by 2 / .T L gπ=  

Thus 2 2 2( /2 (9.80 m/s )(1.885 s/2 ) 0.88 m.L g T π π= ) = =  
EVALUATE: If the cm of the bell were at the geometrical center of the bell, the bell would extend 1.20 m from the 
pivot, so the clapper is well inside tbe bell. 

13.93. IDENTIFY: The object oscillates as a physical pendulum, with 1 ,
2

Mgdf
Iπ

=  where M is the total mass of the 

object. 
SET UP: The moment of inertia about the pivot is 2 22(1 3) (2 3) ,ML ML=  and the center of gravity when balanced 

is a distance (2 2)d L= below the pivot . 

EXECUTE: The frequency is 1 1 6 1 6
2 44 2 2

g gf
T L Lπ π

= = = . 

EVALUATE: If sp
1

2
gf
Lπ

= is the frequency for a simple pendulum of length L, sp sp
1 6 1.03
2 2

f f f= = . 

13.94. IDENTIFY and SET UP:  Use Eq. (13.34) for the simple pendulum. Use a physical pendulum (Eq.13.39) for the 
pendulum in the case. 
EXECUTE: (a) 2 /T L gπ=  and 2 2 2( /2 ) (9.80 m/s )(4.00 s/2 ) 3.97 mL g T π π= = =  
(b) Use a uniform slender rod of mass M and length 0.50 m.L = Pivot the rod about an axis that is a distance d above 
the center of the rod. The rod will oscillate as a physical pendulum with period 2 / .T I Mgdπ=  
Choose d so that 4.00 s.T =  

2 2 2 2 21 1
cm 12 12( )I I Md ML Md M L d= + = + = +  

2 2 2 21 1
12 12( )2 2 2 .I M L d L dT

Mgd Mgd gd
π π π+ +

= = =  

Solve for d and set 0.50 mL =  and 4.00 s:T =  
2 2 21

12( /2 )gd T L dπ = +  
2 2 2( /2 ) /12 0d T gd Lπ− + =  
2 2 2 2(4.00 s/2 ) (9.80 m/s ) (0.50 m) /12 0d dπ− + =  
2 3.9718 0.020833 0d d− + =  

The quadratic formula gives 
21

2 [3.9718 (3.9718) 4(0.020833)] md = ± −  
(1.9859 1.9806) md = ±  so 3.97 md =  or 0.0053 m.d =  

The maximum value d can have is /2 0.25 m,L =  so the answer we want is 0.0053 m 0.53 cm.d = =  
Therefore, take a slender rod of length 0.50 m and pivot it about an axis that is 0.53 cm above its center. 
EVALUATE: Note that T → ∞  as 0d → (pivot at center of rod) and that if the pivot is at the top of rod then 

/2d L=  and 
2 21 1

12 4
2

4 2 2(0.50 m)2 2 2 2 1.16 s,
/2 6 3 3(9.80 m/s )

L L L LT
Lg g g

π π π π+
= = = = = which is less than the desired 

4.00 s. Thus it is reasonable to expect that there is a value of d between 0 and /2L  for which 4.00 s.T =  
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13.95. IDENTIFY: The angular frequency is given by Eq.(13.38). Use the parallel-axis theorem to calculate I in terms of x. 
(a) SET UP:  

 

/mgd Iω =  

Figure 13.95  
,d x=  the distance from the cg of the object (which is at its geometrical center) from the pivot 

EXECUTE: I is the moment of inertia about the axis of rotation through O. By the parallel axis theorem 

2
0 cm.I md I= + 21

cm 12I mL=  (Table 9.2), so 2 21
0 12 .I mx mL= +  2 2 2 21

12 /12
mgx gx

mx mL x L
ω = =

+ +
 

(b) The maximum ω  as x varies occurs when / 0.d dxω =  0d
dx
ω

=  gives 
1/2

2 2 1/2 0.
( /12)

d xg
dx x L

⎛ ⎞
=⎜ ⎟+⎝ ⎠

 

1/21
1/22

2 2 1/ 2 2 2 3/2

1 2 ( ) 0
( /12) 2 ( /12)

x x x
x L x L

−

− =
+ +

 

3/2
1/2

2 2

2 0
/12

xx
x L

− − =
+

 

2 2 2/12 2x L x+ =  so / 12.x L=  Get maximum ω  when the pivot is a distance / 12L  above the center of the rod. 
(c) To answer this question we need an expression for max :ω  

In 2 2/12
gx

x L
ω =

+
 substitute / 12.x L=  

1/2 1/4

max 2 2 1/2

( / 12) (12)
/12 /12 ( /6)
g L g

L L L
ω

−

= = =
+

1/4 1/2 1/4/ (12) (6) / (3)g L g L− =  

2
max ( / ) 3g Lω =  and 2

max3/L g ω=  

max 2  rad/sω π=  gives 
2

2
(9.80 m/s ) 3 0.430 m.

(2  rad/s)
L

π
= =  

EVALUATE: 0ω →  as 0x →  and 3 /(2 ) 1.225 /g L g Lω → =  when /2.x L→  maxω  is greater than the /2x L=  

value. A simple pendulum has / ;g Lω =  maxω  is greater than this. 

13.96. IDENTIFY: Calculate netF and define effk by net effF k x= − . eff2 /T m kπ= . 

SET UP: If the elongations of the springs are 1x and 2x , they must satisfy 1 2 0.200 mx x+ =  
EXECUTE: (a) The net force on the block at equilibrium is zero, and so 1 1 2 2k x k x= and one spring (the one with 

1 2.00 N/mk = ) must be stretched three times as much as the one with 2 6.00 mk = Ν . The sum of the elongations is 
0.200 m, and so one spring stretches 0.150 m and the other stretches 0.050 m, and so the equilibrium lengths are 
0.350 m and 0.250 m. 
(b) When the block is displaced a distance x to the right, the net force on the block is 

( ) ( ) [ ] ( )1 1 2 2 1 1 2 2 1 2 .k x x k x x k x k x k k x− + + − = − − +  From the result of part (a), the term in square brackets is zero, and 

so the net force is ( )1 2 ,k k x− +  the effective spring constant is eff 1 2k k k= +  and the period of vibration is 

0.100 kg2 0.702 s.8.00 mT π= =
Ν

 

EVALUATE: The motion is the same as if the block were attached to a single spring that has force constant effk . 
13.97. IDENTIFY: In each situation, imagine the mass moves a distance ,xΔ  the springs move distances 1xΔ  and 2,xΔ  with 

forces 1 1 1 2 2 2,  .F k x F k x= − Δ = − Δ   
SET UP: Let 1xΔ and 2xΔ be positive if the springs are stretched, negative if compressed. 
EXECUTE: (a) ( )1 2 1 2 1 2 eff 1 2,  ,  so .x x x F F F k k x k k kΔ = Δ = Δ = + = − + Δ = +  
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(b) Despite the orientation of the springs, and the fact that one will be compressed when the other is extended, 
1 2x x xΔ = Δ − Δ and both spring forces are in the same direction. The above result is still valid; eff 1 2.k k k= +  

(c) For massless springs, the force on the block must be equal to the tension in any point of the spring combination, 

and 1 2F F F= = . 1 2
1 2

,  ,F Fx x
k k

Δ = − Δ = −  
1 2

1 1  x F
k k

⎛ ⎞
Δ = − + = −⎜ ⎟

⎝ ⎠
1 2

1 2

k k F
k k
+ and 1 2

eff
1 2

k kk
k k

=
+

.  

(d) The result of part (c) shows that when a spring is cut in half, the effective spring constant doubles, and so the 
frequency increases by a factor of 2.  
EVALUATE: In cases (a) and (b) the effective force constant is greater than either 1k or 2k  and in case (c) it is less. 

13.98. IDENTIFY: Follow the procedure specified in the hint. 
SET UP: 2 /T L gπ=  

EXECUTE: (a) 1 2 3 212  ,
2 2

gT T π L g g g T T
g

− − Δ⎛ ⎞+ Δ ≈ − Δ = −⎜ ⎟
⎝ ⎠

 so ( )( )1 2 .T T g gΔ = − Δ   

(b) The clock runs slow; 0,   0T gΔ > Δ <  and ( ) ( )
( )

2 22 4.00 s21 9.80 m s 1 9.7991 m s .
86,400 s

Tg g g
T

⎛ ⎞Δ⎛ ⎞+ Δ = − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

EVALUATE: The result in part (a) says that T increases when g decreases, and the magnitude of the fractional 
change in T is one-half of the magnitude of the fractional change in g. 

13.99. IDENTIFY: Follow the procedure specified in the hint. 
SET UP: Denote the position of a piece of the spring by ;  0l l = is the fixed point and l L= is the moving end of the 

spring. Then the velocity of the point corresponding to ,l  denoted ( ),   is lu u l v
L

=  (when the spring is moving, 

l will be a function of time, and so u is an implicit function of time). 

(a) ,Mdm dlL=  and so 
2

2 2
3

1 1  
2 2

MvdK dm u l dl
L

= = and 
2 2

2
3

0

  .
2 6

LMv MvK dK l dl
L

= = =∫ ∫  

(b) 0,  or 0,dv dxmv kx ma kxdt dt+ = + =  which is Eq. ( )13.4 .  

(c) m is replaced by ,3
M so 3 and .3

k MMMω ′= =  

EVALUATE: The effective mass of the spring is only one-third of its actual mass. 
13.100. IDENTIFY: 2 /T I mgdπ=  

SET UP: With ( ) 21 3  and 2I ML d L= =  in Eq. ( )13.39 ,  0 2 2 3 .T π L g=  With the added 

mass, ( )( ) ( )2 23 ,  2  and  4 2I M L y m M d L y= + = = + . ( ) ( )( )2 22 3 2T L y g L yπ= + +  and 

2 2

2
0

3 .
2

T L yr
T L yL

+
= =

+
 The graph of the ratio r versus y is given in Figure 13.100. 

 
Figure 13.100 

(b) From the expression found in part (a), 2
0 3when .T T y L= =  At this point, a simple pendulum with length y  

would have the same period as the meter stick without the added mass; the two bodies oscillate with the same period 
and do not affect the other�s motion. 
EVALUATE: Adding the mass can either increase or decrease the period, depending on where the added mass is 
placed. 
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13.101. IDENTIFY: Eq.(13.39) says 2 /T I mgdπ= . 
SET UP: Let the two distances from the center of mass be 1 2and .d d There are then two relations of the form of 

Eq. (13.39); with 2 2
1 cm 1 2 cm 2 and I I md I I md= + = + . 

EXECUTE: These relations may be rewritten as ( )2 2 2
1 cm 14mgd T I mdπ= + and ( )2 2 2

2 cm 24 .mgd T I mdπ= +  

Subtracting the expressions gives ( ) ( ) ( )( )2 2 2 2 2
1 2 1 2 1 2 1 24 4 .mg d d T m d d m d d d dπ π− = − = − +  Dividing by the 

common factor of ( )1 2m d d−  and letting 1 2d d L+ =  gives the desired result. 
EVALUATE: The procedure works in practice only if both pivot locations give rise to SHM for small oscillations. 

13.102. IDENTIFY: Apply m∑F = a
# # to the mass, with 2

rada a rω= = . 
SET UP: The spring, when stretched, provides an inward force. 

EXECUTE: Using 2lω′  for the magnitude of the inward radial acceleration, ( )2
0m l k l lω′ = − , or 0

2

kll
k mω

=
′−

. 

(b) The spring will tend to become unboundedly long. 
EXECUTE: As resonance is approached and l becomes very large, both the spring force and the radial acceleration 
become large. 

13.103. IDENTIFY: For a small displacement x, the force constant k is defined by xF kx= − . 

SET UP: Let 0 0,   so that  andr R x r R x= + − = 2[ ].bx bxF A e e− −= −  

EXECUTE: When x is small compared to 1,b− expanding the exponential function gives 
 [(1 2 ) (1 )] ,F A bx bx Abx≈ − − − = −  corresponding to a force constant of 579 N/mAb = . 

EVALUATE: Our result is very close to the value given in Exercise 13.40. 



 

14-1 

FLUID MECHANICS 

 14.1. IDENTIFY: Use Eq.(14.1) to calculate the mass and then use w mg=  to calculate the weight. 

SET UP: /m Vρ =  so m Vρ=  From Table 14.1, 3 37.8 10  kg/m .ρ = ×  

EXECUTE: For a cylinder of length L and radius R, 2 2 4 3( ) (0.01425 m) (0.858 m) 5.474 10  m .V R Lπ π −= = = ×  

Then 3 3 4 3(7.8 10  kg/m )(5.474 10  m ) 4.27 kg,m Vρ −= = × × =  and 2(4.27 kg)(9.80 m/s ) 41.8 Nw mg= = =  (about 
9.4 lbs). A cart is not needed. 
EVALUATE: The rod is less than 1m long and less than 3 cm in diameter, so a weight of around 10 lbs seems 
reasonable. 

 14.2. IDENTIFY: Convert gallons to kg. The mass m of a volume V of gasoline is m Vρ= . 
SET UP: 3 31 gal 3.788 L 3.788 10  m−= = × . 31 m of gasoline has a mass of 737 kg. 

EXECUTE: 
3

3 3

1 gal 1 m45.0 mi/gal (45.0 mi/gal) 16.1 mi/kg
3.788 10  m 737 kg−

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠
 

EVALUATE: 1 gallon of gasoline has a mass of 2.79 kg. The car goes fewer miles on 1 kg than on 1 gal, since 
1 kg of gasoline is less gasoline than 1 gal of gasoline. 

 14.3. IDENTIFY: /m Vρ =  
SET UP: The density of gold is 3 319.3 10  kg/m× . 

EXECUTE: 3 3 3 6 3(5.0 10  m)(15.0 10  m)(30.0 10  m) 2.25 10  mV − − − −= × × × = × . 

3 3
6 3

0.0158 kg 7.02 10  kg/m
2.25 10  m

m
V

ρ −= = = ×
×

. The metal is not pure gold. 

EVALUATE: The average density is only 36% that of gold, so at most 36% of the mass is gold. 
 14.4. IDENTIFY: Find the mass of gold that has a value of 6$1.00 10× . Then use the density of gold to find the volume 

of this mass of gold. 
SET UP: For gold, 3 319.3 10  kg/mρ = × . The volume V of a cube is related to the length L of one side by 3V L= . 

EXECUTE: 
3

6 1 troy ounce 31.1035 10  kg($1.00 10 ) 72.9 kg
$426.60 1 troy ounce

m
−⎛ ⎞×⎛ ⎞= × =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. m

V
ρ = so 

3 3
3 3

72.9 kg 3.78 10  m
19.3 10  kg/m

mV
ρ

−= = = ×
×

. 1/ 3 0.156 m 15.6 cmL V= = = . 

EVALUATE: The cube of gold would weigh about 160 lbs. 
 14.5. IDENTIFY: Apply /m Vρ = to relate the densities and volumes for the two spheres. 

SET UP: For a sphere, 34
3V rπ= . For lead, 3 3

l 11.3 10  kg/mρ = ×  and for aluminum, 3 3
a 2.7 10  kg/mρ = × . 

EXECUTE: 34
3m ρV πr ρ= = . Same mass means 3 3

a a 1 1r ρ r ρ= . 
1 3 1 33

a 1
3

1 a

11.3 10 1.6
2.7 10

r ρ
r ρ

⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

. 

EVALUATE: The aluminum sphere is larger, since its density is less. 
 14.6. IDENTIFY: Average density is /m Vρ = . 

SET UP: For a sphere, 34
3V Rπ= . The sun has mass 30

sun 1.99 10  kgM = ×  and radius 86.96 10  m× . 

EXECUTE: (a) 
30 30

3 3sun
8 3 27 34

sun 3

1.99 10  kg 1.99 10  kg 1.409 10  kg/m
(6.96 10 m) 1.412 10  m

M
V π

ρ × ×
= = = = ×

× ×
 

(b) 
30 30

16 3
4 3 13 34

3

1.99 10  kg 1.99 10  kg 5.94 10  kg/m
(2.00 10  m) 3.351 10  mπ

ρ × ×
= = = ×

× ×
 

14
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EVALUATE: For comparison, the average density of the earth is 3 35.5 10  kg/m .×  A neutron star is extremely 
dense. 

 14.7. IDENTIFY: w mg= and m Vρ= . Find the volume V of the pipe. 

SET UP: For a hollow cylinder with inner radius 1R , outer radius 2R , and length L the volume is 2 2
2 1( ) .V R R Lπ= −  

2
1 1.25 10  mR −= × and 2

2 1.75 10  mR −= ×  

EXECUTE: 2 2 4 3([0.0175 m] [0.0125 m] )(1.50 m) 7.07 10  mV π −= − = × . 
3 3 4 3(8.9 10  kg/m )(7.07 10  m ) 6.29 kgm Vρ −= = × × = . 61.6 Nw mg= = . 

EVALUATE: The pipe weights about 14 pounds. 
 14.8. IDENTIFY: The gauge pressure 0p p− at depth h is 0p p ghρ− = . 

SET UP: Ocean water is seawater and has a density of 3 31.03 10  kg/m× . 

EXECUTE: 3 3 2 7
0 (1.03 10  kg/m )(9.80 m/s )(3200 m) 3.23 10  Pap p− = × = × . 

7
0 5

1 atm(3.23 10  Pa) 319 atm
1.013 10  Pa

p p ⎛ ⎞− = × =⎜ ⎟×⎝ ⎠
. 

EVALUATE: The gauge pressure is about 320 times the atmospheric pressure at the surface. 
 14.9. IDENTIFY: The gauge pressure 0p p− at depth h is 0p p ghρ− = . 

SET UP: Freshwater has density 3 31.00 10  kg/m× and seawater has density 3 31.03 10  kg/m× . 

EXECUTE: (a) 3 3 2 6
0 (1.00 10  kg/m )(3.71 m/s )(500 m) 1.86 10  Pap p− = × = × . 

(b) 
6

0
3 3 2

1.86 10  Pa 184 m
(1.03 10  kg/m )(9.80 m/s )

p ph
gρ
− ×

= = =
×

 

EVALUATE: The pressure at a given depth is greater on earth because a cylinder of water of that height weighs 
more on earth than on Mars. 

14.10. IDENTIFY: The difference in pressure at points with heights 1y and 2y is 0 1 2( )p p g y yρ− = − . The outward 
force F⊥ is related to the surface area A by F pA⊥ = . 

SET UP: For blood, 3 31.06 10  kg/mρ = × . 1 2 1.65 my y− = . The surface area of the segment is DLπ , where 
31.50 10  mD −= × and 22.00 10  mL −= × . 

EXECUTE: (a) 3 3 2 4
1 2 (1.06 10  kg/m )(9.80 m/s )(1.65 m) 1.71 10  Pap p− = × = × . 

(b) The additional force due to this pressure difference is 1 2( )F p p A⊥Δ = − . 
3 2 5 2(1.50 10  m)(2.00 10  m) 9.42 10  mA DLπ π − − −= = × × = × . 4 5 2(1.71 10  Pa)(9.42 10  m ) 1.61 NF −

⊥Δ = × × = . 
EVALUATE: The pressure difference is about 1

6 atm . 
14.11. IDENTIFY: Apply 0p p ghρ= + . 

SET UP: Gauge pressure is airp p− . 
EXECUTE: The pressure difference between the top and bottom of the tube must be at least 5980 Pa in order to 
force fluid into the vein: 5980 Paρgh = and 

2

3 2

5980 Pa 5980 N/m 0.581 m
(1050 kg/m )(9.80 m/s )

h
gh

= = = . 

EVALUATE: The bag of fluid is typically hung from a vertical pole to achieve this height above the patient�s arm. 
14.12. IDENTIFY: 0 surfacep p ghρ= +  where surfacep  is the pressure at the surface of a liquid and 0p is the pressure at a 

depth h below the surface. 
SET UP: The density of water is 3 31.00 10  kg/m× . 
EXECUTE: (a) For the oil layer, surface atmp p=  and 0p  is the pressure at the oil-water interface. 

3 2
0 atm gauge (600 kg/m )(9.80 m/s )(0.120 m) 706 Pap p p ghρ− = = = =  

(b) For the water layer, surface atm706 Pap p= + . 
3 3 2 3

0 atm gauge 706 Pa 706 Pa (1.00 10  kg/m )(9.80 m/s )(0.250 m) 3.16 10  Pap p p ghρ− = = + = + × = ×  
EVALUATE: The gauge pressure at the bottom of the barrel is due to the combined effects of the oil layer and 
water layer. The pressure at the bottom of the oil layer is the pressure at the top of the water layer 
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14.13. IDENTIFY: An inflation to 32.0 pounds means a gauge pressure of 232.0 lb/in. . The contact area A with the 
pavement is related to the gauge pressure 0p p− in the tire and the force F⊥ the tire exerts on the pavement by 

0( )F p p A⊥ = − . By Newton's third law the magnitude of the force the tire exerts on the pavement equals the 
magnitude of the force the pavement exerts on the car, and this must equal the weight of the car. 
SET UP: 2 514.7 lb/in. 1.013 10  Pa 1 atm= × = . Assume 0 1 atmp = . 

EXECUTE: (a) The gauge pressure is 2 532.0 lb/in. 2.21 10  Pa 2.18 atm= × = . The absolute pressure is 
2 546.7 lb/in. 3.22 10  Pa 3.18 atm= × = . 

(b) No, the tire would touch the pavement at a single point and the contact area would be zero. 

(c) 39.56 10  NF mg⊥ = = × . 
3

2 2
5

0

9.56 10  N 0.0433 m 433 cm
2.21 10  Pa

FA
p p

⊥ ×
= = = =

− ×
. 

EVALUATE: If the contact area is square, the length of each side for each tire is 
2433 cm 10.4 cm

4
= . This is a 

realistic value, based on our observation of the tires of cars. 
14.14. IDENTIFY and SET UP: Use Eq.(14.8) to calculate the gauge pressure at this depth. Use Eq.(14.3) to calculate the 

force the inside and outside pressures exert on the window, and combine the forces as vectors to find the net force. 
EXECUTE: (a) gauge 0pressure p p ghρ= − =  From Table 14.1 the density of seawater is 3 31.03 10  kg/m ,×  so 

3 3 2 6
0 (1.03 10  kg/m )(9.80 m/s )(250 m) 2.52 10  Pap p ghρ− = = × = ×  

(b) The force on each side of the window is .F pA=  Inside the pressure is p0 and outside in the water the pressure 
is 0 .p p ghρ= +  The forces are shown in Figure 14.14. 

 

The net force is 
2 1 0 0( ) ( )F F p gh A p A gh Aρ ρ− = + − =  

6 2
2 1 (2.52 10  Pa) (0.150 m)F F π− = ×  

5
2 1 1.78 10  NF F− = ×  

Figure 14.14  
EVALUATE: The pressure at this depth is very large, over 20 times normal air pressure, and the net force on the 
window is huge. Diving bells used at such depths must be constructed to withstand these large forces. 

14.15. IDENTIFY: gauge 0 atmp p p ghρ= − = . 

SET UP: 51 atm 1.013 10  Pa= × . The density of water is 3 31.00 10  kg/m× . The gauge pressure must equal the 
pressure difference due to a column of water 1370 m 730 m 640 m− =  tall. 
EXECUTE: 3 3 2 6(1.00 10  m )(9.80 m/s )(640 m) 6.27 10  Pa 61.9 atm× = × =  
EVALUATE: The gauge pressure required is directly proportional to the height to which the water is pumped. 

14.16. IDENTIFY and SET UP: Use Eq.(14.6) to calculate the pressure at the specified depths in the open tube. The 
pressure is the same at all points the same distance from the bottom of the tubes, so the pressure calculated in part 
(b) is the pressure in the tank. Gauge pressure is the difference between the absolute pressure and air pressure. 
EXECUTE: 4

a 980 millibar 9.80 10  Pap = = ×  
(a) Apply 0p p ghρ= +  to the right-hand tube. The top of this tube is open to the air so 0 a .p p=  The density of 

the liquid (mercury) is 3 313.6 10  kg/m .×  

Thus 4 3 3 2 59.80 10  Pa (13.6 10  kg/m )(9.80 m/s )(0.0700 m) 1.07 10  Pa.p = × + × = ×  

(b) 4 3 3 2 5
0 9.80 10  Pa (13.6 10  kg/m )(9.80 m/s )(0.0400 m) 1.03 10  Pa.p p ghρ= + = × + × = ×  

(c) Since 2 1 4.00 cmy y− =  the pressure at the mercury surface in the left-hand end tube equals that calculated in 

part (b). Thus the absolute pressure of gas in the tank is 51.03 10  Pa.×  
(d) 3 3 2 3

0 (13.6 10  kg/m )(9.80 m/s )(0.0400 m) 5.33 10  Pa.p p ghρ− = = × = ×  

EVALUATE: If Eq.(14.8) is evaluated with the density of mercury and 5
a 1 atm 1.01 10  Pa,p p− = = ×  then 76 cm.h =  

The mercury columns here are much shorter than 76 cm, so the gauge pressures are much less than 51.0 10  Pa.×  
14.17. IDENTIFY: Apply 0p p ghρ= + . 

SET UP: For water, 3 31.00 10  kg/mρ = × . 

EXECUTE: 3 3 2 4
air (1.00 10  kg/m )(9.80 m/s )(6.1 m) 6.0 10  Pa.p p ρgh− = = × = ×  

EVALUATE: The pressure difference increases linearly with depth. 
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14.18. IDENTIFY and SET UP: Apply Eq.(14.6) to the water and mercury columns. The pressure at the bottom of the 
water column is the pressure at the top of the mercury column. 
EXECUTE: With just the mercury, the gauge pressure at the bottom of the cylinder is 0 m m.p p ghρ= +  With the 
water to a depth w ,h  the gauge pressure at the bottom of the cylinder is 0 m m w w.p p gh ghρ ρ= + +  If this is to be 
double the first value, then w w m m.gh ghρ ρ=  

3 3
w m m w( / ) (0.0500 m)(13.6 10 /1.00 10 ) 0.680 mh h ρ ρ= = × × =  

The volume of water is 4 2 4 3 3(0.680 m)(12.0 10  m ) 8.16 10  m 816 cmV hA − −= = × = × =  
EVALUATE: The density of mercury is 13.6 times the density of water and (13.6)(5 cm) 68 cm,=  so the pressure 
increase from the top to the bottom of a 68-cm tall column of water is the same as the pressure increase from top to 
bottom for a 5-cm tall column of mercury. 

14.19. IDENTIFY: Assume the pressure at the upper surface of the ice is 5
0 1.013 10  Pap = × . The pressure at the surface 

of the water is increased from 0p by ice iceghρ and then increases further with depth in the water. 

SET UP: 3 3
ice 0.92 10  kg/mρ = × and 3 3

water 1.00 10  kg/mρ = × . 
EXECUTE: 0 ice ice water waterp p gh ghρ ρ− = + . 

3 3 2 3 3 2
0 (0.92 10  kg/m )(9.80 m/s )(1.75 m) (1.00 10  kg/m )(9.80 m/s )(2.50 m)p p− = × + × . 

4
0 4.03 10  Pap p− = × . 

4 5
0 4.03 10  Pa 1.42 10  Pap p= + × = × . 

EVALUATE: The gauge pressure at the surface of the water must be sufficient to apply an upward force on a 
section of ice equal to the weight of that section. 

14.20. IDENTIFY: Apply 0p p ghρ= + , where 0p is the pressure at the surface of the fluid. Gauge pressure is airp p− . 

SET UP: For water, 3 31.00 10  kg/mρ = × . 
EXECUTE: (a) The pressure difference between the surface of the water and the bottom is due to the weight of 
the water and is still 2500 Pa after the pressure increase above the surface. But the surface pressure increase is also 
transmitted to the fluid, making the total difference from atmospheric pressure 2500 Pa 1500 Pa  4000 Pa+ = . 

(b) Initially, the pressure due to the water alone is 2500 Pa .ρgh=  Thus 
2

3 2

2500 N/m 0.255 m.
(1000 kg/m )(9.80 m/s )

h = =  

To keep the bottom gauge pressure at 2500 Pa after the 1500 Pa increase at the surface, the pressure due to the 

water�s weight must be reduced to 1000 Pa: 
2

3 2

1000 N/m 0.102 m.
(1000 kg/m )(9.80 m/s )

h = =  Thus the water must be 

lowered by 0.255 m 0.102 m 0.153 m.− = . 
EVALUATE: Note that ghρ , with 0.153 mh = , is 1500 Pa. 

14.21. IDENTIFY: 0p p ghρ= + . F pA= . 

SET UP: For seawater, 3 31.03 10  kg/mρ = ×  
EXECUTE: The force F that must be applied is the difference between the upward force of the water and the 
downward forces of the air and the weight of the hatch. The difference between the pressure inside and out is the 
gauge pressure, so 

3 3 2 2 5( ) (1.03 10  kg/m )(9.80 m/s )(30 m)(0.75 m ) 300 N 2.27 10  N.F ρgh A w= − = × − = ×  

EVALUATE: The force due to the gauge pressure of the water is much larger than the weight of the hatch and 
would be impossible for the crew to apply it just by pushing. 

14.22. IDENTIFY: The force on an area A due to pressure p is F pA⊥ = . Use 0p p ghρ− = to find the pressure inside the 
tank, at the bottom. 
SET UP: 51 atm 1.013 10  Pa= × . For benzene, 3 30.90 10  kg/mρ = × . The area of the bottom of the tank is 

2/4Dπ , where 1.72 mD = . The area of the vertical walls of the tank is DLπ , where 11.50 mL = . 
EXECUTE: (a) At the bottom of the tank, 

5 3 3 2
0 92(1.013 10  Pa) (0.90 10  kg/m )(0.894)(9.80 m/s )(11.50 m).p p ghρ= + = × + ×  

6 4 69.32 10  Pa 9.07 10  Pa 9.41 10  Pap = × + × = × . 6 2 7(9.41 10  Pa) (1.72 m) /4 2.19 10  NF pA π⊥ = = × = × . 

(b) At the outside surface of the bottom of the tank, the air pressure is 5 6(92)(1.013 10  Pa) 9.32 10  Pap = × = × . 
6 2 7(9.32 10  Pa) (1.72 m) / 4 2.17 10  NF pA π⊥ = = × = × . 
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(c) 5 892(1.013 10  Pa) (1.72 m)(11.5 m) 5.79 10  NF pA π⊥ = = × = ×  
EVALUATE: Most of the force in part (a) is due to the 92 atm of air pressure above the surface of the benzene and 
the net force on the bottom of the tank is much less than the inward and outward forces. 

14.23. IDENTIFY: The gauge pressure at the top of the oil column must produce a force on the disk that is equal to its weight. 
SET UP: The area of the bottom of the disk is 2 2 2(0.150 m) 0.0707 mA rπ π= = = . 

EXECUTE: (a) 0 2

45.0 N 636 Pa
0.0707 m

wp p
A

− = = = . 

(b) The increase in pressure produces a force on the disk equal to the increase in weight. By Pascal's law the 
increase in pressure is transmitted to all points in the oil. 

(i) 2

83.0 N 1170 Pa
0.0707 m

pΔ = = . (ii) 1170 Pa 

EVALUATE: The absolute pressure at the top of the oil produces an upward force on the disk but this force is 
partially balanced by the force due to the air pressure at the top of the disk. 

14.24. IDENTIFY: 2
2 1

1

AF F
A

= . 2F must equal the weight w mg= of the car. 

SET UP: 2 / 4A Dπ= . 1D is the diameter of the vessel at the piston where 1F  is applied and 2D of the diameter at 
the car. 

EXECUTE: 
2
2

12
1

/ 4
/ 4

Dmg F
D

π
π

= . 
2

2

1 1

(1520 kg)(9.80 m/s ) 10.9
125 N

D mg
D F

= = =  

EVALUATE: The diameter is smaller where the force is smaller, so the pressure will be the same at both pistons. 
14.25. IDENTIFY: Apply y yF ma=∑ to the piston, with y+  upward. F pA= . 

SET UP: 51 atm 1.013 10  Pa= × . The force diagram for the piston is given in Figure 14.25. p is the absolute 
pressure of the hydraulic fluid. 

EXECUTE: atm 0pA w p A− − =  and 
2

5
atm gauge 2 2

(1200 kg)(9.80 m/s ) 1.7 10  Pa 1.7 atm
(0.15 m)

w mgp p p
A rπ π

− = = = = = × =  

EVALUATE: The larger the diameter of the piston, the smaller the gauge pressure required to lift the car. 

 
Figure 14.25 

14.26. IDENTIFY: Apply Newton�s 2nd law to the woman plus slab. The buoyancy force exerted by the water is upward 
and given by water displ ,B V gρ=  where displV  is the volume of water displaced. 
SET UP: The floating object is the slab of ice plus the woman; the buoyant force must support both. The volume 
of water displaced equals the volume iceV  of the ice. The free-body diagram is given in Figure 14.26. 

 

EXECUTE: y yF ma=∑  

tot 0B m g− =  

water ice ice(45.0 kg )V g m gρ = +  
But /m Vρ =  so ice ice icem p V=  

Figure 14.26  

3
ice 3 3

water ice

45.0 kg 45.0 kg 0.562 m .
1000 kg/m 920 kg/m

V
ρ ρ

= = =
− −

 

EVALUATE: The mass of ice is ice ice ice 517 kg.m Vρ= =  



14-6 Chapter 14 

14.27. IDENTIFY: Apply y yF ma=∑ to the sample, with y+  upward. water objB V gρ= . 
SET UP: 17.50 Nw mg= =  and 1.79 kgm = . 
EXECUTE: 0T B mg+ − = . 17.50 N 11.20 N 6.30 NB mg T= − = − = . 

4 3
obj 3 3 2

water

6.30 N 6.43 10  m
(1.00 10  kg/m )(9.80 m/s )

BV
gρ

−= = = ×
×

. 

3 3
4 3

1.79 kg 2.78 10  kg/m
6.43 10  m

m
V

ρ −= = = ×
×

. 

EVALUATE: The density of the sample is greater than that of water and it doesn�t float. 
14.28. IDENTIFY: The upward buoyant force B exerted by the liquid equals the weight of the fluid displaced by the 

object. Since the object floats the buoyant force equals its weight. 
SET UP: Glycerin has density 3 3

gly 1.26 10  kg/mρ = × and seawater has density 3 3
sw 1.03 10  kg/mρ = × . Let objV be 

the volume of the apparatus. 2
E 9.80 m/sg = ; 2

C 4.15 m/sg = . Let subV be the volume submerged on Caasi. 
EXECUTE: On earth sw obj E E(0.250 )B V g mgρ= = . obj sw(0.250)m Vρ= . On Caasi, gly sub C CB V g mgρ= = . 

gyl subm Vρ= . The two expressions for m must be equal, so obj sw gly sub(0.250)V Vρ ρ= and 
3 3

sw
sub obj obj obj3 3

gly

0.250 [0.250][1.03 10  kg/m ] 0.204
1.26 10  kg/m

V V V Vρ
ρ

⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠

. 20.4% of the volume will be submerged on 

Caasi. 
EVALUATE: Less volume is submerged in glycerin since the density of glycerin is greater than the density of 
seawater. The value of g on each planet cancels out and has no effect on the answer. The value of g changes the 
weight of the apparatus and the buoyant force by the same factor. 

14.29. IDENTIFY: For a floating object, the weight of the object equals the upward buoyancy force, B, exerted by the 
fluid. 
SET UP: fluid submergedB V gρ= . The weight of the object can be written as object objectw V gρ= . For seawater, 

3 31.03 10  kg/mρ = × . 
EXECUTE: (a) The displaced fluid must weigh more than the object, so fluid.ρ ρ<  
(b) If the ship does not leak, much of the water will be displaced by air or cargo, and the average density of the 
floating ship is less than that of water. 

(c) Let the portion submerged have volume V, and the total volume be 0V . Then 0 fluid V ρ Vρ = , so 
0 fluid

ρV
V ρ=  The 

fraction above the fluid surface is then 
fluid

1 .  If  0,ρ ρρ− →  the entire object floats, and if fluidρ ρ→ , none of the 

object is above the surface. 

(d) Using the result of part (c), 
6 3

3
fluid

(0.042 kg) ([5.0][4.0][3.0] 10 m ) 1 1 0.32 32%.
1030kg m

ρ
ρ

−×
− = − = =  

EVALUATE: For a given object, the fraction of the object above the surface increases when the density of the 
fluid in which it floats increases. 

14.30. IDENTIFY: water objB V gρ= . The net force on the sphere is zero. 

SET UP: The density of water is 3 31.00 10  kg/m× . 

EXECUTE: (a) 3 3 2 3(1000 kg/m )(0.650 m )(9.80 m/s ) 6.37 10  NB = = ×  

(b) B T mg= +  and 
3

2

6.37 10  N 900 N 558 kg
9.80 m/s

B Tm
g
− × −

= = = . 

(c) Now water subB V gρ= , where subV is the volume of the sphere that is submerged. B mg= . water subV mgρ =  and 

3
sub 3

water

558 kg 0.558 m
1000 kg/m

mV
ρ

= = = . 
3

sub
3

obj

0.558 m 0.858 85.8%
0.650 m

V
V

= = = . 

EVALUATE: The average density of the sphere is 3
sph 3

558 kg 858 kg/m
0.650 m

m
V

ρ = = = . sph waterρ ρ< , and that is why 

it floats with 85.8% of its volume submerged. 
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14.31. IDENTIFY and SET UP: Use Eq.(14.8) to calculate the gauge pressure at the two depths. 
(a) The distances are shown in Figure 14.31a. 

 

EXECUTE: 0p p ghρ− =  
The upper face is 1.50 cm below the top of the oil, so 

3 2
0 (7.90 kg/m )(9.80 m/s )(0.0150 m)p p− =  

0 116 Pap p− =  

Figure 14.31a  
(b) The pressure at the interface is interface a oil (0.100 m).p p gρ= +  The lower face of the block is 1.50 cm below the 
interface, so the pressure there is interface water (0.0150 m).p p gρ= +  Combining these two equations gives 

a oil water(0.100 m) (0.0150 m)p p g gρ ρ− = +  
3 3 2

a [(790 kg/m )(0.100 m) (1000 kg/m )(0.0150 m)](9.80 m/s )p p− = +  

a 921 Pap p− =  
(c) IDENTIFY and SET UP: Consider the forces on the block. The area of each face of the block is 

2 2(0.100 m) 0.0100 m .A = =  Let the absolute pressure at the top face be tp  and the pressure at the bottom face be 

b.p  In Eq.(14.3) use these pressures to calculate the force exerted by the fluids at the top and bottom of the block. 
The free-body diagram for the block is given in Figure 14.31b. 

 

EXECUTE: y yF ma=∑  

b t 0p A p A mg− − =  

b t( )p p A mg− =  

Figure 14.31b  
Note that b t b a t a( ) ( ) ( ) 921 Pa 116 Pa 805 Pa;p p p p p p− = − − − = − =  the difference in absolute pressures equals 
the difference in gauge pressures. 

2
b t

2

( ) (805 Pa)(0.0100 m ) 0.821 kg.
9.80 m/s

p p Am
g
−

= = =  

And then 3 3/ 0.821 kg/(0.100 m) 821 kg/m .m Vρ = = =  

EVALUATE: We can calculate the buoyant force as oil oil water water( )B V V gρ ρ= +  where 2
oil (0.0100 m )(0.850 m)V = =  

4 38.50 10  m−×  is the volume of oil displaced by the block and 2 4 3
water (0.0100 m )(0.0150 m) 1.50 10 mV −= = ×  is the volume 

of water displaced by the block. This gives (0.821 kg) .B g=  The mass of water displaced equals the mass of the block. 
14.32. IDENTIFY: The sum of the vertical forces on the ingot is zero. /m Vρ = . The buoyant force is water objB V gρ= . 

SET UP: The density of aluminum is 3 32.7 10  kg/m× . The density of water is 3 31.00 10  kg/m× . 

EXECUTE: (a) 89 NT mg= = so 9.08 kgm = . 3 3
3 3

9.08 kg 3.36 10  m 3.4 L
2.7 10  kg/m

mV
ρ

−= = = × =
×

. 

(b) When the ingot is totally immersed in the water while suspended, 0T B mg+ − = . 
3 3 3 3 2

water obj (1.00 10  kg/m )(3.36 10  m )(9.80 m/s ) 32.9 NB V gρ −= = × × = . 89 N 32.9 N 56 NT mg B= − = − = . 
EVALUATE: The buoyant force is equal to the difference between the apparent weight when the object is 
submerged in the fluid and the actual gravity force on the object. 

14.33. IDENTIFY: The vertical forces on the rock sum to zero. The buoyant force equals the weight of liquid displaced 
by the rock. 34

3V Rπ= . 

SET UP: The density of water is 3 31.00 10  kg/m× . 
EXECUTE: The rock displaces a volume of water whose weight is 39.2 N 28.4 N 10.8 N− = . The mass of this 

much water is thus 210.8 N/(9.80 m/s ) 1.102 kg= and its volume, equal to the rock�s volume, is 

3 3
3 3

1.102 kg 1.102 10  m
1.00 10  kg/m

−= ×
×

. The weight of unknown liquid displaced is 39.2 N 18.6 N 20.6 N,− = and its 

mass is 220.6 N/(9.80 m/s ) 2.102 kg.=  The liquid�s density is thus 3 3 3 32.102 kg/(1.102 10  m ) 1.91 10  kg/m .−× = ×  
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EVALUATE: The density of the unknown liquid is roughly twice the density of water. 
14.34. IDENTIFY: The volume flow rate is Av. 

SET UP: 30.750 m/sAv = . 2/4A Dπ= . 

EXECUTE: (a) 2 3/4 0.750 m/sv Dπ = . 
3

2 2

4(0.750 m/s ) 472 m/s
(4.50 10  m)

v
π −= =

×
. 

(b) 2vD must be constant, so 2 2
1 1 2 2v D v D= . 

2 2
1 1

2 1
12

(472 m/s) 52.4 m/s
3

D Dv v
D D

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

EVALUATE: The larger the hole, the smaller the speed of the fluid as it exits. 
14.35. IDENTIFY: Apply the equation of continuity, 1 1 2 2v Α v Α= . 

SET UP: 2A rπ=  

EXECUTE: 2 1 1 2( / )v v Α Α= . 2 2
1 2(0.80 cm) ,  20 (0.10 cm)Α π Α π= = . 

2

2 2

(0.80)(3.0 m/s) 9.6 m/s
20 (0.10)
πv
π

= = . 

EVALUATE: The total area of the shower head openings is less than the cross section area of the pipe, and the 
speed of the water in the shower head opening is greater than its speed in the pipe. 

14.36. IDENTIFY: 1 1 2 2v A v A= . The volume flow rate is vA. 
SET UP: 1.00 h 3600 s= . 

EXECUTE: (a) 
2

1
2 1 2

2

0.070 m(3.50 m/s) 2.33 m/s
0.105 m

Av v
A

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) 
2

1
2 1 2

2

0.070 m(3.50 m/s) 5.21 m/s
0.047 m

Av v
A

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(c) 2 3
1 1 (3.50 m/s)(0.070 m )(3600 s) 882 mV v At= = = . 

EVALUATE: The equation of continuity says the volume flow rate is the same at all points in the pipe. 
14.37. IDENTIFY and SET UP: Apply Eq.(14.10). In part (a) the target variable is V. In part (b) solve for A and then from 

that get the radius of the pipe. 
EXECUTE: (a) 31.20 m /svA =  

3 3 3

2 2

1.20 m /s 1.20 m /s 1.20 m /s 17.0 m/s
(0.150 m)

v
A rπ π

= = = =  

(b) 31.20 m /svA =  
2 31.20 m /sv rπ =  

3 31.20 m /s 1.20 m /s 0.317 m
(3.80 m/s)

r
vπ π

= = =  

EVALUATE: The speed is greater where the area and radius are smaller. 
14.38. IDENTIFY: The volume flow rate is equal to Av . 

SET UP: In the equation preceding Eq.(14.10), label the densities of the two points 1ρ and 2ρ . 
EXECUTE: (a) From the equation preceding Eq.(14.10), dividing by the time interval dt gives Eq.(14.12). 
(b) The volume flow rate decreases by 1.50%. 
EVALUATE: When the density increases, the volume flow rate decreases; it is the mass flow rate that remains 
constant. 

14.39. IDENTIFY and SET UP:  

 

Apply Bernoulli�s equation with points 1 and 
2 chosen as shown in Figure 14.39. Let 0y =  
at the bottom of the tank so 1 11.0 my =  and 

2 0.y =  The target variable is 2.v  

Figure 14.39  
2 21 1

1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

1 1 2 2 ,Av A v=  so 1 2 1 2( / ) .v A A v=  But the cross-section area of the tank 1( )A  is much larger than the cross-section 

area of the hole 2( ),A  so 1 2v v<<  and the 21
12 vρ  term can be neglected. 
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EXECUTE: This gives 21
2 1 2 12 ( ) .v p p gyρ ρ= − +  

Use 2 ap p=  and solve for 2:v  
5

2
2 1 a 1 3

2(3.039 10  Pa)2( ) / 2 2(9.80 m/s )(11.0 m)
1030 kg/m

v p p gyρ ×
= − + = +  

2 28.4 m/sv =  
EVALUATE: If the pressure at the top surface of the water were air pressure, then Toricelli�s theorem 
(Example 14.8) gives 2 1 22 ( ) 14.7 m/s.v g y y= − =  The actual afflux speed is much larger than this due to the 
excess pressure at the top of the tank. 

14.40. IDENTIFY: Toricelli�s theorem says the speed of efflux is 2v gh= , where h is the distance of the small hole 
below the surface of the water in the tank. The volume flow rate is vA. 
SET UP: 2 / 4A Dπ= , with 36.00 10  mD −= × . 

EXECUTE: (a) 22(9.80 m/s )(14.0 m) 16.6 m/sv = =  

(b) 3 2 4 3(16.6 m/s) (6.00 10  m) / 4 4.69 10  m /svA π − −= × = × . A volume of 4 34.69 10  m 0.469 L−× = is discharged 
each second. 
EVALUATE: We have assumed that the diameter of the hole is much less than the diameter of the tank. 

14.41. IDENTIFY and SET UP:  

 

Apply Bernoulli�s equation to points 1 and 2 
as shown in Figure 14.41. Point 1 is in the 
mains and point 2 is at the maximum height 
reached by the stream, so 2 0.v =  

Figure 14.41  
Solve for 1p  and then convert this absolute pressure to gauge pressure. 

EXECUTE: 2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

Let 1 0,y =  2 15.0 m.y =  The mains have large diameter, so 1 0.v ≈  
Thus 1 2 2.p p gyρ= +  

But 2 a ,p p=  so 3 2 5
1 a 2 (1000 kg/m )(9.80 m/s )(15.0 m) 1.47 10  Pa.p p gyρ− = = = ×  

EVALUATE: This is the gauge pressure at the bottom of a column of water 15.0 m high. 
14.42. IDENTIFY: Apply Bernoulli�s equation to the two points. 

SET UP: The continuity equation says 1 1 2 2v Α v Α= . In Eq.(14.17) either absolute or gauge pressures can be used 
at both points. 
EXECUTE: Using 1

2 14v v= , 

2 2 2
2 1 1 2 1 2 1 1 1 2

1 15( ) ( ) ( )
2 32

p p ρ v v ρg y y p ρ υ g y y⎡ ⎤⎛ ⎞= + − + − = + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

4 3 3 2 2 5
2

155.00 10  Pa (1.00 10  kg/m ) (3.00 m/s) (9.80 m/s )(11.0 m) 1.62 10  Pa
32

p ⎛ ⎞= × + × + = ×⎜ ⎟
⎝ ⎠

. 

EVALUATE: The decrease in speed and the decrease in height at point 2 both cause the pressure at point 2 to be 
greater than the pressure at point 1. 

14.43. IDENTIFY: Apply Bernoulli�s equation to the air flowing past the wing. F pA= . 
SET UP: Let point 1 be at the top surface and point 2 be at the bottom surface. Neglect the 1 2( )g y yρ −  term in 
Bernoulli�s equation. In calculating the net force take y+  to be upward. 

EXECUTE: 2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + + . 
2 2 3 2 21 1

2 1 1 22 2( ) (1.20 kg/m )([70.0 m/s] [60.0 m/s] ) 780 Pap p v vρ− = − = − = . 

The net force exerted by the air is 2
2 1 (780 Pa)(16.2 m ) 12,600 Np A p A− = = . The net force is upward. 

EVALUATE: The pressure is lower where the fluid speed is higher. 
14.44. IDENTIFY: /m Vρ = . Apply the equation of continuity and Bernoulli�s equation to points 1 and 2. 

SET UP: The density of water is 1 kg/L. 

EXECUTE: (a) ( )( )220 0.355 kg
1.30 kg/s.60.0 s =  
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(b) The density of the liquid is 3
3 3

0.355 kg 1000 kg/m ,
0.355 10  m− =

×
 and so the volume flow rate is 

3 3
3

1.30 kg/s 1.30 10  m /s 1.30 L/s.
1000 kg/m

−= × =  This result may also be obtained from ( )( )220 0.355 L
1.30 L/s.60.0 s =  

(c) 
3 3

 
1 4 2

1.30 10 m /s 6.50 m/s
2.00 10 m

v
−

−
×= =
×

. 2 1/4 1.63 m/sv v= = . 

(d) ( ) ( )2 2
1 2 2 1 2 1

1
2

p p ρ v v ρg y y= + − + − . 

( )3 2 2 21
1 2152 kPa (1000 kg/m ) [(1.63 m/s) (6.50 m/s) ] (9.80 m/s )( 1.35 m)p = + − + − . 1 119 kPap = . 

EVALUATE: The increase in height and the increase in fluid speed at point 1 both cause the pressure at point 1 to 
be less than the pressure at point 2. 

14.45. IDENTIFY: Apply Bernoulli�s equation to the two points. 
SET UP: 1 2y y= . 1 1 2 2v A v A= . 2 12A A= . 

EXECUTE: 2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + + . 1 1

2 1
2 1

(2.50 m/s) 1.25 m/s
2

A Av v
A A

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

2 2 4 3 2 2 41 1
2 1 1 22 2( ) 1.80 10  Pa (1000 kg/m )([2.50 m/s] [1.25 m/s] ) 2.03 10  Pap p v vρ= + − = × + − = ×  

EVALUATE: The gauge pressure is higher at the second point because the water speed is less there. 
14.46. IDENTIFY and SET UP: Let point 1 be where 1 4.00 cmr =  and point 2 be where 2 2.00 cm.r =  The volume flow 

rate vA has the value 37200 cm /s  at all points in the pipe. Apply Eq.(14.10) to find the fluid speed at points 1 and 
2 and then use Bernoulli�s equation for these two points to find 2.p  

EXECUTE: 2 3
1 1 1 1 7200 cm ,v A v rπ= =  so 1 1.43 m/sv =  

2 3
2 2 2 2 7200 cm ,v A v rπ= =  so 2 5.73 m/sv =  

2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

1 2y y=  and 5
1 2.40 10  Pa,p = ×  so 2 2 51

2 1 1 22 ( ) 2.25 10  Pap p v vρ= + − = ×  
EVALUATE: Where the area decreases the speed increases and the pressure decreases. 

14.47. IDENTIFY: F pA= , where A is the cross-sectional area presented by a hemisphere. The force bbF that the body 
builder must apply must equal in magnitude the net force on each hemisphere due to the air inside and outside the 
sphere. 

SET UP: 
2

4
DA π= . 

EXECUTE: (a) ( )
2

bb 0 .4
DF p p π= −  

(b) The force on each hemisphere due to the atmosphere is 
2 2 5(5.00 10  m) (1.013 10  Pa/atm)(0.975 atm) 776π −× × = Ν . The bodybuilder must exert this force on each 

hemisphere to pull them apart.  
EVALUATE: The force is about 170 lbs, feasible only for a very strong person. The force required is proportional 
to the square of the diameter of the hemispheres. 

14.48. IDENTIFY: Apply 0p p ghρ= +  and 0( )p VV
B

Δ
Δ = − ,where B is the bulk modulus. 

SET UP: Seawater has density 3 31.03 10  kg/mρ = × . The bulk modulus of water is 92.2 10  PaB = × . 
5

air 1.01 10  Pap = × . 

EXECUTE: (a) 5 3 3 2 3 8
0 air 1.01 10  Pa (1.03 10  kg/m )(9.80 m/s )(10.92 10  m) 1.10 10  Pap p ghρ= + = × + × × = ×  

(b) At the surface 31.00 m of seawater has mass 31.03 10  kg× . At a depth of 10.92 km the change in volume is 
8 3

30
9

( ) (1.10 10  Pa)(1.00 m ) 0.050 m
2.2 10  Pa

p VV
B

Δ ×
Δ = − = − = −

×
. The volume of this mass of water at this depth therefore 

is 3
0 0.950 mV V V= + Δ = . 

3
3 3

3

1.03 10  kg 1.08 10  kg/m
0.950 m

m
V

ρ ×
= = = × . The density is 5% larger than at the surface. 

EVALUATE: For water B is small and a very large increase in pressure corresponds to a small fractional change in 
volume. 
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14.49. IDENTIFY: In part (a), the force is the weight of the water. In part (b), the pressure due to the water at a depth h is 
ghρ . F pA= and m Vρ= . 

SET UP: The density of water is 3 31.00 10  kg/m× . 
EXECUTE: (a) The weight of the water is 

( )3 3 5(1.00 10  kg/m )(9.80 m/s ) (5.00 m)(4.0 m)(3.0 m) 5.9 10  N,ρgV 2= × = ×  
(b) Integration gives the expected result that the force is what it would be if the pressure were uniform and equal to 
the pressure at the midpoint. If d is the depth of the pool and A is the area of one end of the pool, then 

( )3 3 2 5(1.00 10 kg/m )(9.80 m/s ) (4.0 m)(3.0 m) (1.50 m) 1.76 10  N
2
dF gAρ= = × = × . 

EVALUATE: The answer to part (a) can be obtained as F pA= , where p gdρ= is the gauge pressure at the 
bottom of the pool and (5.0 m)(4.0 m)A = is the area of the bottom of the pool. 

14.50. IDENTIFY: Use Eq.(14.8) to find the gauge pressure versus depth, use Eq.(14.3) to relate the pressure to the force 
on a strip of the gate, calculate the torque as force times moment arm, and follow the procedure outlined in the hint 
to calculate the total torque. 
SET UP: The gate is sketched in Figure 14.50a 

 

Let uτ  be the torque due to the net force 
of the water on the upper half of the gate, 
and 1τ  be the torque due to the force on 
the lower half. 

Figure 14.50a  
With the indicated sign convention, 1τ  is positive and uτ  is negative, so the net torque about the hinge is 

1 u .τ τ τ= −  Let H be the height of the gate. 
Upper-half of gate: 
Calculate the torque due to the force on a narrow strip of height dy located a distance y below the top of the gate, as 
shown in Figure 14.50b. Then integrate to get the total torque. 

 

The net force on the strip is ( ) ,dF p y dA=  where 
( )p y gyρ=  is the pressure at this depth and 

dA W dy=  with 4.00 mW =  
dF gyW dyρ=  

Figure 14.50b  
The moment arm is ( / 2 ),H y−  so ( / 2 )  .d pgW H y y dyτ = −  

 / 2  / 2 2 3 / 2
u 0 0  0

( / 2 )  (( / 4) /3)
H H Hd gW H y y dy gW H y yτ τ ρ ρ= = − = −∫ ∫  

3 3 3
u ( /16 / 24) ( / 48)gW H H gW Hτ ρ ρ= − =  

3 2 3 3
u (1000 kg/m )(9.80 m/s )(4.00 m)(2.00 m) / 48 6.533 10  N mτ = = × ⋅  

Lower-half of gate: 

 

Consider the narrow strip shown in Figure 14.50c 
The depth of the strip is ( / 2 )H y+  
so the force dF is 

( ) ( / 2 )dF p y dA g H y W dyρ= = +  
Figure 14.50c  

The moment arm is y, so ( / 2 )  .d gW H y y dyτ ρ= +  
 / 2  / 2 2 3 / 2

l 0 0  0
( / 2 )  (( / 4) /3)

H H Hd gW H y y dy gW H y yτ τ ρ ρ= = + = +∫ ∫  
3 3 3

l ( /16 / 24) (5 / 48)gW H H gW Hτ ρ ρ= + =  
3 2 3 4

l (1000 kg/m )(9.80 m/s )(4.00 m)5(2.00 m) /48 3.267 10  N mτ = = × ⋅  

Then 4 3 4
1 u 3.267 10  N m 6.533 10  N m 2.61 10  N m.τ τ τ= − = × ⋅ − × ⋅ = × ⋅  

EVALUATE: The forces and torques on the upper and lower halves of the gate are in opposite directions so find 
the net value by subtracting the magnitudes. The torque on the lower half is larger than the torque on the upper half 
since pressure increases with depth. 
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14.51. IDENTIFY: Compute the force and the torque on a thin, horizontal strip at a depth h and integrate to find the total 
force and torque. 
SET UP: The strip has an area ( )dA dh L= ,where dh is the height of the strip and L is its length. A HL= . The 
height of the strip about the bottom of the dam is H h− . 

EXECUTE: (a) dF pdA ghLdhρ= = . 
  2

 0  0
/2 /2

H H
F dF gL hdh gLH gAHρ ρ ρ= = = =∫ ∫ . 

(b) The torque about the bottom on a strip of vertical thickness dh  is ( ) ( ) ,dτ dF H h gLh H h dhρ= − = −  and 

integrating from 0 to h h H= = gives 3 2/6 /6.τ ρgLH ρgAH= =  
(c) The force depends on the width and on the square of the depth, and the torque about the bottom depends on the 
width and the cube of the depth; the surface area of the lake does not affect either result (for a given width). 
EVALUATE: The force is equal to the average pressure, at depth /2H , times the area A of the vertical side of the 
dam that faces the lake. But the torque is not equal to ( /2)F H ,where /2H is the moment arm for a force acting at 
the center of the dam. 

14.52. IDENTIFY: The information about Europa allows us to evaluate g at the surface of Europa. Since there is no 
atmosphere, 0 0p = at the surface. The pressure at depth h is p ghρ= . The inward force on the window is 
F pA⊥ = . 

SET UP: 2

Gmg
R

= , where 11 2 26.67 10  N m /kgG −= × ⋅ . 61.565 10  mR = × . Assume the ocean water has density 

3 31.00 10  kg/mρ = × . 

EXECUTE: 
11 2 2 22

2
6 2

(6.67 10  N m /kg )(4.78 10  kg) 1.30 m/s
(1.565 10  m)

g
−× ⋅ ×

= =
×

. The maximum pressure at the window is 

5
2

9750 N 1.56 10  Pa
(0.250 m)

p = = × . p ghρ= so 
5

3 3 2

1.56 10  Pa 120 m
(1.00 10  kg/m )(1.30 m/s )

h ×
= =

×
. 

EVALUATE: 9750 N is the inward force exerted by the surrounding water. This will also be the net force on the 
window if the pressure inside the submarine is essentially zero. 

14.53. IDENTIFY and SET UP: Apply Eq.(14.6) and solve for g. 
Then use Eq.(12.4) to relate g to the mass of the planet. 
EXECUTE: 0 .p p gdρ− =  
This expression gives that 0 0( )/ ( ) / .g p p d p p V mdρ= − = −  

But also 2
p /g Gm R=  (Eq.(12.4) applied to the planet rather than to earth.) 

Setting these two expressions for g equal gives 2
p 0/ ( ) /Gm R p p V md= −  and 2

p 0( ) / .m p p VR Gmd= −  

EVALUATE: The greater p is at a given depth, the greater g is for the planet and greater g means greater p.m  
14.54. IDENTIFY: The buoyant force B equals the weight of the air displaced by the balloon. 

SET UP: airB Vgρ= . Let Mg be the value of g for Mars. For a sphere 34
3V Rπ= . The surface area of a sphere is 

given by 24A Rπ= . The mass of the balloon is 3 2 2(5.00 10  kg/m )(4 )Rπ−× . 

EXECUTE: (a) MB mg= . air M MVg mgρ = . 3 3 2 24
air 3 (5.00 10  kg/m )(4 )R Rρ π π−= × . 

3 2

air

3(5.00 10  kg/m ) 0.974 mR
ρ

−×
= = . 3 2 2(5.00 10  kg/m )(4 ) 0.0596 kgm Rπ−= × = . 

(b) netF B mg ma= − = . 3 3 3 24
air air 3

4(1.20 kg/m ) (0.974 m) (9.80 m/s ) 45.5 N
3

B Vg R g πρ ρ π ⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

. 

2
245.5 N (0.0596 kg)(9.80 m/s ) 754 m/s

0.0596 m
B mga

m
− −

= = = , upward. 

(c) totB m g= . air balloon load( )Vg m m gρ = + . 3 3 2 24
load air 3 (5.00 10  kg/m )4m R Rρ π π−= − × . 

3 3 3 2 2
load

4(0.0154 kg/m ) (5[0.974 m]) (5.00 10  kg/m )(4 )(5[0.974 m])
3

m π π−⎛ ⎞= − ×⎜ ⎟
⎝ ⎠

 

load 7.45 kg 1.49 kg 5.96 kgm = − =  

EVALUATE: The buoyant force is proportional to 3R and the mass of the balloon is proportional to 2R , so the 
load that can be carried increases when the radius of the balloon increases. We calculated the mass of the load. To 
find the weight of the load we would need to know the value of g for Mars. 



Fluid Mechanics  14-13 

14.55. IDENTIFY: Follow the procedure outlined in part (b). For a spherically symmetric object, with total mass m and 
radius r, at points on the surface of the object, 2( ) /g r Gm r= . 

SET UP: The earth has mass 24
E 5.97 10  kgm = × . If ( )g r is a maximum at maxr r= , then 0dg

dr
= for maxr r= . 

EXECUTE: (a) At 0,r = the model predicts 312,700 kg/mAρ = = and at ,r R= the model 

predicts 3 3 4 6 3 312,700 kg/m (1.50 10  kg/m )(6.37 10  m) 3.15 10 kg/m .A BRρ −= − = − × × = ×  

(b) and (c) 
3 4 3

2

0

4 34 [ ] 4
3 4 3 4

R AR BR πR BRM dm π A Br r dr π A
⎡ ⎤ ⎛ ⎞ ⎡ ⎤= = − = − = −⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠

∫ ∫ . 

6 3 3 4 6
3 244 (6.37 10  m) 3(1.50 10  kg/m )(6.37 10  m)12,700 kg/m 5.99 10  kg

3 4
πM

−⎛ ⎞ ⎡ ⎤× × ×
= − = ×⎜ ⎟⎢ ⎥
⎝ ⎠ ⎣ ⎦

 

which is within 0.36% of the earth�s mass. 
(d) If ( )m r is used to denote the mass contained in a sphere of radius ,r  then ( )/ .g Gm r r 2=  Using the same 
integration as that in part (b), with an upper limit of r instead of R  gives the result. 
(e) 0 at 0,  and  at g r g r R= = = , 

2 11 2 2 24 6 2 2( ) / (6.673 10  N m kg )(5.99 10  kg)/(6.37 10  m) 9.85 m/s .g Gm R R −= = × ⋅ × × =  

(f) 
24 3 4 3

3 4 3 2
dg πG d Br πG BrAr A
dr dr

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦
. Setting this equal to zero gives 62 /3 5.64 10  mr A B= = × , 

and at this radius 
24 2 3 2 4

3 3 4 3 9
πG A A πGAg A B

B B B
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

. 

11 2 2 3 2
2

3 4

4 (6.673 10  N m /kg )(12,700 kg/m ) 10.02 m/s .
9(1.50 10  kg/m )

πg
−

−

× ⋅
= =

×
 

EVALUATE: If the earth were a uniform sphere of density ρ , then 2

( ) 4( )
3

V r Gg r r
r

ρ πρ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

, the same as setting 

0B = and A ρ= in ( )g r in part (d). If maxr is the value of r in part (f) where ( )g r is a maximum, then 

max / 0.885r R = . For a uniform sphere, ( )g r  is maximum at the surface.  
14.56. IDENTIFY: Follow the procedure outlined in part (a). 

SET UP: The earth has mass 245.97 10  kgM = × and radius 66.38 10  mR = × . Let 2
S 9.80 m/sg =  

EXECUTE: (a) Equation (14.4), with the radius r instead of height ,y  becomes s( ) ( ) .dp ρg r dr ρg r R dr= − = −  
This form shows that the pressure decreases with increasing radius. Integrating, with 0 at ,p r R= =  

  2 2s s s
  

   ( ).
2

r R

R r

ρg ρg ρgp r dr r dr R r
R R R

= − = = −∫ ∫  

(b) Using the above expression with 3
30 and ,

4
MMr V R

ρ
π

= = =  

24 2
11

6 2

3(5.97 10  kg)(9.80 m/s )(0) 1.71 10  Pa.
8 (6.38 10  m)

p
π
×

= = ×
×

 

(c) While the same order of magnitude, this is not in very good agreement with the estimated value. In more 
realistic density models (see Problem 14.55), the concentration of mass at lower radii leads to a higher pressure. 
EVALUATE: In this model, the pressure at the center of the earth is about 610 times what it is at the surface. 

14.57. (a) IDENTIFY and SET UP:  

 

Apply 0p p ghρ= +  to the water 
in the left-hand arm of the tube. 
See Figure 14.57. 

Figure 14.57  
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EXECUTE: 0 a ,p p=  so the gauge pressure at the interface (point 1) is 
3 2

a (1000 kg/m )(9.80 m/s )(0.150 m) 1470 Pap p ghρ− = = =  
(b) IDENTIFY and SET UP: The pressure at point 1 equals the pressure at point 2. Apply Eq.(14.6) to the right-
hand arm of the tube and solve for h. 
EXECUTE: 1 a w (0.150 m)p p p g= +  and 2 a Hg (0.150 m )p p g hρ= + −  

1 2p p=  implies w Hg(0.150 m) (0.150 m )g g hρ ρ= −  
3

w
3 3

Hg

(0.150 m) (1000 kg/m )(0.150 m)0.150 m 0.011 m
13.6 10  kg/m

h ρ
ρ

− = = =
×

 

0.150 m 0.011 m 0.139 m 13.9 cmh = − = =  
EVALUATE: The height of mercury above the bottom level of the water is 1.1 cm. This height of mercury 
produces the same gauge pressure as a height of 15.0 cm of water. 

14.58. IDENTIFY: Follow the procedure outlined in the hint. F pA= . 
SET UP: The circular ring has area (2 )dA R dyπ= . The pressure due to the molasses at depth y is gyρ . 

EXECUTE: 
 2

 o
( )(2 )

h
F ρgy πR dy ρgπRh= =∫ where R and h are the radius and height of the tank. Using the given 

numerical values gives 85.07 10  N.F = ×  
EVALUATE: The net outward force is the area of the wall of the tank, 2A Rhπ= , times the average pressure, the 
pressure / 2ghρ at depth / 2h . 

14.59. IDENTIFY: Apply Newton�s 2nd law to the barge plus its contents. Apply Archimedes� principle to express the 
buoyancy force B in terms of the volume of the barge. 
SET UP: The free-body diagram for the barge plus coal is given in Figure 14.59. 

 

EXECUTE: y yF ma=∑  

barge coal( ) 0B m m g− + =  

w barge marge coal( )V g m m gρ = +  

coal w barge bargem V mρ= −  

Figure 14.59  
4 3

barge (22 m)(12 m)(40 m) 1.056 10  mV = = ×  

The mass of the barge is barge s s ,m Vρ=  where s refers to steel. 

From Table 14.1, 3
s 7800 kg/m .ρ =  The volume sV  is 0.040 m times the total area of the five pieces of steel that 

make up the barge: 

[ ] 3
s (0.040 m) 2(22 m)(12 m) 2(40 m)(12 m) (22 m)(40 m) 94.7 m .V = + + =  

Therefore, 3 3 5
barge s s (7800 kg/m )(94.7 m ) 7.39 10  kg.m Vρ= = = ×  

Then 3 4 3 5 6
coal w barge barge (1000 kg/m )(1.056 10  m ) 7.39 10  kg 9.8 10  kg.m V mρ= − = × − × = ×  

The volume of this mass of coal is 6 3 3
coal coal coal/ 9.8 10  kg/1500 kg/m 6500 m ;V m ρ= = × =  this is less that bargeV  so 

it will fit into the barge. 
EVALUATE: The buoyancy force B must support both the weight of the coal and also the weight of the barge. The 
weight of the coal is about 13 times the weight of the barge. The buoyancy force increases when more of the barge 
is submerged, so when it holds the maximum mass of coal the barge is fully submerged. 

14.60. IDENTIFY: The buoyant force on the balloon must equal the total weight of the balloon fabric, the basket and its 
contents and the gas inside the balloon. gas gasm Vρ= . airB Vgρ= . 
SET UP: The total weight, exclusive of the gas inside the balloon, is 900 N 1700 N 3200 N 5800 N+ + =  

EXECUTE: gas air5800 N g gV Vρ ρ+ =  and 3 3
gas 2 3

(5800 N)1.23 kg/m 0.96 kg/m .
(9.80 m/s )(2200 m )

ρ = − =  

EVALUATE: The volume of a given mass of gas increases when the gas is heated, and the density of the gas 
therefore decreases. 
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14.61. IDENTIFY: Apply Newton�s 2nd law to the car. The buoyancy force is given by Archimedes� principle. 
(a) SET UP: The free-body diagram for the floating car is given in Figure 14.61. sub(V  is the volume that is 
submerged.) 

 

EXECUTE: y yF ma=∑  
0B mg− =  

w sub 0V g mgρ − =  

Figure 14.61  
3 3

sub w/ (900 kg)/(1000 kg/m ) 0.900 mV m ρ= = =  
3 3

sub obj/ (0.900 m ) /(3.0 m ) 0.30 30%V V = = =  

EVALUATE: The average density of the car is 3 3(900 kg)/(3.0 m ) 300 kg/m .=  car water/ 0.30;ρ ρ =  this equals 

sub obj/ .V V  
(b) SET UP: When the car starts to sink it is fully submerged and the buoyant force is equal to the weight of the 
car plus the water that is inside it. 
EXECUTE: When the car is full submerged sub ,V V=  the volume of the car and 

3 3 2 4
water (1000 kg/m )(3.0 m )(9.80 m/s ) 2.94 10  NB Vgρ= = = ×  

The weight of the car is 2(900 kg)(9.80 m/s ) 8820 N.mg = =  
Thus the weight of the water in the car when it sinks is the buoyant force minus the weight of the car itself: 

4 2 3
water (2.94 10  N 8820 N)/(9.80 m/s ) 2.10 10  kgm = × − = ×  

And 3 3 3
water water water/ (2.10 10  kg)/(1000 kg/m ) 2.10 mV m ρ= = × =  

The fraction this is of the total interior volume is 3 3(2.10 m ) /(3.00 m ) 0.70 70%= =  

EVALUATE: The average density of the car plus the water inside it is 3 3(900 kg 2100 kg)/(3.0 m ) 1000 kg/m ,+ =  
so car waterρ ρ=  when the car starts to sink. 

14.62. IDENTIFY: For a floating object, the buoyant force equals the weight of the object. fluid submergedB V gρ= . 

SET UP: Water has density 31.00 g/cmρ = . 
EXECUTE: (a) The volume displaced must be that which has the same weight and mass as the ice, 

3
3

9.70 gm 9.70 cm
1.00 gm/cm

= . 

(b) No; when melted, the cube produces the same volume of water as was displaced by the floating cube, and the 
water level does not change. 

(c) 3
3

9.70 gm 9.24 cm
1.05 gm/cm

=  

(d) The melted water takes up more volume than the salt water displaced, and so 30.46 cm  flows over. 
EVALUATE: The volume of water from the melted cube is less than the volume of the ice cube, but the cube 
floats with only part of its volume submerged. 

14.63. IDENTIFY: For a floating object the buoyant force equals the weight of the object. The buoyant force when the 
wood sinks is water totB V gρ= , where totV  is the volume of the wood plus the volume of the lead. /m Vρ = . 

SET UP: The density of lead is 3 311.3 10  kg/m× . 

EXECUTE: 3
wood (0.600 m)(0.250 m)(0.080 m) 0.0120 mV = = . 

3 3
wood wood wood (600 kg/m )(0.0120 m ) 7.20 kgm Vρ= = = . 

wood lead( )B m m g= + . Using water totB V gρ=  and tot wood leadV V V= +  gives water wood lead wood lead( ) ( )V V g m m gρ + = + . 

lead lead leadm Vρ=  then gives water wood water lead wood lead leadV V m Vρ ρ ρ+ = + . 
3 3

4 3water wood wood
lead 3 3 3

lead water

(1000 kg/m )(0.0120 m ) 7.20 kg 4.66 10  m
11.3 10  kg/m 1000 kg/m

V mV ρ
ρ ρ

−− −
= = = ×

− × −
. lead lead lead 5.27 kgm Vρ= = . 

EVALUATE: The volume of the lead is only 3.9% of the volume of the wood. If the contribution of the volume of 
the lead to BF  is neglected, the calculation is simplified: water wood wood lead( )V g m m gρ = +  and lead 4.8 kgm = . The 
result of this calculation is in error by about 9%. 
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14.64. IDENTIFY: The fraction f of the volume that floats above the fluid is 
fluid

1 ,f ρ
ρ

= −  where ρ is the average density 

of the hydrometer (see Problem 14.29). This gives fluid
1 .

1
ρ ρ

f
=

−
 

SET UP: The volume above the surface is hA, where h is the height of the stem above the surface and 20.400 cm .A=  

EXECUTE: If two fluids are observed to have floating fraction 1
1 2 2 1

2

1and ,  .
1

ff f ρ ρ
f

−
=

−
 Using 

2 2

1 23 3
(8.00 cm)(0.400 cm ) (3.20 cm)(0.400 cm )0.242,   0.097

(13.2 cm ) (13.2 cm )
f f= = = =  gives 3

alcohol water(0.839) 839 kg/m .ρ ρ= =  

EVALUATE: alcohol waterρ ρ< . When fluidρ  increases, the fraction f of the object�s volume that is above the surface 
increases. 

14.65. (a) IDENTIFY: Apply Newton�s 2nd law to the airship. The buoyancy force is given by Archimedes� principle; 
the fluid that exerts this force is the air. 
SET UP: The free-body diagram for the dirigible is given in Figure 14.65. The lift corresponds to a mass 

3 2 4
lift (120 10  N)/(9.80 m/s ) 1.224 10  kg.m = × = ×  The mass totm  is 41.224 10  kg×  plus the mass gasm  of the gas 

that fills the dirigible. B is the buoyant force exerted by the air. 

 

EXECUTE: y yF ma=∑  

tot 0B m g− =  
4

air gas(1.224 10  kg )Vg m gρ = × +  

Figure 14.65  
Write gasm  in terms of V: gas gasm Vρ=  

And let g divide out; the equation becomes 4
air gas1.224 10  kgV Vρ ρ= × +  

4
4 3

3 3

1.224 10  kg 1.10 10  m
1.20 kg/m 0.0899 kg/m

V ×
= = ×

−
 

EVALUATE: The density of the airship is less than the density of air and the airship is totally submerged in the 
air, so the buoyancy force exceeds the weight of the airship. 
(b) SET UP: Let liftm  be the mass that could be lifted. 

EXECUTE: From part (a), lift air gas( )m Vρ ρ= − 3 3 4 3 4(1.20 kg/m 0.166 kg/m )(1.10 10  m ) 1.14 10  kg.= − × = ×  

The lift force is 4 2
lift (1.14 10  kg)(9.80 m/s ) 112 kN.m = × =  

EVALUATE: The density of helium is less than that of air but greater than that of hydrogen. Helium provides lift, 
but less lift than hydrogen. Hydrogen is not used because it is highly explosive in air. 

14.66. IDENTIFY: The vertical forces on the floating object must sum to zero. The buoyant force B applied to the object 
by the liquid is given by Archimedes�s principle. The motion is SHM if the net force on the object is of the form 

yF ky= − and then 2 /T m kπ= . 
SET UP: Take y+  to be downward. 
EXECUTE: (a) submergedV LA= , where L is the vertical distance from the surface of the liquid to the bottom of the 

object. Archimedes� principle states ,  so .MgLA Mg L
A

ρ
ρ

= =  

(b) The buoyant force is ( )gA L y Mg Fρ + = + , where y is the additional distance the object moves downward. 

Using the result of part (a) and solving for y gives .Fy ρgA=  

(c) The net force is net ( )F Mg gA L y gAyρ ρ= − + = − . ,k ρgA=  and the period of oscillation is 

2 2 .M MT π π
k ρgA

= =  

EVALUATE: The force F determines the amplitude of the motion but the period does not depend on how much 
force was applied. 
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14.67. IDENTIFY: Apply the results of problem 14.66. 
SET UP: The additional force F applied to the buoy is the weight w mg= of the man. 

EXECUTE: (a) ( )
( ) ( )23 3

70.0 kg
0.107 m.

1.03 10  kg m 0.450 m
w mg mx
ρgA ρgA ρA π

= = = = =
×

 

(b) Note that in part (c) of Problem 14.66,  M is the mass of the buoy, not the mass of the man, and A is the cross-
section area of the buoy, not the amplitude. The period is then 

3 3 2 2

(950 kg)2 2.42 s
(1.03 10  kg/m )(9.80 m/s ) (0.450 m)

T π
π

= =
×

 

EVALUATE: The period is independent of the mass of the man. 
14.68. IDENTIFY: After the water leaves the hose the only force on it is gravity. Use conservation of energy to relate the 

initial speed to the height the water reaches. The volume flow rate is Av. 
SET UP: 2 / 4A Dπ=  

EXECUTE: (a) 21
2 mv mgh= . 22 2(9.80 m/s )(35.0 m) 26.2 m/sv gh= = = . 2 3( / 4) 0.500 m/sD vπ = . 

3 34(0.500 m/s ) 4(0.500 m/s ) 0.156 m 15.6 cm
(26.3 m/s)

D
vπ π

= = = = . 

(b) 2D v is constant so if D is twice as great then v is decreased by a factor of 4. h is proportional to 2v , so h is 

decreased by a factor of 16. 35.0 m 2.19 m
16

h = = . 

EVALUATE: The larger the diameter of the nozzle the smaller the speed with which the water leaves the hose and 
the smaller the maximum height. 

14.69. IDENTIFY: Find the horizontal range x as a function of the height y of the hole above the base of the cylinder. 
Then find the value of y for which x is a maximum. Once the water leaves the hole it moves in projectile motion. 
SET UP: Apply Bernoulli's equation to points 1 and 2, where point 1 is at the surface of the water and point 2 is in 
the stream as the water leaves the hole. Since the hole is small the volume flow rate out the hole is small and 1 0v ≈ . 

1 2y y H y− = − and 1 2 airp p ρ= = . For the projectile motion, take y+  to be upward; 0xa = and 29.80 m/sya = − . 

EXECUTE: (a) 2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + + gives 2 2 ( )v g H y= − . In the projectile motion, 0 0yv = and 

0y y y− = − , so 21
0 0 2y yy y v t a t− = + gives 2yt

g
= . The horizontal range is 0 2 2 ( )xx v t v t y H y= = = − . The y 

that gives maximum x satisfies 0dx
dy

= . 2 1/ 2( ) ( 2 ) 0Hy y H y−− − = and / 2y H= . 

(b) 2 ( ) 2 ( / 2)( / 2)x y H y H H H H= − = − = . 
EVALUATE: A smaller y gives a larger 2v , but a smaller time in the air after the water leaves the hole. 

14.70. IDENTIFY: Bernoulli's equation gives the speed at which water exits the hole, and from this we can calculate the 
volume flow rate. This will depend on the height h of the water remaining in the tank. Integrate to find h versus t. 
The time for the tank to empty is t for which 0h = . 
SET UP: Apply Bernoulli's equation to point 1 at the top of the tank and point 2 at the hole. Assume the cross 

sectional area 1A of the tank is much larger than the area 2A of the hole. 1
dhv
dt

= − , where the minus sign is 

because h is decreasing and /dh dt is negative, whereas 1v is positive. 

EXECUTE: 2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  gives 2 2

2 12v gh v= + . 1 1 2 2Av A v= gives 
2

2 22
1 2

1

Av v
A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

and 

2
2 2
2

1

1 2Av gh
A

⎛ ⎞⎡ ⎤⎜ ⎟− =⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
. 2 1A A<< so 2 2v gh= . 2

1 2
1

dh Av v
dt A

= − = and 1
2

2

A dhv
A dt

= − . Combining these two equations 

for 2v gives 1/ 22

1

2 .dh A gh
dt A
= −  2

1/ 2
1

2dh A g dt
h A

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 

0

  2
1/ 2  0

1

2
h t

h

dh A g dt
h A

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ ∫ gives ( ) 2

0
1

2 2Ah h gt
A

− = − . 

2

2
0

1

( )
2

A gh t h t
A

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. 
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(b) 0h = when 1 0

2

2A ht
A g

= . 

EVALUATE: The time t for the tank to empty decreases when the area of the hole is larger. t increases when A1 
increases because for fixed h0 an increase in A1 corresponds to a greater volume of water initially in the tank. 

14.71. IDENTIFY: Apply the 2nd condition of equilibrium to the balance arm and apply the first condition of equilibrium 
to the block and to the brass mass. The buoyancy force on the wood is given by Archimedes� principle and the 
buoyancy force on the brass mass is ignored. 
SET UP: The objects and forces are sketched in Figure 14.71a. 

 

The buoyant force on the brass is neglected, 
but we include the buoyant force B on the 
block of wood. wn  and bn  are the normal 
forces exerted by the balance arm on which 
the objects sit. 

Figure 14.71a  

The free-body diagram for the balance arm is given in Figure 14.71b. 

 

EXECUTE: 0Pτ =  

w b 0n L n L− =  

w bn n=  

Figure 14.71b  

SET UP: The free-body diagram for the brass mass is given in Figure 14.71c. 

 

EXECUTE: y yF ma=∑  

b b 0n m g− =  

b bn m g=  

Figure 14.71c  

The free-body diagram for the block of wood is given in Figure 14.71d. 

 

y yF ma=∑  

w w 0n B m g+ − =  

w wn m g B= −  

Figure 14.71d  
But b wn n=  implies b w .m g m g B= −  
And air w air w w( / ) ,B V g m gρ ρ ρ= =  so b w air w w( / ) .m g m g m gρ ρ= −  

b
w 3 3

air w

0.0950 kg 0.0958 kg
1 / 1 ((1.20 kg/m ) /(150 kg/m ))

mm
ρ ρ

= = =
− −

 

EVALUATE: The mass of the wood is greater than the mass of the brass; the wood is partially supported by the 
buoyancy force exerted by the air. The buoyancy in air of the brass can be neglected because the density of brass is 
much more than the density of air; the buoyancy force exerted on the brass by the air is much less than the weight 
of the brass. The density of the balsa wood is much less than the density of the brass, so the buoyancy force on the 
balsa wood is not such a small fraction of its weight. 

14.72. IDENTIFY: AB V gρ= . Apply Newton�s second law to the beaker, liquid and block as a combined object and also 
to the block as a single object. 
SET UP: Take y+  upward. Let DF and EF be the forces corresponding to the scale reading. 
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EXECUTE: Forces on the combined object: ( ) 0D E A B CF F w w w+ − + + = . A D E B Cw F F w w= + − − . 
D and E read mass rather than weight, so write the equation as A D E B Cm m m m m= + − − . /D Dm F g=  is the reading 
in kg of scale D; a similar statement applies to Em . 

3.50 kg 7.50 kg 1.00 kg 1.80 kg 8.20 kgAm = + − − = . 
Forces on A: 0D AB F w+ − = . 0A D AV g F m gρ + − = . A D AV m mρ + = . 

3 3
3 3

8.20 kg 3.50 kg 1.24 10  kg/m
3.80 10  m

A D

A

m m
V

ρ −

− −
= = = ×

×
 

(b) D reads the mass of A: 8.20 kg. E reads the total mass of B and C: 2.80 kg. 
EVALUATE: The sum of the readings of the two scales remains the same. 

14.73. IDENTIFY: Apply Newton�s 2nd law to the ingot. Use the expression for the buoyancy force given by 
Archimedes� principle to solve for the volume of the ingot. Then use the facts that the total mass is the mass of the 
gold plus the mass of the aluminum and that the volume of the ingot is the volume of the gold plus the volume of 
the aluminum. 
SET UP: The free-body diagram for the piece of alloy is given in Figure 14.73. 

 

EXECUTE: y yF ma=∑  

tot 0B T m g+ − =  

totB m g T= −  
45.0 N 39.0 N 6.0 NB = − =  

Figure 14.73  

Also, tot 45.0 Nm g =  so 2
tot 45.0 N/(9.80 m/s ) 4.59 kg.m = =  

We can use the known value of the buoyant force to calculate the volume of the object: w obj 6.0 NB V gρ= =  

4 3
obj 3 2

w

6.0 N 6.0 N 6.122 10  m
(1000 kg/m )(9.80 m/s )

V
gρ

−= = = ×  

We know two things: 
(1) The mass gm  of the gold plus the mass am  of the aluminum must add to tot:m  g a totm m m+ =  

We write this in terms of the volumes gV  and aV  of the gold and aluminum: g g a a totV V mρ ρ+ =  

(2) The volumes aV  and gV  must add to give obj:V  a g objV V V+ =  so that a obj gV V V= −  

Use this in the equation in (1) to eliminate a:V  g g a obj g tot( )V V V mρ ρ+ − =  
3 3 4 3

tot a obj 4 3
g 3 3 3 3

g a

4.59 kg (2.7 10  kg/m )(6.122 10  m ) 1.769 10  m .
19.3 10  kg/m 2.7 10  kg/m

m V
V

ρ
ρ ρ

−
−− − × ×

= = = ×
− × − ×

 

Then 3 3 4 3
g g g (19.3 10  kg/m )(1.769 10  m ) 3.41 kgm Vρ −= = × × =  and the weight of gold is g g 33.4 N.w m g= =  

EVALUATE: The gold is 29% of the volume but 74% of the mass, since the density of gold is much greater than 
the density of aluminum. 

14.74. IDENTIFY: Apply y yF ma=∑ to the ball, with y+  upward. The buoyant force is given by Archimedes�s 
principle. 

SET UP: The ball�s volume is 3 3 34 4 (12.0 cm) 7238 cm
3 3

V πr π= = = . As it floats, it displaces a weight of water 

equal to its weight. 
EXECUTE: (a) By pushing the ball under water, you displace an additional amount of water equal to 84% of the 
ball�s volume or 3 3(0.84)(7238 cm ) 6080 cm .=  This much water has a mass of 6080 g 6.080 kg= and weighs 

2(6.080 kg)(9.80 m s ) 59.6 N,= which is how hard you�ll have to push to submerge the ball. 
(b) The upward force on the ball in excess of its own weight was found in part (a): 59.6 N. The ball�s mass is equal 
to the mass of water displaced when the ball is floating: 

3 3(0.16)(7238 cm )(1.00 g/cm ) 1158 g 1.158 kg,= =  

and its acceleration upon release is thus 2net 59.6 N 51.5 m/s
1.158 kg

Fa
m

= = = . 

EVALUATE: When the ball is totally immersed the upward buoyant force on it is much larger than its weight. 
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14.75. (a) IDENTIFY: Apply Newton�s 2nd law to the crown. The buoyancy force is given by Archimedes� principle. 
The target variable is the ratio c w/ρ ρ  (c crown,=  w water).=  
SET UP: The free-body diagram for the crown is given in Figure 14.75. 

 

EXECUTE: y yF ma=∑  
0T B w+ − =  

T fw=  

w c ,B V gρ=  where 

w densityρ =  of water, 

c volumeV =  of crown 
Figure 14.75  

Then w c 0.fw V g wρ+ − =  

w c(1 )f w V gρ− =  
Use c c ,w V gρ=  where c densityρ =  of crown. 

c c w c(1 )f V g V gρ ρ− =  

c

w

1 ,
1 f

ρ
ρ

=
−

 as was to be shown. 

0f →  gives c w/ 1ρ ρ =  and 0.T =  These values are consistent. If the density of the crown equals the density of 
the water, the crown just floats, fully submerged, and the tension should be zero. 
When 1,f →  c wρ ρ>>  and .T w=  If c wρ ρ>>  then B is negligible relative to the weight w of the crown and T 
should equal w. 
(b) �apparent weight� equals T in rope when the crown is immersed in water. ,T fw=  so need to compute f. 

3 3
c 19.3 10  kg/m ;ρ = ×  3 3

w 1.00 10  kg/mρ = ×  

c

w

1
1 f

ρ
ρ

=
−

 gives 
3 3

3 3

19.3 10  kg/m 1
1.00 10  kg/m 1 f

×
=

× −
 

19.3 1/(1 )f= −  and 0.9482f =  
Then (0.9482)(12.9 N) 12.2 N.T fw= = =  
(c) Now the density of the crown is very nearly the density of lead; 

3 3
c 11.3 10  kg/m .ρ = ×  

c

w

1
1 f

ρ
ρ

=
−

 gives 
3 3

3 3

11.3 10  kg/m 1
1.00 10  kg/m 1 f

×
=

× −
 

11.3 1/(1 )f= −  and 0.9115f =  
Then (0.9115)(12.9 N) 11.8 N.T fw= = =  
EVALUATE: In part (c) the average density of the crown is less than in part (b), so the volume is greater. B is 
greater and T is less. These measurements can be used to determine if the crown is solid gold, without damaging 
the crown. 

14.76. IDENTIFY: Problem 14.75 says object

fluid

1
1 f

ρ
ρ

=
−

, where the apparent weight of the object when it is totally 

immersed in the fluid is fw. 
SET UP: For the object in water, water water /f w w= and for the object in the unknown fluid, fluid fluid/f w w= . 

EXECUTE: (a) steel

fluid fluid

,ρ w
ρ w w

=
−

 steel

fluid water

ρ w
ρ w w

=
−

. Dividing the second of these by the first gives 

fluid fluid

water water

.ρ w w
ρ w w

−
=

−
 

(b) When fluidw is greater than water,w  the term on the right in the above expression is less than one, indicating that 
the fluids is less dense than water, and this is consistent with the buoyant force when suspended in liquid being less 
than that when suspended in water. If the density of the fluid is the same as that of water fluidw = waterw , as 
expected. Similarly, if fluidw  is less than waterw , the term on the right in the above expression is greater than one, 
indicating that the fluid is denser than water. 
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(c) Writing the result of part (a) as fluid fluid

water water

1 ,
1

ρ f
ρ f

−
=

−
 and solving for fluid ,f  

( ) ( ) ( )fluid
fluid water

water

1 1 1 1.220  0.128 0.844 84.4%.ρf f
ρ

= − − = − = =  

EVALUATE: Formic acid has density greater than the density of water. When the object is immersed in formic 
acid the buoyant force is greater and the apparent weight is less than when the object is immersed in water. 

14.77. IDENTIFY and SET UP: Use Archimedes� principle for B. 
(a) water tot ,B V gρ=  where totV  is the total volume of the object. 

tot m 0,V V V= +  where mV  is the volume of the metal. 
EXECUTE: m m/V w gρ=  so tot m 0/V w g Vρ= +  
This gives water m 0( / )B g w g Vρ ρ= +  
Solving for 0V  gives 0 water m/( ) /( ),V B g w gρ ρ= −  as was to be shown. 
(b) The expression derived in part (a) gives 

4 3
0 3 2 3 3 2

20 N 156 N 2.52 10  m
(1000 kg/m )(9.80 m/s ) (8.9 10  kg/m )(9.80 m/s )

V −= − = ×
×

 

3 3
tot 3 2

water

20 N 2.04 10  m
(1000 kg/m )(9.80 m/s )

BV
gρ

−= = = ×  and 4 3 3 3
0 tot/ (2.52 10  m ) /(2.04 10  m ) 0.124.V V − −= × × =  

EVALUATE: When 0 0,V →  the object is solid and obj m m/( ).V V w gρ= =  For 0 0,V =  the result in part (a) gives 

m w m w obj w( / ) ,B w V g V gρ ρ ρ ρ= = =  which agrees with Archimedes� principle. As 0V  increases with the weight kept 
fixed, the total volume of the object increases and there is an increase in B. 

14.78. IDENTIFY: For a floating object the buoyant force equals the weight of the object. Archimedes�s principle says 
the buoyant force equals the weight of fluid displaced by the object. m Vρ= . 
SET UP: Let d be the depth of the oil layer, h the depth that the cube is submerged in the water, and L be the 
length of a side of the cube. 
EXECUTE: (a) Setting the buoyant force equal to the weight and canceling the common factors of g and the 
cross-section area, (1000) (750) (550)h d L+ = . d, h and L are related by 0.35d h L L+ + = , so 0.65h L d= − . 

Substitution into the first relation gives (0.65)(1000) (550) 2 0.040 m(1000) (750) 5.00
Ld L −= = =

−
. 

(b) The gauge pressure at the lower face must be sufficient to support the block (the oil exerts only sideways forces 
directly on the block), and 3 2

wood (550 kg/m )(9.80 m/s )(0.100 m) 539 Pa.p gLρ= = =  
EVALUATE: As a check, the gauge pressure, found from the depths and densities of the fluids, is 

3 3 2[(0.040 m)(750 kg/m ) (0.025 m)(1000 kg/m )](9.80 m/s ) 539 Pa.+ =  
14.79. IDENTIFY and SET UP: Apply the first condition of equilibrium to the barge plus the anchor. Use Archimedes� 

principle to relate the weight of the boat and anchor to the amount of water displaced. In both cases the total 
buoyant force must equal the weight of the barge plus the weight of the anchor. Thus the total amount of water 
displaced must be the same when the anchor is in the boat as when it is over the side. When the anchor is in the 
water the barge displaces less water, less by the amount the anchor displaces. Thus the barge rises in the water. 
EXECUTE: The volume of the anchor is 3 3 3

anchor / (35.0 kg)/(7860 kg/m ) 4.456 10  m .V m ρ −= = = ×  The barge rises 

in the water a vertical distance h given by 3 34.453 10  m ,hA −= ×  where A is the area of the bottom of the barge. 
3 3 2 4(4.453 10  m ) /(8.00 m ) 5.57 10  m.h − −= × = ×  

EVALUATE: The barge rises a very small amount. The buoyancy force on the barge plus the buoyancy force on 
the anchor must equal the weight of the barge plus the weight of the anchor. When the anchor is in the water, the 
buoyancy force on it is less than its weight (the anchor doesn�t float on its own), so part of the buoyancy force on 
the barge is used to help support the anchor. If the rope is cut, the buoyancy force on the barge must equal only the 
weight of the barge and the barge rises still farther. 

14.80. IDENTIFY: Apply y yF ma=∑ to the barrel, with y+  upward. The buoyant force on the barrel is given by 
Archimedes�s principle. 
SET UP: av tot /m Vρ = . An object floats in a fluid if its average density is less than the density of the fluid. The 

density of seawater is 31030 kg/m . 

EXECUTE: (a) The average density of a filled barrel is oil steelm m
V
+  3 3steel

oil 3
15.0 kg750 kg/m 875 kg/m ,

0.120 m
m
Vρ + = + =  

which is less than the density of seawater, so the barrel floats. 
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(b) The fraction above the surface (see Problem 14.29) is 
3

av
3

water

875 kg/m1 1 0.150 15.0%.
1030 kg/m

ρ
ρ

− = − = =  

(c) The average density is 3 3
3

32.0 kg910 kg/m 1172 kg/m
0.120 m

+ = , which means the barrel sinks. In order to lift it, a 

tension 3 3 2 3 3 2
tot (1177 kg/m )(0.120 m )(9.80 m/s ) (1030 kg/m )(0.120 m )(9.80 m/s ) 173 NT w B= − = − =  is 

required. 
EVALUATE: When the barrel floats, the buoyant force B equals its weight, w. In part (c) the buoyant force is less 
than the weight and T w B= − . 

14.81. IDENTIFY: Apply Newton�s 2nd law to the block. In part (a), use Archimedes� principle for the buoyancy force. 
In part (b), use Eq.(14.6) to find the pressure at the lower face of the block and then use Eq.(14.3) to calculate the 
force the fluid exerts. 
(a) SET UP: The free-body diagram for the block is given in Figure 14.81a. 

 

EXECUTE: y yF ma=∑  
0B mg− =  

L sub B objV g V gρ ρ=  

Figure 14.81a  
The fraction of the volume that is submerged is sub obj B L/ / .V V ρ ρ=  

Thus the fraction that is above the surface is above obj B L/ 1 / .V V ρ ρ= −  

EVALUATE: If B Lρ ρ=  the block is totally submerged as it floats. 
(b) SET UP: Let the water layer have depth d, as shown in Figure 14.81b. 

 

EXECUTE: 0 w L ( )p p gd g L dρ ρ= + + −  

Applying y yF ma=∑  to the block gives 

0( ) 0.p p A mg− − =  

Figure 14.81b  

w L B[ ( )]gd g L d A LAgρ ρ ρ+ − =  
A and g divide out and w L B( )d L d Lρ ρ ρ+ − =  

w L B L( ) ( )d Lρ ρ ρ ρ− = −  

L B

L w

d Lρ ρ
ρ ρ

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 

(c) 
3 3 3 3

3 3 3

13.6 10  kg/m 7.8 10  kg/m (0.100 m) 0.0460 m 4.60 cm
13.6 10  kg/m 1000 kg/m

d
⎛ ⎞× − ×

= = =⎜ ⎟× −⎝ ⎠
 

EVALUATE: In the expression derived in part (b), if B Lρ ρ=  the block floats in the liquid totally submerged and 
no water needs to be added. If L wρ ρ→  the block continues to float with a fraction B w1 /ρ ρ−  above the water as 
water is added, and the water never reaches the top of the block ( ).d →∞  

14.82. IDENTIFY: For the floating tanker, the buoyant force equals its total weight. The buoyant force is given by 
Archimedes�s principle. 
SET UP: When the metal is in the tanker, it displaces its weight of water and after it has been pushed overboard it 
displaces its volume of water. 

EXECUTE: (a) The change in height yΔ  is related to the displaced volume by ,VV y
A
Δ

Δ Δ =  where A is the 

surface area of the water in the lock. VΔ  is the volume of water that has the same weight as the metal, so 
6

water
3 3 2

water

/( ) (2.50 10  N) 0.213 m.
(1.00 10  kg/m )(9.80 m/s )[(60.0 m)(20.0 m)]

V w ρ g wy
A A ρ gA
Δ ×

Δ = = = = =
×
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(b) In this case, VΔ  is the volume of the metal; in the above expression, waterρ  is replaced by metal water9.00 ,ρ ρ=  

which gives 8,  and 0.189 m;9 9
yy y y yΔ′ ′Δ = Δ − Δ = Δ = the water level falls this amount. 

EVALUATE: The density of the metal is greater than the density of water, so the volume of water that has the 
same weight as the steel is greater than the volume of water that has the same volume as the steel. 

14.83. IDENTIFY: Consider the fluid in the horizontal part of the tube. This fluid, with mass ,Alρ  is subject to a net 
force due to the pressure difference between the ends of the tube 
SET UP: The difference between the gauge pressures at the bottoms of the ends of the tubes is L R( )ρg y y− . 

EXECUTE: The net force on the horizontal part of the fluid is L R( ) ,ρg y y A ρAla− = or, L R( ) .ay y l
g

− =  

(b) Again consider the fluid in the horizontal part of the tube. As in part (a), the fluid is accelerating; the center of 
mass has a radial acceleration of magnitude 2

rad /2,a lω=  and so the difference in heights between the columns 

is 2 2 2( /2)( / ) /2 .l l g l gω ω=  An equivalent way to do part (b) is to break the fluid in the horizontal part of the tube 

into elements of thickness dr; the pressure difference between the sides of this piece is 2( )dp r drρ ω=  and 

integrating from 2 20 to  gives /2,r r l p lρω= = Δ =  the same result. 
EVALUATE: (c) The pressure at the bottom of each arm is proportional to ρ and the mass of fluid in the 
horizontal portion of the tube is proportional to ρ , so ρ divides out and the results are independent of the density of 
the fluid. The pressure at the bottom of a vertical arm is independent of the cross-sectional area of the arm. 
Newton�s second law could be applied to a cross-section of fluid smaller than that of the tubes. Therefore, the 
results are independent and of the size and shape of all parts of the tube. 

14.84. IDENTIFY: Apply m∑
! !F = a to a small fluid element located a distance r from the axis. 

SET UP: For rotational motion, 2a rω= . 
EXECUTE: (a) The change in pressure with respect to the vertical distance supplies the force necessary to keep a 
fluid element in vertical equilibrium (opposing the weight). For the rotating fluid, the change in pressure with 
respect to radius supplies the force necessary to keep a fluid element accelerating toward the axis; specifically, 

,pdp dr ρa drr
∂= =
∂

and using 2a ω r=  gives 2 .p ρω rr
∂ =
∂

 

(b) Let the pressure at 0,  0y r= =  be ap  (atmospheric pressure); integrating the expression for p
r
∂
∂

 from part (a) 

gives 
2

a( ,  0)
2

p r y p rρω 2= = +  

(c) In Eq. (14.5), 2 a 1,  ( ,  0)p p p p p r y= = = =  as found in part (b), 1 20 and ( ),y y h r= =  the height of the liquid 

above the 0y =  plane. Using the result of part (b) gives 2 2( ) /2 .h r r gω=  
EVALUATE: The curvature of the surface increases as the speed of rotation increases. 

14.85. IDENTIFY: Follow the procedure specified in part (a) and integrate this result for part (b). 
SET UP: A rotating particle a distance r′ from the rotation axis has inward acceleration 2rω ′ . 
EXECUTE: (a) The net inward force is ( ) ,p dp A pA Adp+ − =  and the mass of the fluid element is .ρAdr′  Using 

Newton�s second law, with the inward radial acceleration of 2 ,rω ′  gives 2 .dp r drρω ′ ′=  

(b) Integrating the above expression,
0 0

  2

  
ρ

p r

p r
dp r drω ′ ′=∫ ∫ and 

2
2 2

0 0( ),
2
ρωp p r r

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
 which is the desired result. 

(c) The net force on the object must be the same as that on a fluid element of the same shape. Such a fluid element 
is accelerating inward with an acceleration of magnitude 2

cm,ω R  and so the force on the object is 2
cm.ρVω R  

(d) If cm ob cm obR ,ρ ρ R>  the inward force is greater than that needed to keep the object moving in a circle with 
radius cm obR at angular frequency ω , and the object moves inward. If cm ob cm ob ,ρR ρ R<  the net force is insufficient 
to keep the object in the circular motion at that radius, and the object moves outward. 
(e) Objects with lower densities will tend to move toward the center, and objects with higher densities will tend to 
move away from the center. 
EVALUATE: The pressure in the fluid increases as the distance r from the rotation axis increases. 

14.86. IDENTIFY: Follow the procedure specified in the problem. 
SET UP: Let increasing x  correspond to moving toward the back of the car. 



14-24 Chapter 14 

EXECUTE: (a) The mass of air in the volume element is ρdV ρAdx= , and the net force on the element in the 
forward direction is ( ) .p dp A pA Adp+ − =  From Newton�s second law, ( ) ,Adp ρAdx a=  from which .dp ρadx=  

(b) With ρ given to be constant, and with 0p p=  at 0,x =  0 .p p ρax= +  

(c) Using 31.2 kg/mρ = in the result of part (b) gives 3 2 5
atm(1.2 kg/m )(5.0 m/s )(2.5 m) 15.0 Pa 15 10 p−= = × , so the 

fractional pressure difference is negligible. 
(d) Following the argument in Section 14.4, the force on the balloon must be the same as the force on the same 
volume of air; this force is the product of the mass ρV and the acceleration, or .ρVa  
(e) The acceleration of the balloon is the force found in part (d) divided by the mass bal bal, or ( / ) .ρ V ρ ρ a  The 
acceleration relative to the car is the difference between this acceleration and the car�s acceleration, 

rel bal[( / ) 1] .a ρ ρ a= −  
(f) For a balloon filled with air, ( )bal 1ρ ρ <  (air balloons tend to sink in still air), and so the quantity in square 
brackets in the result of part (e) is negative; the balloon moves to the back of the car. For a helium balloon, the 
quantity in square brackets is positive, and the balloon moves to the front of the car. 
EVALUATE: The pressure in the air inside the car increases with distance from the windshield toward the rear of 
the car. This pressure increase is proportional to the acceleration of the car. 

14.87. IDENTIFY: After leaving the tank, the water is in free fall, with 0xa = and ya g= + . 

SET UP: From Example 14.8, the speed of efflux is 2gh . 

EXECUTE: (a) The time it takes any portion of the water to reach the ground is 2( ) ,H ht g
−=  in which time the 

water travels a horizontal distance 2 ( ).R vt h H h= = −  
(b) Note that if , ( ) ( ) ,h H h h H h H h h′ ′ ′= − − = −  and so h H h′ = −  gives the same range. A hole H h−  below the 
water surface is a distance h above the bottom of the tank. 
EVALUATE: For the special case of / 2h H= , h h′= and the two points coincide. For the upper hole the speed of 
efflux is less but the time in the air during the free-fall is greater. 

14.88. IDENTIFY: Use Bernoulli�s equation to find the velocity with which the water flows out the hole. 
SET UP: The water level in the vessel will rise until the volume flow rate into the vessel, 4 32.40 10  m /s,−×  
equals the volume flow rate out the hole in the bottom. 

 

Let points 1 and 2 be chosen 
as in Figure 14.88. 

Figure 14.88  

EXECUTE: Bernoulli�s equation: 2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

Volume flow rate out of hole equals volume flow rate from tube gives that 4 3
2 2 2.40 10  m /sv A −= ×  and 

4 3

2 4 2

2.40 10  m /s 1.60 m/s
1.50 10  m

v
−

−

×
= =

×
 

1 2A A"  and 1 1 2 2v A v A=  says that 2 21 1
1 22 2 ;v vρ ρ#  neglect the 21

12 vρ  term. 
Measure y from the bottom of the bucket, so 2 0y =  and 1 .y h=  

1 2 ap p p= =  (air pressure) 

Then 21
a a 22p gh p vρ ρ+ = +  and 2 2 2

2 / 2 (1.60 m/s) / 2(9.80 m/s ) 0.131 m 13.1 cmh v g= = = =  
EVALUATE: The greater the flow rate into the bucket, the larger 2v  will be at equilibrium and the higher the 
water will rise in the bucket. 

14.89. IDENTIFY: Apply Bernoulli�s equation and the equation of continuity. 
SET UP: Example 14.8 says the speed of efflux is 2gh , where h is the distance of the hole below the surface of 
the fluid. 
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EXECUTE: (a) 2 2 3
3 3 1 3 32 ( ) 2(9.80 m/s )(8.00 m)(0.0160 m ) 0.200 m /s.v A g y y A= − = =  

(b) Since 3p  is atmospheric, the gauge pressure at point 2 is 
2

2 2 2 3
2 3 2 3 1 3

2

1 1 8( ) 1 ( ),
2 2 9

Ap v v v ρg y y
A

ρ ρ
⎛ ⎞⎛ ⎞⎜ ⎟= − = − = −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

using the expression for 3v  found above. Substitution of numerical values gives 4
2 6.97 10p = ×  Pa. 

EVALUATE: We could also calculate 2p by applying Bernoulli�s equation to points 1 and 2. 
14.90. IDENTIFY: Apply Bernoulli�s equation to the air in the hurricane. 

SET UP: For a particle a distance r from the axis, the angular momentum is L mvr= . 
EXECUTE: (a) Using the constancy of angular momentum, the product of the radius and speed is constant, so the 

speed at the rim is about 30(200 km/h) 17 km/h.
350
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

(b) The pressure is lower at the eye, by an amount 
2

3 2 2 31 1 m/s(1.2 kg/m )((200 km/h) (17 km/h) ) 1.8 10  Pa.
2 3.6 km/h

p ⎛ ⎞Δ = − = ×⎜ ⎟
⎝ ⎠

 

(c) 
2

160 m2
v
g = . 

(d) The pressure difference at higher altitudes is even greater. 
EVALUATE: According to Bernoulli�s equation, the pressure decreases when the fluid velocity increases. 

14.91. IDENTIFY: Apply Bernoulli�s equation and the equation of continuity. 
SET UP: Example 14.8 shows that the speed of efflux at point D is 12gh . 

EXECUTE: Applying the equation of continuity to points at C and D gives that the fluid speed is 18gh  at C. 

Applying Bernoulli�s equation to points A and C gives that the gauge pressure at C is 1 1 1,4 3ρgh ρgh ρgh− = −  and 

this is the gauge pressure at the surface of the fluid at E. The height of the fluid in the column is 2 13 .h h=  
EVALUATE: The gauge pressure at C is less than the gauge pressure 1ghρ  at the bottom of tank A because of the 
speed of the fluid at C. 

14.92. IDENTIFY: Apply Bernoulli�s equation to points 1 and 2. Apply 0p p ghρ= +  to both arms of the U-shaped tube 
in order to calculate h. 
SET UP: The discharge rate is 1 1 2 2v A v A= . The density of mercury is 3 3

m 13.6 10  kg/mρ = ×  and the density of 

water is 3 3
w 1.00 10  kg/mρ = × . Let point 1 be where 4 2

1 40.0 10  mA −= ×  and point 2 is where 4 2
2 10.0 10  mA −= × . 

1 2y y= . 

EXECUTE: (a) 
3 3

1 4 2

6.00 10  kg/m 1.50 m/s
40.0 10  m

v
−

−

×
= =

×
. 

3 3

2 4 2

6.00 10  kg/m 6.00 m/s
10.0 10  m

v
−

−

×
= =

×
 

(b) 2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + + . 

2 2 3 2 2 41 1
1 2 2 12 2( ) (1000 kg/m )([6.00 m/s] [1.50 m/s] ) 1.69 10  Pap p v vρ− = − = − = ×  

(c) 1 w 2 mp gh p ghρ ρ+ = +  and 
4

1 2
3 3 3 3 2

m w

1.69 10  Pa 0.137 m 13.7 cm.
( ) (13.6 10  kg/m 1.00 10  kg/m )(9.80 m/s )

p ph
gρ ρ

− ×
= = = =

− × − ×
 

EVALUATE: The pressure in the fluid decreases when the speed of the fluid increases. 
14.93. (a) IDENTIFY: Apply constant acceleration equations to the falling liquid to find its speed as a function of the 

distance below the outlet. Then apply Eq.(14.10) to relate the speed to the radius of the stream. 
SET UP:  

 

Let point 1 be at the end of the pipe 
and let point 2 be in the stream of 
liquid at a distance 2y  below the end 
of the tube, as shown in Figure 14.93. 

Figure 14.93  
Consider the free-fall of the liquid. Take + y to be downward. 
Free-fall implies .ya g=  yv  is positive, so replace it by the speed v. 
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EXECUTE: 2 2
2 1 02 ( )v v a y y= + −  gives 2 2

2 1 22v v gy= +  and 2
2 1 22 .v v gy= +  

Equation of continuity says 1 1 2 2v A v A=  

And since 2A rπ=  this becomes 2 2
1 1 2 2v r v rπ π=  and 2

2 1 1 2( / ) .v v r r=  

Use this in the above to eliminate 2:v  2 2 2
1 1 2 1 2( / ) 2v r r v gy= +  

2 1/ 4
2 1 1 1 2/( 2 )r r v v gy= +  

To correspond to the notation in the problem, let 1 0v v=  and 1 0,r r=  since point 1 is where the liquid first leaves 

the pipe, and let 2r  be r and 2y  be y. The equation we have derived then becomes 2 1/ 4
0 0 0/( 2 )r r v v gy= +  

(b) 0 1.20 m/sv =  
We want the value of y that gives 1

02 ,r r=  or 0 2r r=  

The result obtained in part (a) says 4 2 4 2
0 0 0( 2 )r v gy r v+ =  

Solving for y gives 
4 2 2

0 0
2

[( / ) 1] (16 1)(1.20 m/s) 1.10 m
2 2(9.80 m/s )

r r vy
g
− −

= = =  

EVALUATE: The equation derived in part (a) says that r decreases with distance below the end of the pipe. 
14.94. IDENTIFY: Apply y yF ma=∑ to the rock. 

SET UP: In the accelerated frame, all of the quantities that depend on g (weights, buoyant forces, gauge pressures 
and hence tensions) may be replaced by ,g g a′ = +  with the positive direction taken upward. 
EXECUTE: (a) The volume V of the rock is 

2
4 3

3 3 2
water water

((3.00 kg)(9.80 m/s ) 21.0 N) 8.57 10  m .
(1.00 10  kg/m )(9.80 m/s )

B w TV
g gρ ρ

−− −
= = = = ×

×
 

(b) The tension is 0( ) ,gT mg B m V g T gρ ′′ ′ ′= − = − =  where 0 21.0N.T =  g g a′ = + . For 22.50 m/sa = , 

9.80 2.50(21.0 N) 26.4 N9.80T += = . 

(c) For 22.50 m/sa = − , 9.80 2.50(21.0 N) 15.6 N9.80T −= = . 

(d) If a g= − , 0g′ = and 0T = . 
EVALUATE: The acceleration of the water alters the buoyant force it exerts. 

14.95. IDENTIFY: The sum of the vertical forces on the object must be zero. 
SET UP: The depth of the bottom of the styrofoam is not given; let this depth be 0.h  Denote the length of the 

piece of foam by L and the length of the two sides by l. The volume of the object is 21
2 l L . 

EXECUTE: (a) The tension in the cord plus the weight must be equal to the buoyant force, so 
2 2 3 31

water foam 2( ) (0.20 m) (0.50 m)(9.80 m/s )(1000 kg/m 180 kg/m ) 80.4 NT Vg ρ ρ= − = − = . 

(b) The pressure force on the bottom of the foam is ( )0 0( ) 2p gh L lρ+  and is directed up. The pressure on each 

side is not constant; the force can be found by integrating, or using the results of Problem 14.49 or Problem 14.51. 
Although these problems found forces on vertical surfaces, the result that the force is the product of the average 
pressure and the area is valid. The average pressure is 0 0( ( /(2 2))),p ρg h l+ −  and the force on one side has 

magnitude 0 0( ( /(2 2)))p ρg h l Ll+ −  
and is directed perpendicular to the side, at an angle of 45.0°  from the vertical. The force on the other side has the 
same magnitude, but has a horizontal component that is opposite that of the other side. The horizontal component 
of the net buoyant force is zero, and the vertical component is 

2

0 0 0 0( ) 2 2(cos45.0 )( ( /(2 2))) ,
2

LlB p gh Ll p g h l Ll gρ ρ ρ= + − ° + − =  

the weight of the water displaced. 
EVALUATE: The density of the object is less than the density of water, so if the cord were cut the object would 
float. When the object is fully submerged, the upward buoyant force is greater than its weight and the cord must 
pull downward on the object to hold it beneath the surface. 
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14.96. IDENTIFY: Use the efflux speed to calculate the volume flow rate and integrate to find the time for the entire 
volume of water to flow out of the tank. 
SET UP: When the level of the water is a height y above the opening, the efflux speed is 2 ,gy  and 

2( /2) 2 .dV π d gydt =  

EXECUTE: As the tank drains, the height decreases, and 
22

2

( /2) 2/ 2 .
( /2)

d gydy dV dt d gy
dt A D D

π
π

⎛ ⎞= − = − = −⎜ ⎟
⎝ ⎠

 This is 

a separable differential equation, and the time T to drain the tank is found from 
2

 2 ,dy d gdt
Dy

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

which 

integrates to 
2

0
2  2 ,

H

dy gT
D

⎛ ⎞⎡ ⎤ = − ⎜ ⎟⎣ ⎦ ⎝ ⎠
or 

2 22 2 .
2

D H D HT
d d gg

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: Even though the volume flow rate approaches zero as the tank drains, it empties in a finite amount 
of time. Doubling the height of the tank doubles the volume of water in the tank but increases the time to drain by 
only a factor of 2 . 

14.97. IDENTIFY: Apply Bernoulli�s equation to the fluid in the siphon. 
SET UP: Example 14.8 shows that the efflux speed from a small hole a distance h below the surface of fluid in a 
large open tank is 2gh . 
EXECUTE: (a) The fact that the water first moves upwards before leaving the siphon does not change the efflux 
speed, 2 .gh  
(b) Water will not flow if the absolute (not gauge) pressure would be negative. The hose is open to the atmosphere 
at the bottom, so the pressure at the top of the siphon is a ( ),p ρg H h− +  where the assumption that the cross-
section area is constant has been used to equate the speed of the liquid at the top and bottom. Setting 0p =  and 
solving for H gives a( / ) .H p ρg h= −  

EVALUATE: The analysis shows that apH h
gρ

+ < , so there is also a limitation on H h+ . For water and normal 

atmospheric pressure, a 10.3 mp
gρ
= . 

14.98. IDENTIFY and SET UP: Apply 0p p ghρ= + . 
EXECUTE: Any bubbles will cause inaccuracies. At the bubble, the pressure at the surfaces of the water will be 
the same, but the levels need not be the same. The use of a hose as a level assumes that pressure is the same at all 
points that are at the same level, an assumption that is invalidated by the bubble. 
EVALUATE: Larger bubbles can cause larger inaccuracies, because there can be greater changes in height across 
the length of the bubble. 



 

15-1 

MECHANICAL WAVES 

 15.1. IDENTIFY: v f λ= . 1/T f= is the time for one complete vibration. 
SET UP: The frequency of the note one octave higher is 1568 Hz. 

EXECUTE: (a) 344 m/s 0.439 m
784 Hz

v
f

λ = = = . 1 1.28 msT
f

= = . 

(b) 344 m/s 0.219 m
1568 Hz

v
f

λ = = = . 

EVALUATE: When f is doubled, λ is halved. 
 15.2. IDENTIFY: The distance between adjacent dots is λ . v f λ= . The long-wavelength sound has the lowest 

frequency, 20.0 Hz, and the short-wavelength sound has the highest frequency, 20.0 kHz. 
SET UP: For sound in air, 344 m/sv = . 

EXECUTE: (a) Red dots: 344 m/s 17.2 m
20.0 Hz

v
f

λ = = = . 

Blue dots: 3

344 m/s 0.0172 m 1.72 cm
20.0 10  Hz

λ = = =
×

. 

(b) In each case the separation easily can be measured with a meterstick. 

(c) Red dots: 1480 m/s 74.0 m
20.0 Hz

v
f

λ = = = . 

Blue dots: 3

1480 m/s 0.0740 m 7.40 cm
20.0 10  Hz

λ = = =
×

. In each case the separation easily can be measured with a 

meterstick, although for the red dots a long tape measure would be more convenient. 
EVALUATE: Larger wavelengths correspond to smaller frequencies. When the wave speed increases, for a given 
frequency, the wavelength increases. 

 15.3. IDENTIFY: /v f Tλ λ= = . 
SET UP: 1.0 h 3600 s= . The crest to crest distance is λ . 

EXECUTE: 
3800 10  m 220 m/s

3600 s
v ×

= = . 800 km 800 km/h
1.0 h

v = = . 

EVALUATE: Since the wave speed is very high, the wave strikes with very little warning. 
 15.4. IDENTIFY: f vλ =  

SET UP: 1.0 mm 0.0010 m=  

EXECUTE: 61500 m s 1.5 10  Hz
0.0010 m

vf
λ

= = = ×  

EVALUATE: The frequency is much higher than the upper range of human hearing. 
 15.5. IDENTIFY: v f λ= . 1/T f= . 

SET UP: 91 nm 10  m−=  

EXECUTE: (a) 400 nmλ = : 
8

14
9

3.00 10  m/s 7.50 10  Hz
400 10  m

cf
λ −

×
= = = ×

×
. 151/ 1.33 10  sT f −= = × .  

700 nmλ = : 
8

14
9

3.00 10  m/s 4.29 10  Hz
700 10  m

f −

×
= = ×

×
. 152.33 10  sT −= × . The frequencies of visible light lie between 

144.29 10  Hz×  and 147.50 10  Hz× . The periods lie between 151.33 10  s−×  and 152.33 10  s−× . 
(b) T is very short and cannot be measured with a stopwatch. 
EVALUATE: Longer wavelength corresponds to smaller frequency and larger period. 

15
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 15.6. IDENTIFY: Compare ( , )y x t given in the problem to the general form of Eq.(15.4). 1/f T= and v f λ=  
SET UP: The comparison gives 6.50 mmA = , 28.0 cmλ = and 0.0360 sT = . 
EXECUTE: (a) 6.50 mm  
(b) 28.0 cm  

(c) 1 27.8 Hz0.0360 sf = =  

(d) (0.280 m)(27.8 Hz) 7.78 m sv = =  
(e) Since there is a minus sign in front of the /t T term, the wave is traveling in the -directionx+ . 
EVALUATE: The speed of propagation does not depend on the amplitude of the wave. 

 15.7. IDENTIFY: Use Eq.(15.1) to calculate v. 1/T f=  and k is defined by Eq.(15.5). The general form of the wave 
function is given by Eq.(15.8), which is the equation for the transverse displacement. 
SET UP: 8.00 m/s,v =  0.0700 m,A =  0.320 mλ =  
EXECUTE: (a) v f λ=  so / (8.00 m/s)/(0.320 m) 25.0 Hzf v λ= = =  

1/ 1/ 25.0 Hz 0.0400 sT f= = =  
2 / 2  rad/0.320 m 19.6 rad/mk π λ π= = =  

(b) For a wave traveling in the -direction,x−  
( ,  ) cos2 ( / / )y x t A x t Tπ λ= +  (Eq.(15.8).) 

At 0,x =  (0,  ) cos2 ( / ),y t A t Tπ=  so y A=  at 0.t =  This equation describes the wave specified in the problem. 
Substitute in numerical values: 

( ,  ) (0.0700 m)cos(2 ( / 0.320 m / 0.0400 s)).y x t x tπ= +  

Or, 1( ,  ) (0.0700 m)cos((19.6 m ) (157 rad/s) ).y x t x t−= +  
(c) From part (b), (0.0700 m)cos(2 ( / 0.320 m / 0.0400 s)).y x tπ= +  
Plug in 0.360 mx =  and 0.150 s:t =  

(0.0700 m)cos(2 (0.360 m/0.320 m 0.150 s/0.0400 s))y π= +  
(0.0700 m)cos[2 (4.875 rad)] 0.0495 m 4.95 cmy π= = + = +  

(d) In part (c) 0.150 s.t =  
y A=  means cos(2 ( / / )) 1x t Tπ λ + =  
cos 1θ =  for 0,θ =  2 ,π  4 , (2 )nπ π=…  or 0,  1, 2,n = …  
So y A=  when 2 ( / / ) (2 )x t T nπ λ π+ =  or / /x x T nλ + =  

( / ) (0.0400 s)( 0.360 m/0.320 m) (0.0400 s)( 1.125)t T n x n nλ= − = − = −  
For 4,n =  0.1150 st =  (before the instant in part (c)) 
For 5,n =  0.1550 st =  (the first occurrence of y A=  after the instant in part (c)) Thus the elapsed time is 
0.1550 s 0.1500 s 0.0050 s.− =  
EVALUATE: Part (d) says y A=  at 0.115 s and next at 0.155 s; the difference between these two times is 0.040 s, 
which is the period. At 0.150 st =  the particle at 0.360 mx =  is at 4.95 cmy =  and traveling upward. It takes 

/ 4 0.0100 sT =  for it to travel from 0y =  to ,y A=  so our answer of 0.0050 s is reasonable. 
 15.8. IDENTIFY: The general form of the wave function for a wave traveling in the -directionx− is given by Eq.(15.8). 

The time for one complete cycle to pass a point is the period T and the number that pass per second is the 
frequency f. The speed of a crest is the wave speed v and the maximum speed of a particle in the medium 
is maxv Aω= . 
SET UP: Comparison to Eq.(15.8) gives 3.75 cmA = , 0.450 rad/cmk = and 5.40 rad/sω = . 

EXECUTE: (a) 2  rad 2  rad 1.16 s
5.40 rad/s

T π π
ω

= = = . In one cycle a wave crest travels a distance 

2  rad 2  rad 0.140 m
0.450 rad/cmk

π πλ = = = . 

(b) 0.450 rad/cmk = . 1/ 0.862 Hz 0.862 waves/secondf T= = = . 
(c) (0.862 Hz)(0.140 m) 0.121 m/sv f λ= = = . max (5.40 rad/s)(3.75 cm) 0.202 m/sv Aω= = = . 
EVALUATE: The transverse velocity of the particles in the medium (water) is not the same as the velocity of the 
wave. 
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 15.9. IDENTIFY: Evaluate the partial derivatives and see if Eq.(15.12) is satisfied. 

SET UP: cos( ) sin( )kx t k kx t
x

ω ω∂
+ = − +

∂
. cos( ) sin( )kx t kx t
t

ω ω ω∂
+ = − +

∂
. sin( ) cos( )kx t k kx t
x

ω ω∂
+ = +

∂
. 

sin( ) sin( )kx t kx t
t

ω ω ω∂
+ = +

∂
. 

EXECUTE: (a) 
2

2
2 cos( )y Ak kx t
x

ω∂
= − +

∂
. 

2
2

2 cos( )y A kx t
t

ω ω∂
= − +

∂
. Eq.(15.12) is satisfied, if /v kω= . 

(b) 
2

2
2 sin( )y Ak kx t
x

ω∂
= − +

∂
. 

2
2

2 sin( )y A kx t
t

ω ω∂
= − +

∂
. Eq.(15.12) is satisfied, if /v kω= . 

(c) sin( )y kA kx
x

∂
= −

∂
. 

2
2

2 cos( )y k A kx
x

∂
= −

∂
. sin( )y A t
t

ω ω∂
= −

∂
. 

2
2

2 cos( )y A t
t

ω ω∂
= −

∂
. Eq.(15.12) is not satisfied. 

(d) cos( )y
yv A kx t
t

ω ω∂
= = +

∂
. 

2
2

2 sin( )y
ya A kx t
t

ω ω∂
= = − +

∂
 

EVALUATE: The functions cos( )kx tω+ and sin( )kx tω+ differ only in phase. 
15.10. IDENTIFY: yv and ya  are given by Eqs.(15.9) and (15.10). 

SET UP: The sign of yv determines the direction of motion of a particle on the string. If 0yv = and 0ya ≠ the 

speed of the particle is increasing. If 0yv ≠ , the particle is speeding up if yv and ya have the same sign and 
slowing down if they have opposite signs. 
EXECUTE: (a) The graphs are given in Figure 15.10. 
(b) (i) sin(0) 0yv ωA= =  and the particle is instantaneously at rest. 2 2 cos(0)ya ω A ω A= − = −  and the particle is 
speeding up. 
(ii) sin( 4) 2 ,yv ωA π ωA= =  and the particle is moving up. 2 2cos( 4) 2 ,ya ω A π ω A= − = −  and the particle is 

slowing down ( yv  and ya have opposite sign). 

(iii) sin( 2)yv ωA π ωA= =  and the particle is moving up. 2 cos( 2) 0ya ω A π= − =  and the particle is 
instantaneously not accelerating. 
(iv) sin(3 4) 2 ,yv ωA π ωA= =  and the particle is moving up. 2 2cos(3 4) 2 ,ya ω A π ω A= − =  and the particle 
is speeding up. 
(v) sin( ) 0yv ωA π= =  and the particle is instantaneously at rest. 2 2cos( )ya ω A π ω A= − =  and the particle is 
speeding up. 
(vi) sin(5 4) 2yv ωA π ωA= = −  and the particle is moving down. 2 2cos(5 4) 2ya ω A π ω A= − =  and the 

particle is slowing down ( yv  and ya have opposite sign). 

(vii) sin(3 2)yv ωA π ωA= = −  and the particle is moving down. 2 cos(3 2) 0ya ω A π= − =  and the particle is 
instantaneously not accelerating. 
(viii) sin(7 4) 2 ,yv ωA π ωA= = −  and the particle is moving down. 2 2cos(7 4) 2ya ω A π ω A= − = −  and the 

particle is speeding up ( yv and ya have the same sign). 
EVALUATE: At 0t = the wave is represented by Figure 15.10a in the textbook: point (i) in the problem 
corresponds to the origin, and points (ii)-(viii) correspond to the points in the figure labeled 1-7. Our results agree 
with what is shown in the figure. 

 
Figure 15.10 
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15.11. IDENTIFY and SET UP: Read A and T from the graph. Apply Eq.(15.4) to determine λ  and then use Eq.(15.1) to 
calculate v. 
EXECUTE: (a) The maximum y is 4 mm (read from graph). 
(b) For either x the time for one full cycle is 0.040 s; this is the period. 
(c) Since 0y =  for 0x =  and 0t =  and since the wave is traveling in the -directionx+  then 

( ,  ) sin[2 ( / / )].y x t A t T xπ λ= −  (The phase is different from the wave described by Eq.(15.4); for that wave y A=  
for 0,x =  0.)t =  From the graph, if the wave is traveling in the -directionx+  and if 0x =  and 0.090 mx =  are 
within one wavelength the peak at 0.01 st =  for 0x =  moves so that it occurs at 0.035 st =  (read from graph so 
is approximate) for 0.090 m.x =  The peak for 0x =  is the first peak past 0t =  so corresponds to the first 
maximum in sin[2 ( / / )]t T xπ λ−  and hence occurs at 2 ( / / ) / 2.t T xπ λ π− =  If this same peak moves to 

1 0.035 st =  at 1 0.090 m,x =  then 

1 12 ( / / ) / 2t T xπ λ π− =  
Solve for :λ  1 1/ / 1/ 4t T x λ− =  

1 1/ / 1/ 4 0.035 s / 0.040 s 0.25 0.625x t Tλ = − = − =  

1 / 0.625 0.090 m / 0.625 0.14 m.xλ = = =  
Then / 0.14 m / 0.040 s 3.5 m /s.v f Tλ λ= = = =  
(d) If the wave is traveling in the -direction,x−  then ( ,  ) sin(2 ( / / ))y x t A t T xπ λ= +  and the peak at 0.050 st =  
for 0x =  corresponds to the peak at 1 0.035 st =  for 1 0.090 m.x =  This peak at 0x =  is the second peak past the 
origin so corresponds to 2 ( / / ) 5 / 2.t T xπ λ π+ =  If this same peak moves to 1 0.035 st =  for 1 0.090 m,x =  then 

1 12 ( / / ) 5 / 2.t T xπ λ π+ =  

1 1/ / 5/ 4t T x λ+ =  

1 1/ 5/ 4 / 5/ 4 0.035 s / 0.040 s 0.375x t Tλ = − = − =  

1 / 0.375 0.090 m / 0.375 0.24 m.xλ = = =  
Then / 0.24 m / 0.040 s 6.0 m /s.v f Tλ λ= = = =  
EVALUATE: No. Wouldn�t know which point in the wave at 0x =  moved to which point at 0.090 m.x =  

15.12. IDENTIFY: y
yv
t

∂
=

∂
. /v f Tλ λ= = . 

SET UP: 2 2 2cos ( ) sin ( )vA x vt A x vt
t

π π π
λ λ λ

∂ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

EXECUTE: (a) ( )2 2cos2 cos cosx tA A x t A x vt
T T

π λ ππ
λ λ λ

⎛ ⎞ ⎛ ⎞− = + − = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 where f v
T
λ λ= =  has been used. 

(b) ( )2 2sin .y
y vv A x vt
t

π π
λ λ

∂
= = −

∂
 

(c) The speed is the greatest when the sine is 1, and that speed is 2 vAπ λ . This will be equal to v  if 2A λ π= , 
less than v if 2A λ π<  and greater than v  if 2A λ π> . 
EVALUATE: The propagation speed applies to all points on the string. The transverse speed of a particle of the 
string depends on both x and t. 

15.13. IDENTIFY: Follow the procedure specified in the problem. 
SET UP: For λ and x in cm, v in cm/s and t in s, the argument of the cosine is in radians. 
EXECUTE: (a) 0 :t =  

x (cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 
y (cm) 0.300 0.212 0 −0.212 0.300−  0.212−  0 0.212 0.300 

The graph is shown in Figure 15.13a. 
(b) (i) 0.400 s:t =  
x (cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 
y (cm) 0.221−  0.0131−  0.203 0.300 0.221 0.0131 0.203−  0.300−  0.221−  
The graph is shown in Figure 15.13b. 
(ii) 0.800 s:t =  
x (cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 
y (cm) 0.0262 0.193−  0.300−  0.230−  0.0262−  0.193 0.300 0.230 0.0262 
The graph is shown in Figure 15.13c. 
(iii) The graphs show that the wave is traveling in -direction.x+  
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EVALUATE: We know that Eq.(15.3) is for a wave traveling in the -direction,x+  and ( , )y x t is derived from this. 
This is consistent with the direction of propagation we deduced from our graph. 

 

 

 
Figure 15.13 

15.14. IDENTIFY: The frequency and wavelength determine the wave speed and the wave speed depends on the 
tension. 

SET UP: Fv
μ

= . /m Lμ = . v f λ= . 

EXECUTE: 2 2 20.120 kg( ) ([40.0 Hz][0.750 m]) 43.2 N
2.50 m

F v fμ μ λ= = = =  

EVALUATE: If the frequency is held fixed, increasing the tension will increase the wavelength.  
15.15. IDENTIFY and SET UP: Use Eq.(15.13) to calculate the wave speed. Then use Eq.(15.1) to calculate the 

wavelength. 
EXECUTE: (a) The tension F in the rope is the weight of the hanging mass: 

2(1.50 kg)(9.80 m/s ) 14.7 NF mg= = =  

/ 14.7 N/(0.0550 kg/m) 16.3 m/sv F μ= = =  
(b) v f λ=  so / (16.3 m/s)/120 Hz 0.136 m.v fλ = = =  

(c) EVALUATE: / ,v F μ=  where .F mg=  Doubling m increases v by a factor of 2.  / .v fλ =  f remains 120 Hz 

and v increases by a factor of 2,  so λ  increases by a factor of 2.  

15.16. IDENTIFY: For transverse waves on a string, /v F μ= . The general form of the equation for waves traveling in 
the -directionx+  is ( , ) cos( )y x t A kx tω= − . For waves traveling in the -directionx− it is ( , ) cos( )y x t A kx tω= + . 

/v kω= . 
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SET UP: Comparison to the general equation gives 8.50 mmA = , 172 rad/mk = and 2730 rad/sω = . The string 
has mass 0.128 kg and / 0.0850 kg/mm Lμ = = . 

EXECUTE: (a) 2730 rad/s 15.9 m/s
172 rad/m

v
k
ω

= = = . 1.50 m 0.0943 s
15.9 m/s

dt
v

= = = . 

(b) 2 2(0.0850 kg/m)(15.9 m/s) 21.5 NW F vμ= = = = . 

(c) 2  rad 2  rad 0.0365 m
172 rad/mk

π πλ = = = . The number of wavelengths along the length of the string is 

1.50 m 41.1
0.0365 m

= . 

(d) For a wave traveling in the opposite direction, ( , ) (8.50 mm)cos([172 rad/m] [2730 rad/s] )y x t x t= +  
EVALUATE: We have assumed that the tension in the string is constant and equal to W. In reality the tension will 
vary along the length of the string because of the weight of the string and the wave speed will therefore vary along 
the string. The tension at the lower end of the string will be 21.5 NW = and at the upper end it is 

1.25 N 22.8 NW + = , an increase of 6%. 
15.17. IDENTIFY: For transverse waves on a string, /v F μ= . v f λ= . 

SET UP: The wire has / (0.0165 kg) /(0.750 m) 0.0220 kg/mm Lμ = = = . 

EXECUTE: (a) 2(875 Hz)(3.33 10  m) 29.1 m/sv f λ −= = × = . The tension is 
2 2(0.0220 kg/m)(29.1 m/s) 18.6 NF vμ= = = . 

(b) 29.1 m/sv =  
EVALUATE: If λ is kept fixed, the wave speed and the frequency increase when the tension is increased. 

15.18. IDENTIFY: Apply 0yF =∑  to determine the tension at different points of the rope. /v F μ= . 

SET UP: From Example 15.3, samples 20.0 kgm = , rope 2.00 kgm = and 0.0250 kg/mμ =  
EXECUTE: (a) The tension at the bottom of the rope is due to the weight of the load, and the speed is the same 
88.5m s as found in Example 15.3. 

(b) The tension at the middle of the rope is (21.0 2kg)(9 80m s ) 205.8 N. = and the wave speed is 90.7m s.  

(c) The tension at the top of the rope is 2(22.0 kg)(9.80 m/s ) 215.6 m/s=  and the speed is 92.9 m/s.  (See 
Challenge Problem (15.82) for the effects of varying tension on the time it takes to send signals.) 
EVALUATE: The tension increases toward the top of the rope, so the wave speed increases from the bottom of the 
rope to the top of the rope. 

15.19. IDENTIFY: /v F μ= . v f λ= . The general form for ( , )y x t is given in Eq.(15.4), where 1/T f= . Eq.(15.10) 

says that the maximum transverse acceleration is 2 2
max (2 )a A f Aω π= = . 

SET UP: 0.0500 kg/mμ =  

EXECUTE: (a) (5.00 N) (0.0500 kg m) 10.0 m sv F μ= = =  
(b) (10.0 m s) (40.0 Hz) 0.250 mv fλ = = =  
(c) ( , )  cos( )y x t A kx tω= − . 2 8.00  rad m;  2 80.0  rad sk fπ λ π ω π π= = = = . 

( , ) (3.00 cm)cos[ (8.00 rad m) (80.0  rad s) ]y x t x tπ π= −  

(d) 2 sin( ) and cos( )y yv A kx t a A kx tω ω ω ω= + − = − − . 2 2 2
, max (2 ) 1890 m sya A A fω π= = = . 

(e) ,maxis ya much larger than g, so it is a reasonable approximation to ignore gravity. 
EVALUATE: ( , )y x t in part (c) gives (0,0)y A= , which does correspond to the oscillator having maximum 
upward displacement at 0t = . 

15.20. IDENTIFY: Apply Eq.(15.25). 
SET UP: 2 fω π= . /m Lμ = . 

EXECUTE: (a) 2 2
av

1
2

P F Aμ ω= . 
3

2 3 2
av

1 3.00 10  kg (25.0 N)(2 (120.0 Hz)) (1.6 10  m) 0.223 W
2 0.80 m

P π
−

−⎛ ⎞×
= × =⎜ ⎟

⎝ ⎠
 

or 0.22 W to two figures. 
(b) avP is proportional to 2A , so halving the amplitude quarters the average power, to 0.056 W. 
EVALUATE: The average power is also proportional to the square of the frequency. 



Mechanical Waves  15-7 

15.21. IDENTIFY: For a point source, 24
PI
rπ

= and 
2

1 2
2

2 1

I r
I r

= . 

SET UP: 61 W 10  Wμ −=  

EXECUTE: (a) 
2

1
2 1 6 2

2

10.0 W/m(30.0 m) 95 km
1 10  W/m

Ir r
I −= = =

×
 

(b) 
2

2 3
2

3 2

I r
I r

= , with 2
2 1.0 W/mI μ= and 3 22r r= . 

2
22

3 2 2
3

/ 4 0.25 W/mrI I I
r

μ
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

. 

(c) 2 2 2 5(4 ) (10.0 W/m )(4 )(30.0 m) 1.1 10  WP I rπ π= = = ×  
EVALUATE: These are approximate calculations, that assume the sound is emitted uniformly in all directions and 
that ignore the effects of reflection, for example reflections from the ground. 

15.22. IDENTIFY: Apply Eq.(15.26). 
SET UP: 2

1 0.11 W/mI = . 1 7.5 mr = . Set 2
2 1.0 W/mI = and solve for 2r . 

EXECUTE: 
2

1
2 1 2

2

0.11 W m(7.5 m) 2.5 m, 
1.0 W m

Ir r
I

= = = so it is possible to move 

1 2 7.5 m 2.5 m 5.0 mr r− = − = closer to the source. 
EVALUATE: I increases as the distance r of the observer from the source decreases. 

15.23. IDENTIFY and SET UP: Apply Eq.(15.26) to relate I and r. 
Power is related to intensity at a distance r by 2(4 ).P I rπ=  Energy is power times time. 

EXECUTE: (a) 2 2
1 1 2 2I r I r=  

2 2 2 2
2 1 1 2( / ) (0.026 W/m )(4.3 m/3.1 m) 0.050 W/mI I r r= = =  

(b) 2 2 24 4 (4.3 m) (0.026 W/m ) 6.04 WP r Iπ π= = =  
4Energy (6.04 W)(3600 s) 2.2 10  JPt= = = ×  

EVALUATE: We could have used 3.1 mr =  and 20.050 W/mI =  in 24P r Iπ=  and would have obtained the 
same P. Intensity becomes less as r increases because the radiated power spreads over a sphere of larger area. 

15.24. IDENTIFY: The tension and mass per unit length of the rope determine the wave speed. Compare ( , )y x t  given in 
the problem to the general form given in Eq.(15.8). /v kω= . The average power is given by Eq. (15.25). 
SET UP: Comparison with Eq.(15.8) gives 2.33 mmA = , 6.98 rad/mk = and 742 rad/sω = . 
EXECUTE: (a) 2.30 mmA =  

(b) 742 rad s 118 Hz22
f ω

ππ
= = = . 

(c) 2 2 0.90 m6.98 rad mk
π πλ = = =  

(d) 742 rad s 106 m s6.98 rad mv k
ω= = =  

(e) The wave is traveling in the x−  direction because the phase of ( ,  )y x t  has the form .kx ωt+  

(f )  The linear mass density is 3 3(3.38 10  kg) (1.35 m) 2.504 10  kg/mμ − −= × = × , so the tension is 
2 3 2(2.504 10  kg m)(106.3 m s) 28.3 NF vμ −= = × = . 

(g) 2 2 3 2 3 21 1
av 2 2 (2.50 10  kg m)(28.3 N)(742 rad s) (2.30 10  m) 0.39 WP F Aμ ω − −= = × × =  

EVALUATE: In part (d) we could also calculate the wave speed as v f λ= and we would obtain the same result. 

15.25. IDENTIFY: 24P r Iπ=  
SET UP: From Example 15.5, 20.250 W/m  at 15.0 mI r= =  
EXECUTE: 2 2 24 4 (15.0 m) (0.250 W/m ) 707 WP r Iπ π= = =  

EVALUATE: 20.010 W/mI = at 75.0 m and 2 24 (75.0 m) (0.010 W/m ) 707 Wπ = . P is the average power of the 
sinusoidal waves emitted by the source. 
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15.26. IDENTIFY: The distance the wave shape travels in time t is vt. The wave pulse reflects at the end of the string, at 
point O. 
SET UP: The reflected pulse is inverted when O is a fixed end and is not inverted when O is a free end. 
EXECUTE: (a) The wave form for the given times, respectively, is shown in Figure 15.26a. 
(b) The wave form for the given times, respectively, is shown in Figure 15.26b. 
EVALUATE: For the fixed end the result of the reflection is an inverted pulse traveling to the left and for the free 
end the result is an upright pulse traveling to the left. 

 

 
Figure 15.26 

15.27. IDENTIFY: The distance the wave shape travels in time t is vt. The wave pulse reflects at the end of the string, at 
point O. 
SET UP: The reflected pulse is inverted when O is a fixed end and is not inverted when O is a free end. 
EXECUTE: (a) The wave form for the given times, respectively, is shown in Figure 15.27a. 
(b) The wave form for the given times, respectively, is shown in Figure 15.27b. 
EVALUATE: For the fixed end the result of the reflection is an inverted pulse traveling to the left and for the free 
end the result is an upright pulse traveling to the left. 

 

 
Figure 15.27 

15.28. IDENTIFY: Apply the principle of superposition. 
SET UP: The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE: The shape of the string at each specified time is shown in Figure 15.28. 
EVALUATE: The pulses interfere when they overlap but resume their original shape after they have completely 
passed through each other. 

 
Figure 15.28 

15.29. IDENTIFY: Apply the principle of superposition. 
SET UP: The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE: The shape of the string at each specified time is shown in Figure 15.29. 
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EVALUATE: The pulses interfere when they overlap but resume their original shape after they have completely 
passed through each other. 

 
Figure 15.29 
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15.30. IDENTIFY: Apply the principle of superposition. 
SET UP: The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE: The shape of the string at each specified time is shown in Figure 15.30. 
EVALUATE: The pulses interfere when they overlap but resume their original shape after they have completely 
passed through each other. 

 
Figure 15.30 

15.31. IDENTIFY: Apply the principle of superposition. 
SET UP: The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE: The shape of the string at each specified time is shown in Figure 15.31. 
EVALUATE: The pulses interfere when they overlap but resume their original shape after they have completely 
passed through each other. 

 
Figure 15.31 
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15.32. IDENTIFY: net 1 2y y y= + . The string never moves at values of x for which sin 0kx = . 
SET UP: sin( ) sin cos cos sinA B A B A B± = ±  
EXECUTE: (a) net sin( ) sin( )y A kx t A kx tω ω= + + − . 

net [sin( )cos( ) cos( )sin( ) sin( )cos( ) cos( )sin( )] 2 sin( )cos( )y A kx t kx t kx t kx t A kx tω ω ω ω ω= + + − =  

(b) sin 0kx = for ,  0, 1, 2, .kx n nπ= = …  
2 / 2

n n nx
k
π π λ

π λ
= = = . 

EVALUATE: Using sin( )y A kx tω= ±  instead of cos( )y A kx tω= ± corresponds to a particular choice of phase 
and corresponds to 0y = at 0x = , for all t. 

15.33. IDENTIFY and SET UP: Nodes occur where sin 0kx =  and antinodes are where sin 1.kx = ±  
EXECUTE: Eq.(15.28): SW( sin )siny A kx tω=  
(a) At a node 0y =  for all t. This requires that sin 0kx =  and this occurs for ,kx nπ=  0,  1, 2,n = …  

/ (1.33 m) ,  0,  1, 2,
0.750  rad/m

nx n k n nππ
π

= = = = …  

(b) At an antinode sin 1kx = ±  so y will have maximum amplitude. This occurs when ( )1
2 ,kx n π= +  

0,  1, 2,n = …  

( ) ( ) ( )1 1 1
2 2 2/ (1.33 m) ,  0,  1, 2,

0.750  rad/m
x n k n n nππ

π
= + = + = + = …  

EVALUATE: 2 / 2.66 m.kλ π= =  Adjacent nodes are separated by / 2,λ  adjacent antinodes are separated by 
/ 2,λ  and the node to antinode distance is / 4.λ  

15.34. IDENTIFY: Apply Eqs.(15.28) and (15.1). At an antinode, SW( ) siny t A tω= . k and ω for the standing wave have 
the same values as for the two traveling waves. 
SET UP: SW 0.850 cmA = . The antinode to antinode distance is / 2λ , so 30.0 cmλ = . /yv y t= ∂ ∂ . 
EXECUTE: (a) The node to node distance is / 2 15.0 cmλ = . 
(b) λ is the same as for the standing wave, so 30.0 cmλ = . 1

SW2 0.425 cmA A= = . 
0.300 m 13.3 m/s
0.0750 s

v f
T
λλ= = = = . 

(c) SW sin cosy
yv A kx t
t

ω ω∂
= =

∂
. At an antinode sin 1kx = , so SW cosyv A tω ω= . max SWv A ω= . 

2  rad 2  rad 83.8 rad/s
0.0750 sT

π πω = = = . 2
max (0.850 10  m)(83.8 rad/s) 0.0712 m/sv −= × = . min 0v = . 

(d) The distance from a node to an adjacent antinode is / 4 7.50 cmλ = . 
EVALUATE: The maximum transverse speed for a point at an antinode of the standing wave is twice the 
maximum transverse speed for each traveling wave, since SW 2A A= . 

15.35. IDENTIFY: Evaluate 2 2/y x∂ ∂ and 2 2/y t∂ ∂ and see if Eq.(15.12) is satisfied for /v kω= . 

SET UP: sin coskx k kx
x

∂
=

∂
. cos sinkx k kx
x

∂
= −

∂
. sin cost t
t

ω ω ω∂
=

∂
. cos sint t
t

ω ω ω∂
= −

∂
 

EXECUTE: (a) [ ]
2

2
sw2 sin sin ,  y k A t kx

x
ω∂

= −
∂

[ ]
2

2
sw2 sin sin ,y A t kx

t
ω ω∂

= −
∂

 so for ( , )y x t  to be a solution of 

Eq.(15.12), 
2

2
2 ,k
v
ω−

− =  and .v
k
ω

=  

(b) A standing wave is built up by the superposition of traveling waves, to which the relationship v kλ= applies. 
EVALUATE: SW( , ) ( sin )siny x t A kx tω= is a solution of the wave equation because it is a sum of solutions to the 
wave equation. 

15.36. IDENTIFY and SET UP: cos( ) cos cos sin sinkx t kx t kx tω ω ω± = ∓  
EXECUTE: 1 2 [ cos( ) cos( )]y y A kx ωt kx ωt+ = − + + − . 

1 2 [ cos cos sin sin cos cos sin sin ] 2 sin siny y A kx t kx t kx t kx t A kx tω ω ω ω ω+ = − + + + = . 
EVALUATE: The derivation shows that the standing wave of Eq.(15.28) results from the combination of two 
waves with the same A, k, and ω that are traveling in opposite directions. 
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15.37. IDENTIFY: Evaluate 2 2/y x∂ ∂ and 2 2/y t∂ ∂ and show that Eq.(15.12) is satisfied. 

SET UP: 1 2
1 2( ) y yy y

x x x
∂ ∂ ∂

+ = +
∂ ∂ ∂

and 1 2
1 2( ) y yy y

t t t
∂ ∂ ∂

+ = +
∂ ∂ ∂

 

EXECUTE: 
2 2 2

1 2
2 2 2

y y y
x x x

∂ ∂ ∂
= +

∂ ∂ ∂
and 

2 2 2
1 2

2 2 2

y y y
t t t

∂ ∂ ∂
= +

∂ ∂ ∂
. The functions 1y and 2y are given as being solutions to 

the wave equation, so 
2 2 2 2 2 2 2 2

1 2 1 2 1 2
2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1y y y y y y y y
x x x v t v t v t t v t

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + = + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 and so 1 2y y y= +  is a solution of 

Eq. (15.12). 
EVALUATE: The wave equation is a linear equation, as it is linear in the derivatives, and differentiation is a linear 
operation. 

15.38. IDENTIFY: For a string fixed at both ends, 2
n

L
n

λ =  and 
2n
vf n
L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

SET UP: For the fundamental, 1n = . For the second overtone, 3n = . For the fourth harmonic, 4n = . 

EXECUTE: (a) 1 2 3.00 mLλ = = . 1
(48.0 m s) 16.0 Hz2 2(1.50 m)

vf L= = = . 

(b) 3 1 3 1.00 mλ λ= = . 2 13 48.0 Hzf f= = . 
(c) 4 1 4 0.75 mλ λ= = . 3 14 64.0 Hzf f= = . 
EVALUATE: As n increases, λ decreases and f increases. 

15.39. IDENTIFY: Use Eq.(15.1) for v and Eq.(15.13) for the tension F. /yv y t= ∂ ∂  and / .y ya v t= ∂ ∂  
(a) SET UP: The fundamental standing wave is sketched in Figure 15.39. 

 

60.0 Hzf =  
From the sketch, 

/ 2 Lλ =  so 
2 1.60 mLλ = =  

Figure 15.39  
EXECUTE: (60.0 Hz)(1.60 m) 96.0 m/sv f λ= = =  
(b) The tension is related to the wave speed by Eq.(15.13): 

/v F μ=  so 2.F vμ=  
/ 0.0400 kg/0.800 m 0.0500 kg/mm Lμ = = =  

2 2(0.0500 kg/m)(96.0 m/s) 461 N.F vμ= = =  
(c) 2 377 rad/sfω π= =  and SW( ,  ) sin siny x t A kx tω=  

SW sin cos ;yv A kx tω ω=  2
SW sin sinya A kx tω ω= −  

max SW( ) (377 rad/s)(0.300 cm) 1.13 m/s.yv Aω= = =  
2 2 2

max SW( ) (377 rad/s) (0.300 cm) 426 m/s .ya Aω= = =  
EVALUATE: The transverse velocity is different from the wave velocity. The wave velocity and tension are 
similar in magnitude to the values in the Examples in the text. Note that the transverse acceleration is quite large. 

15.40. IDENTIFY: The fundamental frequency depends on the wave speed, and that in turn depends on the tension. 

SET UP: Fv
μ

=  where /m Lμ = . 1 2
vf
L

= . The nth harmonic has frequency 1nf nf= . 

EXECUTE: (a) 3

(800 N)(0.400 m) 327 m/s
/ 3.00 10  kg
F FLv
m L m −= = = =

×
. 1

327 m/s 409 Hz
2 2(0.400 m)
vf
L

= = = . 

(b) 
1

10,000 Hz 24.4n
f

= = . The 24th harmonic is the highest that could be heard. 

EVALUATE: In part (b) we use the fact that a standing wave on the wire produces a sound wave in air of the same 
frequency. 
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15.41. IDENTIFY: Compare ( ,  )y x t  given in the problem to Eq.(15.28). From the frequency and wavelength for the 
third harmonic find these values for the eighth harmonic. 
(a) SET UP: The third harmonic standing wave pattern is sketched in Figure 15.41. 

 
Figure 15.41 

EXECUTE: (b) Eq. (15.28) gives the general equation for a standing wave on a string: 
SW( ,  ) ( sin )siny x t A kx tω=  

SW 2 ,A A=  so SW / 2 (5.60 cm)/2 2.80 cmA A= = =  
(c) The sketch in part (a) shows that 3( / 2).L λ=  2 / ,k π λ=  2 / kλ π=  
Comparison of ( ,  )y x t  given in the problem to Eq. (15.28) gives 0.0340 rad/cm.k =  So, 

2 /(0.0340 rad/cm) 184.8 cmλ π= =  
3( / 2) 277 cmL λ= =  

(d) 185 cm,λ =  from part (c) 
50.0 rad/sω =  so / 2 7.96 Hzf ω π= =  

period 1/ 0.126 sT f= =  
1470 cm/sv f λ= =  

(e) SW/ sin cosyv dy dt A kx tω ω= =  

, max SW (50.0 rad/s)(5.60 cm) 280 cm/syv Aω= = =  

(f )  3 17.96 Hz 3 ,f f= =  so 1 2.65 Hzf =  is the fundamental 

8 18 21.2 Hz;f f= =  8 82 133 rad/sfω π= =  
/ (1470 cm/s)/(21.2 Hz) 69.3 cmv fλ = = =  and 2 / 0.0906 rad/cmk π λ= =  

( ,  ) (5.60 cm)sin([0.0906 rad/cm] )sin([133 rad/s] )y x t x t=  
EVALUATE: The wavelength and frequency of the standing wave equals the wavelength and frequency of the two 
traveling waves that combine to form the standing wave. In the 8th harmonic the frequency and wave number are 
larger than in the 3rd harmonic. 

15.42. IDENTIFY: Compare the ( , )y x t specified in the problem to the general form of Eq.(15.28). 
SET UP: The comparison gives SW 4.44 mmA = , 32.5 rad/mk = and 754 rad/sω = . 
EXECUTE: (a) 1 1

SW2 2 (4.44 mm) 2.22 mmA A= = = . 

(b) 2 2 0.193 m.32.5 rad mk
π πλ = = =  

(c) 754 rad s 120 Hz2 2f ω
π π= = = . 

(d) 754 rad s 23.2 m s.32.5 rad mv k
ω= = =  

(e) If the wave traveling in the x+  direction is written as 1( , ) cos( ),y x t A kx tω= − then the wave traveling in the 
-directionx− is 2 ( , ) cos( )y x t A kx tω= − + , where 2.22 mmA = from part (a), 32.5 rad mk = and 754 rad sω = . 

(f )  The harmonic cannot be determined because the length of the string is not specified. 
EVALUATE: The two traveling waves that produce the standing wave are identical except for their direction of 
propagation. 

15.43. (a) IDENTIFY and SET UP: Use the angular frequency and wave number for the traveling waves in Eq.(15.28) for 
the standing wave. 
EXECUTE: The traveling wave is ( ,  ) (2.30 mm)cos([6.98 rad/m] ) [742 rad/s] )y x t x t= +  

2.30 mmA =  so SW 4.60 mm;A =  6.98 rad/mk =  and 742 rad/sω =  
The general equation for a standing wave is SW( ,  ) ( sin )sin ,y x t A kx tω=  so 

( ,  ) (4.60 mm)sin([6.98 rad/m] )sin([742 rad/s] )y x t x t=  
(b) IDENTIFY and SET UP: Compare the wavelength to the length of the rope in order to identify the harmonic. 
EXECUTE: 1.35 mL =  (from Exercise 15.24) 

2 / 0.900 mkλ π= =  
3( / 2),L λ=  so this is the 3rd harmonic 
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(c) For this 3rd harmonic, / 2 118 Hzf ω π= =  

3 13f f=  so 1 (118 Hz)/3 39.3 Hzf = =  
EVALUATE: The wavelength and frequency of the standing wave equals the wavelength and frequency of the two 
traveling waves that combine to form the standing wave. The nth harmonic has n node-to-node segments and the 
node-to-node distance is / 2,λ  so the relation between L and λ  for the nth harmonic is (L n λ= /2).  

15.44. IDENTIFY: /v F μ= . v f λ= . The standing waves have wavelengths 2
n

L
n

λ = and frequencies 1nf nf= . The 

standing wave on the string and the sound wave it produces have the same frequency. 
SET UP: For the fundamental 1n = and for the second overtone 3n = . The string has 

3 2/ (8.75 10  kg) /(0.750 m) 1.17 10  kg/mm Lμ − −= = × = × . 
EXECUTE: (a) 2 /3 2(0.750 m) /3 0.500 mLλ = = = . The sound wave has frequency 

4
2

344 m/s 1.03 10  Hz
3.35 10  m

vf
λ −= = = ×

×
. For waves on the string, 

4 3(1.03 10  Hz)(0.500 m) 5.15 10  m/sv f λ= = × = × . The tension in the string is 
2 2 3 2 5(1.17 10  kg/m)(5.15 10  m/s) 3.10 10  NF vμ −= = × × = × . 

(b) 4 3
1 3 /3 (1.03 10  Hz) /3 3.43 10  Hzf f= = × = × . 

EVALUATE: The waves on the string have a much longer wavelength than the sound waves in the air because the 
speed of the waves on the string is much greater than the speed of sound in air. 

15.45. IDENTIFY and SET UP: Use the information given about the 4A  note to find the wave speed, that depends on the 
linear mass density of the string and the tension. The wave speed isn�t affected by the placement of the fingers on the 
bridge. Then find the wavelength for the 5D  note and relate this to the length of the vibrating portion of the string. 
EXECUTE: (a) 440 Hzf =  when a length 0.600 mL =  vibrates; use this information to calculate the speed v 
of waves on the string. For the fundamental / 2 Lλ =  so 2 2(0.600 m) 1.20 m.Lλ = = =  Then 

(440 Hz)(1.20 m) 528 m/s.v f λ= = =  Now find the length L x=  of the string that makes 587 Hz.f =  
528 m/s 0.900 m
587 Hz

v
f

λ = = =  

/2 0.450 m,L λ= =  so 0.450 m 45.0 cm.x = =  
(b) No retuning means same wave speed as in part (a). Find the length of vibrating string needed to produce 

392 Hz.f =  
528 m/s 1.35 m
392 Hz

v
f

λ = = =  

/ 2 0.675 m;L λ= =  string is shorter than this. No, not possible. 
EVALUATE: Shortening the length of this vibrating string increases the frequency of the fundamental. 

15.46. IDENTIFY: SW( , ) ( sin )siny x t A kx tω= . /yv y t= ∂ ∂ . 2 2/ya y t= ∂ ∂ . 

SET UP: max SW( sin )v A kx ω= . 2
max SW( sin )a A kx ω= . 

EXECUTE: (a) (i) 2x λ=  is a node, and there is no motion. (ii) 4x λ=  is an antinode, and max (2 ) 2v A f fAπ π= = , 

2 2
max max(2 ) 4a f v f Aπ π= = . (iii) 1cos 4 2

π = and this factor multiplies the results of (ii), so max 2v fAπ= , 

2 2
max 2 2a f Aπ= . 

(b) The amplitude is 2 sin ,  or (i) 0,   (ii) 2 ,  (iii)  2 2.A kx A A  
(c) The time between the extremes of the motion is the same for any point on the string (although the period of the 
zero motion at a node might be considered indeterminate) and is 1/ 2 f . 
EVALUATE: Any point in a standing wave moves in SHM. All points move with the same frequency but have 
different amplitude. 

15.47. IDENTIFY: For the fundamental, 1 2
vf
L

= . /v F μ= . A standing wave on a string with frequency f produces a 

sound wave that also has frequency f. 
SET UP: 1 245 Hzf = . 0.635 mL = . 
EXECUTE: (a) 12 2(245 Hz)(0.635 m) 311 m s.v f L= = =  
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(b) The frequency of the fundamental mode is proportional to the speed and hence to the square root of the tension; 
(245 Hz) 1.01 246 Hz= . 
(c) The frequency will be the same, 245 Hz. The wavelength will be air air (344 m s) (245 z) 1.40 m,v fλ = =  Η =  
which is larger than the wavelength of standing wave on the string by a factor of the ratio of the speeds. 
EVALUATE: Increasing the tension increases the wave speed and this in turn increases the frequencies of the 
standing waves. The wavelength of each normal mode depends only on the length of the string and doesn't change 
when the tension changes. 

15.48. IDENTIFY: The ends of the stick are free, so they must be displacement antinodes. The first harmonic has one 
node, at the center of the stick, and each successive harmonic adds one node. 
SET UP: The node to node and antinode to antinode distance is / 2λ . 
EXECUTE: The standing wave patterns for the first three harmonics are shown in Figure 15.48. 

1st harmonic: 1 1
1 2 4.0 m
2

L Lλ λ= → = = . 2nd harmonic: 2 21 2.0 mL Lλ λ= → = = . 

3rd harmonic: 3 3
3 2 1.33 m
2 3

LL λ λ= → = = . 

EVALUATE: The higher the harmonic the shorter the wavelength. 

 
Figure 15.48 

15.49. IDENTIFY and SET UP: Calculate v, ,ω  and k from Eqs.(15.1), (15.5), and (15.6). Then apply Eq.(15.7) to obtain 
( ,  ).y x t  

32.50 10  m,A −= ×  1.80 m,λ =  36.0 m/sv =  
EXECUTE: (a) v f λ=  so / (36.0 m/s)/1.80 m 20.0 Hzf v λ= = =  

2 2 (20.0 Hz) 126 rad/sfω π π= = =  
2 / 2  rad/1.80 m 3.49 rad/mk π λ π= = =  

(b) For a wave traveling to the right, ( ,  ) cos( ).y x t A kx tω= −  This equation gives that the 0x =  end of the string 
has maximum upward displacement at 0.t =  
Put in the numbers: 3( ,  ) (2.50 10  m)cos((3.49 rad/m) (126 rad/s) ).y x t x t−= × −  
(c) The left hand end is located at 0.x =  Put this value into the equation of part (b): 

3(0,  ) (2.50 10  m)cos((126 rad/s) ).y t t−= + ×  
(d) Put 1.35 mx =  into the equation of part (b): 

3(1.35 m, ) (2.50 10  m)cos((3.49 rad/m)(1.35 m) (126 rad/s) ).y t t−= × −  
3(1.35 m, ) (2.50 10  m)cos(4.71 rad) (126 rad/s)y t t−= × −  

4.71 rad 3 / 2π=  and cos( ) cos( ),θ θ= −  so 3(1.35 m,  ) (2.50 10  m)cos((126 rad/s) 3 / 2 rad)y t t π−= × −  
(e) cos( )y A kx tω= −  ((part b)) 

The transverse velocity is given by cos( ) sin( ).y
yv A kx t A kx t
t t

ω ω ω∂ ∂
= = − = + −

∂ ∂
 

The maximum yv  is 3(2.50 10  m)(126 rad/s) 0.315 m/s.Aω −= × =  

(f )  3( ,  ) (2.50 10  m)cos((3.49 rad/m) (126 rad/s) )y x t x t−= × −  
0.0625 st =  and 1.35 mx =  gives 

3 3(2.50 10  m)cos((3.49 rad/m)(1.35 m) (126 rad/s)(0.0625 s)) 2.50 10  m.y − −= × − = − ×  
sin( ) (0.315 m/s)sin((3.49 rad/m) (126 rad/s) )yv A kx t x tω ω= + − = + −  

0.0625 st =  and 1.35 mx =  gives 
(0.315 m/s)sin((3.49 rad/m)(1.35 m) (126 rad/s)(0.0625 s)) 0.0yv = − =  

EVALUATE: The results of part (f )  illustrate that 0yv =  when ,y A= ±  as we saw from SHM in Chapter 13. 
15.50. IDENTIFY: Compare ( , )y x t given in the problem to the general form given in Eq.(15.8). 

SET UP: The comparison gives 0.750 cmA = , 0.400  rad/cmk π= and 250  rad/sω π= . 
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EXECUTE: (a) 20.750 cm, 5.00 cm,0.400 rad/cmA λ= = = 125 Hz,f =  1 0.00800 sT f= =  and 

6.25 m/s.v fλ= =  
(b) The sketches of the shape of the rope at each time are given in Figure 15.50. 
(c) To stay with a wavefront as t  increases, x decreases and so the wave is moving in the x− -direction. 
(d) From Eq. (15.13), the tension is 2 2(0.50 kg m) (6.25 m s) 19.5 NF vμ= = = . 

(e) 2 21
av 2 54.2 W.P F Aμ ω= =  

EVALUATE: The argument of the cosine is ( )kx tω+ for a wave traveling in the -directionx− , and that is the case 
here. 

 
Figure 15.50 

15.51. IDENTIFY: The speed in each segment is v F μ.=  The time to travel through a segment is / .t L v=  

SET UP: The travel times for each segment are 1 1 1
1 2 3

4,  ,  and 
4

t L t L t L
F F F
μ μ μ

= = =  . 

EXECUTE: Adding the travel times gives 71 1 1 1 1
total 2 22t L L L LF F F F

μ μ μ μ
= + + = . 

(b) No. The speed in a segment depends only on F and μ  for that segment. 
EVALUATE: The wave speed is greater and its travel time smaller when the mass per unit length of the segment 
decreases. 
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15.52. IDENTIFY: Apply 0zτ =∑ to find the tension in each wire. Use /v F μ= to calculate the wave speed for each 
wire and then /t L v= is the time for each pulse to reach the ceiling, where 1.25 mL = . 

SET UP: The wires have 2

2.50 N 0.204 kg/m
(9.80 m/s )(1.25 m)

m
L

μ = = = . The free-body diagram for the beam is 

given in Figure 15.52. Take the axis to be at the end of the beam where wire A is attached. 
EXECUTE: 0zτ =∑ gives ( /3)BT L w L= and /3 583 NBT w= = . 1750 NA BT T+ = , so 1167 NAT = . 

1167 N 75.6 m/s
0.204 kg/m

A
A

Tv
μ

= = = . 1.25 m 0.0165 s
75.6 m/sAt = = . 583 N 53.5 m/s

0.204 kg/mBv = = . 

1.25 m 0.0234 s
53.5 m/sBt = = . 6.9 msB At t tΔ = − = . 

EVALUATE: The wave pulse travels faster in wire A, since that wire has the greater tension. 

 
Figure 15.52 

15.53. IDENTIFY and SET UP: The transverse speed of a point of the rope is /yv y t= ∂ ∂  where ( ,  )y x t  is given by Eq.(15.7). 
EXECUTE: (a) ( ,  ) cos( )y x t A kx tω= −  

/ sin( )yv dy dt A kx tω ω= = + −  

, max 2yv A fAω π= =  

vf
λ

=  and ,
( / )
Fv
m L

=  so 1 FLf
Mλ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

, max
2

y
A FLv

M
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

(b) To double , maxyv  increase F by a factor of 4. 
EVALUATE: Increasing the tension increases the wave speed v which in turn increases the oscillation frequency. 
With the amplitude held fixed, increasing the number of oscillations per second increases the transverse velocity. 

15.54. IDENTIFY: The maximum vertical acceleration must be at least .g  

SET UP: 2
maxa Aω=  

EXECUTE: 2
ming Aω= and thus 2

min / .A g ω=  Using 2 2 /f vω π π λ= =  and /v F μ= , this becomes 
2

min 24
gA
F

λ μ
π

= . 

EVALUATE: When the amplitude of the motion increases, the maximum acceleration of a point on the rope 
increases. 

15.55. IDENTIFY and SET UP: Use Eq.(15.1) and 2 fω π=  to replace v by ω  in Eq.(15.13). Compare this equation to 

/k mω ′=  from Chapter 13 to deduce .k′  
EXECUTE: (a) 2 ,fω π=  / ,f v λ=  and /v F μ=  These equations combine to give 

2 2 ( / ) (2 / ) / .f v Fω π π λ π λ μ= = =  

But also / .k mω ′=  Equating these expressions for ω  gives 2(2 / ) ( / )k m Fπ λ μ′ =  

But  m xμ= Δ  so 2(2 / )k x Fπ λ′ = Δ  
(b) EVALUATE: The �force constant� k′  is independent of the amplitude A and mass per unit length ,μ  just as is 
the case for a simple harmonic oscillator. The force constant is proportional to the tension in the string F and 
inversely proportional to the wavelength .λ  The tension supplies the restoring force and the 21/ λ  factor represents 
the dependence of the restoring force on the curvature of the string. 
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15.56. IDENTIFY: Apply 0zτ =∑ to one post and calculate the tension in the wire. /v F μ= for waves on the wire. 
v f λ= . The standing wave on the wire and the sound it produces have the same frequency. For standing waves on 

the wire, 2
n

L
n

λ = . 

SET UP: For the 7th overtone, 8n = . The wire has / (0.732 kg) /(5.00 m) 0.146 kg/mm Lμ = = = . The free-body 
diagram for one of the posts is given in Figure 15.56. Forces at the pivot aren�t shown. We take the rotation axis to 
be at the pivot, so forces at the pivot produce no torque. 

EXECUTE: 0zτ =∑ gives cos57.0 ( sin57.0 ) 0
2
Lw T L⎛ ⎞ − =⎜ ⎟

⎝ ⎠
° ° . 235 N 76.3 N

2tan57.0 2 tan57.0
wT = = =
° °

. For 

waves on the wire, 76.3 N 22.9 m/s
0.146 kg/m

Fv
μ

= = = . For the 7th overtone standing wave on the wire, 

2 2(5.00 m) 1.25 m
8 8
Lλ = = = . 22.9 m/s 18.3 Hz

1.25 m
vf
λ

= = = . The sound waves have frequency 18.3 Hz and 

wavelength 344 m/s 18.8 m
18.3 Hz

λ = =  

EVALUATE: The frequency of the sound wave is at the lower limit of audible frequencies. The wavelength of the 
standing wave on the wire is much less than the wavelength of the sound waves, because the speed of the waves on 
the wire is much less than the speed of sound in air. 

 
Figure 15.56 

15.57. IDENTIFY: The magnitude of the transverse velocity is related to the slope of the t versus x curve. The transverse 
acceleration is related to the curvature of the graph, to the rate at which the slope is changing. 
SET UP: If y increases as t increases, yv  is positive. ya  has the same sign as yv if the transverse speed is 
increasing. 
EXECUTE: (a) and (b) (1): The curve appears to be horizontal, and 0yv = . As the wave moves, the point will 

begin to move downward, and 0ya < . (2): As the wave moves in the -direction,x+  the particle will move upward 

so 0yv > . The portion of the curve to the left of the point is steeper, so 0ya > . (3) The point is moving down, and 

will increase its speed as the wave moves; 0yv < , 0ya < . (4) The curve appears to be horizontal, and 0yv = . As 

the wave moves, the point will move away from the x-axis, and 0ya > . (5) The point is moving downward, and 

will increase its speed as the wave moves; 0,  < 0y yv a< . (6) The particle is moving upward, but the curve that 

represents the wave appears to have no curvature, so 0  and 0y yv a> = . 
(c) The accelerations, which are related to the curvatures, will not change. The transverse velocities will all change 
sign. 
EVALUATE: At points 1, 3, and 5 the graph has negative curvature and 0ya < . At points 2 and 4 the graph has 

positive curvature and 0ya > . 
15.58. IDENTIFY: The time it takes the wave to travel a given distance is determined by the wave speed v. A point on 

the string travels a distance 4A in time T. 
SET UP: v f λ= . 1/T f= . 

EXECUTE: (a) The wave travels a horizontal distance d in a time 
( )( )

8.00  m 0.333 s.
0.600 m 40.0 Hz

d dt
v fλ

= = = =  
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(b) A point on the string will travel a vertical distance of 4A  each cycle. Although the transverse velocity ( ),yv x t  
is not constant, a distance of 8.00 mh =  corresponds to a whole number of cycles, 

3(4 ) (8.00 m) [4(5.00 10  m)] 400,n h A −= = × = so the amount of time is (400) (40.0 Hz) 10.0 s.t nT n f= = = =  
EVALUATE: (c) The time in part (a) is independent of amplitude but the time in part (b) depends on the amplitude 
of the wave. For (b), the time is halved if the amplitude is doubled. 

15.59. IDENTIFY: 2 2 2( , ) ( , )y x y z x y A+ = . The trajectory is a circle of radius .A  
SET UP: /yv y t= ∂ ∂ , /zv z t= ∂ ∂ . /y ya v t= ∂ ∂ , /z za v t= ∂ ∂  

EXECUTE: At 0,  (0,0) ,  (0,0) 0.t y A z= = =  At 2 ,  (0, 2 ) 0,  (0, 2 )t y z Aπ ω π ω π ω= = = − . 
At ,  (0, ) ,  (0, ) 0.t y A zπ ω π ω π ω= = − =  At 3 2 ,  (0,3 2 ) 0,  (0,3 2 )t y z Aπ ω π ω π ω= = = . The trajectory and 
these points are sketched in Figure 15.59. 
(b) sin( ),  cos( )y zv y t A kx t v z t A kx tω ω ω ω= ∂ ∂ = + − = ∂ ∂ = − − . 

� � � �[sin( ) cos( ) ]y zv v A kx kx tω ω ω− − −v = j + k = j k# . 2 2
y zv v v Aω= + =  so the speed is constant. 

� �y z= +r j k# . 2 2sin ( )cos( ) cos( ) sin( ) 0y zyv zv A kx t kx t A kx t kx tω ω ω ω ω ω⋅ = + = − − − − − =r v# # . 
0,  so ⋅ =r v v# # # is tangent to the circular path. 

(c) 2 2cos( ),   sin( )y y z za v t A kx t a v t A kx tω ω ω ω= ∂ ∂ = − − =∂ ∂ = − −  
2 2 2 2 2 2[cos ( ) sin ( )]y zya za A kx t kx t Aω ω ω ω⋅ = + = − − + − = −r a# # . r A= , ra⋅ = −r a# # . 

 cos  so 180  and ra φ φ⋅ = = °r a a# # # is opposite in direction to ;  r a# #  is radially inward. For these ( ,  ) and ( ,  ),y x t z x t  
2 2 2 ,y z A+ = so the path is again circular, but the particle rotates in the opposite sense compared to part (a). 

EVALUATE: The wave propagates in the -direction.x+  The displacement is transverse, so v# and a#  lie in the yz-
plane. 

 
Figure 15.59 

15.60. IDENTIFY: The wavelengths of the standing waves on the wire are given by 2
n

L
n

λ = . When the ball is changed 

the wavelength changes because the length of the wire changes; 0Fll
AY

Δ = . 

SET UP: For the third harmonic, 3n = . For copper, 1011 10  PaY = × . The wire has cross-sectional area 
2 3 2 7 2(0.512 10  m) 8.24 10  mA rπ π − −= = × = ×  

EXECUTE: (a) 3
2(1.20 m) 0.800 m

3
λ = =  

(b) The increase in length when the 100.0 N ball is replaced by the 500.0 N ball is given by 0( )F ll
AY

Δ
Δ = , where 

400.0 NFΔ = is the increase in the force applied to the end of the wire. 
3

7 2 10

(400.0 N)(1.20 m) 5.30 10  m
(8.24 10  m )(11 10  Pa)

l −
−Δ = = ×

× ×
. The change in wavelength is 2

3 3.5 mmlλΔ = Δ = . 

EVALUATE: The change in tension changes the wave speed and that in turn changes the frequency of the standing 
wave, but the problem asks only about the wavelength. 
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15.61. IDENTIFY: Follow the procedure specified in part (b). 

SET UP: If u x vt= − , then u v
t

∂
= −

∂
and 1u

x
∂

=
∂

. 

EXECUTE: (a) As time goes on, someone moving with the wave would need to move in such a way that the wave 
appears to have the same shape. If this motion can be described by ,  with  x vt b b= + a constant, then 

( , ) ( ),y x t f b=  and the waveform is the same to such an observer. 

(b) 
2 2

2 2

y d f
x du

∂
=

∂
 and 

2 2
2

2 2 ,y d fv
t du

∂
=

∂
so ( , ) ( )y x t f x vt= − is a solution to the wave equation with wave speed v . 

(c) This is of the form ( , ) ( ),  with y x t f u u x vt= = − and 
2 2( / )( ) B x Ct Bf u De− −= . The result of part (b) may be used 

to determine the speed v C B= . 
EVALUATE: The wave in part (c) moves in the -direction.x+  The speed of the wave is independent of the 
constant D. 

15.62. IDENTIFY: The phase angle determines the value of y for 0x = , 0t =  but does not affect the shape of the 
( , )y x t versus x or t graph. 

SET UP: cos( ) sin( )kx t kx t
t

ω φ ω ω φ∂ − +
= − − +

∂
. 

EXECUTE: (a) The graphs for each φ are sketched in Figure 15.62. 

(b) sin( )y A kx tt ω ω φ∂ = − − +
∂

 

(c) No. 4 or 3 4φ π φ π= =  would both give 2A . If the particle is known to be moving downward, the result 
of part (b) shows that cos 0,  and so 3 4.φ φ π< =  
(d) To identifyφ  uniquely, the quadrant in whichφ  lies must be known. In physical terms, the signs of both the 
position and velocity, and the magnitude of either, are necessary to determine φ  (within additive multiples of 2π ). 
EVALUATE: The phase 0φ = corresponds to y A= at 0x = , 0t = . 

 
Figure 15.62 

15.63. IDENTIFY and SET UP: Use Eq.(15.13) to replace ,μ  and then Eq.(15.6) to replace v. 

EXECUTE: (a) Eq.(15.25): 2 21
av 2P F Aμ ω=  

/v F μ=  says /F vμ =  so ( ) 2 2 2 21 1
av 2 2/ /P F v F A F A vω ω= =  

2 fω π=  so / 2 / 2 /v f v kω π π λ= = =  and 21
av 2 ,P Fk Aω=  as was to be shown. 

(b) IDENTIFY: For the ω  dependence, use Eq.(15.25) since it involves just ,ω  not k: 2 21
av 2 .P F Aμ ω=  

SET UP: av ,P  ,μ  A all constant so 2Fω  is constant, and 2 2
1 1 2 2 .F Fω ω=  

EXECUTE: 1/ 4 1/ 4 1/ 4
2 1 1 2 1 1 1 1 1( / ) ( / 4 ) (4) / 2F F F Fω ω ω ω ω−= = = =  

ω  must be changed by a factor of 1/ 2  (decreased) 
IDENTIFY: For the k dependence, use the equation derived in part (a), 21

av 2 .P Fk Aω=  
SET UP: If avP  and A are constant then Fkω  must be constant, and 1 1 1 2 2 2.Fk F kω ω=  
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EXECUTE: 1 1 1 1
2 1 1 1 1 1

2 2 1 1

2 2 / 8
4 4 16/ 2

F Fk k k k k k
F F

ω ω
ω ω

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
= = = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

k must be changed by a factor of 1/ 8  (decreased). 
EVALUATE: Power is the transverse force times the transverse velocity. To keep avP  constant the transverse 
velocity must be decreased when F is increased, and this is done by decreasing .ω  

15.64. IDENTIFY: The wave moves in the x+ direction with speed ,v  so to obtain ( , )y x t  replace x with x vt− in the 
expression for ( ,0)y x . 
SET UP: ( , )P x t is given by Eq.(15.21). 
EXECUTE: (a) The wave pulse is sketched in Figure 15.64. 
(b) 

( )
( )

0 for ( ) 
/ for ( ) 0

( , )
/ for  0 ( )

0 for ( )

x vt L
h L x vt L L x vt

y x t
h L x vt L x vt L

x vt L

− < −⎧
⎪ + − − < − <⎪= ⎨ − + < − <⎪
⎪ − >⎩

 

(c) From Eq.(15.21): 

2

2

(0)(0) 0 for ( )
( / )( / ) ( / ) for ( ) 0( , ) ( , )( , )
( / )( / ) ( / ) for 0 ( )
(0)(0) 0 for ( )

F x vt L
F h L hv L Fv h L L x vty x t y x tP x t F
F h L hv L Fv h L x vt Lx t
F x vt L

− = − < −⎧
⎪− − = − < − <∂ ∂ ⎪= − = ⎨− − = < − <∂ ∂ ⎪
⎪− = − >⎩

 

Thus the instantaneous power is zero except for ( ) ,L x vt L− < − <  where it has the constant value 2( ) .Fv h L  
EVALUATE: For this pulse the transverse velocity yv is constant in magnitude and has opposite sign on either side 
of the peak of the pulse. 

 
Figure 15.64 

15.65. IDENTIFY and SET UP: The average power is given by Eq.(15.25). Rewrite this expression in terms of v and λ  
in place of F and .ω  
EXECUTE: (a) 2 21

av 2P F Aμ ω=  

/v F μ=  so /F v μ=  
2 2 ( / )f vω π π λ= =  

Using these two expressions to replace F  and ω  gives 2 3 2 2
av 2 / ;P v Aμπ λ=  3(6.00 10  kg)/(8.00 m)μ −= ×  

2
av

2 3

2 7.07 cm
4

PA
v

λ
π μ

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

(b) EVALUATE: 3
av ~P v  so doubling v increases avP  by a factor of 8. 

av 8(50.0 W) 400.0 WP = =  
15.66. IDENTIFY: Draw the graphs specified in part (a). 

SET UP: When ( , )y x t is a maximum, the slope /y x∂ ∂ is zero. The slope has maximum magnitude when 
( , ) 0y x t = . 

EXECUTE: (a) The graph is sketched in Figure 15.66a. 
(b) The power is a maximum where the displacement is zero, and the power is a minimum of zero when the 
magnitude of the displacement is a maximum. 
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(c) The energy flow is always in the same direction. 

(d) In this case, sin( )y kA kx tx ω∂ = − +
∂

and Eq.(15.22) becomes 2 2( , ) sin ( ).P x t Fk A kx tω ω= − +  The power is now 

negative (energy flows in the -directionx− ), but the qualitative relations of part (b) are unchanged. The graph is 
sketched in Figure 15.66b. 
EVALUATE: cosθ and sinθ are 180°  out of phase, so for fixed t, maximum y corresponds to zero P and 

0y = corresponds to maximum P. 

  
Figure 15.66 

15.67. IDENTIFY and SET UP: / .v F μ=  The coefficient of linear expansion α  is defined by 0  .L L TαΔ = Δ  This can 

be combined with 
0

/
/
F AY
L L

=
Δ

 to give F Y A TαΔ = − Δ  for the change in tension when the temperature changes by 

.TΔ  Combine the two equations and solve for .α  
EXECUTE: 1 / ,v F μ=  2

1 /v F μ=  and 2
1F vμ=  

The length and hence μ  stay the same but the tension decreases by .F Y A TαΔ = − Δ  

2 ( )/ (  )/v F F F Y A Tμ α μ= + Δ = − Δ  
2 2
2 1/  /  /v F Y A T v Y A Tμ α μ α μ= − Δ = − Δ  

And /m Lμ =  so / / / 1/ .A AL m V mμ ρ= = =  (A is the cross-sectional area of the wire, V is the volume of a 

length L.) Thus 2 2
1 2 (  / )v v Y Tα ρ− = Δ  and 

2 2
1 2

( / ) 
v v
Y T

α
ρ
−

=
Δ

 

EVALUATE: When T increases the tension decreases and v decreases. 
15.68. IDENTIFY: The time between positions 1 and 5 is equal to /2.T  v f λ= . The velocity of points on the string is 

given by Eq.(15.9). 

SET UP: Four flashes occur from position 1 to position 5, so the elapsed time is 60 s4 0.048 s
5000

⎛ ⎞ =⎜ ⎟
⎝ ⎠

. The figure 

in the problem shows that 0.500 mLλ = = . At point P the amplitude of the standing wave is 1.5 cm. 
EXECUTE: (a) / 2 0.048 sT =  and 0.096 sT = . 1/ 10.4 Hzf T= = . 0.500 mλ = . 
(b) The fundamental standing wave has nodes at each end and no nodes in between. This standing wave has one 
additional node. This is the 1st overtone and 2nd harmonic. 
(c) (10.4 Hz)(0.500 m) 5.20 m/sv f λ= = = . 
(d) In position 1, point P is at its maximum displacement and its speed is zero. In position 3, point P is passing 
through its equilibrium position and its speed is max 2 2 (10.4 Hz)(0.015 m) 0.980 m/sv A fAω π π= = = = . 

(e) F FLv
mμ

= =  and 2 2

(1.00 N)(0.500 m) 18.5 g
(5.20 m/s)

FLm
v

= = = . 

EVALUATE: The standing wave is produced by traveling waves moving in opposite directions. Each point on the 
string moves in SHM, and the amplitude of this motion varies with position along the string. 

15.69. IDENTIFY and SET UP: There is a node at the post and there must be a node at the clothespin. There could be 
additional nodes in between. The distance between adjacent nodes is / 2,λ  so the distance between any two nodes 
is ( / 2)n λ  for 1,  2, 3,n = …  This must equal 45.0 cm, since there are nodes at the post and clothespin. Use this in 
Eq.(15.1) to get an expression for the possible frequencies f. 
EXECUTE: 45.0 cm ( / 2),n λ=  / ,v fλ =  so [ /(90.0 cm)] (0.800 Hz) ,f n v n= =  1,  2, 3,n = …  
EVALUATE: Higher frequencies have smaller wavelengths, so more node-to-node segments fit between the post 
and clothespin. 
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15.70. IDENTIFY: The displacement of the string at any point is SW( , ) ( sin )sin .y x t A kx tω=  For the fundamental mode 
2 ,Lλ =  so at the midpoint of the string sin sin(2 )( 2) 1,kx Lπ λ= =  and SW sin .y A tω=  The transverse velocity is 

/yv y t= ∂ ∂ and the transverse acceleration is /y ya v t= ∂ ∂ . 

SET UP: Taking derivatives gives SW cosy
yv A tt ω ω∂= =

∂
, with maximum value ,max SWyv Aω= , and 

2
SW siny

y

v
a A tt ω ω

∂
= = −

∂
, with maximum value 2

, max SWya Aω= . 

EXECUTE: 3 2 3
,max ,max (8.40 10  m s ) (3.80 m s) 2.21 10  rad sy ya vω = = × = × , and then 

3 3
SW ,max (3.80 m s) (2.21 10  rad s) 1.72 10  myA v ω −= = × = × . 

(b) 3(2 )( 2 ) (0.386 m)(2.21 10  rad s) 272 m sv f L Lλ ω π ω π π= = = = × = . 
EVALUATE: The maximum transverse velocity and acceleration will have different (smaller) values at other 
points on the string. 

15.71. IDENTIFY: To show this relationship is valid, take the second time derivative. 

SET UP: sin cost t
t

ω ω∂
=

∂
. cos sint t
t

ω ω ω∂
= −

∂
. 

EXECUTE: (a) 
2 2

SW SW2 2

( , ) [( sin )sin ] [( sin )cos ]y x t A kx t A kx t
t t t

ω ω ω∂ ∂ ∂
= =

∂ ∂ ∂
 

[ ]
2

2 2
sw2

( , ) ( sin )sin ( , )y x t A kx t y x t
t

ω ω ω∂
= − = −

∂
. This equation shows that 2

ya yω= − . This is characteristic of 

simple harmonic motion; each particle of the string moves in simple harmonic motion. 
(b) Yes, the traveling wave is also a solution of this equation. When a string carries a traveling wave each point on 
the string moves in simple harmonic motion. 
EVALUATE: A standing wave is the superposition of two traveling waves, so it is not surprising that for both 
types of waves the particles on the string move in SHM. 

15.72. IDENTIFY and SET UP: Carry out the analysis specified in the problem. 
EXECUTE: (a) The wave moving to the left is inverted and reflected; the reflection means that the wave moving 
to the left is the same function of ,x− and the inversion means that the function is ( ).f x− −  
(b) The wave that is the sum is ( ) ( )f x f x− −  (an inherently odd function), and for any , (0) ( 0) 0.f f f− − =  
(c) The wave is reflected but not inverted (see the discussion in part (a) above), so the wave moving to the left in 
Figure 15.21 in the textbook is ( ).f x+ −  

(d) ( ) ( ) ( ) ( ) ( )( ( ) ( ))
( ) x x

dy d df x df x df x df x d x df dff x f x
dx dx dx dx dx d x dx dx dx =−

− − −
= + − = + = + = −

−
. 

At 0x = , the terms are the same and the derivative is zero. 
EVALUATE: Our results verify the behavior shown in Figures 15.20 and 15.21 in the textbook. 

15.73. IDENTIFY: Carry out the derivation as done in the text for Eq.(15.28). The transverse velocity is /yv y t= ∂ ∂  and 

the transverse acceleration is / .y ya v t= ∂ ∂  
(a) SET UP: For reflection from a free end of a string the reflected wave is not inverted, so 

1 2( ,  ) ( ,  ) ( ,  ),y x t y x t y x t= +  where 

1( ,  ) cos( )y x t A kx tω= +  (traveling to the left) 

2 ( ,  ) cos( )y x t A kx tω= −  (traveling to the right) 
Thus ( ,  ) [cos( ) cos( )].y x t A kx t kx tω ω= + + −  
EXECUTE: Apply the trig identity cos( ) cos cos sin sina b a b a b± = ∓  with a kx=  and :b tω=  
cos( ) cos cos sin sinkx t kx t kx tω ω ω+ = −  and 
cos( ) cos cos sin sin .kx t kx t kx tω ω ω− = +  
Then ( ,  ) (2 cos )cosy x t A kx tω=  (the other two terms cancel) 
(b) For 0,x =  cos 1kx =  and ( ,  ) 2 cos .y x t A tω=  The amplitude of the simple harmonic motion at 0x =  is 2A, 
which is the maximum for this standing wave, so 0x =  is an antinode. 
(c) max 2y A=  from part (b). 

cos[(2 cos )cos ] 2 cos 2 cos sin .y
y tv A kx t A kx A kx t
t t t

ωω ω ω∂ ∂ ∂
= = = = −

∂ ∂ ∂
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At 0,x =  2 sinyv A tω ω= −  and max( ) 2yv Aω=  
2

2
2

sin2 cos 2 cos cosy
y

vy ta A kx A kx t
t t t

ωω ω ω
∂∂ ∂

= = = − = −
∂ ∂ ∂

 

At 0,x =  22 cosya A tω ω= −  and 2
max( ) 2 .ya Aω=  

EVALUATE: The expressions for max( )yv  and max( )ya  are the same as at the antinodes for the standing wave of a 
string fixed at both ends. 

15.74. IDENTIFY: The standing wave is given by Eq.(15.28). 
SET UP: At an antinode, sin 1kx = . ,maxyv Aω= . 2

,maxya Aω= . 

EXECUTE: (a) (192.0 m s) (240.0 Hz) 0.800 mv fλ = = = , and the wave amplitude is SW 0.400 cm.A =  The 
amplitude of the motion at the given points is 
(i) (0.400 cm)sin ( ) 0 (a node)π =  (ii) (0.400 cm) sin( 2) 0.400 cm (an antinode)π =  
(iii) (0.400 cm) sin( 4) 0.283 cmπ =  

(b) The time is half of the period, or 31 (2 ) 2.08 10 s.f −= ×  
(c) In each case, the maximum velocity is the amplitude multiplied by 2 fω π= and the maximum acceleration is 

the amplitude multiplied by 2 2 24 fω π= : 
3 2 3 2(i) 0, 0;   (ii) 6.03 m s,  9.10 10  m s ;   (iii) 4.27 m s,  6.43 10  m s× × . 

EVALUATE: The amplitude, maximum transverse velocity, and maximum transverse acceleration vary along the 
length of the string. But the period of the simple harmonic motion of particles of the string is the same at all points 
on the string. 

15.75. IDENTIFY: The standing wave frequencies are given by 
2n
vf n
L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. /v F μ= . Use the density of steel to 

calculate μ for the wire. 
SET UP: For steel, 3 37.8 10  kg/mρ = × . For the first overtone standing wave, 2n = . 

EXECUTE: 22 (0.550 m)(311 Hz) 171 m/s
2
Lfv = = = . The volume of the wire is 2( )V r Lπ= . m Vρ= so 

2 3 3 3 2 3(7.8 10  kg/m ) (0.57 10  m) 7.96 10  kg/mm V r
L L

ρμ ρπ π − −= = = = × × = × . The tension is 

2 3 2(7.96 10  kg/m)(171 m/s) 233 NF vμ −= = × = . 
EVALUATE: The tension is not large enough to cause much change in length of the wire. 

15.76. IDENTIFY: The mass and breaking stress determine the length and radius of the string. 1 2
vf
L

= , with Fv
μ

= . 

SET UP: The tensile stress is 2/F rπ . 

EXECUTE: (a) The breaking stress is 8 2
2 7.0 10  N mF
rπ

= × and the maximum tension is 900 N,F = so solving 

for r gives the minimum radius 4
8 2

900 N 6.4 10  m
(7.0 10  N m )

r
π

−= = ×
×

. The mass and density are fixed, 

2
M
r L

ρ
π

=  so the minimum radius gives the maximum length 

3

2 4 2 3

4.0 10  kg 0.40 m
(6.4 10  m) (7800 kg m )

ML
rπ ρ π

−

−

×
= = =

×
. 

(b) The fundamental frequency is 1
1 1 1

2 2 2
F F Ff L L M L MLμ= = = . Assuming the maximum length of the 

string is free to vibrate, the highest fundamental frequency occurs when 900 NF = and 
1

1 2 3
900 N 376 Hz

(4.0 10  kg)(0.40 m)
f −= =

×
. 

EVALUATE: If the radius was any smaller the breaking stress would be exceeded. If the radius were greater, so 
the stress was less than the maximum value, then the length would be less to achieve the same total mass. 

15.77. IDENTIFY: At a node, ( , ) 0y x t = for all t. 1 2y y+  is a standing wave if the locations of the nodes don't depend on t. 
SET UP: The string is fixed at each end so for all harmonics the ends are nodes. The second harmonic is the first 
overtone and has one additional node. 



Mechanical Waves  15-25 

EXECUTE: (a) The fundamental has nodes only at the ends, 0 and .x x L= =  
(b) For the second harmonic, the wavelength is the length of the string, and the nodes are at 

0, 2 and .x x L x L= = =  
(c) The graphs are sketched in Figure 15.77. 
(d) The graphs in part (c) show that the locations of the nodes and antinodes between the ends vary in time. 
EVALUATE: The sum of two standing waves of different frequencies is not a standing wave. 

 
Figure 15.77 
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15.78. IDENTIFY: 1 2
vf
L

= . The buoyancy force B that the water exerts on the object reduces the tension in the wire. 

fluid submergedB V gρ= . 

SET UP: For aluminum, 3
a 2700 kg/mρ = . For water, 3

w 1000 kg/mρ = . Since the sculpture is completely 
submerged, submerged objectV V V= = . 

EXECUTE: L is constant, so air w

air w

f f
v v

= and the fundamental frequency when the sculpture is submerged is 

w
w air

air

vf f
v

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, with air 250.0 Hzf = . Fv

μ
=  so w w

air air

v F
v F

= . When the sculpture is in air, air aF w mg Vgρ= = = . 

When the sculpture is submerged in water, w a w( )F w B Vgρ ρ= − = − . w a w

air a

v
v

ρ ρ
ρ
−

=  and 

3

w 3

1000 kg/m(250.0 Hz) 1 198 Hz
2700 kg/m

f = − = . 

EVALUATE: We have neglected the buoyant force on the wire itself. 
15.79. IDENTIFY: Compute the wavelength from the length of the string. Use Eq.(15.1) to calculate the wave speed and 

then apply Eq.(15.13) to relate this to the tension. 
(a) SET UP: The tension F is related to the wave speed by /v F μ=  (Eq.(15.13)), so use the information given 
to calculate v. 

 

EXECUTE: / 2 Lλ =  
2 2(0.600 m) 1.20 mLλ = = =  

Figure 15.79  
(65.4 Hz)(1.20 m) 78.5 m/sv f λ= = =  

3/ 14.4 10  kg/0.600 m 0.024 kg/mm Lμ −= = × =  

Then 2 2(0.024 kg/m)(78.5 m/s) 148 N.F vμ= = =  

(b) SET UP: 2F vμ=  and v f λ=  give 2 2.F fμ λ=  
μ  is a property of the string so is constant. 
λ  is determined by the length of the string so stays constant. 

,μ  λ  constant implies 2 2/ constant,F f μλ= =  so 2 2
1 1 2 2/ /F f F f=  

EXECUTE: 
2 2

2
2 1

1

73.4 Hz(148 N) 186 N.
65.4 Hz

fF F
f

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

The percent change in F is 2 1

1

186 N 148 N 0.26 26%.
148 N

F F
F
− −

= = =  

EVALUATE: The wave speed and tension we calculated are similar in magnitude to values in the Examples. Since 
the frequency is proportional to ,F  a 26% increase in tension is required to produce a 13% increase in the 
frequency. 

15.80. IDENTIFY and SET UP: Consider the derivation of the speed of a longitudinal wave in Section 15.4. 
EXECUTE: (a) The quantity of interest is the change in force per fractional length change. The force constant k′  
is the change in force per length change, so the force change per fractional length change is ,k L′  the applied force 
at one end is ( )( )yF k L v v′=  and the longitudinal impulse when this force is applied for a time t is .yk Lt v v′  The 

change in longitudinal momentum is (( ) ) yvt m L v  and equating the expressions, canceling a factor of t and solving 

for 2 2  gives .v v L k m′=  

(b) (2.00 m) (1.50 N m) (0.250 kg) 4.90 m sv = =  
EVALUATE: A larger k′ corresponds to a stiffer spring and for a stiffer spring the wave speed is greater. 
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15.81. IDENTIFY: Carry out the analysis specified in the problem. 
SET UP: The kinetic energy of a very short segment xΔ is 21

2 ( ) yK m vΔ = Δ . /yv y t= ∂ ∂ . The work done by the 
tension is F times the increase in length of the segment. Let the potential energy be zero when the segment is 
unstretched. 

EXECUTE: (a) 
22

k

(1 2) 1 .
2

ymvK yu
x m t

μ
μ

ΔΔ ∂⎛ ⎞= = = ⎜ ⎟Δ Δ ∂⎝ ⎠
 

(b)  sin( ) and soy A kx tt ω ω∂ = −
∂

 2 2 2
k

1 sin ( ).
2

u A kx tμω ω= −  

(c) The piece has width y and height ,x x x
∂Δ Δ
∂

and so the length of the piece is 

1 2 1 22 2 2
2 1( ) 1 1

2
y y yx x x x
x x x

⎛ ⎞ ⎛ ⎞ ⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ + Δ = Δ + ≈ Δ +⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦
, where the relation given in the hint has been used. 

(d) 
2 21

2
p

1 ( / ) 1 .
2

x y x x yu F F
x x

⎡ ⎤Δ + ∂ ∂ − Δ ∂⎛ ⎞⎣ ⎦= = ⎜ ⎟Δ ∂⎝ ⎠
 

(e)  sin( ), y kA kx tx ω∂ = − −
∂

and so 2 2 2
p

1 sin ( )
2

u Fk A kx tω= − . 

(f )  Comparison with the result of part (c) with 2 2 2 2k v Fω ω μ= =  shows that for a sinusoidal wave k pu u= . 

(g) The graph is given in Figure 15.81. In this graph, k pand u u  coincide, as shown in part (f ) . At 0,y =  the string 

is stretched the most, and is moving the fastest, so k pand u u are maximized. At the extremes of y, the string is 

unstretched and is not moving, so k p and u u  are both at their minimum of zero. 

(h) 2 2 2 2 2
k p sin ( ) ( ) sin ( ) .Pu u Fk A kx t Fk v A kx t

v
ω ω ω+ = − = − =  

EVALUATE: The energy density travels with the wave, and the rate at which the energy is transported is the 
product of the density per unit length and the speed. 

 
Figure 15.81 

15.82. IDENTIFY: Apply 0yF =∑  to segments of the cable. The forces are the weight of the diver, the weight of the 
segment of the cable, the tension in the cable and the buoyant force on the segment of the cable and on the diver. 
SET UP: The buoyant force on an object of volume V that is completely submerged in water is waterB Vgρ= . 
EXECUTE: (a) The tension is the difference between the diver�s weight and the buoyant force, 

3 3 2
water( ) (120 kg (1000 kg m )(0.0800 m )(9.80 m s )) 392 N.F m V gρ= − = − =  

(b) The increase in tension will be the weight of the cable between the diver and the point at x, minus the buoyant 
force. This increase in tension is then 
( ) 23 2 2( ) (1.10 kg m (1000 kg m ) (1.00 10  m) )(9.80 m s ) (7.70 N m)x Ax g x xμ ρ π −− = − × = . The tension as a 

function of x is then ( ) (392 N) (7.70 N m) .F x x= +  
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(c) Denote the tension as 0( ) ,F x F ax= +  where 0 392 NF =  and 7.70 N/m.a = Then the speed of transverse 

waves as a function of x is 0( )dxv F axdt μ= = +  and the time t needed for a wave to reach the surface is found 

from 
0

.
μdxt dt dx

dx dt F ax
= = =

+∫ ∫ ∫  

Let the length of the cable be L, so ( ) 

0 0 0 0 0
0

22L Ldxt F ax F aL F
a aF ax

μ
μ μ= = + = + −

+∫ . 

2 1.10 kg m
( 392 N (7.70 N m)(100 m) 392 N) 3.98 s.

7.70 N m
t = + − =  

EVALUATE: If the weight of the cable and the buoyant force on the cable are neglected, then the tension would 

have the constant value calculated in part (a). Then 392 N 18.9 m/s
1.10 kg/m

Fv
μ

= = =  and 5.92 sLt
v

= = . The 

weight of the cable increases the tension along the cable and the time is reduced from this value. 
15.83. IDENTIFY: The tension in the rope will vary with radius r. 

SET UP: The tension at a distance r from the center must supply the force to keep the mass of the rope that is 
further out than r accelerating inward. The mass of this piece in ,L rm L

− and its center of mass moves in a circle of 

radius 2
L r+ . 

EXECUTE: 
2

2 2 2( ) ( ).
2 2

L r L r mT r m L r
L L

ωω− +⎡ ⎤ ⎡ ⎤= = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 The speed of propagation as a function of distance is 

2 2( )( ) ,
2

dr T r TLv r L r
dt m

ω
μ

= = = = −  where 0dr
dt >  has been chosen for a wave traveling from the center to 

the edge. Separating variables and integrating, the time t is 
 

2 2 0

2 .
L drt dt

ω L r
= =

−
∫ ∫  

The integral may be found in a table, or in Appendix B. The integral is done explicitly by letting 

2 2sin ,  cos  ,  cos ,r L θ dr L θ dθ L r L θ= = − =  so that 
2 2

2arcsin ,  and arcsin(1) .
2

dr r t
LL r

πθ
ω ω

= = = =
−

∫  

EVALUATE: An equivalent method for obtaining ( )T r  is to consider the net force on a piece of the rope with 
length dr and mass .dm drm L=  The tension must vary in such a way that 

2 2( ) ( ) ,  or ( ) .dTT r T r dr ω rdm mω L rdr
dr

− + = − = − This is integrated to obtained 2 2( ) ( 2 ) ,T r mω L r C= − +  where 

C is a constant of integration. The tension must vanish at ,r L= from which 2( 2)C mω L= and the previous result 
is obtained. 

15.84. IDENTIFY: Carry out the calculation specified in part (a). 

SET UP: SW SWcos sin   sin cosy ykA kx t, A kx tx tω ω ω∂ ∂= = −
∂ ∂

. 1
2sin cos sin 2θ θ θ= . 

EXECUTE: The instantaneous power is 

2 2
SW SW

1(sin cos )(sin cos ) sin(2 )sin(2 ).
4

P FA k kx kx t t FA k kx tω ω ω ω ω= =  

(b) The average value of P is proportional to the average value of sin(2 ),tω  and the average of the sine function is 
zero; av 0.P =  
(c) The graphs are given in Figure 15.84. The waveform is the solid line, and the power is the dashed line. At time 

0t = , 0y = and 0P = and the graphs coincide. 
(d) When the standing wave is at its maximum displacement at all points, all of the energy is potential, and is 
concentrated at the places where the slope is steepest (the nodes). When the standing wave has zero displacement, 
all of the energy is kinetic, concentrated where the particles are moving the fastest (the antinodes). Thus, the 
energy must be transferred from the nodes to the antinodes, and back again, twice in each cycle. Note that P  is 
greatest midway between adjacent nodes and antinodes, and that P vanishes at the nodes and antinodes. 
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EVALUATE: There is energy flow back and forth between the nodes, but there is no net flow of energy along the 
string. 

 
Figure 15.84 

15.85. IDENTIFY: For a string, 2n
n Ff L μ= . 

SET UP: For the fundamental, 1.n =  Solving for F gives 2 24F L fμ= . Note that 2rμ π ρ= , so 
3 2 3 3(0.203 10  m) (7800 kg/m ) 1.01 10  kg/mμ π − −= × = × . 

EXECUTE: (a) 3 2 2(1.01 10  kg/m)4(0.635 m) (247.0 Hz) 99.4 NF −= × =  

(b) To find the fractional change in the frequency we must take the ratio of to :f fΔ  1
2

Ff
L μ

=  and 

( )1 1
2 2

1 1 1 1 1
2 22 2 2

F Ff F F
L L L L Fμ μ μ μ

⎛ ⎞⎛ ⎞ Δ
Δ = Δ = Δ = Δ =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Now divide both sides by the original equation for f and cancel terms: 

1 1
22 1

21
2

F
L Ff F

f FF
L

μ

μ

Δ
Δ Δ

= = . 

(c) The coefficient of thermal expansion α is defined by 0l l TαΔ = Δ . Combining this with 
0

/
/
F AY
l l

=
Δ

gives 

 F Y A TαΔ = − Δ . ( )( )11 5 3 22.00 10  Pa 1.20 10 /C (0.203 10  m) (11 C) 3.4 NF π− −Δ = − × × ° × ° = . Then / 0.034F FΔ − , 

/ 0.017f fΔ = − and 4.2 HzfΔ = − . The pitch falls. This also explains the constant tuning in the string sections of 
symphonic orchestras. 
EVALUATE: An increase in temperature causes a decrease in tension of the string, and this lowers the frequency 
of each standing wave. 
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SOUND AND HEARING 

 16.1. IDENTIFY and SET UP: Eq.(15.1) gives the wavelength in terms of the frequency. Use Eq.(16.5) to relate the 
pressure and displacement amplitudes. 
EXECUTE: (a) / (344 m/s)/1000 Hz 0.344 mv fλ = = =  
(b) maxp BkA=  and Bk is constant gives max1 1 max2 2/ /p A p A=  

8 5max2
2 1 2

max1

30 Pa1.2 10  m 1.2 10  m
3.0 10  Pa

pA A
p

− −
−

⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠
 

(c) max 2 /p BkA BAπ λ= =  

max 2 constantp BAλ π= =  so max1 1 max2 2p pλ λ=  and 
2

max1
2 1 3

max2

3.0 10  Pa(0.344 m) 6.9 m
1.5 10  Pa

p
p

λ λ
−

−

⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

/ (344 m/s)/6.9 m 50 Hzf v λ= = =  
EVALUATE: The pressure amplitude and displacement amplitude are directly proportional. For the same 
displacement amplitude, the pressure amplitude decreases when the frequency decreases and the wavelength 
increases. 

 16.2. IDENTIFY: Apply maxp BkA= and solve for A. 

SET UP: 2k π
λ

= and ,v f λ=  so 2 fk
v
π

= and 2 .fBAp
v

π
=

  

EXECUTE: 
2

12max
9

(3.0 10  Pa) (1480 m s) 3.21 10  m.2 2 (2.2 10  Pa) (1000 Hz)
p vA πBf π

−
−×= = = ×

×
 

EVALUATE: Both v and B are larger, but B is larger by a much greater factor, so /v B  is a lot smaller and 
therefore A is a lot smaller. 

 16.3. IDENTIFY: Use Eq.(16.5) to relate the pressure and displacement amplitudes. 
SET UP: As stated in Example 16.1 the adiabatic bulk modulus for air is 51.42 10  Pa.B = ×  Use Eq.(15.1) to 
calculate λ  from f, and then 2 / .k π λ=  
EXECUTE: (a) 150 Hzf =  
Need to calculate k: /v fλ =  and 2 /k π λ=  so 2 / (2  rad)(150 Hz)/344 m/s 2.74 rad/m.k f vπ π= = =  Then 

3
max (1.42 10  Pa)(2.74 rad/m)(0.0200 10  m) 7.78 Pa.p BkA 5 −= = × × =  This is below the pain threshold of 30 Pa. 

(b) f is larger by a factor of 10 so 2 /k f vπ=  is larger by a factor of 10, and maxp BkA=  is larger by a factor of 
10. max 77.8 Pa,p =  above the pain threshold. 
(c) There is again an increase in f, k, and maxp  of a factor of 10, so max 778 Pa,p =  far above the pain threshold. 
EVALUATE: When f increases, λ  decreases so k increases and the pressure amplitude increases. 

 16.4. IDENTIFY: Apply max .p BkA=  2 2 ,fk
v

π π
λ

= =  so max
2 .fBAp

v
π

=
  

SET UP: 344 m/sv =  

EXECUTE: 3max
5 6

(344 m/s)(10.0 Pa) 3.86 10  Hz
2 2 (1.42 10  Pa)(1.00 10  m)
vpf

BAπ π −= = = ×
× ×

 

EVALUATE: Audible frequencies range from about 20 Hz to about 20,000 Hz, so this frequency is audible. 
 16.5. IDENTIFY: .v f λ=  Apply Eq.(16.7) for the waves in the liquid and Eq.(16.8) for the waves in the metal bar. 

SET UP: In part (b) the wave speed is 4

1.50 m
3.90 10  s

dv
t −= =

×
 

16



16-2 Chapter 16 

EXECUTE: (a) Using Eq.(16.7), 2 2(λ ) ,B v ρ f ρ= =  so [ ]2 3 10(8 m)(400 Hz) (1300 kg m ) 1.33 10  Pa.B = = ×  

(b) Using Eq.(16.8), 
22 2 4 3 10( ) (1.50 m) (3.90 10  s) (6400 kg m ) 9.47 10  Pa.Y v ρ L t ρ −⎡ ⎤= = = × = ×⎣ ⎦  

EVALUATE: In the liquid, 3200 m/sv = and in the metal, 3850 m/s.v =  Both these speeds are much greater than 
the speed of sound in air. 

 16.6. IDENTIFY: / .v d t=  Apply Eq.(16.7) to calculate B. 
SET UP: 3 33.3 10  kg/mρ = ×  
EXECUTE: (a) The time for the wave to travel to Caracas was 9 min  39 s 579 s=  and the speed was 

41.08 10  m/s.×  Similarly, the time for the wave to travel to Kevo was 680 s for a speed of 41.28 10  m/s,×  and the 
time to travel to Vienna was 767 s for a speed of 41.26 10  m/s.×  The average for these three measurements is 

41.21 10  m/s.×  Due to variations in density, or reflections (a subject addressed in later chapters), not all waves 
travel in straight lines with constant speeds. 
(b) From Eq.(16.7), 2 ,B v ρ=  and using the given value of 3 33.3 10  kg/mρ = ×  and the speeds found in part (a), 

the values for the bulk modulus are, respectively, 11 11 113.9 10  Pa,  5.4 10  Pa  and  5.2 10  Pa.× × ×  
EVALUATE: These are larger, by a factor of 2 or 3, than the largest values in Table 11.1. 

 16.7. IDENTIFY: d vt= for the sound waves in air an in water. 
SET UP: Use water 1482 m/sv =  at 20 C,°  as given in Table 16.1. In air, 344 m/s.v =  
EXECUTE: Since along the path to the diver the sound travels 1.2 m in air, the sound wave travels in water for the 
same time as the wave travels a distance 22.0 m 1.20 m 20.8 m− =  in air. The depth of the diver is 

water

air

1482 m/s(20.8 m) (20.8 m) 89.6 m.
344  m/s

v
v

= =  This is the depth of the diver; the distance from the horn is 90.8 m.  

EVALUATE: The time it takes the sound to travel from the horn to the person on shore is 1
22.0 m 0.0640 s.
344 m/s

t = =  

The time it takes the sound to travel from the horn to the diver is 

2
1.2 m 89.6 m 0.0035 s 0.0605 s 0.0640 s.

344 m/s 1482 m/s
t = + = + =  These times are indeed the same. For three figure 

accuracy the distance of the horn above the water can�t be neglected. 
 16.8. IDENTIFY: Apply Eq.(16.10) to each gas. 

SET UP: In each case, express M in units of kg/ mol.  For 2H ,  1.41.γ =  For He and Ar, 1.67.γ =  

EXECUTE: (a) ( )( )( )
( )

3
H2 3

1.41 8.3145 J mol K 300.15 K
1.32 10  m s

2.02 10  kg mol
v

−

⋅
= = ×

×
 

(b) ( )( )( )
( )

3
He 3

1.67 8.3145 J mol K 300.15 K
1.02 10  m s

4.00 10  kg mol
v

−

⋅
= = ×

×
 

(c) ( )( )( )
( )Ar 3

1.67 8.3145 J mol K 300.15 K
323 m s.

39.9 10  kg mol
v

−

⋅
= =

×
 

(d) Repeating the calculation of Example 16.5 at 300.15 KT =  gives air 348m s,v =  and so 

2H air He air3.80 , 2.94v v v v= =  and Ar air0.928 .v v=  
EVALUATE: v is larger for gases with smaller M. 

 16.9. IDENTIFY: .v f λ=  The relation of v to gas temperature is given by .RTv
M
γ

=  

SET UP: Let 22.0 C 295.15 K.T = =°  

EXECUTE: At 22.0 C,°  325 m/s 0.260 m 26.0 cm.
1250 Hz

v
f

λ = = = =  1 .v RT
f f M

γλ = =  1 ,R
f MT

λ γ
=  which is 

constant, so 1 2

1 2

.
T T
λ λ

=  
2 2

2
2 1

1

28.5 cm(295.15 K) 354.6 K 81.4 C.
26.0 cm

T T λ
λ

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

°  

EVALUATE: When T increases v increases and for fixed f, λ increases. Note that we did not need to know either 
γ or M for the gas. 
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16.10. IDENTIFY: .RTv
M
γ

=  Take the derivative of v with respect to T. In part (b) replace dv by vΔ and dT by TΔ in 

the expression derived in part (a). 

SET UP: 
1/ 2

1/ 21
2

( ) .d x x
dx

−=  In Eq.(16.10), T must be in kelvins. 20 C 293 K.=°  1 C 1 K.TΔ = =°  

EXECUTE: (a) 
1/ 2

1/ 21
2

1 .
2 2

dv R dT R RT vT
dT M dT M T M T

γ γ γ−= = = =  Rearranging gives 1 ,
2

dv dT
v T
=  the desired 

result. 

(b) 1 .
2

v T
v T
Δ Δ

=  344 m/s 1 K 0.59 m/s.
2 2 293 K
v Tv

T
Δ ⎛ ⎞⎛ ⎞Δ = = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE: Since 33.4 10T
T

−Δ
= × and v

v
Δ is one-half this, replacing dT by TΔ and dv by vΔ  is accurate. Using 

the result from part (a) is much simpler than calculating v for 20 C° and for 21 C°  and subtracting, and is not 
subject to round-off errors. 

16.11. IDENTIFY and SET UP: Use distance/speed.t =  Calculate the time it takes each sound wave to travel the 
80.0 mL =  length of the pipe. Use Eq.(16.8) to calculate the speed of sound in the brass rod. 

EXECUTE: wave in air: 80.0 m/(344 m/s) 0.2326 st = =  

wave in the metal: 
10

3

9.0 10  Pa 3235 m/s
8600 kg/m

Yv
ρ

×
= = =  

80.0 m 0.0247 s
3235 m/s

t = =  

The time interval between the two sounds is 0.2326 s 0.0247 s 0.208 stΔ = − =  
EVALUATE: The restoring forces that propagate the sound waves are much greater in solid brass than in air, so v 
is much larger in brass. 

16.12. IDENTIFY: Repeat the calculation of Example 16.5 at each temperature. 
SET UP: 27.0 C 300.15 K=°  and 13.0 C 260.15 K− =°  

EXECUTE: 3 3

(1.40)(8.3145 J/mol K)(300.15 K) (1.40)(8.3145 J/mol K)(260.15 K) 24 m/s
(28.8 10  kg/mol) (28.8 10  kg/mol)− −

⋅ ⋅
− =

× ×
 

EVALUATE: The speed is greater at the higher temperature. The difference in speeds corresponds to a 7% increase. 

16.13. IDENTIFY: For transverse waves, trans .Fv
μ

=  For longitudinal waves, long .Yv
ρ

=  

SET UP: The mass per unit length μ is related to the density (assumed uniform) and the cross-section area A by 
.μ Aρ=  

EXECUTE: long trans30v v= gives 30Y F
ρ μ
= and 900 .Υ F

ρ Αρ
=  Therefore, .

900
ΥF A =  

EVALUATE: Typical values of Y are on the order of 1110  Pa,  so the stress must be about 810  Pa.  If A is on the 
order of 2 6 21 mm 10  m ,−=  this requires a force of about 100 N. 

16.14. IDENTIFY: The intensity I is given in terms of the displacement amplitude by Eq.(16.12) and in terms of the 
pressure amplitude by Eq.(16.14). 2 .fω π=  Intensity is energy per second per unit area. 

SET UP: For part (a), 12 210  W/m .I −=  For part (b), 3 23.2 10  W/m .I −= ×  
EXECUTE: (a) 2 21

2 .I B Aρ ω=  
12 2

11

3 5

1 2 1 2(1 10  W/m ) 1.1 10  m.
2 (1000 Hz) (1.20 kg/m )(1.42 10  Pa)

IA
Bω πρ

−
−×

= = = ×
×

 
2
max .

2
pI

Bρ
=  

12 2 3 5 5 10
max 2 2(1 10  W/m ) (1.20 kg/m )(1.42 10  Pa) 2.9 10  Pa 2.8 10  atmp I Bρ − − −= = × × = × = ×  

(b) A is proportional to ,I  so 
3 2

11 7
12 2

3.2 10  W/m(1.1 10  m) 6.2 10  m.
1 10  W/m

A
−

− −
−

×
= × = ×

×
 maxp is also proportional to 

,I  so 
3 2

5 5
max 12 2

3.2 10  W/m(2.9 10  Pa) 1.6 Pa 1.6 10  atm.
1 10  W/m

p
−

− −
−

×
= × = = ×

×
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(c) 2 5 2area = (5.00 mm) 2.5 10  m .−= ×  Part (a): 12 2 5 2 17(1 10  W/m )(2.5 10  m ) 2.5 10  J/s.− − −× × = ×  

Part (b): 3 2 5 2 8(3.2 10  W/m )(2.5 10  m ) 8.0 10  J/s.− − −× × = ×  
EVALUATE: For faint sounds the displacement and pressure variation amplitudes are very small. Intensities for 
audible sounds vary over a very wide range. 

16.15. IDENTIFY: Apply Eq.(16.12) and solve for A. / ,v fλ =  with / .v B ρ=  

SET UP: 2 .fω π=  For air, 51.42 10  Pa.B = ×  
EXECUTE: (a) The amplitude is 

6 2
11

2 3 9 2

2 2(3.00 10  W m ) 9.44 10  m.
(1000 kg m )(2.18 10  Pa)(2 (3400 Hz))

ΙA
ρΒω π

−
−×

= = = ×
×

 

The wavelength is 
9 3(2.18 10  Pa) (1000 kg m )

0.434 m.
3400 Hz

B ρv
f f

λ
×

= = = =  

(b) Repeating the above with 51.42 10 PaB = ×  and the density of air gives 95.66 10  m and 0.100 m.A λ−= × =  
EVALUATE: (c) The amplitude is larger in air, by a factor of about 60. For a given frequency, the much less dense 
air molecules must have a larger amplitude to transfer the same amount of energy. 

16.16. IDENTIFY and SET UP: Use Eq.(16.7) to eliminate either v or B in 
2
max .

2
vpI

B
=  

EXECUTE: From Eq. (19.21), 2 .v B ρ=  Using Eq.(16.7) to eliminate ( ) 2 2
max max, 2 2 .v I B ρ p B p ρB= =  

Using Eq. (16.7) to eliminate B, 2 2 2
max max2( ) 2 .I vp v ρ p ρv= =  

EVALUATE: The equation in this form shows the dependence of I on the density of the material in which the 
wave propagates. 

16.17. IDENTIFY and SET UP: Apply Eqs.(16.5), (16.11) and (16.15). 
EXECUTE: (a) 2 (2  rad)(150 Hz) 942.5 rad/sfω π π= = =  

2 2 942.5 rad/s 2.74 rad/m
344 m/s

fk
v v

π π ω
λ

= = = = =  

51.42 10  PaB = ×  (Example 16.1) 
Then 5 6

max (1.42 10  Pa)(2.74 rad/m)(5.00 10  m) 1.95 Pa.p BkA −= = × × =  

(b) Eq.(16.11): 21
2I BkAω=  

5 6 2 3 21
2 (942.5 rad/s)(1.42 10  Pa)(27.4 rad/m)(5.00 10  m) 4.58 10  W/m .I − −= × × = ×  

(c) Eq.(16.15): 0(10 dB)log( / ),I Iβ =  with 12 2
0 1 10  W/m .I −= ×  

( )3 2 12 2(10 dB)log (4.58 10  W/m ) /(1 10  W/m ) 96.6 dB.β − −= × × =  

EVALUATE: Even though the displacement amplitude is very small, this is a very intense sound. Compare the 
sound intensity level to the values in Table 16.2. 

16.18. IDENTIFY: Apply 0(10 dB)log( / ).I Iβ =  In part (b), use Eq.(16.14) to calculate I from the information that is 
given. 
SET UP: 12 2

0 10  W/m .I −=  From Table 16.1 the speed of sound in air at 20.0 C° is 344 m/s.  The density of air at 

that temperature is 31.20kg m .  

EXECUTE: (a) 
2

12 2

0.500 W/m (10 dB) log 57 dB.
10  W/m

β μ
−

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

(b) 
2 2 2

5 2max
3

(0.150 N m ) 2.73 10  W m .
2 2(1.20 kg m )(344 m s)
pI
ρv

−= = = ×  Using this in Equation (16.15), 

5 2

12 2

2.73 10  W m(10 dB) log 74.4 dB.
10  W m

β
−

−

×
= =  

EVALUATE: As expected, the sound intensity is larger for the jack hammer. 
16.19. IDENTIFY: Use Eq.(16.13) to relate I and max.p  0(10 dB)log( / ).I Iβ =  Eq.(16.4) says the pressure amplitude and 

displacement amplitude are related by max
2 .fp BkA B A

v
π⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 

SET UP: At 20 C° the bulk modulus for air is 51.42 10  Pa× and 344 m/s.v =  12 2
0 1 10  W/m .I −= ×  
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EXECUTE: (a) 
2 5 2

12 2max
5

(344 m/s)(6.0 10  Pa) 4.4 10  W/m
2 2(1.42 10  Pa)

vpI
B

−
−×

= = = ×
×

 

(b) 
12 2

12 2

4.4 10  W/m(10 dB)log 6.4 dB
1 10  W/m

β
−

−

⎛ ⎞×
= =⎜ ⎟×⎝ ⎠

 

(c) 
5

11max
5

(344 m/s)(6.0 10  Pa) 5.8 10  m
2 2 (400 Hz)(1.42 10  Pa)
vpA

fBπ π

−
−×

= = = ×
×

 

EVALUATE: This is a very faint sound and the displacement and pressure amplitudes are very small. Note that the 
displacement amplitude depends on the frequency but the pressure amplitude does not. 

16.20. IDENTIFY and SET UP: Apply the relation 2 1 2 1(10 dB)log( / )I Iβ β− =  that is derived in Example 16.10. 

EXECUTE: (a) ( )4(10 dB)log 6.0 dBI
IβΔ = =  

(b) The total number of crying babies must be multiplied by four, for an increase of 12 kids. 
EVALUATE: For 2 1,I Iα=  where α is some factor, the increase in sound intensity level is (10 dB)log .β αΔ =  
For 4,α =  6.0 dB.βΔ =  

16.21. IDENTIFY and SET UP: Let 1 refer to the mother and 2 to the father. Use the result derived in Example 16.11 for 
the difference in sound intensity level for the two sounds. Relate intensity to distance from the source using 
Eq.(15.26). 
EXECUTE: From Example 16.11, 2 1 2 1(10 dB)log( / )I Iβ β− =  

Eq.(15.26): 2 2
1 2 2 1/ /I I r r=  or 2 2

2 1 1 2/ /I I r r=  
2

2 1 2 1 1 2 1 2(10 dB)log( / ) (10 dB)log( / ) (20 dB)log( / )I I r r r rβ β βΔ = − = = =  
(20 dB)log(1.50 m/0.30 m) 14.0 dB.βΔ = =  

EVALUATE: The father is 5 times closer so the intensity at his location is 25 times greater. 

16.22. IDENTIFY: 
0

(10 dB)log .I
I

β =  2
2 1

1

(10 dB)log .I
I

β β− =  Solve for 2

1

.I
I

 

SET UP: If log y x= then 10 .xy =  Let 2 70 dBβ = and 1 95 dB.β =  

EXECUTE: 2

1

70.0 dB 95.0 dB 25.0 dB (10 dB)log .I
I

− = − =  2

1

log 2.5I
I
= −  and 2.5 32

1

10 3.2 10 .I
I

− −= = ×  

EVALUATE: 2 1I I<  when 2 1.β β<  
16.23. (a) IDENTIFY and SET UP: From Example 16.11 2 1(10 dB)log( / )I IβΔ =  

Set 13.0 dBβΔ =  and solve for 2 1/ .I I  
EXECUTE: 2 113.0 dB 10 dBlog( / )I I=  so 2 11.3 log( / )I I=  and 2 1/ 20.0.I I =  
(b) EVALUATE: According to the equation in part (a) the difference in two sound intensity levels is determined 
by the ratio of the sound intensities. So you don�t need to know 1,I  just the ratio 2 1/ .I I  

16.24. IDENTIFY: For an open pipe, 1 .
2
vf
L

=  For a stopped pipe, 1 .
4
vf
L

=  .v f λ=  

SET UP: 344 m/s.v =  For a pipe, there must be a displacement node at a closed end and an antinode at the 
open end. 

EXECUTE: (a) 
1

344 m/s 0.290 m.
2 2(594 Hz)
vL
f

= = =  

(b) There is a node at one end, an antinode at the other end and no other nodes or antinodes in between, so 
1

4
Lλ

= and 1 4 4(0.290 m) 1.16 m.Lλ = = =  

(c) 1
1 1 (594 Hz) 297 Hz.

4 2 2 2
v vf
L L

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

EVALUATE: We could also calculate 1f for the stopped pipe as 1
1

344 m/s 297 Hz,
1.16 m

vf
λ

= = =  which agrees with 

our result in part (a). 
16.25. IDENTIFY and SET UP: An open end is a displacement antinode and a closed end is a displacement node. Sketch 

the standing wave pattern and use the sketch to relate the node-to-antinode distance to the length of the pipe. A 
displacement node is a pressure antinode and a displacement antinode is a pressure node. 
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EXECUTE: (a) The placement of the displacement nodes and antinodes along the pipe is as sketched in 
Figure 16.25a. The open ends are displacement antinodes. 

 
Figure 16.25a 

Location of the displacement nodes (N) measured from the left end: 
fundamental 0.60 m 
1st overtone 0.30 m, 0.90 m 
2nd overtone 0.20 m, 0.60 m, 1.00 m 

Location of the pressure nodes (displacement antinodes (A)) measured from the left end: 
fundamental 0, 1.20 m 
1st overtone 0, 0.60 m, 1.20 m 
2nd overtone 0, 0.40 m, 0.80 m, 1.20 m 
(b) The open end is a displacement antinode and the closed end is a displacement node. The placement of the 
displacement nodes and antinodes along the pipe is sketched in Figure 16.25b. 

 
Figure 16.25b 

Location of the displacement nodes (N) measured from the closed end: 
fundamental 0 
1st overtone 0, 0.80 m 
2nd overtone 0, 0.48 m, 0.96 m 

Location of the pressure nodes (displacement antinodes (A)) measured from the closed end: 
fundamental 1.20 m 
1st overtone 0.40 m, 1.20 m 
2nd overtone 0.24 m, 0.72 m, 1.20 m 
EVALUATE: The node-to-node or antinode-to-antinode distance is / 2.λ  For the higher overtones the frequency 
is higher and the wavelength is smaller. 

16.26. IDENTIFY: A pipe closed at one end is a stopped pipe. Apply Eqs.(16.18) and (16.22) to find the frequencies and 
Eqs.(16.19) and (16.23) to find the highest audible harmonic in each case. 
SET UP: For the open pipe 1,  2, and 3n = for the first three harmonics and for the stopped pipe 1,  3, and 5.n =  

EXECUTE: (a) 1 2
vf
L

=  and 1.nf nf=  

1
344 m/s 382 Hz.

2(0.450 m)
f = =  2 764 Hz,f =  3 1146 Hz,f =  4 1528 Hzf =  

(b) 1 4
vf
L

=  and 1,nf nf=  1,n =  3, 5, �. 

1
344 m/s 191 Hz.

4(0.450 m)
f = =  3 573 Hz,f =  5 955 Hz,f =  7 1337 Hzf =  

(c) open pipe: 
1

20,000 Hz 52.
382 Hz

fn
f

= = =  closed pipe: 
1

20,000 Hz 104.
191 Hz

f
f
= =  But only odd n are present, so 

103.n =  
EVALUATE: For an open pipe all harmonics are present. For a stopped pipe only odd harmonics are present. For 
pipes of a given length, 1f for a stopped pipe is half what it is for an open pipe. 
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16.27. IDENTIFY: For a stopped pipe, the standing wave frequencies are given by Eq.(16.22). 
SET UP: The first three standing wave frequencies correspond to 1,n =  3 and 5. 

EXECUTE: 1 3 1 5 1
(344 m/s) 506 Hz,  3 1517 Hz,  5 2529 Hz.4(0.17 m)f f f f f= = = = = =  

EVALUATE: All three of these frequencies are in the audible range, which is about 20 Hz to 20,000 Hz. 
16.28. IDENTIFY: Model the auditory canal as a stopped pipe of length 2.40 cm.L =  For a stopped pipe, 1 4 ,Lλ =  

1 4
vf
L

=  and 1,  1,nf nf n= =  3, 5, �. 

SET UP: Take the highest audible frequency to be 20,000 Hz. 344 m/s.v =  

EXECUTE: (a) 3
1

344 m/s 3.58 10  Hz.
4 4(0.0240 m)
vf
L

= = = ×  1 4 4(0.0240 m) 0.0960 m.Lλ = = =  This frequency is 

audible. 

(b) For 20,000 Hz,f =  
1

20,000 Hz 5.6;
3580 Hz

f
f
= =  the highest harmonic which is audible is for 5n =  (fifth harmonic). 

4
5 15 1.79 10  Hz.f f= = ×  

EVALUATE: For a stopped pipe there are no even harmonics. 
16.29. IDENTIFY: For either type of pipe, stopped or open, the fundamental frequency is proportional to the wave speed 

v. The wave speed is given in turn by Eq.(16.10). 
SET UP: For He, 5/3γ = and for air, 7 /5.γ =  

EXECUTE: (a) The fundamental frequency is proportional to the square root of the ratio ,M
γ  so 

He air
He air

air He

(5 3) 28.8(262 Hz) 767 Hz.
(7 5) 4.00

Mf f
M

γ
γ

= ⋅ = ⋅ =  

(b) No. In either case the frequency is proportional to the speed of sound in the gas. 
EVALUATE: The frequency is much higher for helium, since the rms speed is greater for helium. 

16.30. IDENTIFY: There must be a node at each end of the pipe. For the fundamental there are no additional nodes and 
each successive overtone has one additional node. .v f λ=  
SET UP: 344 m/s.v =  The node to node distance is / 2.λ  

EXECUTE: (a) 1

2
Lλ

=  so 1 2 .Lλ =  Each successive overtone adds an additional / 2λ along the pipe, so 

2
nn Lλ⎛ ⎞ =⎜ ⎟

⎝ ⎠
 and 2 ,n

L
n

λ =  where 1,n =  2, 3, �. .
2n

n

v nvf
Lλ

= =  

(b) 1
344 m/s 68.8 Hz.

2 2(2.50 m)
vf
L

= = =  2 12 138 Hz.f f= =  3 13 206 Hz.f f= =  All three of these frequencies are 

audible. 
EVALUATE: A pipe of length L closed at both ends has the same standing wave wavelengths, frequencies and 
nodal patterns as for a string of length L that is fixed at both ends. 

16.31. IDENTIFY and SET UP: Use the standing wave pattern to relate the wavelength of the standing wave to the length 
of the air column and then use Eq.(15.1) to calculate f. There is a displacement antinode at the top (open) end of 
the air column and a node at the bottom (closed) end, as shown in Figure 16.31 
EXECUTE: (a) 

 

/ 4 Lλ =  
4 4(0.140 m) 0.560 mLλ = = =  

344 m/s 614 Hz
0.560 m

vf
λ

= = =  

Figure 16.31  
(b) Now the length L of the air column becomes 1

2 (0.140 m) 0.070 m=  and 4 0.280 m.Lλ = =  
344 m/s 1230 Hz 
0.280 m

vf
λ

= = =  

EVALUATE: Smaller L means smaller λ  which in turn corresponds to larger f. 
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16.32. IDENTIFY: The wire will vibrate in its second overtone with frequency wire
3f when wire pipe

3 1 .f f=  For a stopped 

pipe, pipe
1

pipe

.
4

vf
L

=  The first overtone standing wave frequency for a wire fixed at both ends is wire wire
3

wire

3 .
2
vf
L

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

wire / .v F μ=  

SET UP: The wire has 
3

3

wire

7.25 10  kg 8.53 10  kg/m.
0.850 m

m
L

μ
−

−×
= = = ×  The speed of sound in air is 344 m/s.v =  

EXECUTE: wire 3

4110 N 694 m/s.
8.53 10  kg/m

v −= =
×

 wire pipe
3 1f f= gives wire

wire pipe

3 .
2 4
v v
L L

=  

wire
pipe

wire

2 2(0.850 m)(344 m/s) 0.0702 m 7.02 cm.
12 12(694 m/s)

L vL
v

= = = =  

EVALUATE: The fundamental for the pipe has the same frequency as the third harmonic of the wire. But the wave 
speeds for the two objects are different and the two standing waves have different wavelengths. 

16.33.  

 
Figure 16.33 

(a) IDENTIFY and SET UP: Path difference from points A and B to point Q is 3.00 m 1.00 m 2.00 m,− =  as 
shown in Figure 16.33. Constructive interference implies path difference ,nλ=  1,n =  2, 3, � 
EXECUTE: 2.00 m nλ=  so 2.00 m / nλ =  

(344 m/s) (172 Hz,)
2.00 m 2.00 m

v nv nf n
λ

= = = =  1,n =  2, 3, � 

The lowest frequency for which constructive interference occurs is 172 Hz. 
(b) IDENTIFY and SET UP: Destructive interference implies path difference ( / 2) ,n λ=  1,n =  3, 5, � 
EXECUTE: 2.00 m ( / 2)n λ=  so 4.00 m / nλ =  

(344 m/s) (86 Hz),
4.00 m (4.00 m)

v nv nf n
λ

= = = =  1,n =  3, 5, �. 

The lowest frequency for which destructive interference occurs is 86 Hz. 
EVALUATE: As the frequency is slowly increased, the intensity at Q will fluctuate, as the interference changes 
between destructive and constructive. 

16.34. IDENTIFY: Constructive interference occurs when the difference of the distances of each source from point P is 
an integer number of wavelengths. The interference is destructive when this difference of path lengths is a half 
integer number of wavelengths. 
SET UP: The wavelength is ( )λ 344 m s (206 Hz) 1.67 m.v f= = =  Since P is between the speakers, x must be 
in the range 0 to L, where 2.00 mL = is the distance between the speakers. 
EXECUTE: The difference in path length is ( ) 2 ,l L x x L xΔ = − − = −  or ( ) / 2.x L l= − Δ  For destructive 

interference, ( (1 2))λ,l nΔ = +  and for constructive interference, .l nλΔ =  
(a) Destructive interference: 0n =  gives 0.835 mlΔ =  and 0.58 m.x =  1n =  gives 0.835 mlΔ = −  and 1.42 m.x =  
No other values of n place P between the speakers. 
(b) Constructive interference: 0n =  gives 0lΔ = and 1.00 m.x =  1n =  gives 1.67 mlΔ =  and 0.17 m.x =  1n = −  
gives 1.67 mlΔ = − and 1.83 m.x =  No other values of n place P between the speakers. 
(c) Treating the speakers as point sources is a poor approximation for these dimensions, and sound reaches these 
points after reflecting from the walls, ceiling, and floor. 
EVALUATE: Points of constructive interference are a distance / 2λ apart, and the same is true for the points of 
destructive interference. 

16.35. IDENTIFY: For constructive interference the path difference is an integer number of wavelengths and for 
destructive interference the path difference is a half-integer number of wavelengths. 
SET UP: λ / (344 m/s) /(688 Hz) 0.500 mv f= = =  
EXECUTE: To move from constructive interference to destructive interference, the path difference must change 
by λ/2.  If you move a distance x toward speaker B, the distance to B gets shorter by x and the distance to A gets 
longer by x so the path difference changes by 2x. 2 λ/2x =  and λ / 4 0.125 m.x = =  
EVALUATE: If you walk an additional distance of 0.125 m farther, the interference again becomes constructive. 
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16.36. IDENTIFY: Destructive interference occurs when the path difference is a half integer number of wavelengths. 
SET UP: ( ) ( )344 m s, so λ 344 m/s 172 Hz 2.00 m.v v f= = = =  If 8.00 mAr =  and Br  are the distances of the 

person from each speaker, the condition for destructive interference is ( )1
2 λ,B Ar r n− = +  where n is any integer. 

EXECUTE: Requiring ( )1
2 λ 0B Ar r n= + + >  gives ( ) ( )1

2 8.00 m 2.00 m 4,An r λ+ > − = − = −  so the smallest 

value of Br  occurs when 4,n = − and the closest distance to B is ( )( )1
28.00 m 4 2.00 m 1.00 m.Br = + − + =  

EVALUATE: For 1.00 m,Br =  the path difference is 7.00 m.A Br r− =  This is 3.5 .λ  
16.37. IDENTIFY: Compare the path difference to the wavelength. 

SET UP: ( ) ( )344 m s 860 Hz 0.400 mv fλ = = =  

EXECUTE: The path difference is 13.4 m 12.0 m 1.4 m.− =  path difference 3.5.
λ

=  The path difference is a half-

integer number of wavelengths, so the interference is destructive. 
EVALUATE: The interference is destructive at any point where the path difference is a half-integer number of 
wavelengths. 

16.38. IDENTIFY: beat 1 2 .f f f= −  .v f λ=  

SET UP: 344 m/s,v =  Let 1 6.50 cmλ = and 2 6.52 cm.λ =  2 1λ λ>  so 1 2.f f>  

EXECUTE: 
2

2 1
1 2 2 2

1 2 1 2

1 1 ( ) (344 m/s)(0.02 10  m) 16 Hz.
(6.50 10  m)(6.52 10  m)

vf f v λ λ
λ λ λ λ

−

− −

⎛ ⎞ − ×
− = − = = =⎜ ⎟ × ×⎝ ⎠

 There are 16 beats per 

second. 
EVALUATE: We could have calculated 1f and 2f and subtracted, but doing it this way we would have to be 
careful to retain enough figures in intermediate calculations to avoid round-off errors. 

16.39. IDENTIFY: beat .a bf f f= −  For a stopped pipe, 1 .
4
vf
L

=  

SET UP: 344 m/s.v =  Let 1.14 maL = and 1.16 m.bL =  b aL L>  so 1 1 .a bf f>  

EXECUTE: 
2

1 1
1 1 ( ) (344 m/s)(2.00 10  m) 1.3 Hz.

4 4 4(1.14 m)(1.16 m)
b a

a b
a b a b

v v L Lf f
L L L L

−⎛ ⎞ − ×
− = − = = =⎜ ⎟

⎝ ⎠
 There are 1.3 beats per 

second. 
EVALUATE: Increasing the length of the pipe increases the wavelength of the fundamental and decreases the 
frequency. 

16.40. IDENTIFY: beat 0 .f f f= −  .
2
vf
L

=  Changing the tension changes the wave speed and this alters the frequency. 

SET UP: FLv
m

= so 1 ,
2

Ff
mL

=  where 0 .F F F= + Δ  Let 0
0

1 .
2

Ff
mL

=  We can assume that 0/F FΔ  is very 

small. Increasing the tension increases the frequency, so beat 0.f f f= −  

EXECUTE: (a) ( )
1/ 2

0
beat 0 0 0

0

1 1 1 1 .
22

F Ff f f F F F
mL FmL

⎛ ⎞⎡ ⎤Δ⎜ ⎟= − = + Δ − = + −⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
 

1/ 2

0 0

1 1
2

F F
F F

⎡ ⎤Δ Δ
+ = +⎢ ⎥

⎣ ⎦
when 

0/F FΔ is small. This gives that beat 0
0

.
2

Ff f
F

⎛ ⎞Δ
= ⎜ ⎟

⎝ ⎠
 

(b) beat

0 0

2 2(1.5 Hz) 0.68%.
440 Hz

F f
F f
Δ

= = =  

EVALUATE: The fractional change in frequency is one-half the fractional change in tension. 

16.41. IDENTIFY: Apply the Doppler shift equation L
L S

S

.v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 

SET UP: The positive direction is from listener to source. S 1200 Hz.f =  L 1240 Hz.f =  

EXECUTE: L 0.v =  S 25.0 m/s.v = −  L S
S

vf f
v v
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 gives S L

S L

( 25 m/s)(1240 Hz) 780 m/s.
1200 Hz 1240 Hz

v fv
f f

−
= = =

− −
 

EVALUATE: L Sf f>  since the source is approaching the listener. 
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16.42. IDENTIFY: Follow the steps of Example 16.19. 
SET UP: In the first step, S 20.0 m/sv = + instead of 30.0 m/s.−  In the second step, L 20.0 m/sv = −  instead of 

30.0 m/s.+  

EXECUTE: W S
S

340 m/s (300 Hz) 283 Hz.
340 m/s 20.0 m/s

vf f
v v
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠

 Then 

L
L W

340 m/s 20.0 m/s (283 Hz) 266 Hz.
340 m/s

v vf f
v
+ −⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

EVALUATE: When the car is moving toward the reflecting surface, the received frequency back at the source is 
higher than the emitted frequency. When the car is moving away from the reflecting surface, as is the case here, the 
received frequency back at the source is lower than the emitted frequency. 

16.43. IDENTIFY: Apply the Doppler shift equation L
L S

S

.v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 

SET UP: The positive direction is from listener to source. S 392 Hz.f =  

(a) S 0.v =  L 15.0 m/s.v = −  L
L S

S

344 m/s 15.0 m/s (392 Hz) 375 Hz
344 m/s

v vf f
v v

⎛ ⎞+ −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠
 

(b) S 35.0 m/s.v = +  L 15.0 m/s.v = +  L
L S

S

344 m/s 15.0 m/s (392 Hz) 371 Hz
344 m/s 35.0 m/s

v vf f
v v

⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

(c) beat 1 2 4 Hzf f f= − =  

EVALUATE: The distance between whistle A and the listener is increasing, and for whistle A L S.f f<  The 
distance between whistle B and the listener is also increasing, and for whistle B L S.f f<  

16.44. IDENTIFY and SET UP: Apply Eqs.(16.27) and (16.28) for the wavelengths in front of and behind the source. 

Then / .f v λ=  When the source is at rest 
S

344 m/s 0.860 m.
400 Hz

v
f

λ = = =  

EXECUTE: (a) Eq.(16.27): S

S

344 m/s 25.0 m/s 0.798 m
400 Hz

v v
f

λ − −
= = =  

(b) Eq.(16.28): S

S

344 m/s 25.0 m/s 0.922 m
400 Hz

v v
f

λ + +
= = =  

(c) L /f v λ=  (since L 0),v =  so L (344 m/s)/0.798 m 431 Hzf = =  

(d) L / (344 m/s)/0.922 m 373 Hzf v λ= = =  

EVALUATE: In front of the source (source moving toward listener) the wavelength is decreased and the frequency 
is increased. Behind the source (source moving away from listener) the wavelength is increased and the frequency 
is decreased. 

16.45. IDENTIFY: The distance between crests is .λ  In front of the source S

S

v v
f

λ −
=  and behind the source S

S

.v v
f

λ +
=  

S 1/ .f T=  

SET UP: 1.6 s.T =  0.32 m/s.v =  The crest to crest distance is the wavelength, so 0.12 m.λ =  

EXECUTE: (a) S 1/ 0.625 Hz.f T= =  S

S

v v
f

λ −
=  gives S S 0.32 m/s (0.12 m)(0.625 Hz) 0.25 m/s.v v fλ= − = − =  

(b) S

S

0.32 m/s 0.25 m/s 0.91 m
0.625 Hz

v v
f

λ + +
= = =  

EVALUATE: If the duck was held at rest but still paddled its feet, it would produce waves of wavelength 
0.32 m/s 0.51 m.
0.625 Hz

λ = =  In front of the duck the wavelength is decreased and behind the duck the wavelength is 

increased. The speed of the duck is 78% of the wave speed, so the Doppler effects are large. 
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16.46. IDENTIFY: Apply L
L S

S

.v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 

SET UP: S 1000 Hz.f =  The positive direction is from the listener to the source. 344 m/s.v =  

(a) S (344 m/s) / 2 172 m/s,v = − = −  L 0.v =  L
L S

S

344 m/s (1000 Hz) 2000 Hz
344 m/s 172 m/s

v vf f
v v

⎛ ⎞+ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ −⎝ ⎠⎝ ⎠
 

(b) S 0,v =  L 172 m/s.v = +  L
L S

S

344 m/s 172 m/s (1000 Hz) 1500 Hz
344 m/s

v vf f
v v

⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠
 

EVALUATE: (c) The answer in (b) is much less than the answer in (a). It is the velocity of the source and listener 
relative to the air that determines the effect, not the relative velocity of the source and listener relative to each other. 

16.47. IDENTIFY: Apply L
L S

S

.v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 

SET UP: The positive direction is from the motorcycle toward the car. The car is stationary, so S 0.v =  

EXECUTE: ( )L
L S L S

S

 1 ,v vf f v v f
v v
+

= = +
+

 which gives ( )( )L
L

S

490 Hz1 344 m s 1 19.8 m/s.520 Hz
fv v
f

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
 

You must be traveling at 19.8 m/s. 
EVALUATE: L 0v < means that the listener is moving away from the source. 

16.48. IDENTIFY: Apply the Doppler effect formula, Eq.(16.29). 
(a) SET UP: The positive direction is from the listener toward the source, as shown in Figure 16.48a. 

 
Figure 16.48a 

EXECUTE: L
L S

S

344 m/s 18.0 m/s (262 Hz) 302 Hz
344 m/s 30.0 m/s

v vf f
v v

⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ −⎝ ⎠⎝ ⎠
 

EVALUATE: Listener and source are approaching and L S.f f>  
(b) SET UP: See Figure 16.48b. 

 
Figure 16.48b 

EXECUTE: L
L S

S

344 m/s 18.0 m/s (262 Hz) 228 Hz
344 m/s 30.0 m/s

v vf f
v v

⎛ ⎞+ −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

EVALUATE: Listener and source are moving away from each other and L S.f f<  
16.49. IDENTIFY: The radar beam consists of electromagnetic waves and Eq.(16.30) applies. Apply the Doppler formula 

twice, once with the storm as a receiver and then again with the storm as a source. 
SET UP: 83.00 10  m/s.c = ×  When the source and receiver are moving toward each other, as is the case here, then 
v is negative. 

EXECUTE: Let f ′ be the frequency received by the storm; S.
c v

f f
c v
+

′ =
−

 Then f ′  serves as the source 

frequency when the waves are reflected and R S S.
c v c v c v

f f f
c v c v c v

⎛ ⎞ ⎛ ⎞+ + +
⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠

 

6
R S S S 8

2 2(20.1 m/s)1 (200.0 10  Hz) 26.8 Hz
3.00 10  m/s 20.1 m/s

c v v
f f f f f

c v c v
⎛ ⎞ ⎛ ⎞+ ⎡ ⎤Δ = − = − = = × =⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟− − × −⎣ ⎦⎝ ⎠ ⎝ ⎠
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EVALUATE: Since ,v c!  in the expression S

2 v
f f

c v
⎛ ⎞

Δ = ⎜ ⎟⎜ ⎟−⎝ ⎠
 it is a very good approximation to replace c v−  

by c and then 
S

2 .f v
f c
Δ

=  v
c

is very small, so 
S

f
f
Δ  is very small. Since the storm is approaching the station the final 

received frequency is larger than the original transmitted frequency. 
16.50. IDENTIFY: Apply Eq.(16.30). The source is moving away, so v is positive. 

SET UP: 83.00 10  m/s.c = ×  350.0 10  m/s.v = + ×  

EXECUTE: 
8 3

14 14
R S 8 3

3.00 10  m/s 50.0 10  m/s (3.330 10  Hz) 3.329 10  Hz
3.00 10  m/s 50.0 10  m/s

c vf f
c v
− × − ×

= = × = ×
+ × + ×

 

EVALUATE: R Sf f< since the source is moving away. The difference between Rf and Sf  is very small since 
.v c!  

16.51. IDENTIFY: Apply Eq.(16.30). 
SET UP: Require R S1.100 .f f=  Since R Sf f> the star would be moving toward us and 0,v <  so .v v= −  

83.00 10  m/s.c = ×  

EXECUTE: R S.
c v

f f
c v
+

=
−

 R S1.100f f=  gives 2(1.100) .
c v
c v
+

=
−

 Solving for v  gives 

2
7

2

(1.100) 1
0.0950 2.85 10  m/s.

1 (1.100)
c

v c
⎡ ⎤−⎣ ⎦= = = ×
+

 

EVALUATE: 9.5%.v
c
=  R S

S S

10.0%.f f f
f f
Δ −

= =  v
c

 and 
S

f
f
Δ  are approximately equal. 

16.52. IDENTIFY: Apply Eq.(16.31). 
SET UP: The Mach number is the value of S / ,v v  where Sv  is the speed of the shuttle and v is the speed of sound 
at the altitude of the shuttle. 

EXECUTE: (a) 
S

sin sin58.0 0.848.v
v

α= = =°  The Mach number is S 1 1.18.
0.848

v
v
= =  

(b) S
331 m/s 390 m/s

sin sin58.0
vv
α

= = =
°

 

(c) S 390 m/s 1.13.
344 m/s

v
v
= =  The Mach number would be 1.13. 

S

344 m/ssin
390 m/s

v
v

α = =  and 61.9α = °  

EVALUATE: The smaller the Mach number, the larger the angle of the shock-wave cone. 
16.53. IDENTIFY: Apply Eq.(16.31) to calculate .α  Use the method of Example 16.20 to calculate t. 

SET UP: Mach 1.70 means S / 1.70.v v =  
EXECUTE: (a) In Eq.(16.31), S 1 1.70 0.588 and v v = = α arcsin(0.588) 36.0 .= = °  

(b) As in Example 16.20, ( )950 m
2.23 s.

(1.70)(344 m s)( tan(36.0 ))
t = =

°
 

EVALUATE: The angle α decreases when the speed Sv of the plane increases. 
16.54. IDENTIFY: The displacement ( , )y x t is given in Eq.(16.1) and the pressure variation is given in Eq.(16.4). The 

pressure variation is related to the displacement by Eq.(16.3). 
SET UP: 2 /k π λ=  
EXECUTE: (a) Mathematically, the waves given by Eq.(16.1) and Eq.(16.4) are out of phase. Physically, at a 
displacement node, the air is most compressed or rarefied on either side of the node, and the pressure gradient is 
zero. Thus, displacement nodes are pressure antinodes. 
(b) The graphs have the same form as in Figure 16.3 in the textbook. 

(c) ( , )( , ) .y x tp x t B
x

∂
= −

∂
 When ( , )y x t versus x is a straight line with positive slope, ( , )p x t is constant and 

negative. When ( , )y x t versus x is a straight line with negative slope, ( , )p x t is constant and positive. The graph of 

( ,0)p x is given in Figure 16.54. The slope of the straightline segments for ( ,0)y x is 41.6 10 ,−×  so for the wave in 

Figure 16.42 in the textbook, 4
max-non (1.6 10 ) .p B−= ×  The sinusoidal wave has amplitude 

4
max (2.5 10 ) .p BkA B−= = ×  The difference in the pressure amplitudes is because the two ( ,0)y x functions have 

different slopes. 
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EVALUATE: (d) ( , )p x t has its largest magnitude where ( , )y x t has the greatest slope. This is where ( , ) 0y x t = for 
a sinusoidal wave but it is not true in general. 

 
Figure 16.54 

16.55. IDENTIFY: The sound intensity level is 0(10 dB)log( / ),I Iβ =  so the same sound intensity level β means the 
same intensity I. The intensity is related to pressure amplitude by Eq.(16.13) and to the displacement amplitude by 
Eq.(16.12). 
SET UP: 344 m/s.v =  2 .fω π=  Each octave higher corresponds to a doubling of frequency, so the note sung by 
the bass has frequency (932 Hz) /8 116.5 Hz.=  Let 1 refer to the note sung by the soprano and 2 refer to the note 

sung by the bass. 12 2
0 1 10  W/m .I −= ×  

EXECUTE: (a) 
2
max

2
vpI

B
= and 1 2I I= gives max,1 max,2;p p=  the ratio is 1.00. 

(b) 2 2 2 2 21 1
2 2 4 .I B A B f Aρ ω ρ π= =  1 2I I= gives 1 1 2 2.f A f A=  2 1

1 2

8.00.A f
A f
= =  

(c) 72.0 dBβ = gives 0log( / ) 7.2.I I =  7.2

0

10I
I
= and 5 21.585 10  W/m .I −= ×  2 2 21

2 4 .I B f Aρ π=  

5 2
8

3 5

1 2 1 2(1.585 10  W/m ) 4.73 10  m 47.3 nm.
2 2 (932 Hz) (1.20 kg/m )(1.42 10  Pa)

IA
f Bπ πρ

−
−×

= = = × =
×

 

EVALUATE: Even for this loud note the displacement amplitude is very small. For a given intensity, the 
displacement amplitude depends on the frequency of the sound wave but the pressure amplitude does not. 

16.56. IDENTIFY: Use the equations that relate intensity level and intensity, intensity and pressure amplitude, pressure 
amplitude and displacement amplitude, and intensity and distance. 
(a) SET UP: Use the intensity level β  to calculate I at this distance. 0(10 dB)log( / )I Iβ =  
EXECUTE: 12 252.0 dB (10 dB)log( /(10  W/m ))I −=  

12 2log( /(10  W/m )) 5.20I − =  implies 7 21.585 10  W/mI −= ×  
SET UP: Then use Eq.(16.14) to calculate max:p  

2
max

2
pI

vρ
=  so max 2p vIρ=  

From Example 16.6, 31.20 kg/mρ =  for air at 20 C.°  

EXECUTE: 3 7 2
max 2 2(1.20 kg/m )(344 m/s)(1.585 10  W/m ) 0.0114 Pap vIρ −= = × =  

(b) SET UP: Eq.(16.5): maxp BkA=  so maxpA
Bk

=  

For air 51.42 10  PaB = ×  (Example 16.1). 

EXECUTE: 2 2 (2  rad)(587 Hz) 10.72 rad/m
344 m/s

fk
v

π π π
λ

= = = =  

9max
5

0.0114 Pa 7.49 10  m
(1.42 10  Pa)(10.72 rad/m)

pA
Bk

−= = = ×
×

 

(c) SET UP: 2 1 2 1(10 dB)log( / )I Iβ β− =  (Example 16.11). 

Eq.(15.26): 2 2
1 2 2 1/ /I I r r=  so 2 2

2 1 1 2/ /I I r r=  

EXECUTE: 2
2 1 1 2 1 2(10 dB)log( / ) (20 dB)log( / ).r r r rβ β− = =  

2 52.0 dBβ =  and 2 5.00 m.r =  Then 1 30.0 dBβ =  and we need to calculate 1.r  

1 252.0 dB 30.0 dB (20 dB)log( / )r r− =  

1 222.0 dB (20 dB)log( / )r r=  

1 2log( / ) 1.10r r =  so 1 212.6 63.0 m.r r= =  
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EVALUATE: The decrease in intensity level corresponds to a decrease in intensity, and this means an increase in 
distance. The intensity level uses a logarithmic scale, so simple proportionality between r and β  doesn�t apply. 

16.57. IDENTIFY: The sound is first loud when the frequency 0f of the speaker equals the frequency 1f of the 

fundamental standing wave for the gas in the tube. The tube is a stopped pipe, and 1 .
4
vf
L

=  .RTv
M
γ

=  The sound 

is next loud when the speaker frequency equals the first overtone frequency for the tube. 
SET UP: A stopped pipe has only odd harmonics, so the frequency of the first overtone is 3 13 .f f=  

EXECUTE: (a) 0 1
1 .

4 4
v RTf f
L L M

γ
= = =  This gives 

2 2
016 .L MfT

Rγ
=  

(b) 03 .f  

EVALUATE: (c) Measure 0f  and L. Then 0 4
vf
L

= gives 04 .v Lf=  

16.58. IDENTIFY: beat .A Bf f f= −  1 2
vf
L

=  and FLv
m

= gives 1
1 .
2

Ff
mL

=  Apply 0zτ =∑ to the bar to find the 

tension in each wire. 
SET UP: For 0zτ =∑ take the pivot at wire A and let counterclockwise torques be positive. The free-body 
diagram for the bar is given in Figure 16.58. Let L be the length of the bar. 
EXECUTE: 0zτ =∑ gives lead bar(3 / 4) ( / 2) 0.BF L w L w L− − =  

lead bar3 / 4 / 2 3(185 N) / 4 (165 N) / 2 221 N.BF w w= + = + =  bar leadA BF F w w+ = + so 

bar lead 165 N 185 N 221 N 129 N.A BF w w F= + − = + − =  1 3

1 129 N 88.4 Hz.
2 (5.50 10  kg)(0.750 m)Af −= =

×
 

1 1
221 N 115.7 Hz.
129 NB Af f= =  beat 1 1 27.3 Hz.B Af f f= − =  

EVALUATE: The frequency increases when the tension in the wire increases. 

 
Figure 16.58 

16.59. IDENTIFY: The flute acts as a stopped pipe and its harmonic frequencies are given by Eq.(16.23). The resonant 
frequencies of the string are 1,  1, 2, 3,...nf nf n= =  The string resonates when the string frequency equals the flute 
frequency. 
SET UP: For the string 1s 600.0 Hz.f =  For the flute, the fundamental frequency is 

1f
344.0 m s 800.0 Hz.

4 4(0.1075 m)
vf
L

= = =  Let fn label the harmonics of the flute and let sn label the harmonics of the 

string. 
EXECUTE: For the flute and string to be in resonance, f 1f s 1s 1s,  where 600.0 Hzn f n f f= = is the fundamental 
frequency for the string. 4

s f 1f 1s f3( ) .n n f f n= =  sn  is an integer when f 3 ,  1,n N N= =  3, 5, � (the flute has only 
odd harmonics). f s3  gives 4n N n N= =  
Flute harmonic 3N resonates with string harmonic 4 ,  1,N N =  3, 5, �. 
EVALUATE: We can check our results for some specific values of N. For 1,N =  f 3n = and 3f 2400 Hz.f =  For 
this N, s 4n = and 4s 2400 Hz.f =  For 3,N =  f 9n = and 9f 7200 Hz,f =  and s 12,n =  12s 7200 Hz.f =  Our general 
results do give equal frequencies for the two objects. 
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16.60. IDENTIFY: The harmonics of the string are 1 ,
2n
vf nf n
l

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 where l is the length of the string. The tube is a 

stopped pipe and its standing wave frequencies are given by Eq.(16.22). For the string, / ,v F μ=  where F is the 
tension in the string. 
SET UP: The length of the string is 10,d L=  so its third harmonic has frequency string

3
13 .2f Fd μ=  The 

stopped pipe has length L, so its first harmonic has frequency pipe s
1 .

4
vf
L

=  

EXECUTE: (a) Equating string
1f and pipe

1f and using 2
s

110  gives .
3600

d L F vμ= =  

(b) If the tension is doubled, all the frequencies of the string will increase by a factor of 2.  In particular, the third 
harmonic of the string will no longer be in resonance with the first harmonic of the pipe because the frequencies 
will no longer match, so the sound produced by the instrument will be diminished. 
(c) The string will be in resonance with a standing wave in the pipe when their frequencies are equal. Using 

pipe string
1 13 ,f f=  the frequencies of the pipe are pipe string

1 13 ,nf nf=  (where 1,n =  3, 5, �). Setting this equal to the 

frequencies of the string string
1 ,n f′  the harmonics of the string are 3 3,n n′ = =  9, 15, � The nth harmonic of the 

pipe is in resonance with the 3nth harmonic of the string. 
EVALUATE: Each standing wave for the air column is in resonance with a standing wave on the string. But the 
reverse is not true; not all standing waves of the string are in resonance with a harmonic of the pipe. 

16.61. IDENTIFY and SET UP: The frequency of any harmonic is an integer multiple of the fundamental. For a stopped 
pipe only odd harmonics are present. For an open pipe, all harmonics are present. See which pattern of harmonics 
fits to the observed values in order to determine which type of pipe it is. Then solve for the fundamental frequency 
and relate that to the length of the pipe. 
EXECUTE: (a) For an open pipe the successive harmonics are 1,nf nf=  1,n =  2, 3, �. For a stopped pipe the 
successive harmonics are 1,nf nf=  1,n =  3, 5, �. If the pipe is open and these harmonics are successive, then 

1 1372 Hznf nf= =  and 1 1( 1) 1764 Hz.nf n f+ = + =  Subtract the first equation from the second: 

1 1( 1) 1764 Hz 1372 Hz.n f nf+ − = −  This gives 1 392 Hz.f =  Then 1372 Hz 3.5.
392 Hz

n = =  But n must be an integer, so 

the pipe can�t be open. If the pipe is stopped and these harmonics are successive, then 1 1372 Hznf nf= =  and 

2 1( 2) 1764 Hznf n f+ = + =  (in this case successive harmonics differ in n by 2). Subtracting one equation from the 
other gives 12 392 Hzf =  and 1 196 Hz.f =  Then 11372 Hz / 7n f= =  so 11372 Hz 7 f=  and 11764 Hz 9 .f=  The 
solution gives integer n as it should; the pipe is stopped. 
(b) From part (a) these are the 7th and 9th harmonics. 
(c) From part (a) 1 196 Hz.f =  

For a stopped pipe 1 4
vf
L

=  and 
1

344 m/s 0.439 m.
4 4(196 Hz)
vL
f

= = =  

EVALUATE: It is essential to know that these are successive harmonics and to realize that 1372 Hz is not the 
fundamental. There are other lower frequency standing waves; these are just two successive ones. 

16.62. IDENTIFY: The steel rod has standing waves much like a pipe open at both ends, since the ends are both displacement 

antinodes. An integral number of half wavelengths must fit on the rod, that is, ,
2n
nvf
L

=  with 1,n =  2, 3, �. 

SET UP: Table 16.1 gives 5941 m/sv = for longitudinal waves in steel. 
EXECUTE: (a) The ends of the rod are antinodes because the ends of the rod are free to oscillate. 
(b) The fundamental can be produced when the rod is held at the middle because a node is located there. 

(c) ( )( )
( )1

1 5941 m s
1980 Hz

2 1.50 m
f = =  

(d) The next harmonic is 22,  or 3961 Hz.n f= = We would need to hold the rod at an 2n =  node, which is located 
at 4 0.375 mL =  from either end. 
EVALUATE: For the 1.50 m long rod the wavelength of the fundamental is 2 3.00 m.x L= =  The node to 
antinode distance is / 4 0.75 m.λ =  For the second harmonic 1.50 mLλ = = and the node to antinode distance is 
0.375 m. There is a node at the middle of the rod, but forcing a node at 0.375 m from one end, by holding the rod 
there, prevents rod from vibrating in the fundamental. 
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16.63. IDENTIFY: The shower stall can be modeled as a pipe closed at both ends, and hence there are nodes at the two 
end walls. Figure 15.23 in the textbook shows standing waves on a string fixed at both ends but the sequence of 
harmonics is the same, namely that an integral number of half wavelengths must fit in the stall. 
SET UP: The first three normal modes correspond to one half, two halves or three halves of a wavelength along 
the length of the air column. 
EXECUTE: (a) The condition for standing waves is ,2n

nvf L=  so the first three harmonics are for 1,n =  2, 3. 

(b) A particular physics professor�s shower has a length of 1.48 m.L =  Using  2n
nvf L=  and 344 m sv = gives 

resonant frequencies 116 Hz, 232 Hz and 349 Hz. 
Note that the fundamental and second harmonic, which would have the greatest amplitude, are frequencies 
typically in the normal range of male singers. Hence, men do sing better in the shower! (For a further discussion of 
resonance and the human voice, see Thomas D. Rossing, The Science of Sound, Second Edition, Addison-Wesley, 
1990, especially Chapters 4 and 17.) 
EVALUATE: The standing wave frequencies for a pipe closed at both ends are the same as for an open pipe of the 
same length, even though the nodal patterns are different. 

16.64. IDENTIFY: Stress is / ,F A  where F is the tension in the string and A is its cross sectional area. 

SET UP: 2.A rπ=  For a string fixed at each end, 1
1 1

2 2 2
v F Ff
L L mLμ

= = =  

EXECUTE: (a) The cross-section area of the string would be 8 6 2(900 N) (7.0 10  Pa) 1.29 10  m ,A −= × = ×  
corresponding to a radius of 0.640 mm.  The length is the volume divided by the area, and the volume is 

/ ,V m ρ=  so 
3

3 3 6 2

(4.00 10  kg) 0.40 m.
(7.8 10  kg m )(1.29 10  m )

V mL
A A

ρ −

−

×
= = = =

× ×
 

(b) For the maximum tension of 900 N, 1 3

1 900 N 375 Hz,
2 (4.00 10  kg)(0.40 m)

f −= =
×

 or 380 Hz to two figures. 

EVALUATE: The string could be shorter and thicker. A shorter string of the same mass would have a higher 
fundamental frequency. 

16.65. IDENTIFY and SET UP: There is a node at the piston, so the distance the piston moves is the node to node 
distance, / 2.λ  Use Eq.(15.1) to calculate v and Eq.(16.10) to calculate γ  from v. 
EXECUTE: (a) / 2 37.5 cm,λ =  so 2(37.5 cm) 75.0 cm 0.750 m.λ = = =  

(500 Hz)(0.750 m) 375 m/sv f λ= = =  

(b) /v RT Mγ=  (Eq.16.10) 
2 3 2(28.8 10  kg/mol)(375 m/s) 1.39.

(8.3145 J/mol K)(350 K)
Mv
RT

γ
−×

= = =
⋅

 

(c) EVALUATE: There is a node at the piston so when the piston is 18.0 cm from the open end the node is inside 
the pipe, 18.0 cm from the open end. The node to antinode distance is / 4 18.8 cm,λ =  so the antinode is 0.8 cm 
beyond the open end of the pipe. 
The value of γ  we calculated agrees with the value given for air in Example 16.5. 

16.66. IDENTIFY: Model the auditory canal as a stopped pipe with length 2.5 cm. 
SET UP: The frequencies of a stopped pipe are given by Eq.(16.22). 
EXECUTE: (a) The frequency of the fundamental is 1 /4 (344 m/s) /[4(0.025 m)] 3440 Hz.f v L= = =  3500 Hz is 
near the resonant frequency, and the ear will be sensitive to this frequency. 
(b) The next resonant frequency would be 13 10,500 Hzf = and the ear would be sensitive to sounds with 
frequencies close to this value. But 7000 Hz is not a resonant frequency for a stopped pipe and the ear is not 
sensitive at this frequency. 
EVALUATE: For a stopped pipe only odd harmonics are present. 

16.67. IDENTIFY: The tuning fork frequencies that will cause this to happen are the standing wave frequencies of the 

wire. For a wire of mass m, length L and with tension F the fundamental frequency is 1 .
2 4
v Ff
L mL

= =  The 

standing wave frequencies are 1,nf nf=  1,n =  2, 3, � 
SET UP: ,F Mg=  where 0.420 kg.M =  The mass of the wire is 2 / 4,m V L dρ ρ π= =  where d is the diameter. 

EXECUTE: (a) 
3 2

1 2 2 6 2 2 3 3

(420.0 10  kg)(9.80 m s ) 77.3 Hz.
4 (225 10  m) (0.45 m) (21.4 10  kg m )

F Mgf
mL d Lπ ρ π

−

−

×
= = = =

× ×
 

The tuning fork frequencies for which the fork would vibrate are integer multiples of 77.3 Hz. 
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EVALUATE: (b) The ratio 49 10 ,m M −≈ ×  so the tension does not vary appreciably along the string due to the 
mass of the wire. Also, the suspended mass has a large inertia compared to the mass of the wire and assuming that 
it is stationary is an excellent approximation. 

16.68. IDENTIFY: For a stopped pipe the frequency of the fundamental is 1 .
4
vf
L

=  The speed of sound in air depends on 

temperature, as shown by Eq.(16.10). 
SET UP: Example 16.5 shows that the speed of sound in air at 20 C° is 344 m/s. 

EXECUTE: (a) 344 m/s = 0.246 m
4 4(349 Hz)
vL
f

= =  

(b) The frequency will be proportional to the speed, and hence to the square root of the Kelvin temperature. The 
temperature necessary to have the frequency be higher is 2(293.15 K)([370 Hz]/[349 Hz]) 329.5 K,=  which is 
56.3 C.°  
EVALUATE: 56.3 C 133 F,=° °  so this extreme rise in pitch won't occur in practical situations. But changes in 
temperature can have noticeable effects on the pitch of the organ notes. 

16.69. IDENTIFY: .v f λ=  .RTv
M
γ

=  Solve for .γ  

SET UP: The wavelength is twice the separation of the nodes, so 2 ,Lλ =  where 0.200 m.L =  

EXECUTE: 2 .RTv f Lf
M
γλ= = =  Solving for ,γ  

( )
3

22 (16.0 10  kg/mol)(2 ) 2(0.200 m)(1100 Hz) 1.27.
(8.3145 J mol K) (293.15 K)

M Lf
RT

γ
−×

= = =
⋅

 

EVALUATE: This value of γ is smaller than that of air. We will see in Chapter 19 that this value of γ is a typical 
value for polyatomic gases. 

16.70. IDENTIFY: Destructive interference occurs when the path difference is a half-integer number of wavelengths. 
Constructive interference occurs when the path difference is an integer number of wavelengths. 

SET UP: 344 m/s 0.439 m
784 Hz

v
f

λ = = =  

EXECUTE: (a) If the separation of the speakers is denoted ,h the condition for destructive interference is 
2 2 ,x h x βλ+ − =  where β  is an odd multiple of one-half. Adding x to both sides, squaring, canceling the 2x  

term from both sides and solving for x  gives 
2

.
2 2
hx β λ
βλ

= −  Using 0.439 mλ = and 2.00 mh = yields 9.01 m 

for 1
2 ,β =  2.71 m for 3

2 ,β =  1.27 m for 5
2 ,β =  0.53 m for 7

2 ,β =  and 0.026 m for 9
2 .β =  These are the only 

allowable values of β  that give positive solutions for .x  
(b) Repeating the above for integral values of ,β  constructive interference occurs at 4.34 m, 1.84 m, 0.86 m, 
0.26 m. Note that these are between, but not midway between, the answers to part (a). 
(c) If 2,h λ=  there will be destructive interference at speaker B. If 2 ,hλ >  the path difference can never be as 
large as 2.λ  (This is also obtained from the above expression for ,x  with 1

20 and .)x β= =  The minimum 
frequency is then 2 (344 m s) (4.0 m) 86  Hz.v h = =  
EVALUATE: When f increases, λ is smaller and there are more occurrences of points of constructive and 
destructive interference. 

16.71. IDENTIFY: Apply L
L S

S

.v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 

SET UP: The positive direction is from the listener to the source. (a) The wall is the listener. S 30 m/s.v = −  

L 0.v =  L 600 Hz.f =  (b) The wall is the source and the car is the listener. S 0.v =  L 30 m/s.v = +  S 600 Hz.f =  

EXECUTE: (a) L
L S

S

.v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 S
S L

L

344 m/s 30 m/s (600 Hz) 548 Hz
344 m/s

v vf f
v v
⎛ ⎞+ −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

 

(b) L
L S

S

344 m/s 30 m/s (600 Hz) 652 Hz
344 m/s

v vf f
v v

⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠
 

EVALUATE: Since the singer and wall are moving toward each other the frequency received by the wall is greater 
than the frequency sung by the soprano, and the frequency she hears from the reflected sound is larger still. 
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16.72. IDENTIFY: Apply L
L S

S

.v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 The wall first acts as a listener and then as a source. 

SET UP: The positive direction is from listener to source. The bat is moving toward the wall so the Doppler effect 
increases the frequency and the final frequency received, L2,f  is greater than the original source frequency, S1.f  

S1 2000 Hz.f =  L2 S1 10.0 Hz.f f− =  

EXECUTE: The wall receives the sound: S S1.f f=  L L1.f f=  S batv v= −  and L 0.v =  L
L S

S

v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 gives 

L1 S1
bat

.vf f
v v
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 The wall receives the sound: S2 L1.f f=  S 0v =  and L bat .v v= +  

bat bat bat
L2 S2 S1 S1

bat bat

.v v v v v v vf f f f
v v v v v v

⎛ ⎞ ⎛ ⎞+ + +⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ − −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

bat bat
L2 S1 S1 S1

bat bat

21 .v v vf f f f f
v v v v
⎛ ⎞ ⎛ ⎞+

− = Δ = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 bat

S1

(344 m/s)(10.0 Hz) 0.858 m/s.
2 2(2000 Hz) 10.0 Hz

v fv
f f
Δ

= = =
+ Δ +

 

EVALUATE: S1 ,f f< Δ  so we can write our result as the approximate but accurate expression bat2 .vf f
v

⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

 

16.73. IDENTIFY and SET UP: Use Eq.(16.12) for the intensity and Eq.(16.14) to relate the intensity and pressure 
amplitude. 
EXECUTE: (a) The amplitude of the oscillations is .RΔ  

2 2 2 2 21
2 (2 ) 2 ( )I B f A B f Rρ π ρ π= = Δ  

(b) 2 3 2 2 2(4 ) 8 ( )P I R B f R Rπ π ρ= = Δ  

(c) 2 2/ /R dI I d R=  
2 2 2 2( / ) 2 ( / ) ( )d RI R d I B Rf d Rπ ρ= = Δ  

2
max / 2I p Bρ=  so 

( )max 2 2 ( / ) p BI B Rf d Rρ π ρ= = Δ  

max max max / ( / ) 
2 2

p p p vA v B R d R
Bk B B f

λ ρ
π π

= = = = Δ  

But /v B ρ=  so / 1v Bρ =  so ( / ) .A R d R= Δ  

EVALUATE: The pressure amplitude and displacement amplitude fall off like 1/ d  and the intensity like 21/ .d  

16.74. IDENTIFY: Apply L
L S

S

.v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 The heart wall first acts as the listener and then as the source. 

SET UP: The positive direction is from listener to source. The heart wall is moving toward the receiver so the 
Doppler effect increases the frequency and the final frequency received, L2,f  is greater than the source frequency, 

S1.f  L2 S1 85 Hz.f f− =  

EXECUTE: Heart wall receives the sound: S S1.f f=  L L1.f f=  S 0.v =  L wall.v v= −  L
L S

S

v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 gives 

wall
L1 S1.

v vf f
v
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 Heart wall emits the sound: S2 L1.f f=  S wall.v v= +  L 0.v =  

wall wall
L2 S2 S1 S1

wall wall wall

.v v v v v vf f f f
v v v v v v v
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 wall wall
L2 S1 S1 S1

wall wall

21 .v v vf f f f
v v v v

⎛ ⎞ ⎛ ⎞−
− = − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

L2 S1
wall

S1 L2 S1

( ) .
2 ( )

f f vv
f f f

−
=

− −
 S1 L2 S1f f f−"  and L2 S1

wall 6
S1

( ) (85 Hz)(1500 m/s) 0.0319 m/s 3.19 cm/s.
2 2(2.00 10  Hz)

f f vv
f
−

= = = =
×

 

EVALUATE: 6
S1 2.00 10  Hzf = ×  and L2 S1 85 Hz,f f− =  so the approximation we made is very accurate. Within 

this approximation, the frequency difference between the reflected and transmitted waves is directly proportional 
to the speed of the heart wall. 
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16.75. (a) IDENTIFY and SET UP: Use Eq.(15.1) to calculate .λ  

EXECUTE: 3

1482 m/s 0.0674 m
22.0 10  Hz

v
f

λ = = =
×

 

(b) IDENTIFY: Apply the Doppler effect equation, Eq.(16.29). The Problem-Solving Strategy in the text (Section 
16.8) describes how to do this problem. The frequency of the directly radiated waves is S 22,000 Hz.f =  The 
moving whale first plays the role of a moving listener, receiving waves with frequency L.f ′  The whale then acts as 
a moving source, emitting waves with the same frequency, S Lf f′ ′=  with which they are received. Let the speed of 
the whale be W.v  
SET UP: whale receives waves (Figure 16.75a) 

 

EXECUTE: L Wv v= +  

L W
L S S

S

v v v vf f f
v v v

⎛ ⎞+ +⎛ ⎞′ = =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠
 

Figure 16.75a  
SET UP: whale re-emits the waves (Figure 16.75b) 

 

EXECUTE: S Wv v= −  

L
L S S

S W

v v vf f f
v v v v

⎛ ⎞ ⎛ ⎞+ ′= =⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠
 

Figure 16.75b  

But S Lf f′ ′=  so W W
L S S

W W

.v v v v vf f f
v v v v v

⎛ ⎞ ⎛ ⎞+ +⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠ ⎝ ⎠
 

Then W W W S W
S L S S

W W W

21 .v v v v v v f vf f f f f
v v v v v v

⎛ ⎞ ⎛ ⎞+ − − − −
Δ = − = − = =⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

 

42(2.20 10  Hz)(4.95 m/s) 147 Hz.
1482 m/s 4.95 m/s

f − ×
Δ = =

−
 

EVALUATE: Listener and source are moving toward each other so frequency is raised. 

16.76. IDENTIFY: Apply the Doppler effect formula L
L S

S

.v vf f
v v

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 In the SHM the source moves toward and away 

from the listener, with maximum speed p p.Aω  

SET UP: The direction from listener to source is positive. 
EXECUTE: (a) The maximum velocity of the siren is P P P P2 .A f Aω ω=  You hear a sound with frequency 

( )L siren S ,f f v v v= +  where Sv varies between P P2 f Aπ+  and P P2 .f Aπ−  ( )L max siren P P2f f v v f Aπ− = − and 

( )L min siren P P2 .f f v v f Aπ− = +  

(b) The maximum (minimum) frequency is heard when the platform is passing through equilibrium and moving up 
(down). 
EVALUATE: When the platform is moving upward the frequency you hear is greater than sirenf  and when it is 
moving downward the frequency you hear is less than siren .f  When the platform is at its maximum displacement 
from equilibrium its speed is zero and the frequency you hear is siren .f  

16.77. IDENTIFY: Follow the method of Example 16.19 and apply the Doppler shift formula twice, once with the insect 
as the listener and again with the insect as the source. 
SET UP: Let batv be the speed of the bat, insectv  be the speed of the insect, and if be the frequency with which the 
sound waves both strike and are reflected from the insect. The positive direction in each application of the Doppler 
shift formula is from the listener to the source. 
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EXECUTE: The frequencies at which the bat sends and receives the signals are related by 

bat insect bat
L i S

insect bat insect

.v v v v v vf f f
v v v v v v
⎛ ⎞ ⎛ ⎞⎛ ⎞+ + +

= =⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠
 Solving for insect ,v  

( ) ( )
( ) ( )

S bat

L bat L bat S bat
insect

L bat S batS bat

L bat

1
.

1

f v v
f v v f v v f v v

v v v
f v v f v vf v v

f v v

⎡ ⎤⎛ ⎞+
−⎢ ⎥⎜ ⎟ ⎡ ⎤− − − +⎝ ⎠⎢ ⎥= = ⎢ ⎥⎢ ⎥⎛ ⎞ − + ++ ⎢ ⎥⎣ ⎦+⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 

Letting L refl S bat and f f f f= =  gives the result. 
(b) If bat 80.7 kHz,f =  refl 83.5 kHz,f =  and bat 3.9  m s,v =  then insect 2.0 m s.v =  
EVALUATE: refl batf f> because the bat and insect are approaching each other. 

16.78. IDENTIFY: Follow the steps specified in the problem. v is positive when the source is moving away from the 
receiver and v is negative when the source is moving toward the receiver. L Rf f−  is the beat frequency. 

SET UP: The source and receiver are approaching, so R Sf f> and R S 46.0 Hz.f f− =  

EXECUTE: (a) 
1 2 1 2

R L S S
1 / 1 1 .
1 /

c v v c v vf f f f
c v c cv c

−− − ⎛ ⎞ ⎛ ⎞= = = − +⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠ ⎝ ⎠
 

(b) For small x, the binomial theorem (see Appendix B) gives ( )1 21 1 2,x x− ≈ −  ( ) 1 21 1 2.x x−+ ≈ −  Therefore 
2

L S S1 1 ,
2
v vf f f
c c

⎛ ⎞ ⎛ ⎞≈ − ≈ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 where the binomial theorem has been used to approximate ( )21 2 1 .x x− ≈ −  

(c) For an airplane, the approximation v c!  is certainly valid. Solving the expression found in part (b) for ,v  

8S R beat
8

S S

46.0 Hz(3.00 10  m s) 56.8 m s.
2.43 10  Hz

f f fv c c
f f
− −

= = = × = −
×

 The speed of the aircraft is 56.8 m/s. 

EVALUATE: The approximation v c!  is seen to be valid. v is negative because the source and receiver are 

approaching. Since ,v c!  the fractional shift in frequency, ,f
f
Δ  is very small. 

16.79. IDENTIFY: Apply the result derived in part (b) of Problem 16.78. The radius of the nebula is ,R vt=  where t is 
the time since the supernova explosion. 
SET UP: When the source and receiver are moving toward each other, v is negative and R S.f f>  The light from 
the explosion reached earth 952 years ago, so that is the amount of time the nebula has expanded. 

151 ly 9.46 10  m.= ×  

EXECUTE: (a) 
14

8 6S R
8

S

0.018 10  Hz(3.00 10 m s) 1.2 10 m s,
4.568 10  Hz

f fv c
f
− − ×

= = × = − ×
×

 with the minus sign indicating 

that the gas is approaching the earth, as is expected since R S.f f>  

(b) The radius is 7 6 16(952 yr)(3.156 10  s yr)(1.2 10  m s) 3.6 10  m 3.8 ly.× × = × =  
(c) The ratio of the width of the nebula to 2π  times the distance from the earth is the ratio of the angular width 
(taken as 5 arc minutes) to an entire circle, which is 60 360× arc minutes. The distance to the nebula is then 

3(60)(360)2(3.75 ly) 5.2 10  ly.
5

= ×  The time it takes light to travel this distance is 5200 yr, so the explosion 

actually took place 5200 yr before 1054 C.E., or about 4100 B.C.E. 

EVALUATE: 34.0 10 ,v
c

−= ×  so even though v is very large the approximation required for fv c
f
Δ

= is accurate. 

16.80. IDENTIFY and SET UP: Use Eq.(16.30) that describes the Doppler effect for electromagnetic waves. ,v c!  so 
the simplified form derived in Problem 16.78b can be used. 
(a) EXECUTE: From Problem 16.78b, R S(1 / ).f f v c= −  
v is negative since the source is approaching: 

(42.0 km/h)(1000 m/1 km)(1 h/3600 s) 11.67 m/sv = − = −  
Approaching means that the frequency is increased. 

6
S 8

11.67 m/s2800 10  Hz 109 Hz
3.00 10  m/s

vf f
c

−⎛ ⎞ ⎛ ⎞Δ = − = × − =⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 



Sound and Hearing  16-21 

(b) EVALUATE: Approaching, so the frequency is increased. v c!  and therefore S/ 1.f fΔ !  The frequency of 
the waves received and reflected by the water is very close to 2880 MHz, so get an additional shift of 109 Hz and 
the total shift in frequency is 2(109 Hz) 218 Hz.=  

16.81. IDENTIFY: Follow the method of Example 16.19 and apply the Doppler shift formula twice, once for the wall as 
a listener and then again with the wall as a source. 
SET UP: In each application of the Doppler formula, the positive direction is from the listener to the source 

EXECUTE: (a) The wall will receive and reflect pulses at a frequency 0
w

,v f
v v−

 and the woman will hear this 

reflected wave at a frequency w w
0 0

w w

.v v v v vf f
v v v v v
+ +

=
− −

 The beat frequency is w w
beat 0 0

w w

21 .v v vf f f
v v v v
⎛ ⎞ ⎛ ⎞+

= − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

(b) In this case, the sound reflected from the wall will have a lower frequency, and using 0 w w( )/( )f v v v v− +  as the 

detected frequency. wv  is replaced by wv−  in the calculation of part (a) and w w
beat 0 0

w w

21 .v v vf f f
v v v v

⎛ ⎞ ⎛ ⎞−
= − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

EVALUATE: The beat frequency is larger when she runs toward the wall, even though her speed is the same in 
both cases. 

16.82. IDENTIFY and SET UP: Use Fig.(16.37) to relate α  and T. 
Use this in Eq.(16.31) to eliminate sin .α  

EXECUTE: Eq.(16.31): Ssin /v vα =  From Fig.16.37 Stan / .h v Tα =  And 
2

sin sintan .
cos 1 sin

α αα
α α

= =
−

 

Combining these equations we get S
2

S S

/
1 ( / )

h v v
v T v v

=
−

 and 
2

S

.
1 ( / )

h v
T v v
=

−
 

2 2
2

S 21 ( / ) v Tv v
h

− =  and 
2

2
S 2 2 21 /

vv
v T h

=
−

 

S 2 2 2

hvv
h v T

=
−

 as was to be shown. 

EVALUATE: For a given h, the faster the speed Sv  of the plane, the greater is the delay time T. The maximum 
delay time is / ,h v  and T approaches this value as S .v →∞  0T →  as S.v v→  

16.83. IDENTIFY: The phase of the wave is determined by the value of ,x vt−  so t increasing is equivalent to x 
decreasing with t constant. The pressure fluctuation and displacement are related by Eq.(16.3). 

SET UP: 1( , ) ( , ) .y x t p x t dx
B

= − ∫  If ( , )p x t versus x is a straight line, then ( , )y x t versus x is a parabola. For air, 

51.42 10  Pa.B = ×  
EXECUTE: (a) The graph is sketched in Figure 16.83a. 
(b) From Eq.(16.4), the function that has the given ( ,  0) at 0p x t =  is given graphically in Figure 16.83b. Each 

section is a parabola, not a portion of a sine curve. The period is 4(0.200 m) (344 m s) 5.81 10vλ −= = ×  s and the 
amplitude is equal to the area under the p versus x curve between 0 and 0.0500x x= =  m divided by B, or 

67.04 10 m.−×  
(c) Assuming a wave moving in the x+ -direction, (0,  )y t is as shown in Figure 16.83c. 
(d) The maximum velocity of a particle occurs when a particle is moving through the origin, and the particle speed 

is .y
y pvv vx B
∂= − =
∂

 The maximum velocity is found from the maximum pressure, and 

5
max (40 Pa)(344 m/s) /(1.42 10  Pa) 9.69 cm/s.yv = × = The maximum acceleration is the maximum pressure gradient 

divided by the density, 

2 2
max 3

(80.0 Pa) (0.100 m) 6.67 10 m s .
(1.20 kg m )

a = = ×  

(e) The speaker cone moves with the displacement as found in part (c ); the speaker cone alternates between moving 
forward and backward with constant magnitude of acceleration (but changing sign). The acceleration as a function 
of time is a square wave with amplitude 2667 m/s and frequency / (344 m/s) / (0.200 m) 1.72 kHz.f v λ= = =  
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EVALUATE: We can verify that ( ,  )p x t versus x has a shape proportional to the slope of the graph of ( ,  )y x t  
versus x. The same is also true of the graphs versus t. 

 

 

 
Figure 16.83 

16.84. IDENTIFY: At a distance r from a point source with power output P, 2 .
4

PI
rπ

=  0(10 dB)log( / ).I Iβ =  For two 

sources the amplitudes are combined according to the phase difference. 
SET UP: The amplitude is proportional to the square root of the intensity. Taking the speed of sound to be 
344 m s, the wavelength of the waves emitted by each speaker is 2.00 m.  
EXECUTE: (a) Point C  is two wavelengths from speaker A and one and one-half from speaker ,B  and so the 
phase difference is 180  rad.π° =  

(b) 
4

6 2
2 2

8.00 10  W 3.98 10  W m
4 4 (4.00  m)

PI
rπ π

−
−×

= = = ×  and the sound intensity level is 

6(10 dB)log(3.98 10 ) 66.0 dB.× =  Repeating with 56.00 10  WP −= ×  and 3.00 mr = gives 
7 2 5.31 10  W/mI −= × and  57.2 dB.β =  

(c) With the result of part (a), the amplitudes, either displacement or pressure, must be subtracted. That is, the 
intensity is found by taking the square roots of the intensities found in part (b), subtracting, and squaring the 
difference. The result is that 6 21.60 10  W/mI −= × and 62.1 dB.β =  
EVALUATE: Subtracting the intensities of A and B gives 

6 2 7 2 6 23.98 10  W/m 5.31 10  W/m 3.45 10  W/m .− − −× − × = ×  This is very different from the correct intensity at C. 
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TEMPERATURE AND HEAT 

 17.1. IDENTIFY and SET UP: 9
F C5 32T T= + °.  

EXECUTE: (a) F (9/5)( 62.8) 32 81.0 FT = − + = − °  
(b) F (9/5)(56.7) 32 134.1 FT = + = °  
(c) F (9/5)(31.1) 32 88.0 FT = + = °  
EVALUATE: Fahrenheit degrees are smaller than Celsius degrees, so it takes more F° than C° to express the 
difference of a temperature from the ice point. 

 17.2. IDENTIFY and SET UP: 5
C F9 ( 32 )T T= − °  

EXECUTE: (a) C (5/9)(41.0 32) 5.0 CT = − = °  
(b) C (5/9)(107 32) 41.7 CT = − = °  
(c) C (5/9)( 18 32) 27.8 CT = − − = − °  
EVALUATE: Fahrenheit degrees are smaller than Celsius degrees, so it takes more F° than C° to express the 
difference of a temperature from the ice point. 

 17.3. IDENTIFY: Convert each temperature from °C to °F. 
SET UP: 9

F C5 32 CT T= + °  
EXECUTE: 18 C°  equals 9

5 (18 ) 32 64 F+ =° ° ° and 39 C°  equals 9
5 (39 ) 32 102 F.+ =° ° °  The temperature increase is 

102 F 64 F 38 F− =° ° °.  

EVALUATE: The temperature increase is 21 C°, and this corresponds to 
9
5  F

(21 C ) 38 F
1 C

⎛ ⎞
=⎜ ⎟

⎝ ⎠

°
° °.

°
 

 17.4. IDENTIFY: Convert 10 KTΔ =  to F°.  
SET UP: 9

51 K 1 C F .= ° = °  
EXECUTE: A temperature increase of 10 K corresponds to an increase of 18 F°. Beaker B has the higher 
temperature. 
EVALUATE: Kelvin and Celsius degrees are the same size. Fahrenheit degrees are smaller, so it takes more of 
them to express a given TΔ value. 

 17.5. IDENTIFY: Convert TΔ in kelvins to C° and to F°. 
SET UP: 9

51 K 1 C F= =° °  

EXECUTE: (a) ( )9 9
F C5 5 10.0 C 18.0 FT TΔ = Δ = − ° = − °  

(b) C K 10.0 CT TΔ = Δ = − °  
EVALUATE: Kelvin and Celsius degrees are the same size. Fahrenheit degrees are smaller, so it takes more of them 
to express a given TΔ value. 

 17.6. IDENTIFY: Convert TΔ between different scales. 
SET UP: TΔ is the same on the Celsius and Kelvin scales. 180 F 100 C=° °,  so 9

51 C F=° °.  

EXECUTE: (a) 49.0 FTΔ = °.  
9
5

1 C(49.0 F ) 27.2 C
 F

T
⎛ ⎞

Δ = =⎜ ⎟
⎝ ⎠

°
° °.

°
 

(b) 100 FTΔ = − °.  
9
5

1 C( 100.0 F ) 55.6 C
 F

T
⎛ ⎞

Δ = − = −⎜ ⎟
⎝ ⎠

°
° °

°
 

EVALUATE: The magnitude of the temperature change is larger in F° than in C°. 
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 17.7. IDENTIFY: Convert T in °C to °F. 
SET UP: 9

F C5 ( 32 )T T= + °  
EXECUTE: (a) 9

F 5 (40.2 ) 32 104.4 F.T = + =° ° °  Yes, you should be concerned. 
(b) 9 9

F C5 5( 32 ) (12 C) 32 54 F.T T= + = + =° ° ° °  
EVALUATE: In doing the temperature conversion we account for both the size of the degrees and the different 
zero points on the two temperature scales. 

 17.8. IDENTIFY: Set C FT T=  and F K.T T=  
SET UP: 9

F C5 32 CT T= + °  and 5
K C F9273.15 ( 32 ) 273.15T T T= + = − +°  

EXECUTE: (a) F CT T T= =  gives 9
5 32T T= + ° and 40 ;T = − °  40 C 40 F.− = −° °  

(b) F KT T T= =  gives 5
9 ( 32 ) 273.15T T= − +° and ( )( )9 5

4 9 (32 ) 273.15 575 ;T = − + =° °  575 F 575 K.=°  

EVALUATE: Since K C 273.15T T= + there is no temperature at which Celsius and Kelvin thermometers agree. 
 17.9. IDENTIFY: Convert to the Celsius scale and then to the Kelvin scale. 

SET UP: Combining Eq.(17.2) and Eq.(17.3), ( )5
K F9 32 273.15,T T= − ° +  

EXECUTE: Substitution of the given Fahrenheit temperatures gives 
(a) 216.5 K 
(b) 325.9 K 
(c) 205.4 K 
EVALUATE: All temperatures on the Kelvin scale are positive. 

17.10. IDENTIFY: Convert KT to CT and then convert CT to F.T  
SET UP: K C 273.15T T= +  and 9

F C5 32T T= + °.  
EXECUTE: (a) C 400 273.15 127 C,T = − = °  F (9/5)(126.85) 32 260 FT = + = °  
(b) C 95 273.15 178 C,T = − = − °  F (9/5)( 178.15) 32 289 FT = − + = − °  

(c) 7 7
C 1.55 10 273.15 1.55 10 C,T = × − = × °  7 7

F (9/5)(1.55 10 ) 32 2.79 10 FT = × + = × °  
EVALUATE: All temperatures on the Kelvin scale are positive. CT is negative if the temperature is below the 
freezing point of water. 

17.11. IDENTIFY: Convert FT to CT and then convert CT to K.T  
SET UP: 5

C F9 ( 32 ).T T= − °  K C 273.15.T T= +  
EXECUTE: (a) 5

C 9 ( 346 32 ) 210 CT = − − = −° ° °  
(b) K 210 273.15 63 KT = − + =°  
EVALUATE: The temperature is negative on the Celsius and Fahrenheit scales but all temperatures are positive on 
the Kelvin scale. 

17.12. IDENTIFY: Apply Eq.(17.5) and solve for p. 
SET UP: triple 325 mm of mercuryp =  

EXECUTE: ( )373.15 K(325.0 mm of mercury) 444 mm of mercury273.16 Kp = =  

EVALUATE: mm of mercury is a unit of pressure. Since Eq.(17.5) involves a ratio of pressures, it is not necessary 
to convert the pressure to units of Pa. 

17.13. IDENTIFY: When the volume is constant, 2 2

1 1

,T p
T p

=  for T in kelvins. 

SET UP: triple 273.16 K.T =  Figure 17.7 in the textbook gives that the temperature at which 2CO solidifies is 

2CO 195 K.T =  

EXECUTE: 2
2 1

1

195 K(1.35 atm) 0.964 atm
273.16 K

Tp p
T

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: The pressure decreases when T decreases. 
17.14. IDENTIFY: 1 K 1 C= °  and 9

51 C F ,=° °  so 9
51 K R= °.  

SET UP: On the Kelvin scale, the triple point is 273.16 K. 
EXECUTE: triple (9/5)273.16 K 491.69 R.T = = °  
EVALUATE: One could also look at Figure 17.7 in the textbook and note that the Fahrenheit scale extends from 

460 F to 32 F− ° + °  and conclude that the triple point is about 492 R.°  
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17.15. IDENTIFY and SET UP: Fit the data to a straight line for ( )p T  and use this equation to find T when 0.p =   
EXECUTE: (a) If the pressure varies linearly with temperature, then 2 1 2 1( ).p p T Tγ= + −  

4 4
2 1

2 1

6.50 10  Pa 4.80 10  Pa 170.0 Pa/C
100 C 0.01 C

p p
T T

γ − × − ×
= = = °

− ° − °
 

Apply 1 1( )p p T Tγ= + −  with 1 0.01 CT = °  and 0p =  to solve for T. 

1 10 ( )p T Tγ= + −  
4

1
1

4.80 10  Pa0.01 C 282 C.
170 Pa/C

pT T
γ

×
= − = ° − = − °

°
 

(b) Let 1 100 CT = °  and 2 0.01 C;T = °  use Eq.(17.4) to calculate 2.p  Eq.(17.4) says 2 1 2 1/ / ,T T p p=  where T is in kelvins. 

4 42
2 1

1

0.01 273.156.50 10  Pa 4.76 10  Pa;
100 273.15

Tp p
T

⎛ ⎞ +⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠
 this differs from the 44.80 10  Pa×  that was measured 

so Eq.(17.4) is not precisely obeyed. 
EVALUATE: The answer to part (a) is in reasonable agreement with the accepted value of 273 C− °  

17.16. IDENTIFY: Apply 0L L TαΔ = Δ and calculate .TΔ  Then 2 1 ,T T T= + Δ  with 1 15.5 C.T = °  

SET UP: Table 17.1 gives 5 11.2 10  (C )α − −= × ° for steel. 

EXECUTE: 5 1
0

0.471 ft 23.5 C
[1.2 10  (C ) ][1671 ft]

LT
Lα − −

Δ
Δ = = =

×
°.

°
 2 15.5 C 23.5 C 39.0 C.T = + =° ° °  

EVALUATE: Since then the lengths enter in the ratio 0/ ,L LΔ  we can leave the lengths in ft. 
17.17. IDENTIFY: 0L L TαΔ = Δ  

SET UP: For steel, 5 11.2 10  (C )α − −= × °  

EXECUTE: 5 1(1.2 10 (C ) )(1410 m)(18.0 C ( 5.0 C)) 0.39 mL − −Δ = × ° ° − − ° = +  
EVALUATE: The length increases when the temperature increases. The fractional increase is very small, since 

TαΔ is small. 
17.18. IDENTIFY: Apply 0 (1 )L L Tα= + Δ to the diameter d of the rivet. 

SET UP: For aluminum, 5 12.4 10  (C ) .α − −= × °  Let 0d be the diameter at �78.0°C and d be the diameter at 23.0°C. 

EXECUTE: 5 1
0 0 (1 ) (0.4500 cm)(1 (2.4 10 (C ) )(23.0 C [ 78.0 C])).d d d d Tα − −= + Δ = + Δ = + × ° ° − − °  

0.4511 cm 4.511 mm.d = =  
EVALUATE: We could have let 0d be the diameter at 23.0 C° and d be the diameter at 78.0 C.− °  Then 

78.0 C 23.0 C.TΔ = − −° °  
17.19. IDENTIFY: Apply 0 (1 )L L Tα= + Δ to the diameter D of the penny. 

SET UP: 1 K 1 C ,= °  so we can use temperatures in C.°  
EXECUTE: Death Valley: 5 1 3

0 (2.6 10  (C ) )(1.90 cm)(28.0 C ) 1.4 10  cm,D Tα − − −Δ = × ° = ×°  so the diameter is 

1.9014 cm. Greenland: 3
0 3.6 10  cm,D Tα −Δ = − ×  so the diameter is 1.8964 cm. 

EVALUATE: When T increases the diameter increases and when T decreases the diameter decreases. 
17.20. IDENTIFY: 0 .V V TβΔ = Δ  Use the diameter at 15 C− ° to calculate the value of 0V at that temperature. 

SET UP: For a hemisphere of radius R, the volume is 32
3 .V Rπ=  Table 17.2 gives 5 17.2 10  (C )β − −= × °  for 

aluminum. 
EXECUTE: 3 3 4 32 2

0 3 3 (27.5 m) 4.356 10  m .V Rπ π= = = ×  
5 1 4 3 3(7.2 10  (C ) )(4.356 10  m )(35 C [ 15 C]) 160 mV − −Δ = × × − − =° ° °  

EVALUATE: We could also calculate 0 (1 )R R Tα= + Δ and calculate the new V from R. The increase in volume is 

0,V V−  but we would have to be careful to avoid round-off errors when two large volumes of nearly the same size 
are subtracted. 

17.21. IDENTIFY: Linear expansion; apply Eq.(17.6) and solve for .α  
SET UP: Let 0 40.125 cm;L =  0 20.0 C.T = °  45.0°C 20.0 C 25.0 CTΔ = − ° = °  gives 0.023 cmLΔ =  

EXECUTE: 0L L TαΔ = Δ  implies 5 1

0

0.023 cm 2.3 10  (C ) .
(40.125 cm)(25.0 C )

L
L T

α − −Δ
= = = × °

Δ °
 

EVALUATE: The value we calculated is the same order of magnitude as the values for metals in Table 17.1. 
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17.22. IDENTIFY: Apply 0 .V V TβΔ = Δ  

SET UP: For copper, 55.1 10  (C .β −= × −1°)  2
0/ 0.150 10 .V V −Δ = ×  

EXECUTE: 
2

0
5

/ 0.150 10 29.4 C
5.1 10  (C

V VT
β

−

−

Δ ×
Δ = = =

× −1 °.
°)

 f i 49.4 C.T T T= + Δ = °  

EVALUATE: The volume increases when the temperature increases. 
17.23. IDENTIFY: Volume expansion; apply Eq.(17.8) to calculate VΔ  for the ethanol. 

SET UP: From Table 17.2, β  for ethanol is 5 175 10  K− −×  
EXECUTE: 10.0 C 19.0 C 9.0 K.TΔ = ° − ° = −  Then 5 1

0 (75 10  K )(1700 L)( 9.0 K) 11 L.V V Tβ − −Δ = Δ = × − = −  The 

volume of the air space will be 311 L 0.011 m .=  
EVALUATE: The temperature decreases, so the volume of the liquid decreases. The volume change is small, less 
than 1% of the original volume. 

17.24. IDENTIFY: Apply 0V V TβΔ = Δ to the tank and to the ethanol. 

SET UP: For ethanol, 5
e 75 10  (C .β −= × −1°)  For steel, 5

s 3.6 10  (C .β −= × −1°)  
EXECUTE: The volume change for the tank is 

3 5 3 3
s 0 s (2.80 m )(3.6 10  (C )( 14.0 C ) 1.41 10  m 1.41 L.V V Tβ − −Δ = Δ = × − = − × = −−1°) °  

The volume change for the ethanol is 
3 5 2 3

e 0 e (2.80 m )(75 10  (C )( 14.0 C ) 2.94 10  m 29.4 L.V V Tβ − −Δ = Δ = × − = − × = −−1°) °  
The empty volume in the tank is e s 29.4 L ( 1.4 L) 28.0 L.V VΔ − Δ = − − − = −  28.0 L of ethanol can be added to the 
tank. 
EVALUATE: Both volumes decrease. But e s ,β β>  so the magnitude of the volume decrease for the ethanol is less 
than it is for the tank. 

17.25. IDENTIFY: Apply 0V V TβΔ = Δ to the volume of the flask and to the mercury. When heated, both the volume of 
the flask and the volume of the mercury increase. 
SET UP: For mercury, 5

Hg 18 10  (C .β −= × −1°)   

EXECUTE: 38.95 cm of mercury overflows, so 3
Hg glass 8.95 cm .V VΔ − Δ =  

EXECUTE: 3 5 3
Hg 0 Hg (1000.00 cm )(18 10  (C )(55.0 C ) 9.9 cm .V V Tβ −Δ = Δ = × =−1°) °  

3 3
glass Hg 8.95 cm 0.95 cm .V VΔ = Δ − =  

3
glass 5

glass 3
0

0.95 cm 1.7 10  (C .
(1000.00 cm )(55.0 C )

V
V T

β −Δ
= = = ×

Δ
−1°)

°
 

EVALUATE: The coefficient of volume expansion for the mercury is larger than for glass. When they are heated, 
both the volume of the mercury and the inside volume of the flask increase. But the increase for the mercury is 
greater and it no longer all fits inside the flask. 

17.26. IDENTIFY: Apply 0L L TαΔ = Δ to each linear dimension of the surface. 
SET UP: The area can be written as 1 2,A aL L=  where a is a constant that depends on the shape of the surface. For 
example, if the object is a sphere, 4a π= and 1 2 .L L r= =  If the object is a cube, 6a = and 1 2 ,L L L= =  the length 

of one side of the cube. For aluminum, 5 12.4 10  (C ) .α − −= × °  
EXECUTE: (a) 0 01 02.A aL L=  1 01(1 ).L L Tα= + Δ  2 02 (1 ).L L Tα= + Δ  

2 2
1 2 01 02 0(1 ) (1 2 [ ] ).A aL L aL L T A T Tα α α= = + Δ = + Δ + Δ  TαΔ is very small, so 2[ ]TαΔ can be neglected and 

0 (1 2 ).A A Tα= + Δ  0 0(2 )A A A A TαΔ = − = Δ  

(b) 5 1 2 4 2
0(2 ) (2)(2.4 10  (C ) )( (0.275 m) )(12.5 C ) 1.4 10  mA A Tα π− − −Δ = Δ = × ° = ×°  

EVALUATE: The derivation assumes the object expands uniformly in all directions. 
17.27. IDENTIFY and SET UP: Apply the result of Exercise 17.26a to calculate AΔ  for the plate, and then 0 .A A A= + Δ  

EXECUTE: (a) 2 2 2
0 0 (1.350 cm/2) 1.431 cmA rπ π= = =  

(b) Exercise 17.26 says 02 ,A A TαΔ = Δ  so 5 1 2 3 22(1.2 10  C )(1.431 cm )(175 C 25 C) 5.15 10  cmA − − −Δ = × ° ° − ° = ×  
2

0 1.436 cmA A A= + Δ =  
EVALUATE: A hole in a flat metal plate expands when the metal is heated just as a piece of metal the same size 
as the hole would expand. 

17.28. IDENTIFY: Apply 0L L TαΔ = Δ  to the diameter STD of the steel cylinder and the diameter BRD of the brass piston. 

SET UP: For brass, 5 1
BR 2.0 10  (C ) .α − −= × °  For steel, 5 1

ST 1.2 10  (C ) .α − −= × °  
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EXECUTE: (a) No, the brass expands more than the steel. 
(b) Call 0D  the inside diameter of the steel cylinder at 20 C.°  At 150 C,°  ST BR .D D=  

0 ST BR25.000 cm .D D D+ Δ = + Δ  This gives 0 ST 0 BRT 25.000 cm (25.000 cm) .D D Tα α+ Δ = + Δ  
5 1

BR
0 5 1

ST

(25.000 cm) 1 (2.0 10  (C ) )(130 C )25.000 cm(1 ) 25.026 cm.
1 1 (1.2 10  (C ) )(130 C )

TD
T
α

α

− −

− −

⎡ ⎤+ × ° °+ Δ ⎣ ⎦= = =
+ Δ + × ° °

 

EVALUATE: The space inside the steel cylinder expands just like a solid piece of steel of the same size. 
17.29. IDENTIFY: Find the change LΔ in the diameter of the lid. The diameter of the lid expands according to Eq.(17.6). 

SET UP: Assume iron has the same α as steel, so 5 11.2 10  (C ) .α − −= × °  
EXECUTE: 5 1

0 (1.2 10  (C ) )(725 mm)(30.0 C ) 0.26 mmL L Tα − −Δ = Δ = × =° °  
EVALUATE: In Eq.(17.6), LΔ has the same units as L. 

17.30. IDENTIFY: Apply Eq.(17.12) and solve for F. 
SET UP: For brass, 110.9 10  PaY = ×  and 5 12.0 10  (C ) .α − −= × °  
EXECUTE: 11 5 1 4 2 4(0.9 10  Pa)(2.0 10 (C ) )( 110 C )(2.01 10  m ) 4.0 10  NF Y TAα − − −= − Δ = − × × ° − × = ×°  
EVALUATE: A large force is required. TΔ is negative and a positive tensile force is required. 

17.31. IDENTIFY and SET UP: For part (a), apply Eq.(17.6) to the linear expansion of the wire. For part (b), apply 
Eq.(17.12) and calculate / .F A  
EXECUTE: (a) 0L L TαΔ = Δ  

2
5 1

0

1.9 10  m 3.2 10  (C )
(1.50 m)(420 C 20 C)

L
L T

α
−

− −Δ ×
= = = × °

Δ ° − °
 

(b) Eq.(17.12): stress /F A Y Tα= − Δ  
20 C 420 C 400 CTΔ = ° − ° = − °  ( TΔ  always means final temperature minus initial temperature) 

11 5 1 9/ (2.0 10  Pa)(3.2 10 (C ) )( 400 C ) 2.6 10  PaF A − −= − × × ° − ° = + ×  
EVALUATE: /F A  is positive means that the stress is a tensile (stretching) stress. The answer to part (a) is consistent 
with the values of α  for metals in Table 17.1. The tensile stress for this modest temperature decrease is huge. 

17.32. IDENTIFY: Apply 0L L TαΔ = Δ and stress / .F A Y Tα= = − Δ  
SET UP: For steel, 51.2 10  (Cα −= × −1°)  and 112.0 10  Pa.Y = ×  
EXECUTE: (a) 5

0 (12.0 m)(1.2 10  (C )(35.0 C ) 5.0 mmL L Tα −Δ = Δ = × =−1°) °  
(b) 11 5 1 7stress (2.0 10  Pa)(1.2 10  (C ) )(35.0 C ) 8.4 10 Pa.Y Tα − −= − Δ = − × × = − ×° °  The minus sign means the stress 
is compressive. 
EVALUATE: Commonly occurring temperature changes result in very small fractional changes in length but very 
large stresses if the length change is prevented from occurring. 

17.33. IDENTIFY and SET UP: Apply Eq.(17.13) to the kettle and water. 
EXECUTE: kettle 

,Q mc T= Δ  910 J/kg Kc = ⋅  (from Table 17.3) 
4(1.50 kg)(910 J/kg K)(85.0 C 20.0 C) 8.873 10  JQ = ⋅ ° − ° = ×  

water 
,Q mc T= Δ  4190 J/kg Kc = ⋅  (from Table 17.3) 

5(1.80 kg)(4190 J/kg K)(85.0 C 20.0 C) 4.902 10 JQ = ⋅ ° − ° = ×  
Total 4 5 58.873 10  J 4.902 10  J 5.79 10  JQ = × + × = ×  
EVALUATE: Water has a much larger specific heat capacity than aluminum, so most of the heat goes into raising 
the temperature of the water. 

17.34. IDENTIFY: The heat required is .Q mc T= Δ  200 W 200 J/s,P = =  which is energy divided by time. 
SET UP: For water, 34.19 10  J/kg K.c = × ⋅  
EXECUTE: (a) 3 4(0.320 kg)(4.19 10  J/kg K)(60.0 C ) 8.04 10  JQ mc T= Δ = × ⋅ = ×°  

(b) 
48.04 10  J 402 s 6.7 min

200.0 J/s
t ×

= = =  

EVALUATE: 0.320 kg of water has volume 0.320 L. The time we calculated in part (b) is consistent with our 
everyday experience. 

17.35. IDENTIFY: Apply .Q mc T= Δ  / .m w g=  
SET UP: The temperature change is 18.0 K.TΔ =  

EXECUTE: 
2 4(9.80 m/s )(1.25 10  J) 240 J/kg K.

(28.4 N)(18.0 K)
Q gQc

m T w T
×

= = = = ⋅
Δ Δ

 

EVALUATE: The value for c is similar to that for silver in Table 17.3, so it is a reasonable result. 
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17.36. IDENTIFY and SET UP: Use Eq.(17.13) 
EXECUTE: (a) Q mc T= Δ  

3 31
2 (1.3 10  kg) 0.65 10  kgm − −= × = ×  

3(0.65 10  kg)(1020 J/kg K)(37 C ( 20 C)) 38 JQ −= × ⋅ ° − − ° =  
(b) 20 breaths/min (60 min/1 h) 1200 breaths/h=  

So 4(1200)(38 J) 4.6 10  J.Q = = ×  
EVALUATE: The heat loss rate is / 13 W.Q t =  

17.37. IDENTIFY: Apply Q mc T= Δ to find the heat that would raise the temperature of the student's body 7 C°.  
SET UP: 1 W 1 J/s=  
EXECUTE: Find Q to raise the body temperature from 37 C°  to 44 C.°  

6(70 kg)(3480 J/kg K)(7 C ) 1.7 10  J.Q mc T= Δ = ⋅ = ×°  
61.7 10  J 1400 s 23 min.

1200 J/s
t ×

= = =  

EVALUATE: Heat removal mechanisms are essential to the well-being of a person. 
17.38. IDENTIFY and SET UP: Set the change in gravitational potential energy equal to the quantity of heat added to the 

water. 
EXECUTE: The change in mechanical energy equals the decrease in gravitational potential energy, ;U mghΔ = −  
| | .U mghΔ =  | |Q U mgh= Δ =  implies mc T mghΔ =  

2/ (9.80 m/s )(225 m)/(4190 J/kg K) 0.526 K 0.526 CT gh cΔ = = ⋅ = = °  
EVALUATE: Note that the answer is independent of the mass of the object. Note also the small change in 
temperature that corresponds to this large change in height! 

17.39. IDENTIFY: The work done by friction is the loss of mechanical energy. The heat input for a temperature change is 
Q mc T= Δ  

SET UP: The crate loses potential energy mgh, with (8.00 m)sin36.9 ,h = °  and gains kinetic energy 21
22 .mv  

EXECUTE: (a) ( )2 2 2 31 1
22 2(35.0 kg) (9.80 m/s )(8.00 m)sin36.9 (2.50 m/s) 1.54 10  J.fW mgh mv= − = ° − = ×  

(b) Using the results of part (a) for Q gives ( )3 2(1.54 10  J)/ (35.0 kg)(3650 J/kg K) 1.21 10  C .T −Δ = × ⋅ = × °  
EVALUATE: The temperature rise is very small. 

17.40. IDENTIFY: The work done by the brakes equals the initial kinetic energy of the train. Use the volume of the air to 
calculate its mass. Use Q mc T= Δ applied to the air to calculate TΔ for the air. 

SET UP: 21
2 .K mv=  .m Vρ=  

EXECUTE: The initial kinetic energy of the train is 2 61
2 (25,000 kg)(15.5 m/s) 3.00 10  J.K = = ×  Therefore, Q for 

the air is 63.00 10  J.×  3 4(1.20 kg/m )(65.0 m)(20.0 m)(12.0 m) 1.87 10  kg.m Vρ= = = ×  Q mc T= Δ gives 
6

4

3.00 10  J 0.157 C
(1.87 10  kg)(1020 J/kg K)

QT
mc

×
Δ = = =

× ⋅
°.  

EVALUATE: The mass of air in the station is comparable to the mass of the train and the temperature rise is small. 
17.41. IDENTIFY: Set 21

2K mv=  equal to Q mc T= Δ for the nail and solve for .TΔ  

SET UP: For aluminum, 30.91 10  J/kg K.c = × ⋅  
EXECUTE: The kinetic energy of the hammer before it strikes the nail is 

2 21 1
2 2 (1.80 kg)(7.80 m/s) 54.8 J.K mv= = =  Each strike of the hammer transfers 0.60(54.8 J) 32.9 J,=  and with 

10 strikes 329 J.Q =  Q mc T= Δ  and 3 3

329 J 45.2 C
(8.00 10  kg)(0.91 10  J/kg K)

QT
mc −Δ = = =

× × ⋅
°  

EVALUATE: This agrees with our experience that hammered nails get noticeably warmer. 
17.42. IDENTIFY and SET UP: Use the power and time to calculate the heat input Q and then use Eq.(17.13) to 

calculate c. 
(a) EXECUTE: / ,P Q t=  so the total heat transferred to the liquid is (65.0 W)(120 s) 7800 JQ Pt= = =  

Then Q mc T= Δ  gives 37800 K 2.51 10  J/kg K
0.780 kg(22.54 C 18.55 C)

Qc
m T

= = = × ⋅
Δ ° − °

 

(b) EVALUATE: Then the actual Q transferred to the liquid is less than 7800 J so the actual c is less than our 
calculated value; our result in part (a) is an overestimate. 
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17.43. IDENTIFY: .Q mc T= Δ  The mass of n moles is .m nM=  

SET UP: For iron, 355.845 10  kg/molM −= × and 470 J/kg K.c = ⋅  

EXECUTE: (a) The mass of 3.00 mol is 3(3.00 mol)(55.845 10  kg/mol) 0.1675 kg.m nM −= = × =  

[ ]/ (8950 J) / (0.1675 kg)(470 J/kg K) 114 K 114 C .T Q mcΔ = = ⋅ = = °  
(b) For 3.00 kg,  / 6.35 C .m T Q mc= Δ = = °  
EVALUATE: (c) The result of part (a) is much larger; 3.00 kg is more material than 3.00 mol.  

17.44. IDENTIFY: The latent heat of fusion fL is defined by fQ mL= for the solid liquid→ phase transition. For a 
temperature change, .Q mc T= Δ  
SET UP: At 1 mint = the sample is at its melting point and at 2.5 mint = all the sample has melted. 
EXECUTE: (a) It takes 1.5 min for all the sample to melt once its melting point is reached and the heat input 
during this time interval is 3 4(1.5 min)(10.0 10  J/min) 1.50 10  J.× = ×  f .Q mL=  

4
4

f
1.50 10  J 3.00 10  J/kg.

0.500 kg
QL
m

×
= = = ×  

(b) The liquid's temperature rises 30 C°  in 1.5 min. .Q mc T= Δ  
4

3
liquid

1.50 10  J 1.00 10  J/kg K.
(0.500 kg)(30 C )

Qc
m T

×
= = = × ⋅

Δ °
 

The solid's temperature rises 15 C°  in 1.0 min. 
4

3
solid

1.00 10  J 1.33 10  J/kg K.
(0.500 kg)(15 C )

Qc
m T

×
= = = × ⋅

Δ °
 

EVALUATE: The specific heat capacities for the liquid and solid states are different. The values of c and fL that 
we calculated are within the range of values in Tables 17.3 and 17.4. 

17.45. IDENTIFY and SET UP: Heat comes out of the metal and into the water. The final temperature is in the range 
0 100 C,T< < °  so there are no phase changes. system 0.Q =  

(a) EXECUTE: water metal 0Q Q+ =  

water water water metal metal metal 0m c T m c TΔ + Δ =  

metal(1.00 kg)(4190 J/kg K)(2.0 C ) (0.500 kg)( )( 78.0 C ) 0c⋅ ° + − ° =  

metal 215 J/kg Kc = ⋅  
(b) EVALUATE: Water has a larger specific heat capacity so stores more heat per degree of temperature change. 
(c) If some heat went into the styrofoam then metalQ  should actually be larger than in part (a), so the true metalc  is 
larger than we calculated; the value we calculated would be smaller than the true value. 

17.46. IDENTIFY: Apply Q mc T= Δ to each object. The net heat flow systemQ for the system (man, soft drink) is zero. 
SET UP: The mass of 1.00 L of water is 1.00 kg. Let the man be designated by the subscript m and the ��water� 
by w. T is the final equilibrium temperature. w 4190 J/kg K.c = ⋅  K C.T TΔ = Δ  
EXECUTE: (a) system 0Q =  gives m m m w w w 0.m C T m C TΔ + Δ =  m m m w w w( ) ( ) 0.m C T T m C T T− + − =  

m m m w w w( ) ( ).m C T T m C T T− = −  Solving for T, m m m w w w

m m w w

.m C T m C TT
m C m C

+
=

+
 

(70.0 kg) (3480 J/kg K) (37.0 C) (0.355 kg) (4190 J/kg C ) (12.0 C) 36.85 C
(70.0 kg)(3480 J/kg C ) (0.355 kg) (4190 J/kg C )

T ⋅ ° + ⋅ °
= = °

⋅ ° + ⋅
°
°

 

(b) It is possible a sensitive digital thermometer could measure this change since they can read to 0.1 C.°  It is best 
to refrain from drinking cold fluids prior to orally measuring a body temperature due to cooling of the mouth. 
EVALUATE: Heat comes out of the body and its temperature falls. Heat goes into the soft drink and its 
temperature rises. 

17.47. IDENTIFY: For the man's body, Q mc T= Δ .  
SET UP: From Exercise 17.46, 0 15 CTΔ = . °  when the body returns to 37 0 C. ° .  

EXECUTE: The rate of heat loss is Q/t.  Q mC T
t t

Δ
=  and .( / )

mC Tt Q t
Δ=  

6

(70.355 kg)(3480 J/kg C )(0.15 C ) 0.00525 d 7.6 minutes.
7.00 10  J/day

t ⋅
= = =

×
° °  

EVALUATE: Even if all the BMR energy stays in the body, it takes the body several minutes to return to its 
normal temperature. 
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17.48. IDENTIFY: For a temperature change Q mc T= Δ  and for the liquid to solid phase change f .Q mL= −  

SET UP: For water, 34.19 10  J/kg Kc = × ⋅  and 5
f 3.34 10  J/kg.L = ×  

EXECUTE: 3 5 5
f (0.350 kg)([4.19 10  J/kg K][ 18.0 C ] 3.34 10  J/kg) 1.43 10  J.Q mc T mL= Δ − = × ⋅ − − × = − ×°  The 

minus sign says 51.43 10  J×  must be removed from the water. 5 41 cal(1.43 10  J) 3.42 10  cal 34.2 kcal.
4.186 J

⎛ ⎞× = × =⎜ ⎟
⎝ ⎠

 

EVALUATE: 0Q <  when heat comes out of an object the equation Q mc T= Δ puts in the correct sign 
automatically, from the sign of f i.T T TΔ = −  But in Q L= ± we must select the correct sign. 

17.49. IDENTIFY and SET UP: Use Eq.(17.13) for the temperature changes and Eq.(17.20) for the phase changes. 
EXECUTE: Heat must be added to do the following 
ice at 10.0 C ice at 0 C− ° → °  

3
ice ice (12.0 10  kg)(2100 J/kg K)(0 C ( 10.0 C)) 252 JQ mc T −= Δ = × ⋅ ° − − ° =  

phase transition ice (0 C) liquid water (0 C) (melting)° → °  
3 3 3

melt f (12.0 10  kg)(334 10  J/kg) 4.008 10  JQ mL −= + = × × = ×  
water at 0 C°  (from melted ice → water at 100 C°  

3 3
water water (12.0 10  kg)(4190 J/kg K)(100 C 0 C) 5.028 10  JQ mc T −= Δ = × ⋅ ° − ° = ×  

phase transition water (100 C) steam (100 C) (boiling)° → °  
3 3 4

boil v (12.0 10  kg)(2256 10  J/kg) 2.707 10  JQ mL −= + = × × = ×  

The total Q is 3 3 4 4252 J 4.008 10  J 5.028 10  J 2.707 10  J 3.64 10  JQ = + × + × + × = ×  
4 3(3.64 10  J)(1 cal/4.186 J) 8.70 10  cal× = ×  
4(3.64 10  J)(1 Btu/1055 J) 34.5 Btu× =  

EVALUATE: Q is positive and heat must be added to the material. Note that more heat is needed for the liquid to 
gas phase change than for the temperature changes. 

17.50. IDENTIFY: Q mc T= Δ for a temperature change and fQ mL= + for the solid to liquid phase transition. The ice 
starts to melt when its temperature reaches 0.0 C.°  The system stays at 0.00 C°  until all the ice has melted. 
SET UP: For ice, 32.01 10  J/kg K.c = × ⋅  For water, 5

f 3.34 10  J/kg.L = ×  
EXECUTE: (a) Q to raise the temperature of ice to 0.00 C:°  

3 4(0.550 kg)(2.01 10  J/kg K)(15.0 C ) 1.66 10  J.Q mc T= Δ = × ⋅ = ×°  
41.66 10  J 20.8 min.

800.0 J/min
t ×

= =  

(b) To melt all the ice requires 5 5
f (0.550 kg)(3.34 10  J/kg) 1.84 10  J.Q mL= = × = ×  

51.84 10  J 230 min.
800.0 J/min

t ×
= =  

The total time after the start of the heating is 251 min. 
(c) A graph of T versus t is sketched in Figure 17.50. 
EVALUATE: It takes much longer for the ice to melt than it takes the ice to reach the melting point. 

 
Figure 17.50 

17.51. IDENTIFY and SET UP: Use Eq.(17.20) to calculate Q and then / .P Q t=  Must convert the quantity of ice from lb to kg. 
EXECUTE: �two-ton air conditioner� means 2 tons (4000 lbs) of ice can be frozen from water at 0°C in 24 h. Find 
the mass m that corresponds to 4000 lb (weight of water): (4000 lb)(1 kg/2.205 lb) 1814 kgm = =  (The kg to lb 
equivalence from Appendix E has been used.) The heat that must be removed from the water to freeze it is 

3 8
f (1814 kg)(334 10  J/kg) 6.06 10  J.Q mL= − = − × = − ×  The power required if this is to be done in 24 hours is 

8| | 6.06 10  J 7010 W
(24 h)(3600 s/1 h)

QP
t

×
= = =  or 4(7010 W)((1 Btu/h)/(0.293 W)) 2.39 10  Btu/h.P = = ×  

EVALUATE: The calculated power, the rate at which heat energy is removed by the unit, is equivalent to seventy 
100-W light bulbs. 
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17.52. IDENTIFY: For a temperature change, .Q mc T= Δ  For the vapor liquid→ phase transition, v.Q mL= −  

SET UP: For water, 6
v 2.256 10  J/kgL = ×  and 34.19 10  J/kg K.c = × ⋅  

EXECUTE: (a) v( )Q m L c T= + − + Δ  
3 6 3 4(25.0 10  kg)( 2.256 10  J/kg [4.19 10  J/kg K][ 66.0 C ]) 6.33 10  JQ −= + × − × + × ⋅ − = − ×°  

(b) 3 3 3(25.0 10  kg)(4.19 10  J/kg K)( 66.0 C ) 6.91 10  J.Q mc T −= Δ = × × ⋅ − = − ×°  
(c) The total heat released by the water that starts as steam is nearly a factor of ten larger than the heat released by 
water that starts at 100 C.°  Steam burns are much more severe than hot-water burns. 
EVALUATE: For a given amount of material, the heat for a phase change is typically much more than the heat for 
a temperature change. 

17.53. IDENTIFY and SET UP: The heat that must be added to a lead bullet of mass m to melt it is fQ mc t mL= Δ +  
( mc TΔ  is the heat required to raise the temperature from 25°C to the melting point of 327.3°C; fmL  is the heat 

required to make the solid → liquid phase change.) The kinetic energy of the bullet if its speed is v is 21
2 .K mv=  

EXECUTE: K Q=  says 21
f2 mv mc T mL= Δ +  

f2( )v c T L= Δ +  
32[(130 J/kg K)(327.3 C 25 C) 24.5 10  J/kg] 357 m/sv = ⋅ ° − ° + × =  

EVALUATE: This is a typical speed for a rifle bullet. A bullet fired into a block of wood does partially melt, but in 
practice not all of the initial kinetic energy is converted to heat that remains in the bullet. 

17.54. IDENTIFY: For a temperature change, .Q mc T= Δ  For the liquid vapor→ phase change, v.Q mL= +  

SET UP: The density of water is 31000 kg/m .  
EXECUTE: (a) The heat that goes into mass m of water to evaporate it is v.Q mL= +  The heat flow for the man is 

man ,Q m c T= Δ  where 1.00 CTΔ = − °.  0Q =∑ so v manmL m c T+ Δ  and 

man
6

v

(70.0 kg)(3480 J/kg K)( 1.00 C ) 0.101 kg 101 g.
2.42 10  J/kg

m c Tm
L

Δ ⋅ −
= − = − = =

×
°  

(b) 4 3 3
3

0.101 kg 1.01 10  m 101 cm .
1000 kg/m

mV
ρ

−= = = × =  This is about 28% of the volume of a soft-drink can. 

EVALUATE: Fluid loss by evaporation from the skin can be significant. 
17.55. IDENTIFY: Use Q Mc T= Δ to find Q for a temperature rise from 34.0 C°  to 40.0 C.°  Set this equal to 

vQ mL= and solve for m, where m is the mass of water the camel would have to drink. 

SET UP: 3480 J/kg Kc = ⋅ and 6
v 2.42 10  J/kg.L = ×  For water, 1.00 kg has a volume 1.00 L. 400 kgM = is the 

mass of the camel. 

EXECUTE: The mass of water that the camel saves is 6
v

(400 kg)(3480 J/kg K)(6.0 K) 3.45 kg
(2.42 10  J/kg)

Mc Tm
L
Δ ⋅

= = =
×

 

which is a volume of 3.45 L.  
EVALUATE: This is nearly a gallon of water, so it is an appreciable savings. 

17.56. IDENTIFY: The asteroid's kinetic energy is 21
2 .K mv=  To boil the water, its temperature must be raised to 

100.0 C° and the heat needed for the phase change must be added to the water. 
SET UP: For water, 4190 J/kg Kc = ⋅ and 3

v 2256 10  J/kg.L = ×  

EXECUTE: 15 3 2 241
2 (2.60 10  kg)(32.0 10  m/s) 1.33 10  J.K = × × = ×  v.Q mc T mL= Δ +  

22
15

3
v

1.33 10  J 5.05 10  kg.
(4190 J/kg K)(90.0 K) 2256 10  J/kg

Qm
c T L

×
= = = ×

Δ + ⋅ + ×
 

EVALUATE: The mass of water boiled is 2.5 times the mass of water in Lake Superior. 
17.57. IDENTIFY: Apply Q mc T= Δ to the air in the refrigerator and to the turkey. 

SET UP: For the air airm Vρ=  

EXECUTE: 3 3
air (1.20 kg/m )(1.50 m ) 1.80 kg.m = =  air air t t .Q m c T m c T= Δ + Δ  

5([1.80 kg][1020 J/kg K] [10.0 kg][3480 J/kg K])( 15.0 C 10  JQ = ⋅ + ⋅ − ×°)=−5.50  
EVALUATE: Q is negative because heat is removed. 5% of the heat removed comes from the air. 

17.58. IDENTIFY: Q mc T= Δ for a temperature change. The net Q for the system (sample, can and water) is zero. 

SET UP: For water, 3
w 4.19 10  J/kg K.c = × ⋅  For copper, c 390 J/kg K.c = ⋅  
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EXECUTE: For the water, 3 3
w w w w (0.200 kg)(4.19 10  J/kg K)(7.1 C ) 5.95 10  J.Q m c T= Δ = × ⋅ = ×°  

For the copper can, c c c c (0.150 kg)(390 J/kg K)(7.1 C ) 415 J.Q m c T= Δ = ⋅ =°  
For the sample, s s s s s(0.085 kg) ( 73.9 C ).Q m c T c= Δ = − °  

0Q =∑  gives 3
s(0.085 kg)( 73.9 C ) 415 J 5.95 10  J 0.c− + + × =°  3

s 1.01 10  J/kg K.c = × ⋅  

EVALUATE: Heat comes out of the sample and goes into the water and the can. The value of sc we calculated is 
consistent with the values in Table 17.3. 

17.59. IDENTIFY and SET UP: Heat flows out of the water and into the ice. The net heat flow for the system is zero. The 
ice warms 0°C, melts, and then the water from the melted ice warms from 0°C to the final temperature. 
EXECUTE: system 0;Q =  calculate Q for each component of the system: (Beaker has small mass says that 
Q mc T= Δ  for beaker can be neglected.) 
0.250 kg of water (cools from 75.0°C to 30.0°C) 

4
water (0.250 kg)(4190 J/kg K)(30.0 C 75.0 C) 4.714 10  JQ mc T= Δ = ⋅ ° − ° = − ×  

ice (warms to 0°C; melts; water from melted ice warms to 30.0°C) 
ice ice f waterQ mc T mL mc T= Δ + + Δ  

3
ice [(2100 J/kg K)(0 C ( 20.0 C)) 334 10  J/kg (4190 J/kg K)(30.0 C 0 C)]Q m= ⋅ ° − − ° + × + ⋅ ° − °  

5
ice (5.017 10  J/kg)Q m= ×  

system water ice0 says 0Q Q Q= + =  
4 54.714 10  J (5.017 10  J/kg) 0m− × + × =  

4

5

4.714 10  J 0.0940 kg
5.017 10  J/kg

m ×
= =

×
 

EVALUATE: Since the final temperature is 30.0°C we know that all the ice melts and the final system is all liquid 
water. The mass of ice added is much less than the mass of the 75°C water; the ice requires a large heat input for 
the phase change. 

17.60. IDENTIFY: For a temperature change .Q mc T= Δ  For a melting phase transition f .Q mL=  The net Q for the 
system (sample, vial and ice) is zero. 
SET UP: Ice remains, so the final temperature is 0.0 C.°  For water, 5

f 3.34 10  J/kg.L = ×  

EXECUTE: For the sample, 3
s s s s (16.0 10  kg)(2250 J/kg K)( 19.5 C ) 702 J.Q m c T −= Δ = × ⋅ − = −°  For the vial, 

3
v v v v (6.0 10  kg)(2800 J/kg K)( 19.5 C ) 328 J.Q m c T −= Δ = × ⋅ − = −°  For the ice that melts, i f .Q mL=  0Q =∑  gives 

f 702 J 328 J 0mL − − = and 33.08 10  kg 3.08 g.m −= × =  
EVALUATE: Only a small fraction of the ice melts. The water for the melted ice remains at 0 C°  and has no heat 
flow. 

17.61. IDENTIFY and SET UP: Large block of ice implies that ice is left, so 2 0 CT = °  (final temperature). Heat comes 
out of the ingot and into the ice. The net heat flow is zero. The ingot has a temperature change and the ice has a 
phase change. 
EXECUTE: system 0;Q =  calculate Q for each component of the system: 
ingot 

5
ingot (4.00 kg)(234 J/kg K)(0 C 750 C) 7.02 10  JQ mc T= Δ = ⋅ ° − ° = − ×  

ice 
ice f ,Q mL= +  where m is the mass of the ice that changes phase (melts) 

system ingot ice0 says 0Q Q Q= + =  
5 37.02 10  J (334 10  J/kg) 0m− × + × =  

5

3

7.02 10  J 2.10 kg
334 10  J/kg

m ×
= =

×
 

EVALUATE: The liquid produced by the phase change remains at 0°C since it is in contact with ice. 
17.62. IDENTIFY: The initial temperature of the ice and water mixture is 0.0 C.°  Assume all the ice melts. We will know 

that assumption is incorrect if the final temperature we calculate is less than 0.0 C.°  The net Q for the system (can, 
water, ice and lead) is zero. 
SET UP: For copper, c 390 J/kg K.c = ⋅  For lead, l 130 J/kg K.c = ⋅  For water, 3

w 4.19 10  J/kg Kc = × ⋅  and 
5

f 3.34 10  J/kg.L = ×  
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EXECUTE: For the copper can, c c c c (0.100 kg)(390 J/kg K)( 0.0 C) (39.0 J/K) .Q m c T T T= Δ = ⋅ − =°  

For the water, 3
w w w w (0.160 kg)(4.19 10  J/kg K)( 0.0 C) (670.4 J/K) .Q m c T T T= Δ = × ⋅ − =°  

For the ice, i i f i w wQ m L m c T= + Δ  
5 3

i (0.018 kg)(3.34 10  J/kg K) (0.018 kg)(4.19 10  J/kg K)( 0.0 C) 6012 J (75.4 J/K)Q T T= × ⋅ + × ⋅ − = +°  

For the lead, 4
l l l l (0.750 kg)(130 J/kg K)( 255 C) (97.5 J/K) 2.486 10  JQ m c T T T= Δ = ⋅ − = − ×°  

0Q =∑  gives 4(39.0 J/K) (670.4 J/K) 6012 J (75.4 J/K) (97.5 J/K) 2.486 10  J 0.T T T+ + + + − × =  
41.885 10  J 21.4 C.

882.3 J/K
T ×

= = °  

EVALUATE: 0.0 C,T > °  which confirms that all the ice melts. 
17.63. IDENTIFY: Set system 0,Q =  for the system of water, ice and steam. Q mc T= Δ for a temperature change and 

Q mL= ±  for a phase transition. 

SET UP: For water, 4190 J/kg K,c = ⋅  3
f 334 10  J/kgL = ×  and 3

v 2256 10  J/kg.L = ×  
EXECUTE: The steam both condenses and cools, and the ice melts and heats up along with the original water. 

i f i w steam v steam(28.0 C (28.0 C ( 72.0 Cm L m c m c m L m c+ + −°)+ °)− °)= 0.  The mass of steam needed is 
3

steam 3

(0.450 kg)(334 10  J/kg) (2.85 kg)(4190 J/kg K)(28.0 C ) 0.190 kg.
2256 10  J/kg (4190 J/kg K)(72.0 C )

m × + ⋅ °
= =

× + ⋅ °
 

EVALUATE: Since the final temperature is greater than 0.0 C,°  we know that all the ice melts. 

17.64. IDENTIFY: /H kA T L= Δ and .HLk
A T

=
Δ

 

SET UP: The SI units of H are watts, the units of area are 2m ,  the temperature difference is in K, the length is in 

meters, so the SI units for thermal conductivity are 2

[W][m] W .
[m ][K] m K

=
⋅

 

EVALUATE: An equivalent way to express the units of k is J/(s m K).⋅ ⋅  
17.65. IDENTIFY and SET UP: The temperature gradient is H C( )/T T L−  and can be calculated directly. Use Eq.(17.21) to 

calculate the heat current H. In part (c) use H from part (b) and apply Eq.(17.21) to the 12.0-cm section of the left 
end of the rod. 2 HT T=  and 1 ,T T=  the target variable. 
EXECUTE: (a) temperature gradient H C( )/ (100.0 C 0.0 C)/0.450 m 222 C /m 222 K/mT T L= − = ° − ° = ° =  
(b) H C( )/ .H kA T T L= −  From Table 17.5, 385 W/m K,k = ⋅  so 

4 2(385 W/m K)(1.25 10  m )(222 K/m) 10.7 WH −= ⋅ × =  
(c) 10.7 WH =  for all sections of the rod. 

 
Figure 17.65 

Apply /H ka T L= Δ  to the 12.0 cm section (Figure 17.65): H /T T LH kA− =  and 

H 4 2

(0.120 m)(10.7 W)/ 100.0 C 73.3 C
(1.25 10  m )(385 W/m K)

T T LH Ak −= − = ° − = °
× ⋅

 

EVALUATE: H is the same at all points along the rod, so /T xΔ Δ  is the same for any section of the rod with length 
.xΔ  Thus H H C( )/(12.0 cm) ( )/(45.0 cm)T T T T− = −  gives that H 26.7 CT T= = °  and 73.3 C,T = °  as we already 

calculated. 

17.66. IDENTIFY: For a melting phase transition, f .Q mL=  The rate of heat conduction is H C( ) .Q kA T T
t L

−
=  

SET UP: For water, 5
f 3.34 10  J/kg.L = ×  

EXECUTE: The heat conducted by the rod in 10.0 min is 
3 5 3

f (8.50 10  kg)(3.34 10  J/kg) 2.84 10  J.Q mL −= = × × = ×  
32.84 10  J 4.73 W.

600 s
Q
t

×
= =  

4 2
H C

( / ) (4.73 W)(0.600 m) 227 W/m K.
( ) (1.25 10  m )(100 C )
Q t Lk

A T T −= = = ⋅
− × °

 

EVALUATE: The heat conducted by the rod is the heat that enters the ice and produces the phase change. 
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17.67. IDENTIFY and SET UP: Call the temperature at the interface between the wood and the styrofoam T. The heat 
current in each material is given by H C( )/ .H kA T T L= −  

 

See Figure 17.67 
Heat current through the wood: w w 1 w( )H k A T T L= −  
Heat current through the styrofoam: s s 2 s( )/H k A T T L= −  

Figure 17.67  
In steady-state heat does not accumulate in either material. The same heat has to pass through both materials in 
succession, so w s.H H=  
EXECUTE: (a) This implies w 1 w s 2 s( )/ ( )/k A T T L k A T T L− = −  

w s 1 s w 2( ) ( )k L T T k L T T− = −  

w s 1 s w 2

w s s w

0.0176 W C/K 00057 W C/K 5.8 C
0.00206 W/K

k L T k L TT
k L k L

+ − ⋅° + ⋅ °
= = = − °

+
 

EVALUATE: The temperature at the junction is much closer in value to 1T  than to 2.T  The styrofoam has a very 
large k, so a larger temperature gradient is required for than for wood to establish the same heat current. 

(b) IDENTIFY and SET UP: Heat flow per square meter is H C .H T Tk
A L

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 We can calculate this either for the 

wood or for the styrofoam; the results must be the same. 
EXECUTE: wood 

2w 1
w

w

( 5.8 C ( 10.0 C))(0.080 W/m K) 11 W/m .
0.030 m

H T Tk
A L

− − ° − − °
= = ⋅ =  

styrofoam 
2s 2

s
s

(19.0 C ( 5.8 C))(0.010 W/m K) 11 W/m .
A 0.022 m
H T Tk

L
− ° − − °

= = ⋅ =  

EVALUATE: H must be the same for both materials and our numerical results show this. Both materials are good 
insulators and the heat flow is very small. 

17.68. IDENTIFY: H C( )Q kA T T
t L

−
=  

SET UP: H C 175 C 35 C.T T− = −° °  1 K 1 C ,= °  so there is no need to convert the temperatures to kelvins. 

EXECUTE: (a) 
2

2

(0.040 W/m K)(1.40 m )(175 C 35 C) 196 W.
4.0 10  m

Q
t −

⋅ −
= =

×
° °  

(b) The power input must be 196 W, to replace the heat conducted through the walls. 
EVALUATE: The heat current is small because k is small for fiberglass. 

17.69. IDENTIFY: Apply Eq.(17.23). .Q Ht=  
SET UP: 1 Btu 1055 J=  

EXECUTE: The energy that flows in time t is 
2

5
2

(125 ft )(34 F ) (5.0 h) 708 Btu 7.5 10  J.
(30 ft F h/Btu)

A TQ Ht t
R
Δ °

= = = = = ×
⋅ ° ⋅

 

EVALUATE: With the given units of R, we can use A in 2ft ,  TΔ  in F°  and t in h, and the calculation then gives 
Q in Btu. 

17.70. IDENTIFY: .Q kA T
t L

Δ
=  /Q t  is the same for both sections of the rod. 

SET UP: For copper, c 385 W/m K.k = ⋅  For steel, s 50.2 W/m K.k = ⋅  

EXECUTE: (a) For the copper section, 
4 2(385 W/m K)(4.00 10  m )(100 C 65.0 C) 5.39 J/s.

1.00 m
Q
t

−⋅ × −
= =

° °  

(b) For the steel section,
4 2(50.2 W/m K)(4.00 10  m )(65.0 C 0 C) 0.242 m.

( / ) 5.39 J/s
kA TL
Q t

−Δ ⋅ × −
= = =

° °  

EVALUATE: The thermal conductivity for steel is much less than that for copper, so for the same TΔ and A a 
smaller L for steel would be needed for the same heat current as in copper. 
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17.71. IDENTIFY and SET UP: The heat conducted through the bottom of the pot goes into the water at 100°C to convert 
it to steam at 100°C. We can calculate the amount of heat flow from the mass of material that changes phase. Then 
use Eq.(17.21) to calculate H,T  the temperature of the lower surface of the pan. 

EXECUTE: 3 5
v (0.390 kg)(2256 10  J/kg) 8.798 10  JQ mL= = × = ×  
5 3/ 8.798 10  J/180 s 4.888 10  J/sH Q t= = × = ×  

Then H C( )/H kA T T L= −  says that 
3 3

H C 2

(4.888 10  J/s)(8.50 10  m) 5.52 C
(50.2 W/m K)(0.150 m )

HLT T
kA

−× ×
− = = = °

⋅
 

H C 5.52 C 100 C 5.52 C 105.5 CT T= + ° = ° + ° = °  
EVALUATE: The larger H CT T−  is the larger H is and the faster the water boils. 

17.72. IDENTIFY: Apply Eq.(17.21) and solve for A. 
SET UP: The area of each circular end of a cylinder is related to the diameter D by 2 2( / 2) .A R Dπ π= =  For 
steel, 50.2 W/m K.k = ⋅  The boiling water has 100 C,T = °  so 300 K.TΔ =  

EXECUTE: Q TkA
t L

Δ
=  and ( ) 300 K150 J/s 50.2 W/m K .

0.500 m
A⎛ ⎞= ⋅ ⎜ ⎟

⎝ ⎠
 This gives 3 24.98 10  m ,A −= ×  and 

3 2 24 /  4(4.98 10  m )/ 8.0 10  m 8.0 cm.D A π π− −= = × = × =  
EVALUATE: H increases when A increases. 

17.73. IDENTIFY: Assume the temperatures of the surfaces of the window are the outside and inside temperatures. Use 
the concept of thermal resistance. For part (b) use the fact that when insulating materials are in layers, the R values 
are additive.  
SET UP: From Table 17.5, 0.8 W/m Kk = ⋅ for glass. / .R L k=  

EXECUTE: (a) For the glass, 
3

3 2
glass

5.20 10  m 6.50 10  m K/W.
0.8 W/m K

R
−

−×
= = × ⋅

⋅
 

4H C
3 2

( ) (1.40 m)(2.50 m)(39.5 K) 2.1 10  W
6.50 10  m K/W

A T TH
R −

−
= = = ×

× ⋅
 

(b) For the paper, 
3

2
paper

0.750 10  m 0.015 m K/W.
0.05 W/m K

R
−×

= = ⋅
⋅

 The total R is 2
glass paper 0.0215 m K/W.R R R= + = ⋅  

3H C
2

( ) (1.40 m)(2.50 m)(39.5 K) 6.4 10  W.
0.0215 m K/W

A T TH
R
−

= = = ×
⋅

 

EVALUATE: The layer of paper decreases the rate of heat loss by a factor of about 3. 

17.74. IDENTIFY: The rate of energy radiated per unit area is 4.H e T
A

σ=  

SET UP: A blackbody has 1.e =  

EXECUTE: (a) 8 2 4 4 2(1)(5.67 10  W/m K )(273 K) 315 W/mH
A

−= × ⋅ =  

(b) 8 2 4 4 6 2(1)(5.67 10  W/m K )(2730 K) 3.15 10  W/mH
A

−= × ⋅ = ×  

EVALUATE: When the Kelvin temperature increases by a factor of 10 the rate of energy radiation increases by a 
factor of 410 .  

17.75. IDENTIFY: Use Eq.(17.26) to calculate net .H  

SET UP: 4 4
net s( )H Ae T Tσ= −  (Eq.(17.26); T must be in kelvins) 

Example 17.16 gives 21.2 m ,A =  1.0,e =  and 30 C 303 KT = ° =  (body surface temperature) 

s 5.0 C 278 KT = ° =  
EXECUTE: net 573.5 W 406.4 W 167 WH = − =  
EVALUATE: Note that this is larger than netH  calculated in Example 17.16. The lower temperature of the 
surroundings increases the rate of heat loss by radiation. 

17.76. IDENTIFY: The net heat current is 4 4
s( ).H Ae T Tσ= −  A power input equal to H is required to maintain constant 

temperature of the sphere. 
SET UP: The surface area of a sphere is 24 .rπ  
EXECUTE: 2 8 2 4 4 4 44 (0.0150 m) (0.35)(5.67 10  W/m K )([3000 K] [290 K] ) 4.54 10  WH π −= × ⋅ − = ×  

EVALUATE: Since 3000 K 290 K>  and H is proportional to 4,T  the rate of emission of heat energy is much 
greater than the rate of absorption of heat energy from the surroundings. 
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17.77. IDENTIFY: Use Eq.(17.26) to calculate A. 
SET UP: 4H Ae Tσ=  so 4/A H e Tσ=  
150-W and all electrical energy consumed is radiated says 150 WH =  

EXECUTE: 4 2 4 2 2
8 2 4 4

150 W 2.1 10  m (1 10  cm /1 m ) 2.1 cm
(0.35)(5.67 10  W/m K )(2450 K)

A − 2
−= = × × =

× ⋅
 

EVALUATE: Light bulb filaments are often in the shape of a tightly wound coil to increase the surface area; larger 
A means a larger radiated power H. 

17.78. IDENTIFY: Apply 4H Ae Tσ= and calculate A. 
SET UP: For a sphere of radius R, 24 .A Rπ=  8 2 45.67 10  W/m K .σ −= × ⋅  The radius of the earth is 

6
E 6.38 10  m,R = ×  the radius of the sun is 8

sun 6.96 10  m,R = ×  and the distance between the earth and the sun is 
111.50 10  m.r = ×  

EXECUTE: The radius is found from
4

2

/( ) 1 .
4 4 4
A H T HR

T
σ

π π πσ
= = =  

(a) 
32

11
a 8 2 4 2

(2.7 10  W) 1 1.61 10  m
4 (5.67 10  W/m K ) (11,000 K)

R
π −

×
= = ×

× ⋅
 

(b) 
23

6
b 8 2 4 2

(2.10 10  W) 1 5.43 10  m
4 (5.67 10  W/m K ) (10,000 K)

R
π −

×
= = ×

× ⋅
 

EVALUATE: (c) The radius of Procyon B is comparable to that of the earth, and the radius of Rigel is comparable to 
the earth-sun distance. 

17.79. IDENTIFY and SET UP: Use the temperature difference in M° and in C° between the melting and boiling points of 
mercury to relate M° to C°. Also adjust for the different zero points on the two scales to get an equation for TM in 
terms of TC. 
(a) EXECUTE: normal melting point of mercury: 39 C 0.0 M− ° = °  
normal boiling point of mercury: 357 C 100.0 M° = °  
100.0 M 396 C  so 1 M 3.96 C° = ° ° = °  
Zero on the M scale is 39−  on the C scale, so to obtain TC multiply TM by 3.96 and then subtract 39°: 

C 3.96 39MT T= − °  
Solving for MT  gives 1

M C3.96 ( 39 )T T= + °  
The normal boiling point of water is 100°C; 1

M 3.96 (100 39 ) 35.1 MT = ° + ° = °  
(b) 10.0 M 39.6 C° = °  
EVALUATE: A M° is larger than a C° since it takes fewer of them to express the difference between the boiling 
and melting points for mercury. 

17.80. IDENTIFY: Apply 0L L TαΔ = Δ to the radius of the hoop. The thickness of the space equals the increase in radius 
of the hoop. 
SET UP: The earth has radius 6

E 6.38 10  mR = × and this is the initial radius 0R of the hoop. For steel, 
5 11.2 10  K .α − −= ×  1 K 1 C= °.  

EXECUTE: The increase in the radius of the hoop would be 
6 5 1(6.38 10  m)(1.2 10  K )(0.5 K) 38 m.R R Tα − −Δ = Δ = × × =  

EVALUATE: Even though RΔ is large, the fractional change in radius, 0/ ,R RΔ  is very small. 
17.81. IDENTIFY: The volume increases by 0V V TβΔ = Δ  and the mass is constant. / .m Vρ =  

SET UP: Copper has density 3 3
0 8.9 10  kg/mρ = ×  and coefficient of volume expansion 5 15.1 10  (C ) .β − −= × °  The 

tube is initially at temperature 0,T  has sides of length 0,L  volume 0,V  density 0,ρ  and coefficient of volume 
expansion .β  
EXECUTE: (a) When the temperature increase to 0 ,T T+ Δ  the volume changes by an amount ,VΔ  where 

0 .V V TβΔ = Δ  Then, 
0

,m
V V

ρ =
+ Δ

 or eliminating 
0 0

,  .mV
V V T

ρ
β

Δ =
+ Δ

 Divide the top and bottom by 0V  and 

substitute 0 0/ .m Vρ =  Then 0 .
1 T

ρρ
β

=
+ Δ

 This can be rewritten as ( ) 1
0 1 .Tρ ρ β −= + Δ  Then using the expression 

( )1 1 ,nx nx+ ≈ +  where ( )01,  1 .n Tρ ρ β= − = − Δ  This is accurate when TβΔ is small, which is the case if 
1/ .T βΔ !  1/β  is on the order of 104 C° and TΔ is typically about 102 C° or less, so this approximation is accurate. 
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(b) The copper cube has sides of length 1.25 cm 0.0125 m= and 70.0 C 20.0 C 50.0 CTΔ = ° − ° = °.  
5 3 9 3

0 (5.1 10  (C ) )(0.0125 m) (50.0 C ) 5 10  m .V V Tβ − −Δ = Δ = × ° ° = ×−1  Similarly, 
3 3 5 1 3 3(8.9 10  kg/m )(1 (5.1 10  (C ) )(50.0 C )) 8.877 10  kg/m .ρ − −= × − × = ×° °  Therefore, 323 kg/m .ρΔ = −  

EVALUATE: When the temperature increases, the volume decreases and the density increases. 

17.82. IDENTIFY: / / .v F FL mμ= =  For the fundamental, 2Lλ =  and 1 .
2

v Ff
mLλ

= =  F, v and λ change when T 

changes because L changes. ,L L TαΔ = Δ  where L is the original length. 
SET UP: For copper, 5 11.7 10  (C ) .α − −= × °  
EXECUTE: (a) We can use differentials to find the frequency change because all length changes are small percents. 

ff L
L

∂
Δ ≈ Δ

∂
 (only L changes due to heating). 1/ 2 21 1 1 1 1

2 2 2 2 2( / ) ( / )( 1/ ) .F L Lf F mL F m L L f
mL L L

− ⎛ ⎞ Δ Δ
Δ = − Δ = =⎜ ⎟⎜ ⎟

⎝ ⎠
 

5 11 1
2 2( ) (1.7 10  (C ) )(40 C )(440 Hz) 0.15 Hz.f T fα − −Δ = − Δ = − × ° ° = −  The frequency decreases since the length 

increases. 

(b) .vv L
L

∂
Δ = Δ

∂
 

1 21
5 1 42 ( ) ( ) 1 (1.7 10  (C ) )(40 C ) 3.4 10 0.034%.

2 2 2
FL m F m Lv L T

v LFL m
α−

− − −ΔΔ Δ Δ
= = = = × ° ° = × =  

(d) 2Lλ = so 22 .2
L LL TL L

λλ αλ
Δ Δ ΔΔ = Δ → = = = Δ  5 1 4(1.7 10  (C ) )(40 C ) 6.8 10 0.068%.λ

λ
− − −Δ

= × ° = × =°  

λ  increases. 
EVALUATE: The wave speed and wavelength increase when the length increases and the frequency decreases. 
The percentage change in the frequency is 0.034%.−  The fractional change in all these quantities is very small. 

17.83. IDENTIFY and SET UP: Use Eq.(17.8) for the volume expansion of the oil and of the cup. Both the volume of the 
cup and the volume of the olive oil increase when the temperature increases, but β  is larger for the oil so it 
expands more. When the oil starts to overflow, 3

oil glass (1.00 10  m) ,V V A−Δ = Δ + ×  where A is the cross-sectional 
area of the cup. 
EXECUTE: oil 0,oil oil oil(9.9 cm)V V T A Tβ βΔ = Δ = Δ  

glass 0,glass glass glass(10.0 cm)AV V T Tβ βΔ = Δ = Δ  
3

oil glass(9.9 cm)A (10.0 cm)A (1.00 10  m)T T Aβ β −Δ − Δ + ×  
The A divides out. Solving for TΔ  gives 15.5 CTΔ = °  

2 1 37.5 CT T T= + Δ = °  
EVALUATE: If the expansion of the cup is neglected, the olive oil will have expanded to fill the cup when 

oil(0.100 cm) (9.9 cm) ,A A Tβ= Δ  so 15.0 CTΔ = °  and 2 37.0 C.T = °  Our result is slightly higher than this. The cup 
also expands but not very much since glass oil.β β!  

17.84. IDENTIFY: Volume expansion: .dV V dTβ=  / .dV dT
V

β =  

SET UP: /dV dT is the slope of the graph of V versus T, the graph given in Figure 17.12 in the textbook. 

EXECUTE: Slope of graph .
V

β =  Construct the tangent to the graph at 2°C and 8°C and measure the slope of this line.  
3

30.10 cmAt 22 C: Slope  and 1000 cm .
3 C

V° ≈ − ≈
°

 
3

5 1
3

0.10 cm /3 C 3 10  (C ) .
1000 cm

β − −°
≈ − ≈ − × °  The slope in negative, as the 

water contracts or it is heated. At 
3

30.24 cm8 C: slope  and 1000 cm .
4 C

V° ≈ ≈
°

 
3

5 1
3

0.24 cm /4 C 6 10  (C ) .
1000 cm

β − −°
≈ ≈ × °  

The water now expands when heated. 
EVALUATE: 0β >  when the material expands when heated and 0β <  when the material contracts when it is 
heated. The minimum volume is at about 4 C°  and β  has opposite signs above and below this temperature. 

17.85. IDENTIFY: Use Eq.(17.6) to find the change in diameter of the sphere and the change in length of the cable. Set 
the sum of these two increases in length equal to 2.00 mm. 
SET UP: 5 1

brass 2.0 10  Kα − −= ×  and 5 1
steel 1.2 10  K .α − −= ×  

EXECUTE: brass 0,brass steel 0,steel( ) .L L L Tα αΔ = + Δ  
3

5 1 5 1

2.00 10  m 15.0 C
(2.0 10  K )(0.350 m) (1.2 10  K )(10.5 m)

T
−

− − − −

×
Δ = =

× + ×
°.  2 1 35.0 C.T T T= + Δ = °  

EVALUATE: The change in diameter of the brass sphere is 0.10 mm. This is small, but should not be neglected. 
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17.86. IDENTIFY: Conservation of energy says e c 0,Q Q+ =  where eQ and cQ are the heat changes for the ethanol and 
cylinder. To find the volume of ethanol that overflows calculate VΔ for the ethanol and for the cylinder. 
SET UP: For ethanol, e 2428 J/kg Kc = ⋅ and 5 1

e 75 10  K .β − −= ×  
EXECUTE: (a) e c 0Q Q+ =  gives e e f c c f( [ 10.0 C]) ( 20.0 C]) 0.m c T m c T− − + − =° °  

c c e e
f

e e c c

(20.0 C) (10.0 C) .m c m cT
m c m c

−
=

+
° °  f

(20.0 C)(0.110 kg)(840 J/kg K) (10.0 C)(0.0873 kg)(2428 J/kg K) .
(0.0873 kg)(2428 J/kg K) (0.110 kg)(840 J/kg K)

T ⋅ − ⋅
=

⋅ + ⋅
° °  

f
271.6 C 0.892 C.
304.4

T −
= = −

°
°  

(b) 5 1 3 3
e e e (75 10  K )(108 cm )( 0.892 C [ 10.0 C]) 0.738 cm .V V Tβ − −Δ = Δ = × − − − = +° °  

5 1 3 3
c c c (1.2 10  K )(108 cm )( 0.892 C 20.0 C) 0.0271 cm .V V Tβ − −Δ = Δ = × − − = −° °  The volume that overflows is 

3 3 30.738 cm ( 0.0271 cm ) 0.765 cm .− − =  
EVALUATE: The cylinder cools so its volume decreases. The ethanol warms, so its volume increases. The sum of 
the magnitudes of the two volume changes gives the volume that overflows. 

17.87. IDENTIFY and SET UP: Call the metals A and B. Use the data given to calculate α  for each metal. 
EXECUTE: 0 0 so /( )L L T L L Tα αΔ = Δ = Δ Δ  

metal A: 5 1

0

0.0650 cm 2.167 10  (C )
(30.0 cm)(100 C )A

L
L T

α − −Δ
= = = × °

Δ °
 

metal B: 5 1

0

0.0350 cm 1.167 10  (C )
(30.0 cm)(100 C )B

L
L T

α − −Δ
= = = × °

Δ °
 

EVALUATE: 0  and L TΔ  are the same, so the rod that expands the most has the larger .α  
IDENTIFY and SET UP: Now consider the composite rod (Figure 17.87). Apply Eq.(17.6). The target variables are 
LA and LB, the lengths of the metals A and B in the composite rod. 

 

100 CTΔ = °  
0.058 cmLΔ =  

Figure 17.87  
EXECUTE: ( )A B A A B BL L L L L Tα αΔ = Δ + Δ = + Δ  

/ (0.300 m )A A B AL T L Lα αΔ Δ = + −  
2 5 1

5 1

/ (0.300 m) (0.058 10  m/100 C ) (0.300 m)(1.167 10 (C ) )
1.00 10  (C )

B
A

A B

L TL α
α α

− − −

− −

Δ Δ − × ° − × °
= =

− × °
 

30.0 cm 30.0 cm 23.0 m 7.0 cmB AL L= − = − =  
EVALUATE: The expansion of the composite rod is similar to that of rod A, so the composite rod is mostly 
metal A. 

17.88. IDENTIFY: Apply 0V V TβΔ = Δ to the gasoline and to the volume of the tank. 

SET UP: For aluminum, 5 17.2 10  K .β − −= ×  3 31 L 10  m .−=  
EXECUTE: (a) The lost volume, 2.6 L, is the difference between the expanded volume of the fuel and the tanks, 
and the maximum temperature difference is 

3 3

4 1 5 1 3 3
fuel A1 0

(2.6 10  m ) 28 C .
( ) (9.5 10  (C ) 7.2 10  (C ) )(106.0 10  m )

VT
Vβ β

−

− − − − −

Δ ×
Δ = = = °

− × ° − × ° ×
 

The maximum temperature was 32°C. 
(b) No fuel can spill if the tanks are filled just before takeoff. 
EVALUATE: Both the volume of the gasoline and the capacity of the tanks increased when T increased. But β is 
larger for gasoline than for aluminum so the volume of the gasoline increased more. When the tanks have returned 
to 4.0°C on Sunday morning there is 2.6 L of air space in the tanks. 

17.89. IDENTIFY: The change in length due to heating is 0TL L TαΔ = Δ and this need not equal .LΔ  The change in 

length due to the tension is 0 .F
FLL
AY

Δ =  Set .F TL L LΔ = Δ + Δ  

SET UP: 5 1
brass 2.0 10  (C ) .α − −= × °  5 1

steel 1.5 10  (C ) .α − −= × °  10
steel 20 10  Pa.Y = ×  

EXECUTE: (a) The change in length is due to the tension and heating . 
0

.L F TL AY αΔ = + Δ  Solving for / ,F A  

0

.F LY T
A L

α
⎛ ⎞Δ

= − Δ⎜ ⎟
⎝ ⎠
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(b) The brass bar is given as �heavy� and the wires are given as �fine,� so it may be assumed that the stress in the 
bar due to the fine wires does not affect the amount by which the bar expands due to the temperature increase. This 
means that LΔ is not zero, but is the amount brass 0L Tα Δ  that the brass expands, and so 

10 5 1 5 1 8
steel brass steel( ) (20 10  Pa)(2.0 10  (C ) 1.2 10  (C ) )(120 C ) 1.92 10  Pa.F Y T

A
α α − − − −= − Δ = × × ° − × ° = ×°  

EVALUATE: The length of the brass bar increases more than the length of the steel wires. The wires remain taut 
and are under tension when the temperature of the system is raised above 20°C. 

17.90. IDENTIFY: Apply the equation derived in part (a) of Problem 17.89 to the steel and aluminum sections. The sum 
of the LΔ values of the two sections must be zero. 
SET UP: For steel, 1020 10  PaY = × and 5 11.2 10  (C ) .α − −= × °  For aluminum, 107.0 10  PaY = × and 

5 12.4 10  (C ) .α − −= × °  
EXECUTE: In deriving Eq.(17.12), it was assumed that 0;LΔ =  if this is not the case when there are both thermal 

and tensile stresses, Eq. (17.12) becomes 0 .FL L T
AY

α⎛ ⎞Δ = Δ +⎜ ⎟
⎝ ⎠

 (See Problem 17.89.) For the situation in this 

problem, there are two length changes which must sum to zero, and so Eq.(17.12) may be extended to two 

materials a and b in the form 0a a 0b b
a b

0.F FL T L T
AY AY

α α
⎛ ⎞ ⎛ ⎞

Δ + + Δ + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Note that in the above, ,   and T F AΔ  are 

the same for the two rods. Solving for the stress / ,F A  a 0a b 0b

oa a 0b b

.
(( ) ( ))

F L L T
A L Y L Y

α α+
= − Δ

+
 

5 1 5 1
8

10 10

(1.2 10  (C ) )(0.350 m) (2.4 10  (C ) )(0.250 m) (60.0 C ) 1.2 10  Pa.
((0.350 m 20 10  Pa) (0.250 m 7 10  Pa))

F
A

− − − −× ° + × °
= ° = − ×

× + ×
 

EVALUATE: /F A is negative and the stress is compressive. If the steel rod was considered alone and its length 
was held fixed, the stress would be 8

steel steel 1.4 10  Pa.Y Tα− Δ = − ×  For the aluminum rod alone the stress would be 
8

aluminum aluminum 1.0 10  Pa.Y Tα− Δ = − ×  The stress for the combined rod is the average of these two values. 
17.91. (a) IDENTIFY and SET UP: The diameter of the ring undergoes linear expansion (increases with T )  just like a 

solid steel disk of the same diameter as the hole in the ring. Heat the ring to make its diameter equal to 2.5020 in. 

EXECUTE: 0L L TαΔ = Δ  so 5 1
0

0.0020 in. 66.7 C
(2.5000 in.)(1.2 10 (C ) )

LT
L α − −

Δ
Δ = = = °

× °
 

0 20.0 C 66.7 C 87 CT T T= + Δ = ° + ° = °  
(b) IDENTIFY and SET UP: Apply the linear expansion equation to the diameter of the brass shaft and to the 
diameter of the hole in the steel ring. 
EXECUTE: 0 (1 )L L Tα= + Δ  
Want s b (steel)  (brass)L L=  for the same TΔ  for both materials: 0s s 0b b(1 ) (1 )L T L Tα α+ Δ = + Δ  so 

0s 0s s 0b 0b bL L T L L Tα α+ Δ = + Δ  

0b 0s
5 1 5 1

0s s 0b b

2.5020 in. 2.5000 in.
(2.5000 in.)(1.2 10 (C ) ) (2.5050 in.)(2.0 10 (C ) )

L LT
L Lα α − − − −

− −
Δ = =

− × ° − × °
 

5 5

0.0020  C 100 C
3.00 10 5.00 10

T − −Δ = ° = − °
× − ×

 

0 20.0 C 100 C 80 CT T T= + Δ = ° − ° = − °  
EVALUATE: Both diameters decrease when the temperature is lowered but the diameter of the brass shaft 
decreases more since b s;α α>  b s| | | | 0.0020 in.L LΔ − Δ =  

17.92. IDENTIFY: Follow the derivation of Eq.(17.12). 
SET UP: For steel, the bulk modulus is 111.6 10  PaB = ×  and the volume expansion coefficient is 

5 13.0 10  K .β − −= ×  
EXECUTE: (a) The change in volume due to the temperature increase is ,V Tβ Δ  and the change in volume due to 

the pressure increase is .V pB− Δ  Setting the net change equal to zero, ,  or .pV T V p B VBβ βΔΔ = Δ = Δ  

(b) From the above, 11 5 1 7(1.6 10  Pa)(3.0 10  K )(15.0 K) 8.6 10  Pa.p − −Δ = × × = ×  
EVALUATE: pΔ in part (b) is about 850 atm. A small temperature increase corresponds to a very large pressure 
increase. 
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17.93. IDENTIFY: Apply Eq.(11.14) to the volume increase of the liquid due to the pressure decrease. Eq.(17.8) gives 
the volume decrease of the cylinder and liquid when they are cooled. Can think of the liquid expanding when the 
pressure is reduced and then contracting to the new volume of the cylinder when the temperature is reduced. 
SET UP: Let 1β  and mβ  be the coefficients of volume expansion for the liquid and for the metal. Let TΔ  be the 
(negative) change in temperature when the system is cooled to the new temperature. 
EXECUTE: Change in volume of cylinder when cool: m m 0 (negative)V V TβΔ = Δ  

Change in volume of liquid when cool: 1 1 0 (negative)V V TβΔ = Δ  
The difference 1 mV VΔ = Δ  must be equal to the negative volume change due to the increase in pressure, which is 

0 0/ .pV B k pV−Δ = − Δ  Thus 1 m 0.V V k pVΔ − Δ = − Δ  

1 m

k pT
β β

Δ
Δ = −

−
 

10 1 5

4 1 5 1

(8.50 10  Pa )(50.0 atm)(1.013 10  Pa/1 atm) 9.8 C
4.80 10  K 3.90 10  K

T
− −

− − − −

× ×
Δ = − = − °

× − ×
 

0 30.0 C 9.8 C 20.2 C.T T T= + Δ = ° − ° = °  
EVALUATE: A modest temperature change produces the same volume change as a large change in pressure; 
B β"  for the liquid. 

17.94. IDENTIFY: system 0.Q =  Assume that the normal melting point of iron is above 745 C,°  so the iron initially is solid. 

SET UP: For water, 4190 J/kg Kc = ⋅ and 3
v 2256 10  J/kg.L = ×  For solid iron, 470 J/kg K.c = ⋅  

EXECUTE: The heat released when the iron slug cools to 100 C°  is 
4(0.1000 kg)(470 J/kg K)(645 K) 3.03 10  J.Q mc T= Δ = ⋅ = ×  The heat absorbed when the temperature of the water 

is raised to 100 C° is 4(0.0750 kg)(4190 J/kg K)(80.0 K) 2.51 10  J.Q mc T= Δ = ⋅ = ×  This is less than the heat 

released from the iron and 4 4 33.03 10  J 2.51 10  J 5.20 10  J× − × = × of heat is available for converting some of the 

liquid water at 100 C° to vapor. The mass m of water that boils is 
3

3
3

5.20 10  J 2.30 10  kg 2.3 g
2256 10  J/kg

m −×
= = × =

×
 

(a) The final temperature is 100 C.°  
(b) There is 75.0 g 2.3 g 72.7 g− =  of liquid water remaining, so the final mass of the iron and remaining water is 
172.7 g. 
EVALUATE: If we ignore the phase change of the water and write 

iron iron water water( 745 C) ( 200 C) 0,m c T m c T− + − =° °  when we solve for T we will get a value larger than 100 C.°  That 
result is unphysical and tells us that some of the water changes phase. 

17.95. (a) IDENTIFY: Calculate K /Q. We don't know the mass m of the spacecraft, but it divides out of the ratio. 
SET UP: The kinetic energy is 21

2 .K mv=  The heat required to raise its temperature by 600 C° (but not to melt it) 
is .Q mc T= Δ  

EXECUTE: The ratio is 
2 2 21

2 (7700 m/s) 54.3.
2 2(910 J/kg K)(600 C )

mvK v
Q mc T c T

= = = =
Δ Δ ⋅ °

 

(b) EVALUATE: The heat generated when friction work (due to friction force exerted by the air) removes the 
kinetic energy of the spacecraft during reentry is very large, and could melt the spacecraft. Manned space vehicles 
must have heat shields made of very high melting temperature materials, and reentry must be made slowly. 

17.96. IDENTIFY: The rate at which thermal energy is being generated equals the rate at which the net torque due to the 
rope is doing work. The energy input associated with a temperature change is .Q mc T= Δ  
SET UP: The rate at which work is being done is .P τω=  For iron, 470 J/kg K.c = ⋅  1 C 1 K=°  
EXECUTE: (a) The net torque that the rope exerts on the capstan, and hence the net torque that the capstan exerts 
on the rope, is the difference between the forces of the ends of the rope times the radius of the capstan. The capstan 

is doing work on the rope at a rate ( )( ) ( )
2

net
2  rad 2  rad520 N 5.0 10  m 182 W,

0.90 s
P F r

T
π πτω −= = = × =  or 180 W to 

two figures. A larger number of turns might increase the force, but for given forces, the torque is independent of 
the number of turns. 

(b) / (182 W) 0.064 C s.
(6.00 kg)(470 J kg K)

T Q t P
t mc mc

Δ
= = = = °

⋅
 

EVALUATE: The rate of temperature rise is proportional to the difference in tension between the ends of the rope 
and to the rate at which the capstan is rotating. 
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17.97. IDENTIFY and SET UP: To calculate Q, use Eq.(17.18) in the form dQ nC dT=  and integrate, using ( )C T  given 
in the problem. avC  is obtained from Eq.(17.19) using the finite temperature range instead of an infinitesimal dT.  
EXECUTE: (a) dQ mcdT=  

( )2 2 2
2

1
1 1 1

   3 3 3 3 3 41
4   

 ( / ) ( / )  ( / )
T T T T

TT T T
Q n C dT n k T dT nk T dt nk T= = Θ = Θ = Θ∫ ∫ ∫  

4 4 4 4
2 13 3

(1.50 mol)(1940 J/mol K)( ) ((40.0 K) (10.0 K) ) 83.6 J
4 4(281 K)
nkQ T T ⋅

= − = − =
Θ

 

(b) av
1 1 83.6 J 1.86 J/mol K

1.50 mol 40.0 K 10.0 K
QC

n T
Δ ⎛ ⎞= = = ⋅⎜ ⎟Δ −⎝ ⎠

 

(c) 3 3( / ) (1940 J/mol K)(40.0 K/281 K) 5.60 J/mol KC k t= Θ = ⋅ = ⋅  
EVALUATE: C is increasing with T, so C at the upper end of the temperature integral is larger than its average 
value over the interval. 

17.98. IDENTIFY: For a temperature change, ,Q mc T= Δ  and for the liquid solid→  phase change, f .Q mL= −  

SET UP: The volume wV  of the water determines its mass. w w w.m Vρ=  For water, 3
w 1000 kg/m ,ρ =  

4190 J/kg Kc = ⋅ and 3
f 334 10  J/kg.L = ×  

EXECUTE: Set the heat energy that flows into the water equal to the final gravitational potential energy. 
f w w w w w .L V c V T mghρ ρ+ Δ =  Solving for h, and inserting numbers: 

3 3 3

2

(1000 kg m )(1.9 0.8 0.1 m ) 334 10  J kg (4190 J kg K)(37 C )
.

(70 kg)(9.8 m s )
h

⎡ ⎤× × × + ⋅⎣ ⎦=
°

 

51.08 10  m 108 km.h = × =  
EVALUATE: The heat associated with temperature and phase changes corresponds to a large amount of 
mechanical energy. 

17.99. IDENTIFY: Apply Q mc T= Δ to the air in the room. 

SET UP: The mass if air in the room is 3 3(1.20 kg/m )(3200 m ) 3840 kg.m Vρ= = =  1 W 1 J/s.=  

EXECUTE: (a) 7(3000 s)(90 students)(100 J/s student) 2.70 10  J.Q = ⋅ = ×  

(b) .Q mc T= Δ  
72.70 10  J 6.89 C

(3840 kg)(1020 J/kg K)
QT
mc

×
Δ = = =

⋅
°  

(c) 280 W(6.89 C ) 19.3 C
100 W

T ⎛ ⎞Δ = =⎜ ⎟
⎝ ⎠
° °.  

EVALUATE: In the absence of a cooling mechanism for the air, the air temperature would rise significantly. 

17.100. IDENTIFY: dQ nCdT= so for the temperature change 1 2,T T→  2

1

 

 
( ) .

T

T
Q n C T dT= ∫  

SET UP: dT T=∫ and 21
2 .TdT T=∫  Express 1T and 2T in kelvins: 1 300 K,T =  2 500 K.T =  

EXECUTE: Denoting C by ,C a bT= +  a and b independent of temperature, integration gives 
2 2

2 1 2 1( ) ( ) .
2
bQ n a T T T T⎛ ⎞= − + −⎜ ⎟

⎝ ⎠
 

3 2 2 2(3.00 mol)(29.5 J mol K)(500 K 300 K) (4.10 10  J mol K )((500 K) (300 K) )).Q −= ⋅ − + × ⋅ −  
41.97 10  J.Q = ×  

EVALUATE: If C is assumed to have the constant value 29.5 J/mol K,⋅  then 41.77 10  JQ = ×  for this temperature 
change. At 1 300 K,T =  32.0 J/mol KC = ⋅  and at 2 500 K,T =  33.6 J/mol K.C = ⋅  The average value of C is 
32.8 J/mol K,⋅  If C is assumed to be constant and to have this average value, then 42.02 10 J,Q = ×  which is within 
3% of the correct value.  

17.101. IDENTIFY: Use fQ mL= to find the heat that goes into the ice to melt it. This amount of heat must be conducted 
through the walls of the box; .Q Ht=  Assume the surfaces of the styrofoam have temperatures of 5.00°C and 21.0°C. 
SET UP: For water 3

f 334 10 J/kg.L = ×  For Styrofoam 0.01 W/m K.k = ⋅  One week is 56.048 10  s.×  The surface 
area of the box is 2 24(0.500 m)(0.800 m) 2(0.500 m) 2.10 m .+ =  

EXECUTE: 3 6
f (25.0 kg)(334 10  J/kg) 8.016 10  J.Q mL= = × = ×  H C .T TH kA

L
−

=  Q Ht= gives 
5 2

H C
6

( ) (6.048 10  s)(0.01 W/m K)(2.10 m )(21.0 C 5.00 C) 2.5 cm
8.016 10  J

tkA T TL
Q

− × ⋅ −
= = =

×
° °  
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EVALUATE: We have assumed that the liquid water that is produced by melting the ice remains in thermal 
equilibrium with the ice so has a temperature of 0°C. The interior of the box and the ice are not in thermal 
equilibrium, since they have different temperatures. 

17.102. IDENTIFY: For a temperature change .Q mc T= Δ  For the vapor liquid→ phase transition, v.Q mL= −  
SET UP: For water, 4190 J/kg Kc = ⋅  and 3

v 2256 10  J/kg.L = ×  
EXECUTE: The requirement that the heat supplied in each case is the same gives w w w s w s v( ),m c T m c T LΔ = Δ +  
where w 42.0 KTΔ = and s 65.0 K.TΔ =  The ratio of the masses is 

s w w
3

w w s v

(4190 J kg K)(42.0 K) 0.0696,
(4190 J kg K)(65.0 K) 2256 10  J kg

m c T
m c T L

Δ ⋅
= = =

Δ + ⋅ + ×
 

so 0.0696 kg of steam supplies the same heat as 1.00 kg  of water.  
EVALUATE: Note the heat capacity of water is used to find the heat lost by the condensed steam, since the phase 
transition produces liquid water at an initial temperature of 100°C. 

17.103. (a) IDENTIFY and SET UP: Assume that all the ice melts and that all the steam condenses. If we calculate a final 
temperature T that is outside the range 0°C to 100°C then we know that this assumption is incorrect. Calculate Q 
for each piece of the system and then set the total system 0.Q =  
EXECUTE: copper can (changes temperature form 0.0° to T; no phase change) 

can (0.446 kg)(390 J/kg K)( 0.0 C) (173.9 J/K)Q mc T T T= Δ = ⋅ − ° =  
ice (melting phase change and then the water produced warms to T )  

3
ice f (0.0950 kg)(334 10 J/kg) (0.0950 kg)(4190 J/kg K)( 0.0 C)Q mL mc T T= + + Δ = × + ⋅ − °  

4
ice 3.173 10  J (398.0 J/K) .Q T= × +  

steam (condenses to liquid and then water produced cools to T )  
3

steam v (0.0350 kg)(2256 10  J/kg) (0.0350 kg)(4190 J/kg K)( 100.0 C)Q mL mc T T= − + Δ = − × + ⋅ − °
4 4 4

steam 7.896 10  J (146.6 J/K) 1.466 10  J 9.362 10  J (146.6J/K)Q T T= − × + − × = − × +  

system 0Q =  implies can ice steam 0.Q Q Q+ + =  
4 4(173.9 J/K) 3.173 10  J (398.0 J/K) 9.362 10  J (146.6 J/K) 0T T T+ × + − × + =  
4(718.5 J/K) 6.189 10  JT = ×  

46.189 10  J 86.1 C
718.5 J/K

T ×
= = °  

EVALUATE: This is between 0°C and 100°C so our assumptions about the phase changes being complete were 
correct. 
(b) No ice, no steam 0.0950 kg 0.0350 kg 0.130 kg+ =  of liquid water. 

17.104. IDENTIFY: The final amount of ice is less than the initial mass of water, so water remains and the final temperature 
is 0°C. The ice added warms to 0°C and heat comes out of water to convert it to ice. Conservation of energy says 

i w 0,Q Q+ =  where iQ  and wQ are the heat flows for the ice that is added and for the water that freezes. 
SET UP: Let im be the mass of ice that is added and wm is the mass of water that freezes. The mass of ice 
increases by 0.328 kg, so i w 0.328 kg.m m+ =  For water, 3

f 334 10  J/kgL = × and for ice i 2100 J/kg K.c = ⋅  Heat 
comes out of the water when it freezes, so w fQ mL= −  
EXECUTE: i w 0Q Q+ =  gives i i w f(15.0 C ) ( ) 0,m c m L+ − =°  w i0.328 kg ,m m= −  so 

i i i f(15.0 C ) ( 0.328 ) 0.m c m L+ − + =°  
3

f
i 3

i f

(0.328 kg) (0.328 kg)(334 10  J/kg) 0.300 kg.
c (15.0 C ) (2100 J/kg K)(15.0 K) 334 10  J/kg

Lm
L

×
= = =

+ ⋅ + ×°
 

0.300 kg of ice was added. 
EVALUATE: The mass of water that froze when the ice at 15.0 C− ° was added was 
0.778 kg 0.450 kg 0.300 kg 0.028 kg.− − =  

17.105. IDENTIFY and SET UP: Heat comes out of the steam when it changes phase and heat goes into the water and 
causes its temperature to rise. system 0.Q =  First determine what phases are present after the system has come to a 
uniform final temperature. 
(a) EXECUTE: Heat that must be removed from steam if all of it condenses is 

3 4
v (0.0400 kg)(2256 10  J/kg) 9.02 10  JQ mL= − = − × = − ×  

Heat absorbed by the water if it heats all the way to the boiling point of 100°C: 
4(0.200 kg)(4190 J/kg K)(50.0 C ) 4.19 10  JQ mc T= Δ = ⋅ ° = ×  

EVALUATE: The water can�t absorb enough heat for all the steam to condense. Steam is left and the final 
temperature then must be 100°C. 
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(b) EXECUTE: Mass of steam that condenses is 3
v/ 4.19 10  J/2256 10  J/kg 0.0186 kgm Q L 4= = × × =  

Thus there is 0.0400 kg 0.0186 kg 0.0214 kg− =  of steam left. The amount of liquid water is 
0.0186 kg 0.200 kg 0.219 kg.+ =  

17.106. IDENTIFY: system 0.Q =  
SET UP: The mass of the system increases by 0.525 kg 0.490 kg 0.035 kg,− =  so the mass of the steam that 
condensed is 0.035 kg. 
EVALUATE: The heat lost by the steam as it condenses and cools is 

v(0.035 kg) (0.035 kg)(4190 J kg K)(29.0 K),L + ⋅  and the heat gained by the original water and calorimeter 

is 4((0.150 kg)(420 J kg K) (0.340 kg)(4190 J kg K))(56.0 K) 8.33 10  J.⋅ + ⋅ = ×  Setting the heat lost equal to the 

heat gained and solving for 6
v  gives 2.26 10  J kg,L × or 62.3 10  J kg×  to two figures (the mass of steam 

condensed is known to only two figures). 
EVALUATE: system 0Q =  means the magnitude of the heat that flows out of the 0.035 kg of steam as it condenses 
and cools equals the heat that flows into the calorimeter and 0.340 kg of water as their temperature increases. To 
the accuracy of the calculation, our result agrees with the value of vL given in Table 17.4. 

17.107. IDENTIFY: Heat lQ comes out of the lead when it solidifies and the solid lead cools to f .T  If mass sm of steam is 
produced, the final temperature is f 100 CT = ° and the heat that goes into the water is 

w w w s v,w(25.0 C ) ,Q m C m L= +°  where w 0.5000 kg.m =  Conservation of energy says l w 0.Q Q+ =  Solve for s.m  
The mass that remains is s1.250 kg 0.5000 kg .m+ −  
SET UP: For lead, 3

f, l 24.5 10  J/kg,L = ×  l 130 J/kg Kc = ⋅ and the normal melting point of lead is 327.3 C.°  For 

water, w 4190 J/kg Kc = ⋅ and 3
v,w 2256 10  J/kg.L = ×  

EXECUTE: l w 0.Q Q+ =  l f,l l l w w s v,w( 227.3 C ) (25.0 C ) 0.m L m c m c m L− + − + + =° °  

l f,l l l w w
s

v,w

( 227.3 C ) (25.0 C )
.

m L m c m c
m

L
+ + −

=
° °

 

3

s 3

(1.250 kg)(24.5 10  J/kg) (1.250 kg)(130 J/kg K)(227.3 K) (0.5000 kg)(4190 J/kg K)(25.0 K)
2256 10  J/kg

m + × + ⋅ − ⋅
=

×
4

s 3

1.519 10  J 0.0067 kg.
2256 10  J/kg

m ×
= =

×
 The mass of water and lead that remains is 1.743 kg. 

EVALUATE: The magnitude of heat that comes out of the lead when it goes from liquid at 327.3 C°  to solid at 
100.0 C° is 46.76 10  J.×  The heat that goes into the water to warm it to 100 C°  is 45.24 10  J.×  The additional heat 
that goes into the water, 4 4 46.76 10  J 5.24 10  J 1.52 10  J× − × = ×  converts 0.0067 kg of water at 100 C°  to steam. 

17.108. IDENTIFY: Apply TH kA
L

Δ
= and solve for k. 

SET UP: H equals the power input required to maintain a constant interior temperature 

EXECUTE: 
2

2
2

(3.9 10  m)(180 W) 5.0 10  W m K.
(2.18 m )(65.0 K)

Lk H
A T

−
−×

= = = × ⋅
Δ

 

EVALUATE: Our result is consistent with the values for insulating solids in Table 17.5. 

17.109. IDENTIFY: Apply .TH kA
L

Δ
=  

SET UP: For the glass use 12.45 cm,L =  to account for the thermal resistance of the air films on either side of 
the glass. 

EXECUTE: (a) 2
2 2

28.0 C(0.120 J mol.K)  (2.00 0.95 m ) 93.9 W.
5.0 10  m 1.8 10  m

H − −

°⎛ ⎞= × =⎜ ⎟× + ×⎝ ⎠
 

(b) The heat flow through the wood part of the door is reduced by a factor of 
2(0.50)1 0.868,(2.00 0.95)− =

×
 so it 

becomes 81.5 W.  The heat flow through the glass is 2
glass 2

28.0 C(0.80 J/mol K)(0.50 m)  45.0 W,
12.45 10  m

H −

°⎛ ⎞= ⋅ =⎜ ⎟×⎝ ⎠
 

and so the ratio is 81.5 45.0 1.35.93.9
+ =  

EVALUATE: The single-pane window produces a significant increase in heat loss through the door. (See 
Problem 17.111). 
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17.110. IDENTIFY: Apply Eq.(17.23). 

SET UP: Let 1
1

HRT
A

Δ =  be the temperature difference across the wood and let 2
2

HRT
A

Δ =  be the temperature 

difference across the insulation. The temperature difference across the combination is 1 2.T T TΔ = Δ + Δ  The 

effective thermal resistance R of the combination is defined by .HRT
A

Δ =  

EXECUTE: 1 2T T TΔ = Δ + Δ  gives 1 2( ) ,H HR R R
A A

+ =  and 1 2.R R R= +  

EVALUATE: A good insulator has a large value of R. R for the combination is larger than the R for any one of the 
layers. 

17.111. IDENTIFY and SET UP: Use H written in terms of the thermal resistance R: / ,H A T R= Δ  where /R L k=  and 

1 2R R R= + +…  (additive). 

EXECUTE: single pane s glass film ,R R R= +  where 2
film 0.15 m K / WR = ⋅  is the combined thermal resistance of the 

air films on the room and outdoor surfaces of the window.  
3 2

glass / (4.2 10  m)/(0.80 W/m K) 0.00525 m K / WR L k −= = × ⋅ = ⋅  

Thus 2 2 2
s 0.00525 m K / W .15 m K / W 0.1553 m K / W.R = ⋅ + ⋅ = ⋅  

double pane d glass air film2 ,R R R R= + +  where airR  is the thermal resistance of the air space between the panes. 
3 2

air / (7.0 10  m)/(0.024 W/m K) 0.2917 m K / WR L k −= = × ⋅ = ⋅  

Thus 2 2 2 2
d 2(0.00525 m K / W) 0.2917 m K / W 0.15 m K / W 0.4522 m K / WR = ⋅ + ⋅ + ⋅ = ⋅  

s s d d s d d s/ ,  / ,  so / /H A T R H A T R H H R R= Δ = Δ =  (since A and TΔ  are same for both) 
2 2

s d/ (0.4522 m K / W)/(0.1553 m K / W) 2.9H H = ⋅ ⋅ =  

EVALUATE: The heat loss is about a factor of 3 less for the double-pane window. The increase in R for a double-
pane is due mostly to the thermal resistance of the air space between the panes. 

17.112. IDENTIFY: kA TH
L
Δ

= to each rod. Conservation of energy requires that the heat current through the copper 

equals the sum of the heat currents through the brass and the steel. 
SET UP: Denote the quantities for copper, brass and steel by 1, 2 and 3, respectively, and denote the temperature 
at the junction by 0.T  

EXECUTE: (a) 1 2 3.H H H= +  Using Eq.(17.21) and dividing by the common area gives, 

( )1 2 3
0 0 0

1 2 3

100 C .k k kT T T
L L L

° − = +  Solving for 0T  gives ( )
( ) ( ) ( ) ( )1 1

0
1 1 2 2 3 3

100 C .
k L

T
k L k L k L

= °
+ +

 Substitution of 

numerical values gives 0 78.4 C.T = °  

(b) Using kAH TL= Δ for each rod, with 1 2 321.6 C ,  78.4 CT T TΔ = ° Δ = Δ = °  gives 1 212.8 W, 9.50 WH H= =  

and 3 3.30 W.H =  

EVALUATE: In part (b), 1H  is seen to be the sum of 2 3and .H H  

17.113. (a) EXECUTE: Heat must be conducted from the water to cool it to 0°C and to cause the phase transition. The entire 
volume of water is not at the phase transition temperature, just the upper surface that is in contact with the ice sheet. 
(b) IDENTIFY: The heat that must leave the water in order for it to freeze must be conducted through the layer of 
ice that has already been formed. 
SET UP: Consider a section of ice that has area A. At time t let the thickness be h. Consider a short time interval t 
to .t dt+  Let the thickness that freezes in this time be dh. The mass of the section that freezes in the time interval 
dt is   .dm dV A dhρ ρ= =  The heat that must be conducted away from this mass of water to freeze it is 

f f( ) .dQ dmL AL dhρ= =  / ( / ),H dQ dt kA T h= = Δ  so the heat dQ conducted in time dt throughout the thickness h 

that is already there is H C .T TdQ kA dt
h
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
 Solve for dh in terms of dt and integrate to get an expression relating 

h and t. 
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EXECUTE: Equate these expressions for dQ. 
H C

f
T TAL dh kA dt

h
ρ −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

H C

f

( ) k T Th dh dt
Lρ

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
 

Integrate from 0t =  to time t. At 0t =  the thickness h is zero. 
  

H C f 0  0
 [ ( ) ]

h t
h dh k T T L dtρ= −∫ ∫  

2 H C1
2

f

( )k T Th t
Lρ
−

=  and H C

f

2 ( )k T Th t
Lρ
−

=  

The thickness after time t is proportional to .t  

(c) The expression in part (b) gives 
2 2 3 3

5f

H C

(0.25 m) (920 kg/m )(334 10  J/kg) 6.0 10  s
2 ( ) 2(1.6 W/m K)(0 C ( 10 C))

h Lt
k T T

ρ ×
= = = ×

− ⋅ ° − − °
 

170 h.t =  
(d) Find t for 40 m.h =  t is proportional to 2,h  so 2 5 10(40 m/0.25 m) (6.00 10  s) 1.5 10  s.t = × = ×  This is about 
500 years. With our current climate this will not happen. 
EVALUATE: As the ice sheet gets thicker, the rate of heat conduction through it decreases. Part (d) shows that it 
takes a very long time for a moderately deep lake to totally freeze. 

17.114. IDENTIFY: Apply Eq.(17.22) at each end of the short element. In part (b) use the fact that the net heat current into 
the element provides the Q for the temperature increase, according to .Q mc T= Δ  
SET UP: /dT dx is the temperature gradient. 
EXECUTE: (a) 4 2(380 W m K)(2.50 10  m )(140 C m)  13.3 W.H −= ⋅ × ° =  

(b) Denoting the two ends of the element as 1 and 2, 2 1 ,Q TH H mc
t t

Δ
− = =  where 0.250 C /s.T

t
Δ

= °  

2 1

.dT dT TkA kA mc
dx dx t

Δ⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 The mass m is ,  A xρ Δ so 
2 1

.dT dT c x TkA kA
dx dx k t

ρ Δ Δ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 

4 3 2

2

(1.00 10  kg/m )(520 J/kg K)(1.00 10  m)(0.250 C /s)140 C /m 174 C /m.
380 W/m K

dTkA
dx

−× ⋅ ×
= + =

⋅
°

° °  

EVALUATE: At steady-state temperature of the short element is no longer changing and 1 2.H H=  
17.115. IDENTIFY: The rate of heat conduction through the walls is 1.25 kW. Use the concept of thermal resistance and 

the fact that when insulating materials are in layers, the R values are additive. 
SET UP: The total area of the four walls is 22(3.50 m)(2.50 m) 2(3.00 m)(2.50 m) 32.5 m+ =  

EXECUTE: H CT TH A
R
−

=  gives 
2

2H C
3

( ) (32.5 m )(17.0 K) 0.442 m K / W.
1.25 10  W

A T TR
H −

−
= = = ⋅

×
 For the wood, 

2
2

w
1.80 10  m 0.300 m K / W.
0.060 W/m K

LR
k

−×
= = = ⋅

⋅
 For the insulating material, 2

in w 0.142 m K / W.R R R= − = ⋅  

in
in

in

LR
k

=  and 
2

in
in 2

in

1.50 10  m 0.106 W/m K.
0.142 m K / W

Lk
R

−×
= = = ⋅

⋅
 

EVALUATE: The thermal conductivity of the insulating material is larger than that of the wood, the thickness of 
the insulating material is less than that of the wood, and the thermal resistance of the wood is about three times that 
of the insulating material. 

17.116. IDENTIFY: 2 2
1 1 2 2 .I r I r=  Apply 4H Ae Tσ= (Eq.17.25) to the sun. 

SET UP: 3 2
1 1.50 10  W/mI = ×  when 111.50 10  m.r = ×  

EXECUTE: (a) The energy flux at the surface of the sun is 
211

3 7 2
2 8

1.50 10  m(1.50 10  W/m ) 6.97 10  W/m .
6.96 10  m

I 2 ⎛ ⎞×
= × = ×⎜ ⎟×⎝ ⎠

 

(b) Solving Eq.(17.25) with 1,e =  
11
44 7 2

8 2 4

1 6.97 10  W m 5920 K.
5.67 10  W m K

HT
A σ −

⎡ ⎤×⎡ ⎤= = =⎢ ⎥⎢ ⎥ × ⋅⎣ ⎦ ⎣ ⎦
 

EVALUATE: The total power output of the sun is 2 31
2 24 2.0 10  W.P r Iπ= = ×  
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17.117. IDENTIFY and SET UP: Use Eq.(17.26) to find the net heat current into the can due to radiation. Use Q Ht=  to find 
the heat that goes into the liquid helium, set this equal to mL and solve for the mass m of helium that changes phase. 
EXECUTE: Calculate the net rate of radiation of heat from the can. 4 4

net s( ).H Ae T Tσ= −  

 

The surface area of the cylindrical can is 
22 2 .A rh rπ π= +  (See Figure 17.117.) 

Figure 17.117  
22 ( ) 2 (0.045 m)(0.250 m 0.045 m) 0.08341 m .A r h rπ π= + = + =  

2 8 2 4 4 4
net (0.08341 m )(0.200)(5.67 10  W/m K )((4.22 K) (77.3 K) )H −= × ⋅ −  

net 0.0338 WH = −  (the minus sign says that the net heat current is into the can). The heat that is put into the can by 
radiation in one hour is net( ) (0.0338 W)(3600 s) 121.7 J.Q H t= − = =  This heat boils a mass m of helium according 

to the equation f ,Q mL=  so 3

f

121.7 J 5.82 10  kg 5.82 g.
2.09 10  J/kg

Qm
L

−
4= = = × =

×
 

EVALUATE: In the expression for the net heat current into the can the temperature of the surroundings is raised to 
the fourth power. The rate at which the helium boils away increases by about a factor of 4(293/77) 210=  if the 
walls surrounding the can are at room temperature rather than at the temperature of the liquid nitrogen. 

17.118. IDENTIFY: The coefficient of volume expansion β is defined by 0 .V V TβΔ = Δ  

SET UP: For copper, 5 15.1 10  K .β − −= ×  

EXECUTE: (a) With 0,pΔ =  ,pVp V nR T T
T

Δ = Δ = Δ or 
1,    and  .V T

V T T
βΔ Δ

= =  

(b) air
5 1

copper

1 67.
(293 K)(5.1 10  K )

β
β − −= =

×
 

EVALUATE: The coefficient of volume expansion for air is much greater than that for copper. For a given ,TΔ  
gases expand much more than solids do. 

17.119. IDENTIFY: For the water, .Q mc T= Δ  
SET UP: For water, 4190 J/kg K.c = ⋅  

EXECUTE: (a) At steady state, the input power all goes into heating the water, so 
Q mc TP
t t

Δ
= =  and 

(1800 W)(60 s/min) 51.6 K,
(4190 J kg K)(0.500 kg/min)

PtT
cm

Δ = = =
⋅

 and the output temperature is 18.0 C 51.6 C 69.6 C.° + ° = °  

EVALUATE: (b) At steady state, the temperature of the apparatus is constant and the apparatus will neither 
remove heat from nor add heat to the water. 

17.120. IDENTIFY: For the air the heat input is related to the temperature change by .Q mc T= Δ  
SET UP: The rate P at which heat energy is generated is related to the rate 0P at which food energy is consumed 
by the hamster by 00.10 .P P=  
EXECUTE: (a) The heat generated by the hamster is the heat added to the box; 

3 3(1.20 kg m )(0.0500 m )(1020 J kg K)(1.60 C h) 97.9 J h.Q TP mc
t t

Δ
= = = ⋅ ° =  

(b) Taking the efficiency into account, the mass M of seed that must be eaten in time t is 
0

c c

(10%) 979 J h 40.8 g h.
24 J g

M P P
t L L

= = = =  

EVALUATE: This is about 1.5 ounces of seed consumed in one hour. 
17.121. IDENTIFY: Heat iQ  goes into the ice when it warms to 0 C,°  melts, and the resulting water warms to the final 

temperature f .T  Heat owQ  comes out of the ocean water when it cools to f .T  Conservation of energy gives 

i ow 0.Q Q+ =  

SET UP: For ice, i 2100 J/kg K.c = ⋅  For water, 3
f 334 10  J/kgL = × and w 4190 J/kg K.c = ⋅  Let m be the total 

mass of the water on the earth's surface. So i 0.0175m m=  and ow 0.975 .m m=  
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EXECUTE: i ow 0Q Q+ =  gives i i i f i w f ow w f(30 C ) ( 5.00 C) 0.m c m L m c T m c T+ + + − =° °  

i i i f ow w
f

i ow w

(30 C ) (5.00 C ) .
( )

m c m L m cT
m m c

− − +
=

+
° °  

3

f
(0.0175 )(2100 J/kg K)(30 K) (0.0175 )(334 10 J/kg) (0.975 )(4190 J/kg K)(5.00 K)

(0.0175 0.975 )(4190 J/kg K)
m m mT

m m
− ⋅ − × + ⋅

=
+ ⋅

4

f 3

1.348 10  J/kg 3.24 C.
4.159 10  J/kg K

T ×
= =

× ⋅
°  The temperature decrease is 1.76 C°.  

EVALUATE: The mass of ice in the icecaps is much less than the mass of the water in the oceans, but much more 
heat is required to change the phase of 1 kg of ice than to change the temperature of 1 kg of water 1 C ,°  so the 
lowering of the temperature of the oceans would be appreciable. 

17.122. IDENTIFY: Apply Eq.(17.21). For a spherical or cylindrical surface, the area in Eq.(17.21)A is not constant, and 
the material must be considered to consist of shells with thickness dr and a temperature difference between the 
inside and outside of the shell .dT  The heat current will be a constant, and must be found by integrating a 
differential equation.  
SET UP: The surface area of a sphere is 24 .rπ  The surface area of the curved side of a cylinder is 2 .rlπ  
ln(1 )ε ε+ ≈  when 1.ε !  

(a) Equation (17.21) becomes 2
2

 (4 )  or  .
4

dT H drH k r k dT
dr r

π
π

= =  Integrating both sides between the appropriate 

limits, 2 1
1 1 ( ).

4
H k T T

a bπ
⎛ ⎞− = −⎜ ⎟
⎝ ⎠

 In this case the �appropriate limits� have been chosen so that if the inner 

temperature 2T  is at the higher temperature 1,T  the heat flows outward; that is, 0.dT
dr <  Solving for the heat 

current, 2 14 ( ) .k ab T TH
b a

π −
=

−
 

(b) The rate of change of temperature with radius is of the form 2 ,  with dT B Bdr r
= a constant. Integrating from 

 to  and fromr a r=   to r a r b= = gives 2 1 2
1 1 1 1( )   and  .T r T B T R B
a r a b

⎛ ⎞ ⎛ ⎞− = − − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Using the second of these 

to eliminate B and solving for T(r) gives 2 2 1( ) ( ) .r a bT r T T T
b a r

−⎛ ⎞⎛ ⎞= − − ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 There are, of course, many equivalent 

forms. As a check, note that at 2,  r a T T= =  1and at , .r b T T= =   

(c) As in part (a), the expression for the heat current is (2 )  or ,
2

dT HH k rL kLdT
dr r

π
π

= =  which integrates, with 

the same condition on the limits, to 2 1ln( ) ( ),
2
H b a kL T T
π

= −  or 2 12 ( ) .
ln( )
kL T TH

b a
π −

=  

(d) A method similar to that used in part (b) gives 2 1 2
ln( )( ) ( ) .
ln( )

r aT r T T T
b a

= + −  

EVALUATE: (e) For the sphere: Let ,  and approximate ~ ,b a l b a− =  with a the common radius. Then the surface 

area of the sphere is 24 ,A aπ=  and the expression for H is that of Eq. (17.21) (with l instead of L, which has 

another use in this problem). For the cylinder: with the same notation, consider ln ln 1 ~ ,b l l
a a a

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

where the approximation for ln(1 )ε+  for small ε  has been used. The expression for H then reduces to 

( )( )2 ,k La T lπ Δ  which is Eq. (17.21) with 2 .A Laπ=  

17.123. IDENTIFY: From the result of Problem 17.122, the heat current through each of the jackets is related to the 
temperature difference by ( )

2 ,
ln

lkH T
b a
π= Δ  where l is the length of the cylinder and b and a are the inner and 

outer radii of the cylinder.  
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SET UP: Let the temperature across the cork be 1TΔ  and the temperature across the styrofoam be 2,TΔ  with 
similar notation for the thermal conductivities and heat currents.  
EXECUTE: (a) 1 2T T TΔ + Δ = Δ =  125  C .°  Setting 1 2H H H= =  and canceling the common factors, 

1 1 2 2 .
ln 2 ln 1.5
T k T kΔ Δ

=  Eliminating 2 1 and solving for  givesT TΔ Δ  
1

1
1

2

ln 1.51 .
ln 2

kT T
k

−
⎛ ⎞

Δ = Δ +⎜ ⎟
⎝ ⎠

 Substitution of numerical 

values gives 1 37 C ,TΔ = °  and the temperature at the radius where the layers meet is 140 C 37 C 103 C.° − ° = °  
(b) Substitution of this value for 1TΔ  into the above expression for 1H H=  gives 

( )( ) ( )2 2.00 m 0.0400 W m K
37 C 27 W.

ln 2
H

π ⋅
= ° =  

EVALUATE: 103 C 15 C 88 CTΔ = − =° ° °.  ( )( ) ( )2

2 2.00 m 0.0100 W m K
88 C 27 W.

ln(6.00/4.00)
H

π ⋅
= ° =  This is the same 

as 1,H  as it should be. 

17.124. IDENTIFY: Apply Eq.(17.22) to different points along the rod, where dT
dx

is the temperature gradient at each point. 

SET UP: For copper, 385 W/m K.k = ⋅  
EXECUTE: (a) The initial temperature distribution, (100 C)sin / ,T x Lπ= °  is shown in Figure 17.124a. 
(b) After a very long time, no heat will flow, and the entire rod will be at a uniform temperature which must be that 
of the ends, 0°C.  
(c) The temperature distribution at successively greater times 1 2 3T T T< <  is sketched in Figure 17.124b. 

(d) ( )( )100 C cos .dT L x L
dx

π π= °  At the ends, 0 and ,x x L= =  the cosine is 1±  and the temperature gradient is 

( )( ) 3100 C 0 100 m 3.14 10  C m..  π± ° = ± × °  
(e) Taking the phrase �into the rod� to mean an absolute value, the heat current will be 

4 2 3(385.0 W m K) (1.00 10  m )(3.14 10  C m) 121 W.dTkA dx
−= ⋅ × × ° =  

(f) Either by evaluating dT
dx at the center of the rod, where ( )2 and cos 2 0,x Lπ π π= =  or by checking the 

figure in part (a), the temperature gradient is zero, and no heat flows through the center; this is consistent with the 
symmetry of the situation. There will not be any heat current at the center of the rod at any later time. 

(g) 4 2
3 3

(385 W m K) 1.1 10  m s.
(8.9 10  kg m )(390 J kg K)

k
cρ

−⋅
= = ×

× ⋅
 

(h) Although there is no net heat current, the temperature of the center of the rod is decreasing; by considering the 
heat current at points just to either side of the center, where there is a non-zero temperature gradient, there must be 
a net flow of heat out of the region around the center. Specifically, 

2

2
( / 2) ( / 2)

(( /2) ) (( /2) ) ( ) ,
L x L x

T T T TH L x H L x A x c kA kA x
t x x x

ρ
+Δ −Δ

⎛ ⎞∂ ∂ ∂ ∂
+ Δ − − Δ = Δ = − = Δ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 from which the Heat 

Equation, 
2

2

T k T
t c xρ

∂ ∂
=

∂ ∂
 is obtained. At the center of the rod, 

2
2

2 (100 C )( )  and soT L ,
x

π∂ = − °
∂

 

2
4 2(1.11 10  m s)(100 C ) 10.9 C s,

0.100 m
T
t

π−∂ ⎛ ⎞= − × ° = − °⎜ ⎟∂ ⎝ ⎠
 or 11C s− ° to two figures.  

(i) 100 C 9.17 s
10.9 C s

°
=

°
 

(j) Decrease (that is, become less negative), since as T decreases, 
2

2
T

x
∂
∂

decreases. This is consistent with the 

graphs, which correspond to equal time intervals. 

(k) At the point halfway between the end and the center, at any given time 
2

2
T

x
∂
∂

is a factor of ( )sin 4 1 2π =  less 

than at the center, and so the initial rate of change of temperature is 7.71C s.− °  
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EVALUATE: A plot of temperature as a function of both position and time for 0 50 st≤ ≤ is shown in 
Figure 17.124c. 

 

 

 
Figure 17.124 
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17.125. IDENTIFY: Apply the concept of thermal expansion. In part (b) the object can be treated as a simple pendulum. 
SET UP: For steel 5 11.2 10  (C ) .α − −= × °  1 yr 86,400 s.=  
EXECUTE: (a) In hot weather, the moment of inertia I and the length d in Eq.(13.39) will both increase by the 
same factor, and so the period will be longer and the clock will run slow (lose time). Similarly, the clock will run 
fast (gain time) in cold weather. 
(b) 5 1 4

0
 (1.2 10  (C ) )(10.0 C ) 1.2 10 .L TL α − − −Δ = Δ = × ° ° = ×  

(c) See Problem 13.98. To avoid possible confusion, denote the pendulum period by .τ  For this 

problem, 51 6.0 102
L

L
τ

τ
−Δ Δ= = ×  so in one day the clock will gain 5(86,400 s)(6.0 10 ) 5.2 s.−× =  

(d) 1
2 .Tτ α

τ
Δ

= Δ  1.0 s
86,400 s

τ
τ
Δ

=  gives 5 1 12[(1.2 10  (C ) )(86,400)] 1.9 C .T − − −Δ = × ° = °  T must be controlled to 

within 1.9 C°.  
EVALUATE: In part (d) the answer does not depend on the period of the pendulum. It depends only on the 
fractional change in the period. 

17.126. IDENTIFY: The rate at which heat is absorbed at the blackened end is the heat current in the rod, 
4 4

S 2 2 1( ) ( )kAAe T T T T
L

σ − = − where 1 220.00 K and T T=  is the temperature of the blackened end of the rod.  

SET UP: Since the end is blackened, 1.e =  s 500.0 K.T =  
EXECUTE: If the equation were to be solved exactly for 2 ,T  the equation would be a quartic, very likely not 
worth the trouble. Following the hint, approximate 2 T on the left side of the above expression as T1 to obtain  

S

2 4 12 3 4 4
2 1 1 1 s 1 1( ) (6.79 10  K )( ) 0.424 K 20.42 K.LT T T T T T T T

k
σ − −= + − = + × − = + =  

EVALUATE: This approximation for 2T is indeed only slightly than 1,T  and is a good estimate of the temperature. 
Using this for 2T  in the original expression to find a better value of TΔ  gives the same TΔ  to eight figures, and 
further iterations are not worthwhile. 

17.127. IDENTIFY: The rate in (iv) is given by Eq.(17.26), with 309 KT =  and s 320 K.T =  The heat absorbed in the 
evaporation of water is .Q mL=  

SET UP: ,m Vρ=  so .m
V

ρ=  

EXECUTE: (a) The rates are: (i) 280 W, 
(ii) 2 2(54 J/h C m )(1.5 m )(11 C )/(3600 s/h) 0.248 W,⋅ ° ⋅ ° =  

(iii) 2 2 3(1400 W/m )(1.5 m ) 2.10 10  W,= ×  

(iv) 8 2 4 2 4 4(5.67 10  W/m K )(1.5 m )((320 K) (309 K) ) 116 W.−× ⋅ − =  
The total is 2.50 kW, with the largest portion due to radiation from the sun. 

(b) 
3

6 3
3 6

v

2.50 10  W 1.03 10  m /s.
(1000 kg m )(2.42 10  J kg K)

P
Lρ

−×
= = ×

× ⋅
 This is equal to 3.72 L/h.=  

(c) Redoing the above calculations with 0e =  and the decreased area gives a power of 945 W and a corresponding 
evaporation rate of 1.4 L/h.  Wearing reflective clothing helps a good deal. Large areas of loose weave clothing 
also facilitate evaporation. 
EVALUATE: The radiant energy from the sun absorbed by the area covered by clothing is assumed to be zero, 
since 0e ≈ for the clothing and the clothing reflects almost all the radiant energy incident on it. For the same 
reason, the exposed skin area is the area used in Eq.(17.26). 
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THERMAL PROPERTIES OF MATTER 

 18.1. (a) IDENTIFY: We are asked about a single state of the system. 
SET UP: Use Eq.(18.2) to calculate the number of moles and then apply the ideal-gas equation. 

EXECUTE: tot
3

0.225 kg 56.2 mol
4.00 10  kg/mol

mn
M −= = =

×
 

(b) pV nRT=  implies /p nRT V=  
T must be in kelvins; (18 273) K 291 KT = + =  

6
3 3

(56.2 mol)(8.3145 J/mol K)(291 K) 6.80 10  Pa
20.0 10  m

p −

⋅
= = ×

×
 

6 5(6.80 10  Pa)(1.00 atm/1.013 10  Pa) 67.1 atmp = × × =  
EVALUATE: Example 18.1 shows that 1.0 mol of an ideal gas is about this volume at STP. Since there are 
56.2 moles the pressure is about 60 times greater than 1 atm. 

 18.2. IDENTIFY: pV nRT= . 
SET UP: 1 41.0 C 314 KT = =° . 0.08206 L atm/mol KR = ⋅ ⋅ . 

EXECUTE: n, R constant so pV nR
T

=  is constant. 1 1 2 2

1 2

p V p V
T T

= . 

32 2
2 1

1 1

(314 K)(2)(2) 1.256 10  K 983 Cp VT T
p V

⎛ ⎞⎛ ⎞
= = = × =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
° . 

(b) (1.30 atm)(2.60 L) 0.131 mol
(0.08206 L atm/mol K)(314 K)

pVn
RT

= = =
⋅ ⋅

. tot (0.131 mol)(4.00 g/mol) 0.524 gm nM= = = . 

EVALUATE: T is directly proportional to p and to V, so when p and V are each doubled the Kelvin temperature 
increases by a factor of 4. 

 18.3. IDENTIFY: pV nRT= . 
SET UP: T is constant. 

EXECUTE: nRT is constant so 1 1 2 2pV p V= . 
3

1
2 1 3

2

0.110 m(3.40 atm) 0.959 atm
0.390 m

Vp p
V
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

EVALUATE: For T constant, p decreases. 
 18.4. IDENTIFY: .pV nRT=  

SET UP: 1 20.0 C 293 KT = =° . 

EXECUTE: (a) n, R, and V are constant. constantp nR
T V
= = . 1 2

1 2

p p
T T
= . 

2
2 1

1

1.00 atm(293 K) 97.7 K 175 C
3.00 atm

pT T
p

⎛ ⎞ ⎛ ⎞= = = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

° . 

(b) 2 1.00 atmp = , 2 3.00 LV = . 3 3.00 atmp = . n, R, and T are constant so  constantpV nRT= = . 2 2 3 3p V p V= . 

2
3 2

3

1.00 atm(3.00 L) 1.00 L
3.00 atm

pV V
p

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

EVALUATE: The final volume is one-third the initial volume. The initial and final pressures are the same, but the 
final temperature is one-third the initial temperature. 

18
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 18.5. IDENTIFY: pV nRT=  

SET UP: Assume a room size of 20 ft 20 ft 10 ft× × . 3 34000 ft 113 mV = = . Assume a temperature of 
20 C 293 KT = =°  and a pressure of 51.01 10  Pap = × . 3 6 31 m 10  cm= . 

EXECUTE: (a) 
5 3

3(1.01 10  Pa)(113 m ) 4.68 10  mol
(8.315 J/mol K)(293 K)

pVn
RT

×
= = = ×

⋅
. 

3 23 27
A (4.68 10  mol)(6.022 10  molecules/mol) 3 10  moleculesN nN= = × × = × . 

(b) 
27

25 3 19 3
3

3 10  molecules 3 10  molecules/m 3 10  molecules/cm
113 m

N
V

×
= = × = ×  

EVALUATE: The solution doesn't rely on the assumption that air is all 2N . 
 18.6. IDENTIFY: pV nRT= and the mass of the gas is totm nM= . 

SET UP: The temperature is 22.0 C 295.15K.T = ° =  The average molar mass of air is 328.8 10 kg molM −= × . 

For helium 34.00 10 kg molM −= × . 

EXECUTE: (a) 
3

3
tot

(1.00 atm)(0.900 L)(28.8 10  kg/mol) 1.07 10  kg.
(0.08206 L atm/mol K)(295.15 K)

pVm nM M
RT

−
−×

= = = = ×
⋅ ⋅

 

(b) 
3

4
tot

(1.00 atm)(0.900 L)(4.00 10  kg/mol) 1.49 10  kg.
(0.08206 L atm/mol K)(295.15 K)

pVm nM M
RT

−
−×

= = = = ×
⋅ ⋅

 

EVALUATE: 
A

N pVn
N RT

= =  says that in each case the balloon contains the same number of molecules. The mass 

is greater for air since the mass of one molecule is greater than for helium. 
 18.7. IDENTIFY: We are asked to compare two states. Use the ideal gas law to obtain 2T  in terms of 1T  and ratios of 

pressures and volumes of the gas in the two states. 
SET UP: pV nRT=  and n, R constant implies / constantpV T nR= =  and 1 1 1 2 2 2/ /pV T p V T=  
EXECUTE: 1 (27 273) K 300 KT = + =  

5
1 1.01 10  Pap = ×  

6 5 6
2 2.72 10  Pa 1.01 10  Pa 2.82 10  Pap = × + × = ×  (in the ideal gas equation the pressures must be absolute, not 

gauge, pressures) 
6 3

2 2
2 1 5 3

1 1

2.82 10  Pa 46.2 cm300 K 776 K
1.01 10  Pa 499 cm

p VT T
p V

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞×
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

2 (776 273) C 503 CT = − ° = °  

EVALUATE: The units cancel in the 2 1/V V  volume ratio, so it was not necessary to convert the volumes in 3cm  

to 3m .  It was essential, however, to use T in kelvins. 
 18.8. IDENTIFY: pV nRT= and m nM= . 

SET UP: We must use absolute pressure in pV nRT= . 5
1 4.01 10  Pap = × , 5

2 2.81 10  Pap = × . 1 310 KT = , 

2 295 KT = . 

EXECUTE: (a) 
5 3

1 1
1

1

(4.01 10  Pa)(0.075 m ) 11.7 mol
(8.315 J/mol K)(310 K)

pVn
RT

×
= = =

⋅
. (11.7 mol)(32.0 g/mol) 374 gm nM= = = . 

(b) 
5 3

2 2
2

2

(2.81 10  Pa)(0.075 m ) 8.59 mol
(8.315 J/mol K)(295 K)

p Vn
RT

×
= = =

⋅
. 275 gm = . 

The mass that has leaked out is 374 g 275 g 99 g− = . 
EVALUATE: In the ideal gas law we must use absolute pressure, expressed in Pa, and T must be in kelvins. 

 18.9. IDENTIFY: pV nRT= . 
SET UP: 1 300 KT = , 2 430 KT = . 

EXECUTE: (a) n, R are constant so constantpV nR
T

= = . 1 1 2 2

1 2

p V p V
T T

= . 

3
5 51 2

2 1 3
2 1

0.750 m 430 K(1.50 10  Pa) 3.36 10  Pa
0.480 m 300 K

V Tp p
V T
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = × = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
. 

EVALUATE: In pV nRT= , T must be in kelvins, even if we use a ratio of temperatures. 
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18.10. IDENTIFY: Use the ideal-gas equation to calculate the number of moles, n. The mass totalm of the gas is 

total .m nM=  

SET UP: The volume of the cylinder is 2 ,V r lπ=  where 0.450 mr = and 1.50 m.l =  22.0 C 293.15 K.°T = =  
51 atm 1.013 10  Pa.= ×  332.0 10  kg/mol.M −= ×  8.314 J/mol K.R = ⋅  

EXECUTE: (a) pV nRT= gives 
5 2(21.0 atm)(1.013 10  Pa/atm) (0.450 m) (1.50 m) 827 mol.

(8.314 J/mol K)(295.15 K)
pVn
RT

π×
= = =

⋅
 

(b) 3
total (827 mol)(32.0 10  kg/mol) 26.5 kgm −= × =  

EVALUATE: In the ideal-gas law, T must be in kelvins. Since we used R in units of J/mol K⋅ we had to express p 
in units of Pa and V in units of 3m .  

18.11. IDENTIFY: We are asked to compare two states. Use the ideal-gas law to obtain 1V  in terms of 2V  and the ratio of 
the temperatures in the two states. 
SET UP: pV nRT=  and n, R, p are constant so / / constantV T nR p= =  and 1 1 2 2/ /V T V T=  
EXECUTE: 1 (19 273) K 292 KT = + =  (T must be in kelvins) 

2 1 2 1( / ) (0.600 L)(77.3 K/292 K) 0.159 LV V T T= = =  
EVALUATE: p is constant so the ideal-gas equation says that a decrease in T means a decrease in V. 

18.12. IDENTIFY: Apply pV nRT= and the van der Waals equation (Eq.18.7) to calculate p. 

SET UP: 3 6 3400 cm 400 10  m .−= ×  8.314 J/mol K.R = ⋅  
EXECUTE: (a) The ideal gas law gives 67.28 10  Pap nRT V= = ×  while Eq.(18.7) gives 65.87 10  Pa.×  
(b) The van der Waals equation, which accounts for the attraction between molecules, gives a pressure that is 20% 
lower. 
(c) The ideal gas law gives 57.28 10  Pa.p = ×  Eq.(18.7) gives 57.13 10  Pa,p = ×  for a 2.1% difference. 
EVALUATE: (d) As n V decreases, the formulas and the numerical values for the two equations approach each 
other. 

18.13. IDENTIFY: .pV nRT=  
SET UP: T is constant. 
EXECUTE: n, R, T are constant, so = constant.pV nRT=  1 1 2 2.pV p V=  

1
2 1

2

6.00 L(1.00 atm) 1.05 atm.
5.70 L

Vp p
V
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE: For constant T, when V decreases, p increases. Since the volumes enter as a ratio we don't have to 
convert from L to 3m .  

18.14. IDENTIFY: .pV nRT=  
SET UP: 1 277 K.T =  2 296 K.T =  Assume the number of moles of gas in the bubble remains constant. 

EXECUTE: (a) n, R are constant so constant.pV nR
T

= =  1 1 2 2

1 2

p V p V
T T

=  and 

2 1 2

1 2 1

3.50 atm 296 K 3.74.
1.00 atm 277 K

V p T
V p T

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

(b) This increase in volume of air in the lungs would be dangerous. 
EVALUATE: The large decrease in pressure results in a large increase in volume. 

18.15. IDENTIFY: We are asked to compare two states. First use pV nRT=  to calculate 1.p  Then use it to obtain 2T  in 
terms of 1T  and the ratio of pressures in the two states. 
(a) SET UP: .pV nRT=  Find the initial pressure 1:p  

EXECUTE: 61
1 3 3

(11.0 mol)(8.3145 J/mol K)((23.0 273.13)K) 8.737 10  Pa
3.10 10  m

nRTp
V −

⋅ +
= = = ×

×
 

SET UP: 5 7
2 100 atm(1.013 10  Pa/1 atm) 1.013 10  Pap = × = ×  

/ / constant,p T nR V= =  so 1 1 2 2/ /p T p T=  

EXECUTE: 
7

2
2 1

1

1.013 10  Pa(296.15 K) 343.4 K 70.2 C
8.737 10  Pa

pT T
p 6

⎛ ⎞ ⎛ ⎞×
= = = = °⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

(b) EVALUATE: The coefficient of volume expansion for a gas is much larger than for a solid, so the expansion 
of the tank is negligible. 
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18.16. IDENTIFY: F pA= and pV nRT=  
SET UP: For a cube, / .V A L=  
EXECUTE: (a) The force of any side of the cube is ( ) ( ) ,F pA nRT V A nRT L= = =  since the ratio of area to 
volume is / 1/ .A V L=  For 20.0 C 293.15 K,°T = =  

4(3 mol) (8.3145 J mol K) (293.15 K)  3.66 10  N.
0.200 m

nRTF
L

⋅
= = = ×  

(b) For 100.00 C  373.15 K,T = ° =  

4(3 mol)(8.3145 J mol K)(373.15 K) 4.65 10  N.
0.200 m

nRTF
L

⋅
= = = ×  

EVALUATE: When the temperature increases while the volume is kept constant, the pressure increases and 
therefore the force increases. The force increases by the factor 2 1/ .T T  

18.17. IDENTIFY: Example 18.4 assumes a temperature of 0 C° at all altitudes and neglects the variation of g with 

elevation. With these approximations, /
0 .Mgy RTp p e−=  

SET UP: ln( ) .xe x− = −  For air, 328.8 10  kg/mol.M −= ×  

EXECUTE: We want y for 00.90p p= so /0.90 Mgy RTe−= and ln(0.90) 850 m.RTy
Mg

= − =  

EVALUATE: This is a commonly occurring elevation, so our calculation shows that 10% variations in 
atmospheric pressure occur at many locations. 

18.18. IDENTIFY: From Example 18.4, the pressure at elevation y above sea level is /
0 .Mgy RTp p e−=  

SET UP: The average molar mass of air is 328.8 10  kg/mol.M −= ×  

EXECUTE: At an altitude of 100 m, 
3 2

1 (28.8 10  kg mol)(9.80 m s )(100 m) 0.01243,
(8.3145 J mol K)(273.15 K)

Mgy
RT

−×
= =

⋅
 and the percent 

decrease in pressure is 0.01243
01 1 0.0124 1.24%.p p e−− = − = =  At an altitude of 1000 m, 2 0.1243Mgy RT =  and 

the percent decrease in pressure is 0.12431 0.117 11.7%.e−− = =  
EVALUATE: These answers differ by a factor of (11.7%) (1.24%) 9.44,= which is less than 10 because the 
variation of pressure with altitude is exponential rather than linear. 

18.19. IDENTIFY: 0
Myg RTp p e−= from Example 18.4. Eq.(18.5) says ( )p ρ M RT.=  Example 18.4 assumes a constant 

273 K,  so  and T p ρ= are directly proportional and we can write 0 .Mgy RTρ ρ e−=  

SET UP: From Example 18.4, 1.10Mgy
RT

=  when 8863 m.y =  

EXECUTE: For 100 m,y =  0.0124,Mgy
RT

=  so 0.0124
0 00.988 .eρ ρ ρ−= =  The density at sea level is 1.2% larger 

than the density at 100 m.  

EVALUATE: The pressure decreases with altitude. tot ,mpV RT
M

=  so when the pressure decreases and T is 

constant the volume of a given mass of gas increases and the density decreases. 
18.20. IDENTIFY: /

0
Mgy RTp p e−= from Example 18.4 gives the variation of air pressure with altitude. The density ρ  

of the air is ,pM
RT

ρ =  so ρ is proportional to the pressure p. Let 0ρ be the density at the surface, where the 

pressure is 0.p  

SET UP: From Example 18.4, 
3 2

4 1(28.8 10  kg/mol)(9.80 m/s ) 1.244 10  m .
(8.314 J/mol K)(273 K)

Mg
RT

−
− −×

= = ×
⋅

 

EXECUTE: 
4 1 3(1.244 10  m )(1.00 10  m)

0 00.883 .p p e p
− −− × ×= =  constant,M

p RT
ρ
= =  so 0

0p p
ρ ρ
= and 0 0

0

0.883 .p
p

ρ ρ ρ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

The density at an altitude of 1.00 km is 88.3% of its value at the surface. 
EVALUATE: If the temperature is assumed to be constant, then the decrease in pressure with increase in altitude 
corresponds to a decrease in density. 
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18.21. IDENTIFY: Use Eq.(18.5) and solve for p. 
SET UP: /pM RTρ =  and /p RT Mρ=  

( 56.5 273.15) K 216.6 KT = − + =  

For air 328.8 10  kg/molM −= ×  (Example 18.3) 

EXECUTE: 
3

4
3

(8.3145 J/mol K)(216.6 K)(0.364 kg/m ) 2.28 10  Pa
28.8 10  kg/mol

p −

⋅
= = ×

×
 

EVALUATE: The pressure is about one-fifth the pressure at sea-level. 
18.22. IDENTIFY: The molar mass is AM N m= , where m is the mass of one molecule. 

SET UP: 23
A 6.02 10  molecules/molN = × . 

EXECUTE: 23 21
A (6.02 10 molecules mol)(1.41 10 kg molecule) 849 kg/mol.M N m −= = × × =  

EVALUATE: For a carbon atom, 312 10  kg/molM −= × . If this molecule is mostly carbon, so the average mass of 

its atoms is the mass of carbon, the molecule would contain 3

849 kg/mol 71,000 atoms
12 10  kg/mol− =
×

. 

18.23. IDENTIFY: The mass totm is related to the number of moles n by totm nM= . Mass is related to volume by 
/m Vρ = . 

SET UP: For gold, 196.97 g/molM = and 3 319.3 10  kg/mρ = × . The volume of a sphere of radius r is 34
3V rπ= . 

EXECUTE: (a) tot (3.00 mol)(196.97 g/mol) 590.9 g.m nM= = =  The value of this mass of gold is 
(590.9 g)($14.75/ g) $8720= . 

(b) 5 3
3 3

0.5909 kg 3.06 10  m
19.3 10  kg/m

mV
ρ

−= = = ×
×

. 34
3V rπ= gives 

1/ 31/ 3 5 33 3[3.06 10  m ] 0.0194 m 1.94 cm
4 4
Vr
π π

−⎛ ⎞×⎛ ⎞= = = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. The diameter is 2 3.88 cmr = . 

EVALUATE: The mass and volume are directly proportional to the number of moles. 
18.24. IDENTIFY: Use pV nRT= to calculate the number of moles and then the number of molecules would be 

AN nN= . 

SET UP: 51 atm 1.013 10  Pa= × . 3 6 31.00 cm 1.00 10  m−= × . 23
A 6.022 10  molecules/molN = × . 

EXECUTE: (a) 
14 5 6 3

18(9.00 10  atm)(1.013 10  Pa/atm)(1.00 10  m ) 3.655 10  mol
(8.314 J/mol K)(300.0 K)

pVn
RT

− −
−× × ×

= = = ×
⋅

. 

18 23 6
A (3.655 10  mol)(6.022 10  molecules/mol) 2.20 10  moleculesN nN −= = × × = × . 

(b) ApVNN
RT

=  so A  constantN VN
p RT
= = and 1 2

1 2

N N
p p
= . 

6 192
2 1 14

1

1.00 atm(2.20 10  molecules) 2.44 10  molecules
9.00 10  atm

pN N
p −

⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠
. 

EVALUATE: The number of molecules in a given volume is directly proportional to the pressure. Even at the very 
low pressure in part (a) the number of molecules in 31.00 cm is very large. 

18.25. IDENTIFY: We are asked about a single state of the system. 
SET UP: Use the ideal-gas law. Write n in terms of the number of molecules N. 
(a) EXECUTE: ,pV nRT=  A/n N N=  so A( / )pV N N RT=  

A

N Rp T
V N

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

12
6 3 23

80 molecules 8.3145 J/mol K (7500 K) 8.28 10  Pa
1 10  m 6.022 10  molecules/mol

p −
−

⋅⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟× ×⎝ ⎠⎝ ⎠
 

178.2 10  atm.p −= ×  This is much lower than the laboratory pressure of 131 10  atm−×  in Exercise 18.24. 
(b) EVALUATE: The Lagoon Nebula is a very rarefied low pressure gas. The gas would exert very little force on 
an object passing through it. 
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18.26. IDENTIFY: pV nRT NkT= =  

SET UP: At STP, 273 KT = , 51.01 10  Pap = × . 96 10  moleculesN = × . 

EXECUTE:. 
9 23

16 3
5

(6 10  molecules)(1.381 10  J/molecule K)(273 K) 2.24 10  m
1.01 10  Pa

NkTV
p

−
−× × ⋅

= = = ×
×

. 

3L V= so 1/ 3 66.1 10  mL V −= = × . 
EVALUATE: This is a small cube. 

18.27. IDENTIFY: 
A

m Nn
M N

= =  

SET UP: 23
A 6.022 10  molecules/molN = × . For water, 318 10  kg/molM −= × . 

EXECUTE:. 3

1.00 kg 55.6 mol
18 10  kg/mol

mn
M −= = =

×
. 

23 25
A (55.6 mol)(6.022 10  molecules/mol) 3.35 10  moleculesN nN= = × = × . 

EVALUATE: Note that we converted M to kg/mol. 

18.28. IDENTIFY: Use pV nRT= and 
A

Nn
N

= with 1N = to calculate the volume V occupied by 1 molecule. The length 

l of the side of the cube with volume V is given by 3V l= . 
SET UP: 27 C 300 K.T = =°  51.00 atm 1.013 10  Pa.p = = ×  8.314 J/mol K.R = ⋅  23

A 6.022 10  molecules/mol.N = ×  

The diameter of a typical molecule is about 1010  m.−  90.3 nm 0.3 10  m.−= ×  

EXECUTE: (a) pV nRT= and 
A

Nn
N

= gives 

26 3
23 5

A

(1.00)(8.314 J/mol K)(300 K) 4.09 10  m .
(6.022 10  molecules/mol)(1.013 10  Pa)

NRTV
N p

−⋅
= = = ×

× ×
 1/ 3 93.45 10  ml V −= = × . 

(b) The distance in part (a) is about 10 times the diameter of a typical molecule. 
(c) The spacing is about 10 times the spacing of atoms in solids. 
EVALUATE: There is space between molecules in a gas whereas in a solid the atoms are closely packed together. 

18.29. (a) IDENTIFY and SET UP: Use the density and the mass of 5.00 mol to calculate the volume. /m Vρ =  implies 
/ ,V m ρ=  where tot ,m m=  the mass of 5.00 mol of water. 

EXECUTE: 3
tot (5.00 mol)(18.0 10  kg/mol) 0.0900 kgm nM −= = × =  

Then 5 3
3

0.0900 kg 9.00 10  m
1000 kg/m

mV
ρ

−= = = ×  

(b) One mole contains 23
A 6.022 10  molecules,N = ×  so the volume occupied by one molecule is 

5 3
29 3

23

9.00 10  m / mol 2.989 10  m / molecule
(5.00 mol)(6.022 10  molecules/mol)

−
−×

= ×
×

 

3,V a=  where a is the length of each side of the cube occupied by a molecule. 3 29 32.989 10  m ,a −= ×  so 
103.1 10  m.a −= ×  

(c) EVALUATE: Atoms and molecules are on the order of 1010  m−  in diameter, in agreement with the above 
estimates. 

18.30. IDENTIFY: 3
av 2K kT= . rms

3RTv
M

= . 

SET UP: Ne 20.180 g/molM = , Kr 83.80 g/molM =  and Rn 222 g/molM = . 
EXECUTE: (a) 3

av 2K kT=  depends only on the temperature so it is the same for each species of atom in the 
mixture. 

(b) rms,Ne Kr

rms,Kr Ne

83.80 g/mol 2.04
20.18 g/mol

v M
v M

= = = . rms,Ne Rn

rms,Rn Ne

222 g/mol 3.32
20.18 g/mol

v M
v M

= = = . 

rms,Kr Rn

rms,Rn Kr

222 g/mol 1.63
83.80 g/mol

v M
v M

= = = . 

EVALUATE: The average kinetic energies are the same. The gas atoms with smaller mass have larger rmsv . 
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18.31. IDENTIFY and SET UP: rms
3RTv
M

= . 

EXECUTE: (a) rmsv is different for the two different isotopes, so the 235 isotope diffuses more rapidly. 

(b) rms,235 238

rms,238 235

0.352 kg/mol 1.004
0.349 kg/mol

v M
v M

= = = . 

EVALUATE: The rmsv values each depend on T but their ratio is independent of T. 

18.32. IDENTIFY and SET UP: With the multiplicity of each score denoted by in , the average score is 1
150 i in x⎛ ⎞∑⎜ ⎟
⎝ ⎠

 and 

the rms score is 
1/ 2

21
150 i in x⎡ ⎤⎛ ⎞∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

. 

EXECUTE: (a) 54.6 
(b) 61.1 
EVALUATE: The rms score is higher than the average score since the rms calculation gives more weight to the 
higher scores. 

18.33. IDENTIFY: tot

A

N mpV nRT RT RT
N M

= = = . 

SET UP: We known that  and that .A B A BV V T T= >  
EXECUTE: (a) /p nRT V= ; we don�t know n for each box, so either pressure could be higher. 

(b) 
A

NpV RT
N

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

so ApVNN
RT

= , where AN  is Avogadro�s number. We don�t know how the pressures compare, 

so either N could be larger. 
(c) ( )totpV m M RT= . We don�t know the mass of the gas in each box, so they could contain the same gas or 
different gases. 
(d) ( )2 31

2 2av
m v kT= . A BT T>  and the average kinetic energy per molecule depends only on T, so the statement 

must be true. 
(e) rms 3v kT m= . We don�t know anything about the masses of the atoms of the gas in each box, so either set of 
molecules could have a larger rmsv . 
EVALUATE: Only statement (d) must be true. We need more information in order to determine whether the other 
statements are true or false. 

18.34. IDENTIFY: Use pV nRT= to solve for V. 
SET UP: Use 0.08206 L atm/mol KR = ⋅ ⋅ . 273.15 KT = . 

EXECUTE: (a) (1.00 mol)(0.08206 L atm/mol K)(273.15 K) 22.4 L
1.00 atm

nRTV
p

⋅ ⋅
= = =  

(b)  constantpV nRT= = , so 1 1 2 2pV p V= . 1
2 1

2

1.00 atm (22.4 L) 0.243 L
92 atm

pV V
p

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

EVALUATE: For constant T, the volume of 1.00 mol is inversely proportional to the pressure. 

18.35. IDENTIFY: rms
3kTv
m

=  

SET UP: The mass of a deuteron is 27 27 27
p n 1.673 10  kg 1.675 10  kg 3.35 10  kgm m m − − −= + = × + × = × . 

83.00 10  m/sc = × . 231.381 10  J/molecule Kk −= × ⋅ . 

EXECUTE: (a) 
23 6

6
rms 27

3(1.381 10  J/molecule K)(300 10  K) 1.93 10  m/s
3.35 10  kg

v
−

−

× ⋅ ×
= = ×

×
. 3rms 6.43 10v

c
−= × . 

(b) 
27

2 7 2 10
rms 23

3.35 10  kg( ) (3.0 10  m/s) 7.3 10  K
3 3(1.381 10  J/molecule K)
mT v
k

−

−

⎛ ⎞×⎛ ⎞= = × = ×⎜ ⎟⎜ ⎟ × ⋅⎝ ⎠ ⎝ ⎠
. 

EVALUATE: Even at very high temperatures and for this light nucleus, rmsv is a small fraction of the speed of 
light. 
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18.36. IDENTIFY: rms
3RTv
M

= , where T is in kelvins. pV nRT= gives n p
V RT
= . 

SET UP: 8.314 J/mol KR = ⋅ . 344.0 10  kg/molM −= × . 

EXECUTE: (a) For 0.0 C 273.15 KT = =° , rms 3

3(8.314 J/mol K)(273.15 K) 393 m/s
44.0 10  kg/mol

v −

⋅
= =

×
. For 

100.0 C 173 KT = − =° , rms 313 m/sv = . The range of speeds is 393 m/s to 313 m/s. 

(b) For 273.15 KT = , 3650 Pa 0.286 mol/m
(8.314 J/mol K)(273.15 K)

n
V
= =

⋅
. For 173.15 KT = , 30.452 mol/mn

V
= . 

The range of densities is 30.286 mol/m to 30.452 mol/m . 
EVALUATE: When the temperature decreases the rms speed decreases and the density increases. 

18.37. IDENTIFY and SET UP: Apply the analysis of Section 18.3. 
EXECUTE: (a) 2 23 213 31

av2 2 2( ) (1.38 10  J/molecule K)(300 K) 6.21 10  Jm v kT − −= = × ⋅ = ×  

(b) We need the mass m of one atom: 
3

26
23

A

32.0 10  kg/mol 5.314 10  kg/molecule
6.022 10  molecules/mol

Mm
N

−
−×

= = = ×
×

 

Then 2 211
av2 ( ) 6.21 10  Jm v −= ×  (from part (a)) gives 

21 21
2 5 2 2

av 26

2(6.21 10  J) 2(6.21 10  J)( ) 2.34 10  m /s
5.314 10  kg

v
m

− −

−

× ×
= = = ×

×
 

(c) 2 4 2 2
rms rms( ) 2.34 10  m /s 484 m/sv v= = × =  

(d) 26 23
rms (5.314 10  kg)(484 m/s) 2.57 10  kg m/sp mv − −= = × = × ⋅  

(e) Time between collisions with one wall is 4

rms

0.20 m 0.20 m 4.13 10  s
484 m/s

t
v

−= = = ×  

In a collision v!  changes direction, so 23 23
rms2 2(2.57 10  kg m/s) 5.14 10  kg m/sp mv − −Δ = = × ⋅ = × ⋅  

dpF
dt

=  so 
23

19
av 4

5.14 10  kg m/s 1.24 10  N
4.13 10  s

pF
t

−
−

−

Δ × ⋅
= = = ×
Δ ×

 

(f )  19 2 17pressure / 1.24 10  N/(0.10 m) 1.24 10  PaF A − −= = × = ×  (due to one atom) 

(g) 5pressure 1 atm 1.013 10  Pa= = ×  

Number of atoms needed is 5 17 211.013 10  Pa/(1.24 10  Pa/atom) 8.17 10  atoms−× × = ×  

(h) pV NkT=  (Eq.18.18), so 
5 3

22
23

(1.013 10  Pa)(0.10 m) 2.45 10  atoms
(1.381 10  J/molecule K)(300 K)

pVN
kT −

×
= = = ×

× ⋅
 

(i) From the factor of 1
3  in 2 21

av av3( ) ( ) .xv v=  
EVALUATE: This Exercise shows that the pressure exerted by a gas arises from collisions of the molecules of the 
gas with the walls. 

18.38. IDENTIFY: Apply Eq.(18.22) and calculate λ  
SET UP: 51 atm 1.013 10  Pa= × , so 83.55 10  Pap −= × . 102.0 10  mr −= ×  and 231.38 10  J/Kk −= × . 

EXECUTE: 
23

5
2 10 2 8

(1.38 10  J/K)(300 K) 1.5 10  m
4 2 4 2(2.0 10  m) (3.55 10  Pa)

kT
r

λ
π ρ π

−

− −

×
= = = ×

× ×
 

EVALUATE: At this very low pressure the mean free path is very large. If 484 m/sv = , as in Example 18.8, then 

mean 330 st
v
λ

= = . Collisions are infrequent. 

18.39. IDENTIFY and SET UP: Use equal rmsv  to relate T and M for the two gases. rms 3 /v RT M=  (Eq.18.19), so 
2
rms /3 / ,v R T M=  where T must be in kelvins. Same rmsv  so same /T M  for the two gases and 

2 2 2 2N N H H/ / .T M T M=  

EXECUTE: 2

2 2

2

N 3
N H

H

28.014 g/mol((20 273) K) 4.071 10  K
2.016 g/mol

M
T T

M

⎛ ⎞ ⎛ ⎞
= = + = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

2N (4071 273) C 3800 CT = − ° = °  

EVALUATE: A 2N  molecule has more mass so 2N  gas must be at a higher temperature to have the same rms.v  
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18.40. IDENTIFY: rms
3kTv
m

= . 

SET UP: 231.381 10  J/molecule K.k −= × ⋅  

EXECUTE: (a) 
23

3
rms 16

3(1.381 10  J/molecule K)(300 K) 6.44 10  m/s 6.44 mm/s
3.00 10  kg

v
−

−
−

× ⋅
= = × =

×
 

EVALUATE: (b) No. The rms speed depends on the average kinetic energy of the particles. At this T, H2 
molecules would have larger vrms than the typical air molecules but would have the same average kinetic energy 
and the average kinetic energy of the smoke particles would be the same. 

18.41. IDENTIFY: Use Eq.(18.24), applied to a finite temperature change. 
SET UP: 5 /2VC R=  for a diatomic ideal gas and 3 /2VC R=  for a monatomic ideal gas. 
EXECUTE: (a) ( )5

2VQ nC T n R T= Δ = Δ  

( )5
2(2.5 mol) (8.3145 J/mol K)(30.0 K) 1560 JQ = ⋅ =  

(b) ( )3
2  VQ nC T n R T= Δ = Δ  

( )3
2(2.5 mol) (8.3145 J/mol K)(30.0 K) 935 JQ = ⋅ =  

EVALUATE: More heat is required for the diatomic gas; not all the heat that goes into the gas appears as 
translational kinetic energy, some goes into energy of the internal motion of the molecules (rotations). 

18.42. IDENTIFY: The heat Q added is related to the temperature increase TΔ by .VQ nC T= Δ  
SET UP: For 2H , 

2,H 20.42 J/mol KVC = ⋅ and for Ne (a monatomic gas), ,Ne 12.47 J/mol K.VC = ⋅  

EXECUTE: constantV
QC T
n

Δ = = , so 
2 2,H H ,Ne Ne.V VC T C TΔ = Δ  

2

2

,H
Ne H

,Ne

20.42 J/mol K (2.50 C ) 4.09 C
12.47 J/mol K

V

V

C
T T

C
⎛ ⎞ ⋅⎛ ⎞Δ = Δ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅⎝ ⎠⎝ ⎠

° °.  

EVALUATE: The same amount of heat causes a smaller temperature increase for 2H since some of the energy 
input goes into the internal degrees of freedom. 

18.43. IDENTIFY: C Mc= , where C is the molar heat capacity and c is the specific heat capacity. .mpV nRT RT
M

= =  

SET UP: 
2

3
N 2(14.007 g/mol) 28.014 10  kg/molM −= = × . For water, w 4190 J/kg Kc = ⋅ . For 2N , 

20.76 J/mol KVC = ⋅ . 

EXECUTE: (a) 
2N 3

20.76 J/mol K 741 J/kg K
28.014 10  kg/mol

Cc
M −

⋅
= = = ⋅

×
. 

2

w

N

5.65c
c

= ; wc  is over five time larger. 

(b) To warm the water, 4
w (1.00 kg)(4190 J/mol K)(10.0 K) 4.19 10  JQ mc T= Δ = ⋅ = × . For air, 

2

4

N

4.19 10  J 5.65 kg
(741 J/kg K)(10.0 K)

Qm
c T

×
= = =

Δ ⋅
. 3

3 5

(5.65 kg)(8.314 J/mol K)(293 K) 4.85 m
(28.014 10  kg/mol)(1.013 10  Pa)

mRTV
Mp −

⋅
= = =

× ×
. 

EVALUATE: c is smaller for 2N , so less heat is needed for 1.0 kg of 2N  than for 1.0 kg of water. 
18.44. (a) IDENTIFY and SET UP: 1

2 R  contribution to VC  for each degree of freedom. The molar heat capacity C is 
related to the specific heat capacity c by .C Mc=  
EXECUTE: ( )1

26 3 3(8.3145 J/mol K) 24.9 J/mol K.VC R R= = = ⋅ = ⋅  The specific heat capacity is 
3/ (24.9 J/mol K)/(18.0 10  kg/mol) 1380 J/kg K.V Vc C M −= = ⋅ × = ⋅  

(b) For water vapor the specific heat capacity is 2000 J/kg K.c = ⋅  The molar heat capacity is 
3(18.0 10  kg/mol)(2000 J/kg K) 36.0 J/mol K.C Mc −= = × ⋅ = ⋅  

EVALUATE: The difference is 36.0 J/mol K 24.9 J/mol K 11.1 J/mol K,⋅ − ⋅ = ⋅  which is about ( )1
22.7 ;R  the 

vibrational degrees of freedom make a significant contribution. 
18.45. IDENTIFY: 3VC R=  gives VC in units of J/mol K⋅ . The atomic mass M gives the mass of one mole. 

SET UP: For aluminum, 326.982 10  kg/mol.M −= ×  

EXECUTE: (a) 3 24.9 J/mol KVC R= = ⋅ . 3

24.9 J/mol K 923 J/kg K
26.982 10  kg/molVc −

⋅
= = ⋅

×
. 

(b) Table 17.3 gives 910 J/kg K.⋅  The value from Eq.(18.28) is too large by about 1.4%. 
EVALUATE: As shown in Figure 18.21 in the textbook, CV approaches the value 3R as the temperature increases. 
The values in Table 17.3 are at room temperature and therefore are somewhat smaller than 3R. 
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18.46. IDENTIFY: Table 18.2 gives the value of rms/v v for which 94.7% of the molecules have a smaller value of rms/v v . 

rms
3RTv
M

= . 

SET UP: For 2N , 328.0 10  kg/molM −= × . rms/ 1.60v v = . 

EXECUTE: rms
3 ,

1.60
v RTv

M
= =  so the temperature is 

2 3
2 4 2 2 2

2 2

(28.0 10  kg/mol) (4.385 10  K s /m ) .
3(1.60) 3(1.60) (8.3145 J/mol K)

MvT v v
R

−
−×

= = = × ⋅
⋅

 

(a) 4 2 2 2(4.385 10  K s /m )(1500 m/s) 987 KT −= × ⋅ =  
(b) 4 2 2 2(4.385 10 K s /m )(1000 m/s) 438 KT −= × ⋅ =  
(c) 4 2 2 2(4.385 10  K s /m )(500 m/s) 110 K.T −= × ⋅ =  
EVALUATE: As T decreases the distribution of molecular speeds shifts to lower values. 

18.47. IDENTIFY and SET UP: Make the substitution 21
2 mv=P in Eq.(18.32). 

EXECUTE: 
3/2 3/2

/ /2 8( ) 4 .
2 2

kT kTm π mf v π e e
πkT m m πkT

− −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

P PP P  

EVALUATE: The shape of the distribution of molecular speeds versus the temperature is a function only of the 
kinetic energy of the molecules. 

18.48. IDENTIFY and SET UP: Eq.(18.33): 
3/2

/8( )
2

kTmf v e
m kT
π

π
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
PP  

At the maximum of ( ),f P  0.df
d

=
P

 

EXECUTE: 
3/2

/8 ( ) 0
2

kTdf m d e
d m kT d

π
π

−⎛ ⎞= =⎜ ⎟
⎝ ⎠

PP
P P

 

This requires that /( ) 0.kTd e
d

− =PP
P

 
/ /( / ) 0kT kTe kT e− −− =P PP  

/(1 / ) 0kTkT e−− =PP  
This requires that 1 / 0kT− =P  so ,kT=P  as was to be shown. And then since 21

2 ,mv=P  this gives 21
mp2 mv kT=  

and mp 2 / ,v kT m=  which is Eq.(18.34). 

EVALUATE: 3
rms mp2 .v v=  The average of 2v  weights larger v. 

18.49. IDENTIFY: Apply Eqs.(18.34) (18.35) and (18.36). 

SET UP: Note that A/
/ A

k R N R
m M N M
= = . 344.0 10  kg/molM −= × . 

EXECUTE: (a) 3 2
mp 2(8.3145 J/mol K)(300 K)/(44.0 10  kg/mol) 3.37 10  m/s.v −= ⋅ × = ×  

(b) 3 2
av 8(8.3145 J mol K)(300 K) ( (44.0 10 kg mol)) 3.80 10 m s.v π −= ⋅ × = ×  

(c) 3 2
rms 3(8.3145 J mol K)(300 K) (44.0 10 kg mol) 4.12 10 m s.v −= ⋅ × = ×  

EVALUATE: The average speed is greater than the most probable speed and the rms speed is greater than the 
average speed. 

18.50. IDENTIFY and SET UP: If the temperature at altitude y is below the freezing point only cirrus clouds can form. 
Use 0T T yα= −  to find the y that gives 0.0 C.T = °  

EXECUTE: 0 15.0 C 0.0 C 2.5 km
6.0 C /km

T Ty
α
− ° − °

= = =
°

 

EVALUATE: The solid-liquid phase transition occurs at 0 C°  only for 51.01 10  Pa.p = ×  Use the results of 
Example 18.4 to estimate the pressure at an altitude of 2.5 km. 

2 1( ) /
2 1

Mg y y RTp p e −=  

2 1( ) / 1.10(2500 m/8863 m) 0.310Mg y y RT− = =  (using the calculation in Example 18.4) 
Then 5 0.31 5

2 (1.01 10  Pa) 0.74 10  Pa.p e−= × = ×  
This pressure is well above the triple point pressure for water. Figure 18.21 shows that the fusion curve has large 
slope and it takes a large change in pressure to change the phase transition temperature very much. Using 0.0°C 
introduces little error. 
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18.51. IDENTIFY: Refer to the phase diagram in Figure 18.24 in the textbook. 
SET UP: For water the triple-point pressure is 610 Pa and the critical-point pressure is 72.212 10  Pa× . 
EXECUTE: (a) To observe a solid to liquid (melting) phase transition the pressure must be greater than the triple-
point pressure, so 1 610 Pap = . For 1p p<  the solid to vapor (sublimation) phase transition is observed. 
(b) No liquid to vapor (boiling) phase transition is observed if the pressure is greater than the critical-point pressure. 

7
2 2.212 10  Pap = × . For 1 2p p p< <  the sequence of phase transitions are solid to liquid and then liquid to vapor. 

EVALUATE: Normal atmospheric pressure is approximately 51.0 10  Pa× , so the solid to liquid to vapor sequence 
of phase transitions is normally observed when the material is water. 

18.52. IDENTIFY: Refer to Figure 18.24 in the textbook. 
SET UP: The triple-point temperature for water is 273.16 K 0.01 C= ° . 
EXECUTE: The temperature is less than the triple-point temperature so the solid and vapor phases are in 
equilibrium. The box contains ice and water vapor but no liquid water. 
EVALUATE: The fusion curve terminates at the triple point. 

18.53. IDENTIFY: Figure 18.24 in the textbook shows that there is no liquid phase below the triple point pressure. 
SET UP: Table 18.3 gives the triple point pressure to be 610 Pa for water and 55.17 10  Pa× for CO2. 
EXECUTE: The atmospheric pressure is below the triple point pressure of water, and there can be no liquid water 
on Mars. The same holds true for CO2. 
EVALUATE: On earth 5

atm 1 10  Pap = × , so on the surface of the earth there can be liquid water but not liquid CO2. 
18.54. IDENTIFY: 0 0V βV T V k pΔ = Δ − Δ  

SET UP: For steel, 5 13.6 10  Kβ − −= × and 12 16.25 10  Pak − −= × . 
EXECUTE: 5 1

0 (3.6 10  K )(11.0 L)(21 C ) 0.0083 LβV T − −Δ = × =° . 
12 7

o (6.25 10 Pa)(11 L) (2.1 10 Pa) 0.0014 LkV p −− Δ = × × = − . The total change in volume is 
0.0083 L 0.0014 L 0.0069 L.VΔ = − =  

(b) Yes; VΔ  is much less than the original volume of 11.0 L. 
EVALUATE: Even for a large pressure increase and a modest temperature increase, the magnitude of the volume 
change due to the temperature increase is much larger than that due to the pressure increase. 

18.55. IDENTIFY: We are asked to compare two states. Use the ideal-gas law to obtain m2 in terms of m1 and the ratio of 
pressures in the two states. Apply Eq.(18.4) to the initial state to calculate m1. 
SET UP: pV nRT=  can be written ( / )pV m M RT=  
T, V, M, R are all constant, so / / constant.p m RT MV= =  
So 1 1 2 2/ / ,p m p m=  where m is the mass of the gas in the tank. 

EXECUTE: 6 5 6
1 1.30 10  Pa 1.01 10  Pa 1.40 10  Pap = × + × = ×  

5 5 5
2 2.50 10  Pa 1.01 10  Pa 3.51 10  Pap = × + × = ×  

1 1 / ;m pVM RT=  2 2 3(1.00 m) (0.060 m) 0.01131 mV hA h rπ π= = = =  
6 3 3

1
(1.40 10  Pa)(0.01131 m )(44.1 10  kg/mol) 0.2845 kg

(8.3145 J/mol K)((22.0 273.15) K)
m

−× ×
= =

⋅ +
 

Then 
5

2
2 1 6

1

3.51 10  Pa(0.2845 kg) 0.0713 kg.
1.40 10  Pa)

pm m
p

⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

2m  is the mass that remains in the tank. The mass that has been used is 

1 2 0.2848 kg 0.0713 kg 0.213 kg.m m− = − =  
EVALUATE: Note that we have to use absolute pressures. The absolute pressure decreases by a factor of four and 
the mass of gas in the tank decreases by a factor of four. 

18.56. IDENTIFY: Apply pV nRT= to the air inside the diving bell. The pressure p at depth y below the surface of the 
water is atmp p gyρ= + . 

SET UP: 51.013 10  Pap = × . 300.15 KT = at the surface and 280.15 KT ′ = at the depth of 13.0 m. 
EXECUTE: (a) The height h′  of the air column in the diving bell at this depth will be proportional to the volume, 
and hence inversely proportional to the pressure and proportional to the Kelvin temperature: 

atm

atm

p T p Th h h
p T p ρgy T

′ ′
′ = =

′ +
. 

5

5 3 2

(1.013 10  Pa) 280.15 K(2.30 m) 0.26 m
(1.013 10 Pa) (1030 kg m )(9.80 m s )(73.0 m) 300.15 K

h
⎛ ⎞×′ = =⎜ ⎟× + ⎝ ⎠

. 

The height of the water inside the diving bell is 2.04 mh h′− = . 
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(b) The necessary gauge pressure is the term ρgy  from the above calculation, 5
gauge 7.37 10  Pa.p = × . 

EVALUATE: The gauge pressure required in part (b) is about 7 atm. 

18.57. IDENTIFY: pV NkT= gives N p
V kT
= . 

SET UP: 51 atm 1.013 10  Pa= × . K C 273.15T T= + . 231.381 10  J/molecule Kk −= × ⋅ . 
EXECUTE: (a) C K 273.15 94 K 273.15 = 179 CT T= − = − − °  

(b) 
5

26 3
23

(1.5 atm)(1.013 10  Pa/atm) 1.2 10  molecules/m
(1.381 10  J/molecule K)(94 K)

N p
V kT −

×
= = = ×

× ⋅
 

(c) For the earth, 51.0 atm 1.013 10  Pap = = ×  and 22 C 295 KT = =° . 
5

25 3
23

(1.0 atm)(1.013 10  Pa/atm) 2.5 10  molecules/m
(1.381 10  J/molecule K)(295 K)

N
V −

×
= = ×

× ⋅
. The atmosphere of Titan is about five times 

denser than earth's atmosphere. 
EVALUATE: Though it is smaller than Earth and has weaker gravity at its surface, Titan can maintain a dense 
atmosphere because of the very low temperature of that atmosphere. 

18.58. IDENTIFY: For constant temperature, the variation of pressure with altitude is calculated in Example 18.4 to be 

/
0

Mgy RTp p e−= . rms
3RTv
M

= . 

SET UP: 2
Earth 9.80 m/sg = . 460 C 733 KT = =° . 344.0 g/mol 44.0 10  kg/molM −= = × . 

EXECUTE: (a) 
3 2 3(44.0 10  kg/mol)(0.894)(9.80 m/s )(1.00 10  m) 0.06326

(8.314 J/mol K)(733 K)
Mgy
RT

−× ×
= =

⋅
. 

/ 0.06326
0 (92 atm) 86 atmMgy RTp p e e− −= = = . The pressure is 86 Earth-atmospheres, or 0.94 Venus-atmospheres. 

(b) rms 3

3 3(8.314 J/mol K)(733 K) 645 m/s
44.0 10  kg/mol

RTv
M −

⋅
= = =

×
. rmsv has this value both at the surface and at an altitude 

of 1.00 km. 
EVALUATE: rmsv depends only on T and the molar mass of the gas. For Venus compared to earth, the surface 
temperature, in kelvins, is nearly a factor of three larger and the molecular mass of the gas in the atmosphere is 
only about 50% larger, so rmsv for the Venus atmosphere is larger than it is for the Earth's atmosphere. 

18.59. IDENTIFY: pV nRT=  
SET UP: In pV nRT= we must use the absolute pressure. 1 278 KT = . 1 2.72 atmp = . 2 318 KT = . 

EXECUTE: n, R constant, so constantpV nR
T

= = . 1 1 2 2

1 2

pV p V
T T

=  and 

3
1 2

2 1 3
2 1

0.0150 m 318 K(2.72 atm) 2.94 atm
0.0159 m 278 K

V Tp p
V T
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
. The final gauge pressure is 

2.94 atm 1.02 atm 1.92 atm− = . 
EVALUATE: Since a ratio is used, pressure can be expressed in atm. But absolute pressures must be used. The 
ratio of gauge pressures is not equal to the ratio of absolute pressures. 

18.60. IDENTIFY: In part (a), apply pV nRT= to the ethane in the flask. The volume is constant once the stopcock is in 

place. In part (b) apply totmpV RT
M

= to the ethane at its final temperature and pressure. 

SET UP: 3 31.50 L 1.50 10  m−= × . 330.1 10  kg/molM −= × . Neglect the thermal expansion of the flask. 

EXECUTE: (a) 5 4
2 1 2 1( ) (1.013 10  Pa)(300 K 380 K) 8.00 10  Pa.p p T T= = × = ×  

(b) 
4 3 3

32
tot

2

(8.00 10  Pa)(1.50 10  m ) (30.1 10  kg mol) 1.45 g.
(8.3145 J mol K)(300 K)

p Vm M
RT

−
−⎛ ⎞ ⎛ ⎞× ×

= = × =⎜ ⎟ ⎜ ⎟⋅⎝ ⎠⎝ ⎠
 

EVALUATE: We could also calculate totm with 51.013 10  Pap = × and 380 KT = , and we would obtain the same 
result. Originally, before the system was warmed, the mass of ethane in the flask was 

5

4

1.013 10  Pa(1.45 g) 1.84 g
8.00 10  Pa

m
⎛ ⎞×

= =⎜ ⎟×⎝ ⎠
. 



Thermal Properties of Matter  18-13 

18.61. (a) IDENTIFY: Consider the gas in one cylinder. Calculate the volume to which this volume of gas expands when 
the pressure is decreased from 6 5 6(1.20 10  Pa 1.01 10  Pa) 1.30 10  Pa× + × = ×  to 51.01 10  Pa.× Apply the ideal-gas 
law to the two states of the system to obtain an expression for 2V  in terms of 1V  and the ratio of the pressures in the 
two states. 
SET UP: pV nRT=  
n, R, T constant implies constant,pV nRT= =  so 1 1 2 2.pV p V=  

EXECUTE: 
6

3 3
2 1 1 2 5

1.30 10  Pa( / ) (1.90 m ) 24.46 m
1.01 10  Pa

V V p p
⎛ ⎞×

= = =⎜ ⎟×⎝ ⎠
 

The number of cylinders required to fill a 3750 m  balloon is 3 3750 m / 24.46 m 30.7 cylinders.=  
EVALUATE: The ratio of the volume of the balloon to the volume of a cylinder is about 400. Fewer cylinders than 
this are required because of the large factor by which the gas is compressed in the cylinders. 
(b) IDENTIFY: The upward force on the balloon is given by Archimedes� principle (Chapter 14): weightB =  of 
air displaced by airballoon .Vgρ=  Apply Newton�s 2nd law to the balloon and solve for the weight of the load that 
can be supported. Use the ideal-gas equation to find the mass of the gas in the balloon. 
SET UP: The free-body diagram for the balloon is given in Figure 18.61. 

 

mgas is the mass of the gas that is inside 
the balloon; mL is the mass of the load 
that is supported by the balloon 
 
EXECUTE: y yF ma=∑  

L gas 0B m g m g− − =  

Figure 18.61  

air L gas 0Vg m g m gρ − − =  

L air gasm V mρ= −  

Calculate gas ,m  the mass of hydrogen that occupies 3750 m  at 15 C°  and 51.01 10  Pa.p = ×  

gas( / )pV nRT m M RT= =  gives 
5 3 3

gas
(1.01 10  Pa)(750 m )(2.02 10  kg/mol)/ 63.9 kg

(8.3145 J/mol K)(288 K)
m pVM RT

−× ×
= = =

⋅
 

Then 3 3
L (1.23 kg/m )(750 m ) 63.9 kg 859 kg,m = − =  and the weight that can be supported is 

2
L L (859 kg)(9.80 m/s ) 8420 N.w m g= = =  

(c) L air gasm V mρ= −  

gas / (63.9 kg)((4.00 g/mol)/(2.02 g/mol)) 126.5 kgm pVM RT= = =  (using the results of part (b)). 

Then 3 3
L (1.23 kg/m )(750 m ) 126.5 kg 796 kg.m = − =  

2
L L (796 kg)(9.80 m/s ) 7800 N.w m g= = =  

EVALUATE: A greater weight can be supported when hydrogen is used because its density is less. 
18.62. IDENTIFY: The upward force exerted by the gas on the piston must equal the piston's weight. Use pV nRT= to 

calculate the volume of the gas, and from this the height of the column of gas in the cylinder. 
SET UP: 2F pA p rπ= = , with 0.100 mr = and 51.00 atm 1.013 10  Pap = = × . For the cylinder, 2V r hπ= . 

EXECUTE: (a) 2p r mgπ = and 
2 5 2

2

(1.013 10  Pa) (0.100 m) 325 kg
9.80 m/s

p rm
g
π π×

= = = . 

(b) 2 3
5

(1.80 mol)(8.31 J/mol K)(293.15 K) 4.33 10  m
1.013 10  Pa

nRTV
p

−⋅
= − = ×

×
. 

2 3

2 2

4.33 10  m 1.38 m
(0.100 m)

Vh
rπ π

−×
= = = . 

EVALUATE: The calculation assumes a vacuum ( 0)p =  in the tank above the piston. 
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18.63. IDENTIFY: Apply Bernoulli�s equation to relate the efflux speed of water out the hose to the height of water in 
the tank and the pressure of the air above the water in the tank. Use the ideal-gas equation to relate the volume of 
the air in the tank to the pressure of the air. 
(a) SET UP: Points 1 and 2 are shown in Figure 18.63. 

 

5
1 4.20 10  Pap = ×  

5
2 air 1.00 10  Pap p= = ×  

large tank implies 1 0v ≈  

Figure 18.63  

EXECUTE: 2 21 1
1 1 1 2 2 22 2p gy v p gy vρ ρ ρ ρ+ + = + +  

21
2 1 2 1 22 ( )v p p g y yρ ρ= − + −  

2 1 2 1 2(2 / )( ) 2 ( )v p p g y yρ= − + −  

2 26.2 m/sv =  

(b) 3.00 mh =  
The volume of the air in the tank increases so its pressure decreases. constant,pV nRT= =  so 0 0pV p V=  0( p  is 
the pressure for 0 3.50 mh =  and p is the pressure for 3.00 m)h =  

0 0(4.00 m ) (4.00 m )p h A p h A− = −  

5 50
0

4.00 m 4.00 m 3.50 m(4.20 10  Pa) 2.10 10  Pa
4.00 m 4.00 m 3.00 m

hp p
h

− −⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

Repeat the calculation of part (a), but now 5
1 2.10 10  Pap = ×  and 1 3.00 m.y =  

( )2 1 2 1 22 / ( ) 2 ( )v p p g y yρ= − + −  

2 16.1 m/sv =  

2.00 mh =  

5 50
0

4.00 m 4.00 m 3.50 m(4.20 10  Pa) 1.05 10  Pa
4.00 m 4.00 m 2.00 m

hp p
h

− −⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

2 1 2 1 2(2 / )( ) 2 ( )v p p g y yρ= − + −  

2 5.44 m/sv =  

(c) 2 0v =  means 1 2 1 2(2 / )( ) 2 ( ) 0p p g y yρ − + − =  

1 2 1 2( )p p g y yρ− = − −  

1 2 1.00 my y h− = −  

5
0

0.50 m 0.50 m(4.20 10  Pa) .
4.00 m 4.00 m

p p
h h

⎛ ⎞ ⎛ ⎞= = ×⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 This is 1,p so 

5 5 2 30.50 m(4.20 10  Pa) 1.00 10  Pa (9.80 m/s )(1000 kg/m )(1.00 m )
4.00 m

h
h

⎛ ⎞× − × = −⎜ ⎟−⎝ ⎠
 

(210/(4.00 )) 100 9.80 9.80 ,h h− − = −  with h in meters. 
210 (4.00 )(109.8 9.80 )h h= − −  

29.80 149 229.2 0h h− + =  and 2 15.20 23.39 0h h− + =  

quadratic formula: ( )21
2 15.20 (15.20) 4(23.39) (7.60 5.86) mh = ± − = ±  

h must be less than 4.00 m, so the only acceptable value is 7.60 m 5.86 m 1.74 mh = − =  

EVALUATE: The flow stops when 1 2( )p g y yρ+ −  equals air pressure. For 1.74 m,h =  49.3 10  Pap = ×  and 
4

1 2( ) 0.7 10  Pa,g y yρ − = ×  so 5
1 2( ) 1.0 10  Pa,p g y yρ+ − = ×  which is air pressure. 
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18.64. IDENTIFY: Use the ideal gas law to find the number of moles of air taken in with each breath and from this 
calculate the number of oxygen molecules taken in. Then find the pressure at an elevation of 2000 m and repeat the 
calculation. 
SET UP: The number of molecules in a mole is 23

A 6.022 10  molecules/molN = × . 0.08206 L atm/mol KR = ⋅ ⋅ . 
Example 18.4 shows that the pressure variation with altitude y, when constant temperature is assumed, is 

/
0

Mgy RTp p e−= . For air, 328.8 10  kg/molM −= × . 

EXECUTE: (a) pV nRT= gives (1.00 atm)(0.50 L) 0.0208 mol
(0.08206 L atm/mol K)(293.15 K)

pVn
RT

= = =
⋅ ⋅

. 

23 21
A(0.210) (0.210)(0.0208 mol)(6.022 10  molecules/mol) 2.63 10  moleculesN nN= = × = × . 

(b) 
3 2(28.8 10  kg/mol)(9.80 m/s )(2000 m) 0.2316

(8.314 J/mol K)(293.15 K)
Mgy
RT

−×
= =

⋅
. / 0.2316

0 (1.00 atm) 0.793 atmMgy RTp p e e− −= = = .  

N is proportional to n, which is in turn proportional to p, so 
21 210.793 atm (2.63 10  molecules) 2.09 10  molecules

1.00 atm
N ⎛ ⎞= × = ×⎜ ⎟

⎝ ⎠
. 

(c) Less 2O is taken in with each breath at the higher altitude, so the person must take more breaths per minute. 
EVALUATE: A given volume of gas contains fewer molecules when the pressure is lowered and the temperature 
is kept constant. 

18.65. IDENTIFY and SET UP: Apply Eq.(18.2) to find n and then use Avogadro�s number to find the number of molecules. 
EXECUTE: Calculate the number of water molecules N. 

Number of moles: 3tot
3

50 kg 2.778 10  mol
18.0 10  kg/mol

mn
M −= = = ×

×
 

3 23 27
A (2.778 10  mol)(6.022 10  molecules/mol) 1.7 10  moleculesN nN= = × × = ×  

Each water molecule has three atoms, so the number of atoms is 27 273(1.7 10 ) 5.1 10  atoms× = ×  
EVALUATE: We could also use the masses in Example 18.5 to find the mass m of one 2H O  molecule: 

262.99 10  kg.m −= ×  Then 27
tot / 1.7 10  molecules,N m m= = ×  which checks. 

18.66. IDENTIFY: 
A

NpV nRT RT
N

= = . Deviations will be noticeable when the volume V of a molecule is on the order 

of 1% of the volume of gas that contains one molecule. 

SET UP: The volume of a sphere of radius r is 34
3

V rπ= . 

EXECUTE: The volume of gas per molecule is 
A

RT
N p , and the volume of a molecule is about 

10 3 29 3
0

4 (2.0 10 m) 3.4 10 m .
3

V π − −= × = ×  Denoting the ratio of these volumes as f, 

8
23 29 3

A 0

(8.3145 J mol K)(300 K) (1.2 10  Pa) .
(6.023 10  molecules mol)(3.4 10  m )

RTp f f f
N V −

⋅
= = = ×

× ×
 

�Noticeable deviations� is a subjective term, but f on the order of 1.0% gives a pressure of 610  Pa.  
EVALUATE: The forces between molecules also cause deviations from ideal-gas behavior. 

18.67. IDENTIFY: Eq.(18.16) says that the average translational kinetic energy of each molecule is equal to 3
2 kT . 

rms
3kTv
m

= . 

SET UP: 231.381 10  J/molecule Kk −= × ⋅ . 
EXECUTE: (a) 21

av2 ( )m v depends only on T and both gases have the same T, so both molecules have the same 

average translational kinetic energy. rmsv is proportional to 1/ 2m− , so the lighter molecules, A, have the greater rmsv . 
(b) The temperature of gas B would need to be raised. 

(c) rms constant
3

T v
m k
= = , so A B

A B

T T
m m

= . 
26

3
27

5.34 10  kg (283.15 K) 4.53 10  K 4250 C
3.34 10  kg

B
B A

A

mT T
m

−

−

⎛ ⎞ ⎛ ⎞×
= = = × =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

° . 

(d) B AT T> so the B molecules have greater translational kinetic energy per molecule. 

EVALUATE: In 2 31
av2 2( )m v kT= and rms

3kTv
m

= the temperature T must be in kelvins. 
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18.68. IDENTIFY: The equations derived in the subsection Collisions between Molecules in Section 18.3 can be applied 
to the bees. The average distance a bee travels between collisions is the mean free path, λ . The average time 

between collisions is the mean free time, meant . The number of collisions per second is 
mean

1dN
dt t

= . 

SET UP: 3 3(1.25 m) 1.95 mV = = . 20.750 10  mr −= × . 1.10 m/sv = . 2500N = . 

EXECUTE: (a) 
3

2 2 2

1.95 m 0.780 m 78.0 cm
4 2 4 2(0.750 10  m) (2500)

V
r N

λ
π π −

= = = =
×

 

(b) meanvtλ = , so mean
0.780 m 0.709 s
1.10 m/s

t
v
λ

= = = . 

(c) 
mean

1 1 1.41 collisions/s
0.709 s

dN
dt t

= = =  

EVALUATE: The calculation is valid only if the motion of each bee is random. 
18.69. IDENTIFY: Apply the iteration procedure that is described in the problem. 

SET UP: Let /x n V= . 400.15 KT = . 
EXECUTE: (a) Dividing both sides of Eq.(18.7) by the product RTV gives the result. 
(b) The algorithm described is best implemented on a programmable calculator or computer; for a calculator, the 
numerical procedure is an iteration of 

5
2 5(9.80 10 ) (0.448) 1 (4.29 10 ) .

(8.3145)(400.15) (8.3145)(400.15)
x x x−⎡ ⎤× ⎡ ⎤= + − ×⎢ ⎥ ⎣ ⎦

⎣ ⎦
 

Starting at 0x =  gives a fixed point at 23.03 10x = ×  after four iterations. The number density is 
2 33.03 10 mol m .×  

(c) The ideal-gas equation is the result after the first iteration, 3295mol m .  
EVALUATE: The van der Waals density is larger. The term corresponding to a represents the attraction of the 
molecules, and hence more molecules will be in a given volume for a given pressure. 

18.70. IDENTIFY: Calculate rmsv and use conservation of energy to relate the initial speed of the molecules rms( )v to the 
maximum height they reach. 
SET UP: 298.15 KT = . 328.0 10  kg/molM −= × . 

EXECUTE: rms 3

3 3(8.314 J/mol K)(298.15 K) 515 m/s
28.0 10  kg/mol

RTv
M −

⋅
= = =

×
. Conservation of energy gives 

21
rms2 mv mgy= and 

2 2
5rms

2

(515 m/s) 1.02 10  m 102 km
2 2(1.30 m/s )
vy

g
= = = × =  

EVALUATE: The result does not depend on the amount of gas in the canister. 
18.71. IDENTIFY: The mass of one molecule is the molar mass, M, divided by the number of molecules in a mole, AN . 

The average translational kinetic energy of a single molecule is 2 31
av2 2( )m v kT= . Use pV NkT= to calculate N, 

the number of molecules. 
SET UP: 231.381 10  J/molecule Kk −= × ⋅ . 328.0 10  kg/molM −= × . 295.15 KT = . The volume of the balloon is 

3 34
3 (0.250 m) 0.0654 mV π= = . 51.25 atm 1.27 10  Pap = = × . 

EXECUTE: (a) 
3

26
23

A

28.0 10  kg/mol 4.65 10  kg
6.022 10  molecules/mol

Mm
N

−
−×

= = = ×
×

 

(b) 2 23 213 31
av2 2 2( ) (1.381 10  J/molecule K)(295.15 K) 6.11 10  Jm v kT − −= = × ⋅ = ×  

(c) 
5 3

24
23

(1.27 10  Pa)(0.0654 m ) 2.04 10  molecules
(1.381 10  J/molecule K)(295.15 K)

pVN
kT −

×
= = = ×

× ⋅
 

(d) The total average translational kinetic energy is 
2 24 21 41

av2( ( ) ) (2.04 10  molecules)(6.11 10  J/molecule) 1.25 10  JN m v −= × × = × . 

EVALUATE: The number of moles is 
24

23
A

2.04 10  molecules 3.39 mol
6.022 10  molecules/mol

Nn
N

×
= = =

×
. 

43 3
tr 2 2 (3.39 mol)(8.314 J/mol K)(295.15 K) 1.25 10 JK nRT= = ⋅ = × , which agrees with our results in part (d). 
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18.72. IDENTIFY: U mgy= . The mass of one molecule is A/m M N= . 3
av 2K kT= . 

SET UP: Let 0y = at the surface of the earth and 400 mh = . 23
A 6.023 10  molecules/molN = × and 

231.38 10  J/Kk −= × . 15.0 C 288 K=° . 

EXECUTE: (a) 
3

2 22
23

28.0 10  kg/mol (9.80 m/s )(400 m) 1.82 10  J.
6.023 10  molecules/molA

MU mgh gh
N

−
−⎛ ⎞×

= = = = ×⎜ ⎟×⎝ ⎠
 

(b) Setting 
22

23

3 2 1.82 10  J,   8.80 K.
2 3 1.38 10  J/K

U kT T
−

−

⎛ ⎞×
= = =⎜ ⎟×⎝ ⎠

 

EVALUATE: (c) The average kinetic energy at 15.0 C° is much larger than the increase in gravitational potential 
energy, so it is energetically possible for a molecule to rise to this height. But Example 18.8 shows that the mean 
free path will be very much less than this and a molecule will undergo many collisions as it rises. These numerous 
collisions transfer kinetic energy between molecules and make it highly unlikely that a given molecule can have 
very much of its translational kinetic energy converted to gravitational potential energy. 

18.73. IDENTIFY and SET UP: At equilibrium ( ) 0.F r =  The work done to increase the separation from r2 to ∞  is 

2( ) ( ).U U r∞ −  
(a) EXECUTE: 12 6

0 0 0( ) ( / ) 2( / )U r U R r R r⎡ ⎤= −⎣ ⎦  

Eq.(13.26): 13 7
0 0 0 0( ) 12( / ) ( / ) ( / ) .F r U R R r R r⎡ ⎤= −⎣ ⎦  The graphs are given in Figure 18.73. 

 
Figure 18.73 

(b) equilibrium requires 0;F =  occurs at point 2.r  2r  is where U is a minimum (stable equilibrium). 

(c) 0U =  implies 12 6
0 0( / ) 2( / ) 0R r R r⎡ ⎤− =⎣ ⎦  

6
1 0( / ) 1/ 2r R =  and 1/ 6

1 0 /(2)r R=  

0F =  implies 13 7
0 0( / ) ( / ) 0R r R r⎡ ⎤− =⎣ ⎦  

6
2 0( / ) 1r R =  and 2 0r R=  

Then 1/ 6 1/ 6
1 2 0 0/ ( / 2 ) / 2r r R R −= =  

(d) otherW U= Δ  

At ,r →∞  0,U =  so 12 6
0 0 0 0 0 0 0( ) ( / ) 2( / )W U R U R R R R U⎡ ⎤= − = − − = +⎣ ⎦  

EVALUATE: The answer to part (d), 0 ,U  is the depth of the potential well shown in the graph of ( ).U r  
18.74. IDENTIFY: Use pV nRT= to calculate the number of moles, n. Then 3

tr 2K nRT= . The mass of the gas, totm , is 
given by totm nM= . 

SET UP: 3 35.00 L 5.00 10  m−= ×  

EXECUTE: (a) 
5 3 3(1.01 10  Pa)(5.00 10  m ) 0.2025 moles

(8.314 J/mol K)(300 K)
pVn
RT

−× ×
= = =

⋅
. 

3
tr 2 (0.2025 mol)(8.314 J/mol K)(300 K) 758 JK = ⋅ = . 

(b) 3 4
tot (0.2025 mol)(2.016 10  kg/mol) 4.08 10  kgm nM − −= = × = × . The kinetic energy due to the speed of the jet 

is 2 4 21 1
2 2 (4.08 10  kg)(300.0 m/s) 18.4 JK mv −= = × = . The total kinetic energy is 

tot tr 18.4 J 758 J 776 JK K K= + = + = . The percentage increase is 
tot

18.4 J100% 100% 2.37%
776 J

K
K

× = × = . 

(c) No. The temperature is associated with the random translational motion, and that hasn't changed. 
EVALUATE: Eq.(18.13) gives 5 3 33 3

tr 2 2 (1.01 10  Pa)(5.00 10  m ) 758 JK pV −= = × × = , which agrees with our result 

in part (a). 3
rms

3 1.93 10  m/sRTv
M

= = × . rmsv is a lot larger than the speed of the jet, so the percentage increase in 

the total kinetic energy, calculated in part (b), is small. 
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18.75. IDENTIFY and SET UP: Apply Eq.(18.19) for rms.v  The equation preceeding Eq.(18.12) relates rmsv  and rms( ) .xv  

EXECUTE: (a) rms 3 /v RT M=  

rms 3

3(8.3145 J/mol K)(300 K) 517 m/s
28.0 10  kg/mol

v −

⋅
= =

×
 

(b) 2 21
av av3( ) ( )xv v=  so ( ) ( ) ( )2 2

av av rms( ) 1/ 3 ( ) 1/ 3 1/ 3 (517 m/s) 298 m/sxv v v= = = =  

EVALUATE: The speed of sound is approximately equal to rms( )xv  since it is the motion along the direction of 
propagation of the wave that transmits the wave. 

18.76. IDENTIFY: rms
3kTv
m

=  

SET UP: 301.99 10  kgM = × , 86.96 10  mR = × and 11 2 26.673 10  N m /kgG −= × ⋅ . 

EXECUTE: (a) 
23

4
rms 27

3 3(1.38 10 J K) (5800 K) 1.20 10  m s.
(1.67 10 kg) 

kTv
m

−

−

×
= = = ×

×
 

(b) 
11 2 2 30

5
escape 8

2 2(6.673 10 N m kg ) (1.99 10 kg) 6.18 10  m s.
(6.96 10  m)

GMv
R

−× ⋅ ×
= = = ×

×
 

EVALUATE: (c) The escape speed is about 50 times the rms speed, and any of Figure 18.23 in the textbook, 
Eq.(18.32) or Table (18.2) will indicate that there is a negligibly small fraction of molecules with the escape speed. 

18.77. (a) IDENTIFY and SET UP: Apply conservation of energy 1 1 other 2 2 ,K U W K U+ + = +  where p / .U Gmm r= −  Let 
point 1 be at the surface of the planet, where the projectile is launched, and let point 2 be far from the earth. Just 
barely escapes says 2 0.v =  
EXECUTE: Only gravity does work says other 0.W =  

1 p p/ ;U Gmm R= −  2r →∞  so 2 0;U =  2 0v =  so 2 0.K =  

The conservation of energy equation becomes 1 p p/ 0K Gmm R− =  and 1 p p/ .K Gmm R=  

But 2
p p/g Gm R=  so p p p/Gm R R g=  and 1 p ,K mgR=  as was to be shown. 

EVALUATE: The greater pgR  is the more initial kinetic energy is required for escape. 

(b) IDENTIFY and SET UP: Set 1K  from part (a) equal to the average kinetic energy of a molecule as given by 

Eq.(18.16). 21
av p2 ( )m v mgR=  (from part (a)). But also, 2 31

av2 2( ) ,m v kT=  so 3
p 2mgR kT=  

EXECUTE: p2
3

mgR
T

k
=  

nitrogen 

2

3 23 26
N (28.0 10  kg/mol)/(6.022 10  molecules/mol) 4.65 10  kg/moleculem − −= × × = ×  

26 2 6
p 5

23

2 2(4.65 10  kg/molecule)(9.80 m/s )(6.38 10  m) 1.40 10  K
3 3(1.381 10  J/molecule K)

mgR
T

k

−

−

× ×
= = = ×

× ⋅
 

hydrogen 

2

3 23 27
H (2.02 10  kg/mol)/(6.022 10  molecules/mol) 3.354 10  kg/moleculem − −= × × = ×  

27 2 6
p 4

23

2 2(3.354 10  kg/molecule)(9.80 m/s )(6.38 10  m) 1.01 10  K
3 3(1.381 10  J/molecule K)

mgR
T

k

−

−

× ×
= = = ×

× ⋅
 

(c) p2
3

mgR
T

k
=  

nitrogen 
26 2 6

23

2(4.65 10  kg/molecule)(1.63 m/s )(1.74 10  m) 6730 K
3(1.381 10  J/molecule K)

T
−

−

× ×
= =

× ⋅
 

hydrogen 
27 2 6

23

2(3.354 10  kg/molecule)(1.63 m/s )(1.74 10  m) 459 K
3(1.381 10  J/molecule K)

T
−

−

× ×
= =

× ⋅
 

(d) EVALUATE: The �escape temperatures� are much less for the moon than for the earth. For the moon a larger 
fraction of the molecules at a given temperature will have speeds in the Maxwell-Boltzmann distribution larger 
than the escape speed. After the long time most of the molecules will have escaped from the moon. 
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18.78. IDENTIFY: rms
3RTv
M

= . 

SET UP: 
2

3
H 2.02 10  kg/molM −= × . 

2

3
O 32.0 10  kg/molM −= × . For Earth, 245.97 10  kgM = × and 

66.38 10  mR = × . For Jupiter, 271.90 10  kgM = × and 76.91 10  mR = × . For a sphere, 34
3

M V rρ ρ π= = . The 

escape speed is escape
2GMv

R
= . 

EXECUTE: (a) Jupiter: 3 3
rms 3(8.3145J mol K)(140K) (2.02 10 kg mol) 1.31 10 m sv −= ⋅ × = × . 

4
escape 6.06 10  m/sv = × . rms escape0.022v v= . 

Earth: 3 3
rms 3(8.3145J mol K)(220K) (2.02 10 kg mol) 1.65 10 m sv −= ⋅ × = × . 4

escape 1.12 10  m/sv = × . 

rms escape0.15v v= . 
(b) Escape from Jupiter is not likely for any molecule, while escape from earth is much more probable. 
(c) 3

rms 3(8.3145J mol K)(200K) (32.0 10 kg mol) 395m s.v −= ⋅ × =  The radius of the asteroid is 
1/ 3 5(3 4 ) 4.68 10 m,R M πρ= = ×  and the escape speed is escape 2 542m sv GM R= = . Over time the 2O  

molecules would essentially all escape and there can be no such atmosphere. 
EVALUATE: As Figure 18.23 in the textbook shows, there are some molecules in the velocity distribution that 
have speeds greater than rmsv . But as the speed increases above rmsv the number with speeds in that range 
decreases. 

18.79. IDENTIFY: rms
3kTv
m

= . The number of molecules in an object of mass m is A A
mN nN N
M

= = . 

SET UP: The volume of a sphere of radius r is 34
3

V rπ= . 

EXECUTE: (a) 
23

14
2 2
rms

3 3(1.381 10 J K)(300K) 1.24 10 kg.
(0.0010m s)

kTm
v

−
−×

= = = ×  

(b) 14 23 3
A (1.24 10 kg)(6.023 10 molecules mol) (18.0 10 kg mol)N mN M − −= = × × ×  

114.16 10 molecules.N = ×  

(c) The diameter is 
1/31/3 1/3 14

6
3

3 3 / 3(1.24 10  kg)2 2 2 2 2.95 10  m
4 4 4 (920 kg/m )
V mD r ρ
π π π

−
−⎛ ⎞×⎛ ⎞ ⎛ ⎞= = = = = ×⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 which is too small 

to see. 
EVALUATE: rmsv  decreases as m increases. 

18.80. IDENTIFY: For a simple harmonic oscillator, cosx A tω= and sinxv A tω ω= − , with /k mω = . 

SET UP: The average value of cos(2 )tω over one period is zero, so 2 2 1
av av 2(sin ) (cos )t tω ω= = . 

EXECUTE: cosx A tω= , sinxv A tω ω= − , 2 21
av av2 (cos )U kA tω= , 2 2 21

av av2 (sin )K m A tω ω= . Using 
2 2 1

av av 2(sin ) (cos )t tω ω= = and 2m kω = shows that av avK U= . 
EVALUATE: In general, at any given instant of time U K≠ . It is only the values averaged over one period that 
are equal. 

18.81. IDENTIFY: The equipartition principle says that each atom has an average kinetic energy of 1
2 kT for each degree 

of freedom. There is an equal average potential energy. 
SET UP: The atoms in a three-dimensional solid have three degrees of freedom and the atoms in a two-
dimensional solid have two degrees of freedom. 
EXECUTE: (a) In the same manner that Eq.(18.28) was obtained, the heat capacity of the two-dimensional solid 
would be 2 16.6 J/mol KR = ⋅ . 
(b) The heat capacity would behave qualitatively like those in Figure 18.21 in the textbook, and the heat capacity 
would decrease with decreasing temperature. 
EVALUATE: At very low temperatures the equipartition theorem doesn't apply. Most of the atoms remain in their 
lowest energy states because the next higher energy level is not accessible. 
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18.82. IDENTIFY: The equipartition principle says that each molecule has average kinetic energy of 1
2 kT for each degree 

of freedom. 22 ( / 2)I m L= , where L is the distance between the two atoms in the molecule. 21
rot 2K Iω= . 

2
rms av( )ω ω= . 

SET UP: The mass of one atom is 3 23 26
A/ (16.0 10  kg/mol) /(6.02 10  molecules/mol) 2.66 10  kg.m M N − −= = × × = ×  

EXECUTE: (a) The two degrees of freedom associated with the rotation for a diatomic molecule account for two-
fifths of the total kinetic energy, so 3

rot (1.00 mol)(8.3145 J mol K)(300 K) 2.49 10 JK nRT= = ⋅ = × . 

(b) 
3

2 -11 2 46 2
23

16.0 10 kg mol2 ( 2) 2  (6.05 10 m) 1.94 10 kg m
6.023 10 molecules mol

I m L
−

−⎛ ⎞×
= = × = × ⋅⎜ ⎟×⎝ ⎠

 

(c) Since the result in part (b) is for one mole, the rotational kinetic energy for one atom is rot A/K N and 
3

12rot A
rms 46 2 23

2 2(2.49 10  J) 6.52 10  rad s
(1.94 10  kg m )(6.023 10  molecules/mol)

K N
I

ω −

×
= = = ×

× ⋅ ×
. This is much larger 

than the typical value for a piece of rotating machinery. 

EVALUATE: The average rotational period, 
rms

2  radT π
ω

= , for molecules is very short. 

18.83. IDENTIFY: ( )1
2VC N R= , where N is the number of degrees of freedom. 

SET UP: There are three translational degrees of freedom. 
EXECUTE: For 2CO , 5N = and the contribution to VC other than from vibration is 5

2 20.79  J/mol KR = ⋅  and 
5
2 0.270 V VC R C− = . So 27% of VC is due to vibration. For both SO2 and H2S, 6N = and the contribution to CV 

other than from vibration is 6
2 24.94 J/mol KR = ⋅ . The respective fractions of CV from vibration are 21% and 3.9%. 

EVALUATE: The vibrational contribution is much less for 2H S . In 2H S  the vibrational energy steps are larger 

because the two hydrogen atoms have small mass and /k mω = . 
18.84. IDENTIFY: Evaluate the integral, as specified in the problem. 

SET UP: Use the integral formula given in Problem 18.85, with / 2m kTα = . 

EXECUTE: (a) 
2

3 2 3 2
2 / 2

0 0

1( ) 4 4 1
2 2 4( 2 ) 2

mv kTm m πf v dv π v e dv π
πkT πkT m kT m kT

∞ ∞
− ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫  

EVALUATE: (b) ( )f v dv  is the probability that a particle has speed between and ;v v dv+ the probability that the 
particle has some speed is unity, so the sum (integral) of ( )f v dv must be 1. 

18.85. IDENTIFY and SET UP: Evaluate the integral in Eq.(18.31) as specified in the problem. 

EXECUTE: 
2  2 3/ 2 4 / 2

 0  0
( ) 4 ( / 2 )  mv kTv f v dv m kT v e dvπ π

∞ ∞ −=∫ ∫  

The integral formula with 2n =  gives 
2 4 2

 0
(3/8 ) /avv e dv a aπ

∞ − =∫  

Apply with / 2 ,a m kT=  
 2 3 / 2 2

 0
( ) 4 ( /2 ) (3/8)(2 / ) 2 / (3/2)(2 / ) 3 /v f v dv m kT kT m kT m kT m kT mπ π π

∞
= = =∫  

EVALUATE: Equation (18.16) says 21
av2 ( ) 3 / 2,m v kT=  so 2

av( ) 3 / ,v kT m=  in agreement with our calculation. 
18.86. IDENTIFY: Follow the procedure specified in the problem. 

SET UP: If 2v x= , then 2dx vdv= . 

EXECUTE: 2
3 2

3 2

0 0

( ) 4 .
2

mv kTmvf v dv π v e dv
πkT

∞ ∞
−⎛ ⎞= ⎜ ⎟

⎝ ⎠∫ ∫  Making the suggested change of variable, 2 .v x=  2 ,vdv dx=  

3 (1/2)  ,v dv x dx=  and the integral becomes 
3/2 3/2 2

/ 2

0 0

2 2 2 8 ( ) 2   2
2 2

mx kTm m kT KT KTvf v dv π xe dx π
πkT πkT m m πmπ

∞ ∞
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫  

which is Eq. (18.35). 

EVALUATE: The integral 
0

( )vf v dv
∞

∫  is the definition of avv . 
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18.87. IDENTIFY: ( )f v dv  is the probability that a particle has a speed between v and v dv+ . Eq.(18.32) gives ( )f v . 

mpv is given by Eq.(18.34). 

SET UP: For 2O , the mass of one molecule is 26
A/ 5.32 10  kgm M N −= = × . 

EXECUTE: (a)  ( )f v dv  is the fraction of the particles that have speed in the range from v to v dv+ . The number 

of particles with speeds between   and v v dv+  is therefore ( )dN Nf v dv=  and ( ) .
v v

vN N f v dv
+Δ

Δ = ∫   

(b) Setting mp
2kTv v m= =  in ( )f v  gives 

3/2
1

mp
mp

2 4( ) 4 .
2

m kTf v π e
πkT m e πv

−⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 For oxygen gas at 300 K, 

2
mp 3.95 10  m/sv = ×  and ( ) 0.0421.f v vΔ =  

(c) Increasing v  by a factor of 7 changes 2 48 21 by a factor of 7 ,  and ( ) 2.94 10 .f e f v v− −Δ = ×  

(d) Multiplying the temperature by a factor of 2 increases the most probable speed by a factor of 2,  and the 

answers are decreased by 212:  0.0297 and 2.08 10 .−×  
(e) Similarly, when the temperature is one-half what it was parts (b) and (c), the fractions increase by 

2  to 0.0595 21and 4.15 10 .−×  
EVALUATE: (f )  At lower temperatures, the distribution is more sharply peaked about the maximum (the most 
probable speed), as is shown in Figure 18.23a in the textbook. 

18.88. IDENTIFY: Apply the definition of relative humidity given in the problem. totmpV nRT RT
M

= = . 

SET UP: 318.0 10  kg/molM −= × . 

EXECUTE: (a) The pressure due to water vapor is 3 3(0.60)(2.34 10  Pa) 1.40 10  Pa.× = ×  

(b) 
3 3 3

tot
(18.0 10 kg mol)(1.40 10  Pa)(1.00 m ) 10 g

(8.3145 J mol K)(293.15 K)
MpVm
RT

−× ×
= = =

⋅
 

EVALUATE: The vapor pressure of water vapor at this temperature is much less than the total atmospheric 
pressure of 51.0 10  Pa× . 

18.89. IDENTIFY: The measurement gives the dew point. Relative humidity is defined in Problem 18.88. 

SET UP: partial pressure of water vapor at temperature relative humidity
vapor pressure of water at temperature 

T
T

=  

EXECUTE: The experiment shows that the dew point is 16.0 C,°  so the partial pressure of water vapor at 30.0 C°  
is equal to the vapor pressure at 16.0 C,°  which is 31.81 10  Pa.×  

Thus the relative 
3

3

1.81 10  Pahumidity 0.426 42.6%.
4.25 10  Pa

×
= = =

×
 

EVALUATE: The lower the dew point is compared to the air temperature, the smaller the relative humidity. 
18.90. IDENTIFY: Use the definition of relative humidity in Problem 18.88 and the vapor pressure table in 

Problem 18.89. 
SET UP: At 28.0 C°  the vapor pressure of water is 33.78 10  Pa× . 
EXECUTE: For a relative humidity of 35%, the partial pressure of water vapor is 

3 3(0.35)(3.78 10  Pa) 1.323 10  Pa.× = ×  This is close to the vapor pressure at 12 C,°  which would be at an altitude 
(30 C 12 C) (0.6 C 100 m) 3 km° − ° ° =  above the ground. For a relative humidity of 80%, the vapor pressure will be 
the same as the water pressure at around 24 C,°  corresponding to an altitude of about 1 km.  
EVALUATE: Clouds form at a lower height when the relative humidity at the surface is larger. 

18.91. IDENTIFY: Eq.(18.21) gives the mean free path λ . In Eq.(18.20) use rms
3RTv
M

= in place of v. 

pV nRT NkT= = . The escape speed is escape
2GMv

R
= . 

SET UP: For atomic hydrogen, 31.008 10  kg/molM −= × . 

EXECUTE: (a) From Eq.(18.21), 2 1 11 2 6 3 1 11(4 2 ( )) (4 2(5.0 10 m) (50 10 m )) 4.5 10 mπ r N V πλ − − − −= = × × = × . 

(b) 3
rms 3 / 3(8.3145 J mol K)(20 K) (1.008 10 kg mol) 703 m s,v RT M −= = ⋅ × =  and the time between 

collisions is then 11 8(4.5 10 m) (703 m s) 6.4 10 s,× = × about 20 yr. Collisions are not very important. 

(c) 6 3 23 14( ) (50/1.0 10 m )(1.381 10 J K)(20 K) 1.4 10 Pa.p N V kT − − −= = × × = ×  
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(d) 
3

2
escape

2 2 ( )(4 3) (8 3) ( )GM G Nm V πRv π G N V mR
R R

= = =  

11 2 2 6 3 27 15 2
escape (8 /3)(6.673 10  N m /kg )(50 10  m )(1.67 10  kg)(10 9.46 10  m)v π − − −= × ⋅ × × × ×  

escape 650 m s.v =  This is lower than rmsv and the cloud would tend to evaporate. 
(e) In equilibrium (clearly not thermal equilibrium), the pressures will be the same; from ,pV NkT=  

ISM ISM nebula nebula( ) ( )kT N V kT N V=  and the result follows. 
(f )  With the result of part (e), 

6 3
5nebula

ISM nebula 6 3 1
ISM

( ) 50 10  m(20 K) 2 10  K,
( ) (200 10  m )
V NT T
V N − −

⎛ ⎞ ⎛ ⎞×
= = = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 

more than three times the temperature of the sun. This indicates a high average kinetic energy, but the thinness of 
the ISM means that a ship would not burn up. 
EVALUATE: The temperature of a gas is determined by the average kinetic energy per atom of the gas. The 
energy density for the gas also depends on the number of atoms per unit volume, and this is very small for the ISM. 

18.92. IDENTIFY: Follow the procedure of Example 18.4, but use 0T T yα= − . 
SET UP: ln(1 )x x+ ≈  when x is very small. 

EXECUTE: (a) ,dp pM
dy RT= −  which in this case becomes 

0

dp Mg dy
p R T αy
= −

−
. This integrates to 

/

0
0 0 0

ln ln 1 ,   or  1
Mg R

p Mg αy αyp p
p Rα T T

α
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

(b) For sufficiently small 
0 0

,  ln(1 ) ,αy αyα T T− ≈ −  and this gives the expression derived in Example 18.4. 

(c) 
2(0.6 10  C /m)(8863 m)1 0.8154,
(288 K)

−⎛ ⎞× °
− =⎜ ⎟

⎝ ⎠

3 2

2

(28.8 10 )(9.80 m/s ) 5.6576
(8.3145 J/mol K)(0.6 10  C /m)

Mg
Rα

−

−

×
= =

⋅ × °
 and 

5.6576
0 (0.8154) 0.315 atm,p =  which is 0.95 of the result found in Example 18.4. 

EVALUATE: The pressure is calculated to decrease more rapidly with altitude when we assume that T also 
decreases with altitude. 

18.93. IDENTIFY and SET UP: The behavior of isotherms for a real gas above and below the critical point are shown in 
Figure 18.7 in the textbook. 
EXECUTE: (a) A positive slope P

V
∂
∂

 would mean that an increase in pressure causes an increase in volume, or 

that decreasing volume results in a decrease in pressure, which cannot be the case for any real gas. 
(b) See Figure 18.7 in the textbook. From part (a), p cannot have a positive slope along an isotherm, and so can 

have no extremes (maxima or minima) along an isotherm. When p
V
∂
∂

vanishes along an isotherm, the point on the 

curve in a -p V  diagram must be an inflection point, and 
2

2 0p
V
∂

=
∂

. 

(c) 
2

2

nRT anp
V nb V

= −
−

. 
2

2 3

2
( )

p nRT an
V V nb V
∂

= − +
∂ −

. 
2 2

2 3 4

2 6 .
( )

p nRT an
V V nb V
∂

= −
∂ −

 Setting the last two of these equal to 

zero gives 3 2 22 ( )V nRT an V nb= −  and 4 2 33 ( )V nRT an V nb= − . 
(d) Following the hint, (3 2)( ),V V nb= −  which is solved for c( ) 3 .V n b=  Substituting this into either of the last 
two expressions in part (c) gives c 8 27 .T a Rb=  

(e) c 2 2
c c

(8 / 27 ) .
( ) ( ) 2 9 27

RT a R a Rb a ap
V n b V n b b b

= − = − =
−

 

(f )  c
2

c c

(8 / 27 ) 8.
( ) ( / 27 )3 3
RT a b

p V n a b b
= =  

(g) 2 2 2H :3.28.  N :3.44.   H O : 4.35.  
EVALUATE: (h) While all are close to 8/3, the agreement is not good enough to be useful in predicting critical 
point data. The van der Waals equation models certain gases, and is not accurate for substances near critical points. 
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18.94. IDENTIFY and SET UP: For N particles, av
i

v
v

N
= ∑  and 

2

rms
iv

v
N

= ∑ . 

EXECUTE: (a) 1
av 1 22 ( )v v v= + , 2 2

rms 1 2
1
2

v v v= +  and 

2 2 2 2 2 2 2 2 2
rms av 1 2 1 2 1 2 1 2 1 2 1 2

1 1 1 1( ) ( 2 ) ( 2 ) ( )
2 4 4 4

v v v v v v v v v v v v v v− = + − + + = + − = −  

This shows that rms av ,v v≥  with equality holding if and only if the particles have the same speeds. 

(b) 2 2 2
rms rms av av

1 1( ), ( ),1 1v Nv u v Nv uN N
′ ′= + = +

+ +
 and the given forms follow immediately. 

(c) The algebra is similar to that in part (a); it helps somewhat to express 
2 2 2

av av av2

1 ( (( 1) 1) 2 (( 1) ) )
( 1)

v N N v Nv u N N u
N

′ = + − + + + −
+

. 

2 2 2 2 2
av av av av2

1( 2 )
1 ( 1) 1

N Nv v v v u u u
N N N

′ = + − + − +
+ + +

 

Then, 
2 2 2 2 2 2 2 2 2

rms av rms av av av rms av av2 2( ) ( 2 ) ( ) ( ) .
( 1) ( 1) 1 ( 1)

N N N Nv v v v v v u u v v v u
N N N N

′ ′− = − + − + = − + −
+ + + +

If rms av ,v v>  then 

this difference is necessarily positive, and rms av.v v′ ′>  
(d) The result has been shown for 1,N =  and it has been shown that validity for N implies validity for 1;N +  by 
induction, the result is true for all N. 
EVALUATE: rms avv v> because rmsv gives more weight to particles that have greater speed. 
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THE FIRST LAW OF THERMODYNAMICS 

 19.1. (a) IDENTIFY and SET UP: The pressure is constant and the volume increases. 

 

The pV-diagram is 
sketched in Figure 19.1 

Figure 19.1  

(b) 2

1

 
V

V
W p dV= ∫  

Since p is constant, 2

1
2 1( )

V

V
W p dV p V V= = −∫  

The problem gives T rather than p and V, so use the ideal gas law to rewrite the expression for W. 
EXECUTE: pV nRT=  so 1 1 1,pV nRT=  2 2 2;p V nRT=  subtracting the two equations gives 

2 1 2 1( ) ( )p V V nR T T− = −  
Thus 2 1( )W nR T T= −  is an alternative expression for the work in a constant pressure process for an ideal gas. 
Then 2 1( ) (2.00 mol)(8.3145 J/mol K)(107 C 27 C) 1330 JW nR T T= − = ⋅ ° − ° = +  
EVALUATE: The gas expands when heated and does positive work. 

 19.2. IDENTIFY: At constant pressure, .W p V nR T= Δ = Δ  
SET UP: 8.3145 J/mol K.R = ⋅  TΔ has the same numerical value in kelvins and in C°.  

EXECUTE: 
31.75 10  J 35.1 K.

(6 mol) (8.3145 J/mol K)
WT
nR

×
Δ = = =

⋅
 K CT TΔ = Δ  and 2 27.0 C 35.1 C 62.1 C.T = ° + ° = °  

EVALUATE: When 0W >  the gas expands. When p is constant and V increases, T increases. 
 19.3. IDENTIFY: Example 19.1 shows that for an isothermal process 1 2ln( / ).W nRT p p=  pV nRT= says V decreases 

when p increases and T is constant. 
SET UP: 358.15 K.T =  2 13 .p p=  
EXECUTE: (a) The pV-diagram is sketched in Figure 19.3. 

(b) 1

1

(2.00 mol)(8.314 J/mol K)(358.15 K)ln 6540 J.
3
pW
p

⎛ ⎞
= ⋅ = −⎜ ⎟

⎝ ⎠
 

EVALUATE: Since V decreases, W is negative. 

 
Figure 19.3 

 19.4. IDENTIFY: Use the expression for W that is appropriate to this type of process. 
SET UP: The volume is constant. 
EXECUTE: (a) The pV diagram is given in Figure 19.4. 
(b) Since 0,  0.V WΔ = =  

19
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EVALUATE: For any constant volume process the work done is zero. 

 
Figure 19.4 

 19.5. IDENTIFY: Example 19.1 shows that for an isothermal process 1 2ln( / ).W nRT p p=  Solve for 1.p  
SET UP: For a compression (V decreases) W is negative, so 518 J.W = −  295.15 K.T =  

EXECUTE: (a) 1

2

ln .W p
nRT p

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 /1

2

.W nRTp e
p
=  518 J 0.692.

(0.305 mol)(8.314 J/mol K)(295.15 K)
W
nRT

−
= = −

⋅
 

/ 0.692
1 2 (1.76 atm) 0.881 atm.W nRTp p e e−= = =  

(b) In the process the pressure increases and the volume decreases. The pV-diagram is sketched in Figure 19.5. 
EVALUATE: W is the work done by the gas, so when the surroundings do work on the gas, W is negative. 

 
Figure 19.5 

 19.6. (a) IDENTIFY and SET UP: The pV-diagram is sketched in Figure 19.6. 

 
Figure 19.6 

(b) Calculate W for each process, using the expression for W that applies to the specific type of process. 
EXECUTE: 1 2,→  0,VΔ =  so 0W =  
2 3→  
p is constant; so 5 3 3 4 (5.00 10  Pa)(0.120 m 0.200 m ) 4.00 10  JW p V= Δ = × − = − ×  (W is negative since the volume 
decreases in the process.) 

4
tot 1 2 2 3 4.00 10  JW W W→ →= + = − ×  

EVALUATE: The volume decreases so the total work done is negative. 
 19.7. IDENTIFY: Calculate W for each step using the appropriate expression for each type of process. 

SET UP: When p is constant, .W p V= Δ  When 0,VΔ =  0.W =  
EXECUTE: (a) 13 1 2 1 32 24 2 1 2 41( ),  0,  ( ) and  0.W p V V W W p V V W= − = = − =  The total work done by the system is 

13 32 24 41 1 2 2 1( )( ),W W W W p p V V+ + + = − −  which is the area in the pV plane enclosed by the loop. 
(b) For the process in reverse, the pressures are the same, but the volume changes are all the negatives of those 
found in part (a), so the total work is negative of the work found in part (a). 
EVALUATE: When 0,VΔ >  0W > and when 0,VΔ <  0.W <  

 19.8. IDENTIFY: Apply .U Q WΔ = −  
SET UP: For an ideal gas, U depends only on T. 
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EXECUTE: (a) V decreases and W is negative. 
(b) Since T is constant, 0UΔ = and .Q W=  Since W is negative, Q is negative. 
(c) ,Q W=  the magnitudes are the same. 
EVALUATE: 0Q < means heat flows out of the gas. The plunger does positive work on the gas. The energy added 
by the positive work done on the gas leaves as heat flow out of the gas and the internal energy of the gas is 
constant. 

 19.9. IDENTIFY: .U Q WΔ = −  For a constant pressure process, .W p V= Δ  

SET UP: 51.15 10  J,Q = + ×  since heat enters the gas. 

EXECUTE: (a) 5 3 3 4(1.80 10  Pa)(0.320 m 0.110 m ) 3.78 10  J.W p V= Δ = × − = ×  

(b) 5 4 41.15 10  J 3.78 10  J 7.72 10  J.U Q WΔ = − = × − × = ×  
EVALUATE: (c) W p V= Δ for a constant pressure process and U Q WΔ = − both apply to any material. The ideal 
gas law wasn�t used and it doesn�t matter if the gas is ideal or not. 

19.10. IDENTIFY: The type of process is not specified. We can use U Q WΔ = −  because this applies to all processes. 
Calculate UΔ  and then from it calculate .TΔ  
SET UP: Q is positive since heat goes into the gas; 1200 JQ = +  
W positive since gas expands; 2100 JW = +  
EXECUTE: 1200 J 2100 J 900 JUΔ = − = −  
We can also use ( )3

2  U n R TΔ = Δ  since this is true for any process for an ideal gas. 

2 2( 900 J) 14.4C
3 3(5.00 mol)(8.3145 J/mol K)
UT
nR
Δ −

Δ = = = − °
⋅

 

2 1 127 C 14.4C 113 CT T T= + Δ = ° − ° = °  
EVALUATE: More energy leaves the gas in the expansion work than enters as heat. The internal energy therefore 
decreases, and for an ideal gas this means the temperature decreases. We didn�t have to convert TΔ  to kelvins 
since TΔ  is the same on the Kelvin and Celsius scales. 

19.11. IDENTIFY: Apply U Q WΔ = − to the air inside the ball. 
SET UP: Since the volume decreases, W is negative. Since the compression is sudden, 0.Q =  
EXECUTE: U Q WΔ = − with 0Q = gives .U WΔ = −  0W < so 0.UΔ >  410 J.UΔ = +  
(b) Since 0,UΔ >  the temperature increases. 
EVALUATE: When the air is compressed, work is done on the air by the force on the air. The work done on the 
air increases its energy. No energy leaves the gas as a flow of heat, so the internal energy increases. 

19.12. IDENTIFY and SET UP: Calculate W using the equation for a constant pressure process. Then use U Q WΔ = −  to 
calculate Q. 

(a) EXECUTE: 2

1
2 1 ( )

V

V
W p dV p V V= = −∫  for this constant pressure process. 

5 3 3 5(2.3 10  Pa)(1.20 m 1.70 m ) 1.15 10  JW = × − = − ×  (The volume decreases in the process, so W is negative.) 
(b) U Q WΔ = −  

5 5 51.40 10  J ( 1.15 10  J) 2.55 10  JQ U W= Δ + = − × + − × = − ×  
Q negative means heat flows out of the gas. 

(c) EVALUATE: 2

1
2 1 ( )

V

V
W p dV p V V= = −∫  (constant pressure) and U Q WΔ = −  apply to any system, not just to 

an ideal gas. We did not use the ideal gas equation, either directly or indirectly, in any of the calculations, so the 
results are the same whether the gas is ideal or not. 

19.13. IDENTIFY: Calculate the total food energy value for one doughnut. 21
2 .K mv=  

SET UP: 1 cal 4.186 J=  
EXECUTE: (a) The energy is (2.0 g)(4.0 kcal g) (17.0 g)(4.0 kcal g) (7.0 g)(9.0 kcal g) 139 kcal.+ + =  
The time required is (139 kcal) (510 kcal h) 0.273 h 16.4 min.= =  

(b) 32 2(139 10  cal)(4.186 J cal) (60 kg) 139 m s 501 km h.v K m= = × = =  
EVALUATE: When we set ,K Q=  we must express Q in J, so we can solve for v in m/s. 

19.14. IDENTIFY: Apply .U Q WΔ = −  
SET UP: 0W > when the system does work. 



19-4 Chapter 19 

EXECUTE: (a) The container is said to be well-insulated, so there is no heat transfer. 
(b) Stirring requires work. The stirring needs to be irregular so that the stirring mechanism moves against the 
water, not with the water. 
(c) The work mentioned in part (b) is work done on the system, so 0,W <  and since no heat has been transferred, 

0.U WΔ = − >  
EVALUATE: The stirring adds energy to the liquid and this energy stays in the liquid as an increase in internal 
energy. 

19.15. IDENTIFY: Apply U Q WΔ = − to the gas. 
SET UP: For the process, 0.VΔ =  400 JQ = + since heat goes into the gas. 
EXECUTE: (a) Since 0,VΔ =  0.W =  

(b) pV nRT= says  constant.p nR
T V
= =  Since p doubles, T doubles. 2 .b aT T=  

(c) Since 0,W =  400 J.U QΔ = = +  400 J.b aU U= +  
EVALUATE: For an ideal gas, when T increases, U increases. 

19.16. IDENTIFY: Apply .U Q WΔ = −  W is the area under the path in the pV-plane. 
SET UP: 0W > when V increases. 
EXECUTE: (a) The greatest work is done along the path that bounds the largest area above the V-axis in the p-V 
plane, which is path 1. The least work is done along path 3. 
(b) 0W >  in all three cases; ,  so 0Q U W Q= Δ + >  for all three, with the greatest Q for the greatest work, that 
along path 1. When 0,Q > heat is absorbed. 
EVALUATE: UΔ is path independent and depends only on the initial and final states. W and Q are path 
independent and can have different values for different paths between the same initial and final states. 

19.17. IDENTIFY: .U Q WΔ = −  W is the area under the path in the pV-diagram. When the volume increases, 0.W >  
SET UP: For a complete cycle, 0.UΔ =  
EXECUTE: (a) and (b) The clockwise loop (I) encloses a larger area in the p-V plane than the counterclockwise 
loop (II). Clockwise loops represent positive work and counterclockwise loops negative work, so 

I II0 and 0.W W> <  Over one complete cycle, the net work I II 0,  W W+ > and the net work done by the system is 
positive. 
(c) For the complete cycle, 0 and  so .U W QΔ = =  From part (a), 0,W >  so 0,Q >  and heat flows into the 
system. 
(d) Consider each loop as beginning and ending at the intersection point of the loops. Around each loop, 

I I II II0, so ;  then,  0 and 0.U Q W Q W Q WΔ = = = > = <  Heat flows into the system for loop I and out of the system 
for loop II. 
EVALUATE: W and Q are path dependent and are in general not zero for a cycle. 

19.18. IDENTIFY and SET UP: Deduce information about Q and W from the problem statement and then apply the first 
law, ,U Q WΔ = −  to infer whether Q is positive or negative. 
EXECUTE: (a) For the water 0,TΔ >  so by Q mc T= Δ  heat has been added to the water. Thus heat energy 
comes from the burning fuel-oxygen mixture, and Q for the system (fuel and oxygen) is negative. 
(b) Constant volume implies 0.W =  
(c) The 1st law (Eq.19.4) says .U Q WΔ = −  

0,Q <  0W =  so by the 1st law 0.UΔ <  The internal energy of the fuel-oxygen mixture decreased. 
EVALUATE: In this process internal energy from the fuel-oxygen mixture was transferred to the water, raising its 
temperature. 

19.19. IDENTIFY: .U Q WΔ = −  For a constant pressure process, .W p V= Δ  

SET UP: 62.20 10  J;Q = + ×  0Q >  since this amount of heat goes into the water. 52.00 atm 2.03 10  Pa.p = = ×  

EXECUTE: (a) 5 3 3 3 5(2.03 10  Pa)(0.824 m 1.00 10  m ) 1.67 10  JW p V −= Δ = × − × = ×  

(b) 6 5 62.20 10  J 1.67 10  J 2.03 10  J.U Q WΔ = − = × − × = ×  

EVALUATE: 62.20 10  J×  of energy enters the water. 51.67 10  J×  of energy leaves the materials through 
expansion work and the remainder stays in the material as an increase in internal energy. 

19.20. IDENTIFY: U Q WΔ = −  
SET UP: 0Q < when heat leaves the gas. 
EXECUTE: For an isothermal process, 0, so 335 J.U W QΔ = = = −  
EVALUATE: In a compression the volume decreases and 0.W <  
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19.21. IDENTIFY: For a constant pressure process, ,W p V= Δ  pQ nC T= Δ and .VU nC TΔ = Δ  U Q WΔ = − and 

.p VC C R= +  For an ideal gas, .p V nR TΔ = Δ  

SET UP: From Table 19.1, 28.46 J/mol K.VC = ⋅  
EXECUTE: (a) The pV diagram is given in Figure 19.21. 
(b) 2 1 2 1( ) (0.250 mol)(8.3145 J mol K)(100.0 K) 208 J.W pV pV nR T T= − = − = ⋅ =  
(c) The work is done on the piston. 
(d) Since Eq. (19.13) holds for any process, (0.250 mol)(28.46  J mol K)(100.0 K) 712 J.VU nC TΔ = Δ = ⋅ =  
(e) Either  or  gives 920 JpQ nC T Q U W Q= Δ = Δ + =  to three significant figures. 
( f )  The lower pressure would mean a correspondingly larger volume, and the net result would be that the work 
done would be the same as that found in part (b). 
EVALUATE: ,W nR T= Δ  so W, Q and UΔ all depend only on .TΔ  When T increases at constant pressure, V 
increases and 0.W >  UΔ and Q are also positive when T increases. 

 
Figure 19.21 

19.22. IDENTIFY: For constant volume .VQ nC T= Δ  For constant pressure, .pQ nC T= Δ  For any process of an ideal 

gas, .VU nC TΔ = Δ  
SET UP: 8.315 J/mol K.R = ⋅  For helium, 12.47 J/mol KVC = ⋅ and 20.78 J/mol K.pC = ⋅  

EXECUTE: (a) (0.0100 mol)(12.47J mol K)(40.0 C ) 4.99 J.VQ nC T= Δ = ⋅ ° =  The pV-diagram is sketched in 
Figure 19.22a. 
(b) (0.0100 mol)(20.78 J/mol K)(40.0 C ) 8.31 J.pQ nC T= Δ = ⋅ =°  The pV-diagram is sketched in Figure 19.22b. 
(c) More heat is required for the constant pressure process. UΔ is the same in both cases. For constant volume 

0W = and for constant pressure 0.W >  The additional heat energy required for constant pressure goes into 
expansion work. 
(d) 4.99 JVU nC TΔ = Δ = for both processes. UΔ is path independent and for an ideal gas depends only on .TΔ  
EVALUATE: ,p VC C R= +  so .p VC C>  

   
Figure 19.22 

19.23. IDENTIFY: For constant volume, .VQ nC T= Δ  For constant pressure, .pQ nC T= Δ  

SET UP: From Table 19.1, 20.76 J/mol KVC = ⋅ and 29.07 J/mol KpC = ⋅  

EXECUTE: (a) Using Equation (19.12), 645 J 167.9 K(0.185 mol)(20.76 J mol K)V

QT nCΔ = = =
⋅

and 948 K.T =  

The pV-diagram is sketched in Figure 19.23a. 
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(b) Using Equation (19.14), 645 J 119.9 K(0.185 mol)(29.07 J mol K)p

QT nCΔ = = =
⋅

and 900 K.T =  

The pV-diagram is sketched in Figure 19.23b. 
EVALUATE: At constant pressure some of the heat energy added to the gas leaves the gas as expansion work and 
the internal energy change is less than if the same amount of heat energy is added at constant volume. TΔ is 
proportional to .UΔ  

   
Figure 19.23 

19.24. IDENTIFY and SET UP: Use information about the pressure and volume in the ideal gas law to determine the sign 
of ,TΔ  and from that the sign of Q. 
EXECUTE: For constant p, pQ nC T= Δ  
Since the gas is ideal, pV nRT=  and for constant p, .p V nR TΔ = Δ  

p
p

Cp VQ nC p V
nR R

⎛ ⎞Δ⎛ ⎞= = Δ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Since the gas expands, 0VΔ >  and therefore 0.Q >  0Q >  means heat goes into gas. 
EVALUATE: Heat flows into the gas, W is positive and the internal energy increases. It must be that .Q W>  

19.25. IDENTIFY: .U Q WΔ = −  For an ideal gas, ,VU C TΔ = Δ  and at constant pressure, .W p V nR T= Δ = Δ  
SET UP: 3

2VC R= for a monatomic gas. 
EXECUTE: 3 3 3

2 2 2( ) .U n R T p V WΔ = Δ = Δ =  Then 5 2
52 , so .Q U W W W Q= Δ + = =  

EVALUATE: For diatomic or polyatomic gases, VC is a different multiple of R and the fraction of Q that is used 
for expansion work is different. 

19.26. IDENTIFY: For an ideal gas, ,VU C TΔ = Δ  and at constant pressure, .p V nR TΔ = Δ  
SET UP: 3

2VC R=  for a monatomic gas. 

EXECUTE: ( ) 3 4 3 3 3 33 3
2 2 2 (4.00 10 Pa)(8.00 10 m 2.00 10 m ) 360 J.U n R T p V − −Δ = Δ = Δ = × × − × =  

EVALUATE: 2
3 240 J.W nR T U= Δ = Δ =  5 5

2 3( ) 600 J.pQ nC T n R T U= Δ = Δ = Δ =  600 J of heat energy flows into 
the gas. 240 J leaves as expansion work and 360 J remains in the gas as an increase in internal energy. 

19.27. IDENTIFY: For a constant volume process, .VQ nC T= Δ  For a constant pressure process, .pQ nC T= Δ  For any 

process of an ideal gas, .VU nC TΔ = Δ  
SET UP: From Table 19.1, for 2N ,  20.76 J/mol KVC = ⋅ and 29.07 J/mol K.pC = ⋅  Heat is added, so Q is 
positive and 1557 J.Q = +  

EXECUTE: (a) 1557 J 25.0 K
(3.00 mol)(20.76 J/mol K)V

QT
nC

Δ = = = +
⋅

 

(b) 1557 J 17.9 K
(3.00 mol)(29.07 J/mol K)p

QT
nC

Δ = = = +
⋅

 

(c) VU nC TΔ = Δ for either process, so UΔ is larger when TΔ is larger. The final internal energy is larger for the 
constant volume process in (a). 
EVALUATE: For constant volume 0W = and all the energy added as heat stays in the gas as internal energy. For 
the constant pressure process the gas expands and 0.W >  Part of the energy added as heat leaves the gas as 
expansion work done by the gas. 



The First Law of Thermodynamics  19-7 

19.28. IDENTIFY: Apply pV nRT= to calculate T. For this constant pressure process, .W p V= Δ  .pQ nC T= Δ  Use 
U Q WΔ = − to relate Q, W and .UΔ  

SET UP: 52.50 atm 2.53 10  Pa.= ×  For a monatomic ideal gas, 12.47 J/mol KVC = ⋅ and 20.78 J/mol K.pC = ⋅  

EXECUTE: (a) 
5 2 2

1
1

(2.53 10  Pa)(3.20 10  m ) 325 K.
(3.00 mol)(8.314 J/mol K)

pVT
nR

−× ×
= = =

⋅
 

5 2 2
2

2
(2.53 10  Pa)(4.50 10  m ) 456 K.

(3.00 mol)(8.314 J/mol K)
pVT
nR

−× ×
= = =

⋅
 

(b) 5 2 3 2 3 3(2.53 10  Pa)(4.50 10  m 3.20 10  m ) 3.29 10  JW p V − −= Δ = × × − × = ×  

(c) 3(3.00 mol)(20.78 J/mol K)(456 K 325 K) 8.17 10  JpQ nC T= Δ = ⋅ − = ×  

(d) 34.88 10  JU Q WΔ = − = ×  

EVALUATE: We could also calculate UΔ as 3(3.00 mol)(12.47 J/mol K)(456 K 325 K) 4.90 10  J,VU nC TΔ = Δ = ⋅ − = ×  
which agrees with the value we calculated in part (d). 

19.29. IDENTIFY: Calculate W and UΔ  and then use the first law to calculate Q. 

(a) SET UP: 2

1

 
V

V
W p dV= ∫  

pV nRT=  so /p nRT V=  
2 2

1 1
2 1( / ) / ln( / )

V V

V V
W nRT V dV nRT dV V nRT V V= = =∫ ∫  (work done during an isothermal process). 

EXECUTE: 1 1(0.150 mol)(8.3145 J/mol K)(350 K)ln(0.25 / ) (436.5 J)ln(0.25) 605 J.W V V= ⋅ = = −  
EVALUATE: W for the gas is negative, since the volume decreases. 
(b) EXECUTE: VU nC TΔ = Δ  for any ideal gas process. 

0TΔ =  (isothermal) so 0.UΔ =  
EVALUATE: 0UΔ =  for any ideal gas process in which T doesn�t change. 
(c) EXECUTE: U Q WΔ = −  

0UΔ =  so 605 J.Q W= = −  (Q is negative; the gas liberates 605 J of heat to the surroundings.) 
EVALUATE: VQ nC T= Δ  is only for a constant volume process so doesn�t apply here. 

pQ nC T= Δ  is only for a constant pressure process so doesn�t apply here. 

19.30. IDENTIFY: p VC C R= +  and .p
V

C
C

γ =  

SET UP: 8.315 J/mol KR = ⋅  

EXECUTE: .p VC C R= +  1 .p

V V

C R
C C

γ = = +  8.315 J/mol K 65.5 J/mol K.
1 0.127V
RC

γ
⋅

= = = ⋅
−

 Then 

73.8 J/mol K.p VC C R= + = ⋅  

EVALUATE: The value of VC  is about twice the values for the polyatomic gases in Table 19.1. A propane 
molecule has more atoms and hence more internal degrees of freedom than the polyatomic gases in the table. 

19.31. IDENTIFY: .U Q WΔ = −  Apply pQ nC T= Δ to calculate .pC  Apply VU nC TΔ = Δ to calculate .VC  / .p VC Cγ =  

SET UP: 15.0 C 15.0 K.TΔ = =°  Since heat is added, 970 J.Q = +  
EXECUTE: (a) 970 J 223 J 747 JU Q WΔ = − = + − =  

(b) 970 J 37.0 J/mol K.
(1.75 mol)(15.0 K)p

QC
n T

= = = ⋅
Δ

 747 J 28.5 J/mol K.
(1.75 mol)(15.0 K)V

UC
n T
Δ

= = = ⋅
Δ

 

37.0 J/mol K 1.30
28.5 J/mol K

p

V

C
C

γ ⋅
= = =

⋅
 

EVALUATE: The value of γ we calculated is similar to the values given in Tables 19.1 for polyatomic gases. 
19.32. IDENTIFY and SET UP: For an ideal gas .VU nC TΔ = Δ  The sign of UΔ  is the same as the sign of .TΔ  Combine 

Eq.(19.22) and the ideal gas law to obtain an equation relating T and p, and use it to determine the sign of .TΔ  
EXECUTE: 1 1

1 1 2 2TV TVγ γ− −=  and /V nRT p=  so, 1 1
1 1 2 2T p T pγ γ γ γ− −=  and 1

2 1 2 1( / )T T p pγ γ γ −=  

2 1p p<  and 1γ −  is positive so 2 1.T T<  TΔ  is negative so UΔ  is negative; the energy of the gas decreases. 
EVALUATE: Eq.(19.24) shows that the volume increases for this process, so it is an adiabatic expansion. In an 
adiabatic expansion the temperature decreases. 
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19.33. IDENTIFY: For an adiabatic process of an ideal gas, 1 1 2 2 ,pV p Vγ γ=  ( )1 1 2 2
1

1
W pV p V

γ
= −

−
and 1 1

1 1 2 2 .TV TVγ γ− −=  

SET UP: For a monatomic ideal gas 5/3.γ =  

EXECUTE: (a) ( )
5 / 33

5 51
2 1 3

2

0.0800 m1.50 10  Pa 4.76 10  Pa.
0.0400 m

Vp p
V

γ
⎛ ⎞ ⎛ ⎞

= = × = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) This result may be substituted into Eq.(19.26), or, substituting the above form for 2 ,p  

( )( ) ( )( )
2 / 3

1 5 3 4
1 1 1 2

1 3 0.0800 1 / 1.50 10 Pa 0.0800 m 1 1.06 10  J.
1 2 0.0400 

W pV V V γ

γ
− ⎛ ⎞⎛ ⎞= − = × − = − ×⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 

(c) From Eq.(19.22), ( ) ( ) ( )1 2 3
2 1 2 1 0.0800 0.0400 1.59,T T V V γ −= = = and since the final temperature is higher than 

the initial temperature, the gas is heated. 
EVALUATE: In an adiabatic compression 0W < since 0.VΔ <  0Q = so .U WΔ = −  0UΔ > and the temperature 
increases. 

19.34. IDENTIFY and SET UP: (a) In the process the pressure increases and the volume decreases. The pV-diagram is 
sketched in Figure 19.34. 

 
Figure 19.34 

(b) For an adiabatic process for an ideal gas 
1 1

1 1 2 2 ,TV TVγ γ− −=  1 1 2 2 ,pV p Vγ γ=  and pV nRT=  

EXECUTE: From the first equation, 1 1.4 1
2 1 1 2 1 1( / ) (293 K)( / 0.0900 )T T V V V Vγ − −= =  

0.4
2 (293 K)(11.11) 768 K 495 CT = = = °  

(Note: In the equation 1 1
1 1 2 2TV TVγ γ− −=  the temperature must be in kelvins.) 

1 1 2 2pV p Vγ γ=  implies 1.4
2 1 1 2 1 1( / ) (1.00 atm)( / 0.0900 )p p V V V Vγ= =  

1.4
2 (1.00 atm)(11.11) 29.1 atmp = =  

EVALUATE: Alternatively, we can use pV nRT=  to calculate 2:p  n, R constant implies / constantpV T nR= =  
so 1 1 1 2 2 2/ /pV T p V T=  

2 1 1 2 2 1 1 1( / )( / ) (1.00 atm)( / 0.0900 )(768 K/293 K) 29.1 atm,p p V V T T V V= = =  which checks. 

19.35. IDENTIFY: For an adiabatic process of an ideal gas, ( )1 1 2 2
1

1
W pV p V

γ
= −

−
and 1 1 2 2 .pV p Vγ γ=  

SET UP: 1.40γ = for an ideal diatomic gas. 51 atm 1.013 10  Pa= × and 3 31 L 10  m .−=  

EXECUTE: 0Q U W= Δ + = for an adiabatic process, so ( )2 2 1 1
1 .

1
U W p V pV

γ
Δ = − = −

−
 5

1 1.22 10  Pa.p = ×  

( ) 5 1.4 5
2 1 1 2/ (1.22 10  Pa)(3) 5.68 10  Pa.p p V V γ= = × = ×  

( )5 3 3 5 3 3 31 [5.68 10  Pa][10 10  m ] [1.22 10  Pa][30 10  m ] 5.05 10  J.
0.40

W − − − −= × × − × × = ×  The internal energy 

increases because work is done on the gas ( 0)UΔ >  and 0.Q =  The temperature increases because the internal 
energy has increased. 
EVALUATE: In an adiabatic compression 0W < since 0.VΔ <  0Q = so .U WΔ = −  0UΔ > and the temperature 
increases. 

19.36. IDENTIFY: Assume the expansion is adiabatic. 1 1
1 1 2 2TV TVγ γ− −= relates V and T. Assume the air behaves as an ideal 

gas, so .VU nC TΔ = Δ  Use pV nRT= to calculate n. 

SET UP: For air, 29.76 J/mol KVC = ⋅ and 1.40.γ =  2 10.800 .V V=  1 293.15 K.T =  5
1 2.026 10  Pa.p = ×  For a 

sphere, 34
3 .V rπ=  
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EXECUTE: (a) 
1 0.40

1 1
2 1

2 1

(293.15 K) 320.5 K 47.4 C.
0.800

V VT T
V V

γ −
⎛ ⎞ ⎛ ⎞

= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

°  

(b) 3 3 3 34
1 3

4 (0.1195 m) 7.15 10  m .
3

V r ππ −= = = ×  
5 3 3

1 1

1

(2.026 10  Pa)(7.15 10  m ) 0.594 mol.
(8.314 J/mol K)(293.15 K)

pVn
RT

−× ×
= = =

⋅
 

(0.594 mol)(20.76 J/mol K)(321 K 293 K) 345 J.VU nC TΔ = Δ = ⋅ − =  

EVALUATE: We could also use 1 1 2 2
1 ( )

1
U W pV p V

γ
Δ = = −

−
to calculate ,UΔ  if we first found 2p from .pV nRT=  

19.37. (a) IDENTIFY and SET UP: In the expansion the pressure decreases and the volume increases. The pV-diagram is 
sketched in Figure 19.37. 

 
Figure 19.37 

(b) Adiabatic means 0.Q =  
Then U Q WΔ = −  gives 1 2( )V VW U nC T nC T T= −Δ = − Δ = −  (Eq.19.25). 

12.47 J/mol KVC = ⋅  (Table 19.1) 
EXECUTE: (0.450 mol)(12.47 J/mol K)(50.0 C 10.0 C) 224 JW = ⋅ ° − ° = +  
W positive for 0VΔ >  (expansion) 
(c) 224 J.U WΔ = − = −  
EVALUATE: There is no heat energy input. The energy for doing the expansion work comes from the internal 
energy of the gas, which therefore decreases. For an ideal gas, when T decreases, U decreases. 

19.38. IDENTIFY: .pV nRT=  For an adiabatic process, 1 1
1 1 2 2 .TV T Vγ γ− −=  

SET UP: For an ideal monatomic gas, 5/3.γ =  

EXECUTE: (a) 
5 3 3(1 00 10  Pa) (2.50 10  m ) 301 K.

(0.1 mol) (8.3145 J mol K )
.pVT nR

−× ×
= = =

⋅
 

(b) (i) Isothermal: If the expansion is isothermal, the process occurs at constant temperature and the final 
temperature is the same as the initial temperature, namely 301 K.  41

2 1 1 2 12( / ) 5.00 10  Pa.p p V V p= = = ×  
(ii) Isobaric: 0pΔ =  so 5

2 1.00 10  Pa.p = ×  2 1 2 1 1( / ) 2 602 K.T T V V T= = =  

(iii) Adiabatic: Using Equation (19.22), ( )
1 0.67

0.671 1 1 1
2 21 0.67

2 1

(301 K)( ) (301 K) 189 K.
(2 )

TV VT
V V

γ

γ

−

−= = = =  

EVALUATE: In an isobaric expansion, T increases. In an adiabatic expansion, T decreases. 
19.39. IDENTIFY: Combine 1 1

1 1 2 2TV T Vγ γ− −= with pV nRT= to obtain an expression relating T and p for an adiabatic 
process of an ideal gas. 
SET UP: 1 299.15 KT =  

EXECUTE: nRTV
p

=  so 
1 1

1 2
1 2

1 2

nRT nRTT T
p p

γ γ− −
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

and 1 1
1 2

1 2

.T T
p p

γ γ

γ γ

− −=  

( 1) / 0.4 /1.45
2

2 1 5
1

0.850 10  Pa(299.15 K) 284.8 K 11.6 C
1.01 10  Pa

pT T
p

γ γ−
⎛ ⎞ ⎛ ⎞×

= = = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠
°  

EVALUATE: For an adiabatic process of an ideal gas, when the pressure decreases the temperature decreases. 
19.40. IDENTIFY: Apply .U Q WΔ = −  For any process of an ideal gas, .VU nC TΔ = Δ  For an isothermal expansion, 

2 1

1 2

ln ln .V pW nRT nRT
V p
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

SET UP: 288.15 K.T =  1 2

2 1

2.00.p V
p V
= =  

EXECUTE: (a) 0UΔ = since 0.TΔ =  
(b) 3(1.50 mol)(8.314 J/mol K)(288.15 K)ln(2.00) 2.49 10  J.W = ⋅ = ×  0W > and work is done by the gas. Since 

0,UΔ =  32.49 10  J.Q W= = + ×  0Q > so heat flows into the gas. 
EVALUATE: When the volume increases, W is positive. 
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19.41. IDENTIFY and SET UP: For an ideal gas, .pV nRT=  The work done is the area under the path in the pV-diagram. 
EXECUTE: (a) The product pV increases and this indicates a temperature increase. 
(b) The work is the area in the pV plane bounded by the blue line representing the process and the verticals at 

 and .a bV V  The area of this trapezoid is 5 31 1
2 2( )( ) (2.40 10  Pa)(0.0400 m ) 4800 J.b a b ap p V V+ − = × =  

EVALUATE: The work done is the average pressure, 1
1 22 ( ),p p+  times the volume increase. 

19.42. IDENTIFY: Use pV nRT= to calculate T. W is the area under the process in the pV-diagram. Use 

VU nC TΔ = Δ and U Q WΔ = − to calculate Q. 

SET UP: In state c, 52.0 10  Pacp = × and 30.0040 m .cV =  In state a, 54.0 10  Paap = ×  and 30.0020 m .aV =  

EXECUTE: (a) 
5 3(2.0 10  Pa)(0.0040 m ) 192 K

(0.500 mol)(8.314 J/mol K)
c c

c
p VT
nR

×
= = =

⋅
 

(b) 5 5 3 3 5 3 31
2 (4.0 10  Pa 2.0 10  Pa)(0.0030 m 0.0020 m ) (2.0 10  Pa)(0.0040 m 0.0030 m )W = × + × − + × −  

500 J.W = +  500 J of work is done by the gas. 

(c) 
5 3(4.0 10  Pa)(0.0020 m ) 192 K.

(0.500 mol)(8.314 J/mol K)
a a

a
p VT
nR

×
= = =

⋅
 For the process, 0,TΔ =  so 0UΔ = and 500 J.Q W= = +  

500 J of heat enters the system. 
EVALUATE: The work done by the gas is positive since the volume increases. 

19.43. IDENTIFY: Use U Q WΔ = −  and the fact that UΔ  is path independent. 
0W >  when the volume increases, 0W <  when the volume decreases, and 0W =  when the volume is constant. 
0Q >  if heat flows into the system. 

SET UP: The paths are sketched in Figure 19.43. 

 

90.0 JacbQ = +  (positive since heat flows in) 
60.0 JacbW = +  (positive since 0)VΔ >  

Figure 19.43  
EXECUTE: (a) U Q WΔ = −  
UΔ  is path independent; Q and W depend on the path. 

b aU U UΔ = −  
This can be calculated for any path from a to b, in particular for path acb: 90.0 J 60.0 J 30.0 J.a b acb acbU Q W→Δ = − = − =  
Now apply U Q WΔ = −  to path adb; 30.0 JUΔ =  for this path also. 

15.0 JadbW = +  (positive since 0)VΔ >  

a b adb adbU Q W→Δ = −  so 30.0 J 15.0 J 45.0 Jacb a b adbQ U W→= Δ + = + = +  
(b) Apply U Q WΔ = −  to path ba: b a ba baU Q W→Δ = −  

35.0 JbaW = −  (negative since 0)VΔ <  
( ) 30.0 Jb a a b b a a bU U U U U U→ →Δ = − = − − = −Δ = −  

Then 30.0 J 35.0 J 65.0 J.ba b a baQ U W→= Δ + = − − = −  
( 0;baQ <  the system liberates heat.) 
(c) 0,aU =  8.0 JdU =  

30.0 J,a b b aU U U→Δ = − = +  so 30.0 J.bU = +  
process a d→  

a d ad adU Q W→Δ = −  
8.0 Ja d d aU U U→Δ = − = +  

15.0 JadbW = +  and .adb ad dbW W W= +  But the work dbW  for the process d b→  is zero since 0VΔ =  for that process. 
Therefore 15.0 J.ad adbW W= = +  
Then 8.0 J 15.0 J 23.0 Jad a d adQ U W→= Δ + = + + = +  (positive implies heat absorbed). 
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process d b→  
d b db dbU Q W→Δ = −  

0,dbW =  as already noted. 
30.0 J 8.0 J 22.0 J.d b b dU U U→Δ = − = − = +  

Then 22.0 Jdb d b dbQ U W→= Δ + = +  (positive; heat absorbed). 
EVALUATE: The signs of our calculated adQ  and dbQ  agree with the problem statement that heat is absorbed in 
these processes. 

19.44. IDENTIFY: .U Q WΔ = −  
SET UP: 0W =  when 0.VΔ =  
EXECUTE: For each process, .Q U W= Δ +  No work is done in the processes ab and dc, and so 450 Jbc abcW W= =  
and 120 J.ad adcW W= =  The heat flow for each process is: for ,  90 J.ab Q =  For ,bc  440 J 450 J 890 J.Q = + =  For 

,  180 J 120 J 300 J.ad Q = + =  For ,  350 J. dc Q =  Heat is absorbed in each process. Note that the arrows 
representing the processes all point in the direction of increasing temperature (increasing U ). 
EVALUATE: UΔ is path independent so is the same for paths adc and abc. 300 J 350 J 650 J.adcQ = + =  

90 J 890 J 980 J.abcQ = + =  Q and W are path dependent and are different for these two paths. 
19.45. IDENTIFY: Use pV nRT= to calculate / .c aT T  Calculate UΔ and W and use U Q WΔ = − to obtain Q. 

SET UP: For path ac, the work done is the area under the line representing the process in the pV-diagram. 

EXECUTE: (a) 
5 3

5 3

(1.0 10  J)(0.060 m ) 1.00.
(3.0 10  J)(0.020 m )

c c c

a a a

T p V
T p V

×
= = =

×
 .c aT T=  

(b) Since ,c aT T=  0UΔ = for process abc. For ab, 0VΔ = and 0.abW =  For bc, p is constant and 
5 3 3(1.0 10  Pa)(0.040 m ) 4.0 10  J.bcW p V= Δ = × = ×  Therefore, 34.0 10  J.abcW = + ×  Since 0,UΔ =  

34.0 10  J.Q W= = + ×  34.0 10  J× of heat flows into the gas during process abc. 

(c) 5 5 3 31
2 (3.0 10  Pa 1.0 10  Pa)(0.040 m ) 8.0 10  J.W = × + × = + ×  38.0 10  J.ac acQ W= = + ×  

EVALUATE: The work done is path dependent and is greater for process ac than for process abc, even though the 
initial and final states are the same. 

19.46. IDENTIFY: For a cycle, 0UΔ = and .Q W=  Calculate W. 
SET UP: The magnitude of the work done by the gas during the cycle equals the area enclosed by the cycle in the 
pV-diagram. 
EXECUTE: (a) The cycle is sketched in Figure 19.46. 
(b) 4 4 3 3(3.50 10  Pa 1.50 10  Pa)(0.0435 m 0.0280 m ) 310 J.W = × − × − = +  More negative work is done for cd than 
positive work for ab and the net work is negative. 310 J.W = −  
(c) 310 J.Q W= = −  Since 0,Q <  the net heat flow is out of the gas. 
EVALUATE: During each constant pressure process W p V= Δ and during the constant volume process 0.W =  

 
Figure 19.46 

19.47. IDENTIFY: Use the 1st law to relate totQ  to totW  for the cycle. 
Calculate abW  and bcW  and use what we know about totW  to deduce caW  
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(a) SET UP: We aren�t told whether the pressure increases or decreases in process bc. The two possibilities for 
the cycle are sketched in Figure 19.47. 

 
Figure 19.47 

In cycle I, the total work is negative and in cycle II the total work is positive. For a cycle, 0,UΔ =  so tot totQ W=  
The net heat flow for the cycle is out of the gas, so heat tot 0Q <  and tot 0.W <  Sketch I is correct. 
(b) EXECUTE: tot tot 800 JW Q= = −  

tot ab bc caW W W W= + +  
0bcW =  since 0.VΔ =  

abW p V= Δ  since p is constant. But since it is an ideal gas, p V nR TΔ = Δ  
( ) 1660 Jab b aW nR T T= − =  

tot 800 J 1660 J 2460 Jca abW W W= − = − − = −  
EVALUATE: In process ca the volume decreases and the work W is negative. 

19.48. IDENTIFY: Apply the appropriate expression for W for each type of process. pV nRT= and .p VC C R= +  
SET UP: 8.315 J/mol KR = ⋅  
EXECUTE: Path ac has constant pressure, so ,acW p V nR T= Δ = Δ  and 

3( ) (3 mol)(8.3145 J mol K)(492 K 300 K) 4.789 10  J.ac c aW nR T T= − = ⋅ − = ×  
Path cb is adiabatic ( 0),  so ,cb VQ W Q U U nC T= = − Δ = −Δ = − Δ  and using ,V pC C R= −  

3( )( ) (3 mol)(29.1 J mol K 8.3145 J mol K)(600 K 492 K) 6.735 10  J.cb p b cW n C R T T= − − − = − ⋅ − ⋅ − = − ×  

Path ba  has constant volume, so 0.baW =  So the total work done is 
3 3 34.789 10  J 6.735 10  J 0 1.95 10  J.ac cb baW W W W= + + = × − × + = − ×  

EVALUATE: 0W >  when 0,VΔ >  0W < when 0VΔ < and 0W = when 0.VΔ =  
19.49. IDENTIFY: Use VQ nC T= Δ to calculate the temperature change in the constant volume process and use 

pV nRT= to calculate the temperature change in the constant pressure process. The work done in the constant 
volume process is zero and the work done in the constant pressure process is .W p V= Δ  Use pQ nC T= Δ to 

calculate the heat flow in the constant pressure process. ,VU nC TΔ = Δ  or .U Q WΔ = −  
SET UP: For 2N ,  20.76 J/mol KVC = ⋅ and 29.07 J/mol K.pC = ⋅  

EXECUTE: (a) For process ab, 
41.52 10  J 293 K.

(2.50 mol)(20.76 J/mol K)V

QT
nC

×
Δ = = =

⋅
 293 K,aT =  so 586 K.bT =  

pV nRT= says T doubles when V doubles and p is constant, so 2(586 K) 1172 K 899 C.cT = = = °  
(b) For process ab, 0.abW =  For process bc, 

4(2.50 mol)(8.314 J/mol K)(1172 K 586 K) 1.22 10  J.bcW p V nR T= Δ = Δ = ⋅ − = ×  41.22 10  J.ab bcW W W= + = ×  

(c) For process bc, 4(2.50 mol)(29.07 J/mol K)(1172 K 586 K) 4.26 10  J.pQ nC T= Δ = ⋅ − = ×  

(d) 4(2.50 mol)(20.76 J/mol K)(1172 K 293 K) 4.56 10  J.VU nC TΔ = Δ = ⋅ − = ×  

EVALUATE: The total Q is 4 4 41.52 10  J 4.26 10  J 5.78 10  J.× + × = ×  
4 4 45.78 10  J 1.22 10  J 4.56 10  J,U Q WΔ = − = × − × = ×  which agrees with our results in part (d). 

19.50. IDENTIFY: For a constant pressure process, .pQ nC T= Δ  .U Q WΔ = −  VU nC TΔ = Δ for any ideal gas process. 

SET UP: For 2N ,  20.76 J/mol KVC = ⋅ and 29.07 J/mol K.pC = ⋅  0Q < if heat comes out of the gas. 

EXECUTE: (a) 
42.5 10  J 21.5 mol.

(29.07 J mol K)(40.0 K)p

Qn
C T

+ ×
= = =

Δ ⋅
 

(b) 4 4( / ) ( 2.5 10  J)(20.76/29.07) 1.79 10  J.V V pU nC T Q C CΔ = Δ = = − × = − ×  
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(c) 37.15 10  J.W Q U= − Δ = − ×  

(d) UΔ is the same for both processes, and if 0,VΔ =  0W =  and 41.79 10  J.Q U= Δ = − ×  
EVALUATE: For a given ,TΔ  Q is larger when the pressure is constant than when the volume is constant. 

19.51. IDENTIFY and SET UP: Use the first law to calculate W and then use W p V= Δ  for the constant pressure process 
to calculate .VΔ  
EXECUTE: U Q WΔ = −  

52.15 10  JQ = − ×  (negative since heat energy goes out of the system) 

0UΔ =  so 52.15 10  JW Q= = − ×  

Constant pressure, so 2

1
2 1( ) .

V

V
W pdV p V V p V= = − = Δ∫  

Then 
5

3
5

2.15 10  J 0.226 m .
9.50 10  Pa

WV
p

− ×
Δ = = = −

×
 

EVALUATE: Positive work is done on the system by its surroundings; this inputs to the system the energy that 
then leaves the system as heat. Both Eq.(19.4) and (19.2) apply to all processes for any system, not just to an ideal 
gas. 

19.52. IDENTIFY: .pV nRT=  For an isothermal process 2 1ln( / ).W nRT V V=  For a constant pressure process, 
.W p V= Δ  

SET UP: 3 31 L 10  m .−=  
EXECUTE: (a) The pV-diagram is sketched in Figure 19.52. 

(b) At constant temperature, the product pV is constant, so 
5

 
2 1 1 2 4

1.00 10 Pa( / ) (1.5 L) 6.00 L.
2.50 10  Pa

V V p p ⎛ ⎞×= = =⎜ ⎟×⎝ ⎠
 The 

final pressure is given as being the same as 4
3 2 2.5 10  Pa.p p= = ×  The final volume is the same as the initial 

volume, so 3 1 3 1( ) 75.0 K.T T p p= =  
(c) Treating the gas as ideal, the work done in the first process is 2 1 1 1 1 2ln( ) ln( ).W nRT V V pV p p= =  

5
5 3 3

4

1.00 10  Pa(1.00 10  Pa)(1.5 10  m )ln 208 J.
2.50 10  Pa

W − ⎛ ⎞×
= × × =⎜ ⎟×⎝ ⎠

 

For the second process, 2 3 2 2 1 2 2 1 1 2( ) ( ) (1 ( )).W p V V p V V p V p p= − = − = −  
5

4 3 3
4

1.00 10  Pa(2.50 10  Pa)(1.5 10  m ) 1 113 J.
2.50 10  Pa

W − ⎛ ⎞×
= × × − = −⎜ ⎟×⎝ ⎠

 

The total work done is 208 J 113 J 95 J.− =  
(d) Heat at constant volume. No work would be done by the gas or on the gas during this process. 
EVALUATE: When the volume increases, 0.W >  When the volume decreases, 0.W <  

 
Figure 19.52 

19.53. IDENTIFY: 0 .V V TβΔ = Δ  W p V= Δ since the force applied to the piston is constant. .pQ mc T= Δ  .U Q WΔ = −  
SET UP: m Vρ=  
EXECUTE: (a) The fractional change in volume is 

2 3 3 1 4 3
0 (1.20 10  m )(1.20 10  K )(30.0 K) 4.32 10  m .V V Tβ − − − −Δ = Δ = × × = ×  

(b) 4 2 4 3( ) ((3.00 10  N) (0.0200 m ))(4.32 10  m ) 648 J.W p V F A V −= Δ = Δ = × × =  

(c) 2 3 3 3
0 (1.20 10  m )(791 kg m )(2.51 10  J kg K)(30.0 K).p pQ mc T V c Tρ −= Δ = Δ = × × ⋅  

57.15 10  J.Q = ×  
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(d) 57.15 10  JU Q WΔ = − = × to three figures. 
(e) Under these conditions W is much less than Q and there is no substantial difference between  and .V pc c  
EVALUATE: U Q WΔ = − is valid for any material. For liquids the expansion work is much less than Q. 

19.54. IDENTIFY: 0 .V V TβΔ = Δ  W p V= Δ since the applied pressure (air pressure) is constant. .pQ mc T= Δ  
.U Q WΔ = −  

SET UP: For copper, 35.1 10  (C ,β −= × −1°)  390 J/kg Kpc = ⋅ and 3 38.90 10  kg/m .ρ = ×  

EXECUTE: (a) 5 1 2 3 8 3
0 (5.1 10 (C ) )(70.0 C )(2.00 10  m) 2.86 10  m .V TVβ − − − −Δ = Δ = × ° ° × = ×  

(b) 32.88 10  J.W p V −= Δ = ×  

(c) 3 3 6 3
0 (8.9 10  kg m )(8.00 10  m )(390 J kg K)(70.0 C ) 1944 J.p pQ mc T V c Tρ −= Δ = Δ = × × ⋅ ° =  

(d) To three figures, 1940U QΔ = =  J. 
(e) Under these conditions, the difference is not substantial, since W is much less than Q. 
EVALUATE: U Q WΔ = − applies to any material. For solids the expansion work is much less than Q. 

19.55. IDENTIFY and SET UP: The heat produced from the reaction is reaction reaction ,Q mL=  where reactionL  is the heat of 
reaction of the chemicals. 

reaction sprayQ W U= + Δ  

EXECUTE: For a mass m of spray, 2 21 1
2 2 (19 m/s) (180.5 J/kg)W mv m m= = =  and 

spray spray (4190 J/kg K)(100 C 20 C) (335,200 J/kg) .U Q mc T m mΔ = = Δ = ⋅ ° − ° =  

Then reaction (180 J/kg 335,200 J/kg) (335,380 J/kg)Q m m= + =  and reaction reactionQ mL=  implies 

reaction (335,380 J/kg) .mL m=  

The mass m divides out and 5
reaction 3.4 10  J/kgL = ×  

EVALUATE: The amount of energy converted to work is negligible for the two significant figures to which the 
answer should be expressed. Almost all of the energy produced in the reaction goes into heating the compound. 

19.56. IDENTIFY: The process is adiabatic. Apply 1 1 2 2pV p Vγ γ= and .pV nRT=  0Q = so 

1 1 2 2
1 ( ).

1
U W pV p V

γ
Δ = − = − −

−
 

SET UP: For helium, 1.67.γ =  5
1 1.00 atm 1.013 10  Pa.p = = ×  3 3

1 2.00 10  m .V = ×  
4

2 0.900 atm 9.117 10  Pa.p = = ×  1 288.15 K.T =  

EXECUTE: (a) 1
2 1

2

.pV V
p

γ γ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

1/ 1/1.67
3 3 3 31

2 1
2

1.00 atm(2.00 10  m ) 2.13 10  m .
0.900 atm

pV V
p

γ
⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) pV nRT= gives 1 2

1 1 2 2

.T T
pV p V

=  

3 3
2 2

2 1 3 3
1 1

0.900 atm 2.13 10  m(288.15 K) 276.2 K 3.0 C.
1.00 atm 2.00 10  m

p VT T
p V

⎛ ⎞⎛ ⎞ ⎛ ⎞×⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
°  

(c) 5 3 3 4 3 3 71 ([1.013 10  Pa)(2.00 10  m )] [9.117 10  Pa)(2.13 10  m )] 1.25 10  J.
0.67

UΔ = − × × − × × = − ×  

EVALUATE: The internal energy decreases when the temperature decreases. 
19.57. IDENTIFY: For an adiabatic process of an ideal gas, 1 1

1 1 2 2 .TV TVγ γ− −=  .pV nRT=  
SET UP: For air, 7

51.40 .γ = =  
EXECUTE: (a) As the air moves to lower altitude its density increases; under an adiabatic compression, the 
temperature rises. If the wind is fast-moving, Q is not as likely to be significant, and modeling the process as 
adiabatic (no heat loss to the surroundings) is more accurate. 

(b) ,nRTV
p

=  so 1 1
1 1 2 2TV TVγ γ− −=  gives 1 1

1 1 2 2 .T p T pγ γ γ γ− −=  The temperature at the higher pressure is 

( ) ( )2 / 7( 1) / 4 4
2 1 1 2/ (258.15 K) [8.12 10  Pa]/[5.60 10  Pa] 287.1 K 13.0 CT T p p γ γ−= = × × = = °  so the temperature would 

rise by 11.9 C .°  
EVALUATE: In an adiabatic compression, 0Q =  but the temperature rises because of the work done on the gas. 
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19.58. IDENTIFY: For constant pressure , .W p V= Δ  For an adiabatic process of an ideal gas, ( )1 1 2 2
VCW pV p V
R

= −  and 

1 1 2 2 .pV p Vγ γ=  

SET UP: 1p p V

V V V

C C C R
C C C

γ
+

= = = +  

EXECUTE: (a) The pV-diagram is sketched in Figure 19.58. 

(b) The work done is 0 0 0 0 0 3 0(2 ) ( (2 ) (4 )).VCW p V V p V p V
R

= − + −  3 0 0 0(2 4 )  and sop p V V γ=  

2
0 0 1 (2 2 ) .VCW p V

R
γ−⎡ ⎤= + −⎢ ⎥⎣ ⎦

 Note that 0p is the absolute pressure. 

(c) The most direct way to find the temperature is to find the ratio of the final pressure and volume to the original 

and treat the air as an ideal gas. 2 2
3 2 1

3 3

,V Vp p p
V V

γ γ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 since 1 2.p p=  Then 

( )23 3 2 3
3 0 0 0 0

1 1 3 1

1 4 2 .
2

p V V VT T T T T
pV V V

γ γ
γ−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

(d) Since ( )( )0 0 0 0
0 0 0 0

0 0

,  2 1 .V
V

p V p V Cn Q C R T T p V
RT RT R

⎛ ⎞= = + − = +⎜ ⎟
⎝ ⎠

This amount of heat flows into the gas, since 

0.Q >  
EVALUATE: In the isobaric expansion the temperature doubles and in the adiabatic expansion the temperature 
decreases. If the gas is diatomic, with 7

5 ,γ =  3
52 γ− =  and 3 03.03 ,T T=  0 02.21W p V= and 0 03.50 .Q p V=  

0 01.29 .U p VΔ =  0UΔ > and this is consistent with an increase in temperature. 

 
Figure 19.58 

19.59. IDENTIFY: Assume that the gas is ideal and that the process is adiabatic. Apply Eqs.(19.22) and (19.24) to relate 
pressure and volume and temperature and volume. The distance the piston moves is related to the volume of the 
gas. Use Eq.(19.25) to calculate W. 
(a) SET UP: / ( ) / 1 / 1.40.p V V V VC C C R C R Cγ = = + = + =  The two positions of the piston are shown in 
Figure 19.59. 

 

5
1 1.01 10  Pap = ×  

5 6
2 air4.20 10  Pa 5.21 10  Pap p= × + = ×  

1 1V h A=  

2 2V h A=  

Figure 19.59  

EXECUTE: adiabatic process: 1 1 2 2pV p Vγ γ=  

1 1 2 2p h A p h Aγ γ γ γ=  
1/ 1/1.405

1
2 1 5

2

1.01 10  Pa(0.250 m) 0.0774 m
5.21 10  Pa

ph h
p

γ
⎛ ⎞ ⎛ ⎞×

= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠
 

The piston has moved a distance 1 2 0.250 m 0.0774 m 0.173 m.h h− = − =  
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(b) 1 1
1 1 2 2TV TVγ γ− −=  
1 1 1 1

1 1 2 2T h A T h Aγ γ γ γ− − − −=  
1 0.40

1
2 1

2

0.250 m300.1 K 479.7 K 207 C
0.0774 m

hT T
h

γ −
⎛ ⎞ ⎛ ⎞= = = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(c) 1 2( )VW nC T T= −  (Eq.19.25) 
4(20.0 mol)(20.8 J/mol K)(300.1 K 479.7 K) 7.47 10  JW = ⋅ − = − ×  

EVALUATE: In an adiabatic compression of an ideal gas the temperature increases. In any compression the work 
W is negative. 

19.60. IDENTIFY: .m Vρ=  The density of air is given by .pM
RT

ρ =  For an adiabatic process, 1 1
1 1 2 2 .TV TVγ γ− −=  

pV nRT=  

SET UP: Using nRTV
p

= in 1 1
1 1 2 2TV TVγ γ− −= gives 1 1

1 1 2 2 .T p T pγ γ− −=  

EXECUTE: (a) The pV-diagram is sketched in Figure 19.60. 
(b) The final temperature is the same as the initial temperature, and the density is proportional to the absolute 
pressure. The mass needed to fill the cylinder is then 

5
3 6 3 3

0 5
air

1.45 10  Pa(1.23 kg/m )(575 10  m ) 1.02 10  kg.
1.01 10  Pa

pm p V
p

− −×
= = × = ×

×
 

Without the turbocharger or intercooler the mass of air at 15.0 CT = ° and 51.01 10  Pap = ×  in a cylinder is 
4

0 7.07 10  kg.m Vρ −= = ×  The increase in power is proportional to the increase in mass of air in the cylinder; the 

percentage increase is 
3

4

1.02 10  kg 1 0.44 44%.
7.07 10  kg

−

−

×
− = =

×
 

(c) The temperature after the adiabatic process is 
( 1) /

2
2 1

1

.pT T
p

γ γ−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 The density becomes 

(1 ) / 1/

1 2 2 2 2
0 0 0

2 1 1 1 1

.T p p p p
T p p p p

γ γ γ

ρ ρ ρ ρ
−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 The mass of air in the cylinder is 

1 1.405
3 6 3 4

5

1.45 10  Pa(1.23 kg/m )(575 10  m ) 9.16 10  kg,
1.01 10  Pa

m − −⎛ ⎞×
= × = ×⎜ ⎟×⎝ ⎠

 

The percentage increase in power is 
4

4

9.16 10  kg 1 0.30 30%.
7.07 10  kg

−

−

×
− = =

×
 

EVALUATE: The turbocharger and intercooler each have an appreciable effect on the engine power. 

 
Figure 19.60 

19.61. IDENTIFY: In each case calculate either UΔ  or Q for the specific type of process and then apply the first law. 
(a) SET UP: isothermal ( 0)TΔ =  ;U Q WΔ = −  300 JW = +  
For any process of an ideal gas, .VU nC TΔ = Δ  
EXECUTE: Therefore, for an ideal gas, if 0TΔ =  then 0UΔ =  and 300 J.Q W= = +  
(b) SET UP: adiabatic ( 0)Q =  

;U Q WΔ = −  300 JW = +  
EXECUTE: 0Q =  says 300 JU WΔ = − = −  
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(c) SET UP: isobaric 0pΔ =  
Use W to calculate TΔ  and then calculate Q. 
EXECUTE: ;W p T nR T= Δ = Δ  /T W nRΔ =  

pQ nC T= Δ  and for a monatomic ideal gas 5
2pC R=  

Thus 5
2 (5 /2)( / ) 5 /2 750 J.Q n R T Rn W nR W= Δ = = = +  

VU nC TΔ = Δ  for any ideal gas process and 3
2 .V pC C R R= − =  

Thus 3 / 2 450 JU WΔ = = +  
EVALUATE: 300 J of energy leaves the gas when it performs expansion work. In the isothermal process this 
energy is replaced by heat flow into the gas and the internal energy remains the same. In the adiabatic process the 
energy used in doing the work decreases the internal energy. In the isobaric process 750 J of heat energy enters the 
gas, 300 J leaves as the work done and 450 J remains in the gas as increased internal energy. 

19.62. IDENTIFY: .pV nRT=  For the isobaric process, .W p V nR T= Δ = Δ  For the isothermal process, 

f

i

ln .VW nRT
V
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

SET UP: 8.315 J/mol KR = ⋅  
EXECUTE: (a) The pV diagram for these processes is sketched in Figure 19.62. 

(b) Find 2.T  For process 1 2,→  n, R, and p are constant so constant.T p
V nR
= =  1 2

1 2

T T
V V
=  and 

2
2 1

1

(355 K)(2) 710 K.VT T
V
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

(c) The maximum pressure is for state 3. For process 2 3,→  n, R, and T are constant. 2 2 3 3p V p V=  and 

5 52
3 2

3

(2.40 10  Pa)(2) 4.80 10  Pa.Vp p
V
⎛ ⎞

= = × = ×⎜ ⎟
⎝ ⎠

 

(d) process 1 2:→  (0.250 mol)(8.315 J/mol K)(710 K 355 K) 738 K.W p V nR T= Δ = Δ = ⋅ − =  

process 2 3:→  3

2

1ln (0.250 mol)(8.315 J/mol K)(710 K)ln 1023 J.
2

VW nRT
V
⎛ ⎞ ⎛ ⎞= = ⋅ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

process 3 1:→  0VΔ =  and 0.W =  
The total work done is 738 J ( 1023 J) 285 J.+ − = −  This is the work done by the gas. The work done on the gas is 
285 J. 
EVALUATE: The final pressure and volume are the same as the initial pressure and volume, so the final state is 
the same as the initial state. For the cycle, 0UΔ =  and 285 J.Q W= = −  During the cycle, 285 J of heat energy 
must leave the gas. 

 
Figure 19.62 

19.63. IDENTIFY and SET UP: Use the ideal gas law, the first law and expressions for Q and W for specific types of 
processes. 
EXECUTE: (a) initial expansion (state 1 state 2)→  

5
1 2.40 10  Pa,p = ×  1 355 K,T =  5

2 2.40 10  Pa,p = ×  2 12V V=  
;pV nRT=  / / constant,T V p nR= =  so 1 1 2 2/ /T V T V=  and 2 1 2 1 1 1( / ) 355 K(2 / ) 710 KT T V V V V= = =  

0pΔ =  so (0.250 mol)(8.3145 J/mol K)(710 K 355 K) 738 JW p V nR T= Δ = Δ = ⋅ − = +  
(0.250 mol)(29.17 J/mol K)(710 K 355 K) 2590 JpQ nC T= Δ = ⋅ − = +  
2590 J 738 J 1850 JU Q WΔ = − = − =  
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(b) At the beginning of the final cooling process (cooling at constant volume), 710 K.T =  The gas returns to its 
original volume and pressure, so also to its original temperature of 355 K. 

0VΔ =  so 0W =  
(0.250 mol)(20.85 J/mol K)(355 K 710 K) 1850 JVQ nC T= Δ = ⋅ − = −  

1850 J.U Q WΔ = − = −  
(c) For any ideal gas process .VU nC TΔ = Δ  For an isothermal process 0,TΔ =  so 0.UΔ =  
EVALUATE: The three processes return the gas to its initial state, so total 0;UΔ =  our results agree with this. 

19.64. IDENTIFY: .pV nRT=  For an adiabatic process of an ideal gas, 1 1
1 1 2 2 .TV TVγ γ− −=  

SET UP: For 2N ,  1.40.γ =  
EXECUTE: (a) The pV-diagram is sketched in Figure 19.64. 
(b) At constant pressure, halving the volume halves the Kelvin temperature, and the temperature at the beginning 
of the adiabatic expansion is 150 K.The volume doubles during the adiabatic expansion, and from Eq. (19.22), the 

temperature at the end of the expansion is 0.40(150 K)(1 2) 114 K.=  
(c) The minimum pressure occurs at the end of the adiabatic expansion (state 3). During the final heating the 
volume is held constant, so the minimum pressure is proportional to the Kelvin temperature, 

5 4
min (1.80 10  Pa)(114K 300 K) 6.82 10  Pa.p = × = ×  

EVALUATE: In the adiabatic expansion the temperature decreases. 

 
Figure 19.64 

19.65. IDENTIFY: Use the appropriate expressions for Q, W and UΔ for each type of process. U Q WΔ = − can also be 
used. 
SET UP: For 2N ,  20.76 J/mol KVC = ⋅ and 29.07 J/mol K.pC = ⋅  

EXECUTE: (a) (0.150 mol)(8.3145 J mol K)( 150 K) 187 J,W p V nR T= Δ = Δ = ⋅ − = −  
(0.150 mol)(29.07 mol K)( 150 K) 654 J,  467 J.pQ nC T U Q W= Δ = ⋅ − = − Δ = − = −  

(b) From Eq. (19.24), using the expression for the temperature found in Problem 19.64, 
0.401 (0.150 mol)(8.3145 J/mol K)(150 K)(1 (1/2 ) 113 J.

0.40
W = ⋅ − =  0Q =  for an adiabatic process, and 

113 J.U Q W WΔ = − = − = −  
(c) 0,  so 0.V WΔ = =  Using the temperature change as found in Problem 19.64 and part (b), 

(0.150 mol)(20.76 J mol K)(300 K 113.7 K) 580 JVQ nC T= Δ = ⋅ − = and 580 J.U Q W QΔ = − = =  
EVALUATE: For each process we could also use VU nC TΔ = Δ to calculate .UΔ  

19.66. IDENTIFY: Use the appropriate expression for W for each type of process. 
SET UP: For a monatomic ideal gas, 5/3γ = and 3 / 2.VC R=  

EXECUTE: (a) ( ) 3
2 1 ln / ln (3) 3.29 10  J.W nRT V V nRT= = = ×  

(b) 0Q =  so .VW U nC T= −Δ = − Δ  1 1
1 1 2 2TV TVγ γ− −= gives 2 / 3

2 1(1/3) .T T=  Then 
2 / 3 3

1(1 (1 3) ) 2.33 10  J.VW nC T= − = ×  

(c) 2 13 ,V V=  so 3
1 12 2 6.00 10  J.W p V pV nRT= Δ = = = ×  

(d) Each process is shown in Figure 19.66. The most work done is in the isobaric process, as the pressure is 
maintained at its original value. The least work is done in the adiabatic process. 
(e) The isobaric process involves the most work and the largest temperature increase, and so requires the most heat. 
Adiabatic processes involve no heat transfer, and so the magnitude is zero. 
( f )  The isobaric process doubles the Kelvin temperature, and so has the largest change in internal energy. The 
isothermal process necessarily involves no change in internal energy. 
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EVALUATE: The work done is the area under the path for the process in the pV-diagram. Figure 19.66 shows that 
the work done is greatest in the isobaric process and least in the adiabatic process. 

 
Figure 19.66 

19.67. IDENTIFY: Assume the compression is adiabatic. Apply 1 1
1 1 2 2TV TVγ γ− −= and .pV nRT=  

SET UP: For 2N ,  1.40.γ =  1 3.00 L,V =  51.00 atm 1.013 10  Pa,p = = ×  273.15 K.T =  2 1 / 2 1.50 L.V V= =  

EXECUTE: (a) 
1 0.40

0.41 1
2 1

2 1

(273.15 K) (273.15 K)(2) 360.4 K 87.3 C.
/ 2

V VT T
V V

γ −
⎛ ⎞ ⎛ ⎞

= = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

°  1 1 2 2

1 2

.pV p V
T T

=  

1 2 1
2 1

2 1 1

360.4 K(1.00 atm) 2.64 atm.
/ 2 273.15 K

V T Vp p
V T V
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 

(b) p is constant, so constantV nR
T T
= = and 2 3

2 3

.V V
T T
=  3

3 2
2

273.15 K(1.50 L) 1.14 L.
360.4 K

TV V
T
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE: In an adiabatic compression the temperature increases. 
19.68. IDENTIFY: At equilibrium the net upward force of the gas on the piston equals the weight of the piston. When the 

piston moves upward the gas expands, the pressure of the gas drops and there is a net downward force on the 
piston. For simple harmonic motion the net force has the form ,yF ky= −  for a displacement y from equilibrium, 

and 1 .
2

kf
mπ

=  

SET UP: .pV nRT=  T is constant. 
(a) The difference between the pressure, inside and outside the cylinder, multiplied by the area of the piston, must 

be the weight of the piston. The pressure in the trapped gas is 0 0 2 .mg mgp pA rπ
+ = +  

(b) When the piston is a distance h y+  above the cylinder, the pressure in the trapped gas is 0 2

mg hp
r h yπ

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠
 

and for values of y small compared to 
1

,  1 ~ 1 .h y yh h hh y

−
⎛ ⎞= + −⎜ ⎟+ ⎝ ⎠

 The net force, taking the positive direction to 

be upward, is the then ( ) ( )2 2
0 0 02 1 .y
mg y yF p p r mg p r mg
r h h

π π
π

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞= + − − − = − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
 

This form shows that for positive h, the net force is down; the trapped gas is at a lower pressure than the 
equilibrium pressure, and so the net force tends to restore the piston to equilibrium. 

(c) The angular frequency of small oscillations would be given by 
( )2 2

02 01 .
p r mg h g p r

m h mg
π πω

+ ⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
 

1/ 22
01 1 .

2 2
g p rf
h mg

ω π
π π

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
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If the displacements are not small, the motion is not simple harmonic. This can be seen be considering what 
happens if ~ ;y h−  the gas is compressed to a very small volume, and the force due to the pressure of the gas 
would become unboundedly large for a finite displacement, which is not characteristic of simple harmonic motion. 
If y h>>  (but not so large that the piston leaves the cylinder), the force due to the pressure of the gas becomes 
small, and the restoring force due to the atmosphere and the weight would tend toward a constant, and this is not 
characteristic of simple harmonic motion. 

EVALUATE: The assumption of small oscillations was made when h
h y+

was replaced by 1 / ;y h−  this is 

accurate only when /y h is small. 

19.69. IDENTIFY: 2

1

.
V

V
W pdV= ∫  

SET UP: For an isothermal process of an ideal gas, ( )2 1ln .W nRT V V=  
EXECUTE: (a) Solving for p as a function of V and T and integrating with respect to V, 

2

2

nRT anp
V nb V

= −
−

 and 2

1

22

1 2 1

1 1ln .
V

V

V nbW pdV nRT an
V nb V V
⎡ ⎤ ⎡ ⎤−

= = + −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
∫  

When 0,a b= =  ( )2 1ln ,W nRT V V=  as expected. 
(b) (i) Using the expression found in part (a), 

( )( )( )
( ) ( )( )
( ) ( )( )

( )( )

3 3 5 2

3 3 5 2

23 2
3 3 3 3

1.80 mol 8.3145 J/mol K 300 K

4.00 10  m 1.80 mol 6.38 10  m / mol
                ln

2.00 10  m 1.80 mol 6.38 10  m / mol

1 1               0.554 J m mol 1.80 mol
4.00 10  m 2.00 10  m

W
− −

− −

− −

= ⋅

⎡ ⎤× − ×
⎢ ⎥×

× − ×⎢ ⎥⎣ ⎦
⎡ ⎤+ ⋅ −⎢ × ×⎣ ⎥⎦

 

32.80 10  J.W = ×  
(ii) 3ln(2) 3.11 10  J.W nRT= = ×  
(c) The work for the ideal gas is larger by about 300 J. For this case, the difference due to nonzero a is more than 
that due to nonzero b. The presence of a nonzero a indicates that the molecules are attracted to each other and so do 
not do as much work in the expansion. 
EVALUATE: The difference in the two results for W is about 10%, which can be considered to be important. 
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THE SECOND LAW OF THERMODYNAMICS 

 20.1. IDENTIFY: For a heat engine, H C .W Q Q= −  
H

.We
Q

=  H 0,Q >  C 0.Q <  

SET UP: 2200 J.W =  C 4300 J.Q =  

EXECUTE: (a) H C 6500 J.Q W Q= + =  

(b) 2200 J 0.34 34%.
6500 J

e = = =  

EVALUATE: Since the engine operates on a cycle, the net Q equal the net W. But to calculate the efficiency we 
use the heat energy input, H.Q  

 20.2. IDENTIFY: For a heat engine, H C .W Q Q= −  
H

.We
Q

=  H 0,Q >  C 0.Q <  

SET UP: H 9000 J.Q =  C 6400 J.Q =  
EXECUTE: (a) 9000 J 6400 J 2600 J.W = − =  

(b) 
H

2600 J 0.29 29%.
9000 J

We
Q

= = = =  

EVALUATE: Since the engine operates on a cycle, the net Q equal the net W. But to calculate the efficiency we 
use the heat energy input, H.Q  

 20.3. IDENTIFY and SET UP: The problem deals with a heat engine. 3700 WW = +  and H 16,100 J.Q = +  Use 
Eq.(20.4) to calculate the efficiency e and Eq.(20.2) to calculate C .Q  Power / .W t=  

EXECUTE: (a) 
H

work output 3700 J 0.23 23%.
heat energy input 16,100 J

We
Q

= = = = =  

(b) H CW Q Q Q= = −  

Heat discarded is C H 16,100 J 3700 J 12,400 J.Q Q W= − = − =  

(c) HQ  is supplied by burning fuel; H cQ mL=  where cL  is the heat of combustion. 

H
4

c

16,100 J 0.350 g.
4.60 10  J/g

Qm
L

= = =
×

 

(d) 3700 JW =  per cycle 
In 1.00 st =  the engine goes through 60.0 cycles. 

/ 60.0(3700 J)/1.00 s 222 kWP W t= = =  
5(2.22 10  W)(1 hp/746 W) 298 hpP = × =  

EVALUATE: C 12,400 J.Q = −  In one cycle tot C H 3700 J.Q Q Q= + =  This equals totW  for one cycle. 

 20.4. IDENTIFY: H C .W Q Q= −  
H

.We
Q

=  H 0,Q >  C 0.Q <  

SET UP: For 1.00 s, 3180 10  J.W = ×  

EXECUTE: (a) 
3

5
H

180 10  J 6.43 10  J.
0.280

WQ
e

×
= = = ×  

(b) 5 5 5
C H 6.43 10  J 1.80 10  J 4.63 10  J.Q Q W= − = × − × = ×  

EVALUATE: Of the 56.43 10  J× of heat energy supplied to the engine each second, 51.80 10  J× is converted to 
mechanical work and the remaining 54.63 10  J× is discarded into the low temperature reservoir. 

20
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 20.5. IDENTIFY: H C .W Q Q= −  
H

.We
Q

=  H 0,Q >  C 0.Q <  Dividing by t gives equivalent equations for the rate of 

heat flows and power output. 
SET UP: / 330 MW.W t =  H / 1300 MW.Q t =  

EXECUTE: (a) 
H H

/ 330 MW 0.25 25%.
/ 1300 MW

W W te
Q Q t

= = = = =  

(b) C HQ Q W= − so C H/ / / 1300 MW 330 MW 970 MW.Q t Q t W t= − = − =  
EVALUATE: The equations for e and W have the same form when written in terms of power output and rate of 
heat flow. 

 20.6. IDENTIFY: Apply 1

11 .e
rγ −= −  C

H

1 .
Q

e
Q

= −  

SET UP: In part (b), H 10,000 J.Q =  The heat discarded is C .Q  

EXECUTE: (a) 0.40

11 0.594 59.4%.
9.50

e = − = =  

(b) C H (1 ) (10,000 J)(1 0.594) 4060 J.Q Q e= − = − =  

EVALUATE: The work output of the engine is H C 10,000 J 4060 J 5940 JW Q Q= − = − =  

 20.7. IDENTIFY: 1

11 .e
rγ −= −  

SET UP: 1.40γ = and 0.650.e =  

EXECUTE: 1

1 1 0.350.e
rγ − = − =  0.40 1

0.350
r =  and 13.8.r =  

EVALUATE: e increases when r increases. 
 20.8. IDENTIFY: 11 γe r −= −  

SET UP: r is the compression ratio. 
EXECUTE: (a) 0.401 (8.8) 0.581,e −= − =  which rounds to 58%. 

(b) 0.401 (9.6) 0.595e −= − =  an increase of 1.4%. 
EVALUATE: An increase in r gives an increase in e. 

 20.9. IDENTIFY and SET UP: For the refrigerator 2.10K =  and 4
C 3.4 10  J.Q = + ×  Use Eq.(20.9) to calculate W  and 

then Eq.(20.2) to calculate H.Q  
(a) EXECUTE: Performance coefficient C /K Q W=  (Eq.20.9) 

4 4
C / 3.40 10  J/2.10 1.62 10  JW Q K= = × = ×  

(b) SET UP: The operation of the device is illustrated in Figure 20.9 

 

EXECUTE: 
C HW Q Q= +  

H CQ W Q= −  
4 4 4

H 1.62 10  J 3.40 10  J 5.02 10  JQ = − × − × = − ×  
(negative because heat goes out of the system) 

Figure 20.9  
EVALUATE H C .Q W Q= +  The heat HQ  delivered to the high temperature reservoir is greater than the heat 
taken in from the low temperature reservoir. 

20.10. IDENTIFY: CQK
W

= and H C .Q Q W= +  

SET UP: The heat removed from the room is CQ and the heat delivered to the hot outside is H .Q  
4(850 J/s)(60.0 s) 5.10 10  J.W = = ×  

EXECUTE: (a) 4 5
C (2.9)(5.10 10  J) 1.48 10  JQ K W= = × = ×  

(b) 5 4 5
H C 1.48 10  J 5.10 10  J 1.99 10  J.Q Q W= + = × + × = ×  

EVALUATE: (c) H C ,Q Q W= +  so H C .Q Q>  
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20.11. IDENTIFY and SET UP: Apply Eq.(20.2) to the cycle and calculate W  and then / .P W t=  Section 20.4 shows 
that EER (3.413) .K=  
(a) The operation of the device is illustrated in Figure 20.11. 

 

EXECUTE: 
4

C 9.80 10  JQ = + ×  
5

H 1.44 10  JQ = − ×  

Figure 20.11  
4 5 4

C H 9.80 10  J 1.44 10  J 4.60 10  JW Q Q= + = + × − × = − ×  
4/ 4.60 10  J/60.0 s 767 WP W t= = − × = −  

(b) EER (3.413)K=  
4 4

C / 9.80 10  J/4.60 10  J 2.13K Q W= = × × =  
EER (3.413)(2.13) 7.27= =  
EVALUATE: W negative means power is consumed, not produced, by the device. 

H C .Q W Q= +  

20.12. IDENTIFY: H C .Q Q W= +  C .
Q

K
W

=  

SET UP: For water, w 4190 J/kg Kc = ⋅  and 5
f 3.34 10  J/kg.L = ×  For ice, ice 2010 J/kg K.c = ⋅  

EXECUTE: (a) ice ice f w w.Q mc T mL mc T= Δ − + Δ  
5 5(1.80 kg)([2010 J/kg K][ 5.0 C ] 3.34 10  J/kg [4190 J/kg K][ 25.0 C ]) 8.08 10  JQ = ⋅ − − × + ⋅ − = − ×° °

58.08 10  J.Q = − ×  Q is negative for the water since heat is removed from it. 

(b) 5
C 8.08 10  J.Q = ×  

5
C 58.08 10  J 3.37 10  J.

2.40
Q

W
K

×
= = = ×  

(c) 5 5 6
H 8.08 10  J 3.37 10  J 1.14 10  J.Q = × + × = ×  

EVALUATE: For this device, C 0Q >  and H 0.Q <  More heat is rejected to the room than is removed from the 
water. 

20.13. IDENTIFY: Use Eq.(20.2) to calculate .W  Since it is a Carnot device we can use Eq.(20.13) to relate the heat 
flows out of the reservoirs. The reservoir temperatures can be used in Eq.(20.14) to calculate e. 
(a) SET UP: The operation of the device is sketched in Figure 20.13. 

 

EXECUTE:  
C HW Q Q= +  
335 J 550 J 215 JW = − + =  

Figure 20.13  

(b) For a Carnot cycle, C C

H H

Q T
Q T

=  (Eq.20.13) 

C
C H

H

335 J620 K 378 K
550 J

Q
T T

Q
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

(c) C H(Carnot) 1 / 1 378 K/620 K 0.390 39.0%e T T= − = − = =  
EVALUATE: We could use the underlying definition of e (Eq.20.4): 

H/ (215 J)/(550 J) 39%,e W Q= = =  which checks. 
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20.14. IDENTIFY: H C .W Q Q= −  C 0,Q <  H 0.Q >  
H

.We
Q

=  For a Carnot cycle, C C

H H

.Q T
Q T

= −  

SET UP: C 300 K,T =  H 520 K.T =  3
H 6.45 10  J.Q = ×  

EXECUTE: (a) 3 3C
C H

H

300 K(6.45 10  J) 3.72 10  J.
520 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − × = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) 3 3 3
H C 6.45 10  J 3.72 10  J 2.73 10  JW Q Q= − = × − × = ×  

(c) 
3

3
H

2.73 10  J 0.423 42.3%.
6.45 10  J

We
Q

×
= = = =

×
 

EVALUATE: We can verify that C H1 /e T T= −  also gives 42.3%.e =  

20.15. IDENTIFY: 
H

We
Q

= for any engine. For the Carnot cycle, C C

H H

.Q T
Q T

= −  

SET UP: C 20.0 C 273.15 K 293.15 KT = + =°  

EXECUTE: (a) 
4

4
H

2.5 10  J 4.24 10  J
0.59

WQ
e

×
= = = ×  

(b) H CW Q Q= +  so 4 4 4
C H 2.5 10  J 4.24 10  J 1.74 10  J.Q W Q= − = × − × = − ×  

4
H

H C 4
C

4.24 10  J(293.15 K) 714 K 441 C.
1.74 10  J

QT T
Q

⎛ ⎞×
= − = − = =⎜ ⎟− ×⎝ ⎠

°  

EVALUATE: For a heat engine, 0,W >  H 0Q > and C 0.Q <  
20.16. IDENTIFY and SET UP: The device is a Carnot refrigerator. 

We can use Eqs.(20.2) and (20.13). 
(a) The operation of the device is sketched in Figure 20.16. 

 

H 24.0 C 297 KT = ° =  

C 0.0 C 273 KT = ° =  

Figure 20.16  
The amount of heat taken out of the water to make the liquid solid→  phase change is 

3 7
f (85.0 kg)(334 10  J/kg) 2.84 10  J.Q mL= − = − × = − ×  This amount of heat must go into the working substance of 

the refrigerator, so 7
C 2.84 10  J.Q = + ×  For Carnot cycle C H C H/ /Q Q T T=  

EXECUTE: 7 7
H C H C( / ) 2.84 10  J(297 K/273 K) 3.09 10  JQ Q T T= = × = ×  

(b) 7 7 6
C H 2.84 10  J 3.09 10  J 2.5 10  JW Q Q= + = + × − × = − ×  

EVALUATE: W is negative because this much energy must be supplied to the refrigerator rather than obtained 
from it. Note that in Eq.(20.13) we must use Kelvin temperatures. 

20.17. IDENTIFY: H C .Q W Q= +  H 0,Q <  C 0.Q >  C .
Q

K
W

=  For a Carnot cycle, C C

H H

.Q T
Q T

= −  

SET UP: C 270 K,T =  H 320 K.T =  C 415 J.Q =  

EXECUTE: (a) H
H C

C

320 K (415 J) 492 J.
270 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) For one cycle, H C 492 J 415 J 77 J.W Q Q= − = − =  (165)(77 J) 212 W.
60 s

P = =  

(c) C 415 J 5.4.
77 J

Q
K

W
= = =  

EVALUATE: The amount of heat energy HQ delivered to the high-temperature reservoir is greater than the 

amount of heat energy CQ  removed from the low-temperature reservoir. 
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20.18. IDENTIFY: .H CW Q Q= −  For a Carnot cycle, C C

H H

,Q T
Q T

= −  where the temperatures must be in kelvins. 

SET UP: 10.0 C 263.15 K,− =°  25.0 C 298.15 K,=°  0.0 C 273.15 K=°  and 25.0 C 248.15 K.− =°  
EXECUTE: (a) The heat is discarded at a higher temperature, and a refrigerator is required. H C H C( / )Q Q T T=  

and 3
C H C| | = | | (( ) 1) (5.00 10  J)((298.15 K 263.15 K ) 1) 665 J.W Q T T − = × − =  

(b) Again, the device is a refrigerator, and 3| | = (5.00 10  J)((273.15 K / 263.15 K) 1) 190 J.W × − =  
(c) The device is an engine; the heat is taken from the hot reservoir, and the work done by the engine is 

3| | = (5.00 10  J)(1 (248.15 K 263.15 K)) 285 J.W × − =  
EVALUATE: For a refrigerator work must be supplied to the device. For a heat engine, there is mechanical work 
output from the device. 

20.19. IDENTIFY: The theoretical maximum performance coefficient is C
Carnot

H C

.TK
T T

=
−

 C .
Q

K
W

=  CQ is the heat 

removed from the water to convert it to ice. For the water, w f .Q mc T mL= Δ +  

SET UP: C 5.0 C 268 K.T = − =°  H 20.0 C 293 K.T = =°  w 4190 J/kg Kc = ⋅ and 3
f 334 10  J/kg.L = ×  

EXECUTE: (a) In one year the freezer operates (5 h/day)(365 days) 1825 h.=  
730 kWh 0.400 kW 400 W.
1825 h

P = = =  

(b) Carnot
268 K =10.7

293 K 268 K
K =

−
 

(c) 6(400 W)(3600 s) 1.44 10  J.W Pt= = = ×  7
C 1.54 10  J.Q K W= = ×  w fQ mc T mL= Δ + gives 

7
C

3
w f

1.54 10  J 36.9 kg.
(4190 J/kg K)(20.0 K) 334 10  J/kg

Q
m

c T L
×

= = =
Δ + ⋅ + ×

 

EVALUATE: For any actual device, Carnot ,K K<  CQ is less than we calculated and the freezer makes less ice in 
one hour than the mass we calculated in part (c). 

20.20. IDENTIFY: The total work that must be done is tot .W mg y= Δ  H C .W Q Q= −  H 0,Q >  0W >  and C 0.Q <  For a 

Carnot cycle, C C

H H

,Q T
Q T

= −  

SET UP: C 373 K,T =  H 773 K.T =  H 250 J.Q =  

EXECUTE: C
C H

H

373 K(250 J) 121 J.
773 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 250 J 121 J 129 J.W = − =  This is the work done in 

one cycle. 2 5
tot (500 kg)(9.80 m/s )(100 m) 4.90 10  J.W = = ×  The number of cycles required is 

5
3tot 4.90 10  J 3.80 10  cycles.

129 J/cycle
W
W

×
= = ×  

EVALUATE: In C C

H H

,Q T
Q T

= −  the temperatures must be in kelvins. 

20.21. IDENTIFY: C

H H

1 .W Qe
Q Q

= = −  For a Carnot cycle, C C

H H

Q T
Q T

= − and C

H

1 .Te
T

= −  

SET UP: H 800 K.T =  C 3000 J.Q = −  
EXECUTE: For a heat engine, ( ) ( )H C / 1 ( 3000 J) 1 0.600 7500 J,Q Q e= − − = − − − =  and then 

H (0.600)(7500 J) 4500 J.W eQ= = =  
EVALUATE: This does not make use of the given value of H.T  If HT  is used, 
then ( ) ( )( )C H 1 800 K 1 0.600 320 KT T e= − = − = H C H Cand / ,Q Q T T= − which gives the same result. 

20.22. IDENTIFY: C H.W Q Q= +  For a Carnot cycle, C C

H H

.Q T
Q T

= −  For the ice to liquid water phase transition, f .Q mL=  

SET UP: For water, 3
f 334 10  J/kgL = ×  
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EXECUTE: ( )( )3 4
C f 0.0400 kg 334 10  J/kg 1.336 10  J.Q mL= − = − × = − ×  C C

H H

Q T
Q T

= − gives 

( ) ( ) ( ) ( )4 4
H H C C 1.336 10  J 373.15 K 273.15 K 1.825 10  J.Q T T Q= − = − − × = + ×⎡ ⎤⎣ ⎦  3

C H 4.89 10  J.W Q Q= + = ×  

EVALUATE: For a heat engine, CQ is negative and HQ is positive. The heat that comes out of the engine 
( 0)Q < goes into the ice ( 0Q > ). 

20.23. IDENTIFY: The power output is .WP
t

=  The theoretical maximum efficiency is C
Carnot

H

1 .Te
T

= −  
H

.We
Q

=  

SET UP: 4
H 1.50 10  J.Q = ×  C 350 K.T =  H 650 K.T =  1 hp 746 W.=  

EXECUTE: C
Carnot

H

350 K1 1 0.4615.
650 K

Te
T

= − = − =  4 3
H (0.4615)(1.50 10  J) 6.923 10  J;W eQ= = × = ×  this is the 

work output in one cycle. 
3

4(240)(6.923 10  J) 2.77 10  W 37.1 hp.
60.0 s

WP
t

×
= = = × =  

EVALUATE: We could also use C C

H H

Q T
Q T

= − to calculate 4 3C
C H

H

350 K (1.50 10  J) 8.08 10  J.
650 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − × = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Then 3
C H 6.92 10  J,W Q Q= + = ×  the same as previously calculated. 

20.24. IDENTIFY and SET UP: C
Carnot

H

1 .Te
T

= −  C
Carnot

H C

.TK
T T

=
−

 

EXECUTE: (a) C H (1 ).T T e= −  H

H H

(1 ) 1 .
(1 )

T e eK
T T e e

− −
= =

− −
 

EVALUATE: (b) When 1,e→  0.K →  When 0,e→  .K → ∞  
1e→  when C H .Q Q<<  CQ  is small in this limit. That is good for an engine since CQ  is wasted. But it is bad 

for a refrigerator since CQ  is what is useful. 0e→  when C HQ Q→  and W  is very small. That is bad for an 
engine but good for a refrigerator. 

20.25. IDENTIFY: QS
T

Δ = for each object, where T must be in kelvins. The temperature of each object remains constant. 

SET UP: For water, 5
f 3.34 10  J/kg.L = ×  

EXECUTE: (a) The heat flow into the ice is 5 5
f (0.350 kg)(3.34 10  J/kg) 1.17 10  J.Q mL= = × = ×  The heat flow 

occurs at 273 K,T =  so 
51.17 10  J 429 J/K.

273 K
QS
T

×
Δ = = =  Q is positive and SΔ  is positive. 

(b) 51.17 10  JQ = − ×  flows out of the heat source, at 298 K.T =  
51.17 10  J 393 J/K.

298 K
QS
T

− ×
Δ = = = −  Q is 

negative and SΔ  is negative. 
(c) tot 429 J/K ( 393 J/K) 36 J/K.SΔ = + − = +  
EVALUATE: For the total isolated system, 0SΔ >  and the process is irreversible. 

20.26. IDENTIFY: Apply system 0Q = to calculate the final temperature. .Q mc T= Δ  Example 20.6 shows that 

2 1ln( / )S mc T TΔ = when an object undergoes a temperature change. 
SET UP: For water 4190 J/kg K.c = ⋅  Boiling water has 100.0 C 373 K.T = =°  
EXECUTE: (a) The heat transfer between 100 C°  water and 30 C° water occurs over a finite temperature 
difference and the process is irreversible. 
(b) 2 2(270 kg) ( 30.0 C) (5.00 kg) ( 100 C) 0.c T c T− + − =° °  2 31.27 C 304.42 K.T = =°  

(c) 304.42 K 304.42 K(270 kg)(4190 J/kg K)ln (5.00 kg)(4190 J/kg K)ln .
303.15 K 373.15 K

S ⎛ ⎞ ⎛ ⎞Δ = ⋅ + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

4730 J/K ( 4265 J/K) 470 J/K.SΔ = + − = +  
EVALUATE: system 0,SΔ >  as it should for an irreversible process. 

20.27. IDENTIFY: Both the ice and the room are at a constant temperature, so .QS
T

Δ =  For the melting phase transition, 

f .Q mL=  Conservation of energy requires that the quantity of heat that goes into the ice is the amount of heat that 
comes out of the room. 
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SET UP: For ice, 3
f 334 10  J/kg.L = ×  When heat flows into an object, 0,Q >  and when heat flows out of an 

object, 0.Q <  
EXECUTE: (a) Irreversible because heat will not spontaneously flow out of 15 kg of water into a warm room to 
freeze the water. 

(b) 
3 3

f f
ice room

ice room

(15.0 kg)(334 10  J/kg) (15.0 kg)(334 10  J/kg) .
273 K 293 K

mL mLS S S
T T

− × − ×
Δ = Δ + Δ = + = +  1250 J/K.SΔ = +  

EVALUATE: This result is consistent with the answer in (a) because 0SΔ > for irreversible processes. 
20.28. IDENTIFY: Q mc T= Δ for the water. Example 20.6 shows that 2 1ln( / )S mc T TΔ = when an object undergoes a 

temperature change. /S Q TΔ = for an isothermal process. 
SET UP: For water, 4190 J/kg K.c = ⋅  85.0 C 358.2 K.=°  20.0 C 293.2 K.=°  

EXECUTE: (a) 2

1

293.2 Kln (0.250 kg)(4190 J/kg K)ln 210 J/K.
358.2 K

TS mc
T

⎛ ⎞ ⎛ ⎞Δ = = ⋅ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 Heat comes out of the 

water and its entropy decreases. 
(b) 4(0.250 kg)(4190 J/kg K)( 65.0 K) 6.81 10  J.Q mc T= Δ = ⋅ − = − ×  The amount of heat that goes into the air is 

46.81 10  J.+ ×  For the air, 
46.81 10  J 232 J/K.

293.1 K
QS
T

+ ×
Δ = = = +  system 210 J/K 232 J/K 22 J/K.SΔ = − + = +  

EVALUATE: system 0SΔ > and the process is irreversible. 

20.29. IDENTIFY: The process is at constant temperature, so .QS
T

Δ =  .U Q WΔ = −  

SET UP: For an isothermal process of an ideal gas, 0UΔ =  and .Q W=  For a compression, 0VΔ <  and 0.W <  

EXECUTE: 1850 J.Q W= = −  1850 J 6.31 J/K.
293 K

S −
Δ = = −  

EVALUATE: The entropy change of the gas is negative. Heat must be removed from the gas during the 
compression to keep its temperature constant and therefore the gas is not an isolated system. 

20.30. IDENTIFY and SET UP: The initial and final states are at the same temperature, at the normal boiling point of 
4.216 K. Calculate the entropy change for the irreversible process by considering a reversible isothermal process 
that connects the same two states, since SΔ  is path independent and depends only on the initial and final states. 
For the reversible isothermal process we can use Eq.(20.18). 
The heat flow for the helium is v ,Q mL= −  negative since in condensation heat flows out of the helium. The heat of 

vaporization vL  is given in Table 17.4 and is 3
v 20.9 10  J/kg.L = ×  

EXECUTE: 3
v (0.130 kg)(20.9 10  J/kg) 2717 JQ mL= − = − × = −  

/ 2717 J/4.216 K 644 J/K.S Q TΔ = = − = −  
EVALUATE: The system we considered is the 0.130 kg of helium; SΔ  is the entropy change of the helium. This 
is not an isolated system since heat must flow out of it into some other material. Our result that 0SΔ <  doesn�t 
violate the 2nd law since it is not an isolated system. The material that receives the heat that flows out of the 
helium would have a positive entropy change and the total entropy change would be positive. 

20.31. IDENTIFY: Each phase transition occurs at constant temperature and .QS
T

Δ =  v.Q mL=  

SET UP: For vaporization of water, 3
v 2256 10  J/kg.L = ×  

EXECUTE: (a) 
3

3v (1.00 kg)(2256 10  J/kg) 6.05 10  J/K.(373.15 K)
mLQS T T

×Δ = = = = ×  Note that this is the change of 

entropy of the water as it changes to steam. 
(b) The magnitude of the entropy change is roughly five times the value found in Example 20.5. 
EVALUATE: Water is less ordered (more random) than ice, but water is far less random than steam; a 
consideration of the density changes indicates why this should be so. 

20.32. IDENTIFY: The phase transition occurs at constant temperature and .QS
T

Δ =  v.Q mL=  The mass of one mole is 

the molecular mass M. 
SET UP: For water, 3

v 2256 10  J/kg.L = ×  For 2N ,  328.0 10  kg/mol,M −= ×  the boiling point is 77.34 K and 
3

v 201 10  J/kg.L = ×  For silver (Ag), 3107.9 10  kg/mol,M −= ×  the boiling point is 2466 K and 3
v 2336 10  J/kg.L = ×  

For mercury (Hg), 3200.6 10  kg/mol,M −= ×  the boiling point is 630 K and 3
v 272 10  J/kg.L = ×  
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EXECUTE: (a) 
3 3

v (18.0 10 kg)(2256 10 J kg) 109 J K.
(373.15 K)

Q mLS
T T

−× ×
Δ = = = =  

(b) 
3 3

2
(28.0 10  kg)(201 10  J kg)N : 72.8 J K.

(77.34 K)

−× ×
=  

3 3(107.9 10  kg)(2336 10  J/kg)Ag: 102.2 J/K.
(2466 K)

−× ×
=  

3 3(200.6 10  kg)(272 10  J/kg)Hg: 86.6 J/K
(630 K)

−× ×
=  

(c) The results are the same order or magnitude, all around 100 J/K.  
EVALUATE: The entropy change is a measure of the increase in randomness when a certain number (one mole) 
goes from the liquid to the vapor state. The entropy per particle for any substance in a vapor state is expected to be 
roughly the same, and since the randomness is much higher in the vapor state (see Exercise 20.31), the entropy 
change per molecule is roughly the same for these substances. 

20.33. IDENTIFY: During the phase transition the gallium is at a constant temperature equal to the melting point of 
gallium. Your hand is at a constant temperature of 98.6 F 37.0 C 310.1 K.= =° °  Heat fQ mL= flows out of your 

hand and into the gallium. For heat flow at constant temperature, .QS
T

Δ =  

SET UP: For gallium, 4
f 8.04 10  J/kgL = × and the melting point is 29.8 C 303.0 K.=°  

EXECUTE: 3 4 3
f (25.0 10  kg)(8.04 10  J/kg) 2.01 10  J.Q mL −= = × × = ×  For your hand, 

32.01 10  J 6.48 J/K.
310.1 K

QS
T

− ×
Δ = = = −  Heat flows out of your hand, Q is negative, and SΔ is negative. For the 

gallium, .
303.0 K
QSΔ =  The temperature of the gallium is less than that of your hand and Q  is the same, so the 

magnitude of the entropy change of the gallium is greater than the magnitude of the entropy change of your hand. 
EVALUATE: For the gallium, 0,SΔ >  so system 0SΔ >  and the process is irreversible. 

20.34. IDENTIFY: Apply Eq.(20.23) and follow the procedure used in Example 20.11. 
SET UP: After the partition is punctured each molecule has equal probability of being on each side of the box. 
The probability of two independent events occurring simultaneously is the product of the probabilities of each 
separate event. 
EXECUTE: (a) On the average, each half of the box will contain half of each type of molecule, 250 of nitrogen 
and 50 of oxygen. 
(b) See Example 20.11. The total change in entropy is 

23 21
1 2 1 2ln(2) ln(2) ( )  ln(2) (600)(1.381 10 J K) ln(2) 5.74 10 J K.S kN kN N N k − −Δ = + = + = × = ×  

(c) The probability is 500 100 600 181(1/2) (1/2) (1/2) 2.4 10 ,−× = = ×  and is not likely to happen. The numerical result for 
part (c) above may not be obtained directly on some standard calculators. For such calculators, the result may be 
found by taking the log base ten of 0.5 and multiplying by 600, then adding 181 and then finding 10 to the power 
of the sum. The result is then 181 0.87 18110 10 2.4 10 .− −× = ×  
EVALUATE: The contents of the box constitutes an isolated system. 0SΔ >  and the process is irreversible. 

20.35. (a) IDENTIFY and SET UP: The velocity distribution of Eq.(18.32) depends only on T, so in an isothermal process 
it does not change. 
(b) EXECUTE: Calculate the change in the number of available microscopic states and apply Eq.(20.23). 
Following the reasoning of Example 20.11, the number of possible positions available to each molecule is altered 
by a factor of 3 (becomes larger). Hence the number of microscopic states the gas occupies at volume 3V is 

2 1(3) ,Nw w=  where N is the number of molecules and 1w  is the number of possible microscopic states at the start 
of the process, where the volume is V. Then, by Eq.(20.23), 

2 1 Aln( / ) ln(3) ln(3) ln(3) ln(3)NS k w w k Nk nN k nRΔ = = = = =  
(2.00 mol)(8.3145 J/mol K)ln(3) 18.3 J/KSΔ = ⋅ = +  

(c) IDENTIFY and SET UP: For an isothermal reversible process / .S Q TΔ =  
EXECUTE: Calculate W and then use the first law to calculate Q. 

0TΔ =  implies 0,UΔ =  since system is an ideal gas. 
Then by ,U Q WΔ = −  .Q W=  

For an isothermal process, 2 2

1 1
2 1 ( / ) ln( / )

V V

V V
W p dV nRT V dV nRT V V= = =∫ ∫  

Thus 2 1ln( / )Q nRT V V=  and 2 1/ ln( / )S Q T nR V VΔ = =  

1 1(2.00 mol)(8.3145 J/mol K)ln(3 / ) 18.3 J/KS V VΔ = ⋅ = +  
EVALUATE: This is the same result as obtained in part (b). 



The Second Law of Thermodynamics  20-9 

20.36. IDENTIFY: Example 20.8 shows that for a free expansion, 2 1ln( / ).S nR V VΔ =  

SET UP: 3 3
1 2.40 L 2.40 10  mV −= = ×  

EXECUTE: 
3

3 3

425 m(0.100 mol)(8.314 J/mol K)ln 10.0 J/K
2.40 10  m  

S −

⎛ ⎞
Δ = ⋅ =⎜ ⎟×⎝ ⎠

 

EVALUATE: system 0SΔ > and the free expansion is irreversible. 

20.37. IDENTIFY: C
Carnot

H

1 .Te
T

= −  H C.W Q Q= +  
H

.We
Q

=  

SET UP: ;pV nRT=  the 300 K isotherm lies below the 400 K isotherm in the pV-diagram. 

EXECUTE: (a) Carnot
400 K1 0.200 20.0%.
500 K

e = − = =  

(b) H
2000 J 10,000 J.
0.200

WQ
e

= = =  C H 10,000 J 2000 J 8000 J.Q Q W= − = − =  

(c) The 500 K and 400 K isotherms and the Carnot cycle operating between those isotherms are sketched in 
Figure 20.37. 
(d) The 300 K isotherm and the Carnot cycle operating between the 500 K and 300 K isotherms are also sketched 
in Figure 20.37. 
(e) The cycle with C 300 KT = encloses more area than the cycle with C 400 K.T =  
(f) Less work is done on the gas during the compression at lower temperature, so less heat is ejected to keep the 
internal energy and temperature constant. 
EVALUATE: For C 300 K,T =  Carnot 0.400.e =  H (0.400)(10,000 J) 4000 J.W eQ= = =  C 6000 J.Q =  

 
Figure 20.37 

20.38. IDENTIFY: C H.W Q Q= +  Since it is a Carnot cycle, C C

H H

.Q T
Q T

= −  The heat required to melt the ice is f .Q mL=  

SET UP: For water, 3
f 334 10  J/kg.L = ×  H 0,Q >  C 0.Q <  C f .Q mL= −  H 527 C 800.15 K.T = =°  

EXECUTE: (a) H 400 J,  300 J.Q W= + = +  C H 100 J.Q W Q= − = −  

[ ]C H C H( ) (800.15 K) ( 100 J) (400 J) 200 K 73 CT T Q Q= − = − − = + = − °  

(b) The total CQ required is ( )( )3 6
f 10.0 kg 334 10  J kg 3.34 10  J.mL− = − × = − ×  CQ for one cycle is 100 J,−  so 

the number of cycles required is 
6

43.34 10  J 3.34 10  cycles.
100 J cycle

− ×
= ×

−
 

EVALUATE: The results depend only on the maximum temperature of the gas, not on the number of moles or the 
maximum pressure. 

20.39. IDENTIFY: C
Carnot

H

1 ,Te
T

= −  where CT and HT must be in kelvins. 

SET UP: C 90.0 C 183 K.T = − =°  

EXECUTE: (a) C
H .

1
TT
e

=
−

 For 0.400,e =  H
183 K 305 K.

1 0.400
T = =

−
 For 0.450,e =  H

183 K 333 K.
1 0.450

T = =
−

 HT  

must be increased 28 K 28 C= °.  
(b) C H(1 ) (1 0.450)(305 K) 168 K.T e T= − = − =  CT must be decreased 15 K 15 C= °.  
EVALUATE: A Kelvin degree is the same size as a Celsius degree, so a temperature change TΔ has the same 
numerical value whether it is expressed in K or in C°.  
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20.40. IDENTIFY: Use the ideal gas law to calculate p and V for each state. Use the first law and specific expressions for 
Q, W, and UΔ  for each process. Use Eq.(20.4) to calculate e. HQ  is the net heat flow into the gas. 
SET UP: 1.40γ =  

/( 1) 20.79 J/mol K;VC R γ= − = ⋅  29.10 J/mol K.p VC C R= + = ⋅  The cycle is sketched in Figure 20.40. 

 

1 300 KT =  

2 600 KT =  

3 492 KT =  

Figure 20.40  
EXECUTE: (a) point 1 

5
1 1.00 atm 1.013 10  Pap = = ×  (given); ;pV nRT=  

3 31
1 5

1

(0.350 mol)(8.3145 J/mol K)(300 K) 8.62 10  m
1.013 10  Pa

nRTV
p

−⋅
= = = ×

×
 

point 2 
process 1 2→  at constant volume so 3 3

2 1 8.62 10  mV V −= = ×  
pV nRT=  and n, R, V constant implies 1 1 2 2/ /p T p T=  

5
2 1 2 1( / ) (1.00 atm)(600 K/300 K) 2.00 atm 2.03 10 Pap p T T= = = = ×  

point 3 
Consider the process 3 1,→  since it is simpler than 2 3.→  
Process 3 1→  is at constant pressure so 5

3 1 1.00 atm 1.013 10  Pap p= = = ×  
pV nRT=  and n, R, p constant implies 1 1 3 3/ /V T V T=  

3 3 3 3
3 1 3 1( / ) (8.62 10  m )(492 K/300 K) 14.1 10  mV V T T − −= = × = ×  

(b) process 1 2→  
constant volume ( 0)VΔ =  

(0.350 mol)(20.79 J/mol K)(600 K 300 K) 2180 JVQ nC T= Δ = ⋅ − =  
0VΔ =  and 0.W =  Then 2180 JU Q WΔ = − =  

process 2 3→  
Adiabatic means 0.Q =  

VU nC TΔ = Δ  (any process), so 
(0.350 mol)(20.79 J/mol K)(492 K 600 K) 780 JUΔ = ⋅ − = −  

Then U Q WΔ = −  gives 780 J.W Q U= − Δ = +  (It is correct for W to be positive since VΔ  is positive.) 
process 3 1→  
For constant pressure 

5 3 3 3 3(1.013 10  Pa)(8.62 10  m 14.1 10  m ) 560 JW p V − −= Δ = × × − × = −  
or (0.350 mol)(8.3145 J/mol K)(300 K 492 K) 560 J,W nR T= Δ = ⋅ − = −  which checks. (It is correct for W to be 
negative, since VΔ  is negative for this process.) 

(0.350 mol)(29.10 J/mol K)(300 K 492 K) 1960 JpQ nC T= Δ = ⋅ − = −  
1960 J ( 560 K) 1400 JU Q WΔ = − = − − − = −  

or (0.350 mol)(20.79 J/mol K)(300 K 492 K) 1400 J,VU nC TΔ = Δ = ⋅ − = −  which checks 
(c) net 1 2 2 3 3 1 0 780 J 560 J 220 JW W W W→ → →= + + = + − = +  
(d) net 1 2 2 3 3 1 2180 J 0 1960 J 220 JQ Q Q Q→ → →= + + = + − = +  

(e) 
H

work output 220 J 0.101 10.1%.
heat energy input 2180 J

We
Q

= = = = =  

C H(Carnot) 1 / 1 300 K/600 K 0.500.e T T= − = − =  
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EVALUATE: For a cycle 0,UΔ =  so by U Q WΔ = −  it must be that net netQ W=  for a cycle. We can also check 
that net 0:UΔ =  net 1 2 2 3 3 1 2180 J 1050 J 1130 J 0U U U U→ → →Δ = Δ + Δ + Δ = − − =  

(Carnot),e e<  as it must. 
20.41. IDENTIFY: ,pV nRT=  so pV is constant when T is constant. Use the appropriate expression to calculate Q and 

W for each process in the cycle. 
H

.We
Q

=  

SET UP: For an ideal diatomic gas, 5
2VC R=  and 7

2 .pC R=  

EXECUTE: (a) 32.0 10  J.a ap V = ×  32.0 10  J.b bp V = ×  pV nRT= so a a b bp V p V= says .a bT T=  
(b) For an isothermal process, 2 1ln( / ).Q W nRT V V= =  ab is a compression, with ,b aV V<  so 0Q < and heat is 

rejected. bc is at constant pressure, so .p
p

C
Q nC T p V

R
= Δ = Δ  VΔ is positive, so 0Q > and heat is absorbed. cd is 

at constant volume, so .V
V

CQ nC T V p
R

= Δ = Δ  pΔ is negative, so 0Q < and heat is rejected. 

(c) 
32.0 10  J 241 K.

(1.00)(8.314 J/mol K)
a a

a
p VT
nR

×
= = =

⋅
 241 K.b b
b a

p VT T
nR

= = =  

34.0 10  J 481 K.
(1.00)(8.314 J/mol K)

c c
c

p VT
nR

×
= = =

⋅
 

(d) 
3

3
3

0.0050 mln (1.00 mol)(8.314 J/mol K)(241 K)ln 1.39 10  J.
0.010 m

b
ab

a

VQ nRT
V

⎛ ⎞ ⎛ ⎞
= = ⋅ = − ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

37
2(1.00)( )(8.314 J/mol K)(241 K) 7.01 10  J.bc pQ nC T= Δ = ⋅ = ×  

35
2(1.00)( )(8.314 J/mol K)( 241 K) 5.01 10  J.ca VQ nC T= Δ = ⋅ − = − ×  net 610 J.ab bc caQ Q Q Q= + + =  

net net 610 J.W Q= =  

(e) 3
H

610 J 0.087 8.7%
7.01 10  J

We
Q

= = = =
×

 

EVALUATE: We can calculate W for each process in the cycle. 31.39 10  J.ab abW Q= = − ×  
5 3 3(4.0 10  Pa)(0.0050 m ) 2.00 10  J.bcW p V= Δ = × = ×  0.caW =  net 610 J,ab bc caW W W W= + + =  which does equal 

net .Q  
20.42. (a) IDENTIFY and SET UP: Combine Eqs.(20.13) and (20.2) to eliminate CQ  and obtain an expression for HQ  in 

terms of W, C ,T  and H.T  
1.00 J,W =  C 268.15 K,T =  H 290.15 KT =  

For the heat pump C 0Q >  and H 0Q <  

EXECUTE: C H;W Q Q= +  combining this with C C

H H

Q T
Q T

= −  gives H
C H

1.00 J 13.2 J
1 / 1 (268.15/ 290.15)
WQ
T T

= = =
− −

 

(b) Electrical energy is converted directly into heat, so an electrical energy input of 13.2 J would be required. 

(c) EVALUATE: From part (a), H
C H

.
1 /
WQ
T T

=
−

 HQ  decreases as CT  decreases. The heat pump is less efficient as 

the temperature difference through which the heat has to be �pumped� increases. In an engine, heat flows from HT  
to CT  and work is extracted. The engine is more efficient the larger the temperature difference through which the 
heat flows. 

20.43. IDENTIFY: b cT T= and is equal to the maximum temperature. Use the ideal gas law to calculate .aT  Apply the 

appropriate expression to calculate Q for each process. 
H

.We
Q

=  0UΔ =  for a complete cycle and for an 

isothermal process of an ideal gas. 
SET UP: For helium, 3 / 2VC R= and 5 / 2.pC R=  The maximum efficiency is for a Carnot cycle, and 

Carnot C H1 / .e T T= −  
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EXECUTE: (a) in .ab bcQ Q Q= +  out .caQ Q=  max 327 C 600 K.b cT T T= = = ° =  
1 (600 K) 200 K.
3

a a b b a
a b

a b b

p V p V pT T
T T p

= → = = =

3
5

(2 moles)(8.31 J/mol K)(600 K) 0.0332 m .
3.0 10  Pa

b
b b b b

b

nRTp V nRT V
p

⋅
= → = = =

×
 

3 33(0.0332 m ) 0.0997 m .
1

b b c c b
c b a

b c c

p V p V pV V V
T T p

⎛ ⎞= → = = = =⎜ ⎟
⎝ ⎠

 

( ) 33(2 mol) 8.31 J/mol K (400 K) 9.97 10  J
2ab V abQ nC T ⎛ ⎞= Δ = ⋅ = ×⎜ ⎟

⎝ ⎠
 

ln  ln 3.
c c b c

bc bc b bb b
b

nRT VQ W pdV dV nRT nRT
V V

= = = = =∫ ∫  

( ) 4(2.00 mol) 8.31 J/mol K (600 K)ln 3 1.10 10  J.bcQ = ⋅ = ×  4
in 2.10 10  J.ab bcQ Q Q= + = ×  

( ) 4
out

5(2.00 mol) 8.31 J/mol K (400 K) 1.66 10  J.
2ca p caQ Q nC T ⎛ ⎞= = Δ = ⋅ = ×⎜ ⎟

⎝ ⎠
 

(b) 4 4 3
in out0 2.10 10  J 1.66 10  J 4.4 10  J.Q U W W W Q Q= Δ + = + → = − = × − × = ×  

3

in 4

4.4 10  J 0.21 21%.
2.10 10  J

e W Q ×
= = = =

×
 

(c) C
max Carnot

H

200 K1 1 0.67 67%600 K
Te e
T

= = − = − = =  

EVALUATE: The thermal efficiency of this cycle is about one-third of the efficiency of a Carnot cycle that 
operates between the same two temperatures. 

20.44. IDENTIFY: For a Carnot engine, C C

H H

.Q T
Q T

= −  C
Carnot

H

1 .Te
T

= −  H C .W Q Q= −  H 0,Q >  C 0.Q <  .pV nRT=  

SET UP: The work done by the engine each cycle is ,mg yΔ  with 15.0 kgm = and 2.00 m.yΔ =  H 773 K.T =  

H 500 J.Q =  
EXECUTE: (a) The pV diagram is sketched in Figure 20.44. 
(b) 2(15.0 kg)(9.80 m/s )(2.00 m) 294 J.W mg y= Δ = =  C H 500 J 294 J 206 J,Q Q W= − = − =  and C 206 J.Q = −  

C
C H

H

206 J(773 K) 318 K 45 C.
500 J

QT T
Q

⎛ ⎞ −⎛ ⎞= − = − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

°  

(c) C

H

318 K1 1 0.589 58.9%.
773 K

Te
T

= − = − = =  

(d) C 206 J.Q =  
(e) The maximum pressure is for state a. This is also where the volume is a minimum, so 

3 35.00 L 5.00 10  m .aV
−= = ×  H 773 K.aT T= =  6

3 3

(2.00 mol)(8.315 J/mol K)(773 K) 2.57 10  Pa.
5.00 10  m

a
a

a

nRTp
V −

⋅
= = = ×

×
 

EVALUATE: We can verify that 
H

We
Q

= gives the same value for e as calculated in part (c). 

 
Figure 20.44 
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20.45. IDENTIFY: max Carnot C H1 / .e e T T= = −  
H H

/ .
/

W W te
Q Q t

= =  H CW Q Q= +  so C H .W Q Q
t t t

= +  For a temperature change 

.Q mc T= Δ  

SET UP: H 300.15 K,T =  C 279.15 K.T =  For water, 31000 kg/m ,ρ =  so a mass of 1 kg has a volume of 1 L. For 
water, 4190 J/kg K.c = ⋅  

EXECUTE: (a) 279.15 K1 7.0%.300.15 Ke = − =  

(b) H out 210 kW 3.0 MW.0.070
Q P
t e

= = =  C H 3.0 MW 210 kW 2.8 MW.Q Q W
t t t

= − = − =  

(c) 
6

C 5 5/ (2.8 10  W) (3600 s h) 6 10  kg h 6 10  L h.
(4190 J kg K) (4 K)

Q tm
t c T

×
= = = × = ×

Δ ⋅
 

EVALUATE: The efficiency is small since CT and HT don�t differ greatly. 
20.46. IDENTIFY: Use Eq.(20.4) to calculate e. 

SET UP: The cycle is sketched in Figure 20.46. 

 

5 / 2VC R=  
for an ideal gas 7 / 2p VC C R R= + =  

Figure 20.46  
SET UP: Calculate Q and W for each process. 

process 1 2→  
0VΔ =  implies 0W =  
0VΔ =  implies 2 1( )V VQ nC T nC T T= Δ = −  

But pV nRT=  and V constant says 1 1pV nRT=  and 2 2.p V nRT=  
Thus 2 1 2 1( ) ( );p p V nR T T− = −  V p nR TΔ = Δ  (true when V is constant). 
Then 0 0 0 0 0( / ) ( / ) ( / ) (2 ) ( / ) .V V V V VQ nC T nC V p nR C R V p C R V p p C R p V= Δ = Δ = Δ = − =  0;Q >  heat is absorbed by 
the gas.) 

process 2 3→  

0pΔ =  so 3 2 0 0 0 0 0( ) 2 (2 ) 2W p V p V V p V V p V= Δ = − = − =  (W is positive since V increases.) 
0pΔ =  implies 2 1( )p pQ nC T nC T T= Δ = −  

But pV nRT=  and p constant says 1 1pV nRT=  and 2 2.pV nRT=  
Thus 2 1 2 1( ) ( );p V V nR T T− = −  p V nR TΔ = Δ  (true when p is constant). 
Then 0 0 0 0 0( / ) ( / ) ( / )2 (2 ) ( / )2 .p p p p pQ nC T nC p V nR C R p V C R p V V C R p V= Δ = Δ = Δ = − =  ( 0;Q >  heat is absorbed by 
the gas.) 

process 3 4→  
0VΔ =  implies 0W =  
0VΔ =  so 

0 0 0 0 0( / ) ( / )(2 )( 2 ) 2( / )V V V VQ nC T nC V p nR C R V p p C R p V= Δ = Δ = − = −  
( 0Q <  so heat is rejected by the gas.) 

process 4 1→  

0pΔ =  so 1 4 0 0 0 0 0( ) ( 2 )W p V p V V p V V p V= Δ = − = − = −  (W is negative since V decreases) 
0pΔ =  so 0 0 0 0 0( / ) ( / ) ( / ) ( 2 ) ( / )p p p p pQ nC T nC p V nR C R p V C R p V V C R p V= Δ = Δ = Δ = − = −  ( 0Q <  so heat is 

rejected by the gas.) 
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total work performed by the gas during the cycle: 
tot 1 2 2 3 3 4 4 1 0 0 0 0 0 00 2 0W W W W W p V p V p V→ → → →= + + + = + + − =  

(Note that totW  equals the area enclosed by the cycle in the pV-diagram.) 

total heat absorbed by the gas during the cycle H( ):Q  
Heat is absorbed in processes 1 2→  and 2 3.→  

H 1 2 2 3 0 0 0 0 0 0

2
2 p V pV C C CCQ Q Q p V p V p V

R R R→ →

+⎛ ⎞
= + = + = ⎜ ⎟

⎝ ⎠
 

But p VC C R= +  so H 0 0 0 0
2( ) 3 2 .V V VC C R C RQ p V p V
R R

+ + +⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

total heat rejected by the gas during the cycle C( ):Q  
Heat is rejected in processes 3 4→  and 4 1.→  

C 3 4 4 1 0 0 0 0 0 0

2
2 p V pV C C CCQ Q Q p V p V p V
R R R→ →

+⎛ ⎞
= + = − − = −⎜ ⎟

⎝ ⎠
 

But p VC C R= +  so C 0 0 0 0
2 ( ) 3 .V V VC C R C RQ p V p V

R R
+ + +⎛ ⎞= − = −⎜ ⎟

⎝ ⎠
 

efficiency 

( )
0 0

H 0 0

2 .
[3 2 ]/ ( ) 3 2 3(5 /2) 2 19V V

W p V R Re
Q C R R p V C R R R

= = = = =
+ + +

 

0.105 10.5%e = =  

EVALUATE: As a check on the calculations note that C H 0 0 0 0 0 0
3 3 2 ,V VC R C RQ Q p V p V p V W
R R
+ +⎛ ⎞ ⎛ ⎞+ = − + = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

as it should. 

20.47. IDENTIFY: Use .pV nRT=  Apply the expressions for Q and W that apply to each type of process. 
H

.We
Q

=  

SET UP: For 2O ,  20.85 J/mol KVC = ⋅  and 29.17 J/mol K.pC = ⋅  

EXECUTE: (a) 1 2.00 atm,p =  1 4.00 L,V =  1 300 K.T =  

2 2.00 atm.p =  1 2

1 2

.V V
T T

=  2
2 1

1

450 K (4.00 L) 6.00 L.
300 K

TV V
T

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

3 6.00 L.V =  2 3

2 3

.p p
T T

=  3
3 2

2

250 K (2.00 atm) 1.11 atm
450 K

Tp p
T

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

4 4.00 L.V =  3 3 4 4.p V p V=  3
4 3

4

6.00 L(1.11 atm) 1.67 atm.
4.00 L

Vp p
V

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

These processes are shown in Figure 20.47. 

(b) 1 1

1

(2.00 atm)(4.00 L) 0.325 mol
(0.08206 L atm/mol K)(300 K)

pVn
RT

= = =
⋅ ⋅

 

process 1 2:→  (0.325 mol)(8.315 J/mol K)(150 K) 405 J.W p V nR T= Δ = Δ = ⋅ =  
(0.325 mol)(29.17 J/mol K)(150 K) 1422 J.pQ nC T= Δ = ⋅ =  

process 2 3:→  0.W =  (0.325 mol)(20.85 J/mol K)( 200 K) 1355 J.VQ nC T= Δ = ⋅ − = −  

process 3 4:→  0UΔ =  and 4
3

3

4.00 Lln (0.325 mol)(8.315 J/mol K)(250 K)ln 274 J.
6.00 L

VQ W nRT
V

⎛ ⎞ ⎛ ⎞= = = ⋅ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

process 4 1:→  0.W =  (0.325 mol)(20.85 J/mol K)(50 K) 339 J.VQ nC T= Δ = ⋅ =  
(c) 405 J 274 J 131 JW = − =  

(d) 
H

131 J 0.0744 7.44%.
1422 J 339 J

We
Q

= = = =
+

 

C
Carnot

H

250 K1 1 0.444 44.4%;
450 K

Te
T

= − = − = =  Carnote  is much larger. 
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EVALUATE: tot 1422 J ( 1355 J) ( 274 J) 339 J 132 J.Q = + + − + − + =  This is equal to tot ,W  apart from a slight 
difference due to rounding. For a cycle, tot tot ,W Q=  since 0.UΔ =  

 
Figure 20.47 

20.48. IDENTIFY and SET UP: For the constant pressure processes ab and cd calculate W and use the first law to 
calculate Q. Calculate totQ  and use that tot totW Q=  for a cycle. The coefficient of performance is given by 
Eq.(20.9); CQ  is the net heat that goes into the system. The cycle is sketched in Figure 20.48. 

 
Figure 20.48 

EXECUTE: (a) process c d→  
3 3 51657 10  J 1005 10  J 6.52 10  Jd cU U UΔ = − = × − × = ×  

d

c

V

V
W pdV p V= = Δ∫  (since is a constant pressure process) 

3 3 3 4(363 10  Pa)(0.4513 m 0.2202 m ) 8.39 10  JW = × − = + ×  (positive since process is an expansion) 

U Q WΔ = −  so 5 4 56.52 10  J 8.39 10  J 7.36 10  J.Q U W= Δ + = × + × = ×  
(Q positive so heat goes into the coolant) 

(b) process a b→  
3 3 51171 10  J 1969 10  J 7.98 10  Jb aU U UΔ = − = × − × = − ×  

3 3 3 5(2305 10  Pa)(0.00946 m 0.0682 m ) 1.35 10  JW p V= Δ = × − = − ×  
(negative since 0VΔ <  for the process) 

5 5 57.98 10  J 1.35 10  J 9.33 10  JQ U W= Δ + = − × − × = − ×  
(negative so heat comes out of coolant). 
(c) The coolant cannot be treated as an ideal gas, so we can�t calculate W for the adiabatic processes. But 0UΔ =  
(for cycle) so net net .W Q=  

0Q =  for the two adiabatic processes, so 5 5 5
net 7.36 10  J 9.33 10  J 1.97 10  Jcd abQ Q Q= + = × − × = − ×  

Thus 5
net 1.97 10  JW = − ×  (negative since work is done on the coolant, the working substance). 

(d) 5 5
C / ( 7.36 10  J) /( 1.97 10  J) 3.74.K Q W= = + × + × =  

EVALUATE: net 0W <  when the cycle is taken in the counterclockwise direction, as is the case here. 
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20.49. IDENTIFY: Use U Q WΔ = − and the appropriate expressions for Q, W and UΔ for each type of process. 

pV nRT= relates TΔ to p and V values. 
H

,We
Q

=  where HQ is the heat that enters the gas during the cycle. 

SET UP: For a monatomic ideal gas, 5 3
2 2and C .P VC R R= =  

(a) ab: The temperature changes by the same factor as the volume, and so 
5 3 5( ) (2.5)(3.00 10 Pa)(0.300 m ) 2.25 10 J.P

P a a b
CQ nC T p V V
R

= Δ = − = × = ×  

The work p VΔ is the same except for the factor of 55
2 ,  so  0.90 10  J.W = ×  

51.35 10  J.U Q WΔ = − = ×  
bc: The temperature now changes in proportion to the pressure change, and 

3 5 3 5
2 ( ) (1.5)( 2.00 10  Pa)(0.800 m ) 2.40 10  J,c b bQ p p V= − = − × = − ×  and the work is zero 

5( 0). 2.40 10  J.V U Q WΔ = Δ = − = − ×  
ca: The easiest way to do this is to find the work done first; W will be the negative of area in the p-V plane 
bounded by the line representing the process ca and the verticals from points a and c. The area of this trapezoid is 

5 5 3 3 41
2 (3.00 10  Pa 1.00 10  Pa)(0.800 m 0.500 m ) 6.00 10  J× + × − = ×  and so the work is 50.60 10  J.− ×  UΔ  must 

be 51.05 10  J (since 0U× Δ =  for the cycle, anticipating part (b)), and so Q must be 50.45 10  J.U WΔ + = ×  

(b) See above; 50.30 10  J,  0.Q W U= = × Δ =  

(c) The heat added, during process ab and ca, is 2.25 5 510  J 0.45 10  J× + ×  52.70 10  J= × and the efficiency is 
5

5
H

0.30 10 0.111 11.1%.
2.70 10

We
Q

×= = = =
×

 

EVALUATE: For any cycle, 0UΔ =  and .Q W=  
20.50. IDENTIFY: Use the appropriate expressions for Q, W and UΔ for each process. H/e W Q= and Carnot C H1 / .e T T= −  

SET UP: For this cycle, H 2T T= and C 1T T=  
EXECUTE: (a) ab: For the isothermal process, 0TΔ =  and 0.UΔ =  

1 1 1 ln( ) ln(1/ ) ln( )b aW nRT V V nRT r nRT r= = = −  and 1 ln( ).Q W nRT r= = −  
bc: For the isochoric process, 0VΔ =  and 0.W =  2 1( ).V VQ U nC T nC T T= Δ = Δ = −  
cd: As in the process ab, 20 and ln( ).U W Q nRT rΔ = = =  
da: As in process bc, 0 and 0;V WΔ = =  1 2( ).VU Q nC T TΔ = = −  
(b) The values of Q for the processes are the negatives of each other. 
(c) The net work for one cycle is net 2 1( )ln( ),W nR T T r= − and the heat added (neglecting the heat exchanged during 
the isochoric expansion and compression, as mentioned in part (b)) is cd 2 ln( ),Q nRT r=  and the efficiency is 

net
1 21 ( ).

cd

We T T
Q

= = −  This is the same as the efficiency of a Carnot-cycle engine operating between the two 

temperatures. 
EVALUATE: For a Carnot cycle two steps in the cycle are isothermal and two are adiabatic and all the heat flow 
occurs in the isothermal processes. For the Stirling cycle all the heat flow is also in the isothermal steps, since the 
net heat flow in the two constant volume steps is zero. 

20.51. IDENTIFY: The efficiency of the composite engine is 1 2
12

H1

,W We
Q
+

=  where H1Q  is the heat input to the first engine 

and 1W and 2W are the work outputs of the two engines. For any heat engine, C H ,W Q Q= +  and for a Carnot engine, 

low low

high high

,Q T
Q T

= −  where lowQ and highQ are the heat flows at the two reservoirs that have temperatures lowT and high .T  

SET UP: high,2 low,1.Q Q= −  low,1 ,T T ′=  high,1 H ,T T=  low,2 CT T=  and high,2 .T T ′=  

EXECUTE: high,1 low,1 high,2 low,21 2
12

H1 high,1

.
Q Q Q QW We

Q Q
+ + ++

= =  Since high,2 low,1,Q Q= −  this reduces to low,2
12

high,1

1 .
Q

e
Q

= +  

low,2 low,1C C C
low,2 high,2 low,1 high,1 high,1

high,2 high,1 H

.
T TT T T TQ Q Q Q Q
T T T T T T

⎛ ⎞ ⎛ ⎞′
= − = = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′⎝ ⎠⎝ ⎠

 This gives C
12

H

1 .Te
T

= −  The efficiency of 

the composite system is the same as that of the original engine. 
EVALUATE: The overall efficiency is independent of the value of the intermediate temperature .T ′  
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20.52. IDENTIFY: 
H

.We
Q

=  41 day 8.64 10  s.= ×  For the river water, ,Q mc T= Δ  where the heat that goes into the water 

is the heat CQ rejected by the engine. The density of water is 31000 kg/m .  When an object undergoes a 
temperature change, 2 1ln( / ).S mc T TΔ =  
SET UP: 18.0 C 291.1 K.=°  18.5 C 291.6 K.=°  

EXECUTE: (a) H
WQ
e

= so 3W
H

1000 MW 2.50 10  MW.
0.40

PP
e

= = = ×  

(b) The heat input in one day is 9 4 14(2.50 10  W)(8.64 10  s) 2.16 10  J.× × = ×  The mass of coal used per day is 
14

6
7

2.16 10  J 8.15 10  kg.
2.65 10  J/kg

×
= ×

×
 

(c) H C .Q W Q= +  C H .Q Q W= −  3 3
C H W 2.50 10  MW 1000 MW 1.50 10  MW.P P P= − = × − = ×  

(d) The heat input to the river is 91.50 10  J/s.×  Q mc T= Δ and 0.5 CTΔ = °  gives 
9

51.50 10  J 7.16 10  kg.
(4190 J/kg K)(0.5 K)

Qm
c T

×
= = = ×

Δ ⋅
 3716 m .mV

ρ
= =  The river flow rate must be 3716 m /s.  

(e) In one second, 57.16 10  kg× of water goes from 291.1 K to 291.6 K. 

5 62

1

291.6 Kln (7.16 10  kg)(4190 J/kg K)ln 5.1 10  J/K.
291.1 K

TS mc
T

⎛ ⎞ ⎛ ⎞Δ = = × ⋅ = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: The entropy of the river increases because heat flows into it. The mass of coal used per second is huge. 
20.53. (a) IDENTIFY and SET UP: Calcualte e from Eq.(20.6), CQ  from Eq.(20.4) and then W from Eq.(20.2). 

EXECUTE: 0.41 1/( ) 1 1/(10.6 ) 0.6111e rγ −1= − = − =  

H C H( ) /e Q Q Q= +  and we are given H 200 J;Q =  calculate C.Q  

C H( 1) (0.6111 1)(200 J) 78 JQ e Q= − = − = −  (negative since corresponds to heat leaving) 
Then C H 78 J 200 J 122 J.W Q Q= + = − + =  (Positive, in agreement with Fig. 20.6.) 
EVALUATE: H,Q  0,W >  and C 0Q <  for an engine cycle. 
(b) IDENTIFY and SET UP: The stoke times the bore equals the change in volume. The initial volume is the final 
volume V times the compression ratio r. Combining these two expressions gives an equation for V. For each 
cylinder of area 2( / 2)A dπ=  the piston moves 0.864 m and the volume changes from rV to V, as shown in 
Figure 20.53a. 

 

1l A rV=  

2l A V=   
and 

3
1 2 86.4 10  ml l −− = ×  

Figure 20.53a  
EXECUTE: 1 2l A l A rV V− = −  and 1 2( ) ( 1)l l A r V− = −  

3 3 2
5 31 2( ) (86.4 10  m) (41.25 10  m) 4.811 10  m

1 10.6 1
l l AV
r

π− −
−− × ×

= = = ×
− −

 

At point a the volume is 5 3 4 310.6(4.811 10  m ) 5.10 10  m .rV − −= × = ×  
(c) IDENTIFY and SET UP: The processes in the Otto cycle are either constant volume or adiabatic. Use the HQ  
that is given to calculate TΔ  for process bc. Use Eq.(19.22) and pV nRT=  to relate p, V and T for the adiabatic 
processes ab and cd. 
EXECUTE: point a: 300 K,aT =  48.50 10  Pa,ap = ×  and 4 35.10 10  maV

−= ×  

point b: 5 3/ 4.81 10  m .b aV V r −= = ×  Process a b→  is adiabatic, so 1 1.a a b bT V TVγ γ− −=  
1 1( )a bT rV TVγ γ− −=  

1 0.4300 K(10.6) 771 Kb aT T rγ −= = =  
pV nRT=  so / constant,pV T nR= =  so / /a a a b b bp V T p V T=  

4 6( / )( / ) (8.50 10  Pa)( / )(771 K/300 K) 2.32 10  Pab a a b b ap p V V T T rV V= = × = ×  
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point c: Process b c→  is at constant volume, so 5 34.81 10  mc bV V −= = ×  

H ( ).V V c bQ nC T nC T T= Δ = −  The problem specifies H 200 J;Q =  use to calculate .cT  First use the p, V, T values at 
point a to calculate the number of moles n. 

4 4 3(8.50 10  Pa)(5.10 10  m ) 0.01738 mol
(8.3145 J/mol K)(300 K)

pVn
RT

−× ×
= = =

⋅
 

Then H 200 J 561.3 K,
(0.01738 mol)(20.5 J/mol K)c b

V

QT T
nC

− = = =
⋅

 and 561.3 K 771 K 561 K 1332 Kc bT T= + = + =  

/ / constantp T nR V= =  so / /b b c cp T p T=  
6 6( / ) (2.32 10  Pa)(1332 K/771 K) 4.01 10  Pac b c bp p T T= = × = ×  

point d: 4 35.10 10  md aV V −= = ×  

process c d→  is adiabatic, so 1 1
d d c cT V TVγ γ− −=  

1 1( )d cT rV TVγ γ− −=  
1 0.4/ 1332 K/10.6 518 Kd cT T rγ −= = =  

/ /c c c d d dp V T p V T=  
6 5( / )( / ) (4.01 10  Pa)( / )(518 K/1332 K) 1.47 10 Pad c c d d cp p V V T T V rV= = × = ×  

EVALUATE: Can look at process d a→  as a check. 
C ( ) (0.01738 mol)(20.5 J/mol K)(300 K 518 K) 78 J,V a dQ nC T T= − = ⋅ − = −  which agrees with part (a). The cycle 

is sketched in Figure 20.53b. 

 
Figure 20.53b 

(d) IDENTIFY and SET UP: The Carnot efficiency is given by Eq.(20.14). HT  is the highest temperature reached 
in the cycle and CT  is the lowest. 
EXECUTE: From part (a) the efficiency of this Otto cycle is 0.611 61.1%.e = =  
The efficiency of a Carnot cycle operating between 1332 K and 300 K is 

C H(Carnot) 1 / 1 300 K /1332 K 0.775 77.5%,e T T= − = − = =  which is larger. 
EVALUATE: The 2nd law requires that (Carnot),e e≤  and our result obeys this law. 

20.54. IDENTIFY: C .
Q

K
W

=  H C .Q Q W= +  The heat flows for the inside and outside air occur at constant T, so 

/ .S Q TΔ =  
SET UP: 21.0 C 294.1 K.=°  35.0 C 308.1 K.=°  
EXECUTE: (a) C .Q K W=  3

C W (2.80)(800 W) 2.24 10  W.P KP= = = ×  

(b) 3 3
H C W 2.24 10  W 800 W 3.04 10  W.P P P= + = × + = ×  

(c) In 1 h 3600 s,=  7
H H 1.094 10  J.Q P t= = ×  

7
4H

out
H

1.094 10  J 3.55 10  J/K.
308.1 K

QS
T

×
Δ = = = ×  
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(d) 6
C C 8.064 10  J.Q P t= = ×  Heat CQ is removed from the inside air. 

6
4C

in
C

8.064 10  J 2.74 10  J/K.
294.1 K

QS
T

− − ×
Δ = = = − ×  3

net out in 8.1 10  J/K.S S SΔ = Δ + Δ = ×  

EVALUATE: The increase in the entropy of the outside air is greater than the entropy decrease of the air in the 
room. 

20.55. IDENTIFY and SET UP: Use Eq.(20.13) for an infinitesimal heat flow HdQ  from the hot reservoir and use that 
expression with Eq.(20.19) to relate H ,SΔ  the entropy change of the hot reservoir, to CQ  

(a) EXECUTE: Consider an infinitesimal heat flow HdQ  that occurs when the temperature of the hot reservoir is :T ′  

C C H( / )dQ T T dQ′= −  

H
C C

dQdQ T
T

= −
′∫ ∫  

H
C C C H

dQQ T T S
T

= = Δ
′∫  

(b) The 1.00 kg of water (the high-temperature reservoir) goes from 373 K to 273 K. 
5

H (1.00 kg)(4190 J/kg K)(100 K) 4.19 10  JQ mc T= Δ = ⋅ = ×  

H 2 1ln( / ) (1.00 kg)(4190 J/kg K)ln(273/373) 1308 J/KS mc T TΔ = = ⋅ = −  

The result of part (a) gives 5
C (273 K)(1308 J/K) 3.57 10  JQ = = ×  

CQ  comes out of the engine, so 5
C 3.57 10  JQ = − ×  

Then 5 5 4
C H 3.57 10  J 4.19 10  J 6.2 10  J.W Q Q= + = − × + × = ×  

(c) 2.00 kg of water goes from 323 K to 273 K 
5

H (2.00 kg)(4190 J/kg K)(50 K) 4.19 10  JQ mc T= − Δ = ⋅ = ×  
3

H 2 1ln( / ) (2.00 kg)(4190 J/kg K)ln(272/323) 1.41 10  J/KS mc T TΔ = = ⋅ = − ×  
5

C C H 3.85 10  JQ T S= − Δ = − ×  
4

C H 3.4 10  JW Q Q= + = ×  
(d) EVALUATE: More work can be extracted from 1.00 kg of water at 373 K than from 2.00 kg of water at 323 K 
even though the energy that comes out of the water as it cools to 273 K is the same in both cases. The energy in the 
323 K water is less available for conversion into mechanical work. 

20.56. IDENTIFY: The maximum power that can be extracted is the total kinetic energy K of the mass of air that passes 
over the turbine blades in time t. 
SET UP: The volume of a cylinder of diameter d and length L is 2( / 4) .d Lπ  Kinetic energy is 21

2 .mv  

EXECUTE: (a) The cylinder described contains a mass of air 2( 4m ρ πd )L,=  and so the total kinetic energy is 
2 2( 8K ρ π )d Lv .=  This mass of air will pass by the turbine in a time ,t L v=  and so the maximum power is 

2 3( 8) .KP ρ π d v
t

= =  Numerically, the product 3 3 5
air ( 8 0.5 kg m 0.5 W s m .ρ π ) ≈ = ⋅  This completes the proof. 

(b) 
1/ 31/ 3 6

2 3 5 2

(3.2 10  W) (0.25) 14 m s 50 km h.
(0.5 W s m )(97 m)

P ev
kd

⎛ ⎞×⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠
 

(c) Wind speeds tend to be higher in mountain passes. 
EVALUATE: The maximum power is proportional to 3,v  so increases rapidly with increase in wind speed. 

20.57. IDENTIFY: For a Carnot device, C C

H H

.T Q
T Q

= −  H C.W Q Q= +  

SET UP: C 1000 J.Q =  10.0 C 283.1 K.=°  35.0 C 308.1 K.=°  15.0 C 288.1 K.=°  

EXECUTE: (a) 3H
H C

C

308.1 K (1000 J) 1.088 10  J.
283.1 K

TQ Q
T

⎛ ⎞ ⎛ ⎞= − = − = − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 31000 J ( 1.088 10  J) 88 J.W = + − × = −  

(b) Now 3
H

288.1 K (1000 J) 1.018 10  J.
283.1 K

Q ⎛ ⎞= − = − ×⎜ ⎟
⎝ ⎠

 31000 J ( 1.018 10  J) 18 J.W = + − × = −  

(c) The pV-diagrams for the two Carnot cycles are sketched in Figure 20.57. 
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EVALUATE: More work must be done to move the heat energy through a greater temperature difference. 

 
Figure 20.57 

20.58. IDENTIFY and SET UP: First use the methods of Chapter 17 to calculate the final temperature T of the system. 
EXECUTE: 0.600 kg of water (cools from 45.0°C to T ) 

5(0.600 kg)(4190 J/kg K)( 45.0 C) (2514 J/K) 1.1313 10  JQ mc T T T= Δ = ⋅ − ° = − ×  
0.0500 kg of ice (warms to 0°C, melts, and water warms from 0°C to T ) 

ice f water(0 C ( 15.0 C)) ( 0 C)Q mc mL mc T= ° − − ° + + − °  
30.0500 kg (2100 J/kg K)(15.0 C) 334 10  J/kg (4190 J/kg K)( 0 C)Q T⎡ ⎤= ⋅ ° + × + ⋅ − °⎣ ⎦  

4 41575 J 1.67 10  J (209.5 J/K) 1.828 10  J (209.5 J/K)Q T T= + × + = × +  

system 0Q =  gives 5 4(2514 J/K) 1.1313 10  J 1.828 10  J (209.5 J/K) 0T T− × + × + =  
3 4(2.724 10  J/K) 9.485 10  JT× = ×  

4 3(9.485 10  J)/(2.724 10  J/K) 34.83 C 308 KT = × × = ° =  
EVALUATE: The final temperature must lie between �15.0°C and 45.0°C. A final temperature of 34.8°C is 
consistent with only liquid water being present at equilibrium. 
IDENTIFY and SET UP: Now we can calculate the entropy changes. Use /S Q TΔ =  for phase changes and the 
method of Example 20.6 to calculate SΔ  for temperature changes. 
EXECUTE: ice: The process takes ice at �15°C and produces water at 34.8°C. Calculate SΔ  for a reversible process 
between these two states, in which heat is added very slowly. SΔ  is path independent, so SΔ  for a reversible process 
is the same as SΔ  for the actual (irreversible) process as long as the initial and final states are the same. 

2

1
/ ,S dQ TΔ = ∫  where T must be in kelvins 

For a temperature change dQ mcdT=  so 2

1
2 1( / ) ln( / ).

T

T
S mc T dT mc T TΔ = =∫  

For a phase change, since it occurs at constant T, 
2

1
/ / / .S dQ T Q T mL TΔ = = = ±∫  

Therefore ice ice f waterln(273 K/258 K) / 273 K ln(308 K/273 K)S mc mL mcΔ = + +  
3

ice (0.0500 kg)[(2100 J/kg K)ln(273 K/258 K) (334 10  J/kg)/273 KSΔ = ⋅ + × + (4190 J/kg K)ln(308 K/273 K)]⋅  

ice 5.93 J/K 61.17 J/K 25.27 J/K 92.4 J/KSΔ = + + =  
water: water 2 1ln( / ) (0.600 kg)(4190 J/kg K)ln(308 K/318 K) 80.3 J/KS mc T TΔ = = ⋅ = −  
For the system, ice water 92.4 J/K 80.3 J/K 12 J/KS S SΔ = Δ + Δ = − = +  
EVALUATE: Our calculation gives 0,SΔ >  as it must for an irreversible process of an isolated system. 

20.59. IDENTIFY: Apply Eq.(20.19). From the derivation of Eq. (20.6), 1γ
b aT r T−=  and 1 .γ

c dT r T−=  
SET UP: For a constant volume process, .VdQ nC dT=  
EXECUTE: (a) For a constant-volume process for an ideal gas, where the temperature changes from T1 to T2, 

2

1

2

1

ln .
T

V VT

dT TS nC nC
T T

⎛ ⎞
Δ = = ⎜ ⎟

⎝ ⎠
∫  The entropy changes are ln( )V c bnC T T  and ln( ).V a dnC T T  

(b) The total entropy change for one cycle is the sum of the entropy changes found in part (a); the other 
processes in the cycle are adiabatic, with 0Q =  and 0.SΔ = The total is then 

ln ln ln .c a c a
V V V

b d b d

T T T TS nC nC nC
T T T T

⎛ ⎞
Δ = + = ⎜ ⎟

⎝ ⎠
 

1

1 1.c a d a

b d d a

T T r T T
T T r T T

γ

γ

−

−= =  ln(1) 0,=  so 0.SΔ =  

(c) The system is not isolated, and a zero change of entropy for an irreversible system is certainly possible. 
EVALUATE: In an irreversible process for an isolated system, 0.SΔ >  But the entropy change for some of the 
components of the system can be negative or zero. 
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20.60. IDENTIFY: For a reversible isothermal process, .QS
T

Δ =  For a reversible adiabatic process, 0Q = and 0.SΔ =  

The Carnot cycle consists of two reversible isothermal processes and two reversible adiabatic processes. 
SET UP: Use the results for the Stirling cycle from Problem 20.50. 
EXECUTE: (a) The graph is given in Figure 20.60. 

(b) For a reversible process, ,  and so ,  anddQdS dQ T dST= =  ,Q dQ T dS= =∫ ∫  which is the area under the curve 

in the TS plane. 
(c) HQ  is the area under the rectangle bounded by the horizontal part of the rectangle at HT and the verticals. C| |Q  
is the area bounded by the horizontal part of the rectangle at CT and the verticals. The net work is then H C| |,Q Q−  
the area bounded by the rectangle that represents the process. The ratio of the areas is the ratio of the lengths of the 

vertical sides of the respective rectangles, and the efficiency is H C

H H

.W T Te
Q T

−
= =  

(d) As explained in Problem 20.50, the substance that mediates the heat exchange during the isochoric expansion 
and compression does not leave the system, and the diagram is the same as in part (a). As found in that problem, 
the ideal efficiency is the same as for a Carnot-cycle engine. 
EVALUATE: The derivation of eCarnot using the concept of entropy is much simpler than the derivation in 
Section 20.6, but yields the same result. 

 
Figure 20.60 

20.61. IDENTIFY: The temperatures of the ice-water mixture and of the boiling water are constant, so .QS
T

Δ =  The heat 

flow for the melting phase transition of the ice is f .Q mL= +  
SET UP: For water, 5

f 3.34 10  J/kg.L = ×  
EXECUTE: (a) The heat that goes into the ice-water mixture is 

5 4
f (0.160 kg)(3.34 10  J/kg) 5.34 10  J.Q mL= = × = ×  This is same amount of heat leaves the boiling water, so 

45.34 10  J 143 J/K.
373 K

QS
T

− ×
Δ = = = −  

(b) 
45.34 10  J 196 J/K

273 K
QS
T

×
Δ = = = +  

(c) For any segment of the rod, the net heat flow is zero, so 0.SΔ =  
(d) tot 143 J/K 196 J/K 53 J/K.SΔ = − + = +  
EVALUATE: The heat flow is irreversible, since the system is isolated and the total entropy change is positive. 

20.62. IDENTIFY: Use the expression derived in Example 20.6 for the entropy change in a temperature change. 
SET UP: For water, 4190 J/kg K.c = ⋅  20 C 293.15 K,=°  65 C 338.15 K=°  and 120 C 393.15 K.=°  
EXECUTE: (a) 3

2 1 ln( ) (250 10  kg)(4190 J kg K)ln(338.15 K 293.15 K) 150 J K.S mc T T −Δ = = × ⋅ =  

(b) 
3

element

(250 10  kg)(4190 J kg K)(338.15 K 293.15 K) 120 J/K.
393.15 K

mc TS
T

−− Δ − × ⋅ −
Δ = = = −  

(c) The sum of the result of parts (a) and (b) is system 30 J/K.SΔ =  
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EVALUATE: (d) Heating a liquid is not reversible. Whatever the energy source for the heating element, heat is 
being delivered at a higher temperature than that of the water, and the entropy loss of the source will be less in 
magnitude than the entropy gain of the water. The net entropy change is positive. 

20.63. IDENTIFY: Use the expression derived in Example 20.6 for the entropy change in a temperature change. For the 
value of T for which SΔ is a maximum, ( ) / 0.d S dTΔ =  
SET UP: The heat flow for a temperature change is Q mc T= Δ  
EXECUTE: (a) As in Example 20.10, the entropy change of the first object is 1 1 1ln( )m c T T  and that of the second 
is 2 2 2ln( ),m c T T′  and so the net entropy change is as given. Neglecting heat transfer to the surroundings, 

1 2 1 1 1 2 2 20,  ( ) ( ) 0,Q Q m c T T m c T T′+ = − + − = which is the given expression. 
(b) Solving the energy-conservation relation for T ′ and substituting into the expression for SΔ gives 

1 1 1
1 1 2 2

1 2 2 2 2

ln 1n 1 .T m c T TS m c m c
T m c T T

⎛ ⎞⎛ ⎞ ⎛ ⎞
Δ = + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 Differentiating with respect to T and setting the derivative equal to 

0 gives 1 1 2 2 1 1 2 2 2

1
1 1 2 2

2 2

( )( )( 1 )0 .
1 ( )

m c m c m c m c T
T T Tm c m c

T T

−
= +

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 This may be solved for 1 1 1 2 2 2

1 1 2 2

.mcT m c TT
m c m c

+
=

+
 Using this value for T 

in the conservation of energy expression in part (a) and solving for T ′  gives 1 1 1 2 2 2

1 1 2 2

.m cT m c TT
m c m c

+′ =
+

 Therefore, 

T T ′= when SΔ is a maximum. 
EVALUATE: (c) The final state of the system will be that for which no further entropy change is possible. If 

,T T ′<  it is possible for the temperatures to approach each other while increasing the total entropy, but when 
,T T ′=  no further spontaneous heat exchange is possible. 

20.64. IDENTIFY: Calculate CQ and HQ in terms of p and V at each point. Use the ideal gas law and the pressure-volume 

relation for adiabatic processes for an ideal gas. C

H

1 .
Q

e
Q

= −  

SET UP: For an ideal gas, ,p VC C R= +  and taking air to be diatomic, 7 5 7
2 2 5,   and .p VC R C R γ= = =  

EXECUTE: Referring to Figure 20.7 in the textbook, 7 7
H 2 2( ) ( ).c b c c b bQ n R T T p V p V= − = −  Similarly, 

5
C 2 ( ).a a d dQ n R p V p V= −  What needs to be done is to find the relations between the product of the pressure and the 

volume at the four points. For an ideal gas, c c b b

c b

p V p V
T T

=  so .c
c c a a

a

Tp V p V
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 For a compression ratio r, and given 

that for the Diesel cycle the process ab is adiabatic, 
1

1.
γ

γa
b b a a a a

b

Vp V p V p V r
V

−

−⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 Similarly, 

1

.c
d d c c

a

Vp V p V
V

γ −
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

Note that the last result uses the fact that process da is isochoric, and ;   also,  d a c bV V p p= =  (process bc is isobaric), 

and so .c
c b

a

TV V
T

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 Then, 

1

1

γγ
c c b b a a c a a a c

γ
a b a a b b a b b b a

V T V T T V T T V V T r
V T V T T V T TV V T

γ

−−

−

⎛ ⎞⎛ ⎞
= ⋅ = ⋅ ⋅ = ⋅ =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

Combining the above results, 
2

.γ γc
d d a a

a

Tp V p V r
T

γ

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 Substitution of the above results into Eq. (20.4) gives 

1

2 1
51 .
7

γ

c

a

c

a

T r
T

e
T r
T

γ γ

γ

−

−

⎡ ⎤⎛ ⎞
⎢ ⎥−⎜ ⎟
⎢ ⎥⎝ ⎠= − ⎢ ⎥⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

(b) 
0.56

0.40

1 (5.002) 11 ,
1.4 (3.167)

re
r

−⎡ ⎤−
= − ⎢ ⎥−⎣ ⎦

where 3.167 and 1.40c

a

T
T

γ= =  have been used. Substitution of 21.0r =  yields 

0.708 70.8%.e = =  
EVALUATE: The efficiency for an Otto cycle with 21.0r = and 1.40γ = is 1 0.401 1 (21.0) 70.4%.e r γ− −= − = − =  
This is very close to the value for the Diesel cycle. 
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ELECTRIC CHARGE AND ELECTRIC FIELD 

 21.1. (a) IDENTIFY and SET UP: Use the charge of one electron 19( 1.602 10  C)−− ×  to find the number of electrons 
required to produce the net charge. 
EXECUTE: The number of excess electrons needed to produce net charge q is 

9
10

19

3.20 10  C 2.00 10  electrons.
1.602 10  C/electron

q
e

−

−

− ×
= = ×

− − ×
 

(b) IDENTIFY and SET UP: Use the atomic mass of lead to find the number of lead atoms in 38.00 10  kg−×  of 
lead. From this and the total number of excess electrons, find the number of excess electrons per lead atom. 
EXECUTE: The atomic mass of lead is 3207 10  kg/mol,−×  so the number of moles in 38.00 10  kg−×  is 

3
tot

3

8.00 10  kg 0.03865 mol.
207 10  kg/mol

mn
M

−

−

×
= = =

× AN  (Avogadro’s number) is the number of atoms in 1 mole, so the 

number of lead atoms is 23 22
A (0.03865 mol)(6.022 10  atoms/mol) = 2.328 10  atoms.N nN= = × × The number of 

excess electrons per lead atom is 
10

13
22

2.00 10  electrons 8.59 10 .
2.328 10  atoms

−×
= ×

×
 

EVALUATE: Even this small net charge corresponds to a large number of excess electrons. But the number of 
atoms in the sphere is much larger still, so the number of excess electrons per lead atom is very small. 

 21.2. IDENTIFY: The charge that flows is the rate of charge flow times the duration of the time interval. 
SET UP: The charge of one electron has magnitude 191.60 10  C.e −= ×  
EXECUTE: The rate of charge flow is 20,000 C/s  and 4100 s 1.00 10  s.t μ −= = ×  

4(20,000 C/s)(1.00 10  s) 2.00 C.Q −= × =  The number of electrons is 19
e 19 1.25 10 .

1.60 10  C
Qn −= = ×
×

 

EVALUATE: This is a very large amount of charge and a large number of electrons. 
 21.3. IDENTIFY: From your mass estimate the number of protons in your body. You have an equal number of electrons. 

SET UP: Assume a body mass of 70 kg. The charge of one electron is 191.60 10  C.−− ×  
EXECUTE: The mass is primarily protons and neutrons of 271.67 10  kg.m −= ×  The total number of protons and 

neutrons is 28
p and n 27

70 kg 4.2 10 .
1.67 10  kg

n −= = ×
×

About one-half are protons, so 28
p e2.1 10n n= × = . The number of 

electrons is about 282.1 10 .×  The total charge of these electrons is 
19 28 9( 1.60 10 C/electron)(2.10 10  electrons) 3.35 10 C.Q −= − × × = − ×   

EVALUATE: This is a huge amount of negative charge. But your body contains an equal number of protons and 
your net charge is zero. If you carry a net charge, the number of excess or missing electrons is a very small fraction 
of the total number of electrons in your body. 

 21.4. IDENTIFY: Use the mass m of the ring and the atomic mass M of gold to calculate the number of gold atoms. 
Each atom has 79 protons and an equal number of electrons. 
SET UP: 23

A 6.02 10  atoms/molN = × . A proton has charge +e. 
EXECUTE: The mass of gold is 17.7 g and the atomic weight of gold is 197 g mol.  So the number of atoms 

is 23 22
A

17.7 g(6.02 10  atoms/mol) 5.41 10  atoms197 g molN n ⎛ ⎞= × = ×⎜ ⎟
⎝ ⎠

. The number of protons is 

22 24
p (79 protons/atom)(5.41 10  atoms) 4.27 10  protonsn = × = × . 19 5

p( )(1.60 10 C/proton) 6.83 10 CQ n −= × = × . 

(b) The number of electrons is 24
e p 4.27 10 .n n= = ×  

EVALUATE: The total amount of positive charge in the ring is very large, but there is an equal amount of negative 
charge. 

21
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 21.5. IDENTIFY: Apply 1 2
2

k q q
F

r
=  and solve for r. 

SET UP: 650 NF = . 

EXECUTE: 
9 2 2 2

1 2 3(8.99 10  N m /C )(1.0 C) 3.7 10  m 3.7 km
650 N

k q q
r

F
× ⋅

= = = × =  

EVALUATE: Charged objects typically have net charges much less than 1 C. 
 21.6. IDENTIFY: Apply Coulomb's law and calculate the net charge q on each sphere. 

SET UP: The magnitude of the charge of an electron is 191.60 10  Ce −= × . 

EXECUTE: 
2

2
0

1 .
4

qF
rπ

=
P

 This gives 2 21 2 16
0 04 4 (4.57 10  N)(0.200 m) 1.43 10  C.q Frπ π − −= = × = ×P P  And 

therefore, the total number of electrons required is 16 19/ (1.43 10  C)/(1.60 10  C/electron) 890 electrons.n q e − −= = × × =  

EVALUATE: Each sphere has 890 excess electrons and each sphere has a net negative charge. The two like 
charges repel. 

 21.7. IDENTIFY: Apply Coulomb’s law. 
SET UP: Consider the force on one of the spheres. 
(a) EXECUTE: 1 2q q q= =  

2
1 2

2 2
0 0

1
4 4

q q qF
r rπ π

= =
P P

 so 7
9 2 2

0

0.220 N0.150 m 7.42 10  C (on each)
(1/4 ) 8.988 10  N m /C

Fq r
π

−= = = ×
× ⋅P

  

(b) 2 14q q=  
2

1 2 1
2 2

0 0

1 4
4 4

q q qF
r rπ π

= =
P P

 so 7 71 1
1 2 2

0 0

(7.42 10  C) = 3.71 10  C.
4(1/4 ) (1/4 )

F Fq r r
π π

− −= = = × ×
P P

 

And then 6
2 14 1.48 10  C.q q −= = ×  

EVALUATE: The force on one sphere is the same magnitude as the force on the other sphere, whether the sphere 
have equal charges or not. 

 21.8. IDENTIFY: Use the mass of a sphere and the atomic mass of aluminum to find the number of aluminum atoms in 
one sphere. Each atom has 13 electrons. Apply Coulomb's law and calculate the magnitude of charge q on each 
sphere. 
SET UP: 23

A 6.02 10  atoms/molN = × . eq n e′= , where en′ is the number of electrons removed from one sphere 
and added to the other. 
EXECUTE: (a) The total number of electrons on each sphere equals the number of protons. 

24
e p A

0.0250 kg(13)( ) 7.25 10  electrons
0.026982 kg mol

n n N
⎛ ⎞

= = = ×⎜ ⎟
⎝ ⎠

. 

(b) For a force of 41.00 10×  N to act between the spheres, 
2

4
2

0

11.00 10  N
4

qF
rπ

= × =
P

. This gives 

4 2 4
04 (1.00 10 N)(0.0800 m) 8.43 10 Cq π −= × = ×P . The number of electrons removed from one sphere and 

added to the other is 15
e / 5.27 10  electrons.n q e′ = = ×  

(c) 10
e e/ 7.27 10n n −′ = × . 

EVALUATE: When ordinary objects receive a net charge the fractional change in the total number of electrons in 
the object is very small . 

 21.9. IDENTIFY: Apply F ma= , with 1 2
2

q q
F k

r
= . 

SET UP: 225.0 245 m/sa g= = . An electron has charge 191.60 10  C.e −− = − ×  

EXECUTE: 3 2(8.55 10  kg)(245 m/s ) 2.09 NF ma −= = × = . The spheres have equal charges q, so 
2

2

qF k
r

=  and 

6
9 2 2

2.09 N(0.150 m) 2.29 10  C
8.99 10  N m /C

Fq r
k

−= = = ×
× ⋅

. 
6

13
19

2.29 10  C 1.43 10  electrons
1.60 10  C

q
N

e

−

−

×
= = = ×

×
. The 

charges on the spheres have the same sign so the electrical force is repulsive and the spheres accelerate away from 
each other. 
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EVALUATE: As the spheres move apart the repulsive force they exert on each other decreases and their 
acceleration decreases. 

21.10. (a) IDENTIFY: The electrical attraction of the proton gives the electron an acceleration equal to the acceleration 
due to gravity on earth. 
SET UP: Coulomb’s law gives the force and Newton’s second law gives the acceleration this force produces. 

1 2
2

0

1
4

q q
ma

rπ
=

P
 and 

2

0

 
4

er
maπ

=
P

. 

EXECUTE: r =
( )( )

( )( )

29 2 2 19

31 2

9.00 10  N m /C 1.60 10  C

9.11 10  kg 9.80 m/s

−

−

× ⋅ ×

×
 = 5.08 m 

EVALUATE: The electron needs to be about 5 m from a single proton to have the same acceleration as it receives 
from the gravity of the entire earth. 
(b) IDENTIFY: The force on the electron comes from the electrical attraction of all the protons in the earth. 
SET UP: First find the number n of protons in the earth, and then find the acceleration of the electron using 
Newton’s second law, as in part (a). 

n = mE/mp = (5.97 × 1024 kg)/(1.67 × 2710−  kg) = 3.57 × 1051 protons. 

a = F/m = 

p e 2
2

0 E 0
2

e e E

1 1
4 4

q q
ne

R
m m R

π π
=

P P . 

EXECUTE: a = (9.00 × 109 N ⋅ m2/C2)(3.57 × 1051)(1.60 × 1910−  C)2/[(9.11 × 3110−  kg)(6.38 × 106 m)2] = 2.22 × 
1040 m/s2. One can ignore the gravitation force since it produces an acceleration of only 9.8 m/s2 and hence is much 
much less than the electrical force. 
EVALUATE: With the electrical force, the acceleration of the electron would nearly 1040 times greater than with 
gravity, which shows how strong the electrical force is. 

21.11. IDENTIFY: In a space satellite, the only force accelerating the free proton is the electrical repulsion of the other 
proton. 
SET UP: Coulomb’s law gives the force, and Newton’s second law gives the acceleration: a = F/m = 

0(1/ 4 )πP (e2/r2)/m. 
EXECUTE: (a) a = (9.00 × 109 N ⋅ m2/C2)(1.60 × 10-19 C)2/[(0.00250 m)2(1.67 × 10-27 kg)] = 2.21 × 104 m/s2. 
(b) The graphs are sketched in Figure 21.11. 
EVALUATE: The electrical force of a single stationary proton gives the moving proton an initial acceleration 
about 20,000 times as great as the acceleration caused by the gravity of the entire earth. As the protons move 
farther apart, the electrical force gets weaker, so the acceleration decreases. Since the protons continue to repel, the 
velocity keeps increasing, but at a decreasing rate. 

 
Figure 21.11 

21.12. IDENTIFY: Apply Coulomb’s law. 
SET UP: Like charges repel and unlike charges attract. 

EXECUTE: (a) 1 2
2

0

1
4

q q
F

rπ
=

P
. This gives 

6
2

2
0

(0.550 10 C)10.200 N
4 (0.30 m)

q
π

−×
=

P
 and 6

2 3.64 10 Cq −= + × . The 

force is attractive and 1 0q < , so 6
2 3.64 10  Cq −= + × . 

(b) 0.200F =  N. The force is attractive, so is downward. 
EVALUATE: The forces between the two charges obey Newton's third law. 
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21.13. IDENTIFY: Apply Coulomb’s law. The two forces on 3q must have equal magnitudes and opposite directions. 
SET UP: Like charges repel and unlike charges attract. 

EXECUTE: The force 2F
G

that 2q exerts on 3q has magnitude 2 3
2 2

2

q q
F k

r
= and is in the +x direction. 1F

G
 must be in 

the x− direction, so 1q must be positive. 1 2F F= gives 1 3 2 3
2 2

1 2

q q q q
k k

r r
= . 

2 2
1

1 2
2

2.00 cm(3.00 nC) 0.750 nC
4.00 cm

rq q
r

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

EVALUATE: The result for the magnitude of 1q doesn’t depend on the magnitude of 2q . 
21.14. IDENTIFY: Apply Coulomb’s law and find the vector sum of the two forces on Q. 

SET UP: The force that 1q exerts on Q is repulsive, as in Example 21.4, but now the force that 2q exerts is 
attractive. 
EXECUTE: The x-components cancel. We only need the y-components, and each charge contributes equally. 

6 6

1 2 2
0

1 (2.0 10 C) (4.0 10 C) sin 0.173 N (since sin 0.600).
4 (0.500 m)y yF F α α
π

− −× ×
= = − = − =

P
 Therefore, the total force is 

2 0.35 N,F =  in the -directiony− . 
EVALUATE: If 1q is 2.0 Cμ−  and 2q is 2.0 Cμ+ , then the net force is in the +y-direction. 

21.15. IDENTIFY: Apply Coulomb’s law and find the vector sum of the two forces on 1q . 

SET UP: Like charges repel and unlike charges attract, so 2F
G

and 3F
G

 are both in the +x-direction. 

EXECUTE: 1 2 1 35 4
2 32 2

12 13

6.749 10 N, 1.124 10 N
q q q q

F k F k
r r

− −= = × = = × . 4
2 3 1.8 10 NF F F −= + = × . 

41.8 10  NF −= × and is in the +x-direction. 
EVALUATE: Comparing our results to those in Example 21.3, we see that 1 on 3 3 on 1= −F F

G G
, as required by 

Newton’s third law. 
21.16. IDENTIFY: Apply Coulomb’s law and find the vector sum of the two forces on 2q . 

SET UP: 2 on 1F
G

is in the +y-direction. 

EXECUTE: 
( )

9 2 2 6 6

2on 1 2

(9.0 10 N m C ) (2.0 10 C) (2.0 10 C) 0.100 N
0.60 m

F
− −× ⋅ × ×

= = . ( )2 on 1 0
x

F = and 

( )2 on 1 0.100 N
y

F = + .  on 1QF  is equal and opposite to 1 on QF (Example 21.4), so ( ) on 1 0.23NQ x
F = −  and 

( ) on 1 0.17 NQ y
F = . ( ) ( )2 on 1  on 1 0.23 Nx Qx x

F F F= + = − . ( ) ( )2 on 1  on 1 0.100 N 0.17 N 0.27 Ny Qy y
F F F= + = + = . 

The magnitude of the total force is ( ) ( )2 20.23 N 0.27 N 0.35 N.F = + =  1 0.23tan 40
0.27

− = ° , so F
G

is 

40° counterclockwise from the +y axis, or 130°  counterclockwise from the +x axis. 
EVALUATE: Both forces on 1q are repulsive and are directed away from the charges that exert them. 

21.17. IDENTIFY and SET UP: Apply Coulomb’s law to calculate the force exerted by 2q  and 3q  on 1.q  Add these 
forces as vectors to get the net force. The target variable is the x-coordinate of 3.q  

EXECUTE: 2F
G

 is in the x-direction. 

1 2
2 22

12

3.37 N, so 3.37 Nx

q q
F k F

r
= = = +  

2 3  and 7.00 Nx x x xF F F F= + = −  

3 2 7.00 N 3.37 N 10.37 Nx x xF F F= − = − − = −  
For 3xF  to be negative, 3q  must be on the x− -axis. 

1 3 1 3
3 2

3

,  so 0.144 m, so 0.144 m
q q k q q

F k x x
x F

= = = = −  

EVALUATE: 2q  attracts 1q  in the x+ -direction so 3q  must attract 1q  in the x− -direction, and 3q  is at negative x. 



Electric Charge and Electric Field  21-5 

21.18. IDENTIFY: Apply Coulomb’s law. 
SET UP: Like charges repel and unlike charges attract. Let 21F

G
 be the force that 2q  exerts on 1q  and let 31F

G
 be 

the force that 3q  exerts on 1q . 
EXECUTE: The charge 3q  must be to the right of the origin; otherwise both 2 3andq q would exert forces in the 

x+  direction. Calculating the two forces: 
9 2 2 6 6

1 2
21 2 2

0 12

1 (9 10 N m C )(3.00 10 C)(5.00 10 C) 3.375 N
4 (0.200 m)

q q
F

rπ

− −× ⋅ × ×
= = =

P
, in the +x direction. 

9 2 2 6 6 2

31 2 2
13 13

(9 10 N m C ) (3.00 10 C) (8.00 10 C) 0.216 N mF
r r

− −× ⋅ × × ⋅
= = , in the x− direction. 

We need 21 31 7.00 NxF F F= − = − , so 
2

2
13

0.216 N m3.375 N 7.00 N
r

⋅
− = − . 

2

13
0.216 N m 0.144 m

3.375 N 7.00 N
r ⋅

= =
+

. 3q  

is at 0.144 mx = . 
EVALUATE: 31 10.4 N.F =  31F  is larger than 21,F  because 3q  is larger than 2q  and also because 13r  is less than 12.r  

21.19. IDENTIFY: Apply Coulomb’s law to calculate the force each of the two charges exerts on the third charge. Add 
these forces as vectors. 
SET UP: The three charges are placed as shown in Figure 21.19a. 

 
Figure 21.19a 

EXECUTE: Like charges repel and unlike attract, so the free-body diagram for 3q  is as shown in Figure 21.19b. 

 

1 3
1 2

0 13

1
4

q q
F

rπ
=

P
 

2 3
2 2

0 23

1
4

q q
F

rπ
=

P
 

Figure 21.19b  
9 9

9 2 2 6
1 2

(1.50 10  C)(5.00 10  C)(8.988 10  N m /C ) 1.685 10  N
(0.200 m)

F
− −

−× ×
= × ⋅ = ×  

9 9
9 2 2 7

2 2

(3.20 10  C)(5.00 10  C)(8.988 10  N m /C ) 8.988 10  N
(0.400 m)

F
− −

−× ×
= × ⋅ = ×  

The resultant force is 1 2.R F F
G G G
= +  

0.xR =  
6 7 6

1 2 1.685 10  N +8.988 10  N = 2.58 10  N.yR F F − − −= + = × × ×  

The resultant force has magnitude 62.58 10  N −× and is in the –y-direction. 
EVALUATE: The force between 1 3 and q q  is attractive and the force between 2 3and q q  is replusive. 

21.20. IDENTIFY: Apply 2

qq
F k

r
′

=  to each pair of charges. The net force is the vector sum of the forces due to 1q  and 2.q  

SET UP: Like charges repel and unlike charges attract. The charges and their forces on 3q are shown in Figure 21.20. 
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EXECUTE: 
9 9

1 3 9 2 2 7
1 2 2

1

(4.00 10  C)(0.600 10  C)(8.99 10  N m /C ) 5.394 10  N
(0.200 m)

q q
F k

r

− −
−× ×

= = × ⋅ = × . 

9 9
2 3 9 2 2 7

2 2 2
2

(5.00 10  C)(0.600 10  C)(8.99 10  N m /C ) 2.997 10  N
(0.300 m)

q q
F k

r

− −
−× ×

= = × ⋅ = × . 

7
1 2 1 2 2.40 10  Nx x xF F F F F −= + = + − = × . The net force has magnitude 72.40 10  N−×  and is in the x+  direction. 

EVALUATE: Each force is attractive, but the forces are in opposite directions because of the placement of the 
charges. Since the forces are in opposite directions, the net force is obtained by subtracting their magnitudes. 

 
Figure 21.20 

21.21. IDENTIFY: Apply Coulomb’s law to calculate each force on Q− . 

SET UP: Let 1F
G

 be the force exerted by the charge at y a=  and let 2F
G

 be the force exerted by the charge at .y a= −  

EXECUTE: (a) The two forces on Q−  are shown in Figure 21.21a. 2 2 1/ 2sin
( )

a
a x

θ =
+

 and 2 2 1/ 2( )r a x= +  is the 

distance between q and Q−  and between q−  and Q− . 

(b) 1 2 0x x xF F F= + = . 1 2 2 2 2 2 3 2
0 0

1 1 22 sin
4 ( ) 4 ( )y y y

qQ qQaF F F
a x a x

θ
π π

= + = =
+ +P P

. 

(c) 2
0

1 2At 0,
4y

qQx F
aπ

= =
P

, in the +y direction. 

(d) The graph of yF versus x is given in Figure 21.21b. 

EVALUATE: 0xF =  for all values of x and 0yF > for all x. 

  
Figure 21.21 

21.22. IDENTIFY: Apply Coulomb’s law to calculate each force on Q− . 

SET UP: Let 1F
G

be the force exerted by the charge at y a=  and let 2F
G

 be the force exerted by the charge at 

y a= − . The distance between each charge q and Q is ( )1/ 22 2r a x= + . 
( )1/ 22 2

cos
x

a x
θ =

+
. 

EXECUTE: (a) The two forces on Q−  are shown in Figure 21.22a. 

(b) When 0x > , 1xF and 2xF are negative. 1 2 2 2 2 2 3 / 2
0 0

1 1 22 cos
4 ( ) 4 ( )x x x

qQ qQxF F F
a x a x

θ
π π

−
= + = − =

+ +P P
. When 

0x < , 1xF and 2xF are positive and the same expression for xF applies. 1 2 0y y yF F F= + = . 

(c) At 0x = , 0xF = . 
(d) The graph of xF versus x is sketched in Figure 21.22b. 
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EVALUATE: The direction of the net force on Q−  is always toward the origin. 

  
Figure 21.22 

21.23. IDENTIFY: Apply Coulomb’s law to calculate the force exerted on one of the charges by each of the other three 
and then add these forces as vectors. 
(a) SET UP: The charges are placed as shown in Figure 21.23a. 

1 2 3 4q q q q q= = = =  

Figure 21.23a  
Consider forces on 4.q  The free-body diagram is given in Figure 21.23b. Take the y-axis to be parallel to the 

diagonal between 2q  and 4q  and let y+  be in the direction away from 2.q  Then 2F
G

 is in the y+ -direction. 

 

EXECUTE: 
2

3 1 2
0

1
4

qF F
Lπ

= =
P

 

2

2 2
0

1
4 2

qF
Lπ

=
P

 

1 1 1sin 45 / 2xF F F= − ° = −  

1 1 1cos45 / 2yF F F= + ° = +  

3 3 3sin 45 / 2xF F F= + ° = +  

3 3 3cos45 / 2yF F F= + ° = +  

2 2 20,  x yF F F= =  
Figure 21.23b  

(b) 1 2 3 0x x x xR F F F= + + =  
2 2 2

1 2 3 2 2 2
0 0 0

1 1(2/ 2) (1 2 2)
4 4 2 8y y y y

q q qR F F F
L L Lπ π π

= + + = + = +
P P P

 

2

2
0

(1 2 2).
8

qR
Lπ

= +
P

 Same for all four charges. 
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EVALUATE: In general the resultant force on one of the charges is directed away from the opposite corner. The 
forces are all repulsive since the charges are all the same. By symmetry the net force on one charge can have no 
component perpendicular to the diagonal of the square. 

21.24. IDENTIFY: Apply 2

k qq
F

r
′

=  to find the force of each charge on q+ . The net force is the vector sum of the 

individual forces. 
SET UP: Let 1 2.50 Cq μ= +  and 2 3.50 Cq μ= − . The charge q+  must be to the left of 1q or to the right of 2q  in 
order for the two forces to be in opposite directions. But for the two forces to have equal magnitudes, q+ must be 
closer to the charge 1q , since this charge has the smaller magnitude. Therefore, the two forces can combine to give 
zero net force only in the region to the left of 1q . Let q+ be a distance d to the left of 1q , so it is a distance 

0.600 md + from 2q . 

EXECUTE: 1 2F F= gives 1 2
2 2( 0.600 m)

kq q kq q
d d

=
+

. 1

2

( 0.600 m) (0.8452)( 0.600 m)
q

d d d
q

= ± + = ± + . d must 

be positive, so (0.8452)(0.600 m) 3.27 m
1 0.8452

d = =
−

. The net force would be zero when q+  is at 3.27 mx = − . 

EVALUATE: When q+ is at 3.27 mx = − , 1F
G

 is in the x− direction and 2F
G

is in the +x direction. 
21.25. IDENTIFY: F q E= . Since the field is uniform, the force and acceleration are constant and we can use a constant 

acceleration equation to find the final speed. 
SET UP: A proton has charge +e and mass 271.67 10  kg−× . 

EXECUTE: (a) 19 3 16(1.60 10  C)(2.75 10  N/C) 4.40 10  NF − −= × × = ×  

(b) 
16

11 2
27

4.40 10  N 2.63 10  m/s
1.67 10  kg

Fa
m

−

−

×
= = = ×

×
 

(c) 0x x xv v a t= + gives 11 2 6 5(2.63 10  m/s )(1.00 10  s) 2.63 10  m/sv −= × × = ×  
EVALUATE: The acceleration is very large and the gravity force on the proton can be ignored. 

21.26. IDENTIFY: For a point charge, 2

q
E k

r
= . 

SET UP: E
G

 is toward a negative charge and away from a positive charge. 
EXECUTE: (a) The field is toward the negative charge so is downward. 

9
9 2 2

2

3.00 10  C(8.99 10  N m /C ) 432 N/C
(0.250 m)

E
−×

= × ⋅ = . 

(b) 
9 2 2 9(8.99 10  N m /C )(3.00 10  C) 1.50 m

12.0 N/C
k q

r
E

−× ⋅ ×
= = =  

EVALUATE: At different points the electric field has different directions, but it is always directed toward the 
negative point charge. 

21.27. IDENTIFY: The acceleration that stops the charge is produced by the force that the electric field exerts on it. 
Since the field and the acceleration are constant, we can use the standard kinematics formulas to find acceleration 
and time. 
(a) SET UP: First use kinematics to find the proton’s acceleration. 0xv =  when it stops. Then find the electric 
field needed to cause this acceleration using the fact that F = qE. 
EXECUTE: 2 2

0 02 ( )x x xv v a x x= + − . 0 = (4.50 × 106 m/s)2 + 2a(0.0320 m) and a = 3.16 × 1014 m/s2. Now find the 

electric field, with q = e. eE = ma and E = ma/e = (1.67 × 2710−  kg)(3.16 × 1014 m/s2)/(1.60 × 1910−  C) = 3.30 ×  
106 N/C, to the left. 
(b) SET UP: Kinematics gives v = v0 + at, and v = 0 when the electron stops, so t = v0/a. 
EXECUTE: t = v0/a = (4.50 × 106 m/s)/(3.16 × 1014 m/s2) = 1.42 × 810−  s = 14.2 ns 
(c) SET UP: In part (a) we saw that the electric field is proportional to m, so we can use the ratio of the electric 
fields. e p e p/ /E E m m= and ( )e e p p/E m m E= . 

EXECUTE: Ee = [(9.11 × 3110−  kg)/(1.67 × 2710−  kg)](3.30 × 106 N/C) = 1.80 × 103 N/C, to the right 
EVALUATE: Even a modest electric field, such as the ones in this situation, can produce enormous accelerations 
for electrons and protons. 
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21.28. IDENTIFY: Use constant acceleration equations to calculate the upward acceleration a and then apply q=F E
G G

to 
calculate the electric field. 
SET UP: Let +y be upward. An electron has charge q e= − . 

EXECUTE: (a) 0 0yv = and ya a= , so 21
0 0 2y yy y v t a t− = + gives 21

0 2y y at− = . Then 

2120
2 6 2

2( ) 2(4.50 m) 1.00 10 m s
(3.00 10 s)

y ya
t −

−
= = = ×

×
. 

231 12

19

(9.11 10 kg) (1.00 10 m s ) 5.69 N C
1.60 10 C

F maE
q q

−

−

× ×
= = = =

×
 

The force is up, so the electric field must be downward since the electron has negative charge. 
(b) The electron’s acceleration is ~ 1110 g , so gravity must be negligibly small compared to the electrical force. 
EVALUATE: Since the electric field is uniform, the force it exerts is constant and the electron moves with 
constant acceleration. 

21.29. (a) IDENTIFY: Eq. (21.4) relates the electric field, charge of the particle, and the force on the particle. If the 
particle is to remain stationary the net force on it must be zero. 
SET UP: The free-body diagram for the particle is sketched in Figure 21.29. The weight is mg, downward. For 
the net force to be zero the force exerted by the electric field must be upward. The electric field is downward. Since 
the electric field and the electric force are in opposite directions the charge of the particle is negative. 

 

mg q E=  

Figure 21.29  

EXECUTE: 
3 2

5(1.45 10  kg)(9.80 m/s ) 2.19 10  C and 21.9 C
650 N/C

mgq q
E

μ
−

−×
= = = × = −  

(b) SET UP: The electrical force has magnitude .EF q E eE= =  The weight of a proton is .w mg=  EF w=  so 
eE mg=  

EXECUTE: 
27 2

7
19

(1.673 10  kg)(9.80 m/s ) 1.02 10  N/C.
1.602 10  C

mgE
e

−
−

−

×
= = = ×

×
 

This is a very small electric field. 
EVALUATE: In both cases and ( / ) .q E mg E m q g= =  In part (b) the /m q  ratio is much smaller 8( 10 )−∼  than 

in part (a) 2( 10 )−∼  so E is much smaller in (b). For subatomic particles gravity can usually be ignored compared to 
electric forces. 

21.30. IDENTIFY: Apply 2
0

1
4

q
E

rπ
=

P
. 

SET UP: The iron nucleus has charge 26 .e+  A proton has charge e+ . 

EXECUTE: (a) 
19

11
10 2

0

1 (26)(1.60 10  C) 1.04 10  N/C.
4 (6.00 10  m)

E
π

−

−

×
= = ×

×P
 

(b) 
19

11
proton 11 2

0

1 (1.60 10  C) 5.15 10  N/C.
4 (5.29 10  m)

E
π

−

−

×
= = ×

×P
 

EVALUATE: These electric fields are very large. In each case the charge is positive and the electric fields are 
directed away from the nucleus or proton. 

21.31. IDENTIFY: For a point charge, 2 .
q

E k
r

=  The net field is the vector sum of the fields produced by each charge. A 

charge q in an electric field E
G

 experiences a force .q=F E
G G

 
SET UP: The electric field of a negative charge is directed toward the charge. Point A is 0.100 m from q2 and 
0.150 m from q1. Point B is 0.100 m from q1 and 0.350 m from q2. 
EXECUTE: (a) The electric fields due to the charges at point A are shown in Figure 21.31a. 

9
1 9 2 2 3

1 2 2
1

6.25 10  C(8.99 10  N m /C ) 2.50 10  N/C
(0.150 m)A

q
E k

r

−×
= = × ⋅ = ×  

9
2 9 2 2 4

2 2 2
2

12.5 10  C(8.99 10  N m /C ) 1.124 10  N/C
(0.100 m)A

q
E k

r

−×
= = × ⋅ = ×  
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Since the two fields are in opposite directions, we subtract their magnitudes to find the net field. 
3

2 1 8.74 10  N/C,E E E= − = ×  to the right. 
(b) The electric fields at points B are shown in Figure 21.31b. 

9
1 9 2 2 3

1 2 2
1

6.25 10  C(8.99 10  N m /C ) 5.619 10  N/C
(0.100 m)B

q
E k

r

−×
= = × ⋅ = ×  

9
2 9 2 2 2

2 2 2
2

12.5 10  C(8.99 10  N m /C ) 9.17 10  N/C
(0.350 m)B

q
E k

r

−×
= = × ⋅ = ×  

Since the fields are in the same direction, we add their magnitudes to find the net field. 3
1 2 6.54 10  N/C,E E E= + = ×  

to the right. 
(c) At A, 38.74 10  N/CE = × , to the right. The force on a proton placed at this point would be 

19 3 15(1.60 10  C)(8.74 10  N/C) 1.40 10  N,F qE − −= = × × = ×  to the right. 
EVALUATE: A proton has positive charge so the force that an electric field exerts on it is in the same direction as 
the field. 

  
Figure 21.31 

21.32. IDENTIFY: The electric force is q=F E
G G

. 
SET UP: The gravity force (weight) has magnitude w mg= and is downward. 
EXECUTE: (a) To balance the weight the electric force must be upward. The electric field is downward,  
so for an upward force the charge q of the person must be negative. w F= gives mg q E=  and 

2(60 kg)(9.80 m/s ) 3.9 C
150 N/C

mgq
E

= = = . 

(b) 
2

9 2 2 7
2 2

(3.9 C)(8.99 10  N m /C ) 1.4 10  N
(100 m)

qq
F k

r
′

= = × ⋅ = × . The repulsive force is immense and this is not a 

feasible means of flight. 
EVALUATE: The net charge of charged objects is typically much less than 1 C. 

21.33. IDENTIFY: Eq. (21.3) gives the force on the particle in terms of its charge and the electric field between the 
plates. The force is constant and produces a constant acceleration. The motion is similar to projectile motion; use 
constant acceleration equations for the horizontal and vertical components of the motion. 
(a) SET UP: The motion is sketched in Figure 21.33a. 

 

For an electron .q e= −  

Figure 21.33a  

 and q q=F E
G G

 negative gives that F
G

 and E
G

 are in opposite directions, so F
G

 is upward. The free-body diagram 
for the electron is given in Figure 21.33b. 

 

EXECUTE: y yF ma=∑  

eE ma=  

Figure 21.33b  
Solve the kinematics to find the acceleration of the electron: Just misses upper plate says that 0 2.00 cmx x− =  
when 0 0.500 cm.y y− = +  
x-component 

6
0 0 01.60 10  m/s, 0,  0.0200 m, ?x xv v a x x t= = × = − = =  

21
0 0 2x xx x v t a t− = +  
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80
6

0

0.0200 m 1.25 10  s
1.60 10  m/sx

x xt
v

−−
= = = ×

×
 

In this same time t the electron travels 0.0050 m vertically: 
y-component 

8
0 01.25 10 s, 0,  0.0050 m, ?y yt v y y a−= × = − = + =  

21
0 0 2y yy y v t a t− = +  

13 20
2 8 2

2( ) 2(0.0050 m) 6.40 10  m/s
(1.25 10  s)y

y ya
t −

−
= = = ×

×
 

(This analysis is very similar to that used in Chapter 3 for projectile motion, except that here the acceleration is 
upward rather than downward.) This acceleration must be produced by the electric-field force: eE ma=  

31 13 2

19

(9.109 10  kg)(6.40 10  m/s ) 364 N/C
1.602 10  C

maE
e

−

−

× ×
= = =

×
 

Note that the acceleration produced by the electric field is much larger than g, the acceleration produced by 
gravity, so it is perfectly ok to neglect the gravity force on the elctron in this problem. 

(b) 
19

10 2
27

(1.602 10  C)(364 N/C) 3.49 10  m/s
1.673 10  kgp

eEa
m

−

−

×
= = = ×

×
 

This is much less than the acceleration of the electron in part (a) so the vertical deflection is less and the  
proton won’t hit the plates. The proton has the same initial speed, so the proton takes the same time 

81.25 10  st −= ×  to travel horizontally the length of the plates. The force on the proton is downward (in the  
same direction as ,E

G
 since q is positive), so the acceleration is downward and 10 23.49 10  m/s .ya = − ×   

2 10 2 8 2 61 1
0 0 2 2 ( 3.49 10  m/s )(1.25 10  s) 2.73 10  m.y yy y v t a t − −− = + = − × × = − ×  The displacement is 62.73 10  m,−×  

downward. 
(c) EVALUATE: The displacements are in opposite directions because the electron has negative charge and the 
proton has positive charge. The electron and proton have the same magnitude of charge, so the force the electric 
field exerts has the same magnitude for each charge. But the proton has a mass larger by a factor of 1836 so its 
acceleration and its vertical displacement are smaller by this factor. 

21.34. IDENTIFY: Apply Eq.(21.7) to calculate the electric field due to each charge and add the two field vectors to find 
the resultant field. 
SET UP: For 1q , ˆr̂ = j . For 2q , ˆ ˆˆ cos sinθ θr = i + j , where θ  is the angle between 2E

G
and the +x-axis. 

EXECUTE: (a) 
( )

9 2 2 9
41

1 22
0 1

(9.0 10  N m /C )( 5.00 10  C)ˆ ˆ( 2.813 10  N/C)  
4 0.0400 m

q
rπ

−× ⋅ − ×
= = = − ×E j j

G
P

. 

( )

9 2 2 9
42

2 22 2
0 2

(9.0 10  N m /C )(3.00 10  C) 1.080 10  N/C
4 0.0300 m (0.0400 m)

q
rπ

−× ⋅ ×
= = = ×

+
E
G

P
. The angle of 2 ,E

G
 measured from the 

-axis,x  is ( )1 4.00 cm180 tan 126.93.00 cm
−− = °°  Thus 

4 3 3
2

ˆ ˆ ˆ ˆ(1.080 10  N/C)( cos126.9 sin126.9 ) ( 6.485 10  N/C) (8.64 10  N/C)= × ° + ° = − × + ×E i j i j
G

 
(b) The resultant field is 3 4 3

1 2
ˆ ˆ( 6.485 10  N/C) ( 2.813 10  N/C 8.64 10  N/C)= − × + − × + ×E + E i j

G G
. 

3 4
1 2

ˆ ˆ( 6.485 10  N/C) (1.95 10  N/C)= − × − ×E + E i j
G G

. 

EVALUATE: 1E
G

 is toward 1q since 1q is negative. 2E
G

 is directed away from 2,q  since 2q is positive. 
21.35. IDENTIFY: Apply constant acceleration equations to the motion of the electron. 

SET UP: Let +x be to the right and let y+ be downward. The electron moves 2.00 cm to the right and 0.50 cm 
downward. 
EXECUTE: Use the horizontal motion to find the time when the electron emerges from the field. 

6
0 00.0200 m, 0, 1.60 10 m sx xx x a v− = = = × . 21

0 0 2x xx x v t a t− = + gives 81.25 10 st −= × . Since 0xa = , 

61.60 10 m sxv = × . 8
0 0y0.0050 m, 0, 1.25 10 sy y v t −− = = = × . 0

0 2
y yv v

y y t
+⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

 gives 58.00 10 m syv = × . 

Then 2 2 61.79 10 m sx yv v v= + = × . 

EVALUATE: 0y y yv v a t= + gives 13 26.4 10  m/sya = × . The electric field between the plates is 
31 13 2

19

(9.11 10  kg)(6.4 10  m/s ) 364 V/m
1.60 10  C

yma
E

e

−

−

× ×
= = =

×
. This is not a very large field. 
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21.36. IDENTIFY: Use the components of E
G

 from Example 21.6 to calculate the magnitude and direction of E
G

. Use 
qF = E

G G
to calculate the force on the 2.5 nC− charge and use Newton's third law for the force on the 

8.0 nC− charge. 
SET UP: From Example 21.6, ˆ ˆ( 11 N/C) (14 N/C)= −E i + j

G
. 

EXECUTE: (a) 2 2 2 2( 11 N/C) (14 N/C) 17.8 N/Cx yE E E= + = − + = . 1 1tan tan (14 11) 51.8y

x

E
E

− −
⎛ ⎞
⎜ ⎟ = = °
⎜ ⎟
⎝ ⎠

, so 

128θ = °  counterclockwise from the +x-axis. 
(b) (i) qF = E

G G
so 9 8(17.8 N C)(2.5 10 C) 4.45 10 NF − −= × = × , at 52° below the +x-axis. 

(ii) 84.45 10  N−× at 128° counterclockwise from the +x-axis. 
EVALUATE: The forces in part (b) are repulsive so they are along the line connecting the two charges and in each 
case the force is directed away from the charge that exerts it. 

21.37. IDENTIFY and SET UP: The electric force is given by Eq. (21.3). The gravitational force is .e ew m g=  Compare 
these forces. 
(a) EXECUTE: 31 2 30(9.109 10  kg)(9.80 m/s ) 8.93 10  New − −= × = ×  

In Examples 21.7 and 21.8, 41.00 10  N/C,E = ×  so the electric force on the electron has magnitude 
19 4 15(1.602 10  C)(1.00 10  N/C) 1.602 10  N.EF q E eE − −= = = × × = ×  

30
15

15

8.93 10  N 5.57 10
1.602 10  N

e

E

w
F

−
−

−

×
= = ×

×
 

The gravitational force is much smaller than the electric force and can be neglected. 
(b) mg q E=  

19 4 2 16/ (1.602 10  C)(1.00 10  N/C)/(9.80 m/s ) 1.63 10  kgm q E g − −= = × × = ×  
16

14 14
31

1.63 10  kg 1.79 10 ;  1.79 10 .
9.109 10  kg e

e

m m m
m

−

−

×
= = × = ×

×
 

EVALUATE: m is much larger than .em  We found in part (a) that if em m= the gravitational force is much smaller 
than the electric force. q is the same so the electric force remains the same. To get w large enough to equal ,EF  
the mass must be made much larger. 
(c) The electric field in the region between the plates is uniform so the force it exerts on the charged object is 
independent of where between the plates the object is placed. 

21.38. IDENTIFY: Apply constant acceleration equations to the motion of the proton. /E F q= . 

SET UP: A proton has mass 27
p 1.67 10  kgm −= ×  and charge e+ . Let +x be in the direction of motion of the proton. 

EXECUTE: (a) 0 0xv = . 
p

eEa
m

= . 21
0 0 2x xx x v t a t− = + gives 2 2

0
1 1
2 2x

p

eEx x a t t
m

− = = . Solving for E gives 

27

19 6 2

2(0.0160 m)(1.67 10 kg) 148 N C.
(1.60 10 C)(1.50 10 s)

E
−

− −

×
= =

× ×
 

(b) 4
0

p

2.13 10 m s.x x x
eEv v a t t
m

= + = = ×  

EVALUATE: The electric field is directed from the positively charged plate toward the negatively charged plate 
and the force on the proton is also in this direction. 

21.39. IDENTIFY: Find the angle θ  that r̂  makes with the +x-axis. Then ˆ ˆˆ (cos ) (sin )θ θr = i + j . 
SET UP: tan /y xθ =  

EXECUTE: (a) 1 1.35tan  rad
0 2

π− −⎛ ⎞ = −⎜ ⎟
⎝ ⎠

. ˆˆ −r = j . 

(b) 1 12tan  rad
12 4

π− ⎛ ⎞ =⎜ ⎟
⎝ ⎠

. 2 2ˆ ˆˆ
2 2

=r i + j . 

(c) 1 2.6tan 1.97 rad 112.9
1.10

− ⎛ ⎞ = = °⎜ ⎟+⎝ ⎠
. ˆ ˆˆ 0.39 0.92−r = i + j  (Second quadrant). 

EVALUATE: In each case we can verify that r̂  is a unit vector, because ˆ ˆ 1⋅r r = . 
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21.40. IDENTIFY: The net force on each charge must be zero. 
SET UP: The force diagram for the 6.50 Cμ−  charge is given in Figure 21.40. FE is the force exerted on the 
charge by the uniform electric field. The charge is negative and the field is to the right, so the force exerted by the 
field is to the left. Fq is the force exerted by the other point charge. The two charges have opposite signs, so the 
force is attractive. Take the +x axis to be to the right, as shown in the figure. 
EXECUTE: (a) 6 8 3(6.50 10  C)(1.85 10  N/C) 1.20 10  NF q E −= = × × = ×  

6 6
1 2 9 2 2 2

2 2

(6.50 10  C)(8.75 10  C)(8.99 10  N m /C ) 8.18 10  N
(0.0250 m)q

q q
F k

r

− −× ×
= = × ⋅ = ×  

0xF =∑  gives 0q ET F F+ − =  and 382 NE qT F F= − = . 
(b) Now Fq is to the left, since like charges repel. 

0xF =∑  gives 0q ET F F− − =  and 32.02 10  NE qT F F= + = × . 
EVALUATE: The tension is much larger when both charges have the same sign, so the force one charge exerts on 
the other is repulsive. 

 
Figure 21.40 

21.41. IDENTIFY and SET UP: Use E
G

 in Eq. (21.3) to calculate ,   to calculate ,m=F F a a
G G G G and a constant acceleration 

equation to calculate the final velocity. Let +x be east. 
(a) EXECUTE: 19 19(1.602 10  C)(1.50 N/C) = 2.403 10  NxF q E − −= = × ×  

19 31 11 2/ (2.403 10  N)/(9.109 10  kg) = +2.638 10  m/sx xa F m − −= = × × ×  
5 11 2

0 04.50 10  m/s, 2.638 10  m/s ,  0.375 m, ?x x xv a x x v= + × = + × − = =  
2 2 5

0 02 ( ) gives 6.33 10  m/sx x x xv v a x x v= + − = ×  

EVALUATE: E
G

is west and q is negative, so F
G

 is east and the electron speeds up. 
(b) EXECUTE: 19 19(1.602 10  C)(1.50 N/C) = 2.403 10  NxF q E − −= − = − × − ×  

19 27 8 2/ ( 2.403 10  N)/(1.673 10  kg) 1.436 10  m/sx xa F m − −= = − × × = − ×  
4 8 2

0 01.90 10 m/s, 1.436 10  m/s ,  0.375 m, ?x x xv a x x v= + × = − × − = =  
2 2 4

0 02 ( ) gives 1.59 10  m/sx x x xv v a x x v= + − = ×  

EVALUATE: 0 so q > F
G

is west and the proton slows down. 
21.42. IDENTIFY: Coulomb’s law for a single point-charge gives the electric field. 

(a) SET UP: Coulomb’s law for a point-charge is 2
0(1/ 4 ) / .E q rπ= P  

EXECUTE: E = (9.00 × 109 N ⋅ m2/C2)(1.60 × 1910−  C)/(1.50 × 1510−  m)2 = 6.40 × 1020 N/C 
(b) Taking the ratio of the electric fields gives 

E/Eplates = (6.40 × 1020 N/C)/(1.00 × 104 N/C) = 6.40 × 1016 times as strong 
EVALUATE: The electric field within the nucleus is huge compared to typical laboratory fields! 

21.43. IDENTIFY: Calculate the electric field due to each charge and find the vector sum of these two fields. 
SET UP: At points on the x-axis only the x component of each field is nonzero. The electric field of a point 
charge points away from the charge if it is positive and toward it if it is negative. 
EXECUTE: (a) Halfway between the two charges, 0.E =  

(b) For | |x a< , 2 2 2 2 2
0 0

1 4
4 ( ) ( ) 4 ( )x

q q q axE
π a x a x x aπ

⎛ ⎞
= − = −⎜ ⎟+ − −⎝ ⎠P P

. 

For x a> , 
2 2

2 2 2 2 2
0 0

1 2
4 ( ) ( ) 4 ( )x

q q q x aE
π a x a x x aπ

⎛ ⎞ +
= + =⎜ ⎟+ − −⎝ ⎠P P

. 

For x a< − , 
2 2

2 2 2 2 2
0 0

1 2
4 ( ) ( ) 4 ( )x

q q q x aE
π a x a x x aπ

⎛ ⎞− +
= + = −⎜ ⎟+ − −⎝ ⎠P P

. 

The graph of xE versus x is sketched in Figure 21.43. 
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EVALUATE: The magnitude of the field approaches infinity at the location of one of the point charges. 

 
Figure 21.43 

21.44. IDENTIFY: For a point charge, 2

q
E k

r
= . For the net electric field to be zero, 1E

G
and 2E

G
 must have equal 

magnitudes and opposite directions. 
SET UP: Let 1 0.500 nCq = +  and 2 8.00 nC.q = +  E

G
 is toward a negative charge and away from a positive charge. 

EXECUTE: The two charges and the directions of their electric fields in three regions are shown in Figure 21.44. 
Only in region II are the two electric fields in opposite directions. Consider a point a distance x from 1q so a 

distance 1.20 m x− from 2q . 1 2E E= gives 2 2

0.500 nC 8.00 nC
(1.20 )

k k
x x

=
−

. 2 216 (1.20 m )x x= − . 4 (1.20 m )x x= ± −  

and 0.24 mx =  is the positive solution. The electric field is zero at a point between the two charges, 0.24 m from 
the 0.500 nC charge and 0.96 m from the 8.00 nC charge. 
EVALUATE: There is only one point along the line connecting the two charges where the net electric field is zero. 
This point is closer to the charge that has the smaller magnitude. 

  
Figure 21.44 

21.45. IDENTIFY: Eq.(21.7) gives the electric field of each point charge. Use the principle of superposition and add the 
electric field vectors. In part (b) use Eq.(21.3) to calculate the force, using the electric field calculated in part (a). 
(a) SET UP: The placement of charges is sketched in Figure 21.45a. 

 
Figure 21.45a 

The electric field of a point charge is directed away from the point charge if the charge is positive and toward the 

point charge if the charge is negative. The magnitude of the electric field is 2
0

1 ,
4

q
E

rπ
=

P
where r is the distance 

between the point where the field is calculated and the point charge. 
(i) At point a the fields 1 1 2 2 of  and  of q qE E

G G
 are directed as shown in Figure 21.45b. 

 
Figure 21.45b 
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EXECUTE: 
9

1 9 2 2
1 2 2

0 1

1 2.00 10  C(8.988 10  N m /C ) 449.4 N/C
4 (0.200 m)

q
E

rπ

−×
= = × ⋅ =

P
 

9
2 9 2 2

2 2 2
0 2

1 5.00 10  C(8.988 10  N m /C ) 124.8 N/C
4 (0.600 m)

q
E

rπ

−×
= = × ⋅ =

P
 

1 1449.4 N/C, 0x yE E= =  

2 2124.8 N/C, 0x yE E= =  

1 2 449.4 N/C 124.8 N/C 574.2 N/Cx x xE E E= + = + + = +  

1 2 0y y yE E E= + =  
The resultant field at point a has magnitude 574 N/C and is in the +x-direction. 
(ii) SET UP: At point b the fields 1 1 2 2of  and  of q qE E

G G
 are directed as shown in Figure 21.45c. 

 
Figure 21.45c 

EXECUTE: 
( )

9
1 9 2 2

1 22
0 1

1 2.00 10  C(8.988 10  N m /C ) 12.5 N/C
4 1.20 m

q
E

rπ

−×
= = × ⋅ =

P
 

( )
( )

9
2 9 2 2

2 22
0 2

1 5.00 10  C8.988 10  N m /C 280.9 N/C
4 0.400 m

q
E

rπ

−×
= = × ⋅ =

P
 

1 112.5 N/C, 0x yE E= =  

2 2280.9 N/C, 0x yE E= − =  

1 2 12.5 N/C 280.9 N/C 268.4 N/Cx x xE E E= + = + − = −  

1 2 0y y yE E E= + =  
The resultant field at point b has magnitude 268 N/C and is in the x− -direction. 
(iii) SET UP: At point c the fields 1 1 2 2of  and  of q qE E

G G
 are directed as shown in Figure 21.45d. 

 
Figure 21.45d 

EXECUTE: 
( )

9
1 9 2 2

1 22
0 1

1 2.00 10  C(8.988 10  N m /C ) 449.4 N/C
4 0.200 m

q
E

rπ

−×
= = × ⋅ =

P
 

( )
9

2 9 2 2
2 2 2

0 2

1 5.00 10  C8.988 10  N m /C 44.9 N/C
4 (1.00 m)

q
E

rπ

−×
= = × ⋅ =

P
 

1 1449.4 N/C, 0x yE E= − =  

2 244.9 N/C, 0x yE E= + =  

1 2 449.4 N/C 44.9 N/C 404.5 N/Cx x xE E E= + = − + = −  

1 2 0y y yE E E= + =  
The resultant field at point b has magnitude 404 N/C and is in the x− -direction. 
(b) SET UP: Since we have calculated E

G
 at each point the simplest way to get the force is to use .e= −F E

G G
 

EXECUTE: (i) 19 17(1.602 10  C)(574.2 N/C) 9.20 10  N, -directionF x− −= × = × −  

(ii) 19 17(1.602 10  C)(268.4 N/C) 4.30 10 N, -directionF x− −= × = × +  

(iii) 19 17(1.602 10  C)(404.5 N/C) 6.48 10  N, -directionF x− −= × = × +  
EVALUATE: The general rule for electric field direction is away from positive charge and toward negative 
charge. Whether the field is in the - or -directionx x+ − depends on where the field point is relative to the charge 
that produces the field. In part (a) the field magnitudes were added because the fields were in the same direction 
and in (b) and (c) the field magnitudes were subtracted because the two fields were in opposite directions. In  
part (b) we could have used Coulomb's law to find the forces on the electron due to the two charges and then 
added these force vectors, but using the resultant electric field is much easier. 
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21.46. IDENTIFY: Apply Eq.(21.7) to calculate the field due to each charge and then require that the vector sum of the 
two fields to be zero. 
SET UP: The field of each charge is directed toward the charge if it is negative and away from the charge if it is 
positive . 
EXECUTE: The point where the two fields cancel each other will have to be closer to the negative charge, 
because it is smaller. Also, it can’t be between the two charges, since the two fields would then act in the same 
direction. We could use Coulomb’s law to calculate the actual values, but a simpler way is to note that the 8.00 nC 
charge is twice as large as the 4.00 nC−  charge. The zero point will therefore have to be a factor of 2  farther 
from the 8.00 nC charge for the two fields to have equal magnitude. Calling x  the distance from the –4.00 nC 
charge: 1.20 2x x+ =  and 2.90 mx = . 
EVALUATE: This point is 4.10 m from the 8.00 nC charge. The two fields at this point are in opposite directions 
and have equal magnitudes. 

21.47. IDENTIFY: 2

q
E k

r
= . The net field is the vector sum of the fields due to each charge. 

SET UP: The electric field of a negative charge is directed toward the charge. Label the charges q1, q2 and q3, as 
shown in Figure 21.47a. This figure also shows additional distances and angles. The electric fields at point P are 
shown in Figure 21.47b. This figure also shows the xy coordinates we will use and the x and y components of the 
fields 1E

G
, 2E
G

 and 3E
G

. 

EXECUTE: 
6

9 2 2 6
1 3 2

5.00 10  C(8.99 10  N m /C ) 4.49 10  N/C
(0.100 m)

E E
−×

= = × ⋅ = ×  

6
9 2 2 6

2 2

2.00 10  C(8.99 10  N m /C ) 4.99 10  N/C
(0.0600 m)

E
−×

= × ⋅ = ×  

1 2 3 0y y y yE E E E= + + =  and 7
1 2 3 2 12 cos53.1 1.04 10  N/Cx x x xE E E E E E= + + = + = ×°  

71.04 10  N/CE = × , toward the 2.00 Cμ−  charge. 
EVALUATE: The x-components of the fields of all three charges are in the same direction. 

  
Figure 21.47 

21.48. IDENTIFY: A positive and negative charge, of equal magnitude q, are on the x-axis, a distance a from the origin. 
Apply Eq.(21.7) to calculate the field due to each charge and then calculate the vector sum of these fields. 
SET UP: E

G
 due to a point charge is directed away from the charge if it is positive and directed toward the charge 

if it is negative. 

EXECUTE: (a) Halfway between the charges, both fields are in the -directionx− and 2
0

1 2 ,
4

qE
aπ

=
P

 in the 

-directionx− . 

(b) 2 2
0

1
4 ( ) ( )x

q qE
a x a xπ

⎛ ⎞−
= −⎜ ⎟+ −⎝ ⎠P

 for | |x a< . 2 2
0

1
4 ( ) ( )x

q qE
a x a xπ

⎛ ⎞−
= +⎜ ⎟+ −⎝ ⎠P

for x a> . 

2 2
0

1
4 ( ) ( )x

q qE
a x a xπ

⎛ ⎞−
= −⎜ ⎟+ −⎝ ⎠P

 for x a< − . xE  is graphed in Figure 21.48. 
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EVALUATE: At points on the x axis and between the charges, xE  is in the -directionx− because the fields from 
both charges are in this direction. For x a< − and x a> + , the fields from the two charges are in opposite 
directions and the field from the closer charge is larger in magnitude. 

 
Figure 21.48 

21.49. IDENTIFY: The electric field of a positive charge is directed radially outward from the charge and has magnitude 

2
0

1 .
4

q
E

rπ
=

P
 The resultant electric field is the vector sum of the fields of the individual charges. 

SET UP: The placement of the charges is shown in Figure 21.49a. 

 
Figure 21.49a 

EXECUTE: (a) The directions of the two fields are shown in Figure 21.49b. 

 

1 2 2
0

1 with 0.150 m.
4

q
E E r

rπ
= = =

P
 

2 1 0; 0, 0x yE E E E E= − = = =  

Figure 21.49b  
(b) The two fields have the directions shown in Figure 21.49c. 

 
1 2 , in the -directionE E E x= + +  

Figure 21.49c  
9

9 2 21
1 2 2

0 1

1 6.00 10  C(8.988 10  N m /C ) 2396.8 N/C
4 (0.150 m)

q
E

rπ

−×
= = × ⋅ =

P
 

9
2 9 2 2

2 2 2
0 2

1 6.00 10  C(8.988 10  N m /C ) 266.3 N/C
4 (0.450 m)

q
E

rπ

−×
= = × ⋅ =

P
 

1 2 2396.8 N/C 266.3 N/C 2660 N/C; 2260 N/C, 0x yE E E E E= + = + = = + =  
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(c) The two fields have the directions shown in Figure 21.49d. 

 

0.400 msin 0.800
0.500 m

θ = =  

0.300 mcos 0.600
0.500 m

θ = =  

Figure 21.49d  

1
1 2

0 1

1
4

q
E

rπ
=

P
 

9
9 2 2

1 2

6.00 10  C(8.988 10  N m /C ) 337.1 N/C
(0.400 m)

E
−×

= × ⋅ =  

2
2 2

0 2

1
4

q
E

rπ
=

P
 

9
9 2 2

2 2

6.00 10  C(8.988 10  N m /C ) 215.7 N/C
(0.500 m)

E
−×

= × ⋅ =  

1 1 10,  337.1 N/Cx yE E E= = − = −  

2x 2 cos (215.7 N/C)(0.600) 129.4 N/CE E θ= + = + = +  

2y 2 sin (215.7 N/C)(0.800) 172.6 N/CE E θ= − = − = −  

x 1 2 129 N/Cx xE E E= + = +  

y 1 2 337.1 N/C 172.6 N/C 510 N/Cy yE E E= + = − − = −  
2 2 2 2(129 N/C) ( 510 N/C) 526 N/Cx yE E E= + = + − =  

E
G

 and its components are shown in Figure 21.49e. 

 

tan y

x

E
E

α =  

510 N/Ctan 3.953
129 N/C

α −
= = −
+

 

284 C, counterclockwise from -axisxα = ° +  

Figure 21.49e  
(d) The two fields have the directions shown in Figure 21.49f. 

 

0.200 msin 0.800
0.250 m

θ = =  

Figure 21.49f  
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The components of the two fields are shown in Figure 21.49g. 

 

1 2 2
0

1
4

q
E E

rπ
= =

P
 

9
9 2 2

1 2

6.00 10  C(8.988 10  N m /C )
(0.250 m)

E
−×

= × ⋅  

1 2 862.8 N/CE E= =  

Figure 21.49g  

1 1 2 2cos , cosx xE E E Eθ θ= − = +  

1 2 0x x xE E E= + =  

1 1 2 2sin , siny yE E E Eθ θ= + = +  
( )( )1 2 1 12 2 sin 2 862.8 N/C 0.800 1380 N/Cy y y yE E E E E θ= + = = = =  

1380 N/C, in the -direction.E y= +  
EVALUATE: Point a is symmetrically placed between identical charges, so symmetry tells us the electric field 
must be zero. Point b is to the right of both charges and both electric fields are in the +x-direction and the resultant 
field is in this direction. At point c both fields have a downward component and the field of 2q  has a component to 
the right, so the net E

G
 is in the 4th quadrant. At point d both fields have an upward component but by symmetry 

they have equal and opposite x-components so the net field is in the +y-direction. We can use this sort of reasoning 
to deduce the general direction of the net field before doing any calculations. 

21.50. IDENTIFY: Apply Eq.(21.7) to calculate the field due to each charge and then calculate the vector sum of those fields. 
SET UP: The fields due to 1q and to 2q are sketched in Figure 21.50. 

EXECUTE: 
9

2 2
0

1 (6.00 10  C) ˆ ˆ( ) 150  N/C
4 (0.6 m)π

−×
= − = −E i i

G
P

. 

9
1 2 2

0

1 1 1ˆ ˆ ˆ ˆ(4.00 10  C) (0.600) (0.800) (21.6 28.8 ) N C
4 (1.00 m) (1.00 m)π

− ⎛ ⎞
= × + =⎜ ⎟

⎝ ⎠
E i j i + j
G

P
. 

1 2
ˆ ˆ( 128.4 N/C) (28.8 N/C)= −E = E + E i + j

G G G
. 2 2(128.4 N/C) (28.8 N/C) 131.6 N/CE = + =  at 

1 28.8tan 12.6
128.4

θ − ⎛ ⎞= = °⎜ ⎟
⎝ ⎠

 above the x− axis and therefore 196.2° counterclockwise from the +x axis. 

EVALUATE: 1E
G

is directed toward 1q because 1q is negative and 2E
G

is directed away from 2q because 2q is positive. 

 
Figure 21.50 

21.51. IDENTIFY: The resultant electric field is the vector sum of the field 1 1 2 2of  and  of .q qE E
G G

 
SET UP: The placement of the charges is shown in Figure 21.51a. 

 
Figure 21.51a 
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EXECUTE: (a) The directions of the two fields are shown in Figure 21.51b. 

 

1
1 2 2

0 1

1
4

q
E E

rπ
= =

P
 

9
9 2 2

1 2

6.00 10  C(8.988 10  N m /C )
(0.150 m)

E
−×

= × ⋅  

1 2 2397 N/CE E= =  

Figure 21.51b  

1 1 2x 22397 N/C, 0 2397 N/C, 0x y yE E E E= − = = − =  

1 2 2( 2397 N/C) 4790 N/Cx x xE E E= + = − = −  

1 2 0y y yE E E= + =  
The resultant electric field at point a in the sketch has magnitude 4790 N/C and is in the -direction.x−  
(b) The directions of the two fields are shown in Figure 21.51c. 

 
Figure 21.51c 

9
1 9 2 2

1 2 2
0 1

1 6.00 10  C(8.988 10  N m /C ) 2397 N/C
4 (0.150 m)

q
E

rπ

−×
= = × ⋅ =

P
 

9
2 9 2 2

2 2 2
0 2

1 6.00 10  C(8.988 10  N m /C ) 266 N/C
4 (0.450 m)

q
E

rπ

−×
= = × ⋅ =

P
 

1 1 2 22397 N/C, 0 266 N/C, 0x y x yE E E E= + = = − =  

1 2 2397 N/C 266 N/C 2130 N/Cx x xE E E= + = + − = +  

1 2 0y y yE E E= + =  
The resultant electric field at point b in the sketch has magnitude 2130 N/C and is in the -direction.x+  
(c) The placement of the charges is shown in Figure 21.51d. 

 

0.300 msin 0.600
0.500 m

θ = =  

0.400 mcos 0.800
0.500 m

θ = =  

Figure 21.51d  
The directions of the two fields are shown in Figure 21.51e. 

 

1
1 2

0 1

1
4

q
E

rπ
=

P
 

9
9 2 2

1 2

6.00 10  C(8.988 10  N m /C )
(0.400 m)

E
−×

= × ⋅  

1 337.0 N/CE =  

2
2 2

0 2

1
4

q
E

rπ
=

P
 

9
9 2 2

2 2

6.00 10  C(8.988 10  N m /C )
(0.500 m)

E
−×

= × ⋅  

2 215.7 N/CE =  

Figure 21.51e  

1 1 10, 337.0 N/Cx yE E E= = − = −  

2 2 sin (215.7 N/C)(0.600) 129.4 N/CxE E θ= − = − = −  

2 2 cos (215.7 N/C)(0.800) 172.6 N/CyE E θ= + = + = +  
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1 2 129 N/Cx x xE E E= + = −  

1 2 337.0 N/C 172.6 N/C 164 N/Cy y yE E E= + = − + = −  
2 2 209 N/Cx yE E E= + =  

The field E
G

 and its components are shown in Figure 21.51f. 

 

tan y

x

E
E

α =  

164 N/Ctan 1.271
129 N/C

α −
= = +
−

 

232 , counterclockwise from -axisxα = ° +  

Figure 21.51f  
(d) The placement of the charges is shown in Figure 21.51g. 

 

0.200 msin 0.800
0.250 m

θ = =  

0.150 mcos 0.600
0.250 m

θ = =  

Figure 21.51g  
The directions of the two fields are shown in Figure 21.51h. 

 

1 2 2
0

1
4

q
E E

rπ
= =

P
 

9
9 2 2

1 2

6.00 10  C(8.988 10  N m /C )
(0.250 m)

E
−×

= × ⋅  

1 862.8 N/CE =  

2 1E 862.8 N/CE= =  

Figure 21.51h  

1 1 2 2cos , cosx xE E E Eθ θ= − = −  

( )( )1 2 2 862.8 N/C 0.600 1040 N/Cx x xE E E= + = − = −  

1 1 2 2sin , siny yE E E Eθ θ= + = −  

1 2 0y y yE E E= + =  
1040 N/C, in the -direction.E x= −  

EVALUATE:  The electric field produced by a charge is toward a negative charge and away from a positive charge. 
As in Exercise 21.45, we can use this rule to deduce the direction of the resultant field at each point before doing 
any calculations. 

21.52. IDENTIFY: For a long straight wire, 
02

E
r

λ
π

=
P

. 

SET UP: 9 2 2

0

1 4.49 10  N m /C
2π

= × ⋅
P

. 

EXECUTE: 
10

0

1.5 10 C m 1.08 m
2 (2.50 N C)

r
π

−×
= =

P
 

EVALUATE: For a point charge, E is proportional to 21/ .r  For a long straight line of charge, E is proportional to 1/ .r  
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21.53. IDENTIFY: Apply Eq.(21.10) for the finite line of charge and 
02

E λ
π

=
P

for the infinite line of charge. 

SET UP: For the infinite line of positive charge, E
G

is in the +x direction. 
EXECUTE: (a) For a line of charge of length 2a centered at the origin and lying along the y-axis, the electric field 

is given by Eq.(21.10): 
2 2

0

1 ˆ
2 1x x a

λ
π +

E = i
G

P
. 

(b) For an infinite line of charge: 
0

ˆ
2 x
λ
π

E = i
G

P
. Graphs of electric field versus position for both distributions of 

charge are shown in Figure 21.53. 
EVALUATE: For small x, close to the line of charge, the field due to the finite line approaches that of the infinite 
line of charge. As x increases, the field due to the infinite line falls off more slowly and is larger than the field of 
the finite line. 

 
Figure 21.53 

21.54. (a) IDENTIFY: The field is caused by a finite uniformly charged wire. 
SET UP: The field for such a wire a distance x from its midpoint is 

2 2
0 0

1 12
2 4( / ) 1 ( / ) 1

E
x x a x x a

λ λ
π π

⎛ ⎞
= = ⎜ ⎟

+ +⎝ ⎠P P
. 

EXECUTE: E = 
( )( )9 2 2 9

2

18.0 10  N m / C 175 10  C/m

6.00 cm(0.0600 m) 1
4.25 cm

−× ⋅ ×

⎛ ⎞ +⎜ ⎟
⎝ ⎠

 = 3.03 × 104 N/C, directed upward. 

(b) IDENTIFY: The field is caused by a uniformly charged circular wire. 

SET UP: The field for such a wire a distance x from its midpoint is 2 2 3/2
0

1
4 ( )

QxE
x aπ

=
+P

. We first find the radius 

of the circle using 2πr = l. 
EXECUTE: Solving for r gives r = l/2π = (8.50 cm)/2π = 1.353 cm 
The charge on this circle is Q = λl = (175 nC/m)(0.0850 m) = 14.88 nC 
The electric field is 

( )3 / 22 2
0

1
4

QxE
x aπ

=
+P

 = 
( )( )( )9 2 2 9

3 / 22 2

9.00 10 N m /C 14.88 10 C/m 0.0600 m

(0.0600 m) (0.01353 m)

−× ⋅ ×

⎡ ⎤+⎣ ⎦
 

E = 3.45 × 104 N/C, upward. 
EVALUATE: In both cases, the fields are of the same order of magnitude, but the values are different because the 
charge has been bent into different shapes. 

21.55. IDENTIFY: For a ring of charge, the electric field is given by Eq. (21.8). qF = E
G G

. In part (b) use Newton's third 
law to relate the force on the ring to the force exerted by the ring. 
SET UP: 90.125 10 C,Q −= ×  0.025 ma = and 0.400 mx = . 

EXECUTE: (a) 2 2 3/ 2
0

1 ˆ ˆ(7.0 N/C)
4 ( )

Qx
x aπ +

E = i = i
G

P
. 

(b) 6 5
on ring on q

ˆ ˆ( 2.50 10 C) (7.0 N/C) (1.75 10  N)q − −− = − = − − × = ×F = F E i i
G G G

 
EVALUATE: Charges q and Q have opposite sign, so the force that q exerts on the ring is attractive. 
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21.56. IDENTIFY: We must use the appropriate electric field formula: a uniform disk in (a), a ring in (b) because all the 
charge is along the rim of the disk, and a point-charge in (c). 
(a) SET UP: First find the surface charge density (Q/A), then use the formula for the field due to a disk of charge, 

2
0

11
2 ( / ) 1

xE
R x

σ ⎡ ⎤
= −⎢ ⎥

⎢ ⎥+⎣ ⎦P
. 

EXECUTE: The surface charge density is 
9

2 2

6.50 10 C
(0.0125 m)

Q Q
A r

σ
π π

−×
= = =  = 1.324 × 510−  C/m2. 

The electric field is 

2
0

11
2 ( / ) 1

xE
R x

σ ⎡ ⎤
= −⎢ ⎥

⎢ ⎥+⎣ ⎦P
 = 

5 2

12 2 2 2

1.324 10  C/m 11
2(8.85 10  C /N m ) 1.25 cm 1

2.00 cm

−

−

× ⎡ ⎤−⎢ ⎥× ⋅ ⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

Ex = 1.14 × 105 N/C, toward the center of the disk. 

(b) SET UP: For a ring of charge, the field is 
( )3 / 22 2

0

1
4

QxE
x aπ

=
+P

. 

EXECUTE: Substituting into the electric field formula gives 

( )3 / 22 2
0

1
4

QxE
x aπ

=
+P

 = 
9 2 2 9

3 / 22 2

(9.00 10  N m /C )(6.50 10  C)(0.0200 m)

(0.0200 m) (0.0125 m)

−× ⋅ ×

⎡ ⎤+⎣ ⎦
 

E = 8.92 × 104 N/C, toward the center of the disk. 

(c) SET UP: For a point charge, ( ) 2
01/ 4 / .E q rπ= P  

EXECUTE: E = (9.00 × 109 N ⋅ m2/C2)(6.50 × 910−  C)/(0.0200 m)2 = 1.46 × 105 N/C 
(d) EVALUATE: With the ring, more of the charge is farther from P than with the disk. Also with the ring the 
component of the electric field parallel to the plane of the ring is greater than with the disk, and this component 
cancels. With the point charge in (c), all the field vectors add with no cancellation, and all the charge is closer to 
point P than in the other two cases. 

21.57. IDENTIFY: By superposition we can add the electric fields from two parallel sheets of charge. 
SET UP: The field due to each sheet of charge has magnitude 0/ 2σ P and is directed toward a sheet of negative 
charge and away from a sheet of positive charge. 
(a) The two fields are in opposite directions and 0.E =  
(b) The two fields are in opposite directions and 0.E =  

(c) The fields of both sheets are downward and 
0 0

2
2

E σ σ
= =

P P
, directed downward. 

EVALUATE: The field produced by an infinite sheet of charge is uniform, independent of distance from the sheet. 
21.58. IDENTIFY and SET UP: The electric field produced by an infinite sheet of charge with charge density σ has 

magnitude 
02

E
σ

=
P

. The field is directed toward the sheet if it has negative charge and is away from the sheet if it 

has positive charge. 
EXECUTE: (a) The field lines are sketched in Figure 21.58a. 
(b) The field lines are sketched in Figure 21.58b. 
EVALUATE: The spacing of the field lines indicates the strength of the field. In part (a) the two fields add 
between the sheets and subtract in the regions to the left of A and to the right of B. In part (b) the opposite is true. 

  
Figure 21.58 
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21.59. IDENTIFY: The force on the particle at any point is always tangent to the electric field line at that point. 
SET UP: The instantaneous velocity determines the path of the particle. 
EXECUTE: In Fig.21.29a the field lines are straight lines so the force is always in a straight line and velocity and 
acceleration are always in the same direction. The particle moves in a straight line along a field line, with 
increasing speed. In Fig.21.29b the field lines are curved. As the particle moves its velocity and acceleration are 
not in the same direction and the trajectory does not follow a field line. 
EVALUATE: In two-dimensional motion the velocity is always tangent to the trajectory but the velocity is not 
always in the direction of the net force on the particle. 

21.60. IDENTIFY: The field appears like that of a point charge a long way from the disk and an infinite sheet close to the 
disk’s center. The field is symmetrical on the right and left. 
SET UP: For a positive point charge, E is proportional to 1/r 2 and is directed radially outward. For an infinite 
sheet of positive charge, the field is uniform and is directed away from the sheet. 
EXECUTE: The field is sketched in Figure 21.60. 
EVALUATE: Near the disk the field lines are parallel and equally spaced, which corresponds to a uniform field. 
Far from the disk the field lines are getting farther apart, corresponding to the 1/r 2  dependence for a point charge. 

 
Figure 21.60 

21.61. IDENTIFY: Use symmetry to deduce the nature of the field lines. 
(a) SET UP: The only distinguishable direction is toward the line or away from the line, so the electric field lines 
are perpendicular to the line of charge, as shown in Figure 21.61a. 

 
Figure 21.61a 

(b) EXECUTE and EVALUATE: The magnitude of the electric field is inversely proportional to the spacing of the 
field lines. Consider a circle of radius r with the line of charge passing through the center, as shown in 
Figure 21.61b. 

 
Figure 21.61b 

The spacing of field lines is the same all around the circle, and in the direction perpendicular to the plane of the 
circle the lines are equally spaced, so E depends only on the distance r. The number of field lines passing out 
through the circle is independent of the radius of the circle, so the spacing of the field lines is proportional to the 
reciprocal of the circumference 2 rπ  of the circle. Hence E is proportional to 1/r. 

21.62. IDENTIFY: Field lines are directed away from a positive charge and toward a negative charge. The density of 
field lines is proportional to the magnitude of the electric field. 
SET UP: The field lines represent the resultant field at each point, the net field that is the vector sum of the fields 
due to each of the three charges. 
EXECUTE: (a) Since field lines pass from positive charges and toward negative charges, we can deduce that the 
top charge is positive, middle is negative, and bottom is positive. 
(b) The electric field is the smallest on the horizontal line through the middle charge, at two positions on either 
side where the field lines are least dense. Here the y-components of the field are cancelled between the positive 
charges and the negative charge cancels the x-component of the field from the two positive charges. 
EVALUATE: Far from all three charges the field is the same as the field of a point charge equal to the algebraic 
sum of the three charges. 
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21.63. (a) IDENTIFY and SET UP: Use Eq.(21.14) to relate the dipole moment to the charge magnitude and the 
separation d of the two charges. The direction is from the negative charge toward the positive charge. 
EXECUTE: 9 3 11

1 2(4.5 10  C)(3.1 10  m) 1.4 10  C m; The direction of   is from  toward .p qd q q− − −= = × × = × ⋅ pG  
(b) IDENTIFY and SET UP: Use Eq. (21.15) to relate the magnitudes of the torque and field. 
EXECUTE: sin , with pEτ φ φ=  as defined in Figure 21.63, so  

 

sin
E

p
τ
φ

=  

9

11

7.2 10  N m 860 N/C
(1.4 10  C m)sin36.9

E
−

−

× ⋅
= =

× ⋅ °
 

Figure 21.63  
EVALUATE: Eq.(21.15) gives the torque about an axis through the center of the dipole. But the forces on the two 
charges form a couple (Problem 11.53) and the torque is the same for any axis parallel to this one. The force on 
each charge is q E  and the maximum moment arm for an axis at the center is /2,d  so the maximum torque is 

82( )( /2) 1.2 10  N m.q E d −= × ⋅  The torque for the orientation of the dipole in the problem is less than this 
maximum. 

21.64. (a) IDENTIFY: The potential energy is given by Eq.(21.17). 
SET UP: ( ) cos ,  where  is the angle between  and .U pEφ φ φ= − ⋅ = −p E p E

G GG G  

EXECUTE: parallel: ( )0 and 0U pEφ = ° = −  

perpendicular: ( )90  and 90 0Uφ = ° ° =  

( ) ( ) ( )( )30 6 2490 0 5.0 10  C m 1.6 10  N/C 8.0 10  J.U U U pE − −Δ = ° − ° = = × ⋅ × = ×  

(b) 
( )

( )
24

3
2 23

2 8.0 10  J2 so 0.39 K
3 3 1.381 10  J/K

UkT U T
k

−

−

×Δ
= Δ = = =

×
 

EVALUATE: Only at very low temperatures are the dipoles of the molecules aligned by a field of this strength. A 
much larger field would be required for alignment at room temperature. 

21.65. IDENTIFY: Follow the procedure specified in part (a) of the problem. 
SET UP: Use that y d>> . 

EXECUTE: (a)  
2 2

2 2 2 2 2 2 2 2

1 1 ( 2) ( 2) 2
( 2) ( 2) ( 4) ( 4)

y d y d yd
y d y d y d y d

+ − −
− = =

− + − −
. This gives 

2 2 2 2 2 2
0 0

2
4 ( 4) 2 ( 4)y

q yd qd yE
y d y dπ π

= =
− −P P

. Since 2 2 / 4y d>> , 3
02y

pE
yπ

≈
P

. 

(b) For points on the -axisy− , −E
G

is in the +y direction and +E
G

is in the y− direction. The field point is closer to 

q− , so the net field is upward. A similar derivation gives 3
02y

pE
yπ

≈
P

. yE  has the same magnitude and direction 

at points where y d>> as where y d<< − . 

EVALUATE: E falls off like 31/ r for a dipole, which is faster than the 21/ r for a point charge. The total charge of 
the dipole is zero. 

21.66. IDENTIFY: Calculate the electric field due to the dipole and then apply qF = E
G G

. 

SET UP: From Example 21.15, dipole 3
0

( )
2

pE x
xπ

=
P

. 

EXECUTE: 
30

6
dipole 9 3

0

6.17 10 C m 4.11 10 N C
2 (3.0 10 m)

E
π

−

−

× ⋅
= = ×

×P
. The electric force is F qE= =  

19 6(1.60 10  C)(4.11 10  N/C)−× × = 136.58 10 N−×  and is toward the water molecule (negative x-direction). 

EVALUATE: dipoleE
G

is in the direction of pG ¸ so is in the +x direction. The charge q of the ion is negative, so F
G

is 

directed opposite to E
G

and is therefore in the x− direction. 
21.67. IDENTIFY: Like charges repel and unlike charges attract. The force increases as the distance between the charges 

decreases. 
SET UP: The forces on the dipole that is between the slanted dipoles are sketched in Figure 21.67a. 
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EXECUTE: The forces are attractive because the + and − charges of the two dipoles are closest. The forces are 
toward the slanted dipoles so have a net upward component. In Figure 21.67b, adjacent dipoles charges of opposite 
sign are closer than charges of the same sign so the attractive forces are larger than the repulsive forces and the 
dipoles attract. 
EVALUATE: Each dipole has zero net charge, but because of the charge separation there is a non-zero force 
between dipoles. 

  

Figure 21.67 

21.68. IDENTIFY: Find the vector sum of the fields due to each charge in the dipole. 
SET UP: A point on the x-axis with coordinate x is a distance 2 2( / 2)r d x= + from each charge. 

EXECUTE: (a) The magnitude of the field the due to each charge is 2 2 2
0 0

1 1
4 4 ( 2)

q qE
r d xπ π

⎛ ⎞
= = ⎜ ⎟+⎝ ⎠P P

,  

where d is the distance between the two charges. The x-components of the forces due to the two charges  
are equal and oppositely directed and so cancel each other. The two fields have equal y-components, 

so 2 2
0

2 12 sin
4 ( 2)y

qE E
d x

θ
π

⎛ ⎞
= = ⎜ ⎟+⎝ ⎠P

, where θ  is the angle below the x-axis for both fields. 
2 2

2sin
( 2)

d
d x

θ =
+

 

and dipole 2 2 2 2 3 22 2
0 0

2 1 2
4 ( 2) 4 (( 2) )( 2)

q d qdE
d x d xd xπ π

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟= =⎜ ⎟⎜ ⎟⎜ ⎟+ ++⎝ ⎠⎝ ⎠ ⎝ ⎠P P

. The field is the y− direction. 

(b) At large x, 2 2( 2)x d>> , so the expression in part (a) reduces to the approximation dipole 3
04

qdE
xπ

≈
P

. 

EVALUATE: Example 21.15 shows that at points on the +y axis far from the dipole, dipole 3
02

qdE
yπ

≈
P

. The 

expression in part (b) for points on the x axis has a similar form. 
21.69. IDENTIFY: The torque on a dipole in an electric field is given by τ = p× E

GGG . 
SET UP: sinpEτ φ= , where φ is the angle between the direction of pG and the direction of E

G
. 

EXECUTE: (a) The torque is zero when pG  is aligned either in the same direction as E
G

 or in the opposite 
direction, as shown in Figure 21.69a. 
(b) The stable orientation is when pG  is aligned in the same direction as E

G
. In this case a small rotation of the 

dipole results in a torque directed so as to bring pG back into alignment with E
G

. When pG is directed opposite to 
E
G

, a small displacement results in a torque that takes pG farther from alignment with E
G

. 
(c) Field lines for dipoleE in the stable orientation are sketched in Figure 21.69b. 
EVALUATE: The field of the dipole is directed from the + charge toward the − charge. 

  
Figure 21.69 

21.70. IDENTIFY: The plates produce a uniform electric field in the space between them. This field exerts torque on a 
dipole and gives it potential energy. 
SET UP: The electric field between the plates is given by 0/ ,E σ= P and the dipole moment is p = ed. The 
potential energy of the dipole due to the field is cosU pE φ= − ⋅ = −p E

GG , and the torque the field exerts on it is τ = 
pE sin φ. 
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EXECUTE: (a) The potential energy, cosU pE φ= − ⋅ = −p E
GG , is a maximum when φ = 180°. The field between 

the plates is 0/ ,E σ= P giving 

Umax = (1.60 × 10–19 C)(220 × 10–9 m)(125 × 10–6 C/m2)/(8.85 × 10–12 C2/N ⋅ m2) = 4.97 × 10–19 J 
The orientation is parallel to the electric field (perpendicular to the plates) with the positive charge of the dipole 
toward the positive plate. 
(b) The torque, τ = pE sin φ, is a maximum when φ = 90° or 270°. In this case 

 max 0 0/ /pE p edτ σ σ= = =P P  

 ( )( )( ) ( )19 9 6 12 2 2
max 1.60 10  C 220 10  m 125 10  C/m 8.85 10  C / N mτ − − − 2 −= × × × × ⋅  

 19
max 4.97 10  N mτ −= × ⋅  

The dipole is oriented perpendicular to the electric field (parallel to the plates). 
(c) F = 0. 
EVALUATE: When the potential energy is a maximum, the torque is zero. In both cases, the net force on the 
dipole is zero because the forces on the charges are equal but opposite (which would not be true in a nonuniform 
electric field). 

21.71. (a) IDENTIFY: Use Coulomb's law to calculate each force and then add them as vectors to obtain the net force. 
Torque is force times moment arm. 
SET UP: The two forces on each charge in the dipole are shown in Figure 21.71a. 

 

sin 1.50 / 2.00 so 48.6θ θ= = °  
Opposite charges attract and like charges repel. 

1 2 0x x xF F F= + =  

Figure 21.71a  

EXECUTE: 
6 6

3
1 2 2

(5.00 10  C)(10.0 10  C) 1.124 10  N
(0.0200 m)

qq
F k k

r

− −′ × ×
= = = ×  

1 1 sin 842.6 NyF F θ= − = −  

2 1 2842.6 N so 1680 Ny y y yF F F F= − = + = −  (in the direction from the 5.00- Cμ+  charge toward the 5.00- Cμ−  
charge). 
EVALUATE:  The x-components cancel and the y-components add. 
(b) SET UP: Refer to Figure 21.71b. 

 

The y-components have zero moment arm and 
therefore zero torque. 

1 2and x xF F  both produce clockwise torques. 

Figure 21.71b  
EXECUTE: 1 1 cos 743.1 NXF F θ= =  

12( )(0.0150 m) 22.3 N m, clockwisexFτ = = ⋅  
EVALUATE: The electric field produced by the 10.00 Cμ−  charge is not uniform so Eq. (21.15) does not apply. 
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21.72. IDENTIFY: Apply 2

qq
F k

r
′

=  for each pair of charges and find the vector sum of the forces that 1q  and 2q  exert on 3.q  

SET UP: Like charges repel and unlike charges attract. The three charges and the forces on 3q are shown in 
Figure 21.72. 

 
Figure 21.72 

EXECUTE: (a) 
9 9

1 3 9 2 2 4
1 2 2

1

(5.00 10  C)(6.00 10  C)(8.99 10  N m /C ) 1.079 10  C
(0.0500 m)

q q
F k

r

− −
−× ×

= = × ⋅ = × . 

36.9θ = ° . 5
1 1 cos 8.63 10  NxF F θ −= + = × . 5

1 1 sin 6.48 10  NyF F θ −= + = × . 
9 9

2 3 9 2 2 4
2 2 2

2

(2.00 10  C)(6.00 10  C)(8.99 10  N m /C ) 1.20 10  C
(0.0300 m)

q q
F k

r

− −
−× ×

= = × ⋅ = × . 

2 0xF = , 4
2 2 1.20 10  NyF F −= − = − × . 5

1 2 8.63 10  Nx x xF F F −= + = × . 
5 4 5

1 2 6.48 10  N ( 1.20 10  N) 5.52 10  Ny y yF F F − − −= + = × + − × = − × . 

(b) 2 2 41.02 10  Nx yF F F −= + = × . tan 0.640y

x

F
F

φ = = . 32.6φ = ° , below the x+  axis. 

EVALUATE: The individual forces on q3 are computed from Coulomb’s law and then added as vectors, using 
components. 

21.73. (a) IDENTIFY: Use Coulomb's law to calculate the force exerted by each Q on q and add these forces as vectors to 
find the resultant force. Make the approximation x a>>  and compare the net force to F kx= −  to deduce k and 
then (1/ 2 ) / .f k mπ=  
SET UP: The placement of the charges is shown in Figure 21.73a. 

 
Figure 21.73a 

EXECUTE: Find the net force on q. 

 1 2 andx x xF F F= +  1 1 2 2,  x xF F F F= + = −  

Figure 21.73b  

( ) ( )1 22 2
0 0

1 1,  
4 4

qQ qQF F
a x a xπ π

= =
+ −P P

 

( ) ( )1 2 2 2
0

1 1
4x
qQF F F

a x a xπ
⎡ ⎤= − = −⎢ ⎥+ −⎣ ⎦P

 

2 2

2
0

1 1
4x

qQ x xF
a a aπ

− −⎡ ⎤⎛ ⎞ ⎛ ⎞= + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦P
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Since x a<<  we can use the binomial expansion for 2 2(1 / )  and (1 / )x a x a− −− +  and keep only the first two terms: 

(1 ) 1 .nz nz+ ≈ +  For 2(1 / ) ,x a −−  /z x a= −  and 2n = −  so 2(1 / ) 1 2 / .x a x a−− ≈ +  For 2(1 / ) ,x a −+  /z x a= +  and 

2n = −  so 2(1 / ) 1 2 / .x a x a−+ ≈ −  Then 2 3
0 0

2 21 1 .
4

qQ x x qQF x
a a a aπ π

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞≈ − − + = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠P P
 For simple harmonic 

motion F kx= −  and the frequency of oscillation is ( )1/ 2 / .f k mπ=  The net force here is of this form, with 

3
0/ .k qQ aπ= P  Thus 3

0

1 .
2

qQf
maπ π

=
P

 

(b) The forces and their components are shown in Figure 21.73c. 

 
Figure 21.73c 

The x-components of the forces exerted by the two charges cancel, the y-components add, and the net force is in 
the +y-direction when y > 0 and in the -directiony−  when y < 0. The charge moves away from the origin on the  
y-axis and never returns. 
EVALUATE: The directions of the forces and of the net force depend on where q is located relative to the other 
two charges. In part (a), 0 at 0F x= =  and when the charge q is displaced in the +x- or –x-direction the net force is 
a restoring force, directed to return to 0.q x =  The charge oscillates back and forth, similar to a mass on a spring. 

21.74. IDENTIFY: Apply 0xF =∑ and 0yF =∑  to one of the spheres. 

SET UP: The free-body diagram is sketched in Figure 21.74. eF is the repulsive Coulomb force between the 
spheres. For small ,θ  sin tanθ θ≈ . 

EXECUTE: esin 0xF T Fθ∑ = − = and cos 0yF T mgθ∑ = − = . So 
2

e 2
sin

cos
mg kqF

d
θ

θ = = . But tan sin 2
d
Lθ θ≈ = , 

so 
2

3 2kq Ld mg= and 
1/32

02
q Ld mgπ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠P . 

EVALUATE: d increases when q increases. 

 
Figure 21.74 

21.75. IDENTIFY: Use Coulomb's law for the force that one sphere exerts on the other and apply the 1st condition of 
equilibrium to one of the spheres. 
(a) SET UP: The placement of the spheres is sketched in Figure 21.75a. 

 
Figure 21.75a 



21-30 Chapter 21 

The free-body diagrams for each sphere are given in Figure 21.75b. 

 
Figure 21.75b 

Fc is the repulsive Coulomb force exerted by one sphere on the other. 
(b) EXECUTE: From either force diagram in part (a): y yF ma=∑  

cos25.0 0 and 
cos25.0

mgT mg T° − = =
°

 

x xF ma=∑  

c csin 25.0 0 and sin 25.0T F F T° − = = °  
Use the first equation to eliminate T in the second: ( )( )c / cos25.0 sin 25.0 tan 25.0F mg mg= ° ° = °  

2 2
1 2

c 2 2 2
0 0 0

1 1 1
4 4 4 [2(1.20 m)sin 25.0 ]

q q q qF
r rπ π π

= = =
°P P P

 

Combine this with c tan 25.0F mg= °  and get
2

2
0

1tan 25.0
4 [2(1.20 m)sin 25.0 ]

qmg
π

° =
°P

 

( ) ( )0

tan 25.02.40 m sin 25.0
1/ 4

mgq
π

°
= °

P
 

( ) ( )( )3 2
6

9 2 2

15.0 10  kg 9.80 m/s tan 25.0
2.40 m sin 25.0 2.80 10  C

8.988 10  N m /C
q

−
−

× °
= ° = ×

× ⋅
 

(c) The separation between the two spheres is given by 2 sin . 2.80 CL qθ μ=  as found in part (b). 

( ) ( )22
c 0 c1/ 4 / 2 sin  and tan .F q L F mgπ θ θ= =P  Thus ( ) ( )22

01/ 4 / 2 sin tan .q L mgπ θ θ=P   

( )
2

2
2

0

1sin tan
4 4

q
L mg

θ θ
π

= =
P

( ) ( )
( ) ( )( )

26
9 2 2

2 3 2

2.80 10  C
8.988 10  N m / C 0.3328.

4 0.600 m 15.0 10  kg 9.80 m/s

−

−

×
× ⋅ =

×
 

Solve this equation by trial and error. This will go quicker if we can make a good estimate of the value of θ  that 
solves the equation. For θ  small, tan sin .θ θ≈  With this approximation the equation becomes 3sin 0.3328θ =  
and sin 0.6930,θ =  so 43.9 .θ = °  Now refine this guess: 

θ  2sin tanθ θ   
45.0°  0.5000  
40.0°  0.3467  
39.6°  0.3361  
39.5°  0.3335  
39.4°  0.3309 so 39.5θ = °  

EVALUATE: The expression in part (c) says 0 as  and 90  as 0.L Lθ θ→ →∞ → ° →  When L is decreased from 
the value in part (a), θ  increases. 

21.76. IDENTIFY: Apply 0xF =∑ and 0yF =∑  to each sphere. 

SET UP: (a) Free body diagrams are given in Figure 21.76. eF is the repulsive electric force that one sphere 
exerts on the other. 

EXECUTE: (b) cos20 0.0834 NT mg= ° = , so 1 2
2

1

sin 20 0.0285 Ne
kq qF T

r
= ° = = . (Note: 

1 2(0.500 m)sin 20 0.342 m.)r = ° =  

(c) From part (b), 13 2
1 2 3.71 10 C .q q −= ×  
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(d) The charges on the spheres are made equal by connecting them with a wire, but we still have 
2

e 2
0 2

1tan 0.0453 N 4
QF mg
r

θ π= = = P
, where 1 2

2
q qQ +

= . But the separation 2r is known: 

2 2(0.500 m)sin30 0.500 m.r = ° =  Hence: 2 61 2
0 e 24 1.12 10  C.2

q qQ F rπ −+
= = = ×P  This equation, along  

with that from part (c), gives us two equations in 1q and 2:q  6
1 2 2.24 10 Cq q −+ = × and 13 2

1 2 3.71 10 C .q q −= ×   
By elimination, substitution and after solving the resulting quadratic equation, we find: 6

1 2.06 10 Cq −= ×  and 
7

2 1.80 10 Cq −= × . 
EVALUATE: After the spheres are connected by the wire, the charge on sphere 1 decreases and the charge on 
sphere 2 increases. The product of the charges on the sphere increases and the thread makes a larger angle with the 
vertical. 

 
Figure 21.76 

21.77. IDENTIFY and SET UP: Use Avogadro's number to find the number of +Na  and Cl−  ions and the total positive 
and negative charge. Use Coulomb's law to calculate the electric force and mF a

G G
=  to calculate the acceleration. 

(a) EXECUTE: The number of +Na  ions in 0.100 mol of NaCl is A.N nN=  The charge of one ion is +e, so the 

total charge is 1 Aq nN e= = 23 19 3(0.100 mol)(6.022 10  ions/mol)(1.602 10 C/ion) 9.647 10  C−× × = ×  

There are the same number of Cl−  ions and each has charge ,e−  so 3
2 9.647 10  C.q = − ×  

3 2
1 2 9 2 2 21

2 2
0

1 (9.647 10  C)(8.988 10  N m /C ) 2.09 10  N
4 (0.0200 m)

q q
F

rπ
×

= = × ⋅ = ×
P

 

(b) / .a F m=  Need the mass of 0.100 mol of Cl−  ions. For Cl, 335.453 10M −= ×  kg/mol, so 

( )( )3 40.100 mol 35.453 10  kg/mol 35.45 10  kg.m − −= × = ×  Then 
21

23 2
4

2.09 10  N 5.90 10  m/s .
35.45 10  kg

Fa
m −

×
= = = ×

×
 

(c) EVALUATE: Is is not reasonable to have such a huge force. The net charges of objects are rarely larger than 1 C;μ  
a charge of 104 C is immense. A small amount of material contains huge amounts of positive and negative charges. 

21.78. IDENTIFY: For the acceleration (and hence the force) on Q to be upward, as indicated, the forces due to q1 and q2 
must have equal strengths, so q1 and q2 must have equal magnitudes. Furthermore, for the force to be upward, q1 
must be positive and q2 must be negative. 
SET UP: Since we know the acceleration of Q, Newton’s second law gives us the magnitude of the force on it. 
We can then add the force components using 

1 2 1
cos cos 2 cosQq Qq QqF F F Fθ θ θ= + = . The electrical force on Q is 

given by Coulomb’s law, 
1

1
2

0

1
4Qq

QqF
rπ

=
P

 (for q1) and likewise for q2. 

EXECUTE: First find the net force: F = ma = (0.00500 kg)(324 m/s2) = 1.62 N. Now add the force  
components, calling θ the angle between the line connecting q1 and q2 and the line connecting q1 and Q. 

1 2 1
cos cos 2 cosQq Qq QqF F F Fθ θ θ= + =  and 

1

1.62 N
2.25 cm2cos 2
3.00 cm

Qq
FF
θ

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 1.08 N. Now find the charges by 

solving for q1 in Coulomb’s law and use the fact that q1 and q2 have equal magnitudes but opposite signs. 

1

1
2

0

1
4Qq

QqF
rπ

=
P

 and ( )( )
1

2 2

1 9 2 2 6

0

(0.0300 m) (1.08 N)
1 9.00 10 N m /C 1.75 10 C

4

Qqr F
q

Q
π

−
= =

× ⋅ ×
P

 86.17 10  C.−= ×  

8
2 1 6.17 10  C.q q −= − = − ×  



21-32 Chapter 21 

EVALUATE: Simple reasoning allows us first to conclude that q1 and q2 must have equal magnitudes but opposite 
signs, which makes the equations much easier to set up than if we had tried to solve the problem in the general 
case. As Q accelerates and hence moves upward, the magnitude of the acceleration vector will change in a 
complicated way. 

21.79. IDENTIFY: Use Coulomb's law to calculate the forces between pairs of charges and sum these forces as vectors to 
find the net charge. 
(a) SET UP: The forces are sketched in Figure 21.79a. 

 

EXECUTE: 1 3 ,+ 0F F =
G G

 so the net force is 2.=F F
G G

 
2

22
0 0

1 (3 ) 6 ,
4 4( / 2)

q q qF
LLπ π

= =
P P

 away from the vacant corner. 

Figure 21.79a  
(b) SET UP: The forces are sketched in Figure 21.79b. 

 

EXECUTE: ( )
( ) ( )

2

2 2 2
0 0

31 3
4 4 22

q q qF
LLπ π

= =
P P

 

( ) 2

1 3 2 2
0 0

31 3
4 4

q q qF F
L Lπ π

= = =
P P

 

The vector sum of 1 3and  isF F  2 2
13 1 3 .F F F= +  

Figure 21.79b  
2

13 1 13 22
0

3 22 ;   and 
4

qF F
Lπ

= = F F
G G

P
 are in the same direction.  

2

13 2 2
0

3 12 ,
4 2

qF F F
Lπ
⎛ ⎞= + = +⎜ ⎟
⎝ ⎠P

 and is directed toward the center of the square. 

EVALUATE: By symmetry the net force is along the diagonal of the square. The net force is only slightly larger 
when the 3q−  charge is at the center. Here it is closer to the charge at point 2 but the other two forces cancel. 

21.80. IDENTIFY: Use Eq.(21.7) for the electric field produced by each point charge. Apply the principle of 
superposition and add the fields as vectors to find the net field. 
(a) SET UP: The fields due to each charge are shown in Figure 21.80a. 

 

2 2
cos x

x a
θ =

+
 

Figure 21.80a  
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EXECUTE: The components of the fields are given in Figure 21.80b. 

 

1 2 2 2
0

1
4

qE E
a xπ

⎛ ⎞= = ⎜ ⎟+⎝ ⎠P
 

3 2
0

1 2
4

qE
xπ

⎛ ⎞= ⎜ ⎟
⎝ ⎠P

 

Figure 21.80b  

1 1 2 2 1 2sin ,  sin  so 0.y y y y yE E E E E E Eθ θ= − = + = + =  

1 2 1 3 32 2 2 2
0

1cos ,  
4x x x

q xE E E E E
a x x a

θ
π

⎛ ⎞⎛ ⎞= = + = = −⎜ ⎟⎜ ⎟+⎝ ⎠ +⎝ ⎠P
 

1 2 3 2 2 22 2
0 0

1 22
4 4x x x x

q x qE E E E
a x xx aπ π

⎛ ⎞⎛ ⎞⎛ ⎞= + + = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠ +⎝ ⎠⎝ ⎠P P
 

( ) ( )3 / 2 3 / 22 22 2 2 2
0 0

2 1 2 11
4 4 1 /

x
q x qE

x xa x a xπ π
⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

P P
 

Thus 
( )3 / 22 2 2

0

2 11 ,  in the -direction.
4 1 /

qE x
x a xπ
⎛ ⎞= − −⎜ ⎟⎜ ⎟+⎝ ⎠

P
 

(b) x a>>  implies ( ) 3 / 22 2 2 2 2 2/ 1 and 1 / 1 3 / 2 .a x a x a x
−

<< + ≈ −  

Thus 
2 2

2 2 4
0 0

2 3 31 1 .
4 2 4

q a qaE
x x xπ π
⎛ ⎞⎛ ⎞

≈ − − =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠P P
 

EVALUATE: 41/ .E x∼  For a point charge 21/E x∼  and for a dipole 31/ .E x∼  The total charge is zero so at 
large distances the electric field should decrease faster with distance than for a point charge. By symmetry E

G
 must 

lie along the x-axis, which is the result we found in part (a). 
21.81. IDENTIFY: The small bags of protons behave like point-masses and point-charges since they are extremely far apart. 

SET UP: For point-particles, we use Newton’s formula for universal gravitation (F = Gm1m2/r2) and Coulomb’s 
law. The number of protons is the mass of protons in the bag divided by the mass of a single proton. 
EXECUTE: (a) 27 23(0.0010 kg) /(1.67 10  kg) 6.0 10−× = × protons 
(b) Using Coulomb’s law, where the separation is twice is the radius of the earth, we have 
Felectrical = (9.00 × 109 N ⋅ m2/C2)(6.0 × 1023 × 1.60 × 10–19 C)2/(2 × 6.38 × 106 m)2 = 5.1 × 105 N 
Fgrav = (6.67 × 10–11 N ⋅ m2/kg2)(0.0010 kg)2/(2 × 6.38 × 106 m)2 = 4.1 × 10–31 N 
(c) EVALUATE: The electrical force (≈200,000 lb!) is certainly large enough to feel, but the gravitational force 
clearly is not since it is about 1036 times weaker. 

21.82. IDENTIFY: We can treat the protons as point-charges and use Coulomb’s law. 
SET UP: (a) Coulomb’s law is F = 2

0 1 2(1/ 4 ) / .q q rπP  
EXECUTE: F = (9.00 × 109 N ⋅ m2/C2)(1.60 × 10–19 C)2/(2.0 × 10-15 m) = 58 N = 13 lb, which is certainly large 
enough to feel. 
(b) EVALUATE: Something must be holding the nucleus together by opposing this enormous repulsion. This is 
the strong nuclear force. 

21.83. IDENTIFY: Estimate the number of protons in the textbook and from this find the net charge of the textbook. 
Apply Coulomb's law to find the force and use netF ma= to find the acceleration. 
SET UP: With the mass of the book about 1.0 kg, most of which is protons and neutrons, we find that the number 
of protons is 27 261

2 (1.0 kg) (1.67 10 kg) 3.0 10−× = × . 
EXECUTE: (a) The charge difference present if the electron’s charge was 99.999%  of the proton’s is 

26 19(3.0 10 )(0.00001)(1.6 10 C) 480 Cq −Δ = × × = . 

(b) 2 2 2 2 13( ) (480 C) (5.0 m) 8.3 10 NF k q r k= Δ = = × , and is repulsive. 
213 13(8.3 10 N) (1 kg) 8.3 10 m sa F m= = × = × . 

EXECUTE: (c) Even the slightest charge imbalance in matter would lead to explosive repulsion! 
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21.84. IDENTIFY: The electric field exerts equal and opposite forces on the two balls, causing them to swing away from 
each other. When the balls hang stationary, they are in equilibrium so the forces on them (electrical, gravitational, 
and tension in the strings) must balance. 
SET UP: (a) The force on the left ball is in the direction of the electric field, so it must be positive, while the force 
on the right ball is opposite to the electric field, so it must be negative. 
(b) Balancing horizontal and vertical forces gives qE = T sin θ/2 and mg = T cos θ/2. 
EXECUTE: Solving for the angle θ gives: θ = 2 arctan(qE/mg). 
(c) As E → ∞, θ → 2 arctan(∞) = 2 (π/2) = π = 180° 
EVALUATE: If the field were large enough, the gravitational force would not be important, so the strings would 
be horizontal. 

21.85. IDENTIFY and SET UP: Use the density of copper to calculate the number of moles and then the number of atoms. 
Calculate the net charge and then use Coulomb's law to calculate the force. 

EXECUTE: (a) ( ) ( )33 3 3 3 54 48.9 10  kg/m 1.00 10  m 3.728 10  kg
3 3

m V rρ ρ π π − −⎛ ⎞ ⎛ ⎞= = = × × = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( ) ( )5 3 4/ 3.728 10  kg / 63.546 10  kg/mol 5.867 10  moln m M − − −= = × × = ×  
203.5 10  atomsAN nN= = ×  

(b) ( )( )20 2229 3.5 10 1.015 10eN = × = ×  electrons and protons 

( ) ( )( )( )2 19 22
net 0.99900 0.100 10 1.602 10  C 1.015 10 1.6 Ce eq eN eN − −= − = × × × =  

( )
( )

22
10

22

1.6 C
2.3 10  N

1.00 m
qF k k
r

= = = ×  

EVALUATE: The amount of positive and negative charge in even small objects is immense. If the charge of an 
electron and a proton weren't exactly equal, objects would have large net charges. 

21.86. IDENTIFY: Apply constant acceleration equations to a drop to find the acceleration. Then use F ma= to find the 
force and F q E= to find q . 
SET UP: Let 2.0 cmD = be the horizontal distance the drop travels and 0.30 mmd = be its vertical 
displacement. Let +x be horizontal and in the direction from the nozzle toward the paper and let +y be vertical, in 
the direction of the deflection of the drop. 0xa =  and ya a= . 

EXECUTE: First, the mass of the drop: 
6 3

3 114 (15.0 10 m)(1000 kg m ) 1.41 10 kg
3

m V πρ
−

−⎛ ⎞×
= = = ×⎜ ⎟

⎝ ⎠
. Next, the 

time of flight: (0.020 m) (20 m/s) 0.00100 st D v= = = . 21
2

d at= . 
4

2
2 2

2 2(3.00 10 m) 600 m s
(0.001s)

da
t

−×
= = = . 

Then a F m qE m= = gives 
211

13
4

(1.41 10 kg)(600 m s ) 1.06 10 C
8.00 10 N C

q ma E
−

−×
= = = ×

×
. 

EVALUATE: Since q is positive the vertical deflection is in the direction of the electric field. 
21.87. IDENTIFY: Eq. (21.3) gives the force exerted by the electric field. This force is constant since the electric field is 

uniform and gives the proton a constant acceleration. Apply the constant acceleration equations for the x- and  
y-components of the motion, just as for projectile motion. 
(a) SET UP: The electric field is upward so the electric force on the positively charged proton is upward and has 
magnitude F = eE. Use coordinates where positive y is downward. Then applying m=∑F a

G G  to the proton gives 

that 0 and / .x ya a eE m= = −  In these coordinates the initial velocity has components 0 cosxv v α= +  and 

0 sin ,yv v α= +  as shown in Figure 21.87a. 

 
Figure 21.87a 



Electric Charge and Electric Field  21-35 

EXECUTE: Finding max max: At h y h=  the y-component of the velocity is zero. 

0 0 0 max0,  sin ,  / ,  ?y y yv v v a eE m y y hα= = = − − = =  

( )2 2
0 02y y yv v a y y= + −  

2 2
0

0 2
y y

y

v v
y y

a
−

− =  

( )
2 2 2 2
0 0

max
sin sin

2 / 2
v mvh

eE m eE
α α−

= =
−

 

(b) Use the vertical motion to find the time t: 0 0 00,  sin ,  / ,  ?y yy y v v a eE m tα− = = = − =  
21

0 0 2y yy y v t a t− = +  

With ( )0 0 0
0

2 2 sin 2 sin0 this gives 
/

y

y

v v mvy y t
a eE m eE

α α
− = = − = − =

−
 

Then use the x-component motion to find d: 0 0 0 00,  cos ,  2 sin / ,  ?x xa v v t mv eE x x dα α= = = − = =  

21
0 0 2  givesx xx x v t a t− = +  

2 2
0 0 0

0
2 sin 2sin cos sin 2cos mv mv mvd v

eE eE eE
α α α αα ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

(c) The trajectory of the proton is sketched in Figure 21.87b. 

 
Figure 21.87b 

(d) Use the expression in part (a): 
( )( ) ( )

( )( )

25 27

max 19

4.00 10  m/s sin30.0 1.673 10  kg
0.418 m

2 1.602 10  C 500 N/C
h

−

−

⎡ ⎤× ° ×⎣ ⎦= =
×

 

Use the expression in part (b): 
( )( )

( )( )

227 5

19

1.673 10  kg 4.00 10  m/s sin60.0
2.89 m

1.602 10  C 500 N/C
d

−

−

× × °
= =

×
 

EVALUATE: In part (a), 10 2/ 4.8 10  m/s .ya eE m= − = − ×  This is much larger in magnitude than g, the acceleration 
due to gravity, so it is reasonable to ignore gravity. The motion is just like projectile motion, except that the 
acceleration is upward rather than downward and has a much different magnitude. maxh  and d increase when 

0 or vα  increase and decrease when E increases. 

21.88. IDENTIFY: 1 2x x xE E E= + . Use Eq.(21.7) for the electric field due to each point charge. 

SET UP: E
G

is directed away from positive charges and toward negative charges. 

EXECUTE: (a) 50.0 N/CxE = + . 
9

1 9 2 2
1 2 2

0 1

1 4.00 10  C(8.99 10  N m /C ) 99.9 N/C
4 (0.60 m)x

q
E

rπ

−×
= = × ⋅ = +

P
. 

1 2x x xE E E= + , so 2 1 50.0 N/C 99.9 N/C 49.9 N/Cx x xE E E= − = + − = − . Since 2xE is negative, 2q must be 

negative. 
2 2

2 2 9
2 9 2 2

0

(49.9 N/C)(1.20 m) 7.99 10  C
(1/ 4 ) 8.99 10  N m /C

xE r
q

π
−= = = ×

× ⋅P
. 9

2 7.99 10  Cq −= − ×  

(b) 50.0 N/CxE = − . 1 99.9 N/CxE = + , as in part (a). 2 1 149.9 N/Cx x xE E E= − = − . 2q is negative. 
2 2

2 2 8
2 9 2 2

0

(149.9 N/C)(1.20 m) 2.40 10  C
(1/ 4 ) 8.99 10  N m /C

xE r
q

π
−= = = ×

× ⋅P
. 8

2 2.40 10  Cq −= − × . 

EVALUATE: 2q  would be positive if 2xE were positive. 
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21.89. IDENTIFY: Divide the charge distribution into infinitesimal segments of length dx . Calculate Exand Eu due to a 
segment and integrate to find the total field. 
SET UP: The charge dQ of a segment of length dx is ( / )dQ Q a dx= . The distance between a segment at x and 

the charge q is a r x+ − . 1(1 ) 1y y−− ≈ +  when 1y << . 

EXECUTE: (a) 2
0

1
4 ( )x

dQdE
a r xπ

=
+ −P

 so 2
0 00

1 1 1 1
4 ( ) 4

a

x
Qdx QE

a a r x a r a rπ π
⎛ ⎞= = −⎜ ⎟+ − +⎝ ⎠∫P P

. 

a r x+ = , so 
0

1 1 1
4x

QE
a x a xπ
⎛ ⎞= −⎜ ⎟−⎝ ⎠P

. 0yE = . 

(b) 
0

1 1 1 ˆ 
4

qQq
a x a xπ
⎛ ⎞−⎜ ⎟−⎝ ⎠

F = E = i
G G

P
. 

EVALUATE: (c) For ,x a>>  1
2 2

0

1((1 ) 1) (1 1)
4

kqQ kqQ kqQ qQF a x a x
ax ax x rπ

−= − − = + + ⋅⋅ ⋅ − ≈ ≈
P

 . (Note that for 

x a>> , r x a x= − ≈ .) The charge distribution looks like a point charge from far away, so the force takes the form 
of the force between a pair of point charges. 

21.90. IDENTIFY: Use Eq. (21.7) to calculate the electric field due to a small slice of the line of charge and integrate as 
in Example 21.11. Use Eq. (21.3) to calculate .F

G
 

SET UP: The electric field due to an infinitesimal segment of the line of charge is sketched in Figure 21.90. 

 

2 2
sin y

x y
θ =

+
 

2 2
cos x

x y
θ =

+
 

Figure 21.90  
Slice the charge distribution up into small pieces of length dy. The charge dQ in each slice is ( / ).dQ Q dy a=  The 

electric field this produces at a distance x along the x-axis is dE. Calculate the components of dE
G

 and then integrate 
over the charge distribution to find the components of the total field. 

EXECUTE: 2 2 2 2
0 0

1
4 4

dQ Q dydE
x y a x yπ π

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠P P

 

( )3 / 22 2
0

cos
4x

Qx dydE dE
a x y

θ
π

⎛ ⎞= = ⎜ ⎟⎜ ⎟+⎝ ⎠
P

 

( )3 / 22 2
0

sin
4y

Q ydydE dE
a x y

θ
π

⎛ ⎞= − = − ⎜ ⎟⎜ ⎟+⎝ ⎠
P

 

2 2 3/20
04 ( )

a

x x
Qx dyE dE

a x yπ
= = − =

+∫ ∫P 2 2 2 2 2
0 00

1 1
4 4

aQx y Q
a x xx y x aπ π
⎡ ⎤ =⎢ ⎥+ +⎣ ⎦P P

 

2 2 3/20
04 ( )

a

y
Q ydyE dEy

a x yπ
= = − =

+∫ ∫P 2 2 2 2
0 00

1 1 1
4 4

aQ Q
a a xx y x aπ π
⎡ ⎤ ⎛ ⎞− − = − −⎜ ⎟⎢ ⎥+ +⎝ ⎠⎣ ⎦P P

 

(b) 0q=F E
G G

 

2 2 2 2
0 0

1 1 1;  
4 4x x y y

qQ qQF qE F qE
x a xx a x aπ π

− ⎛ ⎞= − = = − = −⎜ ⎟
+ +⎝ ⎠P P

 

(c) For x >> a, 
1/ 22 2 2

2 2 32 2

1 1 1 11 1
2 2

a a a
x x x x x xx a

−
⎛ ⎞ ⎛ ⎞

= + = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠+

 

2

2 3 3
0 0 0

1 1,  
4 4 2 8x y

qQ qQ a qQaF F
x a x x x xπ π π

⎛ ⎞
≈ − ≈ − + =⎜ ⎟

⎝ ⎠P P P
 



Electric Charge and Electric Field  21-37 

EVALUATE: For ,  y xx a F F>> <<  and 2
04x

qQF F
xπ

≈ =
P

 and F
G

 is in the –x-direction. For x >> a the charge 

distribution Q acts like a point charge. 
21.91. IDENTIFY: Apply Eq.(21.9) from Example 21.11. 

SET UP: 2.50 cma = . Replace Q by Q . Since Q is negative, E
G

is toward the line of charge and 

2 2
0

1 ˆ
4

Q

x x aπ
−

+
E = i
G

P
. 

EXECUTE: 
9

2 2 2 2
0 0

1 1 9.00 10  Cˆ ˆ ˆ( 7850 N/C) .
4 4 (0.100 m) (0.100 m) (0.025 m)

Q

x x aπ π

−×
− = − = −

+ +
E = i i i
G

P P
 

(b) The electric field is less than that at the same distance from a point charge (8100 N/C). For large x, 
2

1/ 2 2 2 1/ 2
2

1 1( ) (1 / ) 1
2
ax a a x

x x x
− − ⎛ ⎞

+ = + ≈ −⎜ ⎟
⎝ ⎠

. 
2

2 2
0

1E 1
4 2x

Q a
x xπ→∞

⎛ ⎞
= − + ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠P
. The first correction term to the point 

charge result is negative. 
(c) For a 1% difference, we need the first term in the expansion beyond the point charge result to be less than 

0.010: 
2

2 0.010 1 (2(0.010)) 0.025 1 0.020 0.177 m
2
a x a x
x

≈ ⇒ ≈ = ⇒ ≈ . 

EVALUATE: At 10.0 cmx = (part b), the exact result for the line of charge is 3.1% smaller than for a point 
charge. It is sensible, therefore, that the difference is 1.0% at a somewhat larger distance, 17.7 cm. 

21.92. IDENTIFY: The electrical force has magnitude 
2

2

kQF
r

=  and is attractive. Apply m=∑F a
G G to the earth. 

SET UP: For a circular orbit, 
2va

r
= . The period T is 2 r

v
π . The mass of the earth is 24

E 5.97 10  kgm = × , the 

orbit radius of the earth is 111.50 10  m×  and its orbital period is 73.146 10  s× . 

EXECUTE: F ma=  gives 
2

E2

kQ vm
r r

= . 
2 2

2
2

4 rv
T
π

= , so 

2 3 24 2 11 3
17E

2 9 2 2 7 2

4 (5.97 10  kg)(4)( )(1.50 10  m) 2.99 10  C
(8.99 10  N m /C )(3.146 10  s)

m rQ
kT
π π× ×

= = = ×
× ⋅ ×

. 

EVALUATE: A very large net charge would be required. 
21.93. IDENTIFY: Apply Eq.(21.11). 

SET UP: 2/ /Q A Q Rσ π= = . 2 1/ 2 2(1 ) 1 / 2y y−+ ≈ − , when 2 1y << . 

EXECUTE: (a) ( ) 1 22 2

0

1 / 1
2

E R xσ −⎡ ⎤= − +⎢ ⎥⎣ ⎦P
. 

1 22 2

2
0

4.00 pC (0.025 m) (0.025 m)1 1 0.89 N/C
2 (0.200 m)

E π
−⎡ ⎤⎛ ⎞

⎢ ⎥= − + =⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦P

, in the +x direction. 

(b) For x R>>
2 2

2 2
2 2 2

0 0 0 0

[1 (1 2 )]
2 2 2 4 4

R R QE R x
x x x

σ σ σπ
π π

= − − + ⋅ ⋅ ⋅ ≈ = =
P P P P

. 

(c) The electric field of (a) is less than that of the point charge (0.90 N/C) since the first correction term to the point 
charge result is negative. 

(d) For 0.200 mx = , the percent difference is (0.90 0.89) 0.01 1%
0.89
−

= = . For 0.100 mx = , 

disk 3.43 N CE = and point 3.60 N CE = , so the percent difference is (3.60 3.43) 0.047 5%.
3.60
−

= ≈  

EVALUATE: The field of a disk becomes closer to the field of a point charge as the distance from the disk 
increases. At 10.0 cmx = , / 25%R x = and the percent difference between the field of the disk and the field of a 
point charge is 5%. 

21.94. IDENTIFY: Apply the procedure specified in the problem. 
SET UP: 2 1

1 2

( ) ( )
x x

x x
f x dx f x dx= −∫ ∫ . 
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EXECUTE: (a) For ( ) ( )f x f x= − , 
0

0 0
( )  ( ) ( ) ( ) ( )

a a a

a a
f x dx f x dx f x dx f x d x

−

− −
= + = − − +∫ ∫ ∫ ∫ 0

( )
a

f x dx∫ . Now 

replace x− with y. This gives 
0 0 0

( ) ( ) ( ) 2 ( )
a a a a

a
f x dx f y dy f x dx f x dx

−
= + =∫ ∫ ∫ ∫ . 

(b) For ( ) ( )g x g x= − − , 
0

0 0 0
( ) ( ) ( ) ( )( ( )) ( )

a a a a

a a
g x dx g x dx g x dx g x d x g x dx

−

− −
= + = − − − − − +∫ ∫ ∫ ∫ ∫ . Now replace 

x− with y. This gives
0 0

( ) ( ) ( ) 0.
a a a

a
g x dx g y dy g x dx

−
= − + =∫ ∫ ∫  

(c) The integrand in yE  for Example 21.11 is odd, so yE =0. 
EVALUATE: In Example 21.11, Ey 0= because for each infinitesimal segment in the upper half of the line of charge, 
there is a corresponding infinitesimal segment in the bottom half of the line that has Ey in the opposite direction. 

21.95. IDENTIFY: Find the resultant electric field due to the two point charges. Then use q=F E
G G

 to calculate the force 
on the point charge. 
SET UP: Use the results of Problems 21.90 and 21.89. 
EXECUTE: (a) The y-components of the electric field cancel, and the x-component from both charges, as given in 

Problem 21.90, is 2 2 1/ 2
0

1 2 1 1
4 ( )x

QE
a y y aπ

− ⎛ ⎞= −⎜ ⎟+⎝ ⎠P
. Therefore, 2 2 1/ 2

0

1 2 1 1 ˆ
4 ( )

Qq
a y y aπ

− ⎛ ⎞−⎜ ⎟+⎝ ⎠
F = i
G

P
. If y a>>  

2 2
3

0 0

1 2 1ˆ ˆ(1 (1 /2 ))
4 4

Qq Qqaa y
ay yπ π

−
≈ − − + ⋅⋅ ⋅ −F i = i
G

P P
. 

(b) If the point charge is now on the x-axis the two halves of the charge distribution provide different forces, 

though still along the x-axis, as given in Problem 21.89: 
0

1 1 1 ˆ
4

Qqq
a x a xπ+ +
⎛ ⎞= −⎜ ⎟−⎝ ⎠

F = E i
G G

P
 

and
0

1 1 1 ˆ
4

Qqq
a x x aπ− −
⎛ ⎞− −⎜ ⎟+⎝ ⎠

F = E = i
G G

P
. Therefore, 

0

1 1 2 1 ˆ
4

Qq
a x a x x aπ+ −
⎛ ⎞+ = − +⎜ ⎟− +⎝ ⎠

F = F F i
G G G

P
. For x a>> , 

2 2

2 2 3
0 0

1 1 2ˆ ˆ1 . . . 2 1 . . .
4 4

Qq a a a a Qqa
ax x x x x xπ π

⎛ ⎞⎛ ⎞ ⎛ ⎞
≈ + + + − + − + − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

F i i
G

P P
. 

EVALUATE: If the charge distributed along the x-axis were all positive or all negative, the force would be 
proportional to 21/ y in part (a) and to 21/ x in part (b), when y or x is very large. 

21.96. IDENTIFY: Divide the semicircle into infinitesimal segments. Find the electric field dE
G

due to each segment and 
integrate over the semicircle to find the total electric field. 
SET UP: The electric fields along the x-direction from the left and right halves of the semicircle cancel. The 
remaining y-component points in the negative y-direction. The charge per unit length of the semicircle is  

Q
a

λ
π

=  and 2

 k dl k ddE
a a
λ λ θ

= = . 

EXECUTE: sinsiny
k ddE dE

a
λ θ θθ= = . Therefore, 

2 2
0 20

2 2 2 2sin [ cos ]y
k k k kQE d
a a a a

π πλ λ λθ θ θ
π

= = − = =∫ , in 

the -directiony− . 
EVALUATE: For a full circle of charge the electric field at the center would be zero. For a quarter-circle of 
charge, in the first quadrant, the electric field at the center of curvature would have nonzero x and y components. 
The calculation for the semicircle is particularly simple, because all the charge is the same distance from point P. 

21.97. IDENTIFY: Divide the charge distribution into small segments, use the point charge formula for the electric field 
due to each small segment and integrate over the charge distribution to find the x and y components of the total field. 
SET UP: Consider the small segment shown in Figure 21.97a. 

 

EXECUTE: A small segment that 
subtends angle dθ  has length  a dθ  and 

contains charge 
1
2

2 .ad QdQ Q d
a
θ θ
π π

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

 

1
2( aπ  is the total length of the charge 

distribution.) 

Figure 21.97a  
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The charge is negative, so the field at the origin is directed toward the small segment. The small segment is located at 
angle θ  as shown in the sketch. The electric field due to dQ is shown in Figure 21.97b, along with its components. 

 

2
0

1
4

dQ
dE

aπ
=

P
 

2 2
02

QdE d
a

θ
π

=
P

 

Figure 21.97b  

( )2 2
0cos / 2 cosxdE dE Q a dθ π θ θ= = P  

( )/ 2 / 2
02 2 2 2 2 20

0 0 0

cos sin
2 2 2x x

Q Q QE dE d
a a a

π πθ θ θ
π π π

= = = =∫ ∫P P P
 

( )2 2
0sin / 2 sinydE dE Q a dθ π θ θ= = P  

( )/ 2 / 2
02 2 2 2 2 20

0 0 0

sin cos
2 2 2y y

Q Q QE dE d
a a a

π πθ θ θ
π π π

= = = − =∫ ∫P P P
 

EVALUATE: Note that ,x yE E=  as expected from symmetry. 

21.98. IDENTIFY: Apply 0xF =∑ and 0yF =∑ to the sphere, with x horizontal and y vertical. 

SET UP: The free-body diagram for the sphere is given in Figure 21.98. The electric field E
G

of the sheet is 

directed away from the sheet and has magnitude 
02

E σ
=
P

(Eq.21.12). 

EXECUTE: 0yF =∑  gives cosT mgα = and 
cos
mgT
α

= . 0xF =∑ gives 
0

sin
2
qT σα =
P

 and 
02 sin
qT σ

α
=
P

. 

Combining these two equations we have 
0cos 2 sin

mg qσ
α α
=
P

 and 
0

tan
2

q
mg
σα =
P

. Therefore, 
0

arctan
2

q
mg
σα

⎛ ⎞
= ⎜ ⎟

⎝ ⎠P
. 

EVALUATE: The electric field of the sheet, and hence the force it exerts on the sphere, is independent of the 
distance of the sphere from the sheet. 

 
Figure 21.98 

21.99. IDENTIFY: Each wire produces an electric field at P due to a finite wire. These fields add by vector addition. 

SET UP: Each field has magnitude 
2 2

0

1
4

Q
x x aπ +P

. The field due to the negative wire points to the left, while 

the field due to the positive wire points downward, making the two fields perpendicular to each other and of equal 

magnitude. The net field is the vector sum of these two, which is Enet = 2E1 cos 45° = 
2 2

0

12 cos45
4

Q
x x aπ

°
+P

. In 

part (b), the electrical force on an electron at P is eE. 

EXECUTE: (a) The net field is Enet = 
2 2

0

12 cos45
4

Q
x x aπ

°
+P

. 

Enet = 
( )( )9 2 2 6

2 2

2 9.00 10 N m /C 2.50 10 C cos45

(0.600 m) (0.600 m) (0.600 m)

−× ⋅ × °

+
 = 6.25 × 104 N/C. 

The direction is 225° counterclockwise from an axis pointing to the right through the positive wire. 
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(b) F = eE = (1.60 × 10-19 C)(6.25 × 104 N/C) = 1.00 × 10–14 N, opposite to the direction of the electric field, since 
the electron has negative charge. 
EVALUATE: Since the electric fields due to the two wires have equal magnitudes and are perpendicular to each 
other, we only have to calculate one of them in the solution. 

21.100. IDENTIFY: Each sheet produces an electric field that is independent of the distance from the sheet. The net field 
is the vector sum of the two fields. 
SET UP: The formula for each field is 0/2 ,E σ= P  and the net field is the vector sum of these, 

net
0 0 02 2 2
B A B AE σ σ σ σ±

= ± =
P P P

, where we use the + or – sign depending on whether the fields are in the same or 

opposite directions and Bσ  and Aσ are the magnitudes of the surface charges. 
EXECUTE: (a) The two fields oppose and the field of B is stronger than that of A, so 

Enet = 
0 0 02 2 2
B A B Aσ σ σ σ−
− =

P P P
 = ( )

2 2

12 2 2

11.6 C/m 9.50 C/m
2 8.85 10 C /N m

µ µ
−

−
× ⋅

 = 1.19 × 105 N/C, to the right. 

(b) The fields are now in the same direction, so their magnitudes add. 
Enet = (11.6 µC/m2 + 9.50 µC/m2)/2 0P  = 1.19 × 106 N/C, to the right 

(c) The fields add but now point to the left, so Enet = 1.19 × 106 N/C, to the left. 
EVALUATE: We can simplify the calculations by sketching the fields and doing an algebraic solution first. 

21.101. IDENTIFY: Each sheet produces an electric field that is independent of the distance from the sheet. The net field 
is the vector sum of the two fields. 
SET UP: The formula for each field is 0/ 2 ,E σ= P  and the net field is the vector sum of these, 

net
0 0 02 2 2
B A B AE σ σ σ σ±

= ± =
P P P

, where we use the + or – sign depending on whether the fields are in the same or 

opposite directions and Bσ  and Aσ are the magnitudes of the surface charges. 
EXECUTE: (a) The fields add and point to the left, giving Enet = 1.19 × 106 N/C. 
(b) The fields oppose and point to the left, so Enet = 1.19 × 105 N/C. 
(c) The fields oppose but now point to the right, giving Enet = 1.19 × 105 N/C. 
EVALUATE: We can simplify the calculations by sketching the fields and doing an algebraic solution first. 

21.102. IDENTIFY: The sheets produce an electric field in the region between them which is the vector sum of the fields 
from the two sheets. 
SET UP: The force on the negative oil droplet must be upward to balance gravity. The net electric field between 
the sheets is 0/ ,E σ= P and the electrical force on the droplet must balance gravity, so qE = mg. 
EXECUTE: (a) The electrical force on the drop must be upward, so the field should point downward since the 
drop is negative. 
(b) The charge of the drop is 5e, so 0. (5 )( / )qE mg e mgσ= =P and 

( )( )( )
( )

9 2 12 2 2
0

19

324 10  kg 9.80 m/s 8.85 10  C /N m
5 5 1.60 10  C

mg
e

σ
− −

−

× × ⋅
= =

×
P  = 35.1 C/m2 

EVALUATE: Balancing oil droplets between plates was the basis of the Milliken Oil-Drop Experiment which 
produced the first measurement of the mass of an electron. 

21.103. IDENTIFY and SET UP: Example 21.12 gives the electric field due to one infinite sheet. Add the two fields as 
vectors. 
EXECUTE: The electric field due to the first sheet, which is in the xy-plane, is ( )1 0

ˆ/ 2  for 0zσ= >E k
G

P  and 

( )1 0
ˆ/2  for 0.zσ= − <E k

G
P  We can write this as ( )( )1 0

ˆ/2 / ,z zσ=E k
G

P  since / 1 for 0z z z= + >  and / / 1z z z z= − = −  

for 0.z <  Similarly, we can write the electric field due to the second sheet as ( )( )2 0
ˆ/2 / ,x xσ= −E i

G
P  since its 

charge density is .σ−  The net field is ( ) ( ) ( )( )1 2 0
ˆ ˆ/2 / / .x x z zσ= + = − +E E E i k

G G G
P  

EVALUATE: The electric field is independent of the y-component of the field point since displacement in the 
-y± direction is parallel to both planes. The field depends on which side of each plane the field is located. 

21.104. IDENTIFY: Apply Eq.(21.11) for the electric field of a disk. The hole can be described by adding a disk of charge 
density σ− and radius 1R to a solid disk of charge density σ+ and radius 2R . 
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SET UP: The area of the annulus is 2 2
2 1( )R Rπ σ− . The electric field of a disk, Eq.(21.11) is 

2

0

1 1 ( ) 1
2

E R xσ ⎡ ⎤= − +⎣ ⎦P
. 

EXECUTE: (a) 2 2
2 1( )Q A R Rσ π σ= = −  

(b) ( )2 2
2 1

0

ˆ( ) 1 1/ ( / ) 1 1 1/ ( / ) 1
2

x
x R x R x

x
σ ⎡ ⎤ ⎡ ⎤= − + − − +⎣ ⎦ ⎣ ⎦E i

G
P

. ( )2 2
1 2

0

ˆ( ) 1/ ( / ) 1 1/ ( / ) 1
2

x
x R x R x

x
σ−

= + − +E i
G

P
. 

The electric field is in the +x direction at points above the disk and in the x− direction at points below the disk, and 

the factor ˆx
x

i specifies these directions. 

(c) Note that 2 2 1/ 2
1 1

1 1

1 ( / ) 1= (1 ( / ) ) .
x x

R x x R
R R

−+ + ≈  This gives 
2

0 1 2 0 1 2

1 1ˆ ˆ( ) .
2 2

xx xx x
R R x R R

σ σ⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
E = i = i
G

P P
 

Sufficiently close means that 2
1( ) 1.x R <<  

(d) 
0 1 2

1 1
2x x
qF qE x

R R
σ ⎛ ⎞

= = − −⎜ ⎟
⎝ ⎠P

. The force is in the form of Hooke’s law: xF kx= − , with 
0 1 2

1 1
2
qk

R R
σ ⎛ ⎞

= −⎜ ⎟
⎝ ⎠P

. 

0 1 2

1 1 1 1 
2 2 2

k qf
m m R R

σ
π π

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠P
. 

EVALUATE: The frequency is independent of the initial position of the particle, so long as this position is 
sufficiently close to the center of the annulus for 2

1( / )x R  to be small. 
21.105. IDENTIFY: Apply Coulomb’s law to calculate the forces that 1q and 2q exert on 3q , and add these force vectors 

to get the net force. 
SET UP: Like charges repel and unlike charges attract. Let +x be to the right and +y be toward the top of the page. 
EXECUTE: (a) The four possible force diagrams are sketched in Figure 21.105a. 
Only the last picture can result in a net force in the –x-direction. 
(b) 1 3 22.00 C,  4.00 C, and 0.q q qμ μ= − = + >  

(c) The forces 1F
G

 and 2F
G

 and their components are sketched in Figure 21.105b. 

1 3 2 3
1 22 2

0 0

1 10 sin sin
4 (0.0400 m) 4 (0.0300 m)y

q q q q
F θ θ

π π
= = − +

P P
. This gives 

1
2 1 1 1

2

9 sin 9 3 5 27 0.843 C
16 sin 16 4 5 64

q q q qθ μ
θ

= = = = . 

(d) 1 2x x xF F F= + and 0yF = , so 1 2
3 2 2

0

1 4 3 56.2 N
4 (0.0400 m) 5 (0.0300 m) 5

q q
F q

π
⎛ ⎞

= + =⎜ ⎟
⎝ ⎠P

. 

EVALUATE: The net force F
G

on 3q is in the same direction as the resultant electric field at the location of 3q due 
to 1q  and 2q . 

  
Figure 21.105 

21.106. IDENTIFY: Calculate the electric field at P due to each charge and add these field vectors to get the net field. 
SET UP: The electric field of a point charge is directed away from a positive charge and toward a negative 
charge. Let +x be to the right and let +y be toward the top of the page. 
EXECUTE: (a) The four possible diagrams are sketched in Figure 21.106a. 
The first diagram is the only one in which the electric field must point in the negative y-direction. 
(b) 1 23.00 C, and 0q qμ= − < . 
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(c) The electric fields 1E
G

and 2E
G

and their components are sketched in Figure 24.106b. 1
5cos

13
θ = , 1

12sin
13

θ = , 

2
12cos
13

θ = and 2
5sin

13
θ = . 1 2

2 2

5 120
(0.050 m) 13 (0.120 m) 13x

k q k q
E = = − + . This gives 2 1

2 2

5
(0.120 m) (0.050 m) 12

k q k q
= . 

Solving for 2q  gives 2 7.2 μCq = , so 2 7.2 μCq = − . Then 

1 72
2 2

12 5 1.17 10  N/C
(0.050 m) 13 (0.120 m) 13y

k q kqE = − − = − × . 71.17 10  N/CE = × . 

EVALUATE: With 1q known, specifying the direction of E
G

determines both 2q and E. 

  
Figure 21.106 

21.107. IDENTIFY: To find the electric field due to the second rod, divide that rod into infinitesimal segments of length 
dx, calculate the field dE due to each segment and integrate over the length of the rod to find the total field due to 
the rod. Use  d dq=F E

G G
to find the force the electric field of the second rod exerts on each infinitesimal segment of 

the first rod. 
SET UP: An infinitesimal segment of the second rod is sketched in Figure 21.107. ( / )dQ Q L dx′= . 

EXECUTE: (a) 2 2

 
( / 2 ) ( / 2 )

k dQ kQ dxdE
x a L x L x a L x

′
= =

′ ′+ + − + + −
. 

20 0
0

1 1 1
( / 2 ) / 2 / 2 / 2

L
L L

x x
kQ dx kQ kQE dE
L x a L x L x a L x L x a x a L

′ ⎡ ⎤ ⎛ ⎞= = = = −⎜ ⎟⎢ ⎥′ ′+ + − + + − + + +⎣ ⎦ ⎝ ⎠∫ ∫ . 

2 1 1
2 2 2x

kQE
L x a L x a

⎛ ⎞= −⎜ ⎟+ + +⎝ ⎠
. 

(b) Now consider the force that the field of the second rod exerts on an infinitesimal segment dq of the first rod. 
This force is in the +x-direction. dF dq E= . 

22 2

22 2

2 1 1
2 2 2

L a L a

a a

EQ kQF E dq dx dx
L L x a L x a

+ + ⎛ ⎞= = = −⎜ ⎟+ + +⎝ ⎠∫ ∫ ∫ . 

( )
2 2

2 2
2 22 2

2 1 2 2 2[ln ( 2 )] [ln(2 2 )] 1n
2 2 4 2

L a L a
a a

kQ kQ a L a L aF a x L x a
L L a L a

+ + ⎛ + + + ⎞⎛ ⎞ ⎛ ⎞= + − + + = ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

2 2

2

( )1n
( 2 )

kQ a LF
L a a L

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

. 

(c) For a L>> , 
2 2 2 2

2 2 2

(1 )1n (21n (1 ) ln(1 2 ))
(1 2 )

kQ a L a kQF L a L a
L a L a L

⎛ ⎞+
= = + − +⎜ ⎟+⎝ ⎠

. 

For small z, 
2

ln(1 )
2
zz z+ ≈ − . Therefore, for a L>> , 

2 2 2 2

2 2 2 2

2 22
2

kQ L L L L kQF
L a a a a a

⎛ ⎞⎛ ⎞ ⎛ ⎞
≈ − + ⋅ ⋅ ⋅ − − + ⋅ ⋅ ⋅ ≈⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

EVALUATE: The distance between adjacent ends of the rods is a. When a L>> the distance between the rods is 
much greater than their lengths and they interact as point charges. 

 
Figure 21.107 
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GAUSS’S LAW 

 22.1. (a) IDENTIFY and SET UP: cos ,E E dAφΦ = ∫  where φ  is the angle between the normal to the sheet n̂  and the 

electric field .E  
EXECUTE: In this problem E and cosφ  are constant over the surface so 

( )( )( )2 2cos cos 14 N/C cos60 0.250 m 1.8 N m /C.E E dA E Aφ φΦ = = = ° = ⋅∫  

(b) EVALUATE: EΦ  is independent of the shape of the sheet as long as φ  and E are constant at all points on the sheet. 
(c) EXECUTE: (i) cos . E EE AφΦ = Φ  is largest for 0 ,  so cos 1 and .E EAφ φ= ° = Φ =  
(ii) EΦ  is smallest for 90 ,  so cos 0 and 0.Eφ φ= ° = Φ =  
EVALUATE: EΦ  is 0 when the surface is parallel to the field so no electric field lines pass through the surface. 

 22.2. IDENTIFY: The field is uniform and the surface is flat, so use cosE EA φΦ = . 

SET UP: φ  is the angle between the normal to the surface and the direction of E , so 70φ = ° . 
EXECUTE: 2(75.0 N/C)(0.400 m)(0.600 m)cos70 6.16 N m /CEΦ = = ⋅°  

EVALUATE: If the field were perpendicular to the surface the flux would be 218.0 N m /C.E EAΦ = = ⋅  The flux in 
this problem is much less than this because only the component of E perpendicular to the surface contributes to the 
flux. 

 22.3. IDENTIFY: The electric flux through an area is defined as the product of the component of the electric field 
perpendicular to the area times the area. 
(a) SET UP: In this case, the electric field is perpendicular to the surface of the sphere, so 2(4 )E EA E rπΦ = = . 
EXECUTE: Substituting in the numbers gives 

( ) ( )26 5 21.25 10  N/C 4 0.150 m 3.53 10  N m /CE πΦ = × = × ⋅  

(b) IDENTIFY: We use the electric field due to a point charge. 

SET UP: 2
0

1
4

qE
rπ

=
P

 

EXECUTE: Solving for q and substituting the numbers gives 

( ) ( )22 6 6
0 9 2 2

14 0.150 m 1.25 10  N/C 3.13 10  C
9.00 10  N m /C

q r Eπ −= = × = ×
× ⋅

P  

EVALUATE: The flux would be the same no matter how large the circle, since the area is proportional to r2 while 
the electric field is proportional to 1/r2. 

 22.4. IDENTIFY: Use Eq.(22.3) to calculate the flux for each surface. Use Eq.(22.8) to calculate the total enclosed charge. 
SET UP: ˆ ˆ( 5.00 N/C m) (3.00 N/C m)x z− ⋅ ⋅E = i + k . The area of each face is 2L , where 0.300 mL = . 
EXECUTE: 

1 11
ˆˆ ˆ 0s S A− ⇒Φ = ⋅ =n = j E n . 

2 2

2
2

ˆˆ ˆ (3.00 N C m)(0.300 m) (0.27 (N C) m)S S A z z+ ⇒Φ = ⋅ = ⋅ = ⋅n = k E n . 
2

2 (0.27 (N/C)m)(0.300 m) 0.081 (N/C) mΦ = = ⋅ . 

3 33
ˆˆ ˆ 0S S A+ ⇒Φ = ⋅ =n = j E n . 

4 44
ˆˆ ˆ (0.27 (N/C) m) 0 (since 0).S S A z z− ⇒Φ = ⋅ = − ⋅ = =n = k E n  

5 5

2
5

ˆˆ ˆ ( 5.00 N/C m)(0.300 m) (0.45 (N/C) m) .S S A x x+ ⇒Φ = ⋅ = − ⋅ = − ⋅n = i E n  
2

5 (0.45 (N/C) m)(0.300 m) (0.135 (N/C) m ).Φ = − ⋅ = − ⋅  

6 66
ˆˆ ˆ (0.45 (N/C) m) 0 (since 0).S S A x x− ⇒Φ = ⋅ = + ⋅ = =n = i E n  

22
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(b)Total flux:  2 2
2 5 (0.081 0.135)(N/C) m 0.054 N m /C.Φ =Φ +Φ = − ⋅ = − ⋅  Therefore, 13

0 4.78 10  C.q −= Φ = − ×P  

EVALUATE: Flux is positive when E is directed out of the volume and negative when it is directed into the 
volume. 

 22.5. IDENTIFY: The flux through the curved upper half of the hemisphere is the same as the flux through the flat circle 
defined by the bottom of the hemisphere because every electric field line that passes through the flat circle also must 
pass through the curved surface of the hemisphere. 
SET UP: The electric field is perpendicular to the flat circle, so the flux is simply the product of E and the area of 
the flat circle of radius r. 
EXECUTE: ΦE = EA = E( 2rπ ) = 2rπ E 
EVALUATE: The flux would be the same if the hemisphere were replaced by any other surface bounded by the flat 
circle. 

 22.6. IDENTIFY: Use Eq.(22.3) to calculate the flux for each surface. 
SET UP: ˆcos whereEA AφΦ = ⋅ =E A A = n . 

EXECUTE: (a) 
1

ˆˆ (left)S −n = j . 
1

3 2 2(4 10  N/C)(0.10 m) cos(90 36 9 ) 24 N m /C.S .Φ = − × − ° = − ⋅°  

2S
ˆˆ (top)+n = k . 

2

3 2(4 10  N/C)(0.10 m) cos90 0SΦ = − × ° = . 

3

ˆˆ (right)S +n = j . 
3

3 2 2(4 10  N/C)(0.10 m) cos(90 36.9 ) 24 N m /CSΦ = + × ° − ° = + ⋅ . 

4

ˆˆ (bottom)S −n = k . 
4

3 2(4 10  N/C)(0.10 m) cos90 0SΦ = × ° = . 

5

ˆˆ (front)S +n = i . 
5

3 2 2(4 10  N/C)(0.10 m) cos36.9 32 N m /CSΦ = + × ° = ⋅ . 

6

ˆˆ (back)S −n = i . 
6

3 2 2(4 10  N/C)(0.10 m) cos36.9 32 N m /CSΦ = − × ° = − ⋅ . 
EVALUATE: (b) The total flux through the cube must be zero; any flux entering the cube must also leave it, since 
the field is uniform. Our calculation gives the result; the sum of the fluxes calculated in part (a) is zero. 

 22.7. (a) IDENTIFY: Use Eq.(22.5) to calculate the flux through the surface of the cylinder. 
SET UP: The line of charge and the cylinder are sketched in Figure 22.7. 

 
Figure 22.7 

EXECUTE: The area of the curved part of the cylinder is 2 .A rlπ=  
The electric field is parallel to the end caps of the cylinder, so 0⋅ =E A  for the ends and the flux through the 
cylinder end caps is zero. 
The electric field is normal to the curved surface of the cylinder and has the same magnitude 0/ 2E rλ π= P  at all 
points on this surface. Thus 0φ = °  and 

( )( ) ( )( )6
5 2

0 12 2 2
0

6.00 10  C/m 0.400 m
cos / 2 2 2.71 10  N m / C

8.854 10  C / N mE
lEA EA r rl λφ λ π π

−

−

×
Φ = = = = = = × ⋅

× ⋅
P

P
 

(b) In the calculation in part (a) the radius r of the cylinder divided out, so the flux remains the same, 
5 22.71 10  N m / C.EΦ = × ⋅  

(c) 
( )( )6

5 2
12 2 2

0

6.00 10  C/m 0.800 m
5.42 10  N m / C

8.854 10  C / N mE
lλ −

−

×
Φ = = = × ⋅

× ⋅P
 (twice the flux calculated in parts (b) and (c)). 

EVALUATE: The flux depends on the number of field lines that pass through the surface of the cylinder. 
 22.8. IDENTIFY: Apply Gauss’s law to each surface. 

SET UP: enclQ is the algebraic sum of the charges enclosed by each surface. Flux out of the volume is positive and 
flux into the enclosed volume is negative. 
EXECUTE: (a) 

1

9 2
1 0 0/ (4.00 10  C)/ 452 N m /C.S q −Φ = = × = ⋅P P  

(b) 
2

9 2
2 0 0/ ( 7.80 10  C)/ 881 N m /C.S q −Φ = = − × = − ⋅P P  

(c) 
3

9 2
1 2 0 0( )/ ((4.00 7.80) 10  C)/ 429 N m /C.S q q −Φ = + = − × = − ⋅P P  

(d) 
4

9 2
1 3 0 0( )/ ((4.00 2.40) 10  C)/ 723 N m /C.S q q −Φ = + = + × = ⋅P P  

(e) 
5

9 2
1 2 3 0 0( )/ ((4.00 7.80 2.40) 10  C)/ 158 N m /C.S q q q −Φ = + + = − + × = − ⋅P P  
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EVALUATE: (f )  All that matters for Gauss’s law is the total amount of charge enclosed by the surface, not its 
distribution within the surface. 

 22.9. IDENTIFY: Apply the results in Example 21.10 for the field of a spherical shell of charge. 

SET UP: Example 22.10 shows that 0E = inside a uniform spherical shell and that 2

q
E k

r
=  outside the shell. 

EXECUTE: (a) 0E =  

(b) 0.060 mr =  and 
6

9 2 2 7
2

15.0 10  C(8.99 10  N m /C ) 3.75 10  N/C
(0.060 m)

E
−×

= × ⋅ = ×  

(c) 0.110 mr = and 
6

9 2 2 7
2

15.0 10  C(8.99 10  N m /C ) 1.11 10  N/C
(0.110 m)

E
−×

= × ⋅ = ×  

EVALUATE: Outside the shell the electric field is the same as if all the charge were concentrated at the center of 
the shell. But inside the shell the field is not the same as for a point charge at the center of the shell, inside the shell 
the electric field is zero. 

22.10. IDENTIFY: Apply Gauss’s law to the spherical surface. 
SET UP: enclQ is the algebraic sum of the charges enclosed by the sphere. 
EXECUTE: (a) No charge enclosed so 0Φ = . 

(b)
9

22
12 2 2

0

6.00 10 C 678 N m C.
8.85 10 C N m

q −

−

− ×
Φ = = = − ⋅

× ⋅P
 

(c) 
9

21 2
12 2 2

0

(4.00 6.00) 10 C 226 N m C.
8.85 10 C N m

q q −

−

+ − ×
Φ = = = − ⋅

× ⋅P
 

EVALUATE: Negative flux corresponds to flux directed into the enclosed volume. The net flux depends only on the 
net charge enclosed by the surface and is not affected by any charges outside the enclosed volume. 

22.11. IDENTIFY: Apply Gauss’s law. 
SET UP: In each case consider a small Gaussian surface in the region of interest. 
EXECUTE: (a) Since E  is uniform, the flux through a closed surface must be zero. That is: 

0 0

1 0 0.qd ρdV ρdVΦ = ⋅ = = = ⇒ =∫ ∫E A P Pú  But because we can choose any volume we want, ρ  must be zero if 

the integral equals zero. 
(b) If there is no charge in a region of space, that does NOT mean that the electric field is uniform. Consider a 
closed volume close to, but not including, a point charge. The field diverges there, but there is no charge in that 
region. 
EVALUATE: The electric field within a region can depend on charges located outside the region. But the flux 
through a closed surface depends only on the net charge contained within that surface. 

22.12. IDENTIFY: Apply Gauss’s law. 
SET UP: Use a small Gaussian surface located in the region of question. 
EXECUTE: (a) If 0ρ >  and uniform, then q inside any closed surface is greater than zero. This implies 0Φ > , so 

0d⋅ >E Aú  and so the electric field cannot be uniform. That is, since an arbitrary surface of our choice encloses a 

non-zero amount of charge, E  must depend on position. 
(b) However, inside a small bubble of zero charge density within the material with density ρ , the field can be 
uniform. All that is important is that there be zero flux through the surface of the bubble (since it encloses no 
charge). (See Problem 22.61.) 
EVALUATE: In a region of uniform field, the flux through any closed surface is zero. 

22.13. (a) IDENTIFY and SET UP: It is rather difficult to calculate the flux directly from dΦ = ⋅E Aú  since the magnitude 

of E  and its angle with dA  varies over the surface of the cube. A much easier approach is to use Gauss's law to 
calculate the total flux through the cube. Let the cube be the Gaussian surface. The charge enclosed is the point 
charge. 

EXECUTE: 
6

6 2
encl 0 12 2 2

9.60 10  C/ 1.084 10  N m / C.
8.854 10  C / N mE Q

−

−

×
Φ = = = × ⋅

× ⋅
P  

By symmetry the flux is the same through each of the six faces, so the flux through one face is 
( )6 2 5 21

6 1.084 10  N m / C 1.81 10  N m / C.× ⋅ = × ⋅  

(b) EVALUATE: In part (a) the size of the cube did not enter into the calculations. The flux through one face 
depends only on the amount of charge at the center of the cube. So the answer to (a) would not change if the size of 
the cube were changed. 
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22.14. IDENTIFY: Apply the results of Examples 22.9 and 22.10. 

SET UP: 2

q
E k

r
=  outside the sphere. A proton has charge +e. 

EXECUTE: (a) 
19

9 2 2 21
2 15 2

92(1.60 10  C)(8.99 10  N m /C ) 2.4 10  N/C
(7.4 10  m)

q
E k

r

−

−

×
= = × ⋅ = ×

×
 

(b) For 101.0 10  mr −= × , 
215

21 13
10

7.4 10  m(2.4 10  N/C) 1.3 10  N/C
1.0 10  m

E
−

−

⎛ ⎞×
= × = ×⎜ ⎟×⎝ ⎠

 

(c) 0E = , inside a spherical shell. 
EVALUATE: The electric field in an atom is very large. 

22.15. IDENTIFY: The electric fields are produced by point charges. 

SET UP: We use Coulomb’s law, 2
0

1
4

qE
rπ

=
P

, to calculate the electric fields. 

EXECUTE: (a) ( )
( )

6
9 2 2 4

2
5.00 10  C9.00 10  N m /C 4.50 10  N/C

1.00 m
E

−×
= × ⋅ = ×  

(b) ( )
( )

6
9 2 2 2

2

5.00 10  C9.00 10  N m /C 9.18 10  N/C
7.00 m

E
−×

= × ⋅ = ×  

(c) Every field line that enters the sphere on one side leaves it on the other side, so the net flux through the surface is 
zero. 
EVALUATE: The flux would be zero no matter what shape the surface had, providing that no charge was inside the 
surface. 

22.16. IDENTIFY: Apply the results of Example 22.5. 
SET UP: At a point 0.100 m outside the surface, 0.550 mr = . 

EXECUTE: (a) 
10

2 2
0 0

1 1 (2.50 10 C) 7.44 N C.
4 4 (0.550 m)

qE
π r π

−×
= = =

P P
 

(b) 0E =  inside of a conductor or else free charges would move under the influence of forces, violating our 
electrostatic assumptions (i.e., that charges aren’t moving). 
EVALUATE: Outside the sphere its electric field is the same as would be produced by a point charge at its center, 
with the same charge. 

22.17. IDENTIFY: The electric field required to produce a spark 6 in. long is 6 times as strong as the field needed to 
produce a spark 1 in. long. 

SET UP: By Gauss’s law, 0q EA= P  and the electric field is the same as for a point-charge, 2
0

1
4

qE
rπ

=
P

. 

EXECUTE: (a) The electric field for 6-inch sparks is 4 56 2.00 10  N/C 1.20 10  N/CE = × × = ×  
The charge to produce this field is 

2 12 2 2 5 2 7
0 0 (4 ) (8.85 10  C /N m )(1.20 10  N/C)(4 )(0.15 m) 3.00 10  Cq EA E rπ π− −= = = × ⋅ × = ×P P . 

(b) Using Coulomb’s law gives 
7

9 2 2 5
2

3.00 10  C(9.00 10  N m /C ) 1.20 10  N/C
(0.150 m)

E
−×

= × ⋅ = × . 

EVALUATE: It takes only about 0.3 Cμ  to produce a field this strong. 
22.18. IDENTIFY: According to Exercise 21.32, the Earth’s electric field points towards its center. Since Mars’s electric 

field is similar to that of Earth, we assume it points toward the center of Mars. Therefore the charge on Mars must 
be negative. We use Gauss’s law to relate the electric flux to the charge causing it. 

SET UP: Gauss’s law is 
0

E
q

Φ =
P

 and the electric flux is E EAΦ = . 

EXECUTE: (a) Solving Gauss’s law for q, putting in the numbers, and recalling that q is negative, gives 
16 2 12 2 2 5

0 (3.63 10  N m /C)(8.85 10  C /N m ) 3.21 10  CEq −= − Φ = − × ⋅ × ⋅ = − ×P . 
(b) Use the definition of electric flux to find the electric field. The area to use is the surface area of Mars. 

16 2
2

6 2

3.63 10  N m /C 2.50 10  N/C
4 (3.40 10  m)

EE
A π
Φ × ⋅

= = = ×
×

 

(c) The surface charge density on Mars is therefore 
5

9 2
6 2

Mars

3.21 10  C 2.21 10  C/m
4 (3.40 10  m)

q
A

σ
π

−− ×
= = = − ×

×
 

EVALUATE: Even though the charge on Mars is very large, it is spread over a large area, giving a small surface 
charge density. 
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22.19. IDENTIFY and SET UP: Example 22.5 derived that the electric field just outside the surface of a spherical 

conductor that has net charge q is 2
0

1 .
4

qE
Rπ

=
P

 Calculate q and from this the number of excess electrons. 

EXECUTE: 
( )

( ) ( )22
9

9 2 2
0

0.160 m 1150 N/C
3.275 10  C.

1/ 4 8.988 10  N m /C
R Eq
π

−= = = ×
× ⋅P

 

Each electron has a charge of magnitude 191.602 10  C,e −= ×  so the number of excess electrons needed is 
9

10
19

3.275 10  C 2.04 10 .
1.602 10  C

−

−

×
= ×

×
 

EVALUATE: The result we obtained for q is a typical value for the charge of an object. Such net charges 
correspond to a large number of excess electrons since the charge of each electron is very small. 

22.20. IDENTIFY: Apply Gauss’s law. 
SET UP: Draw a cylindrical Gaussian surface with the line of charge as its axis. The cylinder has radius 0.400 m 
and is 0.0200 m long. The electric field is then 840 N/C at every point on the cylindrical surface and is directed 
perpendicular to the surface. 
EXECUTE: 2

cylinder (2 ) (840 N/C)(2 )(0.400 m)(0.0200 m) 42.2 N m /C.d EA E rL ππ⋅ = = = = ⋅E Aú  

The field is parallel to the end caps of the cylinder, so for them 0.d⋅ =E Aú  From Gauss’s law, 
12 2 2 2 10

0 (8.854 10  C /N m )(42.2 N m /C) 3.74 10 C.Eq − −= Φ = × ⋅ ⋅ = ×P  
EVALUATE: We could have applied the result in Example 22.6 and solved for λ . Then .q Lλ=  

22.21. IDENTIFY: Add the vector electric fields due to each line of charge. E(r) for a line of charge is given by 
Example 22.6 and is directed toward a negative line of chage and away from a positive line. 
SET UP: The two lines of charge are shown in Figure 22.21. 

 

0

1
2

E
r
λ

π
=

P
 

Figure 22.21  

EXECUTE: (a) At point a, 1 2 and E E  are in the -directiony+  (toward negative charge, away from positive 
charge). 

( ) ( ) ( )6 5
1 01/ 2 4.80 10  C/m / 0.200 m 4.314 10  N/CE π −⎡ ⎤= × = ×⎣ ⎦P  

( ) ( ) ( )6 5
2 01/ 2 2.40 10  C/m / 0.200 m 2.157 10  N/CE π −⎡ ⎤= × = ×⎣ ⎦P  

5
1 2 6.47 10  N/C,E E E= + = ×  in the y-direction. 

(b) At point b, 1E  is in the 2-direction and  is in the -direction.y y+ −E  

( ) ( ) ( )6 5
1 01/ 2 4.80 10  C/m / 0.600 m 1.438 10  N/CE π −⎡ ⎤= × = ×⎣ ⎦P  

( ) ( ) ( )6 5
2 01/ 2 2.40 10  C/m / 0.200 m 2.157 10  N/C E π −⎡ ⎤= × = ×⎣ ⎦P  

4
2 1 7.2 10  N/C, in the -direction.E E E y= − = × −  

EVALUATION: At point a the two fields are in the same direction and the magnitudes add. At point b the two fields 
are in opposite directions and the magnitudes subtract. 

22.22. IDENTIFY: Apply the results of Examples 22.5, 22.6 and 22.7. 
SET UP: Gauss’s law can be used to show that the field outside a long conducting cylinder is the same as for a line 
of charge along the axis of the cylinder. 
EXECUTE: (a) For points outside a uniform spherical charge distribution, all the charge can be considered to be 
concentrated at the center of the sphere. The field outside the sphere is thus inversely proportional to the square of 
the distance from the center. In this case, 

2
0.200 cm(480 N C) 53 N C
0.600 cm

E
⎛ ⎞

= =⎜ ⎟
⎝ ⎠
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(b) For points outside a long cylindrically symmetrical charge distribution, the field is identical to that of a long line 

of charge: 
0

λ ,
2

E
π r

=
P

that is, inversely proportional to the distance from the axis of the cylinder. In this case 

0.200 cm(480 N/C) 160 N/C
0.600 cm

E ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(c) The field of an infinite sheet of charge is 0/2 ;E σ= P  i.e., it is independent of the distance from the sheet. Thus in 
this case 480 N/C.E =  
EVALUATE: For each of these three distributions of charge the electric field has a different dependence on distance. 

22.23. IDENTIFY: The electric field inside the conductor is zero, and all of its initial charge lies on its outer surface. The 
introduction of charge into the cavity induces charge onto the surface of the cavity, which induces an equal but 
opposite charge on the outer surface of the conductor. The net charge on the outer surface of the conductor is the 
sum of the positive charge initially there and the additional negative charge due to the introduction of the negative 
charge into the cavity. 
(a) SET UP: First find the initial positive charge on the outer surface of the conductor using i ,q Aσ= where A is 
the area of its outer surface. Then find the net charge on the surface after the negative charge has been introduced 
into the cavity. Finally use the definition of surface charge density. 
EXECUTE: The original positive charge on the outer surface is 

2 6 2 2 6 2
i (4 ) (6.37 10  C/m )4 (0.250 m ) 5.00 10  C/mq A rσ σ π π− −= = = × = ×  

After the introduction of 0.500 Cμ−  into the cavity, the outer charge is now 
5.00 C 0.500 C 4.50 Cμ μ μ− =  

The surface charge density is now
6

6 2
2 2

4.50 10  C 5.73 10  C/m
4 4 (0.250 m)

q q
A r

σ
π π

−
−×

= = = = ×  

(b) SET UP: Using Gauss’s law, the electric field is 2
0 0 4

E q qE
A A rπ
Φ

= = =
P P

 

EXECUTE: Substituting numbers gives 
6

5
12 2 2 2

4.50 10  C 6.47 10  N/C.
(8.85 10  C /N m )(4 )(0.250 m)

E
π

−

−

×
= = ×

× ⋅
 

(c) SET UP: We use Gauss’s law again to find the flux. 
0

E
q

Φ =
P

. 

EXECUTE: Substituting numbers gives 
6

4 2 2
12 2 2

0.500 10  C 5.65 10  N m /C
8.85 10  C /N mE

−

−

− ×
Φ = = − × ⋅

× ⋅
. 

EVALUATE: The excess charge on the conductor is still 5.00 C,μ+  as it originally was. The introduction of the 
0.500 Cμ−  inside the cavity merely induced equal but opposite charges (for a net of zero) on the surfaces of the 

conductor. 
22.24. IDENTIFY: We apply Gauss’s law, taking the Gaussian surface beyond the cavity but inside the solid. 

SET UP: Because of the symmetry of the charge, Gauss’s law gives us total

0

qE
A

=
P

, where A is the surface area of a 

sphere of radius R = 9.50 cm centered on the point-charge, and qtotal is the total charge contained within that sphere. 
This charge is the sum of the 2.00 Cμ−  point charge at the center of the cavity plus the charge within the solid 
between r = 6.50 cm and R = 9.50 cm. The charge within the solid is qsolid = ρV = ρ( 3 3[4 /3] [4/3]R rπ π− ) = 
( [4 /3]π ρ)(R3 – r3) 
EXECUTE: First find the charge within the solid between r = 6.50 cm and R = 9.50 cm: 

4 3 3 3 6
solid

4 (7.35 10  C/m ) (0.0950 m) (0.0650 m) 1.794 10  C,
3

q π − −⎡ ⎤= × − = ×⎣ ⎦  

Now find the total charge within the Gaussian surface: 
total solid point 2.00 C 1.794 C 0.2059 Cq q q μ μ μ= + = − + = −  

Now find the magnitude of the electric field from Gauss’s law: 
6

5
2 12 2 2 2

0 0

0.2059 10  C 2.05 10  N/C
4 (8.85 10  C /N m )(4 )(0.0950 m)

q qE
A rπ π

−

−

×
= = = = ×

× ⋅P P
. 

The fact that the charge is negative means that the electric field points radially inward. 
EVALUATE: Because of the uniformity of the charge distribution, the charge beyond 9.50 cm does not contribute 
to the electric field. 
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22.25. IDENTIFY: The magnitude of the electric field is constant at any given distance from the center because the charge 
density is uniform inside the sphere. We can use Gauss’s law to relate the field to the charge causing it. 

(a) SET UP: Gauss’s law tells us that 
0

qEA =
P

, and the charge density is given by 3(4 /3)
q q
V R

ρ
π

= = . 

EXECUTE: Solving for q and substituting numbers gives 
2 2 12 2 2 8

0 0(4 ) (1750 N/C)(4 )(0.500 m) (8.85 10  C /N m ) 4.866 10  Cq EA E rπ π − −= = = × ⋅ = ×P P . Using the formula for 

charge density we get 
( )

8
7 3

33

4.866 10  C 2.60 10  C/m .
(4/3) (4 /3) 0.355 m

q q
V R

ρ
π π

−
−×

= = = = ×  

(b) SET UP: Take a Gaussian surface of radius r = 0.200 m, concentric with the insulating sphere. The charge 

enclosed within this surface is 3
encl

4
3

q V rρ ρ π⎛ ⎞= = ⎜ ⎟
⎝ ⎠

, and we can treat this charge as a point-charge, using 

Coulomb’s law encl
2

0

1
4

qE
rπ

=
P

. The charge beyond r = 0.200 m makes no contribution to the electric field. 

EXECUTE: First find the enclosed charge: 

( ) ( )33 7 3 9
encl

4 42.60 10  C/m 0.200 m 8.70 10  C
3 3

q rρ π π− −⎛ ⎞ ⎡ ⎤= = × = ×⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
 

Now treat this charge as a point-charge and use Coulomb’s law to find the field: 

( )
( )

9
9 2 2 3

2

8.70 10  C9.00 10  N m /C 1.96 10  N/C
0.200 m

E
−×

= × ⋅ = ×  

EVALUATE: Outside this sphere, it behaves like a point-charge located at its center. Inside of it, at a distance r 
from the center, the field is due only to the charge between the center and r. 

22.26. IDENTIFY: Apply Gauss’s law and conservation of charge. 
SET UP: Use a Gaussian surface that lies wholly within he conducting material. 
EXECUTE: (a) Positive charge is attracted to the inner surface of the conductor by the charge in the cavity. Its 
magnitude is the same as the cavity charge: nner 6.00 nC,iq = +  since 0E =  inside a conductor and a Gaussian 
surface that lies wholly within the conductor must enclose zero net charge. 
(b) On the outer surface the charge is a combination of the net charge on the conductor and the charge “left behind” 
when the 6.00 nC+  moved to the inner surface: 

tot inner outer outer tot inner 5.00 nC 6.00 nC 1.00 nC.q q q q q q= + ⇒ = − = − = −  

EVALUATE: The electric field outside the conductor is due to the charge on its surface. 
22.27. IDENTIFY: Apply Gauss’s law to each surface. 

SET UP: The field is zero within the plates. By symmetry the field is perpendicular to the plates outside the plates 
and can depend only on the distance from the plates. Flux into the enclosed volume is positive. 
EXECUTE: 2 3andS S  enclose no charge, so the flux is zero, and electric field outside the plates is zero. Between 
the plates, 4S  shows that 0 0EA q σ A− = − = −P P and 0 .E σ= P  
EVALUATE: Our result for the field between the plates agrees with the result stated in Example 22.8. 

22.28. IDENTIFY: Close to a finite sheet the field is the same as for an infinite sheet. Very far from a finite sheet the field 
is that of a point charge. 

SET UP: For an infinite sheet, 
02

E σ
=
P

. For a point charge, 2
0

1
4

qE
rπ

=
P

. 

EXECUTE: (a) At a distance of 0.1 mm from the center, the sheet appears “infinite,” so 
9

2
0 0

7.50 10  C 662 N/C
2 2 (0.800 m)

qE
A

−×
≈ = =
P P

. 

(b) At a distance of 100 m from the center, the sheet looks like a point, so: 
9

3
2 2

0 0

1 1 (7.50 10 C) 6.75 10 N C.
4 4 (100 m)

qE
π r π

−
−×

≈ = = ×
P P

 

(c) There would be no difference if the sheet was a conductor. The charge would automatically spread out evenly 
over both faces, giving it half the charge density on either face as the insulator but the same electric field. Far away, 
they both look like points with the same charge. 
EVALUATE: The sheet can be treated as infinite at points where the distance to the sheet is much less than the 
distance to the edge of the sheet. The sheet can be treated as a point charge at points for which the distance to the 
sheet is much greater than the dimensions of the sheet. 
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22.29. IDENTIFY: Apply Gauss’s law to a Gaussian surface and calculate E. 
(a) SET UP: Consider the charge on a length l of the cylinder. This can be expressed as .q lλ=  But since the 
surface area is 2 Rlπ  it can also be expressed as 2 .q Rlσ π=  These two expressions must be equal, so 2l Rlλ σ π=  
and 2 .Rλ π σ=  
(b) Apply Gauss’s law to a Gaussian surface that is a cylinder of length l, radius r, and whose axis coincides with 
the axis of the charge distribution, as shown in Figure 22.29. 

 

EXECUTE: 
( )encl 2Q Rlσ π=  

2E rlEπΦ =  

Figure 22.29  

( )encl

0 0

2
 gives 2E

RlQ rlE
σ π

πΦ = =
P P

 

0

RE
r

σ
=
P

 

(c) EVALUATE: Example 22.6 shows that the electric field of an infinite line of charge is 0/ 2 .E rλ π= P  ,
2 R
λσ
π

=  

so 
0 0 0

,
2 2

R RE
r r R r

σ λ λ
π π

⎛ ⎞= = =⎜ ⎟
⎝ ⎠P P P

 the same as for an infinite line of charge that is along the axis of the cylinder. 

22.30. IDENTIFY: The net electric field is the vector sum of the fields due to each of the four sheets of charge. 
SET UP: The electric field of a large sheet of charge is 0/ 2E σ= P . The field is directed away from a positive sheet 
and toward a negative sheet. 

EXECUTE: (a) At 2 3 4 1
2 3 4 1

0 0 0 0 0

1:  ( )
2 2 2 2 2A

σ σ σ σ
A E σ σ σ σ= + + − = + + −

P P P P P
. 

2 2 2 2 5

0

1 (5 C m 2 C m 4 C m 6 C m ) 2.82 10 N C to the left.
2AE μ μ μ μ= + + − = ×
P

 

(b) 1 3 4 2
1 3 4 2

0 0 0 0 0

1 ( )
2 2 2 2 2B

σ σ σ σ
E σ σ σ σ= + + − = + + −

P P P P P
. 

2 2 2 2 5

0

1 (6 C m 2 C m 4 C m 5 C m ) 3.95 10 N C to the left.
2BE μ μ μ μ= + + − = ×
P

 

(c) 4 1 2 3
2 3 4 1

0 0 0 0 0

1 ( )
2 2 2 2 2C

σ σ σ σ
E σ σ σ σ= + − − = + − −

P P P P P
. 

2 2 2 2 5

0

1 (4 C m 6 C m 5 C m 2 C m ) 1.69 10  N C to the left
2CE μ μ μ μ= + − − = ×
P

 

EVALUATE: The field at C is not zero. The pieces of plastic are not conductors. 
22.31. IDENTIFY: Apply Gauss’s law and conservation of charge. 

SET UP: 0E = in a conducting material. 
EXECUTE: (a) Gauss’s law says +Q on inner surface, so 0E =  inside metal. 
(b) The outside surface of the sphere is grounded, so no excess charge. 
(c) Consider a Gaussian sphere with the –Q charge at its center and radius less than the inner radius of the metal. 
This sphere encloses net charge –Q so there is an electric field flux through it; there is electric field in the cavity. 
(d) In an electrostatic situation 0E =  inside a conductor. A Gaussian sphere with the Q−  charge at its center and 
radius greater than the outer radius of the metal encloses zero net charge (the Q−  charge and the Q+ on the inner 
surface of the metal) so there is no flux through it and 0E = outside the metal. 
(e) No, 0E =  there. Yes, the charge has been shielded by the grounded conductor. There is nothing like positive 
and negative mass (the gravity force is always attractive), so this cannot be done for gravity. 
EVALUATE: Field lines within the cavity terminate on the charges induced on the inner surface. 
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22.32. IDENTIFY and SET UP: Eq.(22.3) to calculate the flux. Identify the direction of the normal unit vector n̂  for each 
surface. 
EXECUTE: (a) 2ˆ ˆ ˆ;  B C D A L= − + − =E i j k   

1face :S  ˆˆ = −n j  
2ˆ ˆ ˆ ˆˆ( ) ( ) ( ) .E A B C D A CLΦ = ⋅ = ⋅ = − + − ⋅ − = −E A E n i j k j  

2face :S  ˆˆ = +n k  
2ˆ ˆ ˆ ˆˆ( ) ( ) ( ) .E A B C D A DLΦ = ⋅ = ⋅ = − + − ⋅ = −E A E n i j k k  

3face :S  ˆˆ = +n j  
2ˆ ˆ ˆ ˆˆ( ) ( ) ( ) .E A B C D A CLΦ = ⋅ = ⋅ = − + − ⋅ = +E A E n i j k j  

4face :S  ˆˆ = −n k  
2ˆ ˆ ˆ ˆˆ( ) ( ) ( ) .E A B C D A DLΦ = ⋅ = ⋅ = − + − ⋅ − = +E A E n i j k k  

5face :S  ˆˆ = +n i  
2ˆ ˆ ˆ ˆˆ( ) ( ) ( ) .E A B C D A BLΦ = ⋅ = ⋅ = − + − ⋅ = −E A E n i j k i  

6face :S ˆˆ = −n i  
2ˆ ˆ ˆ ˆˆ( ) ( ) ( ) .E A B C D A BLΦ = ⋅ = ⋅ = − + − ⋅ − = +E A E n i j k i  

(b) Add the flux through each of the six faces: 2 2 2 2 2 2 0E CL DL CL DL BL BLΦ = − − + + − + =  
The total electric flux through all sides is zero. 
EVALUATE: All electric field lines that enter one face of the cube leave through another face. No electric field 
lines terminate inside the cube and the net flux is zero. 

22.33. IDENTIFY: Use Eq.(22.3) to calculate the flux through each surface and use Gauss’s law to relate the net flux to 
the enclosed charge. 
SET UP: Flux into the enclosed volume is negative and flux out of the volume is positive. 
EXECUTE: (a) 2 2(125 N C)(6.0 m ) 750 N m C.EAΦ = = = ⋅  
(b) Since the field is parallel to the surface, 0.Φ =  
(c) Choose the Gaussian surface to equal the volume’s surface. Then 2

0750 N m /C /EA q⋅ − = P  and 
8 2

02
1 (2.40 10  C/ 750 N m /C) 577 N/C

6.0 m
E −= × + ⋅ =P , in the positive x-direction. Since 0q <  we must have some 

net flux flowing in so the flux is E A−  on second face. 
EVALUATE: (d) 0q <  but we have E pointing away from face I. This is due to an external field that does not 
affect the flux but affects the value of E. 

22.34. IDENTIFY: Apply Gauss’s law to a cube centered at the origin and with side length 2L. 
SET UP: The total surface area of a cube with side length 2L is 2 26(2 ) 24L L= . 
EXECUTE: (a) The square is sketched in Figure 22.34. 
(b) Imagine a charge q at the center of a cube of edge length 2L. Then: 0/ .qΦ = P  Here the square is one 24th of the 
surface area of the imaginary cube, so it intercepts 1/24 of the flux. That is, 024 .qΦ = P  
EVALUATE: Calculating the flux directly from Eq.(22.5) would involve a complicated integral. Using Gauss’s law 
and symmetry considerations is much simpler. 

 
Figure 22.34 
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22.35. (a) IDENTIFY: Find the net flux through the parallelepiped surface and then use that in Gauss’s law to find the net 
charge within. Flux out of the surface is positive and flux into the surface is negative. 
SET UP: 1E  gives flux out of the surface. See Figure 22.35a. 

 

EXECUTE: 1 1E A⊥Φ = +  
3 2(0.0600 m)(0.0500 m) 3.00 10  mA −= = ×  

4
1 1 cos60 (2.50 10  N/C)cos60E E⊥ = ° = × °  

4
1 1.25 10  N/CE ⊥ = ×  

Figure 22.35a  

1

4 3 2 2
1 (1.25 10  N/C)(3.00 10  m ) 37.5 N m / CE E A −
⊥Φ = + = + × × = ⋅  

SET UP: 2E  gives flux into the surface. See Figure 22.35b. 

 

EXECUTE: 2 2E A⊥Φ = −  
3 2(0.0600 m)(0.0500 m) 3.00 10 mA −= = ×  

4
2 2 cos60 (7.00 10  N/C)cos60E E⊥ = ° = × °  

4
2 3.50 10  N/CE ⊥ = ×  

Figure 22.35b  

2

4 3 2 2
2 (3.50 10  N/C)(3.00 10  m ) 105.0 N m /CE E A −
⊥Φ = − = − × × = − ⋅  

The net flux is 
1 2

2 2 237.5 N m /C 105.0 N m /C 67.5 N m /C.E E EΦ =Φ +Φ = + ⋅ − ⋅ = − ⋅  
The net flux is negative (inward), so the net charge enclosed is negative. 

Apply Gauss’s law: encl

0
E

Q
Φ =

P
 

2 12 2 2 10
encl 0 ( 67.5 N m /C)(8.854 10  C /N m ) 5.98 10  C.EQ − −= Φ = − ⋅ × ⋅ = − ×P  

(b) EVALUATE: If there were no charge within the parallelpiped the net flux would be zero. This is not the case, so 
there is charge inside. The electric field lines that pass out through the surface of the parallelpiped must terminate on 
charges, so there also must be charges outside the parallelpiped. 

22.36. IDENTIFY: The α  particle feels no force where the net electric field due to the two distributions of charge is zero. 
SET UP: The fields can cancel only in the regions A and B shown in Figure 22.36, because only in these two 
regions are the two fields in opposite directions. 

EXECUTE: line sheetE E= gives 
0 0

λ
2 2

σ
π r

=
P P

and 2

50 C/mλ 0.16 m 16 cm
(100 C/m )

r μπσ
π μ

= = = = . 

The fields cancel 16 cm from the line in regions A and B. 
EVALUATE: The result is independent of the distance between the line and the sheet. The electric field of an 
infinite sheet of charge is uniform, independent of the distance from the sheet. 

 
Figure 22.36 

22.37. (a) IDENTIFY: Apply Gauss’s law to a Gaussian cylinder of length l and radius r, where ,a r b< <  and calculate E 
on the surface of the cylinder. 
SET UP: The Gaussian surface is sketched in Figure 22.37a. 

 

EXECUTE: ( )2E E rlπΦ =  

enclQ lλ=  (the charge on the 
length l of the inner conductor 
that is inside the Gaussian 
surface). 

Figure 22.37a  

( )encl

0 0

 gives 2E
Q lE rl λπΦ = =
P P

 

0

.
2

E
r

λ
π

=
P

 The enclosed charge is positive so the direction of E  is radially outward. 
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(b) SET UP: Apply Gauss’s law to a Gaussian cylinder of length l and radius r, where r > c, as shown in 
Figure 22.37b. 

 

EXECUTE: ( )2E E rlπΦ =  

enclQ lλ=  (the charge on the length l 
of the inner conductor that is inside 
the Gaussian surface; the outer 
conductor carries no net charge). 

Figure 22.37b  

( )encl

0 0

 gives 2E
Q lE rl λπΦ = =
P P

 

0

.
2

E
r

λ
π

=
P

 The enclosed charge is positive so the direction of E  is radially outward. 

(c) E = 0 within a conductor. Thus E = 0 for r < a; 

0

 for ;  0 for ;
2

E a r b E b r c
r

λ
π

= < < = < <
P

 

0

 for .
2

E r c
r

λ
π

= >
P

 The graph of E versus r is sketched in Figure 22.37c. 

 
Figure 22.37c 

EVALUATE: Inside either conductor E = 0. Between the conductors and outside both conductors the electric field 
is the same as for a line of charge with linear charge density λ  lying along the axis of the inner conductor. 
(d) IDENTIFY and SET UP: inner surface: Apply Gauss’s law to a Gaussian cylinder with radius r, where 

.b r c< <  We know E on this surface; calculate encl.Q  
EXECUTE: This surface lies within the conductor of the outer cylinder, where 0,  so 0.EE = Φ =  Thus by Gauss’s 
law encl 0.Q =  The surface encloses charge lλ  on the inner conductor, so it must enclose charge lλ−  on the inner 
surface of the outer conductor. The charge per unit length on the inner surface of the outer cylinder is .λ−  
outer surface: The outer cylinder carries no net charge. So if there is charge per unit length λ−  on its inner surface 
there must be charge per until length λ+  on the outer surface. 
EVALUATE: The electric field lines between the conductors originate on the surface charge on the outer surface of 
the inner conductor and terminate on the surface charges on the inner surface of the outer conductor. These surface 
charges are equal in magnitude (per unit length) and opposite in sign. The electric field lines outside the outer 
conductor originate from the surface charge on the outer surface of the outer conductor. 

22.38. IDENTIFY: Apply Gauss’s law. 
SET UP: Use a Gaussian surface that is a cylinder of radius r, length l and that has the line of charge along its axis. 
The charge on a length l of the line of charge or of the tube is q lα= . 

EXECUTE: (a) (i) For r a< , Gauss’s law gives encl

0 0

(2 ) Q αlE πrl = =
P P

 and 
02
αE
π r

=
P

. 

(ii) The electric field is zero because these points are within the conducting material. 

(iii) For r b> , Gauss’s law gives encl

0 0

2(2 ) Q αlE πrl = =
P P

 and 
0

αE
π r

=
P

. 

The graph of E versus r is sketched in Figure 22.38. 
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(b) (i) The Gaussian cylinder with radius r, for a r b< < , must enclose zero net charge, so the charge per unit length 
on the inner surface is .α−  (ii) Since the net charge per length for the tube is α+ and there is α− on the inner 
surface, the charge per unit length on the outer surface must be 2 .α+  
EVALUATE: For r b> the electric field is due to the charge on the outer surface of the tube. 

 
Figure 22.38 

22.39. (a) IDENTIFY: Use Gauss’s law to calculate E(r). 
(i) SET UP: :r a<  Apply Gauss’s law to a cylindrical Gaussian surface of length l and radius r, where ,r a< as 
sketched in Figure 22.39a. 

 

EXECUTE: ( )2E E rlπΦ =  

enclQ lα=  (the charge on the length l 
of the line of charge) 

Figure 22.39a  

( )encl

0 0

 gives 2E
Q lE rl απΦ = =
P P

 

0

.
2

E
r

α
π

=
P

 The enclosed charge is positive so the direction of E  is radially outward. 

(ii) :a r b< <  Points in this region are within the conducting tube, so E = 0. 
(iii) SET UP: :r b>  Apply Gauss’s law to a cylindrical Gaussian surface of length l and radius r, where ,r b>  as 
sketched in Figure 22.39b. 

 

EXECUTE: ( )2E E rlπΦ =  

enclQ lα=  (the charge on length l of the 
line of charge) lα−  (the charge on 
length l of the tube) Thus encl 0.Q =  

Figure 22.39b  

( )encl

0

 gives 2 0 and 0.E
Q E rl EπΦ = = =
P

 The graph of E versus r is sketched in Figure 22.39c. 

 
Figure 22.39c 

(b) IDENTIFY: Apply Gauss’s law to cylindrical surfaces that lie just outside the inner and outer surfaces of the 
tube. We know E so can calculate encl.Q  
(i) SET UP: inner surface 
Apply Gauss’s law to a cylindrical Gaussian surface of length l and radius r, where .a r b< <  
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EXECUTE: This surface lies within the conductor of the tube, where E = 0, so 0.EΦ =  Then by Gauss’s law 

encl 0.Q =  The surface encloses charge lα on the line of charge so must enclose charge lα−  on the inner surface of 
the tube. The charge per unit length on the inner surface of the tube is .α−  
(ii) outer surface 
The net charge per unit length on the tube is .α−  We have shown in part (i) that this must all reside on the inner 
surface, so there is no net charge on the outer surface of the tube. 
EVALUATE: For r < a the electric field is due only to the line of charge. For r > b the electric field of the tube is 
the same as for a line of charge along its axis. The fields of the line of charge and of the tube are equal in magnitude 
and opposite in direction and sum to zero. For r < a the electric field lines originate on the line of charge and 
terminate on the surface charge on the inner surface of the tube. There is no electric field outside the tube and no 
surface charge on the outer surface of the tube. 

22.40. IDENTIFY: Apply Gauss’s law. 
SET UP: Use a Gaussian surface that is a cylinder of radius r and length l, and that is coaxial with the cylindrical 
charge distributions. The volume of the Gaussian cylinder is 2r lπ and the area of its curved surface is 2 rlπ . The 
charge on a length l of the charge distribution is q lλ= , where 2Rλ ρπ= . 

EXECUTE: (a) For r R< , 2
enclQ r lρπ= and Gauss’s law gives 

2
encl

0 0
(2 ) Q ρπr lE πrl = =P P  and 

02
ρrE = P , radially 

outward. 

(b) For r R> , 2
encl =Q l ρπR lλ = and Gauss’s law gives 

2

0 0
(2 ) q ρπR lE πrl = =P P and 

2

0 0

λ
2 2
ρRE r π r= =P P , radially 

outward. 

(c) At ,r R=  the electric field for BOTH regions is 
0

,2
ρRE = P so they are consistent. 

(d) The graph of E versus r is sketched in Figure 22.40. 
EVALUATE: For r R> the field is the same as for a line of charge along the axis of the cylinder. 

 
Figure 22.40 

22.41. IDENTIFY: First make a free-body diagram of the sphere. The electric force acts to the left on it since the electric 
field due to the sheet is horizontal. Since it hangs at rest, the sphere is in equilibrium so the forces on it add to zero, 
by Newton’s first law. Balance horizontal and vertical force components separately. 
SET UP: Call T the tension in the thread and E the electric field. Balancing horizontal forces gives T sin θ = qE. 
Balancing vertical forces we get T cos θ = mg. Combining these equations gives tan θ = qE/mg, which means that  
θ = arctan(qE/mg). The electric field for a sheet of charge is 02 .E σ= P  

EXECUTE: Substituting the numbers gives us ( )
7 2

4
12 2 2

0

2.50 10  C/m 1.41 10  N/C
2 2 8.85 10  C /N m

E σ −

−

×
= = = ×

× ⋅P
. Then 

( )( )
( )( )

8 4

2 2

5.00 10  C 1.41 10  N/C
arctan 19.8

2.00 10  kg 9.80 m/s
θ

−

−

⎡ ⎤× ×
⎢ ⎥= = °

×⎢ ⎥⎣ ⎦
 

EVALUATE: Increasing the field, or decreasing the mass of the sphere, would cause the sphere to hang at a larger 
angle. 
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22.42. IDENTIFY: Apply Gauss’s law. 
SET UP: Use a Gaussian surface that is a sphere of radius r and that is concentric with the conducting spheres. 
EXECUTE: (a) For , 0,r a E< = since these points are within the conducting material. 

For 2
0

1, ,4
qa r b E
rπ< < = P  since there is +q inside a radius r. 

For ,b r c E< < = 0, since since these points are within the conducting material 

For 2
0

1, ,
4

qr c E
rπ

> =
P

 since again the total charge enclosed is +q. 

(b) The graph of E versus r is sketched in Figure 22.42a. 
(c) Since the Gaussian sphere of radius r, for b r c< < , must enclose zero net charge, the charge on inner shell 
surface is –q. 
(d) Since the hollow sphere has no net charge and has charge q− on its inner surface, the charge on outer shell 
surface is +q. 
(e) The field lines are sketched in Figure 22.42b. Where the field is nonzero, it is radially outward. 
EVALUATE: The net charge on the inner solid conducting sphere is on the surface of that sphere. The presence of 
the hollow sphere does not affect the electric field in the region r b< . 

  
Figure 22.42 

22.43. IDENTIFY: Apply Gauss’s law. 
SET UP: Use a Gaussian surface that is a sphere of radius r and that is concentric with the charge distributions. 
EXECUTE: (a) For , 0,r R E< =  since these points are within the conducting material. For 2 ,R r R< <  

2
0

1 ,4
QE π r

= P  since the charge enclosed is Q. For 2r R> , 2
0

1 2
4

QE
rπ

=
P

 since the charge enclosed is 2Q. 

(b) The graph of E versus r is sketched in Figure 22.43. 
EVALUATE: For 2r R<  the electric field is unaffected by the presence of the charged shell. 

 
Figure 22.43 

22.44. IDENTIFY: Apply Gauss’s law and conservation of charge. 
SET UP: Use a Gaussian surface that is a sphere of radius r and that has the point charge at its center. 

EXECUTE: (a) For r a< , 2
0

1 ,
4

QE
rπ

=
P

 radially outward, since the charge enclosed is Q, the charge of the point 

charge. For a r b< < , 0E =  since these points are within the conducting material. For r b> , 2
0

21
4

QE π r
= P , 

radially inward, since the total enclosed charge is –2Q. 
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(b) Since a Gaussian surface with radius r, for a r b< < , must enclose zero net charge, the total charge on the inner 

surface is Q−  and the surface charge density on inner surface is 24
Qσ
πa

= − . 

(c) Since the net charge on the shell is 3Q−  and there is Q−  on the inner surface, there must be 2Q− on the outer 

surface. The surface charge density on the outer surface is 2

2 .
4

Q
b

σ
π

= −  

(d) The field lines and the locations of the charges are sketched in Figure 22.44a. 
(e) The graph of E versus r is sketched in Figure 22.44b. 

  
Figure 22.44 

EVALUATE:  For r a<  the electric field is due solely to the point charge Q. For r b>  the electric field is due to 
the charge 2Q−  that is on the outer surface of the shell. 

22.45. IDENTIFY: Apply Gauss’s law to a spherical Gaussian surface with radius r. Calculate the electric field at the 
surface of the Gaussian sphere. 
(a) SET UP: (i) :r a<  The Gaussian surface is sketched in Figure 22.45a. 

 

EXECUTE: 2(4 )E EA E rπΦ = =  

encl 0;Q =  no charge is enclosed 

encl

0
E

Q
Φ =

P
 says 2(4 ) 0 and 0.E r Eπ = =  

Figure 22.45a  
(ii) :a r b< <  Points in this region are in the conductor of the small shell, so E = 0. 
(iii) SET UP: :b r c< <  The Gaussian surface is sketched in Figure 22.45b. 
Apply Gauss’s law to a spherical Gaussian surface with radius .b r c< <  

 

EXECUTE: 2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all of the small 
shell and none of the large shell, so encl 2 .Q q= +  

Figure 22.45b  
2encl

2
0 0 0

2 2 gives (4 )  so .
4E

Q q qE r E
r

π
π

Φ = = =
P P P

 Since the enclosed charge is positive the electric field is radially 

outward. 
(iv) :c r d< <  Points in this region are in the conductor of the large shell, so 0.E =  
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(v) SET UP: :r d>  Apply Gauss’s law to a spherical Gaussian surface with radius r > d, as shown in Figure 22.45c. 

 

EXECUTE: ( )24E EA E rπΦ = =  

The Gaussian surface encloses all of the small shell 
and all of the large shell, so encl 2 4 6 .Q q q q= + + =  

Figure 22.45c  

( )2encl

0 0

6gives 4E
Q qE rπΦ = =
P P

 

2
0

6 .
4

qE
rπ

=
P

 Since the enclosed charge is positive the electric field is radially outward. 

The graph of E versus r is sketched in Figure 22.45d. 

 
Figure 22.45d 

(b) IDENTIFY and SET UP: Apply Gauss’s law to a sphere that lies outside the surface of the shell for which we 
want to find the surface charge. 
EXECUTE: (i) charge on inner surface of the small shell: Apply Gauss’s law to a spherical Gaussian surface with 
radius .a r b< <  This surface lies within the conductor of the small shell, where E = 0, so 0.EΦ =  Thus by Gauss’s 
law encl 0,Q =  so there is zero charge on the inner surface of the small shell. 
(ii) charge on outer surface of the small shell: The total charge on the small shell is 2 .q+  We found in part (i) that 
there is zero charge on the inner surface of the shell, so all 2q+  must reside on the outer surface. 
(iii) charge on inner surface of large shell: Apply Gauss’s law to a spherical Gaussian surface with radius .c r d< <  
The surface lies within the conductor of the large shell, where E = 0, so 0.EΦ =  Thus by Gauss’s law encl 0.Q =  The 
surface encloses the 2q+  on the small shell so there must be charge 2q−  on the inner surface of the large shell to 
make the total enclosed charge zero. 
(iv) charge on outer surface of large shell: The total charge on the large shell is 4 .q+  We showed in part (iii) that 
the charge on the inner surface is 2 ,q−  so there must be 6q+  on the outer surface. 
EVALUATE: The electric field lines for b r c< <  originate from the surface charge on the outer surface of the 
inner shell and all terminate on the surface charge on the inner surface of the outer shell. These surface charges have 
equal magnitude and opposite sign. The electric field lines for r d>  originate from the surface charge on the outer 
surface of the outer sphere. 

22.46. IDENTIFY: Apply Gauss’s law. 
SET UP: Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE: (a) (i) For , 0,r a E< =  since the charge enclosed is zero. (ii) For , 0,a r b E< < =  since the points 

are within the conducting material. (iii) For 2
0

1 2, ,
4

qb r c E
rπ

< < =
P

outward, since charge enclosed is 2 .q+  

(iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For , 0,r d E> = since the net 
charge enclosed is zero. The graph of E versus r is sketched in Figure 22.46. 
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(b) (i) small shell inner surface: Since a Gaussian surface with radius r, for a r b< < , must enclose zero net 
charge, the charge on this surface is zero. (ii) small shell outer surface: 2q+ . (iii) large shell inner surface: Since 
a Gaussian surface with radius r, for c r d< < , must enclose zero net charge, the charge on this surface is 2q− . 
(iv) large shell outer surface: Since there is 2q− on the inner surface and the total charge on this conductor is 2q− , 
the charge on this surface is zero. 
EVALUATE: The outer shell has no effect on the electric field for r c< . For r d> the electric field is due only to 
the charge on the outer surface of the larger shell. 

 
Figure 22.46 

22.47. IDENTIFY: Apply Gauss’s law 
SET UP: Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE: (a) (i) For , 0,r a E< =  since charge enclosed is zero. (ii) , 0,a r b E< < =  since the points are 

within the conducting material. (iii) For 2
0

21, ,4
qb r c E π r

< < = P  outward, since charge enclosed is +2q. 

(iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For 2
0

21, ,4
qr d E π r

> = P  inward, 

since charge enclosed is –2q. The graph of the radial component of the electric field versus r is sketched in 
Figure 22.47, where we use the convention that outward field is positive and inward field is negative. 
(b) (i) small shell inner surface: Since a Gaussian surface with radius r, for a < r < b, must enclose zero net 
charge, the charge on this surface is zero. (ii) small shell outer surface: +2q. (iii) large shell inner surface: Since 
a Gaussian surface with radius r, for c < r < d, must enclose zero net charge, the charge on this surface is –2q. 
(iv) large shell outer surface: Since there is –2q on the inner surface and the total charge on this conductor is –4q, 
the charge on this surface is –2q. 
EVALUATE: The outer shell has no effect on the electric field for r c< . For r d> the electric field is due only to 
the charge on the outer surface of the larger shell. 

 
Figure 22.47 

22.48. IDENTIFY: Apply Gauss’s law. 
SET UP: Use a Gaussian surface that is a sphere of radius r and that is concentric with the sphere and shell. The 

volume of the insulating shell is ( )3 3 34 28[2 ]
3 3

V R R Rππ= − = . 

EXECUTE: (a) Zero net charge requires that 
328

3
π ρRQ− = , so 3

28
Qρ
πR3= − . 

(b) For ,  0r R E< = since this region is within the conducting sphere. For 2 ,  0,r R E> =  since the net charge enclosed 

by the Gaussian surface with this radius is zero. For 2R r R< < , Gauss’s law gives 2 3 3

0 0

4(4 ) ( )
3

Q π ρE πr r R= + −
P P

 and 

3 3
2 2

0 0

( )
4 3

Q ρE r R
π r r

= + −
P P

. Substituting ρ  from part (a) gives 2 3
0 0

2 .7 28
Q QrE π r π R

= −P P
 The net enclosed charge for 

each r in this range is positive and the electric field is outward. 
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(c) The graph is sketched in Figure 22.48. We see a discontinuity in going from the conducting sphere to the 
insulator due to the thin surface charge of the conducting sphere. But we see a smooth transition from the uniform 
insulator to the surrounding space. 
EVALUATE: The expression for E within the insulator gives 0E = at 2r R= . 

 
Figure 22.48 

22.49. IDENTIFY: Use Gauss’s law to find the electric field E  produced by the shell for  and r R r R< >  and then use 
q=F E  to find the force the shell exerts on the point charge. 

(a) SET UP: Apply Gauss’s law to a spherical Gaussian surface that has radius r R>  and that is concentric with 
the shell, as sketched in Figure 22.49a. 

 

EXECUTE: ( )24E E rπΦ =  

enclQ Q= −  

Figure 22.49a  

( )2encl

0 0

 gives 4E
Q QE rπ −

Φ = =
P P

 

The magnitude of the field is 2
04

QE
rπ

=
P

 and it is directed toward the center of the shell. Then 2
0

,
4

qQF qE
rπ

= =
P

 

directed toward the center of the shell. (Since q is positive, and E F  are in the same direction.) 
(b) SET UP: Apply Gauss’s law to a spherical Gaussian surface that has radius r R<  and that is concentric with 
the shell, as sketched in Figure 22.49b. 

 

EXECUTE: ( )24E E rπΦ =  

encl 0Q =  

Figure 22.49b  

( )2encl

0

 gives 4 0E
Q E rπΦ = =
P

 

Then 0 so 0.E F= =  
EVALUATE: Outside the shell the electric field and the force it exerts is the same as for a point charge Q−  located 
at the center of the shell. Inside the shell 0E =  and there is no force. 

22.50. IDENTIFY: The method of Example 22.9 shows that the electric field outside the sphere is the same as for a point 
charge of the same charge located at the center of the sphere. 
SET UP: The charge of an electron has magnitude 191.60 10 Ce −= × . 
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EXECUTE: (a) 2

q
E k

r
= . For 0.150 mr R= = , 1150 N/CE = so 

2 2
9

9 2 2

(1150 N/C)(0.150 m) 2.88 10  C
8.99 10  N m /C

Erq
k

−= = = ×
× ⋅

. 

The number of excess electrons is 
9

10
19

2.88 10 C 1.80 10  electrons
1.60 10 C/electron

−

−

×
= ×

×
. 

(b) 0.100 m 0.250 mr R= + = . 
9

9 2 2
2 2

2.88 10  C(8.99 10  N m /C ) 414 N/C
(0.250 m)

q
E k

r

−×
= = × ⋅ = . 

EVALUATE: The magnitude of the electric field decreases according to the square of the distance from the center 
of the sphere. 

22.51. IDENTIFY: The net electric field is the vector sum of the fields due to the sheet of charge on each surface of the 
plate. 
SET UP: The electric field due to the sheet of charge on each surface is 0/ 2E σ= P and is directed away from the 
surface. 
EXECUTE: (a) For the conductor the charge sheet on each surface produces fields of magnitude 0/ 2σ P and in the 
same direction, so the total field is twice this, or 0/σ P . 
(b) At points inside the plate the fields of the sheets of charge on each surface are equal in magnitude and opposite 
in direction, so their vector sum is zero. At points outside the plate, on either side, the fields of the two sheets of 
charge are in the same direction so their magnitudes add, giving 0/E σ= P . 
EVALUATE: Gauss’s law can also be used directly to determine the fields in these regions. 

22.52. IDENTIFY: Example 22.9 gives the expression for the electric field both inside and outside a uniformly charged 
sphere. Use e−F = E to calculate the force on the electron. 
SET UP: The sphere has charge Q e= + . 
EXECUTE: (a) Only at 0r = is 0E = for the uniformly charged sphere. 

(b) At points inside the sphere, 3
04r

erE
π R

=
P

. The field is radially outward. 
2

3
0

1
4r

e rF eE
Rπ

= − = −
P

. The minus sign 

denotes that rF is radially inward. For simple harmonic motion, 2
rF kr mω r= − = − , where / 2k m fω π= = . 

2
2

3
0

1
4r

e rF mω r
π R

= − = −
P

 so 
2

3
0

1
4

eω
π mR

=
P

 and 
2

3
0

1 1
2 4

ef
π π mR

=
P

. 

(c) If 
2

14
3

0

1 14.57 10  Hz
2 4

ef
π mRπ

= × =
P

 then 
19 2

103
2 31 14 2

0

1 (1.60 10 C) 3.13 10 m.
4 4 (9.11 10 kg)(4.57 10 Hz)

R
π π

−
−

−

×
= = ×

× ×P
 

The atom radius in this model is the correct order of magnitude. 

(d) If r R> , 2
04r

eE
rπ

=
P

 and 
2

2
04r

eF
rπ

= −
P

. The electron would still oscillate because the force is directed toward 

the equilibrium position at 0r = . But the motion would not be simple harmonic, since rF is proportional to 21/ r and 
simple harmonic motion requires that the restoring force be proportional to the displacement from equilibrium. 
EVALUATE: As long as the initial displacement is less than R the frequency of the motion is independent of the 
initial displacement. 

22.53. IDENTIFY: There is a force on each electron due to the other electron and a force due to the sphere of charge. Use 
Coulomb’s law for the force between the electrons. Example 22.9 gives E inside a uniform sphere and Eq.(21.3) 
gives the force. 
SET UP: The positions of the electrons are sketched in Figure 22.53a. 

 

If the electrons are in 
equilibrium the net force on 
each one is zero. 

Figure 22.53a  
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EXECUTE: Consider the forces on electron 2. There is a repulsive force 1F  due to the other electron, electron 1. 

( )

2

1 2
0

1
4 2

eF
dπ

=
P

 

The electric field inside the uniform distribution of positive charge is 3
04

QrE
Rπ

=
P

 (Example 22.9), where 2 .Q e= +  

At the position of electron 2, r = d. The force cdF  exerted by the positive charge distribution is ( )
cd 3

0

2
4
e e d

F eE
Rπ

= =
P

 

and is attractive. 
The force diagram for electron 2 is given in Figure 22.53b. 

 
Figure 22.53b 

Net force equals zero implies 1 cdF F=  and 
2 2

2 3
0 0

1 2
4 4 4

e e d
d Rπ π

=
P P

 

Thus ( )2 3 3 31/ 4 2 / ,  so /8 and / 2.d d R d R d R= = =  

EVALUATE: The electric field of the sphere is radially outward; it is zero at the center of the sphere and increases 
with distance from the center. The force this field exerts on one of the electrons is radially inward and increases as 
the electron is farther from the center. The force from the other electron is radially outward, is infinite when d = 0 
and decreases as d increases. It is reasonable therefore for there to be a value of d for which these forces balance. 

22.54. IDENTIFY: Use Gauss’s law to find the electric field both inside and outside the slab. 
SET UP: Use a Gaussian surface that has one face of area A in the y z plane at 0,x =  and the other face at a 
general value .x  The volume enclosed by such a Gaussian surface is Ax. 
EXECUTE: (a) The electric field of the slab must be zero by symmetry. There is no preferred direction in the y z 
plane, so the electric field can only point in the x-direction. But at the origin, neither the positive nor negative  
x-directions should be singled out as special, and so the field must be zero. 

(b) For x d≤ , Gauss’s law gives encl

0 0

ρA xQEA = =
P P

 and 
0

ρ x
E =

P
, with direction given by ˆ

| |
x
x

i  (away from the 

center of the slab). Note that this expression does give 0E =  at 0.x =  Outside the slab, the enclosed charge does 

not depend on x and is equal to Adρ . For x d≥ , Gauss’s law gives encl

0 0

Q ρAdEA = =
P P

and 
0

ρdE =
P

, again with 

direction given by ˆ.
| |
x
x

i  

EVALUATE: At the surfaces of the slab, x d= ± . For these values of x the two expressions for E (for inside and 
outside the slab) give the same result. The charge per unit area σ of the slab is given by (2 )A A dσ ρ= and 

/ 2dρ σ= . The result for E outside the slab can therefore be written as 0/ 2E σ= P and is the same as for a thin sheet 
of charge. 

22.55. (a) IDENTIFY and SET UP: Consider the direction of the field for x slightly greater than and slightly less than zero. 
The slab is sketched in Figure 22.55a. 

 

( ) ( )2
0 /x x dρ ρ=  

Figure 22.55a  
EXECUTE: The charge distribution is symmetric about x = 0, so by symmetry ( ) ( ).E x E x= −  But for x > 0 the 
field is in the x+  direction and for x < 0 the field is in the x−  direction. At x = 0 the field can’t be both in the 

 and x x+ −  directions so must be zero. That is, ( ) ( ).x xE x E x= − −  At point x = 0 this gives ( ) ( )0 0x xE E= −  and 

this equation is satisfied only for ( )0 0.xE =  
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(b) IDENTIFY and SET UP: x d>  (outside the slab) 

Apply Gauss’s law to a cylindrical Gaussian surface whose axis is perpendicular to the slab and whose end caps 
have area A and are the same distance x d>  from x = 0, as shown in Figure 22.55b. 

 

EXECUTE: 2E EAΦ =  

Figure 22.55b  

 

To find enclQ  consider a thin disk at 
coordinate x and with thickness dx, as 
shown in Figure 22.55c. The charge 
within this disk is 

( )2 2
0 / .dq dV Adx A d x dxρ ρ ρ= = =  

Figure 22.55c  
The total charge enclosed by the Gaussian cylinder is 

( ) ( )( )2 2 2 3 2
encl 0 0 030 0

2 2 / 2 / /3 .
d d

Q dq A d x dx A d d Adρ ρ ρ= = = =∫ ∫  

Then encl
0 0

0

 gives 2 2 /3 .E
Q EA AdρΦ = = P
P

 

0 0/3E dρ= P  

E  is directed away from ( )( )0 0
ˆ0,  so /3 / .x d x xρ= =E iP  

IDENTIFY and SET UP: x d<  (inside the slab) 

Apply Gauss’s law to a cylindrical Gaussian surface whose axis is perpendicular to the slab and whose end caps 
have area A and are the same distance x d<  from 0,x =  as shown in Figure 22.55d. 

 

EXECUTE: 2E EAΦ =  

Figure 22.55d  

enclQ  is found as above, but now the integral on dx is only from 0 to x instead of 0 to d. 

( ) ( )( )2 2 2 3
encl 0 00 0

2 2 / 2 / /3 .
x x

Q dq A d x dx A d xρ ρ= = =∫ ∫  

Then 3 2encl
0 0

0

 gives 2 2 /3 .E
Q EA Ax dρΦ = = P
P

 

3 2
0 0/3E x dρ= P  

E  is directed away from ( )3 2
0 0

ˆ0,  so /3 .x x dρ= =E iP  

EVALUATE: Note that E = 0 at x = 0 as stated in part (a). Note also that the expressions for  and x d x d> <  
agree for .x d=  

22.56. IDENTIFY: Apply q=F E to relate the force on q to the electric field at the location of q. 
SET UP: Flux is negative if the electric field is directed into the enclosed volume. 
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EXECUTE: (a) We could place two charges Q+ on either side of the charge q+ , as shown in Figure 22.56. 
(b) In order for the charge to be stable, the electric field in a neighborhood around it must always point back to the 
equilibrium position. 
(c) If q  is moved to infinity and we require there to be an electric field always pointing in to the region where q  
had been, we could draw a small Gaussian surface there. We would find that we need a negative flux into the 
surface. That is, there has to be a negative charge in that region. However, there is none, and so we cannot get such a 
stable equilibrium. 
(d) For a negative charge to be in stable equilibrium, we need the electric field to always point away from the charge 
position. The argument in (c) carries through again, this time implying that a positive charge must be in the space 
where the negative charge was if stable equilibrium is to be attained. 
EVALUATE: If q is displaced to the left or right in Figure 22.56, the net force is directed back toward the 
equilibrium position. But if q is displaced slightly in a direction perpendicular to the line connecting the two charges 
Q, then the net force on q is directed away from the equilibrium position and the equilibrium is not stable for such a 
displacement. 

 
Figure 22.56 

22.57. ( ) ( ) 3
0 01 /  for  where 3 / .r r R r R Q Rρ ρ ρ π= − ≤ =  ( ) 0 for r r Rρ = ≥  

(a) IDENTIFY: The charge density varies with r inside the spherical volume. Divide the volume up into thin 
concentric shells, of radius r and thickness dr. Find the charge dq in each shell and integrate to find the total charge. 
SET UP: The thin shell is sketched in Figure 22.57a. 

 

EXECUTE: The volume of such 
a shell is 24dV r drπ=  
The charge contained within the 
shell is 

( ) ( )2
04 1 /dq r dV r r R drρ π ρ= = −

 
Figure 22.57a  

The total charge Q in the charge distribution is obtained by integrating dq over all such shells into which the sphere 
can be subdivided: 

( ) ( )2 2 3
0 00 0

4 1 / 4 /
R R

Q dq r r R dr r r R drπ ρ πρ= = − = −∫ ∫ ∫  

( ) ( )( )
3 4 3 4

3 3 3
0 0 0

0

4 4 4 /12 4 3 / /12 ,
3 4 3 4

R
r r R RQ R Q R R Q

R R
πρ πρ πρ π π

⎡ ⎤ ⎛ ⎞
= − = − = = =⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
 as was to be shown. 

(b) IDENTIFY: Apply Gauss’s law to a spherical surface of radius r, where r > R. 
SET UP: The Gaussian surface is shown in Figure 22.57b. 

 

EXECUTE: encl

0
E

Q
Φ =

P
 

( )2

0

4 QE rπ =
P

 

Figure 22.57b  

2
0

;
4

QE
rπ

=
P

 same as for point charge of charge Q. 

(c) IDENTIFY: Apply Gauss’s law to a spherical surface of radius r, where r < R: 
SET UP: The Gaussian surface is shown in Figure 22.57c. 

 

EXECUTE: encl

0
E

Q
Φ =

P
 

( )24E E rπΦ =  

Figure 22.57c  
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The calculate the enclosed charge enclQ  use the same technique as in part (a), except integrate dq out to r rather than 
R. (We want the charge that is inside radius r.) 

3
2 2

encl 0 00 0
4 1 4

r rr rQ r dr r dr
R R

π ρ πρ
′ ′⎛ ⎞⎛ ⎞′ ′ ′ ′= − = −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫  

3 4 3 4
3

encl 0 0 0
0

14 4 4
3 4 3 4 3 4

r
r r r r rQ r

R R R
πρ πρ πρ

′ ′⎡ ⎤ ⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟⎢ ⎥ ⎜ ⎟
⎝ ⎠⎣ ⎦ ⎝ ⎠

 

3 3

0 encl3 3 3

3 1 so 12 4 3 .
3 4

Q r r r rQ Q Q
R R R R R

ρ
π

⎛ ⎞⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Thus Gauss’s law gives ( )
3

2
3

0

4 4 3Q r rE r
R R

π
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠P
 

3
0

34 ,  
4

Qr rE r R
R Rπ

⎛ ⎞= − ≤⎜ ⎟
⎝ ⎠P

 

(d) The graph of E versus r is sketched in Figure 22.57d. 

 
Figure 22.57d 

(e) Where the electric field is a maximum, 0.dE
dr

=  Thus 
234 0 so 4 6 / 0 and 2 /3.d rr r R r R

dr R
⎛ ⎞

− = − = =⎜ ⎟
⎝ ⎠

 

At this value of r, 3 2
0 0

2 3 24
4 3 3 3

Q R R QE
R R Rπ π

⎛ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠P P

 

EVALUATE: Our expressions for ( )E r  for r R<  and for r R>  agree at .r R=  The results of part (e) for the 

value of r where ( )E r  is a maximum agrees with the graph in part (d). 
22.58. IDENTIFY: Apply Gauss’s law. 

SET UP: Use a Gaussian surface that is a sphere of radius r and that is concentric with the spherical distribution of 
charge. The volume of a thin spherical shell of radius r and thickness dr is 24dV r drπ= . 

EXECUTE: (a) 2 2 2 3
0 0

0 0 0 0

4 4( ) 4 ( ) 4 1 4
3 3

R R RrQ ρ r dV π ρ r r dr πρ r dr πρ r dr r dr
R R

∞ ⎡ ⎤⎛ ⎞= = = − = −⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

∫ ∫ ∫ ∫ ∫  

3 4

0
44 0

3 3 4
R RQ πρ

R
⎡ ⎤

= − =⎢ ⎥
⎣ ⎦

. The total charge is zero. 

(b) For r R≥ , encl

0

0Qd⋅ = =E A
Pú , so 0E = . 

(c) For r R≤ , 2encl
0

0 0

4 ( )
rQ πd ρ r r dr′ ′ ′⋅ = = ∫E A

P Pú . 2 2 30
0 0

0

4 44
3

r rπρE πr r dr r dr
R

⎡ ⎤′ ′ ′ ′= −⎢ ⎥⎣ ⎦∫ ∫P
 and 

3 4
0 0

2
0 0

1 1
3 3 3

ρ r r ρ rE r
r R R
⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦P P

. 

(d) The graph of E versus r is sketched in Figure 22.58. 

(e) Where E is a maximum, 0dE
dr

= . This gives 0 0 max

0 0

2 0
3 3
ρ ρ r

R
− =

P P
 and max 2

Rr = . At this r, 0 0

0 0

11
3 2 2 12
ρ R ρ RE ⎡ ⎤= − =⎢ ⎥⎣ ⎦P P

. 
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EVALUATE: The result in part (b) for r R≤ gives 0E = at r R= ; the field is continuous at the surface of the 
charge distribution. 

 
Figure 22.58 

22.59. IDENTIFY: Follow the steps specified in the problem. 

SET UP: In spherical polar coordinates 2 ˆsin    d r d dθ θ φA = r . sin   4d dθ θ φ π=ú . 

EXECUTE: (a) 
2

2

sin 4 .g
r θ dθ dd Gm πGm

r
φ

Φ = ⋅ = − = −g Aú ú  

(b) For any closed surface, mass OUTSIDE the surface contributes zero to the flux passing through the surface. 
Thus the formula above holds for any situation where m  is the mass enclosed by the Gaussian surface.  

That is, encl4 .g d πGMΦ = ⋅ = −g Aú  

EVALUATE: The minus sign in the expression for the flux signifies that the flux is directed inward. 

22.60. IDENTIFY: Apply encl4d πGM⋅ = −g Aú . 

SET UP: Use a Gaussian surface that is a sphere of radius r, concentric with the mass distribution. Let gΦ denote 

d⋅g Aú  

EXECUTE: (a) Use a Gaussian sphere with radius r R> , where R is the radius of the mass distribution. g is 
constant on this surface and the flux is inward. The enclosed mass is M. Therefore, 24 4g g πr πGMΦ = − = − and 

2

GMg
r

= , which is the same as for a point mass. 

(b) For a Gaussian sphere of radius r R< , where R is the radius of the shell, encl 0, so 0.M g= =  

(c) Use a Gaussian sphere of radius r R< , where R is the radius of the planet. Then 3 3 3
encl

4 /
3

M r Mr Rρ π⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 

This gives 
3

2
encl 34 4 4  g

rg πr πGM πG M
R

⎛ ⎞
Φ = − = − = − ⎜ ⎟

⎝ ⎠
and 3

GMrg
R

= , which is linear in .r  

EVALUATE:  The spherically synmetric distribution of mass results in an acceleration due to gravity g  that is 
radical and that depends only on r, the distance from the center of the mass distribution. 

22.61. (a) IDENTIFY: Use ( )E r  from Example (22.9) (inside the sphere) and relate the position vector of a point inside 
the sphere measured from the origin to that measured from the center of the sphere. 
SET UP: For an insulating sphere of uniform charge density ρ  and centered at the origin, the electric field inside 
the sphere is given by 3

0/ 4E Qr Rπ′= P  (Example 22.9), where ′r  is the vector from the center of the sphere to the 
point where E is calculated. 
But 33 / 4Q Rρ π=  so this may be written as 0/3 .E rρ= P  And E  is radially outward, in the direction of 

0,  so /3 .ρ′ ′r E = r P  
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For a sphere whose center is located by vector ,b  a point inside the sphere and located by r  is located by the vector 
′ = −r r b  relative to the center of the sphere, as shown in Figure 22.61. 

 

EXECUTE: Thus 
( )

03

ρ −
=

r b
E

P
 

Figure 22.61  

EVALUATE: When b = 0 this reduces to the result of Example 22.9. When ,=r b  this gives 0,E =  which is 
correct since we know that 0E =  at the center of the sphere. 
(b) IDENTIFY: The charge distribution can be represented as a uniform sphere with charge density ρ  and centered 
at the origin added to a uniform sphere with charge density ρ−  and centered at r = b.  
SET UP: uniform hole uniform,  where +E = E E E  is the field of a uniformly charged sphere with charge density ρ  and 

holeE  is the field of a sphere located at the hole and with charge density .ρ−  (Within the spherical hole the net 
charge density is 0.ρ ρ+ − = ) 

EXECUTE: uniform
0

,
3
ρ

=
rE
P

 where r  is a vector from the center of the sphere. 

( )
hole

0

,
3

ρ− −
=

r b
E

P
 at points inside the hole. 

Then 
( )

0 0 0

.
3 3 3

ρρ ρ⎛ ⎞− −
⎜ ⎟= + =
⎜ ⎟
⎝ ⎠

r br bE
P P P

 

EVALUATE: E  is independent of r  so is uniform inside the hole. The direction of E  inside the hole is in the 
direction of the vector ,b  the direction from the center of the insulating sphere to the center of the hole. 

22.62. IDENTIFY: We first find the field of a cylinder off-axis, then the electric field in a hole in a cylinder is the 
difference between two electric fields: that of a solid cylinder on-axis, and one off-axis, at the location of the hole. 
SET UP: Let r locate a point within the hole, relative to the axis of the cylinder and let ′r locate this point relative 
to the axis of the hole. Let b locate the axis of the hole relative to the axis of the cylinder. As shown in Figure 22.62, 

′ −r = r b . Problem 23.48 shows that at points within a long insulating cylinder, 
02

ρrE =
P

. 

EXECUTE: off-axis
0 0

( )
2 2
ρ ρ′ −

=
r r bE =
P P

. hole cylinder off-axis
0 0 0

( )
2 2 2
ρ ρ ρ−

− = − =
r r b bE = E E
P P P

. 

Note that E is uniform. 
EVALUATE: If the hole is coaxial with the cylinder, 0b = and hole 0E = . 

 
Figure 22.62 
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22.63. IDENTIFY: The electric field at each point is the vector sum of the fields of the two charge distributions. 

SET UP: Inside a sphere of uniform positive charge, 
0

.
3

rE ρ
=
P

 

3 3 34
03

3  so ,
4 4

Q Q QrE
R R R

ρ
π π π

= = =
P

 directed away from the center of the sphere. Outside a sphere of uniform 

positive charge, 2
0

,
4

QE
rπ

=
P

 directed away from the center of the sphere. 

EXECUTE: (a) 0.x =  This point is inside sphere 1 and outside sphere 2. The fields are shown in 
Figure 22.63a. 

 

1 3
0

0,  since 0.
4

QrE r
Rπ

= = =
P

 

Figure 22.63a  

2 22 2
0 0

 with 2  so ,  in the -direction.
4 16

Q QE r R E x
r Rπ π

= = = −
P P

 

Thus 1 2 2
0

ˆ.
16

Q
Rπ

= + =E E E i
P

 

(b) / 2.x R=  This point is inside sphere 1 and outside sphere 2. Each field is directed away from the center of the 
sphere that produces it. The fields are shown in Figure 22.63b. 

 

1 3
0

with / 2 so
4

QrE r R
Rπ

= =
P

 

1 2
08

QE
Rπ

=
P

 

Figure 22.63b  

2 22 2
0 0

 with 3 / 2 so 
4 9

Q QE r R E
r Rπ π

= = =
P P

 

1 2 2 2
0 0

ˆ,  in the -direction and 
72 72

Q QE E E x
R Rπ π

= − = + =E i
P P

 

(c) x = R. This point is at the surface of each sphere. The fields have equal magnitudes and opposite directions, so 
E = 0. 
(d) x = 3R. This point is outside both spheres. Each field is directed away from the center of the sphere that produces 
it. The fields are shown in Figure 22.63c. 

 

1 2
0

with 3  so
4

QE r R
rπ

= =
P

 

1 2
036

QE
Rπ

=
P

 

Figure 22.63c  

2 22 2
0 0

 with  so 
4 4

Q QE r R E
r Rπ π

= = =
P P

 

1 2 2 2
0 0

5 5 ˆ,  in the -direction and 
18 18

Q QE E E x
R Rπ π

= + = + =E i
P P

 

EVALUATE: The field of each sphere is radially outward from the center of the sphere. We must use the correct 
expression for E(r) for each sphere, depending on whether the field point is inside or outside that sphere. 

22.64. IDENTIFY: The net electric field at any point is the vector sum of the fields at each sphere. 
SET UP: Example 22.9 gives the electric field inside and outside a uniformly charged sphere. For the positively 
charged sphere the field is radially outward and for the negatively charged sphere the electric field is radially 
inward. 
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EXECUTE:  (a) At this point the field of the left-hand sphere is zero and the field of the right-hand sphere is toward 
the center of that sphere, in the +x-direction. This point is outside the right-hand sphere, a distance 2r R= from its 

center. 2
0

1 ˆ
4 4

Q
π R

+E = i
P

. 

(b) This point is inside the left-hand sphere, at / 2r R= , and is outside the right-hand sphere, at 3 / 2r R= . Both 
fields are in the +x-direction. 

3 2 2 2 2
0 0 0

1 ( / 2) 1 4 1 17ˆ ˆ ˆ
4 (3   2) 4 2 9 4 18

Q R Q Q Q Q
π R R π R R π R

⎡ ⎤ ⎡ ⎤+ +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
E = i = i = i

P P P
. 

(c) This point is outside both spheres, at a distance r R= from their centers. Both fields are in the +x-direction. 

2 2 2
0 0

1 ˆ ˆ
4 2

Q Q Q
π R R π R

⎡ ⎤+⎢ ⎥⎣ ⎦
E = i = i

P P
. 

(d) This point is outside both spheres, a distance 3r R= from the center of the left-hand sphere and a distance 
r R= from the center of the right-hand sphere. The field of the left-hand sphere is in the +x-direction and the field 

of the right-hand sphere is in the -directionx− . 2 2 2 2 2
0 0 0

1 1 1 8ˆ ˆ ˆ
4 (3 ) 4 9 4 9

Q Q Q Q Q
π R R π R R π R

⎡ ⎤ −⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
E = i = i = i

P P P
. 

EVALUATE: At all points on the x-axis the net field is parallel to the x-axis. 
22.65. IDENTIFY: Let dQ−  be the electron charge contained within a spherical shell of radius r′ and thickness dr′ . 

Integrate r′ from 0 to r to find the electron charge within a sphere of radius r. Apply Gauss’s law to a sphere of 
radius r to find the electric field ( )E r . 

SET UP: The volume of the spherical shell is 24  dV r drπ ′ ′= . 

EXECUTE: (a) 0 0/ 2 /2 2 2
3 3 0
0 0

4 4( )
ra r arQ QQ r Q ρdV Q e r dr Q r e dr

πa a
π ′−− ′ ′= − = − = −∫ ∫ ∫ . 

02 /2 2 2
0 03 3

0

4( ) (2 2 2) [2( / ) 2( / ) 1].
r

r arQeQ r Q e α r r Qe r a r a
a

α
α α

α

−
−= − − − − = + +  

Note if ,  ( ) 0r Q r→∞ → ; the total net charge of the atom is zero. 

(b) The electric field is radially outward. Gauss’s law gives 2

0

( )(4 ) Q rE rπ =
P

 and 

02 /
2

0 02 (2( ) 2( ) 1)
r akQeE r a r a

r

−

= + + . 

(c) The graph of E versus r is sketched in Figure 22.65. What is plotted is the scaled E, equal to pt charge/E E , versus 

scaled r, equal to 0/r a . pt charge 2

kQE
r

= is the field of a point charge. 

EVALUATE: As 0r → , the field approaches that of the positive point charge (the proton). For increasing r the 
electric field falls to zero more rapidly than the 21/ r dependence for a point charge. 

 
Figure 22.65 

22.66. IDENTIFY: The charge in a spherical shell of radius r and thickness dr is 2( )4  dQ r r drρ π= . Apply Gauss’s law. 
SET UP: Use a Gaussian surface that is a sphere of radius r. Let iQ  be the charge in the region / 2r R≤ and let 

0Q be the charge in the region where / 2R r R≤ ≤ . 
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EXECUTE: (a) The total charge is 0iQ Q Q= + , where 
3 34 ( 2)

3 6i
π R απRQ α= =  and 

3 3 4 4 3
2 3

0 / 2

( 8) ( 16) 114 (2 ) ( / ) 8
3 4 24

R

R

R R R R απRQ π α r r R dr απ
R

⎛ ⎞− −
= − = − =⎜ ⎟

⎝ ⎠
∫ . Therefore, 

315
24
απRQ =  and 3

8
5

Qα
πR

= . 

(b) For 2r R≤ , Gauss’s law gives
3

2

0

44
3
α πrE πr =
P

 and 3
0 0

8
3 15
αr QrE

π R
= =
P P

. For   2R r R≤ ≤ , 

3 3 4 4
2

0 0

1 (  8) ( 16)4 8
3 4

iQ r R r RE πr απ
R

⎛ ⎞⎛ ⎞− −
= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠P P

 and 

3
3 4 3 4

2 2
0

(64( ) 48( ) 1) (64( ) 48( ) 1).
24 (4 ) 15
απR kQE r R r R r R r R

πr r
= − − = − −

P
 

For r R≥ , 2

0

(4 ) QE rπ =
P

and 2
04

QE
π r

=
P

. 

(c) (4 /15) 4 0.267.
15

iQ Q
Q Q

= = =  

(d) For / 2r R≤ , 3
0

8
15r

eQF eE r
π R

= − = −
P

, so the restoring force depends upon displacement to the first power, and 

we have simple harmonic motion. 

(e) Comparing to 3
0

8,
15

eQF kr k
π R

= − =
P

. Then 3
e 0 e

8
15

k eQω
m π R m

= =
P

 and 
3

0 e2 152 .
8

π π R mT π
ω eQ

= =
P  

EVALUATE: (f )  If the amplitude of oscillation is greater than / 2,R  the force is no longer linear in ,r  and is thus 
no longer simple harmonic. 

22.67. IDENTIFY: The charge in a spherical shell of radius r and thickness dr is 2( )4  dQ r r drρ π= . Apply Gauss’s law. 
SET UP: Use a Gaussian surface that is a sphere of radius r. Let iQ  be the charge in the region / 2r R≤ and let 

0Q be the charge in the region where / 2R r R≤ ≤ . 

EXECUTE: (a) The total charge is 0iQ Q Q= + , where 
3 4/ 2 3

0

3 6 1 34
2 4 16 32

R

i
αr πα RQ π dr παR
R R

= = =∫  and 

2 2 3 3
0 / 2

7 31 474 (1 ( / ) ) 4 .
24 160 120

R

R
Q πα r R r dr παR παR⎛ ⎞= − = − =⎜ ⎟

⎝ ⎠∫  Therefore, 3 33 47 233
32 120 480

Q παR παR⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 and 

3

480
233

Qα
πR

= . 

(b) For 2r R≤ , Gauss’s law gives 
3 4

2

0
0 0

4 3 34
2 2

rπ αr παrE πr dr
R R
′

′= =∫P P
 and 

2 2

4
0 0

6 180
16 233
αr QrE

R π R
= =

P P
. For 2R r R≤ ≤ , 

3 3 5 3
2 2 2

2/ 2
0 0 0 0

4 44 (1 ( / ) )
3 24 5 160

r
i i

R

Q πα Q πα r R r RE πr r R r dr
R

⎛ ⎞
′ ′ ′= + − = + − − +⎜ ⎟

⎝ ⎠
∫P P P P

. 

3 53 3
2

0 0

3 4 4 1 1 174
128 3 5 480

παR παR r rE πr
R R

⎛ ⎞⎛ ⎞ ⎛ ⎞= + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠P P
 and 

3 5

2
0

480 1 1 23
233 3 5 1920

Q r rE
π r R R

⎛ ⎞⎛ ⎞ ⎛ ⎞= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠P
. For r R≥ , 

2
04

QE
π r

=
P

, since all the charge is enclosed. 

(c) The fraction of Q  between 2R r R≤ ≤  is 0 47 480 0.807.
120 233

Q
Q

= =  

(d) 2
0

180
233 4

QE
π R

=
P

 using either of the electric field expressions above, evaluated at / 2.r R=  

EVALUATE: (e) The force an electron would feel never is proportional to r−  which is necessary for simple 
harmonic oscillations. It is oscillatory since the force is always attractive, but it has the wrong power of r  to be 
simple harmonic motion. 
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ELECTRIC POTENTIAL 

 23.1. IDENTIFY: Apply Eq.(23.2) to calculate the work. The electric potential energy of a pair of point charges is given 
by Eq.(23.9). 
SET UP: Let the initial position of 2q  be point a and the final position be point b, as shown in Figure 23.1. 

 

0.150 mar =  

2 2(0.250 m) (0.250 m)br = +  

0.3536 mbr =  

Figure 23.1  
EXECUTE: a b a bW U U→ = −  

 
6 6

9 21 2

0

1 ( 2.40 10  C)( 4.30 10  C)(8.988 10  N m / C )
4 0.150 ma

a

q qU
rπ

− −
2 + × − ×

= = × ⋅
P

 

 0.6184 JaU = −  

 
6 6

9 21 2

0

1 ( 2.40 10  C)( 4.30 10  C)(8.988 10  N m / C )
4 0.3536 mb

b

q qU
rπ

− −
2 + × − ×

= = × ⋅
P

 

 0.2623 JbU = −  

0.6184 J ( 0.2623 J) 0.356 Ja b a bW U U→ = − = − − − = −  

EVALUATE: The attractive force on 2q  is toward the origin, so it does negative work on q2 when q2 moves to 
larger r. 

 23.2. IDENTIFY: Apply .a b a bW U U→ = −  

SET UP: 85.4 10  J.aU −= + ×  Solve for .bU  

EXECUTE: 81.9 10  J .a b a bW U U−
→ = − × = −  8 8 81.9 10  J ( 5.4 10  J) 7.3 10  J.b a a bU U W − − −

→= − = × − − × = ×  
EVALUATE: When the electric force does negative work the electrical potential energy increases. 

 23.3. IDENTIFY: The work needed to assemble the nucleus is the sum of the electrical potential energies of the protons 
in the nucleus, relative to infinity. 
SET UP: The total potential energy is the scalar sum of all the individual potential energies, where each potential 
energy is 0 0(1/ 4 )( / ).U qq rπ= P Each charge is e and the charges are equidistant from each other, so the total 

potential energy is 
2 2 2 2

0 0

1 3 .
4 4

e e e eU
r r r rπ π

⎛ ⎞
= + + =⎜ ⎟

⎝ ⎠P P
  

EXECUTE: Adding the potential energies gives 
2 19 2 9 2 2

13
15

0

3 3(1.60 10  C) (9.00 10  N m /C ) 3.46 10  J 2.16 MeV
4 2.00 10  m

eU
rπ

−
−

−

× × ⋅
= = = × =

×P
 

EVALUATE: This is a small amount of energy on a macroscopic scale, but on the scale of atoms, 2 MeV is quite a 
lot of energy. 

23
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 23.4. IDENTIFY: The work required is the change in electrical potential energy. The protons gain speed after being 
released because their potential energy is converted into kinetic energy.  
(a) SET UP: Using the potential energy of a pair of point charges relative to infinity, 0 0(1/ 4 )( / ).U qq rπ= P we have 

2 2

2 1
0 2 1

1 .
4

e eW U U U
r rπ

⎛ ⎞
= Δ = − = −⎜ ⎟

⎝ ⎠P
 

EXECUTE: Factoring out the e2 and substituting numbers gives  

( )( )29 2 2 19 14
15 15

1 19.00 10 N m /C 1.60 10  C 7.68 10  J
3.00 10  m 2.00 10  m

W − −
− −

⎛ ⎞= × ⋅ × − = ×⎜ ⎟× ×⎝ ⎠
 

(b) SET UP: The protons have equal momentum, and since they have equal masses, they will have equal speeds 

and hence equal kinetic energy. 2 2
1 2

12 2 .
2

U K K K mv mv⎛ ⎞Δ = + = = =⎜ ⎟
⎝ ⎠

 

EXECUTE: Solving for v gives 
14

27

7.68 10  J
1.67 10  kg

Uv
m

−

−

Δ ×
= =

×
 = 6.78 × 106 m/s 

EVALUATE: The potential energy may seem small (compared to macroscopic energies), but it is enough to give 
each proton a speed of nearly 7 million m/s. 

 23.5. (a) IDENTIFY: Use conservation of energy: 

othera a b bK U W K U+ + = +  

U for the pair of point charges is given by Eq.(23.9). 
SET UP:  

 

Let point a be where q2 is 0.800 m from 
q1 and point b be where q2 is 0.400 m 
from q1, as shown in Figure 23.5a. 

Figure 23.5a  

EXECUTE: Only the electric force does work, so other 0W =  and 1 2

0

1 .
4

q qU
rπ

=
P

 

2 3 21 1
2 2 (1.50 10  kg)(22.0 m/s) 0.3630 Ja aK mv −= = × =  

6 6
9 2 21 2

0

1 ( 2.80 10  C)( 7.80 10  C)(8.988 10  N m /C ) 0.2454 J
4 0.800 ma

a

q qU
rπ

− −− × − ×
= = × ⋅ = +

P
 

21
2b bK mv=  

6 6
9 2 21 2

0

1 ( 2.80 10  C)( 7.80 10  C)(8.988 10  N m /C ) 0.4907 J
4 0.400 mb

b

q qU
rπ

− −− × − ×
= = × ⋅ = +

P
 

The conservation of energy equation then gives ( )b a a bK K U U= + −  
21

2 0.3630 J (0.2454 J 0.4907 J) 0.1177 Jbmv = + + − =  

3

2(0.1177 J) 12.5 m/s
1.50 10  kgbv −= =

×
 

EVALUATE: The potential energy increases when the two positively charged spheres get closer together, so the 
kinetic energy and speed decrease. 
(b) IDENTIFY: Let point c be where q2 has its speed momentarily reduced to zero. Apply conservation of energy to 
points a and c: other .a a c cK U W K U+ + = +  
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SET UP: Points a and c are shown in Figure 23.5b. 

 

EXECUTE: 0.3630 JaK = +  (from part (a)) 
0.2454 JaU = +  (from part (a)) 

Figure 23.5b  
0cK =  (at distance of closest approach the speed is zero) 

1 2

0

1
4c

c

q qU
rπ

=
P

 

Thus conservation of energy a a cK U U+ =  gives 1 2

0

1 0.3630 J 0.2454 J 0.6084 J
4 c

q q
rπ

= + + =
P

 

6 6
9 2 21 2

0

1 ( 2.80 10  C)( 7.80 10  C)(8.988 10  N m /C ) 0.323 m.
4 0.6084 J 0.6084 Jc

q qr
π

− −− × − ×
= = × ⋅ =

+P
 

EVALUATE: U →∞  as 0r →  so q2 will stop no matter what its initial speed is. 

 23.6. IDENTIFY: Apply 1 2q qU k
r

=  and solve for r. 

SET UP: 6
1 7.2 10  Cq −= − × , 6

2 2.3 10  Cq −= + ×   

EXECUTE: 
9 2 2 6 6

1 2 (8.99 10  N m /C )( 7.20 10  C)( 2.30 10  C) 0.372 m
0.400 J

kq qr
U

− −× ⋅ − × + ×
= = =

−
 

EVALUATE: The potential energy U is a scalar and can take positive and negative values. 
 23.7. (a) IDENTIFY and SET UP: U is given by Eq.(23.9). 

EXECUTE: 
0

1
4

qqU
rεπ
′

=  

6 6
9 2 2 ( 4.60 10  C)( 1.20 10  C)(8.988 10  N m /C ) 0.198 J

0.250 m
U

− −+ × + ×
= × ⋅ = +  

EVALUATE: The two charges are both of the same sign so their electric potential energy is positive. 
(b) IDENTIFY: Use conservation of energy: othera a b bK U W K U+ + = +  
SET UP: Let point a be where q is released and point b be at its final position, as shown in Figure 23.7. 

 

EXECUTE: 0aK =  (released from rest) 
0.198 JaU = +  (from part (a)) 

21
2b bK mv=  

Figure 23.7  

Only the electric force does work, so other 0W =  and 
0

1 .
4

qQU
rπ

=
P

 

(i) 0.500 mbr =  
6 6

9 2 2

0

1 ( 4.60 10  C)( 1.20 10  C)(8.988 10  N m /C ) 0.0992 J
4 0.500 mb

qQU
rπ

− −+ × + ×
= = × ⋅ = +

P
 

Then othera a b bK U W K U+ + = +  gives b a bK U U= −  and 21
2 b a bmv U U= −  and 

4

2( ) 2( 0.198 J 0.0992 J) 26.6 m/s.
2.80 10  kg

a b
b

U Uv
m −

− + −
= = =

×
 

(ii) 5.00 mbr =  br is now ten times larger than in (i) so bU  is ten times smaller: 0.0992 J /10 0.00992 J.bU = + = +  

4

2( ) 2( 0.198 J 0.00992 J) 36.7 m/s.
2.80 10  kg

a b
b

U Uv
m −

− + −
= = =

×
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(iii) 50.0 mbr =  

br  is now ten times larger than in (ii) so Ub is ten times smaller: 

0.00992 J/10 0.000992 J.bU = + = +  

4

2( ) 2( 0.198 J 0.000992 J) 37.5 m/s.
2.80 10  kg

a b
b

U Uv
m −

− + −
= = =

×
 

EVALUATE: The force between the two charges is repulsive and provides an acceleration to q. This causes the 
speed of q to increase as it moves away from Q. 

 23.8. IDENTIFY: Call the three charges 1, 2 and 3. 12 13 23U U U U= + +  
SET UP: 12 23 13U U U= =  because the charges are equal and each pair of charges has the same separation, 0.500 m. 

EXECUTE: 
2 6 23 3 (1.2 10  C) 0.078 J.

0.500 m 0.500 m
kq kU

−×
= = =  

EVALUATE: When the three charges are brought in from infinity to the corners of the triangle, the repulsive 
electrical forces between each pair of charges do negative work and electrical potential energy is stored. 

 23.9. IDENTIFY: 1 2 1 3 2 3

12 13 23

q q q q q qU k
r r r

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

SET UP: In part (a), 12 0.200 mr = , 23 0.100 mr = and 13 0.100 m.r =  In part (b) let particle 3 have coordinate x, so 

12 0.200 mr = , 13r x= and 23 0.200 .r x= −  

EXECUTE: (a) 7(4.00 nC)( 3.00 nC) (4.00 nC)(2.00 nC) ( 3.00 nC)(2.00 nC) 3.60 10  J
(0.200 m) (0.100 m) (0.100 m)

U k −⎛ ⎞− −
= + + = ×⎜ ⎟

⎝ ⎠
 

(b) If 0U = , then 1 2 1 3 2 3

12 12

0 .q q q q q qk
r x r x

⎛ ⎞
= + +⎜ ⎟−⎝ ⎠

 Solving for x we find: 

28 60 60 60 26 1.6 0 0.074 m, 0.360 m.
0.2

x x x
x x

= − + − ⇒ − + = ⇒ =
−

 Therefore, 0.074 mx = since it is the only 

value between the two charges. 
EVALUATE: 13U  is positive and both 23U and 12U  are negative. If 0U = , then 13 23 12 .U U U= +  For 

0.074 mx = , 7
13 9.7 10  JU −= + × , 7

23 4.3 10  JU −= − × and 7
12 5.4 10  J.U −= − ×  It is true that 0U =  at this x. 

23.10. IDENTIFY: The work done on the alpha particle is equal to the difference in its potential energy when it is moved 
from the midpoint of the square to the midpoint of one of the sides.  
SET UP: We apply the formula .a b a bW U U→ = −  In this case, a is the center of the square and b is the midpoint of 
one of the sides. Therefore center side center side.W U U→ = −  
There are 4 electrons, so the potential energy at the center of the square is 4 times the potential energy of a single 
alpha-electron pair. At the center of the square, the alpha particle is a distance r1 = 50  nm  from each electron. At 
the midpoint of the side, the alpha is a distance r2 = 5.00 nm from the two nearest electrons and a distance r2 = 

125 nm  from the two most distant electrons. Using the formula for the potential energy (relative to infinity) of 
two point charges, 0 0(1/ 4 )( / ),U qq rπ= P the total work is 

center side center sideW U U→ = −  = 
0 1 0 2 0 3

1 1 14 2 2
4 4 4

e e eq q q q q q
r r r
α α α

π π π
⎛ ⎞

− +⎜ ⎟
⎝ ⎠P P P

 

Substituting qe = e and qα = 2e and simplifying gives 

2
center side

0 1 2 3

1 2 1 14
4

W e
r r rπ→

⎡ ⎤⎛ ⎞
= − − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦P
 

EXECUTE: Substituting the numerical values into the equation for the work gives 

( )219 212 1 14 1.60 10  C 6.08 10  J
5.00 nm50 m 125 nm

W − −⎡ ⎤⎛ ⎞= − × − + = ×⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

??? 

EVALUATE: Since the work is positive, the system has more potential energy with the alpha particle at the center 
of the square than it does with it at the midpoint of a side.  
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23.11. IDENTIFY: Apply Eq.(23.2). The net work to bring the charges in from infinity is equal to the change in potential 
energy. The total potential energy is the sum of the potential energies of each pair of charges, calculated from 
Eq.(23.9). 
SET UP: Let 1 be where all the charges are infinitely far apart. Let 2 be where the charges are at the corners of the 
triangle, as shown in Figure 23.11. 

 

Let qc be the third, unknown charge. 

Figure 23.11  

EXECUTE: 2 1( )W U U U= −Δ = − −  

1 0U =  

2
2

0

1 ( 2 )
4ab ac bc cU U U U q qq

dπ
= + + = +

P
 

Want 0,W = so 2 1( )W U U= − −  gives 20 U= −  

2

0

10 ( 2 )
4 cq qq

dπ
= +

P
 

2 2 0cq qq+ =  and /2.cq q= −  
EVALUATE: The potential energy for the two charges q is positive and for each q with qc it is negative. There are 
two of the q, qc terms so must have .cq q<  

23.12. IDENTIFY: Use conservation of energy a a b bU K U K+ = +  to find the distance of closest approach .br  The 

maximum force is at the distance of closest approach, 1 2
2 .

b

q q
F k

r
=   

SET UP: 0.bK =  Initially the two protons are far apart, so 0.aU =  A proton has mass 271.67 10  kg−×  and charge 
191.60 10  C.q e −= + = + ×  

EXECUTE: .a bK U=  2 1 21
22( ) .a

b

q qmv k
r

=  
2

2
a

b

emv k
r

=  and 

2 9 2 2 19 2
13

2 27 6 2

(8.99 10  N m /C )(1.60 10  C) 1.38 10  m.
(1.67 10  kg)(1.00 10  m/s)b

a

ker
mv

−
−

−

× ⋅ ×
= = = ×

× ×
 

2 19 2
9 2 2

2 13 2

(1.60 10  C)(8.99 10  N m /C ) 0.012 N.
(1.38 10  C)b

eF k
r

−

−

×
= = × ⋅ =

×
 

EVALUATE: The acceleration /a F m= of each proton produced by this force is extremely large. 

23.13. IDENTIFY: E
G

points from high potential to low potential. 
0

.a b
a b

W V V
q
→ = −  

SET UP: The force on a positive test charge is in the direction of .E
G

 
EXECUTE: V decreases in the eastward direction. A is east of B, so .B AV V>  C is east of A, so .C AV V<  The force 
on a positive test charge is east, so no work is done on it by the electric force when it moves due south (the force and 
displacement are perpendicular), and .D AV V=  
EVALUATE: The electric potential is constant in a direction perpendicular to the electric field. 

23.14. IDENTIFY: 
0

.a b
a b

W V V
q
→ = −  For a point charge, .kqV

r
=  

SET UP: Each vacant corner is the same distance, 0.200 m, from each point charge. 
EXECUTE: Taking the origin at the center of the square, the symmetry means that the potential is the same at the 
two corners not occupied by the 5.00 Cμ+  charges. This means that no net work is done is moving from one corner 
to the other. 
EVALUATE: If the charge 0q moves along a diagonal of the square, the electrical force does positive work for part 
of the path and negative work for another part of the path, but the net work done is zero. 
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23.15. IDENTIFY and SET UP: Apply conservation of energy to points A and B. 
EXECUTE: A A B BK U K U+ = +  

,U qV=  so A A B BK qV K qV+ = +  
6( ) 0.00250 J ( 5.00 10  C)(200 V 800 V) 0.00550 JB A A BK K q V V −= + − = + − × − =  

2 / 7.42 m/sB Bv K m= =  
EVALUATE: It is faster at B; a negative charge gains speed when it moves to higher potential. 

23.16. IDENTIFY: The work-energy theorem says .a b b aW K K→ = −  .a b
a b

W V V
q
→ = −   

SET UP: Point a is the starting and point b is the ending point. Since the field is uniform, 
cos cos .a bW Fs E q sφ φ→ = =  The field is to the left so the force on the positive charge is to the left. The particle 

moves to the left so 0φ = ° and the work a bW → is positive. 

EXECUTE: (a) 6 61.50 10  J 0 1.50 10  Ja b b aW K K − −
→ = − = × − = ×  

(b) 
6

9

1.50 10  J 357 V.
4.20 10  C

a b
a b

WV V
q

−
→

−

×
− = = =

×
 Point a is at higher potential than point b. 

(c) a bE q s W →= , so 3
2

357 V 5.95 10  V/m.
6.00 10  m

a b a bW V VE
q s s
→

−

−
= = = = ×

×
 

EVALUATE: A positive charge gains kinetic energy when it moves to lower potential; .b aV V<  

23.17. IDENTIFY: Apply the equation that precedes Eq.(23.17): .
b

a b a
W q d→ ′= ⋅∫ E l

GG
 

SET UP: Use coordinates where y+ is upward and x+  is to the right. Then ˆEE = j
G

 with 44.00 10  N/C.E = ×  
(a) The path is sketched in Figure 23.17a. 

 
Figure 23.17a 

EXECUTE: ˆ ˆ( ) ( ) 0d E dx⋅ = ⋅ =E l j i
GG

 so 0.
b

a b a
W q d→ ′= ⋅ =∫ E l

GG
 

EVALUATE: The electric force on the positive charge is upward (in the direction of the electric field) and does no 
work for a horizontal displacement of the charge. 
(b) SET UP: The path is sketched in Figure 23.17b. 

 

ˆd  dyl = j
G

 

Figure 23.17b 

EXECUTE: ˆ ˆ( ) ( )d E dy Edy⋅ = ⋅ =E l j j
GG

 

( )
b b

a b b aa a
W q d q E dy q E y y→ ′ ′ ′= ⋅ = = −∫ ∫E l

GG
 

0.670 m,b ay y− = +  positive since the displacement is upward and we have taken y+  to be upward. 
9 4 4( ) ( 28.0 10  C)(4.00 10  N/C)( 0.670 m) 7.50 10  J.a b b aW q E y y − −

→ ′= − = + × × + = + ×  

EVALUATE: The electric force on the positive charge is upward so it does positive work for an upward 
displacement of the charge. 
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(c) SET UP: The path is sketched in Figure 23.17c. 

 

0ay =  
sin (2.60 m)sin 45 1.838 mby r θ= − = − ° = −  

The vertical component of the 2.60 m 
displacement is 1.838 m downward. 

Figure 23.17c  

EXECUTE: ˆ ˆd dx dyl = i + j
G

 (The displacement has both horizontal and vertical components.) 
ˆ ˆ ˆ( ) ( )d E dx dy Edy⋅ = ⋅ =E l j i + j

GG
 (Only the vertical component of the displacement contributes to the work.) 

( )
b b

a b b aa a
W q d q E dy q E y y→ ′ ′ ′= ⋅ = = −∫ ∫E l

GG
 

9 4 3( ) ( 28.0 10 C)(4.00 10  N/C)( 1.838 m) 2.06 10  J.a b b aW q E y y − −
→ ′= − = + × × − = − ×  

EVALUATE: The electric force on the positive charge is upward so it does negative work for a displacement of the 
charge that has a downward component. 

23.18. IDENTIFY: Apply .a a b bK U K U+ = +  
SET UP: Let 1 3.00 nCq = +  and 2 2.00 nC.q = +  At point a, 1 2 0.250 ma ar r= = . At point b, 1 0.100 mbr = and 

2 0.400 mbr = . The electron has q e= − and 31
e 9.11 10  kgm −= × . 0aK =  since the electron is released from rest. 

EXECUTE: 21 2 1 2
e

1 2 1 2

1
2 b

a a b b

keq keq keq keq m v
r r r r

− − = − − + . 

9 9
19 17(3.00 10 C) (2.00 10 C)( 1.60 10 C) 2.88 10 J

0.250 m 0.250 ma a aE K U k
− −

− −⎛ ⎞× ×
= + = − × + = − ×⎜ ⎟

⎝ ⎠
. 

9 9
19 2 17 2

e e
(3.00 10 C) (2.00 10 C 1 1( 1.60 10 C) 5.04 10 J

0.100 m 0.400 m 2 2b b b b bE K U k m v m v
− −

− −⎛ ⎞× ×
= + = − × + + = − × +⎜ ⎟

⎝ ⎠
 

Setting a bE E= gives 17 17 6
31

2 (5.04 10 J 2.88 10 J) 6.89 10 m s.
9.11 10 kgbv − −

−= × − × = ×
×

 

EVALUATE: 1 2 180 V.a a aV V V= + =  1 2 315 V.b b bV V V= + =  b aV V> . The negatively charged electron gains kinetic 
energy when it moves to higher potential. 

23.19. IDENTIFY and SET UP: For a point charge kqV
r

= . Solve for r. 

EXECUTE: (a) 
9 2 2 11

3(8.99 10  N m /C )(2.50 10  C) 2.50 10  m 2.50 mm
90.0 V

kqr
V

−
−× ⋅ ×

= = = × =  

(b) constantVr kq= = so 1 1 2 2V r V r= . 1
2 1

2

90.0 V(2.50 mm) 7.50 mm
30.0 V

Vr r
V
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

EVALUATE: The potential of a positive charge is positive and decreases as the distance from the point charge 
increases. 

23.20. IDENTIFY: The total potential is the scalar sum of the individual potentials, but the net electric field is the vector 
sum of the two fields. 
SET UP: The net potential can only be zero if one charge is positive and the other is negative, since it is a scalar. 
The electric field can only be zero if the two fields point in opposite directions.  
EXECUTE: (a) (i) Since both charges have the same sign, there are no points for which the potential is zero. 
(ii) The two electric fields are in opposite directions only between the two charges, and midway between them the 
fields have equal magnitudes. So E = 0 midway between the charges, but V is never zero. 
(b) (i) The two potentials have equal magnitude but opposite sign midway between the charges, so V = 0 midway 
between the charges, but E ≠ 0 there since the fields point in the same direction. 
(ii) Between the two charges, the fields point in the same direction, so E cannot be zero there. In the other two 
regions, the field due to the nearer charge is always greater than the field due to the more distant charge, so they 
cannot cancel. Hence E is not zero anywhere. 
EVALUATE: It does not follow that the electric field is zero where the potential is zero, or that the potential is zero 
where the electric field is zero. 
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23.21. IDENTIFY: 
0

1
4

i

i i

qV
rπ

= ∑P  

SET UP: The locations of the changes and points A and B are sketched in Figure 23.21. 

 
Figure 23.21 

EXECUTE: (a) 1 2

0 1 2

1
4A

A A

q qV
r rπ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠P
 

9 9
9 2 2 2.40 10  C 6.50 10  C(8.988 10  N m /C ) 737 V

0.050 m 0.050 mAV
− −⎛ ⎞+ × − ×

= × ⋅ + = −⎜ ⎟
⎝ ⎠

 

(b) 1 2

0 1 2

1
4B

B B

q qV
r rπ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠P
 

9 9
9 2 2 2.40 10  C 6.50 10  C(8.988 10  N m /C ) 704 V

0.080 m 0.060 mBV
− −⎛ ⎞+ × − ×

= × ⋅ + = −⎜ ⎟
⎝ ⎠

 

(c) IDENTIFY and SET UP: Use Eq.(23.13) and the results of parts (a) and (b) to calculate W. 
EXECUTE: 9 8( ) (2.50 10  C)( 704 V ( 737 V)) 8.2 10  JB A B AW q V V − −

→ ′= − = × − − − = + ×  
EVALUATE: The electric force does positive work on the positive charge when it moves from higher potential 
(point B) to lower potential (point A). 

23.22. IDENTIFY: For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. 
SET UP: (a) The positions of the two charges are shown in Figure 23.22a. 2 2r a x= + . 

 
Figure 23.22a 

EXECUTE: (b) 0
0

12 .
4

qV
aπ

=
P

 

(c) 
2 2

0 0

1 1( ) 2 2
4 4

q qV x
r a xπ π

= =
+P P

 



Electric Potential  23-9 

(d) The graph of V versus x is sketched in Figure 23.22b. 

 
Figure 23.22b 

EVALUATE: (e) When 
0

1 2,  ,
4

qx a V
xπ

>> =
P

just like a point charge of charge 2 .q+  At distances from the charges 

much greater than their separation, the two charges act like a single point charge. 

23.23. IDENTIFY:  For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. 
SET UP: (a) The positions of the two charges are shown in Figure 23.23. 

EXECUTE: (b) ( ) 0.kq k qV
r r

−
= + =  

(c) The potential along the x-axis is always zero, so a graph would be flat. 
(d) If the two charges are interchanged, then the results of (b) and (c) still hold. The potential is zero. 
EVALUATE: The potential is zero at any point on the x-axis because any point on the x-axis is equidistant from the 
two charges. 

 
Figure 23.23 

23.24. IDENTIFY: For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. 
SET UP: Consider the distances from the point on the y-axis to each charge for the three regions a y a− ≤ ≤  
(between the two charges), y a> (above both charges) and y a< − (below both charges). 

EXECUTE: (a) 
2 2

2| | : .
( ) ( )

kq kq kqyy a V
a y a y y a

< = − =
+ − −

 
2 2

2:
( )

kq kq kqay a V
a y y a y a

−
> = − =

+ − −
. 

2 2

2 :
( ) ( )

kq kq kqay a V
a y y a y a
−

< − = − =
+ − + −

. 

A general expression valid for any y is 
| | | |

q qV k
y a y a

⎛ ⎞−
= +⎜ ⎟− +⎝ ⎠

. 

(b) The graph of V versus y is sketched in Figure 23.24. 

(c) 
2 2 2

2 2: .kqa kqay a V
y a y
− −

>> = ≈
−

 

(d) If the charges are interchanged, then the potential is of the opposite sign. 
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EVALUATE: 0V =  at 0y = . V →+∞ as the positive charge is approached and V →−∞ as the negative charge is 
approached. 

 
Figure 23.24 

23.25. IDENTIFY: For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. 
SET UP: (a) The positions of the two charges are shown in Figure 23.25a. 

 
Figure 23.25a 

(b) 
2 ( ): .

( )
kq kq kq x ax a V
x x a x x a

− +
> = − =

− −
 2 (3 )0 : .

( )
kq kq kq x ax a V
x a x x x a

−
< < = − =

− −
 

2 ( )0 : .
( )

kq kq kq x ax V
x x a x x a

− +
< = + =

− −
 A general expression valid for any y is 2

| | | |
q qV k x x a

⎛ ⎞= −⎜ ⎟−⎝ ⎠
. 

(c) The potential is zero at and /3.x a a= −  
(d) The graph of V versus x is sketched in Figure 23.25b. 

 
Figure 23.25b 

EVALUATE: (e) For 2: ,kqx kqx a V
x x

− −
>> ≈ =  which is the same as the potential of a point charge –q. Far from 

the two charges they appear to be a point charge with a charge that is the algebraic sum of their two charges. 
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23.26. IDENTIFY: For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. 
SET UP: The distance of a point with coordinate y from the positive charge is y  and the distance from the 

negative charge is 2 2r a y= + . 

EXECUTE: (a) 
2 2

2 1 2 .
| | | |
kq kqV kq
y r y a y

⎛ ⎞
⎜ ⎟= − = −
⎜ ⎟+⎝ ⎠

 

(b) 
2 2

2 2 20, when 3 .
4 3

a y aV y y a y+
= = ⇒ = ⇒ = ±  

(c) The graph of V versus y is sketched in Figure 23.26. V →∞  as the positive charge at the origin is approached. 

EVALUATE: (d) 1 2: ,kqy a V kq
y y y

⎛ ⎞
>> ≈ − = −⎜ ⎟

⎝ ⎠
which is the potential of a point charge q− . Far from the two 

charges they appear to be a point charge with a charge that is the algebraic sum of their two charges. 

 
Figure 23.26 

23.27. IDENTIFY: a a b bK qV K qV+ = + . 
SET UP: Let point a be at the cathode and let point b be at the anode. 0aK = . 295 Vb aV V− = . An electron has 

q e= − and 319.11 10  kgm −= × . 

EXECUTE: 19 17( ) (1.60 10  C)( 295 V) 4.72 10 Jb a bK q V V − −= − = − × − = × . 21
2b bK mv= , so 

17
7

31

2(4.72 10 J) 1.01 10 m s.
9.11 10 kgbv

−

−

×
= = ×

×
 

EVALUATE: The negatively charged electron gains kinetic energy when it moves to higher potential. 

23.28. IDENTIFY: For a point charge, 2

k q
E

r
=  and kqV

r
= .  

SET UP: The electric field is directed toward a negative charge and away from a positive charge. 

EXECUTE: (a) 0V >  so 0q > . 
2

2

/
/

V kq r kq r r
E k q r r kq

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 4.98 V 0.415 m
12.0 V/m

r = = . 

(b) 10
9 2 2

(0.415 m)(4.98 V) 2.30 10  C
8.99 10  N m /C

rVq
k

−= = = ×
× ⋅

 

(c) 0q > , so the electric field is directed away from the charge. 
EVALUATE: The ratio of V to E due to a point charge increases as the distance r from the charge increases, because 
E falls off as 21/r and V falls off as 1/r . 

23.29. (a) IDENTIFY and SET UP: The direction of E
G

 is always from high potential to low potential so point b is at 
higher potential. 
(b) Apply Eq.(23.17) to relate b aV V−  to E. 

EXECUTE: ( ).
b b

b a b aa a
V V d Edx E x x− = − ⋅ = = −∫ ∫E l

GG
 

240 V 800 V/m
0.90 m 0.60 m

b a

b a

V VE
x x
− +

= = =
− −
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(c) 6 5( ) ( 0.200 10  C)( 240 V) 4.80 10  J.b a b aW q V V − −
→ = − = − × + = − ×  

EVALUATE: The electric force does negative work on a negative charge when the negative charge moves from 
high potential (point b) to low potential (point a). 

23.30. IDENTIFY: For a point charge, kqV
r

= . The total potential at any point is the algebraic sum of the potentials of the 

two charges. For a point charge, 
2

k q
E

r
= . The net electric field is the vector sum of the electric fields of the two 

charges. 
SET UP: E

G
produced by a point charge is directed away from the point charge if it is positive and toward the 

charge if it is negative. 
EXECUTE: (a) 2 0,Q QV V V= + >  so V is zero nowhere except for infinitely far from the charges. The fields can 
cancel only between the charges, because only there are the fields of the two charges in opposite directions. Consider a 

point a distance x from Q and d x− from 2Q, as shown in Figure 23.30a. 2 2
2 2 2

(2 ) ( ) 2
( )Q Q

kQ k QE E d x x
x d x

= → = → − =
−

. 

.
1 2

dx =
+

 The other root, ,
1 2

dx =
−

does not lie between the charges. 

(b) V can be zero in 2 places, A and B, as shown in Figure 23.30b. Point A is a distance x from Q−  and d x−  from 

2Q. B is a distance y from Q−  and d y+ from 2Q. ( ) (2 ):  0 3k Q k QAt A x d
x d x
−

+ = → =
−

. 

( ) (2 ):  0k Q k QAt B y d
y d y
−

+ = → =
+

. 

The two electric fields are in opposite directions to the left of Q−  or to the right of 2Q in Figure 23.30c. But for the 
magnitudes to be equal, the point must be closer to the charge with smaller magnitude of charge. This can be the 

case only in the region to the left of Q− . 2Q QE E= gives 2 2

(2 )
( )

kQ k Q
x d x

=
+

 and 
12

dx =
−

. 

EVALUATE:  (d) E and V are not zero at the same places. E
G

is a vector and V is a scalar. E is proportional to 21/r  
and V is proportional to 1/r . E

G
is related to the force on a test charge and VΔ is related to the work done on a test 

charge when it moves from one point to another. 

  
Figure 23.30 

23.31. IDENTIFY and SET UP: Apply conservation of energy, Eq.(23.3). Use Eq.(23.12) to express U in terms of V. 
(a) EXECUTE: 1 1 2 2K qV K qV+ = +  

1 2 2 1( ) ;q V V K K− = −     191.602 10  Cq −= − ×  
2 181

1 e 12 4.099 10  J;K m v −= = ×     2 171
2 e 22 2.915 10  JK m v −= = ×  

2 1
1 2 156 VK KV V

q
−

− = = −  

EVALUATE: The electron gains kinetic energy when it moves to higher potential. 
(b) EXECUTE: Now 17

1 22.915 10  J, 0K K−= × =  

2 1
1 2 182 VK KV V

q
−

− = = +  

EVALUATE: The electron loses kinetic energy when it moves to lower potential. 
23.32. IDENTIFY and SET UP: Expressions for the electric potential inside and outside a solid conducting sphere are 

derived in Example 23.8. 

EXECUTE: (a) This is outside the sphere, so 
9(3.50 10 C) 65.6 V.

0.480 m
kq kV
r

−×
= = =  

(b) This is at the surface of the sphere, so 
9(3.50 10 C) 131 V

0.240 m
kV

−×
= = . 

(c) This is inside the sphere. The potential has the same value as at the surface, 131 V. 
EVALUATE: All points of a conductor are at the same potential. 
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23.33. (a) IDENTIFY and SET UP: The electric field on the ring’s axis is calculated in Example 21.10. The force on the 
electron exerted by this field is given by Eq.(21.3). 
EXECUTE: When the electron is on either side of the center of the ring, the ring exerts an attractive force directed 
toward the center of the ring. This restoring force produces oscillatory motion of the electron along the axis of the 
ring, with amplitude 30.0 cm. The force on the electron is not of the form F kx= −  so the oscillatory motion is not 
simple harmonic motion. 
(b) IDENTIFY: Apply conservation of energy to the motion of the electron. 
SET UP: a a b bK U K U+ = +  with a at the initial position of the electron and b at the center of the ring. From 

Example 23.11, 
2 2

0

1 ,
4

QV
x Rπ

=
+P

 where R is the radius of the ring. 

EXECUTE: 30.0 cm, 0.a bx x= =  

0aK =  (released from rest), 21
2bK mv=  

Thus 21
2 a bmv U U= −  

And U qV eV= = −  so 2 ( ) .b ae V Vv
m
−

=  

9
9 2 2

2 2 2 2
0

1 24.0 10  C(8.988 10  N m / C )
4 (0.300 m) (0.150 m)

a

a

QV
x Rπ

−×
= = × ⋅

+ +P
 

643 VaV =  
9

9 2 2

2 2
0

1 24.0 10  C(8.988 10  N m / C ) 1438 V
4 0.150 mb

b

QV
x Rπ

−×
= = × ⋅ =

+P
 

19
7

31

2 ( ) 2(1.602 10  C)(1438 V 643 V) 1.67 10  m/s
9.109 10  kg

b ae V Vv
m

−

−

− × −
= = = ×

×
 

EVALUATE: The positively charged ring attracts the negatively charged electron and accelerates it. The electron 
has its maximum speed at this point. When the electron moves past the center of the ring the force on it is opposite 
to its motion and it slows down. 

23.34. IDENTIFY: Example 23.10 shows that for a line of charge, 
0

ln( / )
2a b b aV V r rλ
π

− =
P

. Apply conservation of energy 

to the motion of the proton. 
SET UP: Let point a be 18.0 cm from the line and let point b be at the distance of closest approach, where 0bK = . 

EXECUTE: (a) 2 27 3 2 211 1
2 2 (1.67 10  kg)(1.50 10  m/s) 1.88 10  JaK mv − −= = × × = × . 

(b) a a b bK qV K qV+ = + . 
21

19

1.88 10  J 0.01175 V
1.60 10  C

b a
a b

K KV V
q

−

−

− − ×
− = = = −

×
. 02ln( / ) ( 0.01175 V)b ar r π

λ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

P . 

0 0
12

2 ( 0.01175 V) 2 (0.01175 V)exp (0.180 m)exp 0.158 m
5.00 10 C/mb ar r π π

λ −

⎛ ⎞−⎛ ⎞= = − =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠

P P . 

EVALUATE: The potential increases with decreasing distance from the line of charge. As the positively charged 
proton approaches the line of charge it gains electrical potential energy and loses kinetic energy. 

23.35. IDENTIFY: The voltmeter measures the potential difference between the two points. We must relate this quantity to 
the linear charge density on the wire. 

SET UP: For a very long (infinite) wire, the potential difference between two points is ( )
0

ln /
2 b aV r rλ
π

Δ =
P

.  

EXECUTE: (a) Solving for λ gives 

( ) ( )
0

9 2 2

( )2 575  V
3.50 cmln / 18 10  N m /C ln
2.50 cm

b a

V
r r
πλ Δ

= =
⎛ ⎞× ⋅ ⎜ ⎟
⎝ ⎠

P  = 9.49 × 10-8 C/m 

(b) The meter will read less than 575 V because the electric field is weaker over this 1.00-cm distance than it was 
over the 1.00-cm distance in part (a). 
(c) The potential difference is zero because both probes are at the same distance from the wire, and hence at the 
same potential. 
EVALUATE: Since a voltmeter measures potential difference, we are actually given ΔV, even though that is not 
stated explicitly in the problem. We must also be careful when using the formula for the potential difference because 
each r is the distance from the center of the cylinder, not from the surface. 
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23.36. IDENTIFY: The voltmeter reads the potential difference between the two points where the probes are placed. 
Therefore we must relate the potential difference to the distances of these points from the center of the cylinder. For 
points outside the cylinder, its electric field behaves like that of a line of charge. 

SET UP: Using ( )
0

ln /
2 b aV r rλ
π

Δ =
P

 and solving for rb, we have 02 /V
b ar r e π λΔ= P .  

EXECUTE: The exponent is 
9 2 2

9

1 (175 V)
2 9.00 10  N m /C 0.648

15.0 10  C/m−

⎛ ⎞
⎜ ⎟× × ⋅⎝ ⎠ =

×
, which gives  

rb = (2.50 cm) e0.648 = 4.78 cm. 
The distance above the surface is 4.78 cm – 2.50 cm = 2.28 cm. 
EVALUATE: Since a voltmeter measures potential difference, we are actually given ΔV, even though that is not 
stated explicitly in the problem. We must also be careful when using the formula for the potential difference because 
each r is the distance from the center of the cylinder, not from the surface. 

23.37. IDENTIFY: For points outside the cylinder, its electric field behaves like that of a line of charge. Since a voltmeter 
reads potential difference, that is what we need to calculate. 

SET UP: The potential difference is ( )
0

ln /
2 b aV r rλ
π

Δ =
P

. 

EXECUTE: (a) Substituting numbers gives  

( )
0

ln /
2 b aV r rλ
π

Δ =
P

 = ( )( )6 9 2 2 10.0 cm8.50 10  C/m 2 9.00 10  N m /C ln
6.00 cm

− ⎛ ⎞× × × ⋅ ⎜ ⎟
⎝ ⎠

  

VΔ = 7.82 × 104 V = 78,200 V = 78.2 kV 
(b) E = 0 inside the cylinder, so the potential is constant there, meaning that the voltmeter reads zero. 
EVALUATE: Caution! The fact that the voltmeter reads zero in part (b) does not mean that V = 0 inside the 
cylinder. The electric field is zero, but the potential is constant and equal to the potential at the surface.  

23.38. IDENTIFY: The work required is equal to the change in the electrical potential energy of the charge-ring system. 
We need only look at the beginning and ending points, since the potential difference is independent of path for a 
conservative field. 

SET UP: (a) W = ( )center
0

1 0
4

QU q V q V V q
aπε∞

⎛ ⎞
Δ = Δ = − = −⎜ ⎟

⎝ ⎠
  

EXECUTE: Substituting numbers gives 
ΔU = (3.00 × 10-6 C)(9.00 × 109 N ⋅ m2/C2)(5.00 × 10–6 C)/(0.0400 m) = 3.38 J 

(b) We can take any path since the potential is independent of path. 
(c) SET UP: The net force is away from the ring, so the ball will accelerate away. Energy conservation gives 

21
0 max 2 .U K mv= =  

EXECUTE: Solving for v gives 

02 2(3.38 J)
0.00150 kg

Uv
m

= =  = 67.1 m/s 

EVALUATE: Direct calculation of the work from the electric field would be extremely difficult, and we would need 
to know the path followed by the charge. But, since the electric field is conservative, we can bypass all this 
calculation just by looking at the end points (infinity and the center of the ring) using the potential. 

23.39. IDENTIFY: The electric field is zero everywhere except between the plates, and in this region it is uniform and 
points from the positive to the negative plate (to the left in Figure 23.32).  
SET UP: Since the field is uniform between the plates, the potential increases linearly as we go from left to right 
starting at b. 
EXECUTE: Since the potential is taken to be zero at the left surface of the negative plate (a in Figure 23.32), it is 
zero everywhere to the left of b. It increases linearly from b to c, and remains constant (since E = 0) past c. The 
graph is sketched in Figure 23.39.  
EVALUATE: When the electric field is zero, the potential remains constant but not necessarily zero (as to the right 
of c). When the electric field is constant, the potential is linear. 

 
Figure 23.39 
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23.40. IDENTIFY and SET UP: For oppositely charged parallel plates, 0/E σ= P between the plates and the potential 
difference between the plates is V Ed= . 

EXECUTE: (a) 
9 2

0 0

47.0 10 C m 5310 N C.E σ −×
= = =
P P

 

(b) (5310 N/C)(0.0220 m) 117 V.V Ed= = =  
(c) The electric field stays the same if the separation of the plates doubles. The potential difference between the 
plates doubles. 
EVALUATE: The electric field of an infinite sheet of charge is uniform, independent of distance from the sheet. 
The force on a test charge between the two plates is constant because the electric field is constant. The potential 
difference is the work per unit charge on a test charge when it moves from one plate to the other. When the distance 
doubles the work, which is force times distance, doubles and the potential difference doubles. 

23.41. IDENTIFY and SET UP: Use the result of Example 23.9 to relate the electric field between the plates to the potential 
difference between them and their separation. The force this field exerts on the particle is given by Eq.(21.3). Use 
the equation that precedes Eq.(23.17) to calculate the work. 

EXECUTE: (a) From Example 23.9, 360 V 8000 V/m
0.0450 m

abVE
d

= = =  

(b) 9 5(2.40 10  C)(8000 V/m) 1.92 10  NF q E − −= = × = + ×  
(c) The electric field between the plates is shown in Figure 23.41. 

 
Figure 23.41 

The plate with positive charge (plate a) is at higher potential. The electric field is directed from high potential 
toward low potential (or, E

G
 is from + charge toward −  charge), so E

G
 points from a to b. Hence the force that E

G
 

exerts on the positive charge is from a to b, so it does positive work. 

,
b

a
W d Fd= ⋅ =∫ F l

GG
 where d is the separation between the plates. 

5 7(1.92 10  N)(0.0450 m) 8.64 10  JW Fd − −= = × = + ×  
(d) 360 Va bV V− = +  (plate a is at higher potential) 

9 7( ) (2.40 10  C)( 360 V) 8.64 10  J.b a b aU U U q V V − −Δ = − = − = × − = − ×  
EVALUATE: We see that ( ) .a b b a a bW U U U U→ = − − = −  

23.42. IDENTIFY: The electric field is zero inside the sphere, so the potential is constant there. Thus the potential at the 
center must be the same as at the surface, where it is equivalent to that of a point-charge.  
SET UP: At the surface, and hence also at the center of the sphere, the field is that of a point-charge, 

0/(4 ).E Q Rπ= P  
EXECUTE: (a) Solving for Q and substituting the numbers gives 

04Q RVπ= =P (0.125 m)(1500 V)/(9.00 × 109 N ⋅ m2/C2) = 2.08 × 10-8 C = 20.8 nC 

(b) Since the potential is constant inside the sphere, its value at the surface must be the same as at the center, 
1.50 kV. 
EVALUATE: The electric field inside the sphere is zero, so the potential is constant but is not zero. 

23.43. IDENTIFY and SET UP: Consider the electric field outside and inside the shell and use that to deduce the potential. 
EXECUTE: (a) The electric field outside the shell is the same as for a point charge at the center of the shell, so the 
potential outside the shell is the same as for a point charge: 

04
qV

rπ
=

P
 for .r R>  

The electric field is zero inside the shell, so no work is done on a test charge as it moves inside the shell and all 

points inside the shell are at the same potential as the surface of the shell:
04

qV
Rπ

=
P

 for .r R≤  

(b) kqV
R

=  so (0.15 m)( 1200 V) 20 nCRVq
k k

−
= = = −  

(c) EVALUATE: No, the amount of charge on the sphere is very small. Since U qV=  the total amount of electric 

energy stored on the balloon is only 5(20 nC)(1200 V) 2.4 10  J.−= ×  
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23.44. IDENTIFY: Example 23.8 shows that the potential of a solid conducting sphere is the same at every point inside the 
sphere and is equal to its value 0/ 2V q Rπ= P  at the surface. Use the given value of E to find q. 
SET UP: For negative charge the electric field is directed toward the charge. 
For points outside this spherical charge distribution the field is the same as if all the charge were concentrated at the 
center. 

EXECUTE: 2
04

qE
rπ

=
P

and 
2

2 8
0 9 2 2

(3800 N/C)(0.200 m)4 1.69 10  C
8.99 10 N m /C

q Erπ −= = = ×
× ⋅

P . 

Since the field is directed inward, the charge must be negative. The potential of a point charge, taking ∞  as zero, is 
9 2 2 8

0

(8.99 10 N m /C )( 1.69 10  C) 760 V
4 0.200 m

qV
rπ

−× ⋅ − ×
= = = −

P
at the surface of the sphere. Since the charge all resides 

on the surface of a conductor, the field inside the sphere due to this symmetrical distribution is zero. No work is 
therefore done in moving a test charge from just inside the surface to the center, and the potential at the center must 
also be 760 V.−  
EVALUATE: Inside the sphere the electric field is zero and the potential is constant. 

23.45. IDENTIFY: Example 23.9 shows that ( )V y Ey= , where y is the distance from the negatively charged plate, whose 
potential is zero. The electric field between the plates is uniform and perpendicular to the plates. 
SET UP: V increases toward the positively charged plate. E

G
is directed from the positively charged plated toward 

the negatively charged plate. 

EXECUTE: (a) 4480 V 2.82 10  V/m
0.0170 m

VE
d

= = = ×  and Vy
E

= . 0V =  at 0y = , 120 VV = at 0.43 cmy = , 

240 VV = at 0.85 cmy = , 360 VV = at 1.28 cmy = and 480 VV = at 1.70 cmy = . The equipotential surfaces 
are sketched in Figure 23.45. The surfaces are planes parallel to the plates. 
(b) The electric field lines are also shown in Figure 23.45. The field lines are perpendicular to the plates and the 
equipotential lines are parallel to the plates, so the electric field lines and the equipotential lines are mutually 
perpendicular. 
EVALUATE: Only differences in potential have physical significance. Letting 0V =  at the negative plate is a 
choice we are free to make. 

 
Figure 23.45 

23.46. IDENTIFY: By the definition of electric potential, if a positive charge gains potential along a path, then the 
potential along that path must have increased. The electric field produced by a very large sheet of charge is uniform 
and is independent of the distance from the sheet. 
(a) SET UP: No matter what the reference point, we must do work on a positive charge to move it away from the 
negative sheet. 
EXECUTE: Since we must do work on the positive charge, it gains potential energy, so the potential increases. 

(b) SET UP: Since the electric field is uniform and is equal to σ /2ε0, we have 
02

V Ed dσ
Δ = =

P
.  

EXECUTE: Solving for d gives 

( )12 2 2
0

9 2

2 8.85 10  C /N m (1.00 V)2
6.00 10  C/m

Vd
σ

−

−

× ⋅Δ
= =

×
P  = 0.00295 m = 2.95 mm 

EVALUATE: Since the spacing of the equipotential surfaces (d = 2.95 mm) is independent of the distance from the 
sheet, the equipotential surfaces are planes parallel to the sheet and spaced 2.95 mm apart. 
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 23.47 IDENTIFY and SET UP: Use Eq.(23.19) to calculate the components of .E
G

 
EXECUTE: 2V Axy Bx Cy= − +  

(a) 2x
VE Ay Bx
x

∂
= − = − +

∂
 

VEy Ax C
y

∂
= − = − −

∂
 

0z
VE
z

∂
= − =

∂
 

(b) 0E =  requires that  0.x y zE E E= = =  

0zE =  everywhere. 
0yE =  at  / .x C A= −  

And xE  is also equal zero for this x, any value of z, and 22 / (2 / )( / ) 2 / .y Bx A B A C A BC A= = − = −  
EVALUATE: V doesn’t depend on z so 0zE =  everywhere. 

23.48. IDENTIFY: Apply Eq.(21.19). 

SET UP: Eq.(21.7) says 
2

0

1 ˆ
4

q
rπ

=E r
G

P
 is the electric field due to a point charge q. 

EXECUTE: (a) 
2 2 2 3 2 32 2 2

.
( )x

V kQ kQx kQxE
x x x y z rx y z

⎛ ⎞∂ ∂ ⎜ ⎟= − = − = =
⎜ ⎟∂ ∂ + ++ +⎝ ⎠

 

Similarly, 
3 3 and .y z

kQy kQzE E
r r

= =  

(b) From part (a), 
2 2

ˆ ˆ ˆ
ˆ,kQ x y z kQE

r r r r r
⎛ ⎞

= + + =⎜ ⎟⎜ ⎟
⎝ ⎠

i j k r  which agrees with Equation (21.7). 

EVALUATE: V is a scalar. E
G

is a vector and has components. 

23.49. IDENTIFY and SET UP: For a solid metal sphere or for a spherical shell, kqV
r

=  outside the sphere and kqV
R

=  at 

all points inside the sphere, where R is the radius of the sphere. When the electric field is radial, VE
r

∂
= −

∂
. 

EXECUTE: (a) (i) ar r< : This region is inside both spheres. 1 1

a b a b

kq kqV kq
r r r r

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
. 

(ii) a br r r< < : This region is outside the inner shell and inside the outer shell. 1 1 .
b b

kq kqV kq
r r r r

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

(iii) br r> : This region is outside both spheres and 0V =  since outside a sphere the potential is the same as for point 
charge. Therefore the potential is the same as for two oppositely charged point charges at the same location. These 
potentials cancel. 

(b) 
0

1
4a

a b

q qV
r rπ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠P
 and 0bV = , so 

0

1 1 1
4ab

a b

V q
r rπ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠P
. 

(c) Between the spheres a br r r< <  and 1 1

b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 

2 2
0 0

1 1 1 1 .
4 4 1 1

ab

b

a b

V q q VE
r r r r r r

r r
π π

⎛ ⎞∂ ∂
= − = − − = + =⎜ ⎟∂ ∂ ⎛ ⎞⎝ ⎠ −⎜ ⎟

⎝ ⎠

P P
 

(d) From Equation (23.23): 0,E =  since V is constant (zero) outside the spheres. 
(e) If the outer charge is different, then outside the outer sphere the potential is no longer zero but is 

0 0 0

1 1 1 ( ) .
4 4 4

q Q q QV
r r rπ π π

−
= − =

P P P
 All potentials inside the outer shell are just shifted by an amount 

0

1 .
4 b

QV
rπ

= −
P

 Therefore relative potentials within the shells are not affected. Thus (b) and (c) do not change. 

However, now that the potential does vary outside the spheres, there is an electric field there: 

2 21 ( )V kq kQ kq Q kE q Q
r r r r r q r

⎛ ⎞∂ ∂ −⎛ ⎞= − = − + = − = −⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠
. 

EVALUATE: In part (a) the potential is greater than zero for all br r< . 
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23.50. IDENTIFY: Exercise 23.49 shows that 1 1

a b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 for ar r< , 1 1

b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 for a br r r< <  and 

1 1
ab

a b

V kq
r r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 

SET UP: 2

kqE
r

= , radially outward, for a br r r≤ ≤  

EXECUTE: (a) 1 1 500 Vab
a b

V kq
r r

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 gives 10500 V 7.62 10 C

1 1
0.012 m 0.096 m

q
k

−= = ×
⎛ ⎞

−⎜ ⎟
⎝ ⎠

. 

(b) 0bV =  so 500 VaV = . The inner metal sphere is an equipotential with 500 VV = . 1 1

a

V
r r kq
= + . 400 VV = at 

1.45 cmr = , 300 VV = at 1.85 cmr = , 200 VV = at 2.53 cmr = , 100 VV = at 4.00 cmr = , 0V = at 
9.60 cmr = . The equipotential surfaces are sketched in Figure 23.50. 

EVALUATE:  (c) The equipotential surfaces are concentric spheres and the electric field lines are radial, so the field 
lines and equipotential surfaces are mutually perpendicular. The equipotentials are closest at smaller r, where the 
electric field is largest. 

 
Figure 23.50 

23.51. IDENTIFY: Outside the cylinder it is equivalent to a line of charge at its center. 
SET UP: The difference in potential between the surface of the cylinder (a distance R from the central axis) and a 

general point a distance r from the central axis is given by 
0

ln( / )
2

V r Rλ
π

Δ =
P

.  

EXECUTE: (a) The potential difference depends only on r, and not direction. Therefore all points at the same value 
of r will be at the same potential. Thus the equipotential surfaces are cylinders coaxial with the given cylinder. 

(b) Solving 
0

ln( / )
2

V r Rλ
π

Δ =
P

 for r, gives 02 / Vr Re π λΔ= P .  

For 10 V, the exponent is (10 V)/[(2 × 9.00 × 109 N · m2/C2)(1.50 × 10–9 C/m)] = 0.370, which gives r = (2.00 cm) 
e0.370 = 2.90 cm. Likewise, the other radii are 4.20 cm (for 20 V) and 6.08 cm (for 30 V). 
(c) Δr1 = 2.90 cm – 2.00 cm = 0.90 cm; Δr2 = 4.20 cm – 2.90 cm = 1.30 cm; Δr3 = 6.08 cm – 4.20 cm = 1.88 cm 
EVALUATE: As we can see, Δr increases, so the surfaces get farther apart. This is very different from a sheet of 
charge, where the surfaces are equally spaced planes. 

23.52. IDENTIFY: The electric field is the negative gradient of the potential. 

SET UP: x
VE
x

∂
= −

∂
, so Ex is the negative slope of the graph of V as a function of x. 

EXECUTE: The graph is sketched in Figure 23.52. Up to a, V is constant, so Ex = 0. From a to b, V is linear with a 
positive slope, so Ex is a negative constant. Past b, the V-x graph has a decreasing positive slope which approaches 
zero, so Ex is negative and approaches zero. 
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EVALUATE: Notice that an increasing potential does not necessarily mean that the electric field is increasing. 

 
Figure 23.52 

23.53. (a) IDENTIFY: Apply the work-energy theorem, Eq.(6.6). 
SET UP: Points a and b are shown in Figure 23.53a. 

 
Figure 23.53a 

EXECUTE: 5
tot 4.35 10  Jb a bW K K K K −= Δ = − = = ×  

The electric force EF  and the additional force F  both do work, so that tot .
EF FW W W= +  

5 5 5 
tot 4.35 10 J 6.50 10 J 2.15 10 J

EF FW W W − − −= − = × − × = − ×  

EVALUATE: The forces on the charged particle are shown in Figure 23.53b. 

 
Figure 23.53b 

The electric force is to the left (in the direction of the electric field since the particle has positive charge). The 
displacement is to the right, so the electric force does negative work. The additional force F is in the direction of the 
displacement, so it does positive work. 
(b) IDENTIFY and SET UP: For the work done by the electric force, ( )a b a bW q V V→ = −  

EXECUTE: 
5

3
9

2.15 10  J 2.83 10  V.
7.60 10  C

a b
a b

WV V
q

−
→

−

− ×
− = = = − ×

×
 

EVALUATE: The starting point (point a) is at 32.83 10  V×  lower potential than the ending point (point b). We 
know that  b aV V>  because the electric field always points from high potential toward low potential. 
(c) IDENTIFY: Calculate E from a bV V−  and the separation d between the two points. 
SET UP: Since the electric field is uniform and directed opposite to the displacement ,a b EW F d qEd→ = − = −  where 

8.00 cmd =  is the displacement of the particle. 

EXECUTE: 
3

42.83 10  V 3.54 10  V/m.
0.0800 m

a b a bW V VE
qd d
→ − − ×

= − = − = = ×  

EVALUATE: In part (a), totW  is the total work done by both forces. In parts (b) and (c) a bW →  is the work done just 
by the electric force. 

23.54. IDENTIFY: The electric force between the electron and proton is attractive and has magnitude 
2

2

keF
r

= . For 

circular motion the acceleration is 2
rad /a v r= . 

2eU k
r

= − . 

SET UP: 191.60 10  Ce −= × . 191 eV 1.60 10  J−= × . 

EXECUTE: (a) 
2 2

2

mv ke
r r

=  and 
2kev

mr
= . 

(b) 
2

21 1 1
2 2 2

keK mv U
r

= = = −  
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(c) 
2 19 2

18
11

1 1 1 (1.60 10 C) 2.17 10 J 13.6 eV
2 2 2 5.29 10 m

ke kE K U U
r

−
−

−

×
= + = = − = − = − × = −

×
. 

EVALUATE: The total energy is negative, so the electron is bound to the proton. Work must be done on the 
electron to take it far from the proton. 

23.55. IDENTIFY  and SET UP: Calculate the components of E
G

 from Eq.(23.19). Eq.(21.3) gives F
G

 from E.
G

 
EXECUTE: (a) 4 / 3V Cx=  

4 / 3 3 4 / 3 4 4 / 3/ 240 V /(13.0 10  m) 7.85 10  V/mC V x −= = × = ×  

(b) 1/ 3 5 4 / 3 1/ 34 (1.05 10  V/m )
3x

VE Cx x
x

∂
= − = − = − ×

∂
 

The minus sign means that xE  is in the x− -direction, which says that E
G

 points from the positive anode toward the 
negative cathode. 
(c) qF = E

G G
 so 1/34

3x xF eE eCx= − =  

Halfway between the electrodes means 36.50 10  m.x −= ×  
19 4 4 / 3 3 1/ 3 154

3 (1.602 10  C)(7.85 10  V/m )(6.50 10  m) 3.13 10  NxF − − −= × × × = ×  

xF  is positive, so the force is directed toward the positive anode. 

EVALUATE: V depends only on x, so 0. y zE E= =  E  is directed from high potential (anode) to low potential 
(cathode). The electron has negative charge, so the force on it is directed opposite to the electric field. 

23.56. IDENTIFY: At each point (a and b), the potential is the sum of the potentials due to both spheres. The voltmeter 
reads the difference between these two potentials. The spheres behave like a point-charges since the meter is 
connected to the surface of each one. 
SET UP: (a) Call a the point on the surface of one sphere and b the point on the surface of the other sphere, call r 
the radius of each sphere, and call d the center-to-center distance between the spheres. The potential difference Vab 
between points a and b is then 

Vb – Va = 
0

1
4ab

q q q qV
r d r r d rπ

⎡− − ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥− −⎝ ⎠⎣ ⎦P
 = 

0

2 1 1
4

q
d r rπε

⎛ ⎞−⎜ ⎟−⎝ ⎠
 

EXECUTE: Substituting the numbers gives 

Vb – Va = ( )9 2 2 1 12(175 µC) 9.00 10  N m /C
0.750 m 0.250 m

⎛ ⎞× ⋅ −⎜ ⎟
⎝ ⎠

 = –8.40 × 106 V 

The meter reads 8.40 MV. 
(b) Since Vb – Va is negative, Va > Vb, so point a is at the higher potential.  
EVALUATE: An easy way to see that the potential at a is higher than the potential at b is that it would take positive 
work to move a positive test charge from b to a since this charge would be attracted by the negative sphere and 
repelled by the positive sphere. 

23.57. IDENTIFY: 1 2kq qU
r

=  

SET UP: Eight charges means there are 8(8 1) / 2 28− = pairs. There are 12 pairs of q and q− separated by d, 12 

pairs of equal charges separated by 2d and 4 pairs of q and q− separated by 3d . 

EXECUTE: (a) 
2

2 2
0

12 12 4 12 1 11 1.46 /
2 3 2 3 3

kqU kq q d
d dd d

π⎛ ⎞ ⎛ ⎞= − + − = − − + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

P  

EVALUATE: (b) The fact that the electric potential energy is less than zero means that it is energetically favorable 
for the crystal ions to be together. 

23.58. IDENTIFY: For two small spheres, 1 2kq qU
r

= . For part (b) apply conservation of energy. 

SET UP: Let 1 2.00 Cq μ= and 2 3.50 Cq μ= − . Let 0.250 mar = and br →∞ . 

EXECUTE: (a) 
9 2 2 6 6(8.99 10  N m /C )(2.00 10  C)( 3.50 10  C) 0.252 J

0.250 m
U

− −× ⋅ × − ×
= = −  

(b) 0bK = . 0bU = . 0.252 JaU = − . a a b bK U K U+ = +  gives 0.252 JaK = . 21
2a aK mv= , so 

3

2 2(0.252 J) 18.3 m/s
1.50 10  kg

a
a

Kv
m −= = =

×
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EVALUATE: As the sphere moves away, the attractive electrical force exerted by the other sphere does negative 
work and removes all the kinetic energy it initially had. Note that it doesn’t matter which sphere is held fixed and 
which is shot away; the answer to part (b) is unaffected. 

23.59. (a) IDENTIFY: Use Eq.(23.10) for the electron and each proton. 
SET UP: The positions of the particles are shown in Figure 23.59a. 

 
10 10(1.07 10  m) / 2 0.535 10  mr − −= × = ×  

Figure 23.59a  

EXECUTE: The potential energy of interaction of the electron with each proton is 
2

0

1 ( ) ,
4

eU
rπ
−

=
P

 so the total potential energy is 

2 9 2 2 19 2
18

10
0

2 2(8.988 10  N m /C )(1.60 10  C) 8.60 10  J
4 0.535 10  m

eU
rπ

−
−

−

× ⋅ ×
= − = − = − ×

×P
 

18 198.60 10  J(1 eV/1.602 10  J) 53.7 eVU − −= − × × = −  

EVALUATE: The electron and proton have charges of opposite signs, so the potential energy of the system is 
negative. 
(b) IDENTIFY  and SET UP: The positions of the protons and points a and b are shown in Figure 23.59b. 

 

2 2
b ar r d= +  

100.535 10  mar r −= = ×  

Figure 23.59b  

Apply othera a b bK U W K U+ + = +  with point a midway between the protons and point b where the electron 
instantaneously has 0v =  (at its maximum displacement d from point a). 
EXECUTE: Only the Coulomb force does work, so other 0.W =  

188.60 10  JaU −= − ×  (from part (a)) 
2 31 6 2 181 1

2 2 (9.109 10  kg)(1.50 10  m/s) 1.025 10  JaK mv − −= = × × = ×  
0bK =  

22 /b bU ke r= −  

Then 18 18 181.025 10  J 8.60 10  J 7.575 10  J.b a a bU K U K − − −= + − = × − × = − ×  
2 9 2 2 19 2

11
18

2 2(8.988 10  N m /C )(1.60 10  C) 6.075 10  m
7.575 10  Jb

b

ker
U

−
−

−

× ⋅ ×
= − = − = ×

− ×
 

Then 2 2 11 2 11 2 11(6.075 10  m) (5.35 10  m) 2.88 10  m.b ad r r − − −= − = × − × = ×  
EVALUATE: The force on the electron pulls it back toward the midpoint. The transverse distance the electron 
moves is about 0.27 times the separation of the protons. 

23.60. IDENTIFY: Apply 0xF =∑  and 0yF =∑  to the sphere. The electric force on the sphere is eF qE= . The 
potential difference between the plates is V Ed= . 
SET UP: The free-body diagram for the sphere is given in Figure 23.56. 
EXECUTE: cosT mgθ = and esinT Fθ =  gives 23tan (1.50 10 kg)(9.80 m s )tan(30 ) 0.0085 NeF mg θ −= = × ° = . 

e
VqF Eq
d

= =  and 6

(0.0085 N)(0.0500 m) 47.8 V.
8.90 10 C

FdV
q −= = =

×
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EVALUATE: / 956 V/mE V d= = . 0/E σ= P and 9 2
0 8.46 10  C/mEσ −= = ×P . 

 
Figure 23.60 

23.61. (a) IDENTIFY: The potential at any point is the sum of the potentials due to each of the two charged conductors. 
SET UP: From Example 23.10, for a conducting cylinder with charge per unit length λ  the potential outside the 
cylinder is given by 0 0( /2 )ln( / )V r rλ π= P  where r is the distance from the cylinder axis and 0r  is the distance from 
the axis for which we take 0.V =  Inside the cylinder the potential has the same value as on the cylinder surface. The 
electric field is the same for a solid conducting cylinder or for a hollow conducting tube so this expression for V 
applies to both. This problem says to take 0 .r b=  
EXECUTE: For the hollow tube of radius b and charge per unit length :λ−  outside 0( /2 )ln( / );V b rλ π= − P  inside 

0V =  since 0V =  at .r b=  
For the metal cylinder of radius a and charge per unit length :λ  
outside 0( /2 )ln( / ),V b rλ π= P  inside 0( /2 )ln( / ),V b aλ π= P  the value at .r a=  
(i) ;r a< inside both 0( /2 )ln( / )V b aλ π= P  
(ii) ;a r b< <  outside cylinder, inside tube 0( /2 )ln( / )V b rλ π= P  
(iii) ;r b>  outside both the potentials are equal in magnitude and opposite in sign so 0.V =  
(b) For 0,  ( /2 )ln( / ).ar a V b aλ π= = P  
For ,  0.br b V= =  
Thus 0( /2 )ln( / ).ab a bV V V b aλ π= − = P  
(c) IDENTIFY  and SET UP: Use Eq.(23.23) to calculate E. 

EXECUTE: 2
0 0

1ln .
2 2 ln( / )

abV b r b VE
r r r b r b a r

λ λ
π π

∂ ∂ ⎛ ⎞ ⎛ ⎞⎛ ⎞= − = − = − − =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠P P
 

(d) The electric field between the cylinders is due only to the inner cylinder, so abV  is not changed, 

0( /2 )ln( / ).abV b aλ π= P  
EVALUATE: The electric field is not uniform between the cylinders, so ( ).abV E b a≠ −  

23.62. IDENTIFY: The wire and hollow cylinder form coaxial cylinders. Problem 23.61 gives 1( )
ln( / )

abVE r
b a r

= . 

SET UP: 6145 10  ma −= × , 0.0180 mb = . 

EXECUTE: 1
ln( )

abVE
b a r

=  and 4 6ln ( (2.00 10 N C)(ln (0.018 m 145 10 m))0.012 m 1157 V.abV E b/a)r −= = × × =  

EVALUATE: The electric field at any r is directly proportional to the potential difference between the wire and the 
cylinder. 

23.63. IDENTIFY  and SET UP: Use Eq.(21.3) to calculate F
G

 and then mF = a
G G  gives a.G  

EXECUTE: (a) E q=F E.
G G

 Since q e= −  is negative EF
G

 and E
G

 are in opposite directions; E
G

 is upward so EF
G

 is 
downward. The magnitude of EF  is  

19 3 16(1.602 10  C)(1.10 10  N/C) 1.76 10  N.EF q E eE − −= = = × × = ×  

(b) Calculate the acceleration of the electron produced by the electric force: 
16

14 2
31

1.76 10  N 1.93 10  m/s
9.109 10  kg

Fa
m

−

−

×
= = = ×

×
 

EVALUATE: This is much larger than 29.80 m/s ,g =  so the gravity force on the electron can be neglected. EF
G

 is 
downward, so aG  is downward. 
(c) IDENTIFY  and SET UP: The acceleration is constant and downward, so the motion is like that of a projectile. 
Use the horizontal motion to find the time and then use the time to find the vertical displacement. 
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EXECUTE: x-component 
6

0 6.50 10  m/s;xv = ×  0;xa =  0 0.060 m;x x− =  ?t =  
21

0 0 2x xx x v t a t− = +  and the xa  term is zero, so 

90
6

0

0.060 m 9.231 10  s
6.50 10  m/sx

x xt
v

−−
= = = ×

×
 

y-component 
0 0;yv =  14 21.93 10  m/s ;ya = ×  99.231 10  m/s;t −= ×  0 ?y y− =  

21
0 0 2y yy y v t a t− = +  

14 2 9 21
0 2 (1.93 10  m/s )(9.231 10  s) 0.00822 m 0.822 cmy y −− = × × = =  

(d) The velocity and its components as the electron leaves the plates are sketched in Figure 23.63. 

 

6
0 6.50 10  m/sx xv v= = ×  (since 0xa = ) 

0y y yv v a t= +  
14 2 90 (1.93 10  m/s )(9.231 10  s)yv −= + × ×  

61.782 10  m/syv = ×  
Figure 23.63  

6

6

1.782 10  m/stan 0.2742
6.50 10  m/s

y

x

v
v

α ×
= = =

×
 so 15.3 .α = °  

EVALUATE: The greater the electric field or the smaller the initial speed the greater the downward deflection. 
(e) IDENTIFY  and SET UP: Consider the motion of the electron after it leaves the region between the plates. 
Outside the plates there is no electric field, so 0.a =  (Gravity can still be neglected since the electron is traveling at 
such high speed and the times are small.) Use the horizontal motion to find the time it takes the electron to travel 
0.120 m horizontally to the screen. From this time find the distance downward that the electron travels. 
EXECUTE: x-component 

6
0 6.50 10  m/s;xv = ×  0;xa =  0 0.120 m;x x− =  ?t =  

21
0 0 2x xx x v t a t− = +  and the xa  term is term is zero, so  

80
6

0

0.120 m 1.846 10  s
6.50 10  m/sx

x xt
v

−−
= = = ×

×
 

y-component 
6

0 1.782 10  m/syv = ×  (from part (b)); 0;ya =  81.846 10  m/s;t −= ×  0 ?y y− =  
2 6 81

0 0 2 (1.782 10  m/s)(1.846 10  s) 0.0329 m 3.29 cmy yy y v t a t −− = + = × × = =  
EVALUATE: The electron travels downward a distance 0.822 cm while it is between the plates and a distance 
3.29 cm while traveling from the edge of the plates to the screen. The total downward deflection is 
0.822 cm 3.29 cm 4.11 cm.+ =  
The horizontal distance between the plates is half the horizontal distance the electron travels after it leaves the 
plates. And the vertical velocity of the electron increases as it travels between the plates, so it makes sense for it to 
have greater downward displacement during the motion after it leaves the plates. 

23.64. IDENTIFY: The charge on the plates and the electric field between them depend on the potential difference across the 
plates. Since we do not know the numerical potential, we shall call this potential V and find the answers in terms of V. 

(a) SET UP: For two parallel plates, the potential difference between them is 
0 0

QdV Ed d
A

σ
= = =

P P
.  

EXECUTE: Solving for Q gives 

0 /Q AV d= =P (8.85 × 10–12 C2/N ⋅ m2)(0.030 m)2V/(0.0050 m)  

Q = 1.59V × 10–12 C = 1.59V pC, when V is in volts. 
(b) E = V/d = V/(0.0050 m) = 200V V/m, with V in volts. 
(c) SET UP: Energy conservation gives 21

2 .mv eV=  
EXECUTE: Solving for v gives 

( )19
5 1/ 2

31

2 1.60 10  C2 5.93 10  m/s
9.11 10  kg

VeVv V
m

−

−

×
= = = ×

×
, with V in volts 

EVALUATE: Typical voltages in student laboratory work run up to around 25 V, so the charge on the plates is typically 
about around 40 pC, the electric field is about 5000 V/m, and the electron speed would be about 3 million m/s. 
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23.65. (a) IDENTIFY  and SET UP: Problem 23.61 derived that 1 ,
ln( / )

abVE
b a r

=  where a is the radius of the inner cylinder 

(wire) and b is the radius of the outer hollow cylinder. The potential difference between the two cylinders is .abV  
Use this expression to calculate E at the specified r. 
EXECUTE: Midway between the wire and the cylinder wall is at a radius of 

6( )/2 (90.0 10  m 0.140 m)/2 0.07004 m.r a b −= + = × + =  
3

4
6

1 50.0 10  V 9.71 10  V/m
ln( / ) ln(0.140 m /90.0 10  m)(0.07004 m)

abVE
b a r −

×
= = = ×

×
 

(b) IDENTIFY and SET UP: The electric force is given by Eq.(21.3). Set this equal to ten times the weight of the 
particle and solve for ,q the magnitude of the charge on the particle. 

EXECUTE: 10EF mg=  

10q E mg=  and 
9 2

11
4

10 10(30.0 10  kg)(9.80 m/s ) 3.03 10  C
9.71 10  V/m

mgq
E

−
−×

= = = ×
×

 

EVALUATE: It requires only this modest net charge for the electric force to be much larger than the weight. 
23.66. (a) IDENTIFY: Calculate the potential due to each thin ring and integrate over the disk to find the potential. V is a 

scalar so no components are involved. 
SET UP: Consider a thin ring of radius y and width dy. The ring has area 2 y dyπ  so the charge on the ring is 

(2 ).dq y dyσ π=  
EXECUTE: The result of Example 23.11 then says that the potential due to this thin ring at the point on the axis at a 
distance x from the ring is 

2 2 2 2
0 0

1 2
4 4

dq y dydV
x y x y

πσ
π π

= =
+ +P P

 

2 2 2 2

2 20 00 0 0

( )
2 2 2

RR y dyV dV x y x R x
x y

σ σ σ⎡ ⎤= = = + = + −⎣ ⎦+
∫ ∫P P P

 

EVALUATE: For x R�  this result should reduce to the potential of a point charge with 2.Q Rσπ=  

2 2 2 2 1/ 2 2 2(1 / ) (1 /2 )x R x R x x R x+ = + ≈ +  so 2 2 2/2x R x R x+ − ≈  

Then 
2 2

0 0 0

,
2 2 4 4

R R QV
x x x

σ σπ
π π

≈ = =
P P P

 as expected. 

(b) IDENTIFY  and SET UP: Use Eq.(23.19) to calculate .xE  

EXECUTE: 
2 2 2 2

0 0

1 11 .
2 2x

V x xE
x xx R x R

σ σ⎛ ⎞ ⎛ ⎞∂
= − = − − = −⎜ ⎟ ⎜ ⎟

∂ + +⎝ ⎠ ⎝ ⎠P P
 

EVALUATE: Our result agrees with Eq.(21.11) in Example 21.12. 

23.67. (a) IDENTIFY: Use 
b

a b a
V V d− = ⋅∫ E l.

GG
 

SET UP: From Problem 22.48, 2
0

( )
2

rE r
R

λ
π

=
P

 for r R≤  (inside the cylindrical charge distribution) and 

0

( )
2

rE r
r

λ
π

=
P

 for .r R≥  Let 0V =  at r R=  (at the surface of the cylinder). 

EXECUTE: r R>  
Take point a to be at R and point b to be at r, where .r R>  Let d dl = r.

G G  E
G

 and drG  are both radially outward, so 

.d E dr⋅ =E r
G G  Thus .

r

R r R
V V E dr− = ∫  Then 0RV =  gives .

r

r R
V E dr= −∫  In this interval 0( ),  ( ) /2 ,r R E r rλ π> = P  so 

0 0 0

ln .
2 2 2

r r

r R R

dr rV dr
r r R

λ λ λ
π π π

⎛ ⎞= − = − = − ⎜ ⎟
⎝ ⎠∫ ∫P P P

 

EVALUATE: This expression gives 0rV =  when r R=  and the potential decreases (becomes a negative number of 
larger magnitude) with increasing distance from the cylinder. 



Electric Potential  23-25 

EXECUTE: r R<  

Take point a at r, where ,r R< and point b at R. d Edr⋅ =E r
G G  as before. Thus .

R

r R r
V V Edr− = ∫  Then 0RV =  gives 

.
R

r r
V Edr= ∫  In this interval ( ),r R<  2

0( ) / 2 ,E r r Rλ π= P  so 

2 2

2 2 2
0 0 0

.
2 2 2 2 2

R R

r r r

R rV dr rdr
R R R

λ λ λ
π π π

⎛ ⎞
= = = −⎜ ⎟

⎝ ⎠
∫ ∫P P P

 

2

0

1 .
4r

rV
R

λ
π

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠P
 

EVALUATE: This expression also gives 0rV =  when .r R=  The potential is 0/ 4λ πP  at 0r =  and decreases with 
increasing r. 
(b) EXECUTE: Graphs of V and E as functions of r are sketched in Figure 23.67. 

 
Figure 23.67 

EVALUATE: E at any r is the negative of the slope of ( )V r  at that r (Eq.23.23). 
23.68. IDENTIFY: The alpha particles start out with kinetic energy and wind up with electrical potential energy at closest 

approach to the nucleus. 
SET UP: (a) The energy of the system is conserved, with 0 0(1/ 4 )( / )U qq rπ= P  being the electric potential energy. 
With the charge of the alpha particle being 2e and that of the gold nucleus being Ze, we have 

2
2

0

1 1 2
2 4

Zemv
Rπ

=
P

 

EXECUTE: Solving for v and using Z = 79 for gold gives 

2

0

1 4
4

Zev
mRπ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠P
 = 

( ) ( )
( )( )

29 2 2 19

27 15

9.00 10  N m /C (4)(79) 1.60 10  C

6.7 10  kg 5.6 10  m

−

− −

× ⋅ ×

× ×
 = 4.4 × 107 m/s 

We have neglected any relativistic effects. 
(b) Outside the atom, it is neutral. Inside the atom, we can model the 79 electrons as a uniform spherical shell, which 
produces no electric field inside of itself, so the only electric field is that of the nucleus. 
EVALUATE: Neglecting relativistic effects was not such a good idea since the speed in part (a) is over 10% the 
speed of light. Modeling 79 electrons as a uniform spherical shell is reasonable, but we would not want to do this 
with small atoms. 

23.69. IDENTIFY: 
b

a b a
V V d− = ⋅∫ E l

GG
. 

SET UP: From Example 21.10, we have: 2 2 3 / 2
0

1
4 ( )x

QxE
x aπ

=
+P

. xd E dx⋅ =E l
GG

. Let a = ∞  so 0aV = . 

EXECUTE: 
2 2

1/ 2
2 2 3/ 2 2 2

0 0 0

1
4 ( ) 4 4

u x ax

u

Q x Q QV dx u
x a x aπ π π

= +

−

∞ =∞

′
′= − = =

′ + +
∫P P P

. 

EVALUATE: Our result agrees with Eq.(23.16) in Example 23.11. 
23.70. IDENTIFY: Divide the rod into infinitesimal segments with charge dq. The potential dV due to the segment is 

0

1
4

dqdV
rπ

=
P

. Integrate over the rod to find the total potential. 

SET UP: dq dlλ= , with /Q aλ π= and dl a dθ= . 

EXECUTE: 
0 0 0 0

1 1 1 1
4 4 4 4

dq dl Q dl Q ddV
r a a a a

λ θ
π π π π π π

= = = =
P P P P

. 
0 00

1 1
4 4

Q d QV
a a

π θ
π π π

= =∫P P
. 
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EVALUATE: All the charge of the ring is the same distance a from the center of curvature. 
23.71. IDENTIFY: We must integrate to find the total energy because the energy to bring in more charge depends on the 

charge already present. 
SET UP: If ρ is the uniform volume charge density, the charge of a spherical shell or radius r and thickness dr is dq 
= ρ 4πr2 dr, and ρ = Q/(4/3 πR3). The charge already present in a sphere of radius r is q = ρ(4/3 πr3). The energy to 
bring the charge dq to the surface of the charge q is Vdq, where V is the potential due to q, which is 0/ 4 .q rπP  
EXECUTE: The total energy to assemble the entire sphere of radius R and charge Q is sum (integral) of the tiny 
increments of energy. 

( )
3

2
2

0
0 0 0

4
3 13  4

4 4 5 4
R

rq QU Vdq dq r dr
r r R

ρ π
ρ π

π π π
⎛ ⎞

= = = = ⎜ ⎟
⎝ ⎠

∫ ∫ ∫P P P
 

where we have substituted ρ = Q/(4/3 πR3) and simplified the result. 
EVALUATE: For a point-charge, R → 0 so U → ∞, which means that a point-charge should have infinite self-
energy. This suggests that either point-charges are impossible, or that our present treatment of physics is not 
adequate at the extremely small scale, or both. 

23.72. IDENTIFY: 
b

a b a
V V d− = ⋅∫ E l

GG
. The electric field is radially outward, so d E dr⋅E l =

GG
. 

SET UP: Let a = ∞ , so 0aV = . 

EXECUTE: From Example 22.9, we have the following. For 2: kQr R E
r

> =  and 2

r dr kQV kQ
r r∞

′
= − =

′∫ . 

For 3: kQrr R E
R

< =  and 
2 2

2
3 3 3 2

1 3
2 2 2 2

rR r r

RR R

kQ kQ kQ kQ kQ kQ kQr kQ rV d d r dr r
R R R R R R R R R∞

⎡ ⎤
′ ′ ′ ′ ′= − ⋅ − ⋅ = − = − = + − = −⎢ ⎥

⎣ ⎦
∫ ∫ ∫E r E r
G GG G . 

(b) The graphs of V and E versus r are sketched in Figure 23.72. 
EVALUATE: For r R< the potential depends on the electric field in the region r to ∞ . 

 
Figure 23.72 

23.73. IDENTIFY: Problem 23.70 shows that 2 2

0

(3 )
8r

QV r R
Rπ

= −
P

 for r R≤  and 
04r

QV
rπ

=
P

 for r R≥ . 

SET UP: 0
0 0

3 ,
8 4R

Q QV V
R Rπ π

= =
P P

 

EXECUTE: (a) 0
08R

QV V
Rπ

− =
P

 

(b) If 0Q > , V is higher at the center. If 0Q < , V is higher at the surface. 

EVALUATE: For 0Q > the electric field is radially outward, E
G

is directed toward lower potential, so V is higher at 
the center. If 0Q < , the electric field is directed radially inward and V is higher at the surface. 

23.74. IDENTIFY: For r c< , 0E = and the potential is constant. For r c> , E is the same as for a point charge and kqV
r

= . 

SET UP: 0V∞ =  
EXECUTE: (a) Points , , anda b c  are all at the same potential, so 0a b b c a cV V V V V V− = − = − = . 

29 2 6
6(8.99 10 N m C )(150 10 C) 2.25 10 V

0.60 mc
kqV V
R

−

∞

× ⋅ ×
− = = = ×  

(b) They are all at the same potential. 
(c) Only cV V∞−  would change; it would be 62.25 10 V.− ×  
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EVALUATE: The voltmeter reads the potential difference between the two points to which it is connected. 
23.75. IDENTIFY  and SET UP: Apply /rF dU dr= − and Newton's third law. 

EXECUTE: (a) The electrical potential energy for a spherical shell with uniform surface charge density and a point 
charge q  outside the shell is the same as if the shell is replaced by a point charge at its center. Since ,rF dU dr= −  
this means the force the shell exerts on the point charge is the same as if the shell were replaced by a point charge at 
its center. But by Newton’s 3rd law, the force q  exerts on the shell is the same as if the shell were a point charge. But 
q  can be replaced by a spherical shell with uniform surface charge and the force is the same, so the force between the 
shells is the same as if they were both replaced by point charges at their centers. And since the force is the same as for 
point charges, the electrical potential energy for the pair of spheres is the same as for a pair of point charges. 
(b) The potential for solid insulating spheres with uniform charge density is the same outside of the sphere as for a 
spherical shell, so the same result holds. 
(c) The result doesn’t hold for conducting spheres or shells because when two charged conductors are brought close 
together, the forces between them causes the charges to redistribute and the charges are no longer distributed 
uniformly over the surfaces. 

EVALUATE: For the insulating shells or spheres, 1 2
2

q q
F k

r
=  and 1 2kq qU

r
= , where 1q and 2q are the charges of 

the objects and r is the distance between their centers. 
23.76. IDENTIFY: Apply Newton's second law to calculate the acceleration. Apply conservation of energy and 

conservation of momentum to the motions of the spheres. 

SET UP: Problem 23.75 shows that 1 2
2

q q
F k

r
=  and 1 2kq qU

r
= , where 1q and 2q are the charges of the objects and 

r is the distance between their centers. 
EXECUTE: Maximum speed occurs when the spheres are very far apart.  Energy conservation gives 

2 21 2
50 50 150 150

1 1
2 2

kq q m v m v
r

= + . Momentum conservation gives 50 50 150 150 50 150and 3m v m v v v= = . 0.50 m.r =  Solve for 50v  

and 150v : 50 15012.7 m s,  4.24 m sv v= = . Maximum acceleration occurs just after spheres are released. F ma∑ =  

gives 1 2
150 1502

kq q m a
r

= . 
9 2 2 5 5

1502

(9 10 N m C )(10 C)(3 10 C) (0.15 kg)
(0.50 m)

a
− −× ⋅ ×

= . 2
150 72.0 m sa = and 

2
50 1503 216 m sa a= = . 

EVALUATE: The more massive sphere has a smaller acceleration and a smaller final speed. 
23.77. IDENTIFY: Use Eq.(23.17) to calculate .abV  

SET UP: From Problem 22.43, for 2R r R≤ ≤  (between the sphere and the shell) 2
0/ 4E Q rπ= P  

Take a at R and b at 2R. 

EXECUTE: 
2

2 2

2
0 0 0

1 1 1
4 4 4 2

R
R R

ab a b R R
R

Q dr Q QV V V Edr
r r R Rπ π π

⎡ ⎤ ⎛ ⎞= − = = = − = −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠∫ ∫P P P
 

08ab
QV

Rπ
=

P
 

EVALUATE: The electric field is radially outward and points in the direction of decreasing potential, so the sphere 
is at higher potential than the shell. 

23.78. IDENTIFY: 
b

a b a
V V d− = ⋅∫ E l

GG
 

SET UP: E
G

is radially outward, so d E dr⋅E l =
GG

. Problem 22.42 shows that ( ) 0E r = for r a≤ , 2( ) /E r kq r=  for 
a r b< < , ( ) 0E r = for b r c< < and 2( ) /E r kq r= for r c> . 

EXECUTE: (a) At 2:  .
c

c
kq kqr c V dr
r c∞

= = − =∫  

(b) At :  0
c b

b
c

kq kqr b V d d
c c∞

= = − ⋅ − ⋅ = − =∫ ∫E r E r
G GG G . 

(c) At 2

1 1 1:  
c b a a

a
c b b

kq drr a V d d d kq kq
c r c b a∞

⎡ ⎤= = − ⋅ − ⋅ − ⋅ = − = − +⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫E r E r E r
G G GG G G  

(d) At 0
1 1 10 :  r V kq
c b a
⎡ ⎤= = − +⎢ ⎥⎣ ⎦

 since it is inside a metal sphere, and thus at the same potential as its surface. 

EVALUATE: The potential difference between the two conductors is 1 1
a bV V kq

a b
⎡ ⎤− = −⎢ ⎥⎣ ⎦

. 
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23.79. IDENTIFY: Slice the rod into thin slices and use Eq.(23.14) to calculate the potential due to each slice. Integrate 
over the length of the rod to find the total potential at each point. 
(a) SET UP: An infinitesimal slice of the rod and its distance from point P are shown in Figure 23.79a. 

 
Figure 23.79a 

Use coordinates with the origin at the left-hand end of the rod and one axis along the rod. Call the axes x′  and y′  so 
as not to confuse them with the distance x given in the problem. 
EXECUTE: Slice the charged rod up into thin slices of width .dx′  Each slice has charge ( / )dQ Q dx a′=  and a 
distance r x a x′= + −  from point P. The potential at P due to the small slice dQ is  

0 0

1 1 .
4 4

dQ Q dxdV
r a x a xπ π

′⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟′+ −⎝ ⎠ ⎝ ⎠P P
 

Compute the total V at P due to the entire rod by integrating dV over the length of the rod ( 0x′ =  to ) :x a′ =  

00
0 0 0

[ ln( )] ln .
4 ( ) 4 4

a aQ dx Q Q x aV dV x a x
a x a x a a xπ π π

′ +⎛ ⎞′= = = − + − = ⎜ ⎟′+ − ⎝ ⎠∫ ∫P P P
 

EVALUATE: As 
0

,  ln 0.
4

Q xx V
a xπ

⎛ ⎞→∞ → =⎜ ⎟
⎝ ⎠P

 

(b) SET UP: An infinitesimal slice of the rod and its distance from point R are shown in Figure 23.79b. 

 
Figure 23.79b 

( / )dQ Q a dx′=  as in part (a) 

Each slice dQ is a distance 2 2( )r y a x′= + −  from point R. 
EXECUTE: The potential dV at R due to the small slice dQ is  

2 2
0 0

1 1 .
4 4 ( )

dQ Q dxdV
r a y a xπ π

′⎛ ⎞= =⎜ ⎟
⎝ ⎠ ′+ −P P

 

2 20
0

.
4 ( )

aQ dxV dV
a y a xπ

′
= =

′+ −∫ ∫P
 

In the integral make the change of variable ;  u a x du dx′ ′= − = −  
00 2 2

2 2
0 0

ln( )
4 4a a

Q du QV u y u
a ay uπ π

⎡ ⎤= − = − + +⎣ ⎦+∫P P
 

2 2
2 2

0 0

[ln ln( )] ln .
4 4

a a yQ QV y a y a
a a yπ π

⎡ ⎤⎛ ⎞+ +⎢ ⎥⎜ ⎟= − − + + =
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦P P

 

(The expression for the integral was found in appendix B.) 

EVALUATE: As 
0

,  ln 0.
4

Q yy V
a yπ

⎛ ⎞
→∞ → =⎜ ⎟

⎝ ⎠P
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(c) SET UP: part (a): 
0 0

ln ln 1 .
4 4

Q x a Q aV
a x a xπ π

+⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠P P

 

From Appendix B, 2ln(1 ) / 2 . . . ,u u u+ = − so 2 2ln(1 / ) / / 2a x a x a x+ = −  and this becomes /a x  when x is large. 

EXECUTE: Thus 
0 0

.
4 4

Q a QV
a x aπ π
⎛ ⎞→ =⎜ ⎟
⎝ ⎠P P

 For large x, V becomes the potential of a point charge. 

part (b): 
2 2 2

2
0 0

ln ln 1 .
4 4

a a yQ Q a aV
a y a y yπ π

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟= = + +
⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦P P

 

From Appendix B, 2 2 2 2 1/ 2 2 21 / (1 / ) 1 / 2a y a y a y+ = + = + +…  

Thus 2 2 2 2/ 1 / 1 / / 2 1 / .a y a y a y a y a y+ + → + + + → +…  And then using ln(1 )u u+ ≈  gives 

0 0 0

ln(1 / ) .
4 4 4

Q Q a QV a y
a a y yπ π π

⎛ ⎞
→ + → =⎜ ⎟

⎝ ⎠P P P
 

EVALUATE: For large y, V becomes the potential of a point charge. 

23.80. IDENTIFY: The potential at the surface of a uniformly charged sphere is kQV
R

= . 

SET UP: For a sphere, 34
3

V Rπ= . When the raindrops merge, the total charge and volume is conserved. 

EXECUTE: (a) 
12

4

( 1.20 10 C) 16.6 V
6.50 10 m

kQ kV
R

−

−

− ×
= = = −

×
. 

(b) The volume doubles, so the radius increases by the cube root of two: 43
new 2 8.19 10 mR R −= = × and the new 

charge is 12
new 2 2.40 10 C.Q Q −= = − ×  The new potential is 

12
new

new 4
new

( 2.40 10 C) 26.4 V
8.19 10 m

kQ kV
R

−

−

− ×
= = = −

×
. 

EVALUATE: The charge doubles but the radius also increases and the potential at the surface increases by only a 

factor of 2 / 3
1/ 3

2 2
2

= . 

23.81. (a) IDENTIFY  and SET UP: The potential at the surface of a charged conducting sphere is given by Example 23.8: 

0

1 .
4

qV
Rπ

=
P

 For spheres A and B this gives 

04
A

A
A

QV
Rπ

=
P

 and 
0

.
4

B
B

B

QV
Rπ

=
P

 

EXECUTE: A BV V=  gives 0 0/ 4 / 4A A B BQ R Q Rπ π=P P  and / / .B A B AQ Q R R=  And then 3A BR R=  implies 
/ 1/3.B AQ Q =  

(b) IDENTIFY  and SET UP: The electric field at the surface of a charged conducting sphere is given in 
Example 22.5: 

2
0

1 .
4

q
E

Rπ
=

P
 

EXECUTE: For spheres A and B this gives 

2
04
A

A
A

Q
E

Rπ
=

P
 and 2

0

.
4

B
B

B

Q
E

Rπ
=

P
 

2
2 20

2
0

4 / ( / ) (1/3)(3) 3.
4

BB A
B A A B

A B A

QE R Q Q R R
E R Q

π
π

⎛ ⎞⎛ ⎞
= = = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

P
P

 

EVALUATE: The sphere with the larger radius needs more net charge to produce the same potential. We can write 
/E V R=  for a sphere, so with equal potentials the sphere with the smaller R has the larger V. 

23.82. IDENTIFY: Apply conservation of energy, a a b bK U K U+ = + . 
SET UP: Assume the particles initially are far apart, so 0aU = , The alpha particle has zero speed at the distance of 

closest approach, so 0bK = . 191 eV 1.60 10  J−= × . The alpha particle has charge 2e+ and the lead nucleus has 
charge 82e+ . 
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EXECUTE: Set the alpha particle’s kinetic energy equal to its potential energy: a bK U=  gives 

(2 )(82 )11.0 MeV k e e
r

=  and 
19 2

14
6 19

(164)(1.60 10 C) 2.15 10 m
(11.0 10 eV)(1.60 10 J eV)

kr
−

−
−

×
= = ×

× ×
. 

EVALUATE: The calculation assumes that at the distance of closest approach the alpha particle is outside the radius 
of the lead nucleus. 

23.83. IDENTIFY  and SET UP: The potential at the surface is given by Example 23.8 and the electric field at the surface is 
given by Example 22.5. The charge initially on sphere 1 spreads between the two spheres such as to bring them to 
the same potential. 

EXECUTE: (a) 1
1 2

0 1

1 ,
4

QE
Rπ

=
P

 1
1 1 1

0 1

1
4

QV R E
Rπ

= =
P

 

(b) Two conditions must be met: 
1) Let q1and q2 be the final potentials of each sphere. Then 1 2 1q q Q+ =  (charge conservation) 
2) Let V1 and V2 be the final potentials of each sphere. All points of a conductor are at the same potential, so 1 2.V V=  

1 2V V=  requires that 1 2

0 1 0 2

1 1
4 4

q q
R Rπ π

=
P P

 and then 1 1 2 2/ /q R q R=  

1 2 2 1 1 1 1( )q R q R Q q R= = −  

This gives 1 1 1 2 1( /[ ])q R R R Q= +  and 2 1 1 1 1 1 2 1 2 1 2(1 /[ ]) ( /[ ])q Q q Q R R R Q R R R= − = − + = +  

(c) 1 1
1

0 1 0 1 2

1
4 4 ( )

q QV
R R Rπ π

= =
+P P

 and 2 1
2

0 2 0 1 2

1 ,
4 4 ( )

q QV
R R Rπ π

= =
+P P

 which equals 1V  as it should. 

(d) 1 1
1

1 0 1 1 2

.
4 ( )

V QE
R R R Rπ

= =
+P

 2 1
2

2 0 2 1 2

.
4 ( )

V QE
R R R Rπ

= =
+P

 

EVALUATE: Part (a) says 2 1 2 1( / ).q q R R=  The sphere with the larger radius needs more charge to produce the 
same potential at its surface. When 1 2,R R=  1 2 1 / 2.q q Q= =  The sphere with the larger radius has the smaller 
electric field at its surface. 

23.84. IDENTIFY: Apply 
b

a b a
V V d− = ⋅∫ E l

GG
 

SET UP: From Problem 22.57, for r R≥ , 2

kQE
r

= . For r R≤ , 
3 4

2 3 44 3kQ r rE
r R R

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
. 

EXECUTE: (a) 2 2:  
rkQ kQ kQr R E V dr

r r r∞

′≥ = ⇒ = − =
′∫ , which is the potential of a point charge. 

(b) 
3 4

2 3 4:  4 3kQ r rr R E
r R R

⎡ ⎤
≤ = −⎢ ⎥

⎣ ⎦
 and 

2 2 3 3 3 2

2 2 3 3 3 21 2 2 2 2
R r

R

kQ r R r R kQ r rV Edr Edr
R R R R R R R R∞

⎡ ⎤ ⎡ ⎤
′ ′= − − = − + + − = − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫ ∫ . 

EVALUATE: At r R= , kQV
R

= . At 0r = , 2kQV
R

= . The electric field is radially outward and V increases as r 

decreases. 
23.85. IDENTIFY: Apply conservation of energy: i fE E= . 

SET UP: In the collision the initial kinetic energy of the two particles is converted into potential energy at the 
distance of closest approach. 
EXECUTE: (a) The two protons must approach to a distance of p2r , where pr is the radius of a proton. 

i fE E= gives 
2

2
p

p

12
2 2

kem v
r

⎡ ⎤ =⎢ ⎥⎣ ⎦
and 

19 2
6

15 27

(1.60 10 C) 7.58 10 m s
2(1.2 10 m)(1.67 10 kg)

kv
−

− −

×
= = ×

× ×
. 

(b) For a helium-helium collision, the charges and masses change from (a) and 
19 2

6
15 27

(2(1.60 10 C)) 7.26 10 m s.
(3.5 10 m)(2.99)(1.67 10 kg)

kv
−

− −

×
= = ×

× ×
 

(c) 
23

2 2
kT mvK = = . 

2 27 6 2
p 9

p 23

(1.67 10 kg)(7.58 10 m s) 2.3 10 K
3 3(1.38 10 J K)

m v
T

k

−

−

× ×
= = = ×

×
. 

2 27 6 2
9H

He 23

(2.99)(1.67 10 kg)(7.26 10 m s) 6.4 10  K
3 3(1.38 10 J K)

em vT
k

−

−

× ×
= = = ×

×
. 
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(d) These calculations were based on the particles’ average speed. The distribution of speeds ensures that there are 
always a certain percentage with a speed greater than the average speed, and these particles can undergo the 
necessary reactions in the sun’s core. 
EVALUATE: The kinetic energies required for fusion correspond to very high temperatures. 

23.86. IDENTIFY  and SET UP: Apply Eq.(23.20). 
0

a b
a b

W V V
q
→ = − and 

b

a b a
V V d− = ⋅∫ E l

GG
. 

EXECUTE: (a) ˆ ˆ ˆ ˆ ˆ ˆ2 6 2V V V Ax Ay Az
x y z

∂ ∂ ∂
− − − − + −
∂ ∂ ∂

E = i j k = i j k
G

 

(b) A charge is moved in along the z -axis. The work done is given by 
0 0

0 0
2
0

ˆ ( 2 ) ( )
z z

W q dz q Az dz Aq z= ⋅ = − = +∫ ∫E k
G

. 

Therefore, 
5

2
2 6 2
0

6.00 10 J 640 V m
(1.5 10 C)(0.250 m)

a bWA
qz

−
→

−

×
= = =

×
. 

(c) 2 ˆ ˆ(0,0,0.250) 2(640 V m )(0.250 m) (320 V m)− −E = k = k
G

. 

(d) In every plane parallel to the -plane,xz y  is constant, so 2 2( , , )V x y z Ax Az C= + − , where 23 .C Ay=  

2 2 2V Cx z R
A
+

+ = = , which is the equation for a circle since R  is constant as long as we have constant potential on 

those planes. 

(e) 1280 VV =  and 2.00 my = , so 
2 2

2 2 2
2

1280 V 3(640 V m )(2.00 m) 14.0 m
640 V m

x z +
+ = =  and the radius of the circle 

is 3.74 m.  

EVALUATE: In any plane parallel to the xz-plane, E
G

projected onto the plane is radial and hence perpendicular to 
the equipotential circles. 

23.87. IDENTIFY: Apply conservation of energy to the motion of the daughter nuclei. 
SET UP: Problem 23.73 shows that the electrical potential energy of the two nuclei is the same as if all their charge 
was concentrated at their centers. 
EXECUTE: (a) The two daughter nuclei have half the volume of the original uranium nucleus, so their radii are 

smaller by a factor of the cube root of 2: 
15

15
3

7.4 10 m 5.9 10 m.
2

r
−

−×
= = ×  

(b) 
2 2 19 2

11
14

(46 ) (46) (1.60 10 C) 4.14 10 J
2 1.18 10 m

k e kU
r

−
−

−

×
= = = ×

×
. 2U K= , where K is the final kinetic energy of each 

nucleus. 11 112 (4.14 10 J) 2 2.07 10 JK U − −= = × = × . 

(c) If we have 10.0 kg of uranium, then the number of nuclei is 25
27

10.0 kg 2.55 10 nuclei
(236 u)(1.66 10 kg u)

n −= = ×
×

. 

And each releases energy U, so 25 11 15(2.55 10 )(4.14 10 J) 1.06 10 J 253 kilotons of TNTE nU −= = × × = × = . 
(d) We could call an atomic bomb an “electric” bomb since the electric potential energy provides the kinetic energy 
of the particles. 
EVALUATE: This simple model considers only the electrical force between the daughter nuclei and neglects the 
nuclear force. 

23.88. IDENTIFY  and SET UP: In part (a) apply VE
r

∂
= −

∂
. In part (b) apply Gauss's law. 

EXECUTE: (a) For r a≤ , 
2 2 2

0 0
2 3 2

0 0

6 6
18 3

V a r r a r rE
r a a a a

ρ ρ⎡ ⎤ ⎡ ⎤∂
= − = − − + = −⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦P P

. For r a≥ , 0VE
r

∂
= − =

∂
. E
G

has 

only a radial component because V depends only on r. 

(b) For r a≤ , Gauss's law gives 
2

2 20
2

0 0

4 4
3

r
r

Q a r rE r r
a a

ρπ π
⎡ ⎤

= = −⎢ ⎥
⎣ ⎦P P

and 

2
2 20

2
0 0

( 2 )4 ( 2 ) 4 ( 2 )
3

r dr
r dr

Q a r dr r rdrE r rdr r rdr
a a

ρπ π+
+

⎡ ⎤+ +
+ = = − +⎢ ⎥

⎣ ⎦P P
. Therefore, 

2 2
0

2 2
0 0 0

( )4 4 2 2 2 1
3

r dr rQ Q r r dr a r dr r r
a a a a

ρ π ρ π+ − ⎡ ⎤= ≈ − + − +⎢ ⎥⎣ ⎦P P P
 and 0

0
4 4( ) 3 1

3 3
r rr

a a
ρρ ρ⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 
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(c) For r a≥ , ( ) 0rρ = , so the total charge enclosed will be given by 
3 4

2 2 3
0 00

0 0

4 14 ( ) 4 4 0
3 3 3

aa
a r rQ r r dr r dr r

a a
π ρ πρ πρ

⎡ ⎤ ⎡ ⎤
= = − = − =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫ ∫ . 

EVALUATE: Apply Gauss's law to a sphere of radius r R> . The result of part (c) says that encl 0Q = , so 0E = . 
This agrees with the result we calculated in part (a). 

23.89. IDENTIFY: Angular momentum and energy must be conserved. 
SET UP: At the distance of closest approach the speed is not zero. E K U= + . 1 2q e= , 2 82q e= . 

EXECUTE: 1 2 2mv b mv r= . 1 2E E=  gives 2 1 2
1 2

2

1
2

kq qE mv
r

= + . 12
1 11 MeV 1.76 10 JE −= = × . 2r is the distance of 

closest approach. Substituting in for 2 1
2

bv v
r

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 we find 

2
1 2

1 1 2
2 2

b kq qE E
r r

= + . 

2 2
1 2 1 2 2 1( ) ( ) 0E r kq q r E b− − = . For 1210 mb −= , 12

2 1.01 10 mr −= × . For 1310 mb −= , 13
2 1.11 10 mr −= × . And for 

1410 mb −= , 14
2 2.54 10 mr −= × . 

EVALUATE: As b decreases the collision is closer to being head-on and the distance of closest approach decreases. 
Problem 23.82 shows that the distance of closest approach is 142.15 10  m−× when 0b = . 

23.90. IDENTIFY: Consider the potential due to an infinitesimal slice of the cylinder and integrate over the length of the 

cylinder to find the total potential. The electric field is along the axis of the tube and is given by VE
x

∂
= −

∂
. 

SET UP: Use the expression from Example 23.11 for the potential due to each infinitesimal slice. Let the slice be at 
coordinate z along the x-axis, relative to the center of the tube. 
EXECUTE: (a) For an infinitesimal slice of the finite cylinder, we have the potential 

2 2 2 2( ) ( )
k dQ kQ dzdV

Lx z R x z R
= =

− + − +
. Integrating gives 

2 2

2 2 2 2
2 2

 where
( )

L L x

L L x

kQ dz kQ duV u x z
L Lx z R u R

−

− − −

= = = −
− + +∫ ∫ . Therefore, 

2 2

2 2

( 2 ) ( 2 )
ln

( 2 ) 2

L x R L xkQV
L L x R L x

⎡ ⎤− + + −
= ⎢ ⎥

⎢ ⎥+ + − −⎣ ⎦
 on the cylinder axis. 

(b) For L R<< , 
2 2 2 2

2 2 2 2

( 2 ) 2 2ln ln
( 2 ) 2 2

L x R L xkQ kQ x xL R L xV
L LL x R L x x xL R L x

⎡ ⎤ ⎡ ⎤− + + − − + + −
≈ ⎢ ⎥ ≈ ⎢ ⎥

⎢ ⎥+ + − − + + − −⎢ ⎥⎣ ⎦⎣ ⎦
. 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 ( ) ( 2 ) 1 2( ) ( 2 )ln ln .
1 ( ) ( 2 ) 1 2( ) ( 2 )

xL R x L x R xkQ kQ xL R x L x R xV
L LxL R x L x R x xL R x L x R x

⎡ ⎤ ⎡ ⎤− + + − + − + + − +
≈ ⎢ ⎥ = ⎢ ⎥

⎢ ⎥+ + + − − + + + + − − +⎢ ⎥⎣ ⎦⎣ ⎦
 

2 2

2 2 2 2 2 2

1 2ln ln 1 ln 1
1 2 2 2

kQ L R x kQ L LV
L LL R x R x R x

⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤+ +
≈ = + − −⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟− + + +⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦

. 

2 2 2 2

2
2

kQ L kQV
L x R x R

≈ =
+ +

, which is the same as for a ring. 

(c) 
( )2 2 2 2

2 2 2 2

2 ( 2 ) 4 ( 2 ) 4

( 2 ) 4 ( 2 ) 4
x

kQ L x R L x RVE
x L x R L x R

− + − + +∂
= − =

∂ − + + +
 

EVALUATE: For L R<<  the expression for xE reduces to that for a ring of charge, as given in Example 23.14. 
23.91. IDENTIFY: When the oil drop is at rest, the upward force q E from the electric field equals the downward weight 

of the drop. When the drop is falling at its terminal speed, the upward viscous force equals the downward weight of 
the drop. 

SET UP: The volume of the drop is related to its radius r by 34
3

V rπ= . 

EXECUTE: (a) 
3

g
4

3
rF mg gπ ρ= = . e ABF q E q V d= = . e gF F=  gives 

34
3 AB

r gdq
V

π ρ
= . 
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(b) 
3

t
4 6

3
r g rvπ ρ πη=  gives t9

2
vr
g

η
ρ

= . Using this result to replace r in the expression in part (a) gives 

3 3 3
t t4 9 18

3 2 2AB AB

gd v d vq
V g V g

π ρ η ηπ
ρ ρ

⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
. 

(c) 
3 5 2 3 3 3

19
3 2

10 m (1.81 10 N s m ) (1.00 10 m 39.3 s)18 4.80 10 C 3
9.16 V 2(824 kg m )(9.80 m s )

q eπ
− − −

−× ⋅ ×
= = × = . The drop has acquired three 

excess electrons. 
5 2 3

7
3 2

9(1.81 10 N s m )(1.00 10 m 39.3 s) 5.07 10 m 0.507 m
2(824 kg m )(9.80 m s )

r μ
− −

−× ⋅ ×
= = × = . 

EVALUATE: The weight of the drop is 
3

154 4.4 10  N
3
r gπ ρ −⎛ ⎞

= ×⎜ ⎟
⎝ ⎠

. The density of air at room temperature is 

31.2 kg/m , so the buoyancy force is 18
air 6.4 10  NVgρ −= ×  and can be neglected. 

23.92. IDENTIFY: 1 1 2 2
cm

1 2

m v m vv
m m

+
=

+
 

SET UP: 1 2E K K U= + + , where 1 2kq qU
r

= . 

EXECUTE: (a) 
5 5

cm 5 5

(6 10 kg)(400m s) (3 10 kg)(1300 m s) 700 m s
6.0 10 kg 3.0 10 kg

v
− −

− −

× + ×
= =

× + ×
 

(b) 2 2 21 2
rel 1 1 2 2 1 2 cm

1 1 1 ( )
2 2 2

kq qE m v m v m m v
r

= + + − + . After expanding the center of mass velocity and collecting like 

terms 2 2 21 2 1 2 1 2
rel 1 2 1 2 1 2

1 2

1 1[ 2 ] ( )
2 2

m m kq q kq qE v v v v v v
m m r r

μ= + − + = − +
+

. 

(c) 
6 6

5 2
rel

1 (2.0 10 C)( 5.0 10 C)(2.0 10 kg)(900 m s) 1.9 J
2 0.0090 m

kE
− −

− × − ×
= × + = −  

(d) Since the energy is less than zero, the system is “bound.” 

(e) The maximum separation is when the velocity is zero: 1 21.9 J kq q
r

− =  gives 

6 6(2.0 10 C)( 5.0 10 C) 0.047 m
1.9 J

kr
− −× − ×

= =
−

. 

(f) Now using 1 400 m sv = and 2 1800 m sv = , we find rel 9.6 JE = + . The particles do escape, and the final relative 

velocity is rel
1 2 5

2 2(9.6 J) 980 m s
2.0 10 kg

Ev v
μ −− = = =

×
. 

EVALUATE: For an isolated system the velocity of the center of mass is constant and the system must retain the 
kinetic energy associated with the motion of the center of mass. 
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CAPACITANCE AND DIELECTRICS 

 24.1. IDENTIFY: 
ab

QC
V

=  

SET UP: 61 F 10  Fμ −=  
EXECUTE: 6 4(7.28 10  F)(25.0 V) 1.82 10  C 182 CabQ CV μ− −= = × = × =  
EVALUATE: One plate has charge Q+  and the other has charge Q− . 

 24.2. IDENTIFY and SET UP: 0 AC
d

=
P , QC

V
=  and V Ed= . 

(a) 
2

0 0
0.00122 m 3.29 pF
0.00328 m

AC
d

= = =P P  

(b) 
8

12

4.35 10  C 13.2 kV
3.29 10  F

QV
C

−

−

×
= = =

×
 

(c) 
3

613.2 10  V 4.02 10  V/m
0.00328 m

VE
d

×
= = = ×  

EVALUATE: The electric field is uniform between the plates, at points that aren't close to the edges. 
 24.3. IDENTIFY and SET UP: It is a parallel-plate air capacitor, so we can apply the equations of Sections 24.1. 

EXECUTE: (a) 
6

12

0.148 10  C so 604 V
245 10  Fab

ab

Q QC V
V C

−

−

×
= = = =

×
 

(b) 0  soAC
d

=
P ( )( )12 3

3 2 2
12 2 2

0

245 10  F 0.328 10  m
9.08 10  m 90.8 cm

8.854 10  C / N m
CdA

− −
−

−

× ×
= = = × =

× ⋅P
 

(c) 6
3

604 V so 1.84 10  V/m
0.328 10  m

ab
ab

VV Ed E
d −= = = = ×

×
 

(d) 
0

 soE σ
=
P

( )( )6 12 2 2 5 2
0 1.84 10  V/m 8.854 10  C / N m 1.63 10  C/mEσ − −= = × × ⋅ = ×P  

EVALUATE: We could also calculate σ  directly as Q/A. 
6

5 2
3 2

0.148 10  C 1.63 10  C/m ,
9.08 10  m

Q
A

σ
−

−
−

×
= = = ×

×
 which checks. 

 24.4. IDENTIFY: 0
AC
d

= P  when there is air between the plates. 

SET UP: 2 2(3.0 10  m)A −= ×  is the area of each plate. 

EXECUTE: 
12 2 2

12
3

(8.854 10  F/m)(3.0 10  m) 1.59 10  F 1.59 pF
5.0 10  m

C
− −

−
−

× ×
= = × =

×
 

EVALUATE: C increases when A increases and C increases when d decreases. 

 24.5. IDENTIFY: 
ab

QC
V

= . 0 AC
d

=
P . 

SET UP: When the capacitor is connected to the battery, 12.0 VabV = . 
EXECUTE: (a) 6 4(10.0 10  F)(12.0 V) 1.20 10  C 120 C abQ CV μ− −= = × = × =  
(b) When d is doubled C is halved, so Q is halved. 60 CQ μ= . 
(c) If r is doubled, A increases by a factor of 4. C increases by a factor of 4 and Q increases by a factor of 4. 

480 C.Q μ=  
EVALUATE: When the plates are moved apart, less charge on the plates is required to produce the same potential 
difference. With the separation of the plates constant, the electric field must remain constant to produce the same 
potential difference. The electric field depends on the surface charge density, σ . To produce the same σ , more 
charge is required when the area increases. 

24
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 24.6. IDENTIFY: 
ab

QC
V

= . 0 AC
d

=
P . 

SET UP: When the capacitor is connected to the battery, enough charge flows onto the plates to make 12.0 V.abV =  
EXECUTE: (a) 12.0 V 

(b) (i) When d is doubled, C is halved. ab
QV
C

=  and Q is constant, so V doubles. 24.0 VV = . 

(ii) When r is doubled, A increases by a factor of 4. V decreases by a factor of 4 and 3.0 VV = . 
EVALUATE: The electric field between the plates is 0/E Q A= P . abV Ed= . When d is doubled E is unchanged and 
V doubles. When A is increased by a factor of 4, E decreases by a factor of 4 so V decreases by a factor of 4. 

 24.7. IDENTIFY: 0 AC
d

=
P . Solve for d. 

SET UP: Estimate 1.0 cmr = . 2A rπ= . 

EXECUTE: 0 AC
d

=
P  so 

2 2
0 0

12

(0.010 m) 2.8 mm
1.00 10  F

rd
C
π π

−= = =
×

P P . 

EVALUATE: The separation between the pennies is nearly a factor of 10 smaller than the diameter of a penny, so it 
is a reasonable approximation to treat them as infinite sheets. 

 24.8. INCREASE: 
ab

QC
V

= . abV Ed= . 0 AC
d

=
P . 

SET UP: We want 41.00 10  N/CE = ×  when 100 VV = . 

EXECUTE: (a) 
2

2
4

1.00 10  V 1.00 10  m 1.00 cm
1.00 10  N/C

abVd
E

−×
= = = × =

×
. 

12 2
3 2

12 2 2
0

(5.00 10  F)(1.00 10  m) 5.65 10  m
8.854 10  C /(N m )

CdA
− −

−
−

× ×
= = = ×

× ⋅P
. 2A rπ= so 24.24 10  m 4.24 cmAr

π
−= = × = . 

(b) 12 2 10(5.00 10  F)(1.00 10  V) 5.00 10  C 500 pCabQ CV − −= = × × = × =  

EVALUATE: 0 AC
d

=
P . We could have a larger d, along with a larger A, and still achieve the required C without 

exceeding the maximum allowed E. 
 24.9. IDENTIFY: Apply the results of Example 24.4. /C Q V= . 

SET UP: 0.50 mmar = , 5.00 mmbr =  

EXECUTE: (a) 120 02 (0.180 m)2 4.35 10  F
ln( ) ln(5.00 0.50)b a

LC
r r
π π −= = = ×
P P . 

(b) 12 12/ (10.0 10  C) /(4.35 10  F) 2.30 VV Q C − −= = × × =  

EVALUATE: 24.2 pFC
L
= . This value is similar to those in Example 24.4. The capacitance is determined entirely by 

the dimensions of the cylinders. 
24.10. IDENTIFY: Capacitance depends on the geometry of the object. 

(a) SET UP: The capacitance of a cylindrical capacitor is 
( )

02
ln /b a

LC
r r
π

=
P . Solving for rb gives 02 /L C

b ar r e π= P . 

EXECUTE: Substituting in the numbers for the exponent gives 

( )12 2 2

11

2 8.85 10  C /N m (0.120 m)
0.182

3.67 10  F
π −

−

× ⋅
=

×
 

Now use this value to calculate rb: rb = ra e0.182 = (0.250 cm)e0.182 = 0.300 cm 
(b) SET UP: For any capacitor, C = Q/V and λ = Q/L. Combining these equations and substituting the numbers 
gives λ = Q/L = CV/L. 
EXECUTE: Numerically we get 

( )( )11
8

3.67 10  F 125 V
3.82 10  C/m = 38.2 nC/m

0.120 m
CV
L

λ
−

−
×

= = = ×  

EVALUATE: The distance between the surfaces of the two cylinders would be only 0.050 cm, which is just 
0.50 mm. These cylinders would have to be carefully constructed. 
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24.11. IDENTIFY and SET UP: Use the expression for C/L derived in Example 24.4. Then use Eq.(24.1) to calculate Q. 

EXECUTE: (a) From Example 24.4, 
( )

02
ln /b a

C
L r r

π
=

P  

( )
( )

12 2 2
11

2 8.854 10  C / N m
6.57 10  F/m 66 pF/m

ln 3.5 mm/1.5 mm
C
L

π −
−

× ⋅
= = × =  

(b) ( )( )11 106.57 10  F/m 2.8 m 1.84 10  F.C − −= × = ×  

( )( )10 3 111.84 10  F 350 10  V 6.4 10  C 64 pCQ CV − − −= = × × = × =  

The conductor at higher potential has the positive charge, so there is +64 pC on the inner conductor and 64−  pC on 
the outer conductor. 
EVALUATE: C depends only on the dimensions of the capacitor. Q and V are proportional. 

24.12. IDENTIFY: Apply the results of Example 24.3. /C Q V= . 

SET UP: 15.0 cmar = . Solve for br . 

EXECUTE: (a) For two concentric spherical shells, the capacitance is 1 a b

b a

r rC
k r r
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
. b a a bkCr kCr r r− =  and 

12

12

(116 10  F)(0.150 m) 0.175 m
(116 10  F) 0.150 m

a
b

a

kCr kr
kC r k

−

−

×
= = =

− × −
. 

(b) 220 VV =  and 12 8(116 10  F)(220 V) 2.55 10  CQ CV − −= = × = × . 

EVALUATE: A parallel-plate capacitor with 24 0.33 ma bA r rπ= = and 22.5 10  mb ad r r −= − = ×  has 

0 117 pFAC
d

= =
P , in excellent agreement with the value of C for the spherical capacitor. 

24.13. IDENTIFY: We can use the definition of capacitance to find the capacitance of the capacitor, and then relate the 
capacitance to geometry to find the inner radius. 
(a) SET UP: By the definition of capacitance, C = Q/V. 

EXECUTE: 
9

11
2

3.30 10   C 1.50 10   F = 15.0 pF
2.20 10   V

QC
V

−
−×

= = = ×
×

 

(b) SET UP: The capacitance of a spherical capacitor is 04 a b

b a

r rC
r r

π=
−

P . 

EXECUTE: Solve for ra and evaluate using C = 15.0 pF and rb = 4.00 cm, giving ra = 3.09 cm. 
(c) SET UP: We can treat the inner sphere as a point-charge located at its center and use Coulomb’s law, 

2
0

1
4

qE
rπ

=
P

. 

EXECUTE: 
( )( )

( )

9 2 2 9
4

2

9.00 10   N m /C 3.30 10   C
3.12 10   N/C

0.0309  m
E

−× ⋅ ×
= = ×  

EVALUATE: Outside the capacitor, the electric field is zero because the charges on the spheres are equal in 
magnitude but opposite in sign. 

24.14. IDENTIFY: The capacitors between b and c are in parallel. This combination is in series with the 15 pF capacitor. 
SET UP: Let 1 15 pFC = , 2 9.0 pFC =  and 3 11 pFC = . 

EXECUTE: (a) For capacitors in parallel, eq 1 2C C C= + +  so 23 2 3 20 pFC C C= + =  

(b) 1 15 pFC =  is in series with 23 20 pFC = . For capacitors in series, 
eq 1 2

1 1 1
C C C

= + +  so 
123 1 23

1 1 1
C C C

= +  and 

1 23
123

1 23

(15 pF)(20 pF) 8.6 pF
15 pF 20 pF

C CC
C C

= = =
+ +

. 

EVALUATE: For capacitors in parallel the equivalent capacitance is larger than any of the individual capacitors. For 
capacitors in series the equivalent capacitance is smaller than any of the individual capacitors. 
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24.15. IDENTIFY: Replace series and parallel combinations of capacitors by their equivalents. In each equivalent network 
apply the rules for Q and V for capacitors in series and parallel; start with the simplest network and work back to the 
original circuit. 
SET UP: Do parts (a) and (b) together. The capacitor network is drawn in Figure 24.15a. 

 

1 2 3 4 400 FC C C C μ= = = =  
28.0 VabV =  

Figure 24.15a  
EXECUTE: Simplify the circuit by replacing the capacitor combinations by their equivalents: 1 2 and C C  are in 
series and are equivalent to 12C  (Figure 24.15b). 

 12 1 2

1 1 1
C C C

= +  

Figure 24.15b  

( )( )6 6
61 2

12 6 6
1 2

4.00 10  F 4.00 10  F
2.00 10  F

4.00 10  F 4.00 10  F
C CC

C C

− −
−

− −

× ×
= = = ×

+ × + ×
 

12 3 and C C  are in parallel and are equivalent to 123C  (Figure 24.15c). 

 

123 12 3C C C= +  
6 6

123 2.00 10  F 4.00 10  FC − −= × + ×  
6

123 6.00 10  FC −= ×  

Figure 24.15c  

123 4 and C C are in series and are equivalent to 1234C  (Figure 24.15d). 

 
1234 123 4

1 1 1
C C C

= +  

Figure 24.15d  

( )( )6 6
6123 4

1234 6 6
123 4

6.00 10  F 4.00 10  F
2.40 10  F

6.00 10  F 4.00 10  F
C CC

C C

− −
−

− −

× ×
= = = ×

+ × + ×
 

The circuit is equivalent to the circuit shown in Figure 24.15e. 

 

1234 28.0 VV V= =  

( )( )6
1234 1234 2.40 10  F 28.0 V 67.2 CQ C V μ−= = × =  

Figure 24.15e  
Now build back up the original circuit, step by step. 1234C  represents 123 4and C C  in series (Figure 24.15f). 

 

123 4 1234 67.2 CQ Q Q μ= − =  
(charge same for capacitors in series) 

Figure 24.15f  

Then 123
123

123

67.2 C 11.2 V
6.00 F

QV
C

μ
μ

= = =  

4
4

4

67.2 C 16.8 V
4.00 F

QV
C

μ
μ

= = =  

Note that 4 123 16.8 V 11.2 V 28.0 V, as it should.V V+ = + =  
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Next consider the circuit as written in Figure 24.15g. 

 

3 12 428.0 VV V V= = −  

3 11.2 VV =  

( )( )3 3 3 4.00 F 11.2 VQ C V μ= =  

3 44.8 CQ μ=  

( )( )12 12 12 2.00 F 11.2 VQ C V μ− =  

12 22.4 CQ μ=  

Figure 24.15g  
Finally, consider the original circuit, as shown in Figure 24.15h. 

 

1 2 12 22.4 CQ Q Q μ= = =  
(charge same for capacitors in series) 

1
1

1

22.4 C 5.6 V
4.00 F

QV
C

μ
μ

= = =  

2
2

2

22.4 C 5.6 V
4.00 F

QV
C

μ
μ

= = =  

Figure 24.15h  
Note that 1 2 11.2 V,V V+ =  which equals 3V  as it should. 
Summary: 1 122.4 C, 5.6 VQ Vμ= =  

2 222.4 C, 5.6 VQ Vμ= =  

3 344.8 C, 11.2 VQ Vμ= =  

4 467.2 C, 16.8 VQ Vμ= =  
(c) 3 11.2 VadV V= =  
EVALUATE: 1 2 4 3 4 1 2 1 3 4 4 1234,  or . ,   and .V V V V V V V Q Q Q Q Q Q Q+ + = + = = + = =  

24.16. IDENTIFY: The two capacitors are in series. The equivalent capacitance is given by 
eq 1 2

1 1 1
C C C

= + . 

SET UP: For capacitors in series the charges are the same and the potentials add to give the potential across the 
network. 

EXECUTE: (a) 5 1
6 6

eq 1 2

1 1 1 1 1 5.33 10  F
(3.0 10  F) (5.0 10  F)C C C

−
− −= + = + = ×

× ×
. 6

eq 1.88 10  FC −= × . Then 

6 5
eq (52.0 V)(1.88 10  F) 9.75 10  CQ VC − −= = × = × . Each capacitor has charge 59.75 10  C−× . 

(b) 5 6
1 1/ 9.75 10  C 3.0 10  F 32.5 VV Q C − −= = × × = . 

5 6
2 2/ 9.75 10  C 5.0 10  F 19.5 VV Q C − −= = × × = . 

EVALUATE: 1 2 52.0 VV V+ = , which is equal to the applied potential abV . The capacitor with the smaller C has the 
larger V. 

24.17. IDENTIFY: The two capacitors are in parallel so the voltage is the same on each, and equal to the applied voltage .abV  
SET UP: Do parts (a) and (b) together. The network is sketched in Figure 24.17. 

 

EXECUTE: 1 2V V V= =  

1 52.0 VV =  

2 52.0 VV =  

Figure 24.17  
/  so C Q V Q CV= =  

( )( )1 1 1 3.00 F 52.0 V 156 C.Q C V μ μ= = = ( )( )2 2 2 5.00 F 52.0 V 260 C.Q C V μ μ= = =  
EVALUATE: To produce the same potential difference, the capacitor with the larger C has the larger Q. 
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24.18. IDENTIFY: For capacitors in parallel the voltages are the same and the charges add. For capacitors in series, the 
charges are the same and the voltages add. /C Q V= . 
SET UP: 1C and 2C are in parallel and 3C is in series with the parallel combination of 1C and 2C . 
EXECUTE: (a) 1 2andC C  are in parallel and so have the same potential across them: 

6
2

1 2 6
2

40.0 10  C 13.33 V
3.00 10  F

QV V
C

−

−

×
= = = =

×
. Therefore, 6 6

1 1 1 (13.33 V)(3.00 10  F) 80.0 10  CQ V C − −= = × = × . Since 3C  is 

in series with the parallel combination of 1 2andC C , its charge must be equal to their combined charge: 
6 6 6

3 40.0 10  C 80.0 10  C 120.0 10  CC − − −= × + × = × . 

(b) The total capacitance is found from 6 6
tot 12 3

1 1 1 1 1
9.00 10  F 5.00 10  FC C C − −= + = +

× ×
 and tot 3.21 FC μ= . 

6
tot

6
tot

120.0 10 C 37.4 V
3.21 10 Fab

QV
C

−

−

×
= = =

×
. 

EVALUATE: 
6

3
3 6

3

120.0 10  C 24.0 V
5.00 10  F

QV
C

−

−

×
= = =

×
. 1 3abV V V= + . 

24.19. IDENTIFY and SET UP: Use the rules for V for capacitors in series and parallel: for capacitors in parallel the voltages 
are the same and for capacitors in series the voltages add. 
EXECUTE: ( ) ( )1 1 1/ 150 C / 3.00 F 50 VV Q C μ μ= = =  

1 2 and C C  are in parallel, so 2 50 VV =  

3 1120 V 70 VV V= − =  
EVALUATE: Now that we know the voltages, we could also calculate Q for the other two capacitors. 

24.20. IDENTIFY and SET UP: 0 AC
d

=
P . For two capacitors in series, 

eq 1 2

1 1 1
C C C

= + . 

EXECUTE: 
2

11
1 02

eq
1 2 0 10

1 1 d AdC C C A d dA

−− ⎛ ⎞⎛ ⎞= + = + =⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝ ⎠

P
PP

. This shows that the combined capacitance for two 

capacitors in series is the same as that for a capacitor of area A and separation 1 2( )d d+ . 
EVALUATE: eqC  is smaller than either 1C or 2C . 

24.21. IDENTIFY and SET UP: 0 AC
d

=
P . For two capacitors in parallel, eq 1 2C C C= + . 

EXECUTE: 0 1 0 2 0 1 2
eq 1 2

( )A A A AC C C d d d
+

= + = + =
P P P . So the combined capacitance for two capacitors in parallel is 

that of a single capacitor of their combined area 1 2( )A A+  and common plate separation d. 
EVALUATE: eqC is larger than either 1C  or 2C . 

24.22. IDENTIFY: Simplify the network by replacing series and parallel combinations of capacitors by their equivalents. 

SET UP: For capacitors in series the voltages add and the charges are the same; 
eq 1 2

1 1 1
C C C

= + +  For capacitors 

in parallel the voltages are the same and the charges add; eq 1 2C C C= + +  QC
V

= . 

EXECUTE: (a) The equivalent capacitance of the 5.0 Fμ  and 8.0 Fμ  capacitors in parallel is 13.0 F.μ  When these 
two capacitors are replaced by their equivalent we get the network sketched in Figure 24.22. The equivalent 
capacitance of these three capacitors in series is 3.47 F.μ  
(b) tot tot (3.47 F)(50.0 V) 174 CQ C V μ μ= = =  
(c) Qtot is the same as Q for each of the capacitors in the series combination shown in Figure 24.22, so Q for each of 
the capacitors is 174 C.μ  

EVALUATE: The voltages across each capacitor in Figure 24.22 are tot
10

10

17.4 VQV
C

= = , tot
13

13

13.4 VQV
C

= =  and 

tot
9

9

19.3 VQV
C

= = . 10 13 9 17.4 V 13.4 V 19.3 V 50.1 VV V V+ + = + + = . The sum of the voltages equals the applied 

voltage, apart from a small difference due to rounding. 

 
Figure 24.22 
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24.23. IDENTIFY: Refer to Figure 24.10b in the textbook. For capacitors in parallel, eq 1 2 .C C C= + +  For capacitors in 

series, 
eq 1 2

1 1 1 .
C C C

= + +  

SET UP: The 11 Fμ , 4 Fμ and replacement capacitor are in parallel and this combination is in series with the 
9.0 Fμ capacitor. 

EXECUTE: 
eq

1 1 1 1
8.0 F (11 4.0 ) F 9.0 FC xμ μ μ

⎛ ⎞
= = +⎜ ⎟+ +⎝ ⎠

. (15 ) F 72 Fx μ μ+ =  and 57 Fx μ= . 

EVALUATE: Increasing the capacitance of the one capacitor by a large amount makes a small increase in the 
equivalent capacitance of the network. 

24.24. IDENTIFY: Apply /C Q V= . 0 AC
d

=
P . The work done to double the separation equals the change in the stored 

energy. 

SET UP: 
2

21
2 2

QU CV
C

= = . 

EXECUTE: (a) 12/ (2.55 C) (920 10  F) 2770 VV Q C μ −= = × =  

(b) 0 AC
d

=
P says that since the charge is kept constant while the separation doubles, that means that the capacitance 

halves and the voltage doubles to 5540 V. 

(c) 
2 6 2

3
12

(2.55 10  C) 3.53 10  J
2 2(920 10  F)
QU
C

−
−

−

×
= = = ×

×
. When if the separation is doubled while Q stays the same, the 

capacitance halves, and the energy stored doubles. So the amount of work done to move the plates equals the 
difference in energy stored in the capacitor, which is 33.53 10 J.−×  
EVALUATE: The oppositely charged plates attract each other and positive work must be done by an external force to 
pull them farther apart. 

24.25. IDENTIFY and SET UP: The energy density is given by Eq.(24.11): 21
02 . Use u E V Ed= =P  to solve for E. 

EXECUTE: Calculate 4
3

400 V: 8.00 10  V/m.
5.00 10  m

VE E
d −= = = ×

×
 

Then ( )( )22 12 2 2 4 31 1
02 2 8.854 10  C / N m 8.00 10  V/m 0.0283 J/mu E −= = × ⋅ × =P  

EVALUATE: E is smaller than the value in Example 24.8 by about a factor of 6 so u is smaller by about a factor of 
26 36.=  

24.26. IDENTIFY: 
ab

QC
V

= . 0 AC
d

=
P . abV Ed= . The stored energy is 1

2 QV . 

SET UP: 31.50 10  md −= × . 61 C 10  Cμ −=  

EXECUTE: (a) 
6

110.0180 10  C 9.00 10  F 90.0 pF
200 V

C
−

−×
= = × =  

(b) 0 AC
d

=
P so 

11 3
2

12 2 2
0

(9.00 10  F)(1.50 10  m) 0.0152 m
8.854 10  C /(N m )

CdA
− −

−

× ×
= = =

× ⋅P
. 

(c) 6 3 3(3.0 10  V/m)(1.50 10  m) 4.5 10  VV Ed −= = × × = ×  

(d) 6 61 1
2 2Energy (0.0180 10  C)(200 V) 1.80 10  J 1.80 JQV μ− −= = × = × =  

EVALUATE: We could also calculate the stored energy as 
2 6 2

11

(0.0180 10  C) 1.80 J
2 2(9.00 10  F)
Q
C

μ
−

−

×
= =

×
. 

24.27. IDENTIFY: The energy stored in a charged capacitor is 21
2 CV . 

SET UP: 61 F 10  Fμ −=  
EXECUTE: 2 6 21 1

2 2 (450 10  F)(295 V) 19.6 JCV −= × =  

EVALUATE: Thermal energy is generated in the wire at the rate 2I R , where I is the current in the wire. When the 
capacitor discharges there is a flow of charge that corresponds to current in the wire. 
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24.28. IDENTIFY: After the two capacitors are connected they must have equal potential difference, and their combined 
charge must add up to the original charge. 

SET UP: /C Q V= . The stored energy is 
2

21
2 2
QU CV
C

= =  

EXECUTE: (a) 0.Q CV=  

(b) 1 2

1 2

Q QV
C C

= =  and also 1 2 0Q Q Q CV+ = = . 1C C=  and 2 2
CC =  so 1 2

( 2)
Q Q
C C

=  and 1
2 2

QQ = . 1
3
2

Q Q= . 

1
2
3

Q Q=  and 1
0

2 2
3 3

Q QV V
C C

= = = . 

(c) 
2 22 2 22 1

21 2 3 3
0

1 2

( ) 2( )1 1 1 1
2 2 3 3

Q QQ Q QU CV
C C C C C

⎡ ⎤⎛ ⎞
= + = + = =⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦
 

(d) The original U was 21
02U CV= , so 2

0
1
6

U CVΔ = − . 

(e) Thermal energy of capacitor, wires, etc., and electromagnetic radiation. 
EVALUATE: The original charge of the charged capacitor must distribute between the two capacitors to make the 
potential the same across each capacitor. The voltage V for each after they are connected is less than the original 
voltage 0V of the charged capacitor. 

24.29. IDENTIFY and SET UP: Combine Eqs. (24.9) and (24.2) to write the stored energy in terms of the separation 
between the plates. 

EXECUTE: (a) 
2 2

0

0

;   so 
2 2
Q A xQU C U
C x A

= = =
P

P
 

(b) ( ) 2

0

 gives 
2

x dx Q
x x dx U

A
+

→ + =
P

 

( ) 2 2 2

0 0 02 2 2
x dx Q xQ QdU dx

A A A
⎛ ⎞+

= − = ⎜ ⎟
⎝ ⎠P P P

 

(c) 
2

0

 ,  so 
2
QdW F dx dU F

A
= = =

P
 

(d) EVALUATE: The capacitor plates and the field between the plates are shown in Figure 24.29a. 

 
0 0

QE
A

σ
= =
P P

 

1
2 ,  not F QE QE=  

Figure 24.29a  
The reason for the difference is that E is the field due to both plates. If we consider the positive plate only and 
calculate its electric field using Gauss’s law (Figure 24.29b): 

 

encl

0

Qd⋅ =E Aú P
 

0

2 AEA σ
=
P

 

0 02 2
QE

A
σ

= =
P P

 

Figure 24.29b  

The force this field exerts on the other plate, that has charge 
2

0

,  is .
2
QQ F

A
− =

P
 

24.30. IDENTIFY: 0 AC
d
ε

= . The stored energy can be expressed either as 
2

2
Q
C

 or as 
2

2
CV , whichever is more convenient 

for the calculation. 
SET UP: Since d is halved, C doubles. 
EXECUTE: (a) If the separation distance is halved while the charge is kept fixed, then the capacitance increases and 
the stored energy, which was 8.38 J, decreases since 2 2 .U Q C=  Therefore the new energy is 4.19 J. 
(b) If the voltage is kept fixed while the separation is decreased by one half, then the doubling of the capacitance 
leads to a doubling of the stored energy to 16.8 J, using 2 2U CV= , when V is held constant throughout. 
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EVALUATE: When the capacitor is disconnected, the stored energy decreases because of the positive work done by 
the attractive force between the plates. When the capacitor remains connected to the battery, Q CV= tells us that the 
charge on the plates increases. The increased stored energy comes from the battery when it puts more charge onto the 
plates. 

24.31. IDENTIFY and SET UP: QC
V

= . 21
2U CV= . 

EXECUTE: (a) (5.0 F)(1.5 V) 7.5 CQ CV μ μ= = = . 2 21 1
2 2 (5.0 F)(1.5 V) 5.62 JU CV μ μ= = =  

(b) 2 2 21 1
2 2 ( / ) / 2U CV C Q C Q C= = = . 6 32 2(5.0 10  F)(1.0 J) 3.2 10  CQ CU − −= = × = × . 

3

6

3.2 10  C 640 V
5.0 10  F

QV
C

−

−

×
= = =

×
. 

EVALUATE: The stored energy is proportional to 2Q and to 2V . 

24.32. IDENTIFY: The two capacitors are in series. 
eq 1 2

1 1 1
C C C

= + +
QC
V

= . 21
2U CV= . 

SET UP: For capacitors in series the voltages add and the charges are the same. 

EXECUTE: (a) 
eq 1 2

1 1 1
C C C

= +  so 1 2
eq

1 2

(150 nF)(120 nF) 66.7 nF
150 nF 120 nF

C CC
C C

= = =
+ +

. 

6(66.7 nF)(36 V) 2.4 10  C 2.4 CQ CV μ−= = = × =  
(b) 2.4 CQ μ=  for each capacitor. 

(c) 2 9 21 1
eq2 2 (66.7 10  F)(36 V) 43.2 JU C V μ−= = × =  

(d) We know C and Q for each capacitor so rewrite U in terms of these quantities. 2 2 21 1
2 2 ( / ) / 2U CV C Q C Q C= = =  

150 nF: 
6 2

9

(2.4 10  C) 19.2 J
2(150 10  F)

U μ
−

−

×
= =

×
; 120 nF: 

6 2

9

(2.4 10  C) 24.0 J
2(120 10  F)

U μ
−

−

×
= =

×
 

Note that 19.2 J 24.0 J 43.2 Jμ μ μ+ = , the total stored energy calculated in part (c). 

(e) 150 nF: 
6

9

2.4 10  C 16 V
150 10  F

QV
C

−

−

×
= = =

×
; 120 nF: 

6

9

2.4 10  C 20 V
120 10  F

QV
C

−

−

×
= = =

×
 

Note that these two voltages sum to 36 V, the voltage applied across the network. 
EVALUATE: Since Q is the same the capacitor with smaller C stores more energy ( 2 / 2U Q C= ) and has a larger 
voltage ( /V Q C= ). 

24.33. IDENTIFY: The two capacitors are in parallel. eq 1 2C C C= + . QC
V

= . 21
2U CV= . 

SET UP: For capacitors in parallel, the voltages are the same and the charges add. 
EXECUTE: (a) eq 1 2 35 nF 75 nF 110 nFC C C= + = + = . 9

tot eq (110 10  F)(220 V) 24.2 CQ C V μ−= = × =  
(b) 220 VV = for each capacitor. 
35 nF: 9

35 35 (35 10  F)(220 V) 7.7 CQ C V μ−= = × = ; 75 nF: 9
75 75 (75 10  F)(220 V) 16.5 CQ C V μ−= = × = . Note that 

35 75 totQ Q Q+ = . 

(c) 2 9 21 1
tot eq2 2 (110 10  F)(220 V) 2.66 mJU C V −= = × =  

(d) 35 nF: 2 9 21 1
35 352 2 (35 10  F)(220 V) 0.85 mJU C V −= = × = ; 

75 nF: 2 9 21 1
75 752 2 (75 10  F)(220 V) 1.81 mJU C V −= = × = . Since V is the same the capacitor with larger C stores more 

energy. 
(e) 220 V for each capacitor. 
EVALUATE: The capacitor with the larger C has the larger Q. 

24.34. IDENTIFY: Capacitance depends on the geometry of the object. 

(a) SET UP: The potential difference between the core and tube is ( )
0

ln /
2 b aV r rλ
π

=
P

. Solving for the linear charge 

density gives 
( ) ( )

0 02 4
ln / 2 ln /b a b a

V V
r r r r
π πλ = =
P P . 

EXECUTE: Using the given values gives 
( )

10

9 2 2

6.00 V 6.53 10  C/m
2.002 9.00 10  N m /C ln
1.20

λ −= = ×
⎛ ⎞× ⋅ ⎜ ⎟
⎝ ⎠
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(b) SET UP: Q Lλ=  

EXECUTE: 10 10(6.53 10   C/m)(0.350  m) = 2.29 10   CQ − −= × ×  
(c) SET UP: The definition of capacitance is /C Q V= . 

EXECUTE: 
10

112.29 10   C 3.81 10   F
6.00  V

C −×
= = ×  

(d) SET UP: The energy stored in a capacitor is 21
2 .U CV=  

EXECUTE: 11 2 101
2 (3.81 10   F)(6.00  V) 6.85 10   JU − −= × = ×  

EVALUATE: The stored energy could be converted to heat or other forms of energy. 
24.35. IDENTIFY: 1

2U QV= . Solve for Q. /C Q V= . 

SET UP: Example 24.4 shows that for a cylindrical capacitor, 02
ln( / )b a

C
L r r

π
=

P . 

EXECUTE: (a) 1
2U QV=  gives 

9
92 2(3.20 10 J) 1.60 10 C.

4.00 V
UQ
V

−
−×

= = = ×  

(b) 02
ln( )b a

C
L r r

π
=

P . 9
0 0 0exp(2 / ) exp(2 / ) exp(2 (15.0 m)(4.00 V) (1.60 10  C)) 8.05.b

a

r L C LV Q
r

π π π −= = = × =P P P  

The radius of the outer conductor is 8.05 times the radius of the inner conductor. 
EVALUATE: When the ratio /b ar r increases, /C L decreases and less charge is stored for a given potential 
difference. 

24.36. IDENTIFY: Apply Eq.(24.11). 

SET UP: Example 24.3 shows that 2
04

QE
rπ

=
P

between the conducting shells and that 
04

a b
ab

b a

Q r r V
r rπ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠P

. 

EXECUTE: 2 2 2

[0.125 m][0.148 m] 120 V 96.5 V m
0.148 m 0.125 m

a b ab

b a

r r VE
r r r r r

⎛ ⎞ ⋅⎛ ⎞= = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
 

(a) For 0.126 mr = , 36.08 10  V/mE = × . 2 4 31
02 1.64 10  J/mu E −= = ×P . 

(b) For 0.147 mr = , 34.47 10  V/mE = × . 2 5 31
02 8.85 10  J/mu E −= = ×P . 

EVALUATE: (c) No, the results of parts (a) and (b) show that the energy density is not uniform in the region between 
the plates. E decreases as r increases, so u decreases also. 

24.37. IDENTIFY: Use the rules for series and for parallel capacitors to express the voltage for each capacitor in terms of 
the applied voltage. Express U, Q, and E in terms of the capacitor voltage. 
SET UP: Le the applied voltage be V. Let each capacitor have capacitance C. 21

2U CV=  for a single capacitor with 
voltage V. 
EXECUTE: (a) series 
Voltage across each capacitor is /2.V  The total energy stored is ( )2 21 1

s 2 42 [ /2]U C V CV= =  

parallel 
Voltage across each capacitor is V. The total energy stored is ( )2 21

p 22U CV CV= =  

p s4U U=  

(b) Q CV=  for a single capacitor with voltage V. ( )s p p s2 [ /2] ;  2( ) 2 ;  Q 2Q C V CV Q CV CV Q= = = = =  

(c) /E V d=  for a capacitor with voltage V. s p p s/2 ;  / ;  2E V d E V d E E= = =  
EVALUATE: The parallel combination stores more energy and more charge since the voltage for each capacitor is 
larger for parallel. More energy stored and larger voltage for parallel means larger electric field in the parallel case. 

24.38.  IDENTIFY: V Ed= and /C Q V= . With the dielectric present, 0C KC= . 
SET UP: V Ed= holds both with and without the dielectric. 
EXECUTE: (a) 4 3(3.00 10  V/m)(1.50 10  m) 45.0 VV Ed −= = × × = . 

12 10
0 (5.00 10  F)(45.0 V) 2.25 10  CQ C V − −= = × = × . 

(b) With the dielectric, 0 (2.70)(5.00 pF) 13.5 pFC KC= = = . V is still 45.0 V, so 
12 10(13.5 10  F)(45.0 V) 6.08 10  CQ CV − −= = × = × . 

EVALUATE: The presence of the dielectric increases the amount of charge that can be stored for a given potential 
difference and electric field between the plates. Q increases by a factor of K. 
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24.39. IDENTIFY and SET UP: Q is constant so we can apply Eq.(24.14). The charge density on each surface of the 
dielectric is given by Eq.(24.16). 

EXECUTE: 
5

0 0
5

3.20 10  V/m so 1.28
2.50 10  V/m

E EE K
K E

×
= = = =

×
 

(a) (1 1/ )i Kσ σ= −  
12 2 2 5 6 2

0 0 (8.854 10  C /N m )(3.20 10  N/C) 2.833 10  C/mEσ − −= = × ⋅ × = ×P  
6 2 7 2(2.833 10  C/m )(1 1/1.28) 6.20 10  C/miσ

− −= × − = ×  
(b) As calculated above, 1.28.K =  
EVALUATE: The surface charges on the dielectric produce an electric field that partially cancels the electric field 
produced by the charges on the capacitor plates. 

24.40. IDENTIFY: Capacitance depends on geometry, and the introduction of a dielectric increases the capacitance. 
SET UP: For a parallel-plate capacitor, 0 / .C K A d= P  
EXECUTE: (a) Solving for d gives 

12 2 2
30

9

(3.0)(8.85 10  C /N m )(0.22 m)(0.28 m) 1.64 10   m = 1.64  mm
1.0 10   F

K Ad
C

−
−

−

× ⋅
= = = ×

×
P . 

Dividing this result by the thickness of a sheet of paper gives 1.64  mm 8  sheets
0.20  mm/sheet

≈ . 

(b) Solving for the area of the plates gives
9

2
12 2 2

0

(1.0 10   F)(0.012  m) 0.45  m
(3.0)(8.85 10   C /N m )

CdA
K

−

−

×
= = =

× ⋅P
. 

(c) Teflon has a smaller dielectric constant (2.1) than the posterboard, so she will need more area to achieve the same 
capacitance. 
EVALUATE: The use of dielectric makes it possible to construct reasonable-sized capacitors since the dielectric 
increases the capacitance by a factor of K. 

24.41. IDENTIFY and SET UP: For a parallel-plate capacitor with a dielectric we can use the equation 0 / .C K A d= P  

Minimum A means smallest possible d. d is limited by the requirement that E be less than 71.60 10  V/m×  when V is 
as large as 5500 V. 

EXECUTE: 4
7

5500 V so 3.44 10  m
1.60 10  V/m

VV Ed d
E

−= = = = ×
×

 

Then 
9 4

2
12 2 2

0

(1.25 10  F)(3.44 10  m) 0.0135 m .
(3.60)(8.854 10  C / N m )

CdA
K

− −

−

× ×
= = =

× ⋅P
 

EVALUATE: The relation V = Ed applies with or without a dielectric present. A would have to be larger if there were 
no dielectric. 

24.42. IDENTIFY and SET UP: Adapt the derivation of Eq.(24.1) to the situation where a dielectric is present. 
EXECUTE: Placing a dielectric between the plates just results in the replacement of 0 for P P in the derivation of 
Equation (24.20). One can follow exactly the procedure as shown for Equation (24.11). 
EVALUATE: The presence of the dielectric increases the energy density for a given electric field. 

24.43. IDENTIFY: The permittivity P  of a material is related to its dielectric constant by 0K=P P . The maximum voltage is 

related to the maximum possible electric field before dielectric breakdown by max maxV E d= . 0

0

EE
K K

σ
= =

P
, where 

σ is the surface charge density on each plate. The induced surface charge density on the surface of the dielectric is 
given by i (1 1/ )Kσ σ= − . 
SET UP: From Table 24.2, for polystyrene 2.6K = and the dielectric strength (maximum allowed electric field) is 

72 10  V/m× . 
EXECUTE: (a) 11 2 2

0 0(2.6) 2.3 10  C N mK −= = = × ⋅P P P  

(b) 7 3 4
max max (2.0 10 V m)(2.0 10 m) 4.0 10 VV E d −= = × × = ×  

(c) 
0

E
K
σ

=
P

and 11 2 2 7 3 2(2.3 10  C /N m )(2.0 10  V/m) 0.46 10  C/m .Eσ − −= = × ⋅ × = ×P  

3 2 4 2
i

11 (0.46 10  C/m )(1 1/ 2.6) 2.8 10  C/m .
K

σ σ − −⎛ ⎞= − = × − = ×⎜ ⎟
⎝ ⎠

 

EVALUATE: The net surface charge density is 4 2
net i 1.8 10  C/mσ σ σ −= − = ×  and the electric field between the 

plates is net 0/E σ= P . 
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24.44. IDENTIFY: /C Q V= . 0C KC= . V Ed= . 
SET UP: Table 24.1 gives 3.1K = for mylar. 
EXECUTE: (a) 7 6

0 0 0 0( 1) ( 1) (2.1)(2.5 10 F)(12 V) 6.3 10 CQ Q Q K Q K C V − −Δ = − = − = − = × = × . 

(b) i (1 1/ )Kσ σ= −  so 6 6(1 1/ ) (9.3 10  C)(1 1/3.1) 6.3 10  CiQ Q K − −= − = × − = × . 
(c) The addition of the mylar doesn’t affect the electric field since the induced charge cancels the additional charge 
drawn to the plates. 
EVALUATE: /E V d= and V is constant so E doesn't change when the dielectric is inserted. 

24.45. (a) IDENTIFY and SET UP: Since the capacitor remains connected to the power supply the potential difference 
doesn’t change when the dielectric is inserted. Use Eq.(24.9) to calculate V and combine it with Eq.(24.12) to obtain a 
relation between the stored energies and the dielectric constant and use this to calculate K. 

EXECUTE: Before the dielectric is inserted 21
0 02U C V=  so 

( )5
0

9
0

2 1.85 10  J2 10.1 V
360 10  F

UV
C

−

−

×
= = =

×
 

(b) 0/K C C=  
2 21 1

0 0 0 02 2,   so / /U C V U CV C C U U= = =  
5 5

5
0

1.85 10  J 2.32 10  J 2.25
1.85 10  J

UK
U

− −

−

× + ×
= = =

×
 

EVALUATE: K increases the capacitance and then from 21
2 ,U CV=  with V constant an increase in C gives an 

increase in U. 
24.46. IDENTIFY: 0C KC= . /C Q V= . V Ed= . 

SET UP: Since the capacitor remains connected to the battery the potential between the plates of the capacitor 
doesn't change. 
EXECUTE: (a) The capacitance changes by a factor of K when the dielectric is inserted. Since V is unchanged (the 

battery is still connected), after after

before before

45.0 pC 1.80
25.0 pC

C Q K
C Q

= = = = . 

(b) The area of the plates is 2 2 3 2(0.0300 m) 2.827 10 mrπ π −= = ×  and the separation between them is thus 
12 2 2 3 2

30
12

(8.85 10  C N m )(2.827 10  m ) 2.00 10  m
12.5 10  F

Ad
C

− −
−

−

× ⋅ ×
= = = ×

×
P . Before the dielectric is inserted, 0 A QC

d V
= =
P  

and 
12 3

12 2 2 3 2
0

(25.0 10  C)(2.00 10  m) 2.00 V
(8.85 10  C /N m )(2.827 10  m )

QdV
A

− −

− −

× ×
= = =

× ⋅ ×P
. The battery remains connected, so the potential 

difference is unchanged after the dielectric is inserted. 

(c) Before the dielectric is inserted, 
12

12 2 2 3 2
0

25.0 10  C 1000 N/C
(8.85 10  C /N m )(2.827 10  m )

QE
A

−

− −

×
= = =

× ⋅ ×P
 

Again, since the voltage is unchanged after the dielectric is inserted, the electric field is also unchanged. 

EVALUATE: 3

2.00 V 1000 N/C
2.00 10  m

VE
d −= = =

×
, whether or not the dielectric is present. This agrees with the result 

in part (c). The electric field has this value at any point between the plates. We need d to calculate E because V is the 
potential difference between points separated by distance d. 

24.47. IDENTIFY: 0C KC= . 21
2U CV= . 

SET UP: 0 12.5 FC μ=  is the value of the capacitance without the dielectric present. 
EXECUTE: (a) With the dielectric, (3.75)(12.5 F) 46.9 FC μ μ= = . 

before: 2 6 21 1
02 2 (12.5 10  F)(24.0 V) 3.60 mJU C V −= = × =  

after: 2 6 21 1
2 2 (46.9 10  F)(24.0 V) 13.5 mJU CV −= = × =  

(b) 13.5 mJ 3.6 mJ 9.9 mJUΔ = − = . The energy increased. 
EVALUATE: The power supply must put additional charge on the plates to maintain the same potential difference 
when the dielectric is inserted. 1

2U QV= , so the stored energy increases. 
24.48. IDENTIFY: Gauss’s law in dielectrics has the same form as in vacuum except that the electric field is multiplied by a 

factor of K and the charge enclosed by the Gaussian surface is the free charge. The capacitance of an object depends 
on its geometry. 
(a) SET UP: The capacitance of a parallel-plate capacitor is 0 /C K A d= P  and the charge on its plates is Q = CV. 
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EXECUTE: First find the capacitance: 
12 2 2 2

100
3

(2.1)(8.85 10   C /N m )(0.0225  m ) 4.18 10  F
1.00 10   m

K AC
d

−
−

−

× ⋅
= = = ×

×
P . 

Now find the charge on the plates: 10 9(4.18 10  F)(12.0 V) = 5.02 10  CQ CV − −= = × × . 
(b) SET UP: Gauss’s law within the dielectric gives free 0/ .KEA Q= P  
EXECUTE: Solving for E gives 

9
4free

2 12 2 2
0

5.02 10  C 1.20 10  N/C
(2.1)(0.0225 m )(8.85 10  C /N m )

QE
KA

−

−

×
= = = ×

× ⋅P
 

(c) SET UP: Without the Teflon and the voltage source, the charge is unchanged but the potential increases, so  
0 /C A d= P  and Gauss’s law now gives 0/ .EA Q= P  

EXECUTE: First find the capacitance: 
12 2 2 2

100
3

(8.85 10  C /N m )(0.0225 m ) 1.99 10  F.
1.00 10  m

AC
d

−
−

−

× ⋅
= = = ×

×
P  

The potential difference is 
9

10

5.02 10  C 25.2 V.
1.99 10  F

QV
C

−

−

×
= = =

×
 From Gauss’s law, the electric field is 

9
4

12 2 2 2
0

5.02 10  C 2.52 10  N/C.
(8.85 10  C /N m )(0.0225 m )

QE
A

−

−

×
= = = ×

× ⋅P
 

EVALUATE: The dielectric reduces the electric field inside the capacitor because the electric field due to the dipoles 
of the dielectric is opposite to the external field due to the free charge on the plates. 

24.49. IDENTIFY: Apply Eq.(24.23) to calculate E. V = Ed and C = Q/V apply whether there is a dielectric between the 
plates or not. 
(a) SET UP: Apply Eq.(24.23) to the dashed surface in Figure 24.49: 

 

EXECUTE: encl-free

0

QK d⋅ =E Aú P
 

K d KEA′⋅ =E Aú   

since E = 0 outside the plates 
( )encl-free /Q A Q A Aσ ′ ′= =  

Figure 24.49  

Thus ( )
0 0

/
 and 

Q A A QKEA E
AK

′
′ = =

P P
 

(b) 
0

QdV Ed
AK

= =
P

 

(c) 0
0

0

.
( / )

Q Q AC K KC
V Qd AK d

= = = =
P

P
 

EVALUATE: Our result shows that 0/ ,K C C=  which is Eq.(24.12). 

24.50. IDENTIFY: 0 AC
d

=
P . /C Q V= . V Ed= . 21

2U CV= . 

SET UP: With the battery disconnected, Q is constant. When the separation d is doubled, C is halved. 

EXECUTE: (a) 
2

110 0
3

(0.16 m) 4.8 10  F
4.7 10  m

AC
d

−
−= = = ×

×
P P  

(b) 11 9(4.8 10  F)(12 V) 0.58 10  CQ CV − −= = × = ×  
(c) 3/ (12 V) /(4.7 10  m) 2550 V/mE V d −= = × =  
(d) 2 11 2 91 1

2 2 (4.8 10  F)(12 V) 3.46 10  JU CV − −= = × = ×  
(e) If the battery is disconnected, so the charge remains constant, and the plates are pulled further apart to 0.0094 m, then 
the calculations above can be carried out just as before, and we find: (a) 112.41 10  FC −= ×   (b) 90.58 10  CQ −= ×  

(c) 2550 V mE =   (d) 
2 9 2

9
11

(0.58 10 C) 6.91 10 J
2 2(2.41 10 F)
QU
C

−
−

−

×
= = = ×

×
 

EVALUATE: Q is unchanged. 
0

QE
A

=
P

so E is unchanged. U doubles because C is halved. The additional stored 

energy comes from the work done by the force that pulled the plates apart. 
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24.51. IDENTIFY and SET UP: If the capacitor remains connected to the battery, the battery keeps the potential difference 
between the plates constant by changing the charge on the plates. 

EXECUTE: (a) 0 AC
d

=
P  

12 2 2 2
11

3

(8.854 10  C / N m )(0.16 m) 2.4 10  F 24 pF
9.4 10  m

C
−

−
−

× ⋅
= = × =

×
 

(b) Remains connected to the battery says that V stays 12 V. 11 10(2.4 10  F)(12 V) 2.9 10  CQ CV − −= = × = ×  

(c) 3
3

12 V 1.3 10  V/m
9.4 10  m

VE
d −= = = ×

×
 

(d) 10 91 1
2 2 (2.9 10  C)(12.0 V) 1.7 10  JU QV − −= = × = ×  

EVALUATE: Increasing the separation decreases C. With V constant, this means that Q decreases and U decreases. 
Q decreases and 0/E Q A= P  so E decreases. We come to the same conclusion from / .E V d=  

24.52. IDENTIFY: 0 0
AC KC K
d

= = P . V Ed= for a parallel plate capacitor; this equation applies whether or not a dielectric 

is present. 
SET UP: 2 4 21.0 cm 1.0 10  mA −= = × . 

EXECUTE: (a) 
12 4 2

9

(8.85 10  F/m)(1.0 10  m )(10) 1.18 F
7.5 10  m

C μ
− −

−

× ×
= =

×
 per cm2. 

(b) 7
9

85 mV 1.13 10  V/m
7.5 10  m

VE
K −= = = ×

×
. 

EVALUATE: The dielectric material increases the capacitance. If the dielectric were not present, the same charge 
density on the faces of the membrane would produce a larger potential difference across the membrane. 

24.53. IDENTIFY: /P E t= , where E is the total light energy output. The energy stored in the capacitor is 21
2U CV= . 

SET UP: 0.95E U=  
EXECUTE: (a) The power output is 600 W, and 95% of the original energy is converted, so 

5 3(2.70 10  W)(1.48 10  s) 400 JE Pt −= = × × = . 0
400 J 421 J0.95E = = . 

(b) 21
2U CV= so 2 2

2 2(421 J) 0.054 F
(125 V)

UC
V

= = = . 

EVALUATE: For a given V, the stored energy increases linearly with C. 

24.54. IDENTIFY: 0 AC
d

=
P  

SET UP: 5 24.2 10  mA −= × . The original separation between the plates is 30.700 10  md −= × . d ′  is the separation 
between the plates at the new value of C. 

EXECUTE: 
5 2

130 0
0 4

(4.20 10  m ) 5.31 10  F
7.00 10  m

AC
d

−
−

−

×
= = = ×

×
P P . The new value of C is 13

0 0.25 pF 7.81 10 FC C −= + = × . 

But 0AC
d

=
′
P , so 

5 2
40 0

13

(4.20 10  m ) 4.76 10 m
7.81 10  F

Ad
C

−
−

−

×′ = = = ×
×

P P . Therefore the key must be depressed by a distance of 

4 47.00 10 m 4.76 10 m 0.224 mm− −× − × = . 
EVALUATE: When the key is depressed, d decreases and C increases. 

24.55. IDENTIFY: Example 24.4 shows that 02
ln( / )b a

LC
r r
π

=
P for a cylindrical capacitor. 

SET UP: ln(1 )x x+ ≈ when x is small. The area of each conductor is approximately 2 aA r Lπ= . 

EXECUTE: (a) 0 0 0 0 02 2 2 2:  
ln( ) ln(( ) ) ln(1 )

a
a

b a a a a

L L L r L Ad r C
r r d r r d r d d
π π π π

<< = = = ≈ =
+ +

P P P P P  

EVALUATE: (b) At the scale of part (a) the cylinders appear to be flat, and so the capacitance should appear like that 
of flat plates. 

24.56. IDENTIFY: Initially the capacitors are connected in parallel to the source and we can calculate the charges 1Q  and 

2Q on each. After they are reconnected to each other the total charge is 2 1Q Q Q= − . 
2

21
2 2

QU CV
C

= = . 

SET UP: After they are reconnected, the charges add and the voltages are the same, so eq 1 2C C C= + , as for 
capacitors in parallel. 
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EXECUTE: Originally 4
1 1 1 (9.0 F) (28 V) 2.52 10 CQ C V μ −= = = ×  and 4

2 2 2 (4.0 F)(28 V) 1.12 10 CQ C V μ −= = = × . 

eq 1 2 13.0 FC C C μ= + = . The original energy stored is 2 6 2 31 1
eq2 2 (13.0 10 F)(28 V) 5.10 10  JU C V − −= = × = × . 

Disconnect and flip the capacitors, so now the total charge is 4
2 1 1.4 10 CQ Q Q −= − = × and the equivalent capacitance 

is still the same, eq 13.0 FC μ= . The new energy stored is 
2 4 2

4
6

eq

(1.4 10 C) 7.54 10 J
2 2(13.0 10 F)
QU
C

−
−

−

×
= = = ×

×
. The change in 

stored energy is 4 3 37.45 10 J 5.10 10 J 4.35 10 JU − − −Δ = × − × = − × . 
EVALUATE: When they are reconnected, charge flows and thermal energy is generated and energy is radiated as 
electromagnetic waves. 

24.57. IDENTIFY: Simplify the network by replacing series and parallel combinations by their equivalent. The stored 
energy in a capacitor is 21

2U CV= . 

SET UP: For capacitors in series the voltages add and the charges are the same; 
eq 1 2

1 1 1 .
C C C

= + +  For capacitors 

in parallel the voltages are the same and the charges add; eq 1 2C C C= + +
QC
V

= . 21
2U CV= . 

EXECUTE: (a) Find Ceq for the network by replacing each series or parallel combination by its equivalent. The 
successive simplified circuits are shown in Figure 24.57a–c. 

2 6 2 41 1
tot eq2 2 (2.19 10  F)(12.0 V) 1.58 10  J 158 JU C V μ− −= = × = × =  

(b) From Figure 24.57c, 6 5
tot eq (2.19 10  F)(12.0 V) 2.63 10  C.Q C V − −= = × = ×  From Figure 24.57b, 5

tot 2.63 10  C.Q −= ×  
5

4.8
4.8 6

4.8

2.63 10  C 5.48 V
4.80 10  F

QV
C

−

−

×
= = =

×
. 2 6 2 51 1

4.8 2 2 (4.80 10  F)(5.48 V) 7.21 10  J 72.1 JU CV μ− −= = × = × =  

This one capacitor stores nearly half the total stored energy. 

EVALUATE: 
2

2
QU
C

= . For capacitors in series the capacitor with the smallest C stores the greatest amount of 

energy. 

   
Figure 24.57 

24.58. IDENTIFY: Apply the rules for combining capacitors in series and parallel. For capacitors in series the voltages add 
and in parallel the voltages are the same. 
SET UP: When a capacitor is a moderately good conductor it can be replaced by a wire and the potential across it is zero. 
EXECUTE: (a) A network that has the desired properties is sketched in Figure 24.58a. eq 2 2

C CC C= + = . The total 

capacitance is the same as each individual capacitor, and the voltage is spilt over each so that 480V =  V. 
(b) If one capacitor is a moderately good conductor, then it can be treated as a “short” and thus removed from the 
circuit, and one capacitor will have greater than 600 V across it. 
EVALUATE: An alternative solution is two in parallel in series with two in parallel, as sketched in Figure 24.58b. 

  
Figure 24.58 
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24.59. (a) IDENTIFY: Replace series and parallel combinations of capacitors by their equivalents. 
SET UP: The network is sketched in Figure 24.59a. 

 

1 5 8.4 FC C μ= =  

2 3 4 4.2 FC C C μ= = =  

Figure 24.59a  
EXECUTE: Simplify the circuit by replacing the capacitor combinations by their equivalents: 3 4 and C C  are in 
series and can be replaced by 34C  (Figure 24.59b): 

 

34 3 4

1 1 1
C C C

= +  

3 4

34 3 4

1 C C
C C C

+
=  

Figure 24.59b  

( )( )3 4
34

3 4

4.2 F 4.2 F
2.1 F

4.2 F 4.2 F
C CC

C C
μ μ

μ
μ μ

= = =
+ +

 

2 34 and C C  are in parallel and can be replaced by their equivalent (Figure 24.59c): 

 

234 2 34C C C= +  

234 4.2 F 2.1 FC μ μ= +  

234 6.3 FC μ=  

Figure 24.59c  

1 5 234,   and C C C  are in series and can be replaced by eqC  (Figure 24.59d): 

 

eq 1 5 234

1 1 1 1
C C C C

= + +  

eq

1 2 1
8.4 F 6.3 FC μ μ

= +  

eq 2.5 FC μ=  
Figure 24.59d  

EVALUATE: For capacitors in series the equivalent capacitor is smaller than any of those in series. For capacitors in 
parallel the equivalent capacitance is larger than any of those in parallel. 
(b) IDENTIFY and SET UP: In each equivalent network apply the rules for Q and V for capacitors in series and 
parallel; start with the simplest network and work back to the original circuit. 
EXECUTE: The equivalent circuit is drawn in Figure 24.59e. 

 

eq eqQ C V=  

( )( )eq 2.5 F 220 V 550 CQ μ μ= =  

Figure 24.59e  

1 5 234 550 CQ Q Q μ= = =  (capacitors in series have same charge) 

1
1

1

550 C 65 V
8.4 F

QV
C

μ
μ

= = =  

5
5

5

550 C 65 V
8.4 F

QV
C

μ
μ

= = =  

234
234

234

550 C 87 V
6.3 F

QV
C

μ
μ

= = =  
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Now draw the network as in Figure 24.59f. 

 

2 34 234 87 VV V V= = =  
capacitors in parallel have the same potential 

Figure 24.59f  

( )( )2 2 2 4.2 F 87 V 370 CQ C V μ μ= = =  

( )( )34 34 34 2.1 F 87 V 180 CQ C V μ μ= = =  
Finally, consider the original circuit (Figure 24.59g). 

 

3 4 34 180 CQ Q Q μ= = =  
capacitors in series have the same charge 

Figure 24.59g  

3
3

3

180 C 43 V
4.2 F

QV
C

μ
μ

= = =  

4
4

4

180 C 43 V
4.2 F

QV
C

μ
μ

= = =  

Summary: 1 1550 C, 65 VQ Vμ= =  

2 2370 C, 87 VQ Vμ= =  

3 3180 C, 43 VQ Vμ= =  

4 4180 C, 43 VQ Vμ= =  

5 5550 C, 65 VQ Vμ= =  
EVALUATE: 3 4 2 1 2 5 and 220 VV V V V V V+ = + + =  (apart from some small rounding error) 

1 2 3 5 2 4 and Q Q Q Q Q Q= + = +  
24.60. IDENTIFY: Apply the rules for combining capacitors in series and in parallel. 

SET UP: With the switch open each pair of 3.00 Fμ and 6.00 Fμ capacitors are in series with each other and each 
pair is in parallel with the other pair. When the switch is closed each pair of 3.00 Fμ and 6.00 Fμ capacitors are in 
parallel with each other and the two pairs are in series. 

EXECUTE: (a) With the switch open 
1 1

eq
1 1 1 1 4.00 F3 F 6 F 3 F 6 FC μμ μ μ μ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

4
total eq (4.00 F) (210 V) 8.40 10 CQ C V μ −= = = × . By symmetry, each capacitor carries 44.20 10  C.−×  The 

voltages are then calculated via /V Q C= . This gives 3/ 140 VadV Q C= = and 6/ 70 VacV Q C= = . 
70 Vcd ad acV V V= − = . 

(b) When the switch is closed, the points c and d must be at the same potential, so the equivalent capacitance is 
1

eq
1 1 4.5 F

(3.00 6.00) F (3.00 6.00) F
C μ

μ μ

−
⎛ ⎞

= + =⎜ ⎟+ +⎝ ⎠
. 4

total eq (4.50 F)(210 V) 9.5 10 CQ C V μ −= = = × , and each 

capacitor has the same potential difference of 105 V (again, by symmetry). 
(c) The only way for the sum of the positive charge on one plate of 2C and the negative charge on one plate of 

1C  to change is for charge to flow through the switch. That is, the quantity of charge that flows through the 
switch is equal to the change in 2 1Q Q− . With the switch open, 1 2Q Q=  and 2 1 0.Q Q− =  After the switch is 
closed, 2 1 315 CQ Q μ− = , so 315 Cμ of charge flowed through the switch. 
EVALUATE: When the switch is closed the charge must redistribute to make points c and d be at the same 
potential. 
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24.61. (a) IDENTIFY: Replace the three capacitors in series by their equivalent. The charge on the equivalent capacitor 
equals the charge on each of the original capacitors. 
SET UP: The three capacitors can be replaced by their equivalent as shown in Figure 24.61a. 

 
Figure 24.61a 

EXECUTE: 3 1
eq 1 2 3

1 1 1 1 4/ 2 so 
8.4 F

C C
C C C C μ

= = + + =  and eq 8.4 F/4 2.1 FC μ μ= =  

( )( )eq 2.1 F 36 V 76 CQ C V μ μ= = =  

The three capacitors are in series so they each have the same charge: 1 2 3 76 CQ Q Q μ= = =  
EVALUATE: The equivalent capacitance for capacitors in series is smaller than each of the original capacitors. 
(b) IDENTIFY and SET UP: Use 1

2 .U QV=  We know each Q and we know that 1 2 3 36 V.V V V+ + =  
EXECUTE: 1 1 1

1 1 2 2 3 32 2 2U QV Q V Q V= + +  
But 1 2 3Q Q Q Q= = =  so 1

1 2 32 ( )U Q V V V= + +  

But also 31 1
1 2 3 2 236 V, so (76 C)(36 V) 1.4 10  J.V V V V U QV μ −+ + = = = = = ×  

EVALUATE: We could also use 2 / 2U Q C=  and calculate U for each capacitor. 
(c) IDENTIFY: The charges on the plates redistribute to make the potentials across each capacitor the same. 
SET UP: The capacitors before and after they are connected are sketched in Figure 24.61b. 

 
Figure 24.61b 

EXECUTE: The total positive charge that is available to be distributed on the upper plates of the three capacitors is 
( )0 01 02 03 3 76 C 228 C.Q Q Q Q μ μ= + + = =  Thus 1 2 3 228 C.Q Q Q μ+ + =  After the circuit is completed the charge 

distributes to make 1 2 3.V V V= =  1 2 1 1 2 2 1 2 1 2/  and  so / /  and then  says .V Q C V V Q C Q C C C Q Q= = = = =  1 3V V=  says 

( ) ( )1 1 3 3 1 3 1 3 3 3/ /  and / 8.4 F/4.2 F 2Q C Q C Q Q C C Q Qμ μ= = = =  

Using 2 1 1 3 and 2Q Q Q Q= =  in the above equation gives 3 3 32 2 228 C.Q Q Q μ+ + =   

3 3 1 25 228 C and 45.6 C, 91.2 CQ Q Q Qμ μ μ= = = =  

Then 1 2
1 2

1 2

91.2 C 91.2 C11 V, 11 V, and
8.4 F 8.4 F

Q QV V
C C

μ μ
μ μ

= = = = = =  3
3

3

45.6 C 11 V.
4.2 F

QV
C

μ
μ

= = =  

The voltage across each capacitor in the parallel combination is 11 V. 
(d) 1 1 1

1 1 2 2 3 32 2 2 .U QV Q V Q V= + +  

But ( ) ( )( ) 31 1
1 2 3 1 1 2 32 2 so 11 V 228 C 1.3 10  J.V V V U V Q Q Q μ −= = = + + = = ×  

EVALUATE: This is less than the original energy of 31.4 10  J.−×  The stored energy has decreased, as in 
Example 24.7. 

24.62. IDENTIFY: 0 AC
d

=
P . QC

V
= . V Ed= . 1

2U QV= . 

SET UP: 33.0 10  md = × . 2A rπ= , with 31.0 10  mr = × . 

EXECUTE: (a) 
12 2 2 3 2

90
3

(8.854 10  C /N m ) (1.0 10  m) 9.3 10  F
3.0 10  m

AC
d

π−
−× ⋅ ×

= = = ×
×

P . 

(b) 9
9

20 C 2.2 10  V
9.3 10  F

QV
C −= = = ×

×
 

(c) 
9

5
3

2.2 10  V 7.3 10  V/m
3.0 10  m

VE
d

×
= = = ×

×
 

(d) 9 101 1
2 2 (20 C)(2.2 10  V) 2.2 10  JU QV= = × = ×  

EVALUATE: Thunderclouds involve very large potential differences and large amounts of stored energy. 
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24.63. IDENTIFY: Replace series and parallel combinations of capacitors by their equivalents. In each equivalent network 
apply the rules for Q and V for capacitors in series and parallel; start with the simplest network and work back to the 
original circuit. 
(a) SET UP: The network is sketched in Figure 24.63a. 

 

1 6.9 FC μ=  

2 4.6 FC μ=  

Figure 24.63a  
EXECUTE: Simplify the network by replacing the capacitor combinations by their equivalents. Make the 
replacement shown in Figure 24.63b. 

 

eq 1

1 3
C C

=  

1
eq

6.9 F 2.3 F
3 3
CC μ μ= = =  

Figure 24.63b  
Next make the replacement shown in Figure 24.63c. 

 

eq 22.3 FC Cμ= +  

eq 2.3 F 4.6 F 6.9 FC μ μ μ= + =  

Figure 24.63c  
Make the replacement shown in Figure 24.63d. 

 

eq 1

1 2 1 3
6.9 F 6.9 FC C μ μ

= + =  

eq 2.3 FC μ=  

Figure 24.63d  
Make the replacement shown in Figure 24.63e. 

 

eq 2 2.3 F 4.6 F 2.3 FC C μ μ μ= + = +  

eq 6.9 FC μ=  

Figure 24.63e  
Make the replacement shown in Figure 24.63f. 

 

eq 1

1 2 1 3
6.9 F 6.9 FC C μ μ

= + =  

eq 2.3 FC μ=  

Figure 24.63f  
(b) Consider the network as drawn in Figure 24.63g. 

 

From part (a) 2.3 Fμ  is the equivalent 
capacitance of the rest of the network. 

Figure 24.63g  



24-20 Chapter 24 

The equivalent network is shown in Figure 24.63h. 

 

The capacitors are in series, 
so all three capacitors have 
the same Q. 

Figure 24.63h  
But here all three have the same C, so by V = Q/C all three must have the same V. The three voltages must add  
to 420 V, so each capacitor has V = 140 V. The 6.9 Fμ  to the right is the equivalent of 2C  and the 2.3 Fμ   
capacitor in parallel, so 2 140 V.V =  (Capacitors in parallel have the same potential difference.) Hence 

4
1 1 1 (6.9 F)(140 V) 9.7 10  CQ C V μ −= = = ×  and 4

2 2 2 (4.6 F)(140 V) 6.4 10  C.Q C V μ −= = = ×  
(c) From the potentials deduced in part (b) we have the situation shown in Figure 24.63i. 

 

From part (a) 6.9 Fμ  is the 
equivalent capacitance of the 
rest of the network. 

Figure 24.63i  
The three right-most capacitors are in series and therefore have the same charge. But their capacitances are also equal, 
so by V = Q/C they each have the same potential difference. Their potentials must sum to 140 V, so the potential 
across each is 47 V and 47 V.cdV =  
EVALUATE: In each capacitor network the rules for combining V for capacitors in series and parallel are obeyed. 
Note that ,cdV V<  in fact 2(140 V) 2(47 V) .cdV V− − =  

24.64. IDENTIFY: Find the total charge on the capacitor network when it is connected to the battery. This is the amount of 
charge that flows through the signal device when the switch is closed. 
SET UP: For capacitors in parallel, eq 1 2 3C C C C= + + +  
EXECUTE: equiv 1 2 3 60.0 FC C C C μ= + + = . (60.0 F)(120 V) 7200 CQ CV μ μ= = = . 
EVALUATE: More charge is stored by the three capacitors in parallel than would be stored in each capacitor used 
alone. 

24.65. (a) IDENTIFY and SET UP: Q is constant. 0;C KC=  use Eq.(24.1) to relate the dielectric constant K to the ratio of 
the voltages without and with the dielectric. 
EXECUTE: With the dielectric: ( )0/ /V Q C Q KC= =  
without the dielectric: 0 0/V Q C=  

( ) ( )0 / ,  so 45.0 V / 11.5 V 3.91V V K K= = =  
EVALUATE: Our analysis agrees with Eq.(24.13). 
(b) IDENTIFY: The capacitor can be treated as equivalent to two capacitors 1 2and C C  in parallel, one with 
area 2A/3 and air between the plates and one with area A/3 and dielectric between the plates. 
SET UP: The equivalent network is shown in Figure 24.65. 

 
Figure 24.65 

EXECUTE: Let 0 0 /C A d= P  be the capacitance with only air between the plates. 1 0 2 0/3,  2 /3;C KC C C= =  

eq 1 2 0( /3)( 2)C C C C K= + = +  

( )0
eq 0

3 3 345.0 V 22.8 V
2 2 5.91

Q QV V
C C K K

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

EVALUATE: The voltage is reduced by the dielectric. The voltage reduction is less when the dielectric doesn’t 
completely fill the volume between the plates. 
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24.66. IDENTIFY: This situation is analogous to having two capacitors 1C  in series, each with separation 1
2 ( ).d a−  

SET UP: For capacitors in series, 
eq 1 2

1 1 1
C C C

= + . 

EXECUTE: (a) 
1

0 01 1
12 2

1 1

1 1
( ) 2

A AC CC C d a d a

−
⎛ ⎞= + = = =⎜ ⎟ − −⎝ ⎠

P P  

(b) 0 0
0

A A d dC C
d a d d a d a

= = =
− − −
P P  

(c) As 0a → , 0C C→ . The metal slab has no effect if it is very thin. And as a d→ , C →∞ . /V Q C= . V Ey=  is 
the potential difference between two points separated by a distance y parallel to a uniform electric field. When the 
distance is very small, it takes a very large field and hence a large Q on the plates for a given potential difference. 
Since Q CV= this corresponds to a very large C. 

24.67. (a) IDENTIFY: The conductor can be at some potential V, where V = 0 far from the conductor. This potential 
depends on the charge Q on the conductor so we can define C = Q/V where C will not depend on V or Q. 
(b) SET UP: Use the expression for the potential at the surface of the sphere in the analysis in part (a). 
EXECUTE: For any point on a solid conducting sphere 0/ 4  if 0 at .V Q R V rπ= = →∞P  

0
0

4 4Q RC Q R
V Q

π π
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

P P  

(c) ( )( )12 6 4
04 4 8.854 10  F/m 6.38 10  m 7.10 10  F 710 F.C Rπ π μ− −= = × × = × =P  

EVALUATE: The capacitance of the earth is about seven times larger than the largest capacitances in this range. The 
capacitance of the earth is quite small, in view of its large size. 

24.68. IDENTIFY: The electric field energy density is 21
02 EP . For a capacitor 

2

2
QU
C

= . 

SET UP: For a solid conducting sphere of radius R, 0E = for r R< and 2
04

QE
rπ

=
P

for r R> . 

EXECUTE: (a) 21
02:  0.r R u E< = =P  

(b) 
2 2

21 1
0 02 2 2 2 4

0 0

:  .
4 32

Q Qr R u E
r rπ π

⎛ ⎞
> = = =⎜ ⎟

⎝ ⎠
P P

P P
 

(c) 
2 2

2
2

0 0

4
8 8R R

Q dr QU udV r udr
r R

π
π π

∞ ∞

= = = =∫ ∫ ∫P P
. 

(d) This energy is equal to 
2

0

1
2 4

Q
RπP  which is just the energy required to assemble all the charge into a spherical 

distribution. (Note that being aware of double counting gives the factor of 1/2 in front of the familiar potential energy 
formula for a charge Q a distance R from another charge Q.) 

EVALUATE: (e) From Equation (24.9), 
2

2
QU C= . 

2

08
QU Rπ= P  from part (c) , 04C Rπ= P , as in Problem (24.67). 

24.69. IDENTIFY: We model the earth as a spherical capacitor. 

SET UP: The capacitance of the earth is 04 a b

b a

r rC
r r

π=
−

P  and, the charge on it is Q = CV, and its stored energy is 

21
2 .U CV=  

EXECUTE: (a) 
( )( )6 6

2
9 2 2 6 6

6.38 10  m 6.45 10  m1 6.5 10  F
9.00 10  N m /C 6.45 10  m  6.38 10  m

C −
× ×

= = ×
× ⋅ × − ×

 

(b) ( )2 46.54 10  F (350,000 V) = 2.3 10  CQ CV −= = × ×  

(c) ( )2 2 2 91 1
2 2 6.54 10  F (350,000 V) 4.0 10  JU CV −= = × = ×  

EVALUATE: While the capacitance of the earth is larger than ordinary laboratory capacitors, capacitors much larger 
than this, such as 1 F, are readily available. 
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24.70. IDENTIFY: The electric field energy density is 21
02u E= P . 

2

2
QU
C

= . 

SET UP: For this charge distribution, 0E = for ar r< , 
02

E
r

λ
π

=
P

 for a br r r< <  and 0E =  for br r> . 

Example 24.4 shows that 02
ln( / )b a

U
L r r

π
=

P  for a cylindrical capacitor. 

EXECUTE: (a) 
2 2

21 1
0 02 2 2 2

0 02 8
u E

r r
λ λ
π π

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
P P

P P
 

(b) 
2

0

2
4

b

a

r

r

L drU udV L urdr
r

λπ
π

= = =∫ ∫ ∫P  and 
2

0

ln( / )
4 b a

U r r
L

λ
π

=
P

. 

(c) Using Equation (24.9), 
2 2 2

0 0

ln( / ) ln( / )
2 4 4b a b a
Q Q LU r r r r
C L

λ
π π

= = =
P P

. This agrees with the result of part (b). 

EVALUATE: We could have used the results of part (b) and 
2

2
QU
C

=  to calculate /U L and would obtain the same 

result as in Example 24.4. 
24.71. IDENTIFY: / ,C Q V=  so we need to calculate the effect of the dielectrics on the potential difference between the 

plates. 
SET UP: Let the potential of the positive plate be ,aV  the potential of the negative plate be ,cV  and the potential 
midway between the plates where the dielectrics meet be ,bV  as shown in Figure 24.71. 

 

.
a c ac

Q QC
V V V

= =
−

 

.ac ab bcV V V= +  

Figure 24.71  

EXECUTE: The electric field in the absence of any dielectric is 0
0

.QE
A

=
P

 In the first dielectric the electric field is 

reduced to 0
1 1

1 1 0 1 0

 and .
2 2ab

E Q d QdE V E
K K A K A

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠P P

 In the second dielectric the electric field is reduced to 

0
2 2

2 2 0 2 0

 and .
2 2bc

E Q d QdE V E
K K A K A

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠P P

 Thus 
1 0 2 0 0 1 2

1 1 .
2 2 2ac ab bc

Qd Qd QdV V V
K A K A A K K

⎛ ⎞
= + = + = +⎜ ⎟

⎝ ⎠P P P
 

1 2

0 1 2

.
2ac
Qd K KV

A K K
⎛ ⎞+

= ⎜ ⎟
⎝ ⎠P

 This gives 0 1 2 0 1 2

1 2 1 2

2 2 .
ac

Q A K K A K KC Q
V Qd K K d K K

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ + +⎝ ⎠⎝ ⎠ ⎝ ⎠

P P  

EVALUATE: An equivalent way to calculate C is to consider the capacitor to be two in series, one with dielectric 
constant 1K  and the other with dielectric constant 2K  and both with plate separation d/2. (Can imagine inserting a 
thin conducting plate between the dielectric slabs.) 

0 0
1 1 12

/ 2
A AC K K

d d
= =

P P  

0 0
2 2 22

/ 2
A AC K K

d d
= =

P P  

Since they are in series the total capacitance C is given by 1 2 0 1 2

1 2 1 2 1 2

1 1 1 2 so C C A K KC
C C C C C d K K

⎛ ⎞
= + = = ⎜ ⎟+ +⎝ ⎠

P  

24.72. IDENTIFY: This situation is analogous to having two capacitors in parallel, each with an area /2.A  

SET UP: For capacitors in parallel, eq 1 2.C C C= +  For a parallel-plate capacitor with plates of area /2,A  0 ( /2) .AC
d

=
P  

EXECUTE: 0 0 0
eq 1 2 1 2

/ 2 / 2 ( )
2

A A AC C C K K
d d d

= + = + = +
P P P  

EVALUATE: If 1 2K K= , 0
eq

AC K
d

=
P , which is Eq.(24.19). 
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24.73. IDENTIFY and SET UP: Show the transformation from one circuit to the other: 

 
Figure 24.73a 

EXECUTE: (a) Consider the two networks shown in Figure 24.73a. From Circuit 1: 1 3
ac

y

q qV
C
−

= and 2 3
bc

x

q qV
C
+

= . 

3q is derived from :abV  3 1 3 2 3
ab

z y x

q q q q qV
C C C

− −
= = = . This gives 1 2 1 2

3
x y z

x y z y x y x

C C C q q q qq K
C C C C C C C

⎛ ⎞ ⎛ ⎞
= − ≡ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠ ⎝ ⎠

. 

From Circuit 2: 1 1 2
1 2

1 3 1 3 3

1 1 1
ac

q q qV q q
C C C C C

⎛ ⎞+
= + = + +⎜ ⎟

⎝ ⎠
 and 2 1 2

1 2
2 3 3 2 3

1 1 1
bc

q q qV q q
C C C C C

⎛ ⎞+
= + = + +⎜ ⎟

⎝ ⎠
. Setting the 

coefficients of the charges equal to each other in matching potential equations from the two circuits results in three 

independent equations relating the two sets of capacitances. The set of equations are 
1

1 1 1 11
y y xC C KC KC
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

, 

2

1 1 1 11
x y xC C KC KC
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

 and 
3

1 1

y xC KC C
= . From these, subbing in the expression for ,K  we get 

1 ( )x y y z z x xC C C C C C C C= + + , 2 ( )x y y z z x yC C C C C C C C= + + and 3 ( )x y y z z x zC C C C C C C C= + + . 

(b) Using the transformation of part (a) we have the equivalent networks shown in Figure 24.73b: 

 
Figure 24.73b 

1 126 FC μ= , 2 28 FC μ= , 3 42 FC μ= , 4 42 FC μ= , 5 147 FC μ= and 6 32 FC μ= . The total equivalent capacitance 

is 
1

eq
1 1 1 1 1 14.0 F,

72 F 126 F 34.8 F 147 F 72 F
C μ

μ μ μ μ μ

−
⎛ ⎞

= + + + + =⎜ ⎟
⎝ ⎠

 where the 34.8 Fμ comes from 

1 1
1 1 1 134.8 F

42 F 32 F 28 F 42 F
μ

μ μ μ μ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

. 
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(c) The circuit diagram can be redrawn as shown in Figure 25.73c. The overall charge is given by 
4

eq (14.0 F)(36 V) 5.04 10 CQ C V μ −= = = × . And this is also the charge on the 72 Fμ  capacitors, so 
4

72 6

5.04 10 C 7.0 V
72 10 F

V
−

−

×
= =

×
. 

 
Figure 24.73c 

Next we will find the voltage over the numbered capacitors, and their associated voltages. Then those voltages  
will be changed back into voltage of the original capacitors, and then their charges. 

1 5

4
72 5.04 10 CC CQ Q Q −= = = × . 

5

4

6

5.04 10 C 3.43 V
147 10 FCV

−

−

×
= =

×
 and 

1

4

6

5.04 10 C 4.00 V
126 10 FCV

−

−

×
= =

×
. Therefore, 

2 4 3 8
(36.0 7.00 7.00 4.00 3.43) V 14.6 VC C C CV V= = − − − − = . But 

1

eq 2 4
2 4

1 1( ) 16.8 FC C C
C C

μ
−

⎛ ⎞
= + =⎜ ⎟
⎝ ⎠

 and 

1

eq 3 6
3 6

1 1( ) 18.2 FC C C
C C

μ
−

⎛ ⎞
= + =⎜ ⎟
⎝ ⎠

, so 
2 4 2 4 2 4

4
eq( ) 2.45 10 CC C C C C CQ Q V C −= = = ×  and 

3 6 3 6 3 6

4
C eq( ) 2.64 10 CC C C C CQ Q V C −= = = × . Then 2

2
2

8.8 VC
C

Q
V

C
= = , 3

3
3

6.3 VC
C

Q
V

C
= = , 4

4
4

5.8 VC
C

Q
V

C
= =  and 

6

6
6

8.3 VC
C

Q
V

C
= = . 

1 2 18 13 Vac C CV V V V= + = = and 4
18 18 18 2.3 10 CQ C V −= = × . 

1 3 27 10 Vab C CV V V V= + = =  and 

4
27 27 27 2.8 10 CQ C V −= = × . 

4 5 28 9 Vcd C CV V V V= + = = and 4
28 28 28 2.6 10 CQ C V −= = × . 

5 6 21 12 Vbd C CV V V V= + = =   

and 4
21 21 21 2.5 10 CQ C V −= = × . 

3 2 6 2.5 Vbc C CV V V V= − = =  and 5
6 6 6 1.5 10 CQ C V −= = × . 

EVALUATE: Note that 72 18 282 2(7.0 V) 13 V 9 V 36 V,V V V+ + = + + =  as it should. 
24.74. IDENTIFY: The force on one plate is due to the electric field of the other plate. The electrostatic force must be 

balanced by the forces from the springs. 

SET UP: The electric field due to one plate is 
02

E σ
=
P

. The force exerted by a spring compressed a distance 

0z z− from equilibrium is 0( )k z z− . 

EXECUTE: (a) The force between the two parallel plates is
2 2 2 2 2 2

0 0
2 2

0 0 0 0

( )
2 2 2 2 2
q q CV A V AVF qE

A A z A z
σ

= = = = = =
P P

P P P P
. 

(b) When 0,V =  the separation is just 0.z  When 0V ≠ , the total force from the four springs must equal the 

electrostatic force calculated in part (a). 
2

0
4 springs 0 24 ( )

2
AVF k z z
z

= − =
P  and 

2
3 3 0

02 2 0
4
AVz z z

k
− + =

P . 

(c) For 20.300 mA = , 3
0 1.2 10 mz −= × , 25 N/mk = and 120 VV = , so 3 3 2 10 32 (2.4 10 m) 3.82 10 m 0z z− −− × + × = . 

The physical solutions to this equation are 0.537 mmz = and 1.014 mm. 
EVALUATE: (d) Stable equilibrium occurs if a slight displacement from equilibrium yields a force back toward the 
equilibrium point. If one evaluates the forces at small displacements from the equilibrium positions above, the 
1.014 mm separation is seen to be stable, but not the 0.537 mm separation. 
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24.75. IDENTIFY: The system can be considered to be two capacitors in parallel, one with plate area ( )L L x− and air 
between the plates and one with area Lx and dielectric filling the space between the plates. 

SET UP: 0K AC
d

=
P for a parallel-plate capacitor with plate area A. 

EXECUTE: (a) 0 0(( ) ) ( ( 1) )LC L x L xKL L K x
D D

= − + = + −
P P  

(b) 21
2 ( )dU dC V= , where 0

0 ( )LC C dx dxK
D

= + − +
P , with 0

0 ( ( 1) )LC L K x
D

= + −
P . This gives 

2
20 01

2
( 1)( 1)

2
Ldx K V LdU K V dx
D D

−⎛ ⎞= − =⎜ ⎟
⎝ ⎠

P P . 

(c) If the charge is kept constant on the plates, then 0 ( ( 1) )LVQ L K x
D

= + −
P  and 2 21 1

02 2
0

CU CV C V
C

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
. 

2
0 0

0

1 ( 1)
2

C V LU K dx
DC

⎛ ⎞
≈ − −⎜ ⎟

⎝ ⎠

P  and 
2

0
0

( 1)
2

K V LU U U dx
D

−
Δ = − = −

P . 

(d) Since 
2

0( 1)
2

K V LdU Fdx dxD
−

= − = −
P , the force is in the opposite direction to the motion ,dx meaning that the 

slab feels a force pushing it out. 
EVALUATE: (e) When the plates are connected to the battery, the plates plus slab are not an isolated system. In 
addition to the work done on the slab by the charges on the plates, energy is also transferred between the battery and 

the plates. Comparing the results for dU in part (c) to dU Fdx= − gives 
2

0( 1)
2

K V LF
D

−
=

P . 

24.76. IDENTIFY: /C Q V= . Apply Gauss's law and the relation between potential difference and electric field. 

SET UP: Each conductor is an equipotential surface. U L
0

a b
b b

a

r r
r r

V V d d− = ⋅ = ⋅∫ ∫E r E r , so U LE E= , where these 

are the fields between the upper and lower hemispheres. The electric field is the same in the air space as in the 
dielectric. 

EXECUTE: (a) For a normal spherical capacitor with air between the plates, 0 04 a b

b a

r rC r rπ ⎛ ⎞= ⎜ ⎟−⎝ ⎠
P . The capacitor in 

this problem is equivalent to two parallel capacitors, LC  and UC , each with half the plate area of the normal 

capacitor. 0
L 02

2
a b

b a

KC r rC K
r r

π
⎛ ⎞

= = ⎜ ⎟−⎝ ⎠
P and 0

U 02 .
2

a b

b a

C r rC
r r

π
⎛ ⎞

= = ⎜ ⎟−⎝ ⎠
P  U L 02 (1 ) a b

b a

r rC C C K
r r

π
⎛ ⎞

= + = + ⎜ ⎟−⎝ ⎠
P . 

(b) Using a hemispherical Gaussian surface for each respective half, 
2

L
L

0

4
2
r QE

K
π

=
P

, so L
L 2

02
QE
K rπ

=
P

, and 

2
U

U
0

4
2
r QE π

=
P

, so U
U 2

02
QE

rπ
=

P
. But L LQ VC=  and U UQ VC= . Also, L UQ Q Q+ = . Therefore, 0

L U2
VC KQ KQ= =  

and U 1
QQ

K
=

+
, L 1

KQQ
K

=
+

. This gives L 2 2
0 0

1 2
1 2 1 4
KQ QE

K K r K rπ π
= =

+ +P P
and 

U 2 2
0 0

1 2
1 2 1 4

Q QE
K K r K K rπ π

= =
+ +P P

. We do find that U LE E= . 

(c) The free charge density on upper and lower hemispheres are: U
f, U 2 2( )

2 2 (1 )ar
a a

Q Q
r r K

σ
π π

= =
+

 and 

U
f , U 2 2( )

2 2 (1 )br
b b

Q Q
r r K

σ
π π

= =
+

; L
f, L 2 2( )

2 2 (1 )ar
a a

Q KQ
r r K

σ
π π

= =
+

and L
f, L 2 2( ) .

2 2 (1 )br
b b

Q KQ
r r K

σ
π π

= =
+

 

(d) i, f, 2 2

( 1) 1(1 1 )
2 1 1 2a ar r

a a

K Q K K QK
K r K K r

σ σ
π π

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

i, f, 2 2

( 1) 1(1 1 )
2 1 1 2b br r

b b

K Q K K QK
K r K K r

σ σ
π π

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

(e) There is zero bound charge on the flat surface of the dielectric-air interface, or else that would imply a 
circumferential electric field, or that the electric field changed as we went around the sphere. 
EVALUATE: The charge is not equally distributed over the surface of each conductor. There must be more charge on 
the lower half, by a factor of K, because the polarization of the dielectric means more free charge is needed on the 
lower half to produce the same electric field. 
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24.77. IDENTIFY: The object is equivalent to two identical capacitors in parallel, where each has the same area A, plate 
separation d and dielectric with dielectric constant K. 

SET UP: For each capacitor in the parallel combination, 0 AC
d

=
P . 

EXECUTE: (a) The charge distribution on the plates is shown in Figure 24.77. 

(b) 
2

90 0
4

2(4.2) (0.120 m)2 2.38 10  F
4.5 10  m

AC
d

−
−

⎛ ⎞= = = ×⎜ ⎟ ×⎝ ⎠

P P . 

EVALUATE:  If two of the plates are separated by both sheets of paper to form a capacitor, 
9

0 2.38 10  F
2 4

AC
d

−×
= =
P , 

smaller by a factor of 4 compared to the capacitor in the problem. 

 
Figure 24.77 

24.78. IDENTIFY: As in Problem 24.72, the system is equivalent to two capacitors in parallel. One of the capacitors has 
plate separation d, plate area ( )w L h− and air between the plates. The other has the same plate separation d, plate area 
wh and dielectric constant K. 

SET UP: Define effK by eff 0
eq

K AC
d

=
P , where A wL= . For two capacitors in parallel, eq 1 2C C C= + . 

EXECUTE: (a) The capacitors are in parallel, so 0 0 0( ) 1w L h K wh wL Kh hC
d d d L L
− ⎛ ⎞= + = + −⎜ ⎟

⎝ ⎠

P P P . This gives 

eff 1 Kh hK
L L

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

. 

(b) For gasoline, with 1.95 :K =  1
4

full: eff 1.24
4
LK h⎛ ⎞= =⎜ ⎟

⎝ ⎠
; 1

2
full: eff 1.48

2
LK h⎛ ⎞= =⎜ ⎟

⎝ ⎠
; 

3
4

full: eff
3 1.71.
4
LK h⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

(c) For methanol, with 33:K =  1
4

full: eff 9
4
LK h⎛ ⎞= =⎜ ⎟

⎝ ⎠
; 1

2
 full: eff 17

2
LK h⎛ ⎞= =⎜ ⎟

⎝ ⎠
; 3

4
full: eff

3 25.
4
LK h⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

(d) This kind of fuel tank sensor will work best for methanol since it has the greater range of effK  values. 
EVALUATE: When 0h = , eff 1K = . When h L= , effK K= . 
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CURRENT, RESISTANCE, AND ELECTROMOTIVE FORCE 

 25.1. IDENTIFY: /I Q t= . 
SET UP: 1.0 h 3600 s=  
EXECUTE: 4(3.6 A)(3.0)(3600 s) 3.89 10 C.Q It= = = ×  
EVALUATE: Compared to typical charges of objects in electrostatics, this is a huge amount of charge. 

 25.2. IDENTIFY: /I Q t= .  Use dI n q v A=  to calculate the drift velocity d.v  

SET UP: 28 35.8 10  m .n −= ×   191.60 10  Cq −= × . 

EXECUTE: (a) 2420 C 8.75 10 A.80(60 s)
QI t

−= = = ×  

(b) d .I n q v A=   This gives 
2

6
d 28 19 3 2

8.75 10 A 1.78 10 m s.
(5.8 10 )(1.60 10 C)( (1.3 10 m) )

Iv
nqA π

−
−

− −

×
= = = ×

× × ×
 

EVALUATE: dv is smaller than in Example 25.1, because I is smaller in this problem. 
 25.3. IDENTIFY: /I Q t= .  /J I A= .  dJ n q v=  

SET UP: 2( / 4)A Dπ= , with 32.05 10  mD −= × .  The charge of an electron has magnitude 191.60 10  C.e −+ = ×  

EXECUTE: (a) (5.00 A)(1.00 s) 5.00 C.Q It= = =   The number of electrons is 193.12 10 .Q
e
= ×  

(b) 6 2
2 3 2

5.00 A 1.51 10  A/m .
( / 4) ( / 4)(2.05 10  m)

IJ
Dπ π −= = = ×

×
 

(c) 
6 2

4
d 28 3 19

1.51 10  A/m 1.11 10  m/s 0.111 mm/s.
(8.5 10  m )(1.60 10  C)

Jv
n q

−
− −

×
= = = × =

× ×
 

EVALUATE: (a) If I is the same, /J I A=  would decrease and dv would decrease.  The number of electrons 
passing through the light bulb in 1.00 s would not change. 

 25.4. (a) IDENTIFY: By definition, J = I/A and radius is one-half the diameter. 
SET UP: Solve for the current:  I = JA = Jπ(D/2)2 
EXECUTE: I = (1.50 × 106 A/m2)(π)[(0.00102 m)/2]2 = 1.23 A 
EVALUATE: This is a realistic current. 
(b) IDENTIFY: The current density is  J = nqvd 
SET UP: Solve for the drift velocity: vd = J/nq 
EXECUTE: Since most laboratory wire is copper, we use the value of n for copper, giving 

6 2
d (1.50 10  A/m )v = × /[(8.5 × 1028 el/m3)(1.60 × 1910− C) = 1.1 × 410−  m/s = 0.11 mm/s 

EVALUATE: This is a typical drift velocity for ordinary currents and wires. 
 25.5. IDENTIFY and SET UP: Use Eq. (25.3) to calculate the drift speed and then use that to find the time to travel the 

length of the wire. 
EXECUTE: (a) Calculate the drift speed d:v  

( )
6 2

22 3

4.85 A 1.469 10  A/m
1.025 10  m

I IJ
A rπ π −

= = = = ×
×

 

( )( )
6 2

4
d 28 3 19

1.469 10  A/m 1.079 10  m/s
8.5 10 / m 1.602 10  C

Jv
n q

−
−

×
= = = ×

× ×
 

3
4

d

0.710 m 6.58 10  s 110 min.
1.079 10  m/s

Lt
v −= = = × =

×
 

25
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(b) d 2

Iv
r n qπ

=  

2

d

r n q LLt
v I

π
= =  

t is proportional to 2r  and hence to 2d  where 2d r=  is the wire diameter. 

( )
2

3 44.12 mm6.58 10  s 2.66 10  s 440 min.
2.05 mm

t ⎛ ⎞= × = × =⎜ ⎟
⎝ ⎠

 

(c) EVALUATE: The drift speed is proportional to the current density and therefore it is inversely proportional to 
the square of the diameter of the wire. Increasing the diameter by some factor decreases the drift speed by the 
square of that factor. 

 25.6. IDENTIFY: The number of moles of copper atoms is the mass of 31.00 m divided by the atomic mass of copper.  
There are 23

A 6.023 10N = ×  atoms per mole. 

SET UP: The atomic mass of copper is 63.55 g mole, and its density is 38.96 g cm .   Example 25.1 says there are 
288.5 10×  free electrons per 3m . 

EXECUTE: The number of copper atoms in 31.00 m  is 
3 6 3 3 23

28 3(8.96 g cm )(1.00 10 cm m )(6.023 10 atoms mole) 8.49 10 atoms m .
63.55 g mole

× ×
= ×  

EVALUATE: Since there are the same number of free 3electrons m as there are atoms of 3copper m , the number 
of free electrons per copper atom is one. 

 25.7. IDENTIFY and SET UP: Apply Eq. (25.1) to find the charge dQ in time dt. Integrate to find the total charge in the 
whole time interval. 
EXECUTE: (a)  dQ I dt=  

( )( ) ( ) ( ) 8.0 s8.0 s 2 2 2 3

0 0
55 A 0.65 A /s  55 A 0.217 A /sQ t dt t t⎡ ⎤= − = −⎣ ⎦∫  

( )( ) ( )( )3255 A 8.0 s 0.217 A /s 8.0 s 330 CQ = − =  

(b) 330 C  = 41 A
8.0 s

QI
t

= =  

EVALUATE: The current decreases from 55 A to 13.4 A during the interval. The decrease is not linear and the 
average current is not equal to (55A + 13.4 A) / 2. 

 25.8. IDENTIFY: /I Q t= .  Positive charge flowing in one direction is equivalent to negative charge flowing in the 

opposite direction, so the two currents due to Cl−  and +Na are in the same direction and add. 
SET UP: +Na and Cl−  each have magnitude of charge q e= +  

EXECUTE: (a) 16 16 19
total Cl Na( ) (3.92 10 2.68 10 )(1.60 10 C) 0.0106 C.Q n n e −= + = × + × × =   Then 

total 0.0106 C 0.0106A 10.6 mA.
1.00 s

QI
t

= = = =  

(b) Current flows, by convention, in the direction of positive charge. Thus, current flows with Na+  toward the 
negative electrode. 
EVALUATE: The Cl−  ions have negative charge and move in the direction opposite to the conventional current 
direction. 

 25.9. IDENTIFY: The number of moles of silver atoms is the mass of 31.00 m  divided by the atomic mass of silver.  
There are 23

A 6.023 10N = ×  atoms per mole. 

SET UP: For silver, 3 3density 10.5 10  kg/m= ×  and the atomic mass is 3107.868 10  kg/mol.M −= ×  

EXECUTE: Consider 1 3m  of silver.  3(density) 10.5 10 kgm V= = × .    49.734 10 moln m M= = × and the 

number of atoms is 28
A 5.86 10  atomsN nN= = × . If there is one free electron per atom, there are 

28 35.86 10 free electrons m .×  This agrees with the value given in Exercise 25.2. 
EVALUATE: Our result verifies that for silver there is approximately one free electron per atom.  Exercise 25.6 
showed that for copper there is also one free electron per atom. 

25.10. (a) IDENTIFY: Start with the definition of resisitivity and solve for E.  
SET UP: E = ρJ  = ρI/πr2 
EXECUTE: E = (1.72 × 810−  Ω ⋅ m)(2.75 A)/[π(0.001025 m)2] = 1.43 × 210−  V/m 



Current, Resistance, and Electromotive Force  25-3 

EVALUATE: The field is quite weak, since the potential would drop only a volt in 70 m of wire. 
(b) IDENTIFY: Take the ratio of the field in silver to the field in copper. 
SET UP: Take the ratio and solve for the field in silver: ES = EC(ρS/ρC)  
EXECUTE: ES = (0.0143 V/m)[(1.47)/(1.72)] = 1.22 × 210−  V/m 
EVALUATE: Since silver is a better conductor than copper, the field in silver is smaller than the field in copper. 

25.11. IDENTIFY: First use Ohm’s law to find the resistance at 20.0°C; then calculate the resistivity from the resistance. 
Finally use the dependence of resistance on temperature to calculate the temperature coefficient of resistance. 
SET UP: Ohm’s law is R = V/I, R = ρL/A, R = R0[1 + α(T – T0)], and the radius is one-half the diameter. 
EXECUTE: (a) At 20.0°C, R = V/I = (15.0 V)/(18.5 A) = 0.811 Ω. Using R = ρL/A and solving for ρ gives ρ = 
RA/L = Rπ(D/2)2/L = (0.811 Ω)π[(0.00500 m)/2]2/(1.50 m) = 1.06 × 610−  Ω ⋅ m. 
(b) At 92.0°C, R = V/I = (15.0 V)/(17.2 A) = 0.872 Ω. Using R = R0[1 + α(T – T0)] with T0 taken as 20.0°C, we 
have 0.872 Ω = (0.811 Ω)[1 + α (92.0°C – 20.0°C)]. This gives α = 0.00105 1(C )−°  
EVALUATE: The results are typical of ordinary metals. 

25.12. IDENTIFY: E Jρ= , where /J I A= .  The drift velocity is given by d .I n q v A=  

SET UP: For copper, 81.72 10  mρ −= × Ω⋅ .  28 38.5 10 / m .n = ×  

EXECUTE: (a) 5 2
3 2

3.6 A 6.81 10 A/m .
(2.3 10 m)

IJ A −= = = ×
×

 

(b) 8 5 2(1.72 10 m)(6.81 10 A/m ) 0.012 V m.E Jρ −= = × Ω⋅ × =  
(c) The time to travel the wire’s length l is 

28 3 19 3 2
4

d

(4.0 m)(8.5 10 m )(1.6 10 C)(2.3 10 m) 8.0 10 s.
3.6 A

ln q Alt
v I

− −× × ×
= = = = ×  

1333 min 22 hrs!t = ≈  
EVALUATE: The currents propagate very quickly along the wire but the individual electrons travel very slowly. 

25.13. IDENTIFY: E Jρ= , where / .J I A=  

SET UP: For tungsten 85.25 10  mρ −= × Ω⋅ and for aluminum 82.75 10  m.ρ −= × Ω⋅  

EXECUTE: (a) tungsten: 
8

3
3 2

(5.25 10  m)(0.820 A) 5.16 10 V m.
( 4)(3.26 10 m)

IE J
A
ρρ

π

−
−

−

× Ω⋅
= = = = ×

×
 

(b) aluminum: 
8

3
3 2

(2.75 10  m)(0.820 A) 2.70 10 V m.
( 4)(3.26 10 m)

IE J
A
ρρ

π

−
−

−

× Ω⋅
= = = = ×

×
 

EVALUATE: A larger electric field is required for tungsten, because it has a larger resistivity. 
25.14. IDENTIFY: The resistivity of the wire should identify what the material is. 

SET UP: R = ρL/A and the radius of the wire is half its diameter. 
EXECUTE: Solve for ρ and substitute the numerical values. 

( )2
2 [0.00205 m]/2 (0.0290 )

/ ( / 2) /
6.50 m

AR L D R L
π

ρ π
Ω

= = =  = 1.47 × 810−  Ω m⋅  

EVALUATE: This result is the same as the resistivity of silver, which implies that the material is silver. 
25.15. (a) IDENTIFY: Start with the definition of resistivity and use its dependence on temperature to find the electric 

field. 

SET UP: 20 0 2[1 ( )] IE J T T
r

ρ ρ α
π

= = + −  

EXECUTE: E = (5.25 × 810−  Ω ⋅ m)[1 + (0.0045/ C° )(120°C – 20°C)](12.5 A)/[π(0.000500 m)2]  = 1.21 V/m. 
(Note that the resistivity at 120°C turns out to be 7.61 × 810−  Ω ⋅ m.) 
EVALUATE: This result is fairly large because tungsten has a larger resisitivity than copper. 
(b) IDENTIFY: Relate resistance and resistivity. 
SET UP: R = ρL/A = ρL/πr2  
EXECUTE: R = (7.61 × 810−  Ω ⋅ m)(0.150 m)/[π(0.000500 m)2] = 0.0145 Ω 
EVALUATE: Most metals have very low resistance. 
(c) IDENTIFY: The potential difference is proportional to the length of wire. 
SET UP: V = EL 
EXECUTE: V = (1.21 V/m)(0.150 m) = 0.182 V 
EVALUATE: We could also calculate (12.5 A)(0.0145 ) 0.181 VV IR= = Ω = , in agreement with part (c). 
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25.16. IDENTIFY: Apply LR
A
ρ

=  and solve for L. 

SET UP: 2 / 4A Dπ= , where 0.462 mmD = . 

EXECUTE: 
3 2

8

(1.00 )( 4)(0.462 10 m) 9.75 m.
1.72 10 m

RAL π
ρ

−

−

Ω ×
= = =

× Ω⋅
 

EVALUATE: The resistance is proportional to the length of the wire. 

25.17. IDENTIFY: .LR
A
ρ

=  

SET UP: For copper, 81.72 10  mρ −= × Ω⋅ .  2.A rπ=  

EXECUTE: 
8

3 2

(1.72 10  m)(24.0 m) 0.125 
(1.025 10  m)

R
π

−

−

× Ω⋅
= = Ω

×
 

EVALUATE: The resistance is proportional to the length of the piece of wire. 

25.18. IDENTIFY: 2 .
/ 4

L LR
A d
ρ ρ

π
= =  

SET UP: For aluminum, 8
al 2.63 10  mρ −= × Ω⋅ .  For copper, 8

c 1.72 10  m.ρ −= × Ω⋅  

EXECUTE: 2  constant
4
R

d L
ρ π

= = , so al c
2 2
al cd d
ρ ρ

= .  
8

c
c al 8

al

1.72 10  m(3.26 mm) 2.64 mm.
2.63 10  m

d d ρ
ρ

−

−

× Ω⋅
= = =

× Ω⋅
 

EVALUATE: Copper has a smaller resistivity, so the copper wire has a smaller diameter in order to have the same 
resistance as the aluminum wire. 

25.19. IDENTIFY and SET UP: Use Eq. (25.10) to calculate A. Find the volume of the wire and use the density to 
calculate the mass. 
EXECUTE: Find the volume of one of the wires: 

 so  andL LR A
A R
ρ ρ

= =  

volume
( )( )282

6 3
1.72 10  m 3.50 m

1.686 10  m
0.125 

LAL
R
ρ −

−
× Ω ⋅

= = = = ×
Ω

 

( ) ( )( )3 3 6 3density 8.9 10  kg/m 1.686 10  m 15 gm V −= = × × =  

EVALUATE: The mass we calculated is reasonable for a wire. 

25.20. IDENTIFY: .LR
A
ρ

=  

SET UP: The length of the wire in the spring is the circumference dπ of each coil times the number of coils. 
EXECUTE: 2(75) (75) (3.50 10  m) 8.25 m.L dπ π −= = × =   

2 2 3 2 6 2/ 4 (3.25 10  m) / 4 8.30 10  m .A r dπ π π − −= = = × = ×  
6 2

6(1.74 )(8.30 10  m ) 1.75 10  m.
8.25 m

RA
L

ρ
−

−Ω ×
= = = × Ω⋅  

EVALUATE: The value of ρ we calculated is about a factor of 100 times larger than ρ for copper.  The metal of 
the spring is not a very good conductor. 

25.21. IDENTIFY: .LR
A
ρ

=  

SET UP: 1.80 m,L =  the length of one side of the cube.  2.A L=  

EXECUTE: 
8

8
2

2.75 10  m 1.53 10  
1.80 m

L LR
A L L
ρ ρ ρ −

−× Ω⋅
= = = = = × Ω  

EVALUATE: The resistance is very small because A is very much larger than the typical value for a wire. 
25.22. IDENTIFY: Apply 0 0(1 ( )).TR R T Tα= + −  

SET UP: Since V IR= and V is the same, 20

20

T

T

R I
R I

= .  For tungsten, 3 14.5 10  (C ) .α − −= × °  
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EXECUTE: The ratio of the current at 20 C°  to that at the higher temperature is (0.860 A) (0.220 A) 3.909.=   

0
20

1 ( ) 3.909TR T T
R

α= + − = , where 0 20 C.T = °  

20
0 3 1

/ 1 3.909 120 C 666 C.
4.5 10  (C )

TR RT T
α − −

− −
= + = ° + = °

× °
 

EVALUATE: As the temperature increases, the resistance increases and for constant applied voltage the current 
decreases.  The resistance increases by nearly a factor of four. 

25.23. IDENTIFY: Relate resistance to resistivity. 
SET UP: R = ρL/A 
EXECUTE: (a) R = ρL/A = (0.60 Ω ⋅ m)(0.25 m)/(0.12 m)2 = 10.4 Ω 
(b) R = ρL/A = (0.60 Ω ⋅ m)(0.12 m)/(0.12 m)(0.25 m) = 2.4 Ω 
EVALUATE: The resistance is greater for the faces that are farther apart. 

25.24. IDENTIFY: Apply LR
A
ρ

= and V IR= . 

SET UP: 2A rπ=  

EXECUTE: 
4 2

7(4.50 V) (6.54 10 m) 1.37 10 m.
(17.6 A)(2.50 m)

RA VA
L IL

πρ
−

−×
= = = = × Ω⋅  

EVALUATE: Our result for ρ shows that the wire is made of a metal with resistivity greater than that of good 
metallic conductors such as copper and aluminum. 

25.25. IDENTIFY and SET UP: Eq. (25.5) relates the electric field that is given to the current density. V = EL  gives the 
potential difference across a length L  of wire and Eq. (25.11) allows us to calculate R. 
EXECUTE: (a) Eq. (25.5):  /  so /E J J Eρ ρ= =  

From Table 25.1 the resistivity for gold is 82.44 10  m.−× Ω ⋅  
7 2

8

0.49 V/m 2.008 10  A/m
2.44 10  m

EJ
ρ −= = = ×

× Ω ⋅
 

( ) ( )22 7 2 32.008 10  A/m 0.41 10  m 11 AI JA J rπ π −= = = × × =  

(b) ( )( )0.49 V/m 6.4 m 3.1 VV EL= = =  
(c) We can use Ohm’s law (Eq. (25.11)):  .V IR=  

3.1 V 0.28 
11 A

VR
I

= = = Ω  

EVALUATE: We can also calculate R from the resistivity and the dimensions of the wire (Eq. 25.10): 
( )( )

( )

8

22 3

2.44 10  m 6.4 m
0.28 ,

0.42 10  m

L LR
A r
ρ ρ

π π

−

−

× Ω ⋅
= = = = Ω

×
 which checks. 

25.26. IDENTIFY and SET UP: Use V = EL to calculate E and then /E Jρ =  to calculate .ρ  

EXECUTE: (a) 0.938 V 1.25 V/m
0.750 m

VE
L

= = =  

(b) 8
7 2

1.25 V/m so 2.84 10  m
4.40 10  A/m

EE J
J

ρ ρ −= = = = × Ω⋅
×

 

EVALUATE: This value of ρ  is similar to that for the good metallic conductors in Table 25.1. 

25.27. IDENTIFY: Apply ( )0 01R R T Tα= + −⎡ ⎤⎣ ⎦  to calculate the resistance at the second temperature. 

(a) SET UP: ( ) 10.0004 Cα −= °  (Table 25.1). Let 0 be 0.0 C and  be 11.5 C.T T° °  

EXECUTE: 
( ) ( ) ( )( )0 1

0

100.0 99.54 
1 1+ 0.0004 C 11.5 C

RR
T Tα −

Ω
= = = Ω

+ − ° °
 

(b) SET UP: ( ) 10.0005 Cα −= − °  (Table 25.2). Let 0 0.0 C and 25.8 C.T T= ° = °  

EXECUTE: ( ) ( )( )( )1
0 01 0.0160 1+ 0.0005 C 25.8 C 0.0158 R R T Tα −⎡ ⎤= + − = Ω − ° ° = Ω⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

 

EVALUATE: Nichrome, like most metallic conductors, has a positive α  and its resistance increases with 
temperature. For carbon, α  is negative and its resistance decreases as T increases. 
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25.28. IDENTIFY: 0 0[1 ( )]TR R T Tα= + −  

SET UP: 0 217.3 R = Ω .  215.8 TR = Ω .  For carbon, 10.00050 (C ) .α −= − °  

EXECUTE: 0
0 1

( / ) 1 (215.8 / 217.3 ) 1 13.8 C
0.00050 (C )

TR RT T
α −

− Ω Ω −
− = = =

−
°

°
.  13.8 C 4.0 C 17.8 C.T = + =° ° °  

EVALUATE: For carbon, α is negative so R decreases as T increases. 

25.29. IDENTIFY and SET UP: Apply LR
A
ρ

= to determine the effect of increasing A and L. 

EXECUTE: (a) If 120 strands of wire are placed side by side, we are effectively increasing the area of the current 
carrier by 120. So the resistance is smaller by that factor: 6 8(5.60 10 ) /120 4.67 10 .R − −= × Ω = × Ω  
(b) If 120 strands of wire are placed end to end, we are effectively increasing the length of the wire by 120, and so 

6 4(5.60 10 )120 6.72 10 .R − −= × Ω = × Ω  
EVALUATE: Placing the strands side by side decreases the resistance and placing them end to end increases the 
resistance. 

25.30. IDENTIFY: When the ohmmeter is connected between the opposite faces, the current flows along its length, but 
when the meter is connected between the inner and outer surfaces, the current flows radially outward. 
(a) SET UP: For a hollow cylinder, R = ρL/A, where A = π(b2 – a2). 

EXECUTE: ( )
( )8

2 22 2

2.75 10  m (2.50 m)
/

(0.0460 m) (0.0320 m)
LR L A

b a
ρρ

ππ

−× Ω ⋅
= = =

⎡ ⎤−− ⎣ ⎦
 = 2.00 × 510−  Ω 

(b) SET UP: For radial current flow from r = a to r = b,  R = (ρ/2πL) ln(b/a) (Example 25.4) 

EXECUTE: 
82.75 10  m 4.60 cmln( / ) ln

2 2 (2.50 m) 3.20 cm
R b a

L
ρ
π π

−× Ω ⋅ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 = 6.35 × 1010−  Ω 

EVALUATE: The resistance is much smaller for the radial flow because the current flows through a much smaller 
distance and the area through which it flows is much larger. 

25.31. IDENTIFY: Use LR
A
ρ

=  to calculate R and then apply V IR= .  P VI=  and energy Pt=  

SET UP: For copper, 81.72 10  mρ −= × Ω⋅ .  2A rπ= , where 0.050 m.r =  

EXECUTE: (a) 
8 3

2

(1.72 10 m)(100 10 m) 0.219 
(0.050 m)

LR
A
ρ

π

−× Ω ⋅ ×
= = = Ω . (125 A)(0.219 ) 27.4 V.V IR= = Ω =  

(b) (27.4 V)(125 A) 3422 W 3422 J/sP VI= = = = and 7energy (3422 J/s)(3600 s) 1.23 10 J.Pt= = = ×  
EVALUATE: The rate of electrical energy loss in the cable is large, over 3 kW. 

25.32. IDENTIFY: When current passes through a battery in the direction from the −  terminal toward the + terminal, the 
terminal voltage abV of the battery is abV Ir= −E .  Also, ,abV IR=  the potential across the circuit resistor. 
SET UP: 24.0 V=E .  4.00 A.I =  

EXECUTE: (a) abV Ir= −E  gives 24.0 V 21.2 V 0.700 .
4.00 A

abVr
I
− −

= = = Ω
E  

(b) 0abV IR− = so 21.2 V 5.30 .
4.00 A

abVR
I

= = = Ω  

EVALUATE: The voltage drop across the internal resistance of the battery causes the terminal voltage of the 

battery to be less than its emf.  The total resistance in the circuit is 6.00 R r+ = Ω .  24.0 V 4.00 A,
6.00 

I = =
Ω

 which 

agrees with the value specified in the problem. 
25.33. IDENTIFY: V Ir= −E . 

SET UP: The graph gives 9.0 VV = when 0I = and 2.0 AI = when 0.V =  
EXECUTE: (a) E  is equal to the terminal voltage when the current is zero. From the graph, this is 9.0 V. 
(b) When the terminal voltage is zero, the potential drop across the internal resistance is just equal in magnitude to 
the internal emf, so rI = E , which gives r = E /I = (9.0 V)/(2.0 A) = 4.5 Ω. 
EVALUATE: The terminal voltage decreases as the current through the battery increases. 

25.34. (a) IDENTIFY: The idealized ammeter has no resistance so there is no potential drop across it. Therefore it acts 
like a short circuit across the terminals of the battery and removes the 4.00-Ω resistor from the circuit. Thus the 
only resistance in the circuit is the 2.00-Ω internal resistance of the battery. 
SET UP: Use Ohm’s law:  I = E /r. 
EXECUTE: I = (10.0 V)/(2.00 Ω) = 5.00 A. 
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(b) The zero-resistance ammeter is in parallel with the 4.00-Ω resistor, so all the current goes through the ammeter. 
If no current goes through the 4.00-Ω resistor, the potential drop across it must be zero. 
(c) The terminal voltage is zero since there is no potential drop across the ammeter. 
EVALUATE: An ammeter should never be connected this way because it would seriously alter the circuit! 

25.35. IDENTIFY: The terminal voltage of the battery is .abV Ir= −E   The voltmeter reads the potential difference 
between its terminals. 
SET UP: An ideal voltmeter has infinite resistance. 
EXECUTE: (a) Since an ideal voltmeter has infinite resistance, so there would be NO current through the 
2.0 resistor.Ω  
(b) 5.0 V;abV = =E  since there is no current there is no voltage lost over the internal resistance. 
(c) The voltmeter reading is therefore 5.0 V since with no current flowing there is no voltage drop across either 
resistor. 
EVALUATE: This not the proper way to connect a voltmeter.  If we wish to measure the terminal voltage of the 
battery in a circuit that does not include the voltmeter, then connect the voltmeter across the terminals of the battery. 

25.36. IDENTIFY: The sum of the potential changes around the circuit loop is zero.  Potential decreases by IR when 
going through a resistor in the direction of the current and increases by E when passing through an emf in the 
direction from the − to + terminal. 
SET UP: The current is counterclockwise, because the 16 V battery determines the direction of current flow. 
EXECUTE: 16.0 V 8.0 V (1.6 5.0 1.4 9.0 ) 0I+ − − Ω+ Ω+ Ω+ Ω =  

16.0 V 8.0 V 0.47 A
1.6 5.0 1.4 9.0

I −
= =

Ω+ Ω+ Ω+ Ω
 

(b) 16.0 V (1.6 )b aV I V+ − Ω = , so 16.0 V (1.6 )(0.47 A) 15.2 V.a b abV V V− = = − Ω =  
(c) 8.0 V (1.4 5.0 )c aV I V+ + Ω+ Ω = so (5.0 )(0.47 A) (1.4 )(0.47 A) 8.0 V 11.0 V.acV = Ω + Ω + =  
(d) The graph is sketched in Figure 25.36. 
EVALUATE: (0.47 A)(9.0 ) 4.2 V.cbV = Ω =   The potential at point b is 15.2 V below the potential at point a and 
the potential at point c is 11.0 V below the potential at point a, so the potential of point c is 
15.2 V 11.0 V 4.2 V− = above the potential of point b. 

 
Figure 25.36 

25.37. IDENTIFY: The voltmeter reads the potential difference abV  between the terminals of the battery. 
SET UP: open circuit 0.I =  The circuit is sketched in Figure 25.37a. 

 

EXECUTE: 3.08 VabV = =E  

Figure 25.37a  
SET UP: switch closed The circuit is sketched in Figure 35.37b. 

 

EXECUTE: 
2.97 VabV Ir= − =E  

2.97 Vr
I

−
=
E  

3.08 V 2.97 V 0.067 
1.65 A

r −
= = Ω  

Figure 25.37b  

And 2.97 V so 1.80 .
1.65 A

ab
ab

VV IR R
I

= = = = Ω  

EVALUATE: When current flows through the battery there is a voltage drop across its internal resistance and its 
terminal voltage V is less than its emf. 
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25.38. IDENTIFY: The sum of the potential changes around the loop is zero. 
SET UP: The voltmeter reads the IR voltage across the 9.0 Ω  resistor.  The current in the circuit is 
counterclockwise because the 16 V battery determines the direction of the current flow. 
EXECUTE: (a) 1.9 VbcV = gives 1.9 V 9.0 0.21 A.bc bcI V R= = Ω =  

(b) 16.0 V 8.0 V (1.6 9.0 1.4 )(0.21 A)R− = Ω+ Ω+ Ω+  and 5.48 V 26.1 .
0.21 A

R = = Ω  

(c) The graph is sketched in Figure 25.38. 
EVALUATE: In Exercise 25.36 the current is 0.47 A.  When the 5.0 Ω  resistor is replaced by the 26.1 Ω  resistor 
the current decreases to 0.21 A. 

 
Figure 25.38 

25.39. (a) IDENTIFY and SET UP: Assume that the current is clockwise. The circuit is sketched in Figure 25.39a. 

 
Figure 25.39a 

Add up the potential rises and drops as travel clockwise around the circuit. 
EXECUTE: ( ) ( ) ( ) ( )16.0 V 1.6 9.0 8.0 V 1.4 5.0 0I I I I− Ω − Ω + − Ω − Ω =  

16.0 V 8.0 V 24.0 V 1.41 A,
9.0 1.4 5.0 1.6 17.0 

I +
= = =

Ω+ Ω+ Ω+ Ω Ω
 clockwise 

EVALUATE: The 16.0 V battery drives the current clockwise more strongly than the 8.0 V battery does in the 
opposite direction. 
(b) IDENTIFY and SET UP: Start at point a and travel through the battery to point b, keeping track of the potential 
changes. At point b the potential is .bV  
EXECUTE: ( )16.0 V 1.6 a bV I V+ − Ω =  

( )( )16.0 V 1.41 A 1.6 a bV V− = − + Ω  

16.0 V 2.3 V 13.7 VabV = − + = −  (point a is at lower potential; it is the negative terminal) 
EVALUATE: Could also go counterclockwise from a to  b: 

( )( ) ( )( ) ( )( )1.41 A 5.0 1.41 A 1.4 8.0 V 1.41 A 9.0 a bV V+ Ω + Ω − + Ω =  

13.7 V,abV = −  which checks. 
(c) IDENTIFY and SET UP: State at point a and travel through the battery to point c, keeping track of the potential 
changes. 
EXECUTE: ( ) ( )16.0 V 1.6 9.0 a cV I I V+ − Ω − Ω =  

( )( )16.0 V 1.41 A 1.6 9.0 a cV V− = − + Ω+ Ω  

16.0 V 15.0 V 1.0 Va cV = − + = −  (point a is at lower potential than point c) 
EVALUATE: Could also go counterclockwise from a to c: 

( )( ) ( )( )1.41 A 5.0 1.41 A 1.4 8.0 Va cV V+ Ω + Ω − =  

1.0 V,acV = −  which checks. 
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(d) Call the potential zero at point a. Travel clockwise around the circuit. The graph is sketched in Figure 25.39b. 

 
Figure 25.39b 

25.40. IDENTIFY: Ohm’s law says abVR
I

= is a constant. 

SET UP: (a) The graph is given in Figure 25.40a. 
EXECUTE: (b) No.  The graph of abV versus I is not a straight line so Thyrite does not obey Ohm’s law. 
(c) The graph of R versus I is given in Figure 25.40b.  R is not constant; it decreases as I increases. 
EVALUATE: Not all materials obey Ohm’s law. 

  
Figure 25.40 

25.41. IDENTIFY: Ohm’s law says abVR
I

= is a constant. 

SET UP: (a) The graph is given in Figure 25.41. 
EXECUTE: (b) The graph of abV versus I is a straight line so Nichrome obeys Ohm’s law. 

(c) R is the slope of the graph in part (a).  15.52 V 1.94 V 3.88 .
4.00 A 0.50 A

R −
= = Ω

−
 

EVALUATE: /abV I for every I gives the same result for R, 3.88 .R = Ω  

 
Figure 25.41 

25.42. IDENTIFY and SET UP: For a resistor, 2 /P VI V R= = and .V IR=  

EXECUTE: (a) 
2 2(15.0 V) 0.688 

327 W
VR
P

= = = Ω  

(b) 15.0 V 21.8 A
0.688 

VI
R

= = =
Ω

 

EVALUATE: We could also write P VI=  to calculate 327 W 21.8 A.
15.0 V

PI
V

= = =  
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25.43. IDENTIFY: The bulbs are each connected across a 120-V potential difference.  
SET UP: Use P = V2/R to solve for R and Ohm’s law (I = V/R) to find the current. 
EXECUTE: (a) R = V2/P = (120 V)2/(100 W) = 144 Ω.  
(b) R = V2/P = (120 V)2/(60 W) = 240 Ω 
(c) For the 100-W bulb:  I = V/R  = (120 V)/(144 Ω) = 0.833 A 
For the 60-W bulb: I = (120 V)/(240 Ω) = 0.500 A 
EVALUATE: The 60-W bulb has more resistance than the 100-W bulb, so it draws less current. 

25.44. IDENTIFY: Across 120 V, a 75-W bulb dissipates 75 W. Use this fact to find its resistance, and then find the 
power the bulb dissipates across 220 V. 
SET UP: P = V2/R, so R = V2/P  
EXECUTE: Across 120 V: R = (120 V)2/(75 W) = 192 Ω. Across a 220-V line, its power will be P = V2/R =  
(220 V)2/(192 Ω) = 252 W. 
EVALUATE: The bulb dissipates much more power across 220 V, so it would likely blow out at the higher 
voltage. An alternative solution to the problem is to take the ratio of the powers. 

2 22
220 220 220

2
120 120 120

/ 220
/ 120

P V R V
P V R V

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

.  This gives
2

220
220(75 W)
120

P ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 = 252 W. 

25.45. IDENTIFY: A “100-W” European bulb dissipates 100 W when used across 220 V. 
(a) SET UP: Take the ratio of the power in the US to the power in Europe, as in the alternative method for 
problem 25.44, using P = V2/R. 

EXECUTE: 
2 22

US US US
2

E E E

/ 120 V .
/ 220 V

P V R V
P V R V

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 This gives 
2

US
120 V(100 W)
220 V

P ⎛ ⎞= ⎜ ⎟
⎝ ⎠

= 29.8 W. 

(b) SET UP: Use P = IV to find the current. 
EXECUTE: I = P/V = (29.8 W)/(120 V) = 0.248 A 
EVALUATE: The bulb draws considerably less power in the U.S., so it would be much dimmer than in Europe. 

25.46. IDENTIFY: P VI= .  Energy .Pt=  
SET UP: (9.0 V)(0.13 A) 1.17 WP = =  
EXECUTE: Energy (1.17 W)(1.5 h)(3600 s/h) 6320 J= =  
EVALUATE: The energy consumed is proportional to the voltage, to the current and to the time. 

25.47. IDENTIFY and SET UP: By definition .Pp
LA

=  Use ,   and P VI E VL I JA= = =  to rewrite this expression in terms 

of the specified variables. 

EXECUTE: (a) E is related to V and J is related to I, so use P = VI. This gives VIp
LA

=  

 and  so V IE J p EJ
L A
= = =  

(b) J is related to I and ρ  is related to R, so use 2.P IR=  This gives 
2

.I Rp
LA

=  
2 2

2
2 and  so L J A LI JA R p J

A LA
ρ ρ ρ= = =  

(c) E is related to V and ρ  is related to R, so use 2 / .P V R=  This gives 
2

.Vp
RLA

=  

2 2 2

 and  so .L E L A EV EL R p
A LA L
ρ

ρ ρ
⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

 

EVALUATE: For a given material ( ρ  constant), p is proportional to 2 2or to .J E  
25.48. IDENTIFY: Calculate the current in the circuit.  The power output of a battery is its terminal voltage times the 

current through it.  The power dissipated in a resistor is 2I R . 
SET UP: The sum of the potential changes around the circuit is zero. 

EXECUTE: (a) 8.0 V 0.47 A
17 

I = =
Ω

.  Then 2 2
9 (0.47 A) (5.0 ) 1.1 WP I RΩ = = Ω = and  

2 2
9 (0.47 A) (9.0 ) 2.0 W.P I RΩ = = Ω =  

(b) 2 2
16V (16 V)(0.47 A) (0.47 A) (1.6 ) 7.2 W.P I I r= − = − Ω =E  

(c) 2 2
8V (8.0 V)(0.47 A) (0.47 A) (1.4 ) 4.1 W.P I Ir= + = + Ω =E  

EVALUATE: (d) (b) (a) (c)= + .  The rate at which the 16.0 V battery delivers electrical energy to the circuit 
equals the rate at which it is consumed in the 8.0 V battery and the 5.0 Ω  and 9.0 Ω  resistors. 
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25.49. (a) IDENTIFY and  SET UP: P VI=  and energy = (power) ×  (time). 
EXECUTE: ( )( )12 V 60 A 720 WP VI= = =  
The battery can provide this for 1.0 h, so the energy the battery has stored is 

( )( ) 6720 W 3600 s 2.6 10  JU Pt= = = ×  

(b) IDENTIFY and SET UP: For gasoline the heat of combustion is 6
c 46 10  J/kg.L = ×  Solve for the mass m 

required to supply the energy calculated in part (a) and use density /m Vρ =  to calculate V. 

EXECUTE: The mass of gasoline that supplies 
6

6
6

2.6 10  J2.6 10  J is 0.0565 kg.
46 10  J/kg

m ×
× = =

×
 

The volume of this mass of gasoline is 
5 3

3 3

0.0565 kg 1000 L6.3 10  m 0.063 L
900 kg/m 1 m

mV
ρ

− ⎛ ⎞= = = × =⎜ ⎟
⎝ ⎠

 

(c) IDENTIFY and SET UP: Energy = (power) ×  (time); the energy is that calculated in part (a). 

EXECUTE: 
62.6 10  J,  5800 s 97 min 1.6 h.

450 W
UU Pt t
P

×
= = = = = =  

EVALUATE: The battery discharges at a rate of 720 W (for 60 A) and is charged at a rate of 450 W, so it takes 
longer to charge than to discharge. 

25.50. IDENTIFY: The rate of conversion of chemical to electrical energy in an emf is IE .  The rate of dissipation of 
electrical energy in a resistor R is 2I R . 
SET UP: Example 25.10 finds that 1.2 AI = for this circuit.  In Example 25.9, 24 WI =E and 2 8 WI r = .  In 
Example 25.10, 2 12 WI R = , or 11.5 W if expressed to three significant figures. 
EXECUTE: (a)  (12 V)(1.2 A) 14.4 WP I= = =E . This is less than the previous value of 24 W. 

(b) The energy dissipated in the battery is 2 2(1.2 A) (2.0 ) 2.9 W.P I r= = Ω =  This is less than 8 W, the amount 
found in Example (25.9). 
(c) The net power output of the battery is 14.4 W 2.9 W 11.5 W− = .  This is the same as the power dissipated in 
the 8.0 Ω  resistor. 
EVALUATE: With the larger circuit resistance the current is less and the power input and power consumption are 
less. 

25.51. IDENTIFY: Some of the power generated by the internal emf of the battery is dissipated across the battery’s 
internal resistance, so it is not available to the bulb. 
SET UP: Use P = I2R and take the ratio of the power dissipated in the internal resistance r to the total power. 

EXECUTE: 
2

2
Total

3.5 0.123 12.3%
( ) 28.5 

rP I r r
P I r R r R

Ω
= = = = =

+ + Ω
 

EVALUATE: About 88% of the power of the battery goes to the bulb. The rest appears as heat in the internal 
resistance. 

25.52. IDENTIFY: The voltmeter reads the terminal voltage of the battery, which is the potential difference across the 
appliance. The terminal voltage is less than 15.0 V because some potential is lost across the internal resistance of 
the battery. 
(a) SET UP: P = V2/R gives the power dissipated by the appliance. 
EXECUTE: P = (11.3 V)2/(75.0 Ω) = 1.70 W 
(b) SET UP: The drop in terminal voltage ( E  – Vab) is due to the potential drop across the internal resistance r. 
Use Ir = E  – Vab to find the internal resistance r, but first find the current using P = IV. 
EXECUTE: I = P/V = (1.70 W)/(11.3 V) = 0.151 A.  Then Ir = E  – Vab  gives  
(0.151 A)r = 15.0 V – 11.3 V and r = 24.6 Ω. 
EVALUATE: The full 15.0 V of the battery would be available only when no current (or a very small current) is 
flowing in the circuit. This would be the base if the appliance had a resistance much greater than 24.6 Ω. 

25.53. IDENTIFY: Solve for the current I in the circuit. Apply Eq. (25.17) to the specified circuit elements to find the 
rates of energy conversion. 
SET UP: The circuit is sketched in Figure 25.53. 

 

EXECUTE: Compute I: 
0Ir IR− − =E  

12.0 V 2.00 A
1.0 5.0 

I
r R

= = =
+ Ω + Ω
E  

Figure 25.53  
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(a) The rate of conversion of chemical energy to electrical energy in the emf of the battery is 
( )( )12.0 V 2.00 A 24.0 W.P I= = =E  

(b) The rate of dissipation of electrical energy in the internal resistance of the battery is 
( ) ( )22 2.00 A 1.0 4.0 W.P I r= = Ω =  

(c) The rate of dissipation of electrical energy in the external resistor ( ) ( )22is 2.00 A 5.0 20.0 W.R P I R= = Ω =  
EVALUATE: The rate of production of electrical energy in the circuit is 24.0 W. The total rate of consumption of 
electrical energy in the circuit is 4.00 W + 20.0 W = 24.0 W. Equal rate of production and consumption of 
electrical energy are required by energy conservation. 

25.54. IDENTIFY: The power delivered to the bulb is 2I R .  Energy Pt= . 
SET UP: The circuit is sketched in Figure 25.54. totalr is the combined internal resistance of both batteries. 
EXECUTE: (a) total 0r = .  The sum of the potential changes around the circuit is zero, so 

1.5 V 1.5 V (17 ) 0I+ − Ω = .  0.1765 AI = .  2 2(0.1765 A) (17 ) 0.530 WP I R= = Ω = .  This is also 
(3.0 V)(0.1765 A) . 
(b) Energy (0.530 W)(5.0 h)(3600 s/h) 9540 J= =  

(c) 0.530 W 0.265 W
2

P = = .  2P I R=  so 0.265 W 0.125 A
17 

PI
R

= = =
Ω

. 

The sum of the potential changes around the circuit is zero, so total1.5 V 1.5 V 0IR Ir+ − − = .  

total
3.0 V (0.125 A)(17 ) 7.0 .

0.125 A
r − Ω

= = Ω  

EVALUATE: When the power to the bulb has decreased to half its initial value, the total internal resistance of the 
two batteries is nearly half the resistance of the bulb.  Compared to a single battery, using two identical batteries in 
series doubles the emf but also doubles the total internal resistance. 

 
Figure 25.54 

25.55. IDENTIFY: 
2

2 VP I R VI
R

= = = .  V IR= . 

SET UP: The heater consumes 540 W when 120 VV = .  Energy .Pt=  

EXECUTE: (a) 
2VP

R
= so 

2 2(120 V) 26.7 
540 W

VR
P

= = = Ω  

(b) P VI= so 540 W 4.50 A
120 V

PI
V

= = =  

(c) Assuming that R remains 26.7 Ω , 
2 2(110 V) 453 W

26.7 
VP
R

= = =
Ω

.  P is smaller by a factor of 2(110/120) .  

EVALUATE: (d) With the lower line voltage the current will decrease and the operating temperature will 
decrease.  R will be less than 26.7 Ω  and the power consumed will be greater than the value calculated in part (c). 

25.56. IDENTIFY: From Eq. (25.24), 2 .m
ne

ρ
τ

=  

SET UP: For silicon, 2300 m.ρ = Ω ⋅  

EXECUTE: (a) 
31

12
2 16 3 19 2

9.11 10 kg 1.55 10 s.
(1.0 10 m )(1.60 10  C) (2300 m)

m
ne

τ
ρ

−
−

− −

×
= = = ×

× × Ω ⋅
 

EVALUATE: (b) The number of free electrons in copper 28 3(8.5 10 m )−×  is much larger than in pure silicon 
16 3(1.0 10 m ).−×   A smaller density of current carriers means a higher resistivity. 

25.57. (a) IDENTIFY and SET UP: Use .LR
A
ρ

=  

EXECUTE: 
( ) ( )23

80.104 1.25 10  m
3.65 10 m

14.0 m
RA
L

π
ρ

−
−

Ω ×
= = = × Ω⋅  
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EVALUATE: This value is similar to that for good metallic conductors in Table 25.1. 
(b) IDENTIFY and SET UP: Use V = EL to calculate E and then Ohm's law gives I. 
EXECUTE: ( )( )1.28 V/m 14.0 m 17.9 VV EL= = =  

17.9 V 172 A
0.104 

VI
R

= = =
Ω

 

EVALUATE: We could do the calculation another way: 
7 2

8

1.28 V/m so 3.51 10  A/m
3.65 10  m

EE J Jρ
ρ −= = = = ×

× Ω⋅
 

( ) ( )27 2 33.51 10  A/m 1.25 10  m 172 A,I JA π −= = × × =  which checks 

(c) IDENTIFY and SET UP: Calculate /  or /J I A J E ρ= =  and then use Eq. (25.3) for the target variable d.v  
EXECUTE: d dJ n q v nev= =  

( )( )
7 2

3
d 28 3 19

3.51 10  A/m 2.58 10  m/s 2.58 mm/s
8.5 10  m 1.602 10  C

Jv
ne

−
− −

×
= = = × =

× ×
 

EVALUATE: Even for this very large current the drift speed is small. 

25.58. IDENTIFY: Use LR
A
ρ

= to calculate the resistance of the silver tube.  Then / .I V R=  

SET UP: For silver, 81.47 10  m.ρ −= × Ω⋅   The silver tube is sketched in Figure 25.58. Since the thickness 
0.100 mmT =  is much smaller than the radius, 2.00 cmr = , the cross section area of the silver is 2 .rTπ   The 

length of the tube is 25.0 m.l =  

EXECUTE: 
2 3

8

(2 ) (12 V)(2 )(2.00 10 m)(0.100 10 m) 410 A
(1.47 10 m)(25.0 m)

V V VA V rTI
R l A l l

π π
ρ ρ ρ

− −

−

× ×
= = = = = =

× Ω⋅
 

EVALUATE: The resistance is small, 0.0292 R = Ω , so 12.0 V produces a large current. 

 
Figure 25.58 

25.59. IDENTIFY and SET UP: With the voltmeter connected across the terminals of the battery there is no current 
through the battery and the voltmeter reading is the battery emf; 12.6 V.=E  
With a wire of resistance R connected to the battery current I flows and 0,Ir IR− − =E  where r is the internal 
resistance of the battery. Apply this equation to each piece of wire to get two equations in the two unknowns. 
EXECUTE: Call the resistance of the 20.0-m piece 1;R  then the resistance of the 40.0-m piece is 2 12 .R R=  

( ) ( )1 1 1 10; 12.6 V 7.00 A 7.00 A 0I r I R r R− − = − − =E  

( ) ( ) ( )( )2 2 1 12 0; 12.6 V 4.20 A 4.20 A 2 0I r I R r R− − = − − =E  

Solving these two equations in two unknowns gives 1 1.20 .R = Ω  This is the resistance of 20.0 m, so the resistance 

of one meter is ( ) ( )1.20 / 20.0 m 1.00 m 0.060 Ω = Ω⎡ ⎤⎣ ⎦  
EVALUATE: We can also solve for r and we get 0.600 .r = Ω  When measuring small resistances, the internal 
resistance of the battery has a large effect. 

25.60. IDENTIFY: Conservation of charge requires that the current is the same in both sections.  The voltage drops 
across each section add, so Cu Ag.R R R= +   The total resistance is the sum of the resistances of each section.  

IE J
A
ρρ= = , so ,IRE

L
=  where R is the resistance of a section and L is its length. 

SET UP: For copper, 8
Cu 1.72 10  mρ −= × Ω⋅ .  For silver, 8

Ag 1.47 10  m.ρ −= × Ω⋅  
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EXECUTE: (a) 
Cu Ag

.V VI
R R R

= =
+

 
8

Cu Cu
Cu 4 2

Cu

(1.72 10 m)(0.8 m) 0.049
( /4)(6.0 10 m)

LR
A

ρ
π

−

−

× Ω⋅
= = = Ω

×
 and 

8
Ag Ag

Ag 4 2
Ag

(1.47 10 m)(1.2 m) 0.062 .
( /4)(6.0 10 m)

L
R

A
ρ

π

−

−

× Ω⋅
= = = Ω

×
  This gives 5.0 V 45 A.

0.049 0.062
I = =

Ω+ Ω
 

The current in the copper wire is 45 A. 
(b) The current in the silver wire is 45 A, the same as that in the copper wire or else charge would build up at their 
interface. 

(c) Cu
Cu Cu

Cu

(45 A)(0.049 ) 2.76 V m.
0.8 m

IRE J
L

ρ Ω
= = = =  

(d) Ag
Ag Ag

Ag

(45 A)(0.062 ) 2.33 V m.
1.2 m

IR
E J

L
ρ Ω

= = = =  

(e) Ag Ag (45 A)(0.062 ) 2.79 V.V IR= = Ω =  

EVALUATE: For the copper section, Cu Cu 2.21 V.V IR= =   Note that Cu Ag 5.0 V,V V+ =  the voltage applied across 
the ends of the composite wire. 

25.61. IDENTIFY: Conservation of charge requires that the current be the same in both sections of the wire.  

.IE J
A
ρρ= =   For each section, .EA LV IR JAR EL

A
ρ

ρ
⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  The voltages across each section add. 

SET UP: 2( / 4) ,A Dπ=  where D is the diameter. 
EXECUTE: (a) The current must be the same in both sections of the wire, so the current in the thin end is 2.5 mA. 

(b) 
8 3

5
1.6mm 3 2

(1.72 10 m)(2.5 10 A) 2.14 10 V/m.
( 4)(1.6 10 m)

IE J
A
ρρ

π

− −
−

−

× Ω⋅ ×
= = = = ×

×
 

(c) 
8 3

5
0.8mm 3 2

(1.72 10 m)(2.5 10 A) 8.55 10 V/m
( 4)(0.80 10 m)

IE J
A
ρρ

π

− −
−

−

× Ω⋅ ×
= = = = ×

×
. This is 1.6mm4 .E  

(d) 5 5 4
1.6mm 1.6 mm 0.8 mm 0.8 mm. (2.14 10  V/m)(1.20 m) (8.55 10  V/m)(1.80 m) 1.80 10  V.V E L E L V − − −= + = × + × = ×  

EVALUATE: The currents are the same but the current density is larger in the thinner section and the electric field 
is larger there. 

25.62. IDENTIFY: .I JA=  
SET UP: From Example 25.1, an 18-gauge wire has 3 28.17 10 cm .A −= ×  

EXECUTE: (a) 5 2 3 2(1.0 10 A/cm )(8.17 10 cm ) 820 AI JA −= = × × =  

(b) 6 2 3 2/ (1000 A) (1.0 10 A/cm ) 1.0 10 cmA I J −= = × = × .  2A rπ= so 
3 2(1.0 10 cm ) 0.0178 cmr A π π−= = × =  and 2 0.36 mmd r= = . 

EVALUATE: These wires can carry very large currents. 
25.63. (a) IDENTIFY: Apply Eq. (25.10) to calculate the resistance of each thin disk and then integrate over the 

truncated cone to find the total resistance. 
SET UP: 

 

EXECUTE: The radius of a 
truncated cone a distance y 
above the bottom is given by 

( )( )2 1 2 2/r r y h r r r yβ= + − = +  

with ( )1 2 /r r hβ = −  
 

Figure 25.63  
Consider a thin slice a distance y above the bottom. The slice has thickness dy and radius r. The resistance of the 
slice is 

( )22
2

dy dy dydR
A r r y
ρ ρ ρ

π π β
= = =

+
 

The total resistance of the cone if obtained by integrating over these thin slices: 

( )
( ) 1

220
2 202

1 1 1
h

h dyR dR r y
r h rr y

ρ ρ ρβ
π π β πβ ββ

− ⎡ ⎤⎡ ⎤
= = = − + = − −⎢ ⎥⎢ ⎥ ++ ⎣ ⎦ ⎣ ⎦
∫ ∫  
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But 2 1r h rβ+ =  

1 2

2 1 1 2 1 2 1 2

1 1 h r r hR
r r r r r r r r

ρ ρ ρ
πβ π π

⎡ ⎤ ⎛ ⎞⎛ ⎞−
= − = =⎜ ⎟⎜ ⎟⎢ ⎥ −⎣ ⎦ ⎝ ⎠⎝ ⎠

 

(b) EVALUATE: Let 1 2 .r r r= =  Then 2 2/ /  where  and .R h r L A A r L hρ π ρ π= = = =  This agrees with  
Eq. (25.10). 

25.64. IDENTIFY: Divide the region into thin spherical shells of radius r and thickness dr.  The total resistance is the 
sum of the resistances of the thin shells and can be obtained by integration. 
SET UP: /I V R=  and 2/ 4J I rπ= , where 24 rπ  is the surface area of a shell of radius r. 

EXECUTE: (a) 2 2

1 1 1 .
4 4 4 4 4

bb

aa

dr dr b adR R
r r r a b ab

ρ ρ ρ ρ ρ
π π π π π

−⎛ ⎞ ⎛ ⎞= ⇒ = = − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  

(b) 4
( )

ab abV V abI
R b a

π
ρ

= =
−

 and 2 2

4 .
( )4 ( )

ab abI V ab V abJ
A b a r b a r

π
ρ π ρ

= = =
− −

 

(c) If the thickness of the shells is small, then 24 4ab aπ π≈  is the surface area of the conducting material.  

2

1 1 ( )
4 4 4

b a L LR
a b ab a A

ρ ρ ρ ρ
π π π

−⎛ ⎞= − = ≈ =⎜ ⎟
⎝ ⎠

, where .L b a= −  

EVALUATE: The current density in the material is proportional to 21/ .r  
25.65. IDENTIFY and SET UP: Use E Jρ=  to calculate the current density between the plates. Let A be the area of each 

plate; then I = JA. 

EXECUTE: 
0 0

 and E QJ E
K KA
σ

ρ
= = =

P P
 

Thus 
0 0

 and ,Q QJ I JA
KA Kρ ρ

= = =
P P

 as was to be shown. 

EVALUATE: 0 0/  and / /C K A d V Q C Qd K A= = =P P  so the result can also be written as / .I VA dρ=  The 
resistance of the dielectric is / / ,R V I d Aρ= =  which agrees with Eq. (25.10). 

25.66. IDENTIFY: As the resistance R varies, the current in the circuit also varies, which causes the potential drop across 
the internal resistance of the battery to vary. 
SET UP: The largest current will occur when R = 0, and the smallest current will occur when R → ∞. The largest 
terminal voltage will occur when the current is zero (R → ∞) and the smallest terminal voltage will be when the 
current is a maximum (R = 0). 
EXECUTE: (a) As R → ∞, I → 0, so Vab → E  = 15.0 V, which is the largest reading of the voltmeter. When R = 
0, the current is largest at (15.0 V)/(4.00 Ω) = 3.75 A, so the smallest terminal voltage is Vab = E  – rI = 15.0 V – 
(4.00 Ω)(3.75 A) = 0. 
(b) From part (a), the maximum current is 3.75 A when R = 0, and the minimum current is 0.00 A when R → ∞. 
(c) The graphs are sketched in Figure 25.66. 
EVALUATE: Increasing the resistance R increases the terminal voltage, but at the same time it decreases the 
current in the circuit. 

 
Figure 25.66 

25.67. IDENTIFY: Apply .LR
A
ρ

=  

SET UP: For mercury at 20 C° , 79.5 10  mρ −= × Ω⋅ , 10.00088 (C )α −= °  and 5 118 10  (C ) .β − −= × °  

EXECUTE: (a) 
7

2

(9.5 10 m)(0.12 m) 0.057 .
( 4)(0.0016 m)

LR
A
ρ

π

−× Ω⋅
= = = Ω  
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(b) 0( ) (1 )T Tρ ρ α= + Δ  gives 7 1 7(60  C) (9.5 10 m)(1 (0.00088 (C ) )(40 C ) 9.83 10 m,ρ − − −° = × Ω⋅ + ° = × Ω⋅°  so 
83.34 10 m.ρ −Δ = × Ω⋅  

(c) 0V V TβΔ = Δ gives 0 ( )A L A L TβΔ = Δ .  Therefore 
5 1 4

0 (18 10  (C ) )(0.12 m)(40 C ) 8.64 10  m 0.86 mm.L L Tβ − − −Δ = Δ = × ° ° = × =  The cross sectional area of the 
mercury remains constant because the diameter of the glass tube doesn't change. All of the change in volume of the 
mercury must be accommodated by a change in length of the mercury column. 

(d) LR
A
ρ

=  gives  .L LR
A A
ρ ρΔ Δ

Δ = +  

8 8 3
3

2 2

(3.34 10 m)(0.12 m) (95 10 m)(0.86 10  m) 2.40 10 .
( /4)(0.0016 m) ( /4)(0.0016 m)

R
π π

− − −
−× Ω⋅ × Ω⋅ ×

Δ = + = × Ω  

EVALUATE: (e) From  Equation (25.12), 
3

3 1

0

(0.057 2.40 10 )1 11 1 1.1 10 (C ) .40 C 0.057
R

T Rα
−

− −⎛ ⎞Ω+ × Ω⎛ ⎞= − = − = × °⎜ ⎟⎜ ⎟Δ Ω⎝ ⎠ ⎝ ⎠°
 

This value is 25% greater than the temperature coefficient of resistivity and the length increase is important. 
25.68. IDENTIFY: Consider the potential changes around the circuit.  For a complete loop the sum of the potential 

changes is zero. 
SET UP: There is a potential drop of IR when you pass through a resistor in the direction of the current. 

EXECUTE: (a) 8.0 V 4.0 V 0.167 A
24.0

I −
= =

Ω
.  8.00 V (0.50 8.00 )d aV I V+ − Ω+ Ω = , so         

8.00 V (0.167 A) (8.50 ) 6.58 V.adV = − Ω =  
(b) The terminal voltage is bc b cV V V= − .  4.00 V (0.50 )c bV I V+ + Ω =  and 

4.00 V (0.167 A) (0.50 ) 4.08 V.bcV = + + Ω = +  
(c) Adding another battery at point d in the opposite sense to the 8.0 V battery produces a counterclockwise current 

with magnitude 10.3 V 8.0 V 4.0 V 0.257 A
24.5

I − +
= =

Ω
.  Then 4.00 V (0.50 )c bV I V+ − Ω = and 

4.00 V (0.257 A) (0.50 ) 3.87 V.bcV = − Ω =  
EVALUATE: When current enters the battery at its negative terminal, as in part (c), the terminal voltage is less 
than its emf.  When current enters the battery at the positive terminal, as in part (b), the terminal voltage is greater 
than its emf. 

25.69. IDENTIFY: In each case write the terminal voltage in terms of ,E  I, and r. Since I is known, this gives two 
equations in the two unknowns E  and r. 
SET UP: The battery with the 1.50 A current is sketched in Figure 25.69a. 

 

8.4 VabV =  

abV Ir= −E  

( )1.50 A 8.4 Vr− =E  

Figure 25.69a  
The battery with the 3.50 A current is sketched in Figure 25.69b. 

 

9.4 VabV =  

abV Ir= +E  

( )3.5 A 9.4 Vr+ =E  

Figure 25.69b  
EXECUTE: (a) Solve the first equation for E  and use that result in the second equation: 

( )8.4 V 1.50 A r= +E  

( ) ( )8.4 V 1.50 A 3.50 A 9.4 Vr r+ + =  

( ) 1.0 V5.00 A 1.0 V so 0.20 
5.00 A

r r= = = Ω  
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(b) Then ( ) ( )( )8.4 V 1.50 A 8.4 V 1.50 A 0.20 8.7 Vr= + = + Ω =E  
EVALUATE: When the current passes through the emf in the direction from to ,− +  the terminal voltage is less 
than the emf and when it passes through from to ,+ −  the terminal voltage is greater than the emf. 

25.70. IDENTIFY: V IR= .  2 .P I R=  
SET UP: The total resistance is the resistance of the person plus the internal resistance of the power supply. 

EXECUTE: (a) 
3

3
tot

14 10  V 1.17 A
10 10  2000 

VI
R

×
= = =

× Ω+ Ω
 

(b) 2 2 3 4(1.17 A) (10 10  ) 1.37 10  J 13.7 kJP I R= = × Ω = × =  

(c) 
3

6
tot 3

14 10  V 14 10  .
1.00 10  A

VR
I −

×
= = = × Ω

×
  The resistance of the power supply would need to be 

6 3 614 10  10 10  14 10  14 M .× Ω− × Ω = × Ω = Ω  
EVALUATE: The current through the body in part (a) is large enough to be fatal. 

25.71. IDENTIFY: LR
A
ρ

= .  V IR= .  2 .P I R=  

SET UP: The area of the end of a cylinder of radius r is 2.rπ  

EXECUTE: (a) 3
2

(5.0 m)(1.6 m) 1.0 10  
(0.050 m)

R
π
Ω⋅

= = × Ω  

(b) 3 3(100 10  A)(1.0 10  ) 100 VV IR −= = × × Ω =  

(c) 2 3 2 3(100 10  A) (1.0 10  ) 10 WP I R −= = × × Ω =  
EVALUATE: The resistance between the hands when the skin is wet is about a factor of ten less than when the 
skin is dry (Problem 25.70). 

25.72. IDENTIFY: The cost of operating an appliance is proportional to the amount of energy consumed. The energy 
depends on the power the item consumes and the length of time for which it is operated. 
SET UP: At a constant power, the energy is equal to Pt, and the total cost is the cost per kilowatt-hour (kWh) 
times the time the energy (in kWh). 
EXECUTE: (a) Use the fact that 1.00 kWh = (1000 J/s)(3600 s) = 3.60 × 106 J, and one year contains 

73.156 10  s.×  

( )
7

6

3.156 10  s $0.12075  J/s
1 yr 3.60 10  J

⎛ ⎞× ⎛ ⎞
⎜ ⎟⎜ ⎟×⎝ ⎠⎝ ⎠

 = $78.90 

(b) At 8 h/day, the refrigerator runs for 1/3 of a year. Using the same procedure as above gives 

( )
7

6

1 3.156 10  s $0.120400 J/s
3 1 yr 3.60 10  J
⎛ ⎞×⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠⎝ ⎠

 = $140.27 

EVALUATE: Electric lights can be a substantial part of the cost of electricity in the home if they are left on for a 
long time! 

25.73. IDENTIFY: Set the sum of the potential rises and drops around the circuit equal to zero and solve for I. 
SET UP: The circuit is sketched in Figure 25.73. 

 

EXECUTE: 
0IR V− − =E  

2 0IR I Iα β− − − =E  

( )2 0I R Iβ α+ + − =E  
 

Figure 25.73  

The quadratic formula gives ( ) ( ) ( )21/ 2 4I R Rβ α α β⎡ ⎤= − + ± + +⎢ ⎥⎣ ⎦
E  

I must be positive, so take the + sign 

( ) ( ) ( )21/ 2 4I R Rβ α α β⎡ ⎤= − + + + +⎢ ⎥⎣ ⎦
E  

2.692 A 4.116 A 1.42 AI = − + =  
EVALUATE: For this I the voltage across the thermistor is 8.0 V. The voltage across the resistor must then be 
12.6 V 8.0 V 4.6 V,− =  and this agrees with Ohm's law for the resistor. 
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25.74.  (a) IDENTIFY: The rate of heating (power) in the cable depends on the potential difference across the cable and 
the resistance of the cable.  
SET UP: The power is P = V2/R and the resistance is R = ρL/A. The diameter D of the cable is twice its radius. 

( )
2 2 2 2 2

.
/

V V AV r VP
R L A L L

π
ρ ρ ρ

= = = =  The electric field in the cable is equal to the potential difference across its 

ends divided by the length of the cable: E = V/L. 
EXECUTE: Solving for r and using the resistivity of copper gives 

( )8

2 2

(50.0 W) 1.72 10  m (1500 m)
(220.0 V)

P Lr
V
ρ

π π

−× Ω⋅
= =  = 9.21 × 10–5 m.  D = 2r = 0.184 mm 

(b) SET UP: E = V/L  
EXECUTE: E = (220 V)/(1500 m) = 0.147 V/m 
EVALUATE: This would be an extremely thin (and hence fragile) cable. 

25.75. IDENTIFY: The ammeter acts as a resistance in the circuit loop. Set the sum of the potential rises and drops 
around the circuit equal to zero. 
(a) SET UP: The circuit with the ammeter is sketched in Figure 25.75a. 

 

EXECUTE: 

A
A

I
r R R

=
+ +
E  

( )A AI r R R= + +E  
 

Figure 25.75a  
SET UP: The circuit with the ammeter removed is sketched in Figure 25.75b. 

 

EXECUTE: 

I
R r

=
+
E  

 

Figure 25.75b  
Combining the two equations gives 

( )1 1 A
A A A

RI I r R R I
R r r R

⎛ ⎞ ⎛ ⎞= + + = +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

(b) Want 0.990 .AI I=  Use this in the result for part (a). 

0.990 1 ARI I
r R

⎛ ⎞= +⎜ ⎟+⎝ ⎠
 

0.010 0.990 AR
r R

⎛ ⎞= ⎜ ⎟+⎝ ⎠
 

( )( ) ( )( )0.010/0.990 0.45 3.80 0.010/ 0.990 0.0429 AR r R= + = Ω+ Ω = Ω  

(c) A
A

I I
r R r R R

− = −
+ + +
E E  

( )( ) ( )( )
.A A

A
A A

r R R r R RI I
r R r R R r R r R R

⎛ ⎞+ + − −
− = =⎜ ⎟⎜ ⎟+ + + + + +⎝ ⎠

EE  

EVALUATE: The difference between I and AI  increases as AR  increases. If AR  is larger than the value 
calculated in part (b) then AI  differs from I by more than 1.0%. 

25.76. IDENTIFY: Since the resistivity is a function of the position along the length of the cylinder, we must integrate to 
find the resistance. 
(a) SET UP: The resistance of a cross-section of thickness  dx is dR = ρdx/A. 
EXECUTE: Using the given function for the resistivity and integrating gives 

( )2 3

2 20

/3.
L a bx dxdx aL bLR

A r r
ρ

π π
+ +

= = =∫ ∫  
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Now get the constants a and b:  ρ (0) = a = 2.25 × 810−  Ω ⋅ m and  
ρ (L) = a + bL2  gives 8.50 × 810−  Ω ⋅ m = 2.25 × 810−  Ω ⋅ m + b(1.50 m)2 
which gives b = 2.78 × 810−  Ω/m. Now use the above result to find R. 

  
( ) ( )8 8 3

2

2.25 10  m (1.50 m) 2.78 10  / m (1.50 m) /3
(0.0110 m)

R
π

− −× Ω⋅ + × Ω
=  = 1.71 × 10–4 Ω = 171 µΩ 

(b) IDENTIFY: Use the definition of resistivity to find the electric field at the midpoint of the cylinder, where x = 
L/2. 
SET UP: E = ρJ. Evaluate the resistivity, using the given formula, for x = L/2. 

EXECUTE: At the midpoint, x = L/2, giving E = 
( )2

2 2

/ 2
.

a b L II
r r
ρ
π π

⎡ ⎤+⎣ ⎦=  

E = 
( )8 8 2

2

2.25 10  m 2.78 10  / m (0.750 m) (1.75 A)

(0.0110 m)π

− −⎡ ⎤× Ω⋅ + × Ω⎣ ⎦  = 1.76 × 410−  V/m 

(c) IDENTIFY: For the first segment, the result is the same as in part (a) except that the upper limit of the integral 
is L/2 instead of L. 

SET UP: Integrating using the upper limit of L/2 gives 
( ) ( )3

1 2

/ 2 ( /3) /8
.

a L b L
R

rπ
+

=  

EXECUTE: Substituting the numbers gives  

R1 = 
( ) ( )8 8 3

5
2

2.25 10  m (0.750 m) (2.78 10  / m)/3 (1.50 m) /8
= 5.47 10   

(0.0110 m)π

− −
−

× Ω ⋅ + × Ω
× Ω  

The resistance R2 of the second half is equal to the total resistance minus the resistance of the first half.  
R2 = R – R1 = 1.71 × 410−  Ω – 5.47 × 510−  Ω = 1.16 × 410−  Ω 
EVALUATE: The second half has a greater resistance than the first half because the resistance increases with 
distance along the cylinder. 

25.77. IDENTIFY: The power supplied to the house is .P VI=   The rate at which electrical energy is dissipated in the 

wires is 2 ,I R  where .LR
A
ρ

=  

SET UP: For copper, 81.72 10    m.ρ −= × Ω ⋅  
EXECUTE: (a) The line voltage, current to be drawn, and wire diameter are what must be considered in 
household wiring. 

(b) P VI= gives 4200 W 35 A,
120 V

PI
V

= = =  so the 8-gauge wire is necessary, since it can carry up to 40 A. 

(c) 
2 2 8

2
2

(35 A) (1.72 10 m) (42.0 m) 106 W.
( 4) (0.00326 m)

I LP I R
A
ρ

π

−× Ω ⋅
= = = =  

(d) If 6-gauge wire is used, 
2 2 8

2

(35 A) (1.72 10 m) (42 m) 66 W
( 4) ) (0.00412 m)

I LP
A
ρ

π

−× Ω⋅
= = = .  The decrease in energy 

consumption is (40 W) (365 days/yr) (12 h/day) 175 kWh/yrE PtΔ = Δ = = and the savings is  
(175 kWh/yr) ($0.11 kWh) $19.25 per year.=  
EVALUATE: The cost of the 4200 W used by the appliances is $2020.  The savings is about 1%. 

25.78. IDENTIFY: 0 0(1 [ ])TR R T Tα= + − .  VR
I

= .  .P VI=  

SET UP: When the temperature increases the resistance increases and the current decreases. 

EXECUTE: (a) 0
0

(1 [ ])
T

V V T T
I I

α= + − .  0 0(1 [ ])TI I T Tα= + − .  

0
0 4 1

1.35 A 1.23 A 217 C
(1.23 A)(4.5 10  (C ) )

T

T

I IT T
Iα − −

− −
− = = =

×
°

°
.  20 C 217 C 237 CT = + ° =° °  

(b) (i) (120 V)(1.35 A) 162 WP VI= = =  (ii) (120 V)(1.23 A) 148 WP = =  

EVALUATE: 2 /P V R=  shows that the power dissipated decreases when the resistance increases. 
25.79. (a) IDENTIFY: Set the sum of the potential rises and drops around the circuit equal to zero and solve for the 

resulting equation for the current I. Apply Eq. (25.17) to each circuit element to find the power associated with it. 
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SET UP: The circuit is sketched in Figure 25.79. 

 

EXECUTE: 
( )1 2 1 2 0I r r R− − + + =E E  

1 2

1 2

I
r r R

−
=

+ +
E E  

12.0 V 8.0 V
1.0 1.0 8.0 

I −
=

Ω+ Ω+ Ω
 

0.40 AI =  
 

Figure 25.79  

(b) ( ) ( ) ( )22 2 2 2
1 2 1 2 0.40 A 8.0 1.0 1.0 P I R I r I r I R r r= + + = + + = Ω+ Ω+ Ω  

1.6 WP =  
(c) Chemical energy is converted to electrical energy in a battery when the current goes through the battery from 
the negative to the positive terminal, so the electrical energy of the charges increases as the current passes through. 
This happens in the 12.0 V battery, and the rate of production of electrical energy is 

( )( )1 12.0 V 0.40 A 4.8 W.P I= = =E  
(d) Electrical energy is converted to chemical energy in a battery when the current goes through the battery from 
the positive to the negative terminal, so the electrical energy of the charges decreases as the current passes through. 
This happens in the 8.0 V battery, and the rate of consumption of electrical energy is 

( )( )2 8.0 V 0.40 V 3.2 W.P I= = =E  
(e) EVALUATE: Total rate of production of electrical energy = 4.8 W. Total rate of consumption of electrical 
energy = 1.6 W + 3.2 W = 4.8 W, which equals the rate of production, as it must. 

25.80. IDENTIFY: Apply LR
A
ρ

= for each material. The total resistance is the sum of the resistances of the rod and the 

wire.  The rate at which energy is dissipated is 2 .I R  
SET UP: For steel, 72.0 10  mρ −= × Ω⋅ .  For copper, 81.72 10  m.ρ −= × Ω⋅  

EXECUTE: (a) 
7

3
steel 2

(2.0 10 m) (2.0 m) 1.57 10
( 4) (0.018 m)

LR
A
ρ

π

−
−× Ω⋅

= = = × Ω  and 

8

Cu 2

(1.72 10 m) (35 m) 0.012
( 4) (0.008 m)

LR
A
ρ

π

−× Ω⋅
= = = Ω .  This gives 

3
steel Cu( ) (15000 A) (1.57 10 0.012 ) 204 V.V IR I R R −= = + = × Ω + Ω =  

(b) 2 2 6(15000 A) (0.0136 ) (65 10 s) 199 J.E Pt I Rt −= = = Ω × =  

EVALUATE: 2I R  is large but t is very small, so the energy deposited is small.  The wire and rod each have a 
mass of about 1 kg, so their temperature rise due to the deposited energy will be small. 

25.81. IDENTIFY and SET UP: The terminal voltage is abV Ir IRε= − = , where R  is the resistance connected to the 

battery.  During the charging the terminal voltage is abV Irε= + .  P VI=  and energy is E Pt= .  2I r  is the rate 
at which energy is dissipated in the internal resistance of the battery. 
EXECUTE: (a) 12.0 V (10.0 A) (0.24 ) 14.4 V.abV Irε= + = + Ω =  

(b) 6(10 A) (14.4 V) (5) (3600 s) 2.59 10 J.E Pt IVt= = = = ×  

(c) 2 2 5
diss diss (10 A) (0.24 ) (5) (3600 s) 4.32 10 J.E P t I rt= = = Ω = ×  

(d) Discharged at 10 A: 12.0 V (10 A) (0.24 ) 0.96 .
10 A

IrI R
r R I

− − Ω
= ⇒ = = = Ω

+
EE  

(e) 6(10 A) (9.6 V) (5) (3600 s) 1.73 10 J.E Pt IVt= = = = ×  
(f) Since the current through the internal resistance is the same as before, there is the same energy dissipated as in 
(c): 5

diss 4.32 10 J.E = ×  
(g) Part of the energy originally supplied was stored in the battery and part was lost in the internal resistance. So 
the stored energy was less than what was supplied during charging. Then when discharging, even more energy is 
lost in the internal resistance, and only what is left is dissipated by the external resistor. 
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25.82. IDENTIFY and SET UP: The terminal voltage is ,abV Ir IRε= − =  where R  is the resistance connected to the 

battery.  During the charging the terminal voltage is .abV Irε= +   P VI=  and energy is E Pt= .  2I r  is the rate at 
which energy is dissipated in the internal resistance of the battery. 
EXECUTE: (a) 12.0 V ( 30 A) (0.24 ) 19.2 V.abV Ir= = + Ω =+E  

(b) 6(30 A) (19.2 V) (1.7) (3600 s) 3.53 10 J.E Pt IVt= = = = ×  

(c) 2 2 6
diss diss (30 A) (0.24 ) (1.7) (3600 s) 1.32 10 J.E P t I Rt= = = Ω = ×  

(d) Discharged at 30 A:  I
r R

=
+
E  gives 12.0 V (30 A) (0.24 ) 0.16 .

30 A
IrR

I
− − Ω

= = = Ω
E  

(e) 2 2 5(30 A) (0.16 ) (1.7) (3600 s) 8.81 10 J.E Pt I Rt= = = Ω = ×  
(f) Since the current through the internal resistance is the same as before, there is the same energy dissipated as in 
(c): 6

diss 1.32 10 J.E = ×  
(g) Again, part of the energy originally supplied was stored in the battery and part was lost in the internal 
resistance. So the stored energy was less than what was supplied during charging. Then when discharging, even 
more energy is lost in the internal resistance, and what is left is dissipated over the external resistor. This time, at a 
higher current, much more energy is lost in the internal resistance.  Slow charging and discharging is more energy 
efficient. 

25.83. IDENTIFY and SET UP: Follow the steps specified in the problem. 

EXECUTE: (a) F ma q EΣ = =  gives | | .q a
m E

=  

(b) If the electric field is constant, bcV EL=  and | |

bc

q aL
m V

=  

(c) The free charges are “left behind” so the left end of the rod is negatively charged, while the right end is 
positively charged. Thus the right end, point c, is at the higher potential. 

(d) 
3 19

8 2
31

| | (1.0 10 V) (1.6 10 C) 3.5 10 m/s .
(9.11 10 kg) (0.50 m)

bcV qa
mL

− −

−

× ×
= = = ×

×
 

EVALUATE: (e) Performing the experiment in a rotational way enables one to keep the experimental apparatus in 
a localized area—whereas an acceleration like that obtained in (d), if linear, would quickly have the apparatus 
moving at high speeds and large distances.  Also, the rotating spool of thin wire can have many turns of wire and 
the total potential is the sum of the potentials in each turn, the potential in each turn times the number of turns. 

25.84. IDENTIFY: 0IR V− − =E  

SET UP: With 293 KT = , 139.6 V .e
kT

−=  

EXECUTE: (a) IR V= +E  gives 2.00 V (1.0 )I V= Ω + .  Dropping units and using the expression given in the 
problem for I, this becomes S2.00 [exp( ) 1]I eV kT V.= − +  

(b) For 3
S 1.50 10 AI −= × and 293 K,T =  1333 exp [39.6 ] 1 667 .V V= − +  Trial and error shows that the right-hand 

side (rhs) above, for specific V values, equals 1333 V when 0.179 V.V =  The current then is 

just ( )3
S[exp(39.6 ) 1] (1.5 10 A) exp([39.6][0.179]) 1] 1.80 A.I I V −= − = × − =  

EVALUATE: The voltage across the resistor R is 1.80 V.  The diode does not obey Ohm’s law. 

25.85. IDENTIFY: Apply LR
A
ρ

= to find the resistance of a thin slice of the rod and integrate to find the total R.  

V IR= .  Also find ( ),R x  the resistance of a length x of the rod. 
SET UP: ( ) ( )E x x Jρ=  

EXECUTE: (a) 0 exp[ ]dx x L dxdR
A A

ρ ρ −
= = so 

10 0 0
0

0

exp [ ] [ exp[ ]] (1 )
L

L LR x L dx L x L e
A A A
ρ ρ ρ −= − = − − = −∫ and 0 0

1
0

.
(1 )

V V AI
R L eρ −= =

−
 With an upper limit of x 

rather than L in the integration, ( )/0( ) 1 x LLR x e
A
ρ −= − . 

(b) ( )
0 0

1
( ) ( ) .

1

x L x LI e V eE x x J
A L e

ρρ
− −

−
= = =

−
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(c) 0 ( )V V IR x= − .  ( )
/ 1

/0 0
0 01 1

0

( )1
[1 ] (1 )

x L
x LV A L e eV V e V

L e A e
ρ

ρ

− −
−

− −

⎛ ⎞ −⎛ ⎞= − − =⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
 

(d) Graphs of resistivity, electric field and potential from 0 tox L=  are given in Figure 25.85. Each quantity is 
given in terms of the indicated unit. 
EVALUATE: The current is the same at all points in the rod.  Where the resistivity is larger the electric field must 
be larger, in order to produce the same current density. 

 
Figure 25.85 

25.86. IDENTIFY: The power output of the source is ( ) .VI Ir I= −E  
SET UP: The short-circuit current is short circuit / .I r= E  

EXECUTE: (a) 2P I I r= −E , so 2 0dP Ir
dI

= − =E  for maximum power output and  max short circuit
1 1 .
2 2PI I

r
= =

E  

(b) For the maximum power output of part (a), 1
2

I
r R r

= =
+
E E .  2r R r+ =  and .R r=  

Then, 
2 2

2 .
2 4

P I R r
r r

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

E E  

EVALUATE: When R is smaller than r, I is large and the 2I r losses in the battery are large.  When R is larger than 
r, I is small and the power output IE  of the battery emf is small. 

25.87. IDENTIFY: Use /n Tα = −  in 1 d
dT
ρα

ρ
=  to get a separable differential equation that can be integrated. 

SET UP: For carbon, 53.5 10  mρ −= × Ω⋅  and 4 15 10  (K) .α − −= − ×  

EXECUTE: (a) 1 ln ( ) ln( ) .n
n

d n ndT d aT
dT T T T
ρ ρα ρ ρ

ρ ρ
−⎛ ⎞= = − ⇒ = ⇒ = ⇒ =⎜ ⎟

⎝ ⎠
 

(b) 4 1( 5 10 (K) ) (293 K) 0.15.n Tα − −= − = − − × =  

5 0.15 5 0.15(3.5 10 m) (293 K) 8.0 10 m K .n
n

a a T
T

ρ ρ − −= ⇒ = = × Ω⋅ = × Ω⋅ ⋅  

(c) 
5

5
0.15

8.0 10196 C 77 K :   4.3 10 m.
(77 K)

T ρ
−

−×
= − ° = = = × Ω⋅  

5
5

0.15

8.0 10300 C 573 K :  3.2 10 m.
(573 K)

T ρ
−

−×
= − ° = = = × Ω⋅  

EVALUATE: α is negative and decreases as T decreases, so ρ  changes more rapidly with temperature at lower 
temperatures. 
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DIRECT-CURRENT CIRCUITS 

 26.1. IDENTIFY: The newly-formed wire is a combination of series and parallel resistors. 
SET UP: Each of the three linear segments has resistance R/3. The circle is two R/6 resistors in parallel.  
EXECUTE: The resistance of the circle is R/12 since it consists of two R/6 resistors in parallel. The equivalent 
resistance is two R/3 resistors in series with an R/6 resistor, giving Requiv = R/3 + R/3 + R/12 = 3R/4. 
EVALUATE: The equivalent resistance of the original wire has been reduced because the circle’s resistance is less 
than it was as a linear wire. 

 26.2. IDENTIFY: It may appear that the meter measures X directly. But note that X is in parallel with three other 
resistors, so the meter measures the equivalent parallel resistance between ab. 
SET UP: We use the formula for resistors in parallel. 
EXECUTE: 1/(2.00 Ω) = 1/X + 1/(15.0 Ω) + 1/(5.0 Ω) + 1/(10.0 Ω), so X = 7.5 Ω. 
EVALUATE: X is greater than the equivalent parallel resistance of 2.00 Ω. 

 26.3. (a) IDENTIFY: Suppose we have two resistors in parallel, with 1 2R R< . 

SET UP: The equivalent resistance is 
eq 1 2

1 1 1
R R R

= +  

EXECUTE: It is always true that 
1 2 1

1 1 1
R R R

+ > . Therefore 
eq 1

1 1
R R

> and eq 1R R< . 

EVALUATE: The equivalent resistance is always less than that of the smallest resistor. 
(b) IDENTIFY: Suppose we have N  resistors in parallel, with 1 2 NR R R< < < . 

SET UP: The equivalent resistance is 
eq 1 2

1 1 1 1

NR R R R
= + + +  

EXECUTE: It is always true that 
1 2 1

1 1 1 1

NR R R R
+ + + > . Therefore 

eq 1

1 1
R R

> and eq 1R R< . 

EVALUATE: The equivalent resistance is always less than that of the smallest resistor. 
 26.4. IDENTIFY: For resistors in parallel the voltages are the same and equal to the voltage across the equivalent 

resistance. 

SET UP: V IR= . 
eq 1 2

1 1 1
R R R

= + . 

EXECUTE: (a) 
1

eq
1 1 12.3 .

32 20 
R

−
⎛ ⎞= + = Ω⎜ ⎟Ω Ω⎝ ⎠

 

(b) 
eq

240 V 19.5 A.
12.3

VI
R

= = =
Ω

 

(c) 32 20
240 V 240 V7.5 A; 12 A.
32 20

V VI I
R RΩ Ω= = = = = =

Ω Ω
 

EVALUATE: More current flows through the resistor that has the smaller R. 
 26.5. IDENTIFY: The equivalent resistance will vary for the different connections because the series-parallel 

combinations vary, and hence the current will vary. 
SET UP: First calculate the equivalent resistance using the series-parallel formulas, then use Ohm’s law (V = RI) 
to find the current. 
EXECUTE: (a) 1/R = 1/(15.0 Ω) + 1/(30.0 Ω) gives R = 10.0 Ω. I = V/R = (35.0 V)/(10.0 Ω) = 3.50 A. 
(b) 1/R = 1/(10.0 Ω) + 1/(35.0 Ω) gives R = 7.78 Ω. I = (35.0 V)/(7.78 Ω) = 4.50 A 
(c) 1/R = 1/(20.0 Ω) + 1/(25.0 Ω) gives R = 11.11 Ω, so I = (35.0 V)/(11.11 Ω) = 3.15 A. 

26
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(d) From part (b), the resistance of the triangle alone is 7.78 Ω. Adding the 3.00-Ω internal resistance of the battery 
gives an equivalent resistance for the circuit of 10.78 Ω. Therefore the current is I = (35.0 V)/(10.78 Ω) = 3.25 A 
EVALUATE: It makes a big difference how the triangle is connected to the battery. 

 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel 
combination is the same as the current through the 45.0-Ω resistor. 
(a) SET UP: Apply Ohm’s law in the parallel branch to find the current through the 45.0-Ω resistor. Then apply 
Ohm’s law to the 45.0-Ω resistor to find the potential drop across it. 
EXECUTE: The potential drop across the 25.0-Ω resistor is V25 = (25.0 Ω)(1.25 A) = 31.25 V. The potential drop 
across each of the parallel branches is 31.25 V. For the 15.0-Ω resistor: I15 = (31.25 V)/(15.0 Ω) = 2.083 A. The 
resistance of the 10.0-Ω + 15.0 Ω combination is 25.0 Ω, so the current through it must be the same as the current 
through the upper 25.0 Ω resistor: I10+15 = 1.25 A. The sum of currents in the parallel branch will be the current 
through the 45.0-Ω resistor. 

ITotal = 1.25 A + 2.083 A + 1.25 A = 4.58 A 
Apply Ohm’s law to the 45.0 Ω resistor: V45 = (4.58 A)(45.0 Ω) = 206 V 
(b) SET UP: First find the equivalent resistance of the circuit and then apply Ohm’s law to it. 
EXECUTE: The resistance of the parallel branch is 1/R = 1/(25.0 Ω) + 1/(15.0 Ω) + 1/(25.0 Ω), so R = 6.82 Ω.  
The equivalent resistance of the circuit is 6.82 Ω + 45.0 Ω + 35.00 Ω = 86.82 Ω. Ohm’s law gives VBat =  
(86.62 Ω)(4.58 A) = 398 V. 
EVALUATE: The emf of the battery is the sum of the potential drops across each of the three segments (parallel 
branch and two series resistors). 

 26.7. IDENTIFY: First do as much series-parallel reduction as possible. 
SET UP: The 45.0-Ω and 15.0-Ω resistors are in parallel, so first reduce them to a single equivalent resistance. 
Then find the equivalent series resistance of the circuit. 
EXECUTE: 1/Rp = 1/(45.0 Ω) + 1/(15.0 Ω) and Rp = 11.25 Ω. The total equivalent resistance is  
18.0 Ω + 11.25 Ω + 3.26 Ω = 32.5 Ω. Ohm’s law gives I = (25.0 V)/(32.5 Ω) = 0.769 A. 
EVALUATE: The circuit appears complicated until we realize that the 45.0-Ω and 15.0-Ω resistors are in parallel. 

 26.8. IDENTIFY: Eq.(26.2) gives the equivalent resistance of the three resistors in parallel. For resistors in parallel, the 
voltages are the same and the currents add. 
(a) SET UP: The circuit is sketched in Figure 26.8a. 

 

EXECUTE: parallel 

eq 1 2 3

1 1 1 1
R R R R

= + +  

eq

1 1 1 1
1.60 2.40 4.80 R

= + +
Ω Ω Ω

 

eq 0.800 R = Ω  
Figure 26.8a  

(b) For resistors in parallel the voltage is the same across each and equal to the applied voltage; 
1 2 3 28.0 VV V V= = = =E  

1
1

1

28.0 V so 17.5 A
1.60 

VV IR I
R

= = = =
Ω

 

2 3
2 3

2 3

28.0 V 28.0 V11.7 A and 5.8 A
2.40 4.8 

V VI I
R R

= = = = = =
Ω Ω

 

(c) The currents through the resistors add to give the current through the battery: 
1 2 3 17.5 A 11.7 A 5.8 A 35.0 AI I I I= + + = + + =  

EVALUATE: Alternatively, we can use the equivalent resistance eqR  as shown in Figure 26.8b. 

 

eq 0IR− =E  

eq

28.0 V 35.0 A,
0.800 

I
R

= = =
Ω

E

 
which checks 

Figure 26.8b  
(d) As shown in part (b), the voltage across each resistor is 28.0 V. 
(e) IDENTIFY and SET UP: We can use any of the three expressions for 2 2:  / .P P VI I R V R= = =  They will all 
give the same results, if we keep enough significant figures in intermediate calculations. 
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EXECUTE: Using 2 / ,P V R=  ( ) ( )2 2
2 2

1 1 1 2 2 2

28.0 V 28.0 V
/ 490 W, / 327 W, and

1.60 2.40 
P V R P V R= = = = = =

Ω Ω
 

( )2
2

3 3 3

28.0 V
/ 163 W

4.80 
P V R= = =

Ω
 

EVALUATE: The total power dissipated is out 1 2 3 980 W.P P P P= + + =  This is the same as the power 
( )( )in 2.80 V 35.0 A 980 WP I= = =E  delivered by the battery. 

(f )  2 / .P V R=  The resistors in parallel each have the same voltage, so the power P is largest for the one with the 
least resistance. 

 26.9. IDENTIFY: For a series network, the current is the same in each resistor and the sum of voltages for each resistor 
equals the battery voltage. The equivalent resistance is eq 1 2 3R R R R= + + . 2P I R= . 

SET UP: Let 1 1.60 R = Ω , 2 2.40 R = Ω , 3 4.80 R = Ω .  
EXECUTE: (a) eq 1.60 2.40 4.80 8.80 R = Ω + Ω + Ω = Ω  

(b) 
eq

28.0 V 3.18 A
8.80 

VI
R

= = =
Ω

 

(c) 3.18 AI = , the same as for each resistor. 
(d) 1 1 (3.18 A)(1.60 ) 5.09 VV IR= = Ω = . 2 2 (3.18 A)(2.40 ) 7.63 VV IR= = Ω = . 

3 3 (3.18 A)(4.80 ) 15.3 VV IR= = Ω = . Note that 1 2 3 28.0 VV V V+ + = . 

(e) 2 2
1 1 (3.18 A) (1.60 ) 16.2 WP I R= = Ω = . 2 2

2 2 (3.18 A) (2.40 ) 24.3 WP I R= = Ω = . 
2 2

3 3 (3.18 A) (4.80 ) 48.5 WP I R= = Ω = . 

(f )  Since 2P I R= and the current is the same for each resistor, the resistor with the greatest R dissipates the 
greatest power. 
EVALUATE: When resistors are connected in parallel, the resistor with the smallest R dissipates the greatest power. 

26.10. (a) IDENTIFY: The current, and hence the power, depends on the potential difference across the resistor.  
SET UP: /P V R2=  
EXECUTE: (a) (5.0 W)(15,000 ) 274 VV PR= = Ω =  

(b) / (120 V) /(9,000 ) 1.6 WP V R2 2= = Ω =  
SET UP: (c) If the larger resistor generates 2.00 W, the smaller one will generate less and hence will be safe. 
Therefore the maximum power in the larger resistor must be 2.00 W. Use 2P I R=  to find the maximum current 
through the series combination and use Ohm’s law to find the potential difference across the combination. 
EXECUTE: P I R2=  gives I = P/R = (2.00 W)/(150 Ω) = 0.0133 A. The same current flows through both 
resistors, and their equivalent resistance is 250 Ω. Ohm’s law gives V = IR = (0.0133 A)(250 Ω) = 3.33 V. 
Therefore P150 = 2.00 W and 100P I R2= = (0.0133 A)2(100 Ω) = 0.0177 W. 
EVALUATE: If the resistors in a series combination all have the same power rating, it is the largest resistance that 
limits the amount of current. 

26.11. IDENTIFY: For resistors in parallel, the voltages are the same and the currents add. 
eq 1 2

1 1 1
R R R

= + so 1 2
eq

1 2

,R RR
R R

=
+

 

For resistors in series, the currents are the same and the voltages add. eq 1 2R R R= + . 
SET UP: The rules for combining resistors in series and parallel lead to the sequences of equivalent circuits 
shown in Figure 26.11. 

EXECUTE: eq 5.00 R = Ω . In Figure 26.11c, 60.0 V 12.0 A
5.00 

I = =
Ω

. This is the current through each of the 

resistors in Figure 26.11b. 12 12 (12.0 A)(2.00 ) 24.0 VV IR= = Ω = . 34 34 (12.0 A)(3.00 ) 36.0 VV IR= = Ω = . Note 

that 12 34 60.0 VV V+ = . 12V is the voltage across 1R and across 2R , so 12
1

1

24.0 V 8.00 A
3.00 

VI
R

= = =
Ω

 and 

12
2

2

24.0 V 4.00 A
6.00 

VI
R

= = =
Ω

. 34V is the voltage across 3R and across 4R , so 34
3

3

36.0 V 3.00 A
12.0 

VI
R

= = =
Ω

and 

34
4

4

36.0 V 9.00 A
4.00 

VI
R

= = =
Ω

. 
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EVALUATE: Note that 1 2 3 4I I I I+ = + . 

   
Figure 26.11 

26.12. IDENTIFY: Replace the series combinations of resistors by their equivalents. In the resulting parallel network the 
battery voltage is the voltage across each resistor. 
SET UP: The circuit is sketched in Figure 26.12a. 

 

EXECUTE: 1 2and R R  in series have an equivalent 
resistance of 12 1 2 4.00 R R R= + = Ω  

3 4and R R  in series have an equivalent resistance of 

34 3 4 12.0 R R R= + = Ω  

Figure 26.12a  
The circuit is equivalent to the circuit sketched in Figure 26.12b. 

 

12 34and R R  in parallel are equivalent to 

eqR  given by 12 34

eq 12 34 12 34

1 1 1 R R
R R R R R

+
= + =  

12 34
eq

12 34

R RR
R R

=
+

 

( )( )
eq

4.00 12.0 
3.00 

4.00 12.0 
R

Ω Ω
= = Ω

Ω+ Ω
 

Figure 26.12b  
The voltage across each branch of the parallel combination is ,E  so 12 12 0.I R− =E  

12
12

48.0 V 12.0 A
4.00 

I
R

= = =
Ω

E  

34 34 0I R− =E  so 34
34

48.0 V 4.0 A
12.0 

I
R

= = =
Ω

E  

The current is 12.0 A through the 1.00 Ω and 3.00 Ω resistors, and it is 4.0 A through the 7.00 Ω and 5.00 Ω resistors. 
EVALUATE: The current through the battery is 12 34 12.0 A 4.0 A 16.0 A,I I I= + = + =  and this is equal to 

eq/ 48.0 V /3.00 16.0 A.R − Ω =E  
26.13. IDENTIFY: In both circuits, with and without R4 ,  replace series and parallel combinations of resistors by their 

equivalents. Calculate the currents and voltages in the equivalent circuit and infer from this the currents and 
voltages in the original circuit. Use 2P I R=  to calculate the power dissipated in each bulb. 
(a) SET UP: The circuit is sketched in Figure 26.13a. 

 

EXECUTE: 2 3 4,  ,  and R R R  are in 
parallel, so their equivalent resistance 

eqR  is given by 
eq 2 3 4

1 1 1 1
R R R R

= + +  

Figure 26.13a  

eq
eq

1 3  and 1.50 .
4.50 

R
R

= = Ω
Ω
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The equivalent circuit is drawn in Figure 26.13b. 

 

( )1 eq 0I R R− + =E  

1 eq

I
R R

=
+
E  

Figure 26.13b  

1
9.00 V 1.50 A and 1.50 A

4.50 1.50 
I I= = =

Ω + Ω
 

Then ( )( )1 1 1 1.50 A 4.50 6.75 VV I R= = Ω =  

( )( )eq eq eq eq1.50 A, 1.50 A 1.50 2.25 VI V I R= = = Ω =  
For resistors in parallel the voltages are equal and are the same as the voltage across the equivalent resistor, so 

2 3 4 2.25 V.V V V= = =   

2 3 4
2 3 4

2 3 4

2.25 V 0.500 A, 0.500 A, 0.500 A
4.50 

V V VI I I
R R R

= = = = = = =
Ω

 

EVALUATE: Note that 2 3 4 1.50 A,I I I+ + =  which is eq.I  For resistors in parallel the currents add and their sum 
is the current through the equivalent resistor. 
(b) SET UP: 2P I R=  
EXECUTE: ( ) ( )2

1 1.50 A 4.50 10.1 WP = Ω =  

( ) ( )2
2 3 4 0.500 A 4.50 1.125 W,P P P= = = Ω =  which rounds to 1.12 W. 1R  glows brightest. 

EVALUATE: Note that 2 3 4 3.37 W.P P P+ + =  This equals 2 2
eq eq eq (1.50 A) (1.50 ) 3.37 W,P I R= = Ω =  the power 

dissipated in the equivalent resistor. 
(c) SET UP: With 4R  removed the circuit becomes the circuit in Figure 26.13c. 

 

EXECUTE: 2 3and R R  are in parallel and 
their equivalent resistance eqR  is given by 

eq 2 3

1 1 1 2
4.50 R R R

= + =
Ω

 and eq 2.25 R = Ω  

Figure 26.13c  
The equivalent circuit is shown in Figure 26.13d. 

 

( )1 eq 0I R R− + =E  

1 eq

I
R R

=
+
E  

9.00 V 1.333 A
4.50 2.25 

I = =
Ω + Ω

 

Figure 26.13d  

( )( )1 1 1 11.33 A, 1.333 A 4.50 6.00 VI V I R= = = Ω =  

( )( )eq eq eq eq 2 31.33 A, 1.333 A 2.25 3.00 V and 3.00 V.I V I R V V= = = Ω = = =  

2 3
2 3

2 3

3.00 V 0.667 A, 0.667 A
4.50 

V VI I
R R

= = = = =
Ω

 

(d) SET UP: 2P I R=  
EXECUTE: 1 (1.333 A) (4.50  WP 2= Ω) = 8.00  

2 3 (0.667 A) (4.50 ) 2.00 W.P P 2= = Ω =  
(e) EVALUATE: When R4 is removed, P1 decreases and P2 and P3 increase. Bulb R1 glows less brightly and bulbs 
R2 and R3 glow more brightly. When R4 is removed the equivalent resistance of the circuit increases and the current 
through R1 decreases. But in the parallel combination this current divides into two equal currents rather than three, 
so the currents through R2 and R3 increase. Can also see this by noting that with R4 removed and less current 
through R1 the voltage drop across R1 is less so the voltage drop across R2 and across R3 must become larger. 
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26.14. IDENTIFY: Apply Ohm's law to each resistor. 
SET UP: For resistors in parallel the voltages are the same and the currents add. For resistors in series the currents 
are the same and the voltages add. 
EXECUTE: From Ohm’s law, the voltage drop across the 6.00 Ω  resistor is V = IR = (4.00 A)(6.00 Ω) = 24.0 V. 
The voltage drop across the 8.00 Ω  resistor is the same, since these two resistors are wired in parallel. The current 
through the 8.00 Ω  resistor is then I = V/R = 24.0 V/8.00 Ω  = 3.00 A. The current through the 25.0 Ω  resistor is the 
sum of these two currents: 7.00 A. The voltage drop across the 25.0 Ω  resistor is V = IR = (7.00 A)(25.0 Ω) = 175 V, 
and total voltage drop across the top branch of the circuit is 175 V + 24.0 V = 199 V, which is also the voltage 
drop across the 20.0 Ω  resistor. The current through the 20.0 Ω  resistor is then / 199 V/20 9.95 A.I V R= = Ω =  
EVALUATE: The total current through the battery is 7.00 A 9.95 A 16.95 A+ = . Note that we did not need to 
calculate the emf of the battery. 

26.15. IDENTIFY: Apply Ohm's law to each resistor. 
SET UP: For resistors in parallel the voltages are the same and the currents add. For resistors in series the currents 
are the same and the voltages add. 
EXECUTE: The current through 2.00-Ω  resistor is 6.00 A. Current through 1.00-Ω  resistor also is 6.00 A and the 
voltage is 6.00 V. Voltage across the 6.00-Ω  resistor is 12.0 V + 6.0 V = 18.0 V. Current through the 6.00-Ω  
resistor is (18.0 V)/(6.00 Ω) = 3.00 A. The battery emf is 18.0 V. 
EVALUATE: The current through the battery is 6.00 A + 3.00 A = 9.00 A. The equivalent resistor of the resistor 
network is 2.00 Ω , and this equals (18.0 V)/(9.00 A). 

26.16. IDENTIFY: The filaments must be connected such that the current can flow through each separately, and also 
through both in parallel, yielding three possible current flows. The parallel situation always has less resistance than 
any of the individual members, so it will give the highest power output of 180 W, while the other two must give 
power outputs of 60 W and 120 W. 
SET UP: P = V 2/R, where R is the equivalent resistance. 

EXECUTE: (a) 
2

1

60 W V
R

=  gives 
2

1
(120 V) 240

60 W
R = = Ω . 

2

2

120 W V
R

=  gives 
2

2
(120 V) 120 .
120 W

R = = Ω  For these 

two resistors in parallel, 1 2
eq

1 2

80 R RR
R R

= = Ω
+

 and 
2 2

eq

(120 V) 180 W
80

VP
R

= = =
Ω

, which is the desired value. 

(b) If R1 burns out, the 120 W setting stays the same, the 60 W setting does not work and the 180 W setting goes to 
120 W: brightnesses of zero, medium and medium. 
(c) If R2 burns out, the 60 W setting stays the same, the 120 W setting does not work, and the 180 W setting is now 
60 W: brightnesses of low, zero and low. 
EVALUATE: Since in each case 120 V is supplied to each filament network, the lowest resistance dissipates the 
greatest power. 

26.17. IDENTIFY: For resistors in series, the voltages add and the current is the same. For resistors in parallel, the 
voltages are the same and the currents add. P = I 2R. 
(a) SET UP: The circuit is sketched in Figure 26.17a. 

 

For resistors in series the current 
is the same through each. 

Figure 26.17a  

EXECUTE: eq 1 2 1200 .R R R= + = Ω  
eq

120 V 0.100 A.
1200 

VI
R

= = =
Ω

 This is the current drawn from the line. 

(b) 2 2
1 1 1 (0.100 A) (400 ) 4.0 WP I R= = Ω =  

2 2
2 2 2 (0.100 A) (800 ) 8.0 WP I R= = Ω =  

(c) out 1 2 12.0 W,P P P= + =  the total power dissipated in both bulbs. Note that 

in (120 V)(0.100 A) 12.0 W,abP V I= = =  the power delivered by the potential source, equals Pout. 
(d) SET UP: The circuit is sketched in Figure 26.17b. 

 

For resistors in parallel the voltage 
across each resistor is the same. 

Figure 26.17b  
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EXECUTE: 1 2
1 2

1 2

120 V 120 V0.300 A, 0.150 A
400 800 

V VI I
R R

= = = = = =
Ω Ω

 

EVALUATE: Note that each current is larger than the current when the resistors are connected in series. 
(e) EXECUTE: 2 2

1 1 1 (0.300 A) (400 ) 36.0 WP I R= = Ω =  
2 2

2 2 2 (0.150 A) (800 ) 18.0 WP I R= = Ω =  
(f )  out 1 2 54.0 WP P P= + =  
EVALUATE: Note that the total current drawn from the line is 1 2 0.450 A.I I I= + =  The power input from the 
line is in (120 V)(0.450 A) 54.0 W,abP V I= = = which equals the total power dissipated by the bulbs. 
(g) The bulb that is dissipating the most power glows most brightly. For the series connection the currents are the 
same and by 2P I R=  the bulb with the larger R has the larger P; the 800 Ω  bulb glows more brightly. For the 
parallel combination the voltages are the same and by 2 /P V R=  the bulb with the smaller R has the larger P; the 
400 Ω  bulb glows more brightly. 
(h) The total power output outP  equals in out,  so abP V I P=  is larger for the parallel connection where the current 
drawn from the line is larger (because the equivalent resistance is smaller.) 

26.18. IDENTIFY: Use 2 /P V R=  with 120 VV = and the wattage for each bulb to calculate the resistance of each bulb. 
When connected in series the voltage across each bulb will not be 120 V and the power for each bulb will be 
different. 
SET UP: For resistors in series the currents are the same and eq 1 2R R R= + . 

EXECUTE: (a) 
2 2

60W
(120 V) 240 

60 W
VR
P

= = = Ω ; 
2 2

200W
(120 V) 72 .
200 W

VR
P

= = = Ω  

Therefore, 60W 200W
240 V 0.769 A.

(240 72 )
I I

R
= = = =

Ω + Ω
E  

(b) 2 2
60W (0.769 A) (240 ) 142 W;P I R= = Ω =  2 2

200W (0.769 A) (72 ) 42.6 W.P I R= = Ω =   
(c) The 60 W bulb burns out quickly because the power it delivers (142 W) is 2.4 times its rated value. 
EVALUATE: In series the largest resistance dissipates the greatest power. 

26.19. IDENTIFY and SET UP: Replace series and parallel combinations of resistors by their equivalents until the circuit 
is reduced to a single loop. Use the loop equation to find the current through the 20.0 Ω  resistor. Set 2P I R=  for 
the 20.0 Ω  resistor equal to the rate Q /t at which heat goes into the water and set .Q mc T= Δ  
EXECUTE: Replace the network by the equivalent resistor, as shown in Figure 26.19. 

 
Figure 26.19 

( )30.0 V 20.0 5.0 5.0 0;  1.00 AI I− Ω + Ω+ Ω = =  

For the 20.0-Ω  resistor thermal energy is generated at the rate 2 20.0 W.P I R= =   and Q Pt Q mc T= = Δ  gives 
( )( )( ) 30.100 kg 4190 J/kg  K 48.0 C

1.01 10  s
20.0 W

mc Tt
P

⋅ °Δ
= = = ×  

EVALUATE: The battery is supplying heat at the rate 30.0 W.P I= =E  In the series circuit, more energy is 
dissipated in the larger resistor (20.0 )Ω  than in the smaller ones (5.00 ).Ω  

26.20. IDENTIFY: 2P I R= determines 1R . 1R , 2R and the 10.0 Ω resistor are all in parallel so have the same voltage. 
Apply the junction rule to find the current through 2R . 
SET UP: 2P I R= for a resistor and P I= E for an emf. The emf inputs electrical energy into the circuit and 
electrical energy is removed in the resistors. 
EXECUTE: (a) 2

1 1 1P I R= . 2
120 W (2 A) R= and 1 5.00 R = Ω . 1 and 10R Ω  are in parallel, so 

10(10 ) (5 )(2 A)IΩ = Ω and 10 1 AI = . So 2 1 103.50 A 0.50 AI I I= − − = . 1R  and 2R are in parallel, so 

2(0.50 A) (2 A)(5 )R = Ω and 2 20.0R = Ω . 
(b) 1 (2.00 A)(5.00 ) 10.0 VV= = Ω =E  
(c) From part (a), 2 100.500 A, 1.00 AI I= =  
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(d) 1 20.0 WP =  (given). 2 2
2 2 2 (0.50 A) (20 ) 5.00 WP I R= = Ω = . 2 2

10 10 10 (1.0 A) (10 ) 10.0 WP I R= = Ω = . The total 
rate at which the resistors remove electrical energy is Resist 20 W 5 W 10 W 35.0 WP = + + = . The total rate at which 
the battery inputs electrical energy is Battery (3.50 A)(10.0 V) 35.0 WP Iε= = = . Resist BatteryP P= , which agrees with 
conservation of energy. 
EVALUATE: The three resistors are in parallel, so the voltage for each is the battery voltage, 10.0 V. The currents 
in the three resistors add to give the current in the battery. 

26.21. IDENTIFY: Apply Kirchhoff's point rule at point a to find the current through R. Apply Kirchhoff's loop rule to 
loops (1) and (2) shown in Figure 26.21a to calculate R and .E  Travel around each loop in the direction shown. 
(a) SET UP:  

 
Figure 26.21a 

EXECUTE: Apply Kirchhoff's point rule to point a: 0 so 4.00 A 6.00 A 0I I= + − =∑  
I = 2.00 A (in the direction shown in the diagram). 
(b) Apply Kirchhoff's loop rule to loop (1): ( )( ) ( )6.00 A 3.00 2.00 A 28.0 V 0R− Ω − + =  

( )18.0 V 2.00 28.0 V 0R− − Ω + =  

28.0 V 18.0 V 5.00 
2.00 A

R −
= = Ω  

(c) Apply Kirchhoff's loop rule to loop (2): ( )( ) ( )( )6.00 A 3.00 4.00 A 6.00 0− Ω − Ω + =E  
18.0 V 24.0 V 42.0 V= + =E  

EVALUATE: Can check that the loop rule is satisfied for loop (3), as a check of our work: 
( )( ) ( )28.0 V 4.00 A 6.00 2.00 A 0R− + Ω − =E  

( )( )28.0 V 42.0 V 24.0 V 2.00 A 5.00 0− + − Ω =  
52.0 V 42.0 V 10.0 V= +  
52.0 V 52.0 V, = so the loop rule is satisfied for this loop. 
(d) IDENTIFY: If the circuit is broken at point x there can be no current in the 6.00 Ω  resistor. There is now only 
a single current path and we can apply the loop rule to this path. 
SET UP: The circuit is sketched in Figure 26.21b. 

 
Figure 26.21b 

EXECUTE: ( ) ( )28.0 V 3.00 5.00 0I I+ − Ω − Ω =  

28.0 V 3.50 A
8.00 

I = =
Ω

 

EVALUATE: Breaking the circuit at x removes the 42.0 V emf from the circuit and the current through the 
3.00 Ω  resistor is reduced. 
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26.22. IDENTIFY: Apply the loop rule and junction rule. 
SET UP: The circuit diagram is given in Figure 26.22. The junction rule has been used to find the magnitude and 
direction of the current in the middle branch of the circuit. There are no remaining unknown currents. 
EXECUTE: The loop rule applied to loop (1) gives: 

120.0 V (1.00 A)(1.00 ) (1.00 A)(4.00 ) (1.00 A)(1.00 ) (1.00 A)(6.00 ) 0+ − Ω + Ω + Ω − − Ω =E  

1 20.0 V 1.00 V 4.00 V 1.00 V 6.00 V 18.0 V= − + + − =E . The loop rule applied to loop (2) gives: 

220.0 V (1.00 A)(1.00 ) (2.00 A)(1.00 ) (2.00 A)(2.00 ) (1.00 A)(6.00 ) 0+ − Ω − Ω − − Ω − Ω =E
2 20.0 V 1.00 V 2.00 V 4.00 V 6.00 V 7.0 V= − − − − =E . Going from b to a along the lower branch, 

(2.00 A)(2.00 ) 7.0 V (2.00 A)(1.00 )b aV V+ Ω + + Ω = . 13.0 Vb aV V− = − ; point b is at 13.0 V lower potential 
than point a. 
EVALUATE: We can also calculate b aV V− by going from b to a along the upper branch of the circuit. 

(1.00 A)(6.00 ) 20.0 V (1.00 A)(1.00 )b aV V− Ω + − Ω =  and 13.0 Vb aV V− = − . This agrees with b aV V−  calculated 
along a different path between b and a. 

 
Figure 26.22 

26.23. IDENTIFY: Apply the junction rule at points a, b, c and d to calculate the unknown currents. Then apply the loop 
rule to three loops to calculate 1 2,   and .RE E  
(a) SET UP: The circuit is sketched in Figure 26.23. 

 
Figure 26.23 

EXECUTE: Apply the junction rule to point a: 33.00 A 5.00 A 0I+ − =  

3 8.00 AI =  
Apply the junction rule to point b: 42.00 A 3.00 A 0I+ − =  

4 1.00 AI =  
Apply the junction rule to point c: 3 4 5 0I I I− − =  

5 3 4 8.00 A 1.00 A 7.00 AI I I= − = − =  
EVALUATE: As a check, apply the junction rule to point d: 5 2.00 A 5.00 A 0I − − =  

5 7.00 AI =  
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(b) EXECUTE: Apply the loop rule to loop (1): ( )( ) ( )1 33.00 A 4.00 3.00 0I− Ω − Ω =E  

( )( )1 12.0 V 8.00 A 3.00 36.0 V= + Ω =E  

Apply the loop rule to loop (2): ( )( ) ( )2 35.00 A 6.00 3.00 0I− Ω − Ω =E  

( )( )2 30.0 V 8.00 A 3.00 54.0 V= + Ω =E  

(c) Apply the loop rule to loop (3): ( ) 1 22.00 A 0R− − + =E E  

2 1 54.0 V 36.0 V 9.00 
2.00 A 2.00 A

R − −
= = = Ω
E E  

EVALUATE: Apply the loop rule to loop (4) as a check of our calculations: 
( ) ( )( ) ( )( )2.00 A 3.00 A 4.00 5.00 A 6.00 0R− − Ω + Ω =   

( )( )2.00 A 9.00 12.0 V 30.0 V 0− Ω − + =  
18.0 V 18.0 V 0− + =  

26.24. IDENTIFY: Use Kirchhoff’s Rules to find the currents. 
SET UP: Since the 1.0 V battery has the larger voltage, assume 1I is to the left through the 10 V battery, 2I is to 
the right through the 5 V battery, and 3I is to the right through the 10Ω  resistor. Go around each loop in the 
counterclockwise direction. 
EXECUTE: Upper loop: ( ) ( )1 210.0 V 2.00 3.00 1.00 4.00 5.00 V 0I I− Ω+ Ω − Ω+ Ω − = . This gives 

( ) ( )1 25.0 V 5.00 5.00 0I I− Ω − Ω = , and 1 2 1.00 AI I⇒ + = .  

Lower loop: ( ) ( )2 35.00 V 1.00 4.00 10.0 0I I+ Ω + Ω − Ω = . This gives ( ) ( )2 35.00 V 5.00 10.0 0I I+ Ω − Ω = , and 

2 32 1.00 AI I− = −  
Along with 1 2 3,I I I= +  we can solve for the three currents and find: 

1 2 30.800 A, 0.200 A, 0.600 A.I I I= = =  

(b) ( )( ) ( )( )0.200 A 4.00 0.800 A 3.00 3.20 V.abV = − Ω − Ω = −  
EVALUATE: Traveling from b to a through the 4.00 Ω  and 3.00 Ω  resistors you pass through the resistors in the 
direction of the current and the potential decreases; point b is at higher potential than point a. 

26.25. IDENTIFY: Apply the junction rule to reduce the number of unknown currents. Apply the loop rule to two loops 
to obtain two equations for the unknown currents 1 2and I I  
(a) SET UP: The circuit is sketched in Figure 26.25. 

 
Figure 26.25 

Let I1 be the current in the 3.00 Ω  resistor and I2 be the current in the 4.00 Ω  resistor and assume that these 
currents are in the directions shown. Then the current in the 3 1 210.0  resistor is ,I I IΩ = −  in the direction shown, 
where we have used Kirchhoff's point rule to relate I3 to I1 and I2. If we get a negative answer for any of these 
currents we know the current is actually in the opposite direction to what we have assumed. Three loops and 
directions to travel around the loops are shown in the circiut diagram. Apply Kirchhoff's loop rule to each loop. 
EXECUTE: loop (1) 

( ) ( ) ( ) ( )1 2 2 110.0 V 3.00 4.00 5.00 V 1.00 2.00 0I I I I+ − Ω − Ω + − Ω − Ω =  

( ) ( )1 215.00 V 5.00 5.00 0I I− Ω − Ω =  

1 23.00 A 0I I− − =  
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loop (2) 
2 1 2 25.00 V (1.00 ) ( )10.0 (4.00 ) 0I I I I+ − Ω + − Ω − Ω =  

1 25.00 V (10.0 ) (15.0 ) 0I I+ Ω − Ω =  

1 21.00 A 2.00 3.00 0I I+ − =  
The first equation says 2 13.00 A .I I= −  
Use this in the second equation: 1 11.00 A 2.00 9.00 A 3.00 0I I+ − + =  

1 15.00 8.00 A, 1.60 AI I= =  
Then 2 13.00 A 3.00 A 1.60 A 1.40 A.I I= − = − =  

3 1 2 1.60 A 1.40 A 0.20 AI I I= − = − =  
EVALUATE: Loop (3) can be used as a check. 

10.0 V (1.60 A)(3.00 ) (0.20 A)(10.00 ) (1.60 A)(2.00 ) 0+ − Ω − Ω − Ω =  
10.0 V 4.8 V 2.0 V 3.2 V= + +  
10.0 V 10.0 V=  
We find that with our calculated currents the loop rule is satisfied for loop (3). Also, all the currents came out to be 
positive, so the current directions in the circuit diagram are correct. 
(b) IDENTIFY and SET UP: To find ab a bV V V= −  start at point b and travel to point a. Many different routes can 
be taken from b to a and all must yield the same result for .abV  
EXECUTE: Travel through the 4.00 Ω  resistor and then through the 3.00 Ω  resistor: 

2 1(4.00 ) (3.00 )b aV I I V+ Ω + Ω =  
(1.40 A)(4.00 ) (1.60 A)(3.00 ) 5.60 V 4.8 V 10.4 Va bV V− = Ω + Ω = + =  (point a is at higher potential than point b) 

EVALUATE: Alternatively, travel through the 5.00 V emf, the 1.00 Ω  resistor, the 2.00 Ω  resistor, and the 10.0 V emf. 
( ) ( )2 15.00 V 1.00 2.00 10.0 Vb aV I I V+ − Ω − Ω + =  

( )( ) ( )( )15.0 V 1.40 A 1.00 1.60 A 2.00 15.0 V 1.40 V 3.20 V 10.4 V,a bV V− = − Ω − Ω = − − =  the same as before. 
26.26. IDENTIFY: Use Kirchhoff’s rules to find the currents 

SET UP: Since the 20.0 V battery has the largest voltage, assume 1I  is to the right through the 10.0 V battery, 2I  
is to the left through the 20.0 V battery, and 3I  is to the right through the 10 Ω  resistor. Go around each loop in 
the counterclockwise direction. 
EXECUTE: Upper loop: ( ) ( )1 210.0 V+ 2.00 3.00 1.00 4.00 20.00 V 0I IΩ+ Ω + Ω+ Ω − = .  

( ) ( )1 210.0 V+ 5.00 5.00 0I I− Ω + Ω = , so 1 2 2.00 A.I I+ = +  

Lower loop: ( ) ( )2 320.00 V 1.00 4.00 10.0 0I I− Ω + Ω − Ω = . 

( ) ( )2 320.00 V 5.00 10.0 0I I− Ω − Ω = , so 2 32 4.00 A.I I+ =  

Along with 2 1 3,I I I= + we can solve for the three currents and find 1 2 30.4 A, 1.6 A, 1.2 A.I I I= + = + = +  
(b) 2 1(4 ) (3 ) (1.6 A)(4 ) (0.4 A)(3 ) 7.6 VabV I I= Ω + Ω = Ω + Ω =  
EVALUATE: Traveling from b to a through the 4.00 Ω  and 3.00 Ω  resistors you pass through each resistor 
opposite to the direction of the current and the potential increases; point a is at higher potential than point b. 

26.27. (a) IDENTIFY: With the switch open, the circuit can be solved using series-parallel reduction. 
SET UP: Find the current through the unknown battery using Ohm’s law. Then use the equivalent resistance of 
the circuit to find the emf of the battery. 
EXECUTE: The 30.0-Ω and 50.0-Ω resistors are in series, and hence have the same current. Using Ohm’s law  
I50 = (15.0 V)/(50.0 Ω) = 0.300 A = I30. The potential drop across the 75.0-Ω resistor is the same as the potential 
drop across the 80.0-Ω series combination. We can use this fact to find the current through the 75.0-Ω resistor 
using Ohm’s law: V75 = V80 = (0.300 A)(80.0 Ω) = 24.0 V and I75 = (24.0 V)/(75.0 Ω) = 0.320 A. 
The current through the unknown battery is the sum of the two currents we just found: 

ITotal = 0.300 A + 0.320 A = 0.620 A  
The equivalent resistance of the resistors in parallel is 1/Rp = 1/(75.0 Ω) + 1/(80.0 Ω). This gives Rp = 38.7 Ω. The 
equivalent resistance “seen” by the battery is Requiv = 20.0 Ω + 38.7 Ω = 58.7 Ω. 
Applying Ohm’s law to the battery gives ε = RequivITotal = (58.7 Ω)(0.620 A) = 36.4 V 
(b) IDENTIFY: With the switch closed, the 25.0-V battery is connected across the 50.0-Ω resistor. 
SET UP: Taking a loop around the right part of the circuit. 
EXECUTE: Ohm’s law gives I = (25.0 V)/(50.0 Ω) = 0.500 A 
EVALUATE: The current through the 50.0-Ω resistor, and the rest of the circuit, depends on whether or not the 
switch is open.  
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26.28. IDENTIFY: We need to use Kirchhoff’s rules.  
SET UP: Take a loop around the outside of the circuit, use the current at the upper junction, and then take a loop 
around the right side of the circuit. 
EXECUTE: The outside loop gives 75.0 V – (12.0 Ω)(1.50 A) – (48.0 Ω)I48 = 0 , so I48 = 1.188 A. At a  
junction we have 1.50 A = Iε + 1.188 A , and Iε = 0.313 A. A loop around the right part of the circuit gives  
−E (48 Ω)(1.188 A) + (15.0 Ω)(0.313 A). E = 52.3 V, with the polarity shown in the figure in the problem. 

EVALUATE: The unknown battery has a smaller emf than the known one, so the current through it goes against 
its polarity. 

26.29. (a) IDENTIFY: With the switch open, we have a series circuit with two batteries. 
SET UP: Take a loop to find the current, then use Ohm’s law to find the potential difference between a and b. 
EXECUTE: Taking the loop: I = (40.0 V)/(175 Ω) = 0.229 A. The potential difference between a and b is  
Vb – Va = +15.0 V – (75.0 Ω)(0.229 A) = − 2.14 V. 
EVALUATE: The minus sign means that a is at a higher potential than b. 
(b) IDENTIFY: With the switch closed, the ammeter part of the circuit divides the original circuit into two 
circuits. We can apply Kirchhoff’s rules to both parts. 
SET UP: Take loops around the left and right parts of the circuit, and then look at the current at the junction. 
EXECUTE: The left-hand loop gives I100 = (25.0 V)/(100.0 Ω) = 0.250 A. The right-hand loop gives  
I75 = (15.0 V)/(75.0 Ω) = 0.200 A. At the junction just above the switch we have I100 = 0.250 A (in) and  
I75 = 0.200 A (out) , so IA = 0.250 A – 0.200 A = 0.050 A, downward. The voltmeter reads zero because the 
potential difference across it is zero with the switch closed. 
EVALUATE: The ideal ammeter acts like a short circuit, making a and b at the same potential. Hence the 
voltmeter reads zero. 

26.30. IDENTIFY: The circuit is sketched in Figure 26.30a. Since all the external resistors are equal, the current must be 
symmetrical through them. That is, there can be no current through the resistor R for that would imply an 
imbalance in currents through the other resistors. With no current going through R, the circuit is like that shown in 
Figure 26.30b. 
SET UP: For resistors in series, the equivalent resistance is s 1 2R R R= + . For resistors in parallel, the equivalent 

resistance is 
p 1 2

1 1 1
R R R

= +  

EXECUTE: The equivalent resistance of the circuit is 
1

eq
1 1 1 

2 2 
R

−
⎛ ⎞= + = Ω⎜ ⎟Ω Ω⎝ ⎠

 and total
13 V 13 A.
1 

I = =
Ω

 The two 

parallel branches have the same resistance, so each branch total
1 6.5 A.
2

I I= =  The current through each 1 Ω  resistor is 6.5 A 

and no current passes through R. 
(b) As worked out above, eq 1R = Ω . 

(c) 0,abV =  since no current flows through R. 
EVALUATE: (d) R plays no role since no current flows through it and the voltage across it is zero. 

  
Figure 26.30 

26.31. IDENTIFY: To construct an ammeter, add a shunt resistor in parallel with the galvanometer coil. To construct a 
voltmeter, add a resistor in series with the galvanometer coil. 
SET UP: The full-scale deflection current is 500 Aμ  and the coil resistance is 25.0 Ω . 
EXECUTE: (a) For a 20-mA ammeter, the two resistances are in parallel and the voltages across each are the 
same. c sV V=  gives c c s sI R I R= . ( )( ) ( )6 3 6

s500 10 A 25.0 20 10 A 500 10 A R− − −× Ω = × − × and s 0.641R = Ω . 
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(b) For a 500-mV voltmeter, the resistances are in series and the current is the same through each: ( )c sabV I R R= +  

and 
3

s c 6

500 10 V 25.0 975 .
500 10 A

abVR R
I

−

−

×
= − = − Ω = Ω

×
 

EVALUATE: The equivalent resistance of the voltmeter is eq s c 1000 R R R= + = Ω . The equivalent resistance of 

the ammeter is given by 
eq sh c

1 1 1
R R R

= +  and eq 0.625 R = Ω . The voltmeter is a high-resistance device and the 

ammeter is a low-resistance device. 
26.32. IDENTIFY: The galvanometer is represented in the circuit as a resistance Rc. Use the junction rule to relate the 

current through the galvanometer and the current through the shunt resistor. The voltage drop across each parallel 
path is the same; use this to write an equation for the resistance R. 
SET UP: The circuit is sketched in Figure 26.32. 

 
Figure 26.32 

We want that a 20.0 AI =  in the external circuit to produce fs 0.0224 AI =  through the galvanometer coil. 
EXECUTE: Applying the junction rule to point a gives a fs sh 0I I I− − =  

sh a fs 20.0 A 0.0224 A 19.98 AI I I= − = − =  
The potential difference abV  between points a and b must be the same for both paths between these two points: 

( )fs c sh shI R R I R+ =  
( )( )sh sh

c
fs

19.98 A 0.0250 
9.36 22.30 9.36 12.9 

0.0224 A
I RR R

I
Ω

= − = − Ω = Ω − Ω = Ω  

EVALUATE: sh c;R R R<< +  most of the current goes through the shunt. Adding R decreases the fraction of the 
current that goes through c.R  

26.33. IDENTIFY: The meter introduces resistance into the circuit, which affects the current through the 5.00-kΩ resistor 
and hence the potential drop across it.  
SET UP: Use Ohm’s law to find the current through the 5.00-kΩ resistor and then the potential drop across it. 
EXECUTE: (a) The parallel resistance with the voltmeter is 3.33 kΩ, so the total equivalent resistance across the 
battery is 9.33 kΩ, giving I = (50.0 V)/(9.33 kΩ) = 5.36 mA. Ohm’s law gives the potential drop across the  
5.00-kΩ resistor: V5 kΩ = (3.33 kΩ)(5.36 mA) = 17.9 V 
(b) The current in the circuit is now I = (50.0 V)/(11.0 kΩ) = 4.55 mA. V5 kΩ = (5.00 kΩ)(4.55 mA) = 22.7 V.  
(c) % error = (22.7 V – 17.9 V)/(22.7 V) = 0.214 = 21.4%. (We carried extra decimal places for accuracy since we 
had to subtract our answers.) 
EVALUATE: The presence of the meter made a very large percent error in the reading of the “true” potential 
across the resistor. 

26.34. IDENTIFY: The resistance of the galvanometer can alter the resistance in a circuit.  
SET UP: The shunt is in parallel with the galvanometer, so we find the parallel resistance of the ammeter. Then 
use Ohm’s law to find the current in the circuit. 
EXECUTE: (a) The resistance of the ammeter is given by 1/RA = 1/(1.00 Ω) + 1/(25.0 Ω), so RA = 0.962 Ω. The 
current through the ammeter, and hence the current it measures, is I = V/R = (25.0 V)/(15.96 Ω) = 1.57 A. 
(b) Now there is no meter in the circuit, so the total resistance is only 15.0 Ω. I = (25.0 V)/(15.0 Ω) = 1.67 A 
(c) (1.67 A – 1.57 A)/(1.67 A) = 0.060 = 6.0% 
EVALUATE: A 1-Ω shunt can introduce noticeable error in the measurement of an ammeter. 

26.35. IDENTIFY: When the galvanometer reading is zero 2 cbIR=E  and 1 abIR=E . 
SET UP: cbR is proportional to x and abR  is proportional to l. 

EXECUTE: (a) 2 1 1 .cb

ab

R x
R l

= =E E E  

(b) The value of the galvanometer’s resistance is unimportant since no current flows through it. 

(c) ( )2 1
0.365 m9.15 V 3.34 V
1.000 m

x
l

= = =E E  

EVALUATE: The potentiometer measures the emf 2E of the source directly, unaffected by the internal resistance 
of the source, since the measurement is made with no current through 2E . 
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26.36. IDENTIFY: A half-scale reading occurs with 600R = Ω , so the current through the galvanometer is half the full-
scale current. 
SET UP: The resistors sR , cR and R are in series, so the total resistance of the circuit is total s cR R R R= + + . 

EXECUTE: totalIR=E . ( )
3

s
3.60 10 A1.50 V 15.0 600

2
R

−⎛ ⎞×
= Ω + Ω +⎜ ⎟
⎝ ⎠

 and s 218R = Ω . 

EVALUATE: We have assumed that the device is linear, in the sense that the deflection is proportional to the 
current through the meter. 

26.37. IDENTIFY: Apply totalIR=E  to relate the resistance xR to the current in the circuit. 
SET UP: R, xR and the meter are in series, so total MxR R R R= + + , where M 65.0 R = Ω  is the resistance of the 
meter. fsd 2.50 mAI =  is the current required for full-scale deflection. 
EXECUTE: (a) When the wires are shorted, the full-scale deflection current is obtained: totalIR=E . 

( )( )31.52 V 2.50 10 A 65.0 R−= × Ω +  and 543R = Ω . 

(b) If the resistance 
total

1.52 V200 :  1.88 mA.
65.0 543x

x

VR I
R R

= Ω = = =
Ω + Ω +

 

(c) 
total

1.52 V
65.0 543 x

x

I
R R

= =
Ω + Ω +

E  and 1.52 V 608x
x

R
I

= − Ω . For each value of xI we have: 

For 4
fsd

1 6.25 10 A
4xI I −= = × , 4

1.52 V 608 1824
6.25 10 AxR −= − Ω = Ω

×
. 

For 3
fsd

1 1.25 10 A
2xI I −= = × , 3

1.52 V 608 608 .
1.25 10 AxR −= − Ω = Ω

×
 

For 3
fsd

3 1.875 10 A
4xI I −= = × , 3

1.52 V 608 203
1.875 10 AxR −= − Ω = Ω

×
. 

EVALUATE: The deflection of the meter increases when the resistance xR decreases. 
26.38. IDENTIFY: An uncharged capacitor is placed into a circuit. Apply the loop rule at each time. 

SET UP: The voltage across a capacitor is /CV q C= . 
EXECUTE: (a) At the instant the circuit is completed, there is no voltage over the capacitor, since it has no charge 
stored. 
(b) Since 0CV = , the full battery voltage appears across the resistor 125 V.RV = =E  
(c) There is no charge on the capacitor. 

(d) The current through the resistor is 
total

125 V 0.0167 A.
7500 

i
R

= = =
Ω

E  

(e) After a long time has passed the full battery voltage is across the capacitor and 0i = . The voltage across the 
capacitor balances the emf: 125 V.CV =  The voltage across the resister is zero. The capacitor’s charge is 

6 4(4.60 10 F) (125 V) 5.75 10 C.Cq CV − −= = × = ×  The current in the circuit is zero. 
EVALUATE: The current in the circuit starts at 0.0167 A and decays to zero. The charge on the capacitor starts at 
zero and rises to 45.75 10  Cq −= × . 

26.39. IDENTIFY: The capacitor discharges exponentially through the voltmeter. Since the potential difference across 
the capacitor is directly proportional to the charge on the plates, the voltage across the plates decreases 
exponentially with the same time constant as the charge. 
SET UP: The reading of the voltmeter obeys the equation V = V0e–t/RC, where RC is the time constant. 
EXECUTE: (a) Solving for C and evaluating the result when t = 4.00 s gives 

( ) 60

4.00 s
12.0 V ln / (3.40 10  )ln
3.00 V

tC
R V V

= =
⎛ ⎞× Ω ⎜ ⎟
⎝ ⎠

 = 8.49 × 10–7 F  

(b) τ = RC = (3.40 × 106 Ω)(8.49 × 10–7 F) = 2.89 s 
EVALUATE: In most laboratory circuits, time constants are much shorter than this one. 

26.40. IDENTIFY: For a charging capacitor /( ) (1 )tq t C e τ−= −E and /( ) ti t e
R

τ−=
E . 

SET UP: The time constant is 6 6(0.895 10 ) (12.4 10 F) 11.1s.RC −= × Ω × =  

EXECUTE: (a) At /0 s: (1 ) 0.t RCt q C e−= = − =E  
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At / 6 (5.0 s) /(11.1 s) 45 s: (1 ) (12.4 10  F)(60.0 V)(1 ) 2.70 10  C.t RCt q C e e− − − −= = − = × − = ×E  

At / 6 (10.0 s) /(11.1 s) 410 s: (1 ) (12.4 10  F)(60.0 V)(1 ) 4.42 10  C.t RCt q C e e− − − −= = − = × − = ×E  

At / 6 (20.0 s) /(11.1 s) 420 s: (1 ) (12.4 10  F)(60.0 V)(1 ) 6.21 10  C.t RCt q C e e− − − −= = − = × − = ×E  

At / 6 (100 s) /(11.1 s) 4100 s: (1 ) (12.4 10  F)(60.0 V)(1 ) 7.44 10  C.t RCt q C e e− − − −= = − = × − = ×E  

(b) The current at time t is given by: /t RCi e
R

−=
E .  

At 0 /11.1 5
5

60.0 V0 s: 6.70 10  A.
8.95 10  

t i e− −= = = ×
× Ω

  

At 5 /11.1 5
5

60.0 V5 s: 4.27 10  A.
8.95 10  

t i e− −= = = ×
× Ω

 

At 10 /11.1 5
5

60.0 V10 s: 2.27 10  A.
8.95 10  

t i e− −= = = ×
× Ω

 

At 20 /11.1 5
5

60.0 V20 s: 1.11 10  A.
8.95 10  

t i e− −= = = ×
× Ω

 

At 100 /11.1 9
5

60.0 V100 s: 8.20 10 A.
8.95 10  

t i e− −= = = ×
× Ω

 

(c) The graphs of ( )q t and ( )i t are given in Figure 26.40a and 26.40b 
EVALUATE: The charge on the capacitor increases in time as the current decreases. 

  
Figure 26.40 

26.41. IDENTIFY: The capacitors, which are in parallel, will discharge exponentially through the resistors. 
SET UP: Since V is proportional to Q, V must obey the same exponential equation as Q,  
V = V0 e–t/RC. The current is I = (V0 /R) e–t/RC. 
EXECUTE: (a) Solve for time when the potential across each capacitor is 10.0 V: 

t = − RC ln(V/V0) = –(80.0 Ω)(35.0 µF) ln(10/45) = 4210 µs = 4.21 ms 
(b) I = (V0 /R) e–t/RC. Using the above values, with V0 = 45.0 V, gives I = 0.125 A. 
EVALUATE: Since the current and the potential both obey the same exponential equation, they are both reduced 
by the same factor (0.222) in 4.21 ms. 

26.42. IDENTIFY: In RCτ =  use the equivalent capacitance of the two capacitors. 

SET UP: For capacitors in series, 
eq 1 2

1 1 1
C C C

= + . For capacitors in parallel, eq 1 2C C C= + . Originally, 

0.870 s.RCτ = =  

EXECUTE: (a) The combined capacitance of the two identical capacitors in series is given by 
eq

1 1 1 2
C C C C

= + = , 

so eq 2
CC = . The new time constant is thus 0.870 s( / 2) 0.435 s.2R C = =  

(b) With the two capacitors in parallel the new total capacitance is simply 2C. Thus the time constant is 
(2 ) 2(0.870 s) 1.74 s.R C = =  

EVALUATE: The time constant is proportional to eqC . For capacitors in series the capacitance is decreased and 
for capacitors in parallel the capacitance is increased. 
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26.43. IDENTIFY and SET UP: Apply the loop rule. The voltage across the resistor depends on the current through it and 
the voltage across the capacitor depends on the charge on its plates. 
EXECUTE: 0R CV V− − =E  

( )( )120 V, 0.900 A 80.0 72 V, so 48 VR CV IR V= = = Ω = =E  

( )( )64.00 10  F 48 V 192 CQ CV μ−= = × =  

EVALUATE: The initial charge is zero and the final charge is 480 C.C μ=E  Since current is flowing at the 
instant considered in the problem the capacitor is still being charged and its charge has not reached its final value. 

26.44. IDENTIFY: The charge is increasing while the current is decreasing. Both obey exponential equations, but they 
are not the same equation.  
SET UP: The charge obeys the equation Q = Qmax(1 – e–t/RC), but the equation for the current is I = Imaxe–t/RC. 
EXECUTE: When the charge has reached 1

4  of its maximum value, we have Qmax/4 = Qmax(1 – e–t/RC) , which  
says that the exponential term has the value e–t/RC = 3

4 .  The current at this time is I = Imaxe–t/RC = Imax(3/4) =  
(3/4)[(10.0 V)/(12.0 Ω)] = 0.625 A 
EVALUATE: Notice that the current will be 3

4 ,  not 1
4 ,  of its maximum value when the charge is 1

4  of its 
maximum. Although current and charge both obey exponential equations, the equations have different forms for a 
charging capacitor. 

26.45. IDENTIFY: The stored energy is proportional to the square of the charge on the capacitor, so it will obey an 
exponential equation, but not the same equation as the charge.  
SET UP: The energy stored in the capacitor is U = Q2/2C and the charge on the plates is Q0 e–t/RC. The current is  
I = I0 e–t/RC.  
EXECUTE: U = Q2/2C = (Q0 e–t/RC)2/2C = U0 e–2t/RC 
When the capacitor has lost 80% of its stored energy, the energy is 20% of the initial energy, which is U0/5. U0/5 = 
U0 e–2t/RC gives t = (RC/2) ln 5 = (25.0 Ω)(4.62 pF)(ln 5)/2 = 92.9 ps. 
At this time, the current is I = I0 e–t/RC = (Q0/RC) e–t/RC, so 

I = (3.5 nC)/[(25.0 Ω)(4.62 pF)] e–(92.9 ps)/[(25.0 Ω)(4.62 pF)] = 13.6 A. 
EVALUATE: When the energy reduced by 80%, neither the current nor the charge are reduced by that percent. 

26.46. IDENTIFY: Both the charge and energy decay exponentially, but not with the same time constant since the energy 
is proportional to the square of the charge.  
SET UP: The charge obeys the equation Q = Q0 e–t/RC but the energy obeys the equation  
U = Q2/2C = (Q0 e–t/RC)/2C = U0 e–2t/RC. 
EXECUTE: (a) The charge is reduced by half: Q0/2 = Q0 e–t/RC. This gives 

t = RC ln 2 = (175 Ω)(12.0 µF)(ln 2) = 1.456 ms = 1.46 ms. 
(b) The energy is reduced by half: U0/2 = U0 e–2t/RC. This gives 

t = (RC ln 2)/2 = (1.456 ms)/2 = 0.728 ms. 
EVALUATE: The energy decreases faster than the charge because it is proportional to the square of the charge. 

26.47. IDENTIFY: In both cases, simplify the complicated circuit by eliminating the appropriate circuit elements. The 
potential across an uncharged capacitor is initially zero, so it behaves like a short circuit. A fully charged capacitor 
allows no current to flow through it.  
(a) SET UP: Just after closing the switch, the uncharged capacitors all behave like short circuits, so any resistors 
in parallel with them are eliminated from the circuit. 
EXECUTE: The equivalent circuit consists of 50 Ω and 25 Ω in parallel, with this combination in series with  
75 Ω, 15 Ω, and the 100-V battery. The equivalent resistance is 90 Ω + 16.7 Ω = 106.7 Ω, which gives  
I = (100 V)/(106.7 Ω) = 0.937 A. 
(b) SET UP: Long after closing the switch, the capacitors are essentially charged up and behave like open circuits 
since no charge can flow through them. They effectively eliminate any resistors in series with them since no 
current can flow through these resistors. 
EXECUTE: The equivalent circuit consists of resistances of 75 Ω, 15 Ω, and three 25-Ω resistors, all in series with 
the 100-V battery, for a total resistance of 165 Ω. Therefore I = (100 V)/(165 Ω) = 0.606 A 
EVALUATE: The initial and final behavior of the circuit can be calculated quite easily using simple series-parallel 
circuit analysis. Intermediate times would require much more difficult calculations! 

26.48. IDENTIFY: When the capacitor is fully charged the voltage V across the capacitor equals the battery emf and 
Q CV= . For a charging capacitor, ( )/1 t RCq Q e−= − . 

SET UP: ln xe x=  
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EXECUTE: (a) 6 4(5.90 10 F)(28.0 V) 1.65 10 C.Q CV − −= = × = ×  

(b) /(1 )t RCq Q e−= − , so / 1t RC qe
Q

− = −  and .
ln(1 / )

tR
C q Q

−
=

−
 After 

3
3

6

3 10  s3 10  s: 463 .
(5.90 10  F)(ln(1 110/165))

t R
−

−
−

− ×
= × = = Ω

× −
 

(c) If the charge is to be 99% of final value: /(1 )t RCq e
Q

−= − gives 

6ln(1 / ) (463 ) (5.90 10 F) ln(0.01) 0.0126 s.t RC q Q −= − − = − Ω × =  
EVALUATE: The time constant is 2.73 msRCτ = = . The time in part (b) is a bit more than one time constant and 
the time in part (c) is about 4.6 time constants. 

26.49. IDENTIFY: For each circuit apply the loop rule to relate the voltages across the circuit elements. 
(a) SET UP: With the switch in position 2 the circuit is the charging circuit shown in Figure 26.49a. 

 

At t = 0, q = 0. 

Figure 26.49a  
EXECUTE: The charge q on the capacitor is given as a function of time by Eq.(26.12): 

( )/1 t RCq C e−= −E  

( )( )5 4
f 1.50 10  F 18.0 V 2.70 10  C.Q C − −= = × = ×E  

( )( )5980 1.50 10  F 0.0147 sRC −= Ω × =  

Thus, at ( ) ( ) ( )( )0.0100 s / 0.0147  s40.0100 s, 2.70 10  C 1 133 C.t q e μ−−= = × − =  

(b) 5

133 C 8.87 V
1.50 10  FC

qv
C

μ
−= = =

×
 

The loop rule says 0C Rv v− − =E  
18.0 V 8.87 V 9.13 VR Cv v= − = − =E  

(c) SET UP: Throwing the switch back to position 1 produces the discharging circuit shown in Figure 26.49b. 

 

The initial charge 0Q  is the 
charge calculated in part (b), 

0 133 C.Q μ=  

Figure 26.49b  

EXECUTE: 5

133 C 8.87 V,
1.50 10  FC

qv
C

μ
−= = =

×
 the same as just before the switch is thrown. But now 

0,  so 8.87 V.C R R Cv v v v− = = =  
(d) SET UP: In the discharging circuit the charge on the capacitor as a function of time is given by Eq.(26.16): 

/
0 .t RCq Q e−=  

EXECUTE: 0.0147 s,RC =  the same as in part (a). Thus at ( )(0.0100 s) /(0.0147 s)0.0100 s, (133 C) 67.4 C.t q eμ μ−= = =  
EVALUATE: 10.0 mst =  is less than one time constant, so at the instant described in part (a) the capacitor is not 
fully charged; its voltage (8.87 V) is less than the emf. There is a charging current and a voltage drop across the 
resistor. In the discharging circuit the voltage across the capacitor starts at 8.87 V and decreases. After 10.0 mst =  
it has decreased to / 4.49 V.Cv q C= =  

26.50. IDENTIFY: 2P VI I R= =  
SET UP: Problem 25.77 says that for 12-gauge wire the maximum safe current is 2.5 A. 

EXECUTE: (a) 4100 W 17.1 A.
240 V

PI
V

= = =  So we need at least 14-gauge wire (good up to 18 A). 12 gauge is also 

ok (good up to 25 A). 
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(b) 
2VP

R
=  and 

2 2(240 V) 14
4100 W

VR
P

= = = Ω . 

(c) At 11c/  per kWH, for 1 hour the cost is (11c/kWh)(1 h)(4.1 kW) 45c=/ / . 
EVALUATE: The cost to operate the device is proportional to its power consumption. 

26.51. IDENTIFY and SET UP: The heater and hair dryer are in parallel so the voltage across each is 120 V and the 
current through the fuse is the sum of the currents through each appliance. As the power consumed by the dryer 
increases the current through it increases. The maximum power setting is the highest one for which the current 
through the fuse is less than 20 A. 
EXECUTE: Find the current through the heater. so / 1500 W /120 V 12.5 A.P VI I P V= = = =  The maximum 
total current allowed is 20 A, so the current through the dryer must be less than 20 A 12.5 A 7.5 A.− =  The power 
dissipated by the dryer if the current has this value is ( )( )120 V 7.5 A 900 W.P VI= = =  For P at this value or 
larger the circuit breaker trips. 
EVALUATE: 2 /P V R=  and for the dryer V is a constant 120 V. The higher power settings correspond to a 
smaller resistance R and larger current through the device. 

26.52. IDENTIFY: The current gets split evenly between all the parallel bulbs.  

SET UP: A single bulb will draw 90 W 0.75 A
120 V

PI
V

= = = . 

EXECUTE: 20 ANumber of bulbs 26.7.
0.75 A

≤ = So you can attach 26 bulbs safely. 

EVALUATE: In parallel the voltage across each bulb is the circuit voltage. 
26.53. IDENTIFY and SET UP: Ohm's law and Eq.(25.18) can be used to calculate I and P given V and R. Use Eq.(25.12) 

to calculate the resistance at the higher temperature. 
(a) EXECUTE: When the heater element is first turned on it is at room temperature and has resistance 20 .R = Ω  

120 V 6.0 A
20 

VI
R

= = =
Ω

 

( )22 120 V
720 W

20 
VP
R

= = =
Ω

 

(b) Find the resistance R(T) of the element at the operating temperature of 280 C.°  
Take 0 023.0 C and 20 .T R= ° = Ω  Eq.(25.12) gives 

( ) ( )( )0 01R T R T Tα= + − = ( )( )( )( )1320 1 2.8 10 C 280 C 23.0 C 34.4 .−−Ω + × ° ° − ° = Ω  

120 V 3.5 A
34.4 

VI
R

= = =
Ω

 

( )22 120 V
420 W

34.4 
VP
R

= = =
Ω

 

EVALUATE: When the temperature increases, R increases and I and P decrease. The changes are substantial. 
26.54. (a) IDENTIFY: Two of the resistors in series would each dissipate one-half the total, or 1.2 W, which is ok. But 

the series combination would have an equivalent resistance of 800 ,Ω  not the 400 Ω  that is required. Resistors in 
parallel have an equivalent resistance that is less than that of the individual resistors, so a solution is two in series 
in parallel with another two in series. 
SET UP: The network can be simplified as shown in Figure 26.54a. 

 
Figure 26.54a 

EXECUTE: sR  is the resistance equivalent to two of the 400 Ω  resistors in series. s 800 .R R R= + = Ω  eqR  is 

the resistance equivalent to the two s 800 R = Ω  resistors in parallel: eq
eq s s s

1 1 1 2 800 ;  400 .
2

R
R R R R

Ω
= + = = = Ω  

EVALUATE: This combination does have the required 400 Ω  equivalent resistance. It will be shown in part (b) 
that a total of 2.4 W can be dissipated without exceeding the power rating of each individual resistor. 
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IDENTIFY: Another solution is two resistors in parallel in series with two more in parallel. 
SET UP: The network can be simplified as shown in Figure 26.54b. 

 
Figure 26.54b 

EXECUTE: p
p

1 1 1 2 ;  200 
400 

R
R R R

= + = = Ω
Ω

; eq p p 400 R R R= + = Ω  

EVALUATE: This combination has the required 400 Ω  equivalent resistance It will be shown in part (b) that a 
total of 2.4 W can be dissipated without exceeding the power rating of each individual resistor. 
(b) IDENTIFY and SET UP: Find the applied voltage Vab such that a total of 2.4 W is dissipated and then for this 
Vab find the power dissipated by each resistor. 
EXECUTE: For a combination with equivalent resistance eq 400 R = Ω  to dissipate 2.4 W the voltage abV  applied 

to the network must be given by ( )( )2
eq eq/  so 2.4 W 400 31.0 Vab abP V R V PR= = = Ω =  and the current through 

the equivalent resistance is / 31.0 V / 400 0.0775 A.abI V R= = Ω =  For the first combination this means 31.0 V 
across each parallel branch and ( )1

2 31.0 V 15.5 V=  across each 400 Ω resistor. The power dissipated by each 

individual resistor is then ( )22 / 15.5 V / 400 0.60 W,P V R= = Ω =  which is less than the maximum allowed value 
of 1.20 W. For the second combination this means a voltage of ( )( )p 0.0775 A 200 15.5 VIR = Ω =  across each 
parallel combination and hence across each separate resistor. The power dissipated by each resistor is again 

( )22 / 15.5 V / 400 0.60 W,P V R= = Ω =  which is less than the maximum allowed value of 1.20 W. 
EVALUATE: The symmetry of each network says that each resistor in the network dissipates the same power. So, 
for a total of 2.4 W dissipated by the network, each resistor dissipates (2.4 W) / 4 0.60 W,=  which agrees with the 
above analysis. 

26.55. IDENTIFY: The Cu and Ni cables are in parallel. For each, LR
A
ρ

= . 

SET UP: The composite cable is sketched in Figure 26.55. The cross sectional area of the nickel segment is 2aπ  
and the area of the copper portion is 2 2( ).b aπ −  For nickel 87.8 10  mρ −= × Ω ⋅  and for copper 81.72 10  m.ρ −= × Ω ⋅  

EXECUTE: 
Cable Ni Cu

1 1 1
R R R

= + . Ni Ni Ni 2/ LR ρ L A ρ
πa

= =  and Cu Cu Cu 2 2/
( )

LR ρ L A ρ
π b a

= =
−

. Therefore, 

2 2 2

cable Ni Cu

1 ( )πa π b a
R ρ L ρ L

−
= + . 

2 2 2 2 2 2

8 8
cable Ni Cu

1 (0.050 m) (0.100 m) (0.050 m)
20 m 7.8 10  m 1.72 10  m

π a b a π
R L ρ ρ − −

⎛ ⎞ ⎡ ⎤− −
= + = +⎜ ⎟ ⎢ ⎥× Ω ⋅ × Ω ⋅⎣ ⎦⎝ ⎠

 and 6
Cable 13.6 10  13.6 .R μ−= × Ω = Ω  

(b) eff eff 2

L LR ρ
A πb

ρ= = . This gives 
2 2 6

8
eff

(0.10 m) (13.6 10 ) 2.14 10 m
20 m

πb R πρ
L

−
−× Ω

= = = × Ω ⋅  

EVALUATE: The effective resistivity of the cable is about 25% larger than the resistivity of copper. If nickel had 
infinite resitivity and only the copper portion conducted, the resistance of the cable would be 14.6 μΩ , which is 
not much larger than the resistance calculated in part (a). 

 
Figure 26.55 
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26.56. IDENTIFY and SET UP: Let 1.00 ,R = Ω  the resistance of one wire. Each half of the wire has 

h / 2 0.500 .R R= = Ω  The combined wires are the same as a resistor network. Use the rules for equivalent 
resistance for resistors in series and parallel to find the resistance of the network, as shown in Figure 26.56. 
EXECUTE:  

 
Figure 26.56 

The equivalent resistance is ( )5
h h h h 2/ 2 5 / 2 0.500 1.25 R R R R+ + = = Ω = Ω  

EVALUATE: If the two wires were connected end-to-end, the total resistance would be 2.00 .Ω  If they were 
joined side-by-side, the total resistance would be 0.500 .Ω  Our answer is between these two limiting values. 

26.57. IDENTIFY: The terminal voltage of the battery depends on the current through it and therefore on the equivalent 
resistance connected to it. The power delivered to each bulb is 2P I R= , where I is the current through it. 
SET UP: The terminal voltage of the source is Ir−E . 
EXECUTE: (a) The equivalent resistance of the two bulbs is1.0 .Ω  This equivalent resistance is in series with the 

internal resistance of the source, so the current through the battery is 
total

8.0 V 4.4 A
1.0 0.80

VI
R

= = =
Ω + Ω

 and the 

current through each bulb is 2.2 A. The voltage applied to each bulb is 8.0 V (4.4 A)(0.80 ) 4.4 VIr− = − Ω =E . 

Therefore, 2 2
bulb (2.2 A) (2.0 ) 9.7 WP I R= = Ω = . 

(b) If one bulb burns out, then 
total

8.0 V 2.9 A.
2.0 0.80 

VI
R

= = =
Ω + Ω

. The current through the remaining bulb is 

2.9 A, and 2 2(2.9 A) (2.0 ) 16.3 WP I R= = Ω = . The remaining bulb is brighter than before, because it is 
consuming more power. 
EVALUATE: In Example 26.2 the internal resistance of the source is negligible and the brightness of the 
remaining bulb doesn’t change when one burns out. 

26.58. IDENTIFY: Half the current flows through each parallel resistor and the full current flows through the third resistor, 
that is in series with the parallel combination. Therefore, only the series resistor will be at its maximum power. 
SET UP: 2P I R=  
EXECUTE: The maximum allowed power is when the total current is the maximum allowed value of 

/ 36 W / 2.4 3.9 A.I P R= = Ω = Then half the current flows through the parallel resistors and the maximum 

power is 2 2 2 2 23 3
max 2 2( / 2) ( / 2) (3.9 A) (2.4 ) 54 W.P I R I R I R I R= + + = = Ω =  

EVALUATE: If all three resistors were in series or all three were in parallel, then the maximum power would be 
3(36 W) 108 W= . For the network in this problem, the maximum power is half this value. 

26.59. IDENTIFY: The ohmmeter reads the equivalent resistance between points a and b. Replace series and parallel 
combinations by their equivalent. 

SET UP: For resistors in parallel, 
eq 1 2

1 1 1
R R R

= + . For resistors in series, eq 1 2R R R= +  

EXECUTE: Circuit (a): The 75.0 Ω  and 40.0 Ω  resistors are in parallel and have equivalent resistance 26.09 Ω . 
The 25.0 Ω  and 50.0 Ω resistors are in parallel and have an equivalent resistance of 16.67 Ω . The equivalent 

network is given in Figure 26.59a. 
eq

1 1 1
100.0 23.05R

= +
Ω Ω

, so eq 18.7R = Ω .  

 
Figure 26.59a 
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Circuit (b): The 30.0Ω  and 45.0 Ω  resistors are in parallel and have equivalent resistance 18.0 Ω . The 

equivalent network is given in Figure 26.59b. 
eq

1 1 1
10.0 30.3R

= +
Ω Ω

, so eq 7.5R = Ω . 

 
Figure 26.59b 

EVALUATE: In circuit (a) the resistance along one path between a and b is 100.0 Ω , but that is not the equivalent 
resistance between these points. A similar comment can be made about circuit (b). 

26.60. IDENTIFY: Heat, which is generated in the resistor, melts the ice. 
SET UP: Find the rate at which heat is generated in the 20.0-Ω resistor using 2/ .P V R=  Then use the heat of 
fusion of ice to find the rate at which the ice melts. The heat dH to melt a mass of ice dm is dH = LF dm, where LF 
is the latent heat of fusion. The rate at which heat enters the ice, dH /dt, is the power P in the resistor, so P = LF 
dm/dt. Therefore the rate of melting of the ice is dm/dt = P/LF. 
EXECUTE: The equivalent resistance of the parallel branch is 5.00 Ω, so the total resistance in the circuit is 35.0 Ω. 
Therefore the total current in the circuit is ITotal = (45.0 V)/(35.0 Ω) = 1.286 A. The potential difference across  
the 20.0-Ω resistor in the ice is the same as the potential difference across the parallel branch: Vice = ITotalRp =  
(1.286 A)(5.00 Ω) = 6.429 V. The rate of heating of the ice is Pice = Vice

2/R = (6.429 V)2/(20.0 Ω) = 2.066 W. This 
power goes into to heat to melt the ice, so 

dm/dt = P/LF = (2.066 W)/(3.34 × 105 J/kg) = 6.19 × 10–6 kg/s = 6.19 × 10–3 g/s 
EVALUATE: The melt rate is about 6 mg/s, which is not much. It would take 1000 s to melt just 6 g of ice. 

26.61. IDENTIFY: Apply the junction rule to express the currents through the 5.00  and 8.00 Ω Ω  resistors in terms of 
1 2 3,  and .I I I  Apply the loop rule to three loops to get three equations in the three unknown currents. 

SET UP: The circuit is sketched in Figure 26.61. 

 
Figure 26.61 

The current in each branch has been written in terms of 1 2 3,  and I I I  such that the junction rule is satisfied at each 
junction point. 
EXECUTE: Apply the loop rule to loop (1).  

( ) ( )( )2 2 312.0 V 1.00 5.00 0I I I− + Ω + − Ω =  

( ) ( )2 36.00 5.00 12.0 VI IΩ − Ω =     eq.(1) 
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Apply the loop rule to loop (2).  
( ) ( )( )1 1 31.00 9.00 V 8.00 0I I I− Ω + − + Ω =  

( ) ( )1 39.00 8.00 9.00 VI IΩ + Ω =     eq.(2) 

Apply the loop rule to loop (3). 
( ) ( ) ( )3 1 210.0 9.00 V 1.00 1.00 12.0 V 0I I I− Ω − + Ω − Ω + =  
( ) ( ) ( )1 2 31.00 1.00 10.0 3.00 VI I I− Ω + Ω + Ω =     eq.(3) 

Eq.(1) gives 5 8
2 3 1 36 92.00 A ; eq.(2) gives 1.00 AI I I I= + = −  

Using these results in eq.(3) gives ( )( ) ( )( ) ( )8 5
3 3 39 61.00 A 1.00 2.00 A 1.00 10.0 3.00 VI I I− − Ω + + Ω + Ω =  

( ) ( )16 15 180 18
3 318 2112.00 A; 2.00 A 0.171 AI I+ + = = =  

Then ( )5 5
2 36 62.00 A 2.00 A 0.171 A 2.14 AI I= + = + = and ( )8 8

1 39 91.00 A 1.00 A 0.171 A 0.848 A.I I= − = − =  
EVALUATE: We could check that the loop rule is satisfied for a loop that goes through the 5.00 ,  8.00 Ω Ω  and 
10.0 Ω  resistors. Going around the loop clockwise: ( )( ) ( )( ) ( )2 3 1 3 35.00 8.00 10.0 I I I I I− − Ω + + Ω + Ω =  

9.85 V 8.15 V 1.71 V,− + +  which does equal zero, apart from rounding. 
26.62. IDENTIFY: Apply the junction rule and the loop rule to the circuit. 

SET UP: Because of the polarity of each emf, the current in the 7.00 Ω resistor must be in the direction shown in 
Figure 26.62a. Let I be the current in the 24.0 V battery. 
EXECUTE: The loop rule applied to loop (1) gives: 24.0 V (1.80 A)(7.00 ) (3.00 ) 0I+ − Ω − Ω = . 3.80 AI = . The 
junction rule then says that the current in the middle branch is 2.00 A, as shown in Figure 26.62b. The loop rule 
applied to loop (2) gives: (1.80 A)(7.00 ) (2.00 A)(2.00 ) 0+ − Ω + Ω =E and 8.6 V=E . 
EVALUATE: We can check our results by applying the loop rule to loop (3) in Figure 26.62b: 

24.0 V (2.00 A)(2.00 ) (3.80 A)(3.00 ) 0+ − − Ω − Ω =E  and 24.0 V 4.0 V 11.4 V 8.6 Vε = − − = , which agrees 
with our result from loop (2). 

  
Figure 26.62 

26.63. IDENTIFY and SET UP: The circuit is sketched in Figure 26.63. 

 

Two unknown currents 1I  (through the 2.00 Ω  
resistor) and 2I  (through the 5.00 Ω  resistor) 
are labeled on the circuit diagram. The current 
through the 4.00 Ω  resistor has been written as 

2 1I I−  using the junction rule.  

Figure 26.63  
Apply the loop rule to loops (1) and (2) to get two equations for the unknown currents, 1 2 and .I I  Loop (3) can 
then be used to check the results. 
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EXECUTE: loop (1):  ( ) ( )( )1 2 120.0 V 2.00 14.0 V 4.00 0I I I+ − Ω − + − Ω =  

1 26.00 4.00 6.00 AI I− =  

1 23.00 2.00 3.00 AI I− =     eq.(1) 
loop (2):  ( ) ( )( )2 2 136.0 V 5.00 4.00 0I I I+ − Ω − − Ω =  

1 24.00 9.00 36.0 AI I− + =     eq.(2) 
Solving eq. (1) for 2

1 1 23 gives 1.00 AI I I= +  

Using this in eq.(2) gives ( )2
2 234.00 1.00 A 9.00 36.0 AI I− + + =  

( )8
2 23 9.00 40.0 A and 6.32 A.I I− + = =   

Then ( )2 2
1 23 31.00 A 1.00 A 6.32 A 5.21 A.I I= + = + =  

In summary then  
Current through the 2.00 Ω  resistor: 1 5.21 A.I =   
Current through the 5.00 Ω  resistor: 2 6.32 A.I =   
Current through the 4.00 Ω  resistor: 2 1 6.32 A 5.21 A 1.11 A.I I− = − =  
EVALUATE: Use loop (3) to check. ( ) ( )1 220.0 V 2.00 14.0 V 36.0 V 5.00 0I I+ − Ω − + − Ω =  

( )( ) ( )( )5.21 A 2.00 6.32 A 5.00 42.0 VΩ + Ω =  
10.4 V 31.6 V 42.0 V,+ =  so the loop rule is satisfied for this loop. 

26.64. IDENTIFY: Apply the loop and junction rules. 
SET UP: Use the currents as defined on the circuit diagram in Figure 26.64 and obtain three equations to solve for 
the currents. 
EXECUTE: 1 1 2Left loop: 14 2( ) 0I I I− − − =  and 1 23 2 14I I− = .  

1 2 1Top loop : 2( ) 0I I I I− − + + =  and 1 22 3 0I I I− + + = . 

1 2 1 2 2Bottom loop : ( ) 2( ) 0I I I I I I− − + + − − =  and 1 23 4 0.I I I− + − =  
Solving these equations for the currents we find: 

1 3battery 1 R 210.0 A; 6.0 A; 2.0 A.RI I I I I I= = = = = =  

So the other currents are: 
2 4 51 1 2 1 24.0 A; 4.0 A; 6.0 A.R R RI I I I I I I I I I= − = = − = = − + =  

(b) eq
14.0 V 1.40 .10.0 A

VR I= = = Ω  

EVALUATE: It isn’t possible to simplify the resistor network using the rules for resistors in series and parallel. 
But the equivalent resistance is still defined by eqV IR= . 

 
Figure 26.64 

26.65. (a) IDENTIFY: Break the circuit between points a and b means no current in the middle branch that contains the 
3.00 Ω  resistor and the 10.0 V battery. The circuit therefore has a single current path. Find the current, so that 
potential drops across the resistors can be calculated. Calculate abV  by traveling from a to b, keeping track of the 
potential changes along the path taken. 
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SET UP: The circuit is sketched in Figure 26.65a. 

 
Figure 26.65a 

EXECUTE: Apply the loop rule to loop (1). 
( ) ( )12.0 V 1.00 2.00 2.00 1.00 8.0 V 2.00 1.00 0I I+ − Ω + Ω + Ω + Ω − − Ω + Ω =  

12.0 V 8.0 V 0.4444 A.
9.00 

I −
= =

Ω
  

To find abV  start at point b and travel to a, adding up the potential rises and drops. Travel on path (2) shown on 
 the diagram. The 1.00  and 3.00 Ω Ω  resistors in the middle branch have no current through them and hence no 
voltage across them. Therefore, ( )10.0 V 12.0 V 1.00 1.00 2.00 ;b aV I V− + − Ω + Ω + Ω =  thus 

( )( )2.0 V 0.4444 A 4.00 0.22 Va bV V− = − Ω = +  (point a is at higher potential) 

EVALUATE: As a check on this calculation we also compute abV  by traveling from b to a on path (3). 

( )10.0 V 8.0 V 2.00 1.00 2.00 b aV I V− + + Ω + Ω+ Ω =  

( )( )2.00 V 0.4444 A 5.00 0.22 V,abV = − + Ω = + which checks. 
(b) IDENTIFY and SET UP: With points a and b connected by a wire there are three current branches, as shown in 
Figure 26.65b.  

 
Figure 26.65b 

The junction rule has been used to write the third current (in the 8.0 V battery) in terms of the other currents. Apply 
the loop rule to loops (1) and (2) to obtain two equations for the two unknowns 1 2and .I I  
EXECUTE: Apply the loop rule to loop (1). 

( ) ( ) ( ) ( ) ( )1 1 2 2 112.0 V 1.00 2.00 1.00 10.0 V 3.00 1.00 0I I I I I− Ω − Ω − Ω − − Ω − Ω =  

( ) ( )1 22.0 V 4.00 4.00 0I I− Ω − Ω =  

( ) ( )1 22.00 2.00 1.0 VI IΩ + Ω =     eq.(1) 
Apply the loop rule to loop (2). 
( )( ) ( )( ) ( )( ) ( ) ( )1 2 1 2 1 2 2 22.00 1.00 8.0 V 2.00 3.00 10.0 V 1.00 0I I I I I I I I− − Ω − − Ω − − − Ω + Ω + + Ω =

( ) ( )1 22.0 V 5.00 9.00 0I I− Ω + Ω =     eq.(2) 
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Solve eq.(1) for 2I  and use this to replace 2I  in eq.(2). 

2 10.50 AI I= −  

( ) ( )( )1 12.0 V 5.00 9.00 0.50 A 0I I− Ω + Ω − =  

( ) ( ) ( )1 114.0 6.50 V so 6.50 V / 14.0 0.464 AI IΩ = = Ω =  

2 0.500 A 0.464 A 0.036 A.I = − =  
The current in the 12.0 V battery is 1 0.464 A.I =  
EVALUATE: We can apply the loop rule to loop (3) as a check. 

1 1 212.0 V (1.00 2.00 1.00 ) ( )(2.00 1.00 2.00 ) 8.0 VI I I+ − Ω+ Ω+ Ω − − Ω+ Ω+ Ω − = 4.0 V 1.86 V 2.14 V 0,− − =  
as it should. 

26.66. IDENTIFY: Simplify the resistor networks as much as possible using the rule for series and parallel combinations 
of resistors. Then apply Kirchhoff’s laws. 
SET UP: First do the series/parallel reduction. This gives the circuit in Figure 26.66. The rate at which the 
10.0 Ω  resistor generates thermal energy is 2P I R= . 
EXECUTE: Apply Kirchhoff’s laws and solve for E . adefa 20 : (20 )(2 A) 5 V (20 ) 0V IΔ = − Ω − − Ω = .  
This gives 2 2.25 AI = − . Then 1 2 2 AI I+ =  gives 1 2 A ( 2.25 A) 4.25 AI = − − = . 

abcdefa 0: (15 )(4.25 A) (20 )( 2.25 A) 0VΔ = Ω + − Ω − =E . This gives 109 V= −E . Since E is calculated to be 
negative, its polarity should be reversed. 
(b) The parallel network that contains the 10.0Ω  resistor in one branch has an equivalent resistance of 10 Ω . The 
voltage across each branch of the parallel network is par (10 )(2A) 20 VV RI= = Ω = . The current in the upper 

branch is 20 V 2 A30 3
VI R= = =

Ω
. Pt E= , so 2I Rt E= , where 60.0 JE = . ( )22

3 A (10 ) 60 JtΩ = , and 13.5 st = . 

EVALUATE: For the 10.0 Ω  resistor, 2 4.44 WP I R= = . The total rate at which electrical energy is inputed to 
the circuit in the emf is (5.0 V)(2.0 A) (109 V)(4.25 A) 473 J+ = . Only a small fraction of the energy is dissipated 
in the 10.0 Ω  resistor. 

 
Figure 26.66 

26.67. IDENTIFY: In Figure 26.67, points a and c are at the same potential and points d and b are at the same potential, 
so we can calculate abV  by calculating .cdV  We know the current through the resistor that is between points c and 
d. We thus can calculate the terminal voltage of the 24.0 V battery without calculating the current through it. 
SET UP:  

 
Figure 26.67 

EXECUTE: ( )1 10.0 12.0 Vd cV I V+ Ω + =  

12.7 V; 12.7 Vc d a b c dV V V V V V− = − = − =  
EVALUATE: The voltage across each parallel branch must be the same. The current through the 24.0 V battery 
must be ( ) ( )24.0 V 12.7 V / 10.0 1.13 A− Ω =  in the direction b to a. 
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26.68. IDENTIFY: The current through the 40.0 Ω  resistor equals the current through the emf, and the current through 
each of the other resistors is less than or equal to this current. So, set 40 1.00 WP = and use this to solve for the 
current I through the emf. If 40 1.00 WP = , then P for each of the other resistors is less than 1.00 W. 
SET UP: Use the equivalent resistance for series and parallel combinations to simplify the circuit. 
EXECUTE: 2I R P=  gives 2(40 ) 1 WI Ω = , and 0.158 AI = . Now use series / parallel reduction to simplify the 
circuit. The upper parallel branch is 6.38Ω  and the lower one is 25Ω . The series sum is now 126 Ω . Ohm’s law 
gives (126 )(0.158 A) 19.9 V= Ω =E . 
EVALUATE: The power input from the emf is 3.14 WI =E , so nearly one-third of the total power is dissipated in 
the 40.0 Ω  resistor. 

26.69. IDENTIFY and SET UP: Simplify the circuit by replacing the parallel networks of resistors by their equivalents. In 
this simplified circuit apply the loop and junction rules to find the current in each branch. 
EXECUTE: The 20.0-  and 30.0-Ω Ω  resistors are in parallel and have equivalent resistance 12.0 .Ω  The two 
resistors R are in parallel and have equivalent resistance R/2. The circuit is equivalent to the circuit sketched in 
Figure 26.69. 

 
Figure 26.69 

(a) Calculate caV  by traveling along the branch that contains the 20.0 V battery, since we know the current in that 
branch. 

( )( ) ( )( )5.00 A 12.0 5.00 A 18.0 20.0 Va cV V− Ω − Ω − =  

20.0 V 90.0 V 60.0 V 170.0 Va cV V− = + + =  

16.0 Vb a abV V V− = =  

170.0 V so 186.0 V,baX V X− = =  with the upper terminal +  

(b) ( ) ( )1 16.0 V / 8.0 2.00 AI = Ω =  

The junction rule applied to point a gives 2 1 25.00 A, so 3.00 A.I I I+ = =  The current through the 200.0 V battery 
is in the direction from the  to the − +  terminal, as shown in the diagram. 
(c) ( )2200.0 V / 2 170.0 VI R− =  

( )( )3.00 A / 2 30.0 V so 20.0 R R= = Ω  

EVALUATE: We can check the loop rule by going clockwise around the outer circuit loop. This gives 
( )( ) ( )( )20.0 V 5.00 A 18.0 12.0 3.00 A 10.0 200.0 V 20.0 V+ + Ω + Ω + Ω − = + 150.0 V 30.0 V 200.0 V,+ −  

which does equal zero. 

26.70. IDENTIFY: 
2

tot
eq

VP
R

= . 

SET UP: Let R be the resistance of each resistor.  

EXECUTE: When the resistors are in series, eq 3R R=  and 
2

s 3
VP

R
= . When the resistors are in parallel, eq / 3R R= . 

2 2

p s3 9 9(27 W) 243 W
/3

V VP P
R R

= = = = = . 

EVALUATE: In parallel, the voltage across each resistor is the full applied voltage V. In series, the voltage across 
each resistor is /3V and each resistor dissipates less power. 
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26.71. IDENTIFY and SET UP: For part (a) use that the full emf is across each resistor. In part (b), calculate the power 
dissipated by the equivalent resistance, and in this expression express 1 2and R R  in terms of 1 2,   and .P P E  

EXECUTE: 2 2
1 1 1 1/  so /P R R P= =E E  

2 2
2 2 2 2/  so /P R R P= =E E  

(a) When the resistors are connected in parallel to the emf, the voltage across each resistor is E  and the power 
dissipated by each resistor is the same as if only the one resistor were connected. tot 1 2P P P= +  
(b) When the resistors are connected in series the equivalent resistance is eq 1 2R R R= +  

2 2
1 2

tot 2 2
1 2 1 2 1 2/ /

PPP
R R P P P P

= = =
+ + +
E E

E E  

EVALUATE: The result in part (b) can be written as 
tot 1 2

1 1 1 .
P P P

= +  Our results are that for parallel the powers add 

and that for series the reciprocals of the power add. This is opposite the result for combining resistance. Since 
2 /P R= E  tells us that P is proportional to 1/R, this makes sense. 

26.72. IDENTIFY and SET UP: Just after the switch is closed the charge on the capacitor is zero, the voltage across the 
capacitor is zero and the capacitor can be replaced by a wire in analyzing the circuit. After a long time the current 
to the capacitor is zero, so the current through 3R is zero. After a long time the capacitor can be replaced by a break 
in the circuit. 
EXECUTE: (a) Ignoring the capacitor for the moment, the equivalent resistance of the two parallel resistors is 

eq
eq

1 1 1 3 ; 2.00
6.00 3.00 6.00

R
R

= + = = Ω
Ω Ω Ω

. In the absence of the capacitor, the total current in the circuit (the 

current through the 8.00Ω  resistor) would be 42.0 V 4.20 A
8.00 2.00

i
R

= = =
Ω+ Ω

E , of which 2 3 , or 2.80 A, would 

go through the 3.00Ω  resistor and 1 3 , or 1.40 A, would go through the 6.00Ω  resistor. Since the current 

through the capacitor is given by ,t RCVi e
R

−= at the instant 0t =  the circuit behaves as through the capacitor were 

not present, so the currents through the various resistors are as calculated above. 
(b) Once the capacitor is fully charged, no current flows through that part of the circuit. The 8.00Ω  and the 
6.00Ω  resistors are now in series, and the current through them is (42.0 V) /(8.00 6.00 ) 3.00 A.i R= = Ω+ Ω =E  
The voltage drop across both the 6.00Ω  resistor and the capacitor is thus (3.00 A)(6.00 ) 18.0 V.V iR= = Ω =  
(There is no current through the 3.00Ω  resistor and so no voltage drop across it.) The charge on the capacitor is 

6 5(4.00 10  F)(18.0 V) 7.2 10  CQ CV − −= = × = × . 
EVALUATE: The equivalent resistance of 2R  and 3R in parallel is less than 3R , so initially the current through 

1R  is larger than its value after a long time has elapsed. 
26.73. (a) IDENTIFY and SET UP: The circuit is sketched in Figure 26.73a. 

 

With the switch open there is no 
current through it and there are 
only the two currents 1 2and I I  
indicated in the sketch. 

Figure 26.73a  
The potential drop across each parallel branch is 36.0 V. Use this fact to calculate 1 2and .I I  Then travel from 
point a to point b and keep track of the potential rises and drops in order to calculate .abV  
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EXECUTE: 1(6.00 3.00 ) 36.0 V 0I− Ω + Ω + =  

1
36.0 V 4.00 A

6.00 3.00 
I = =

Ω+ Ω
 

2 (3.00 6.00 ) 36.0 V 0I− Ω + Ω + =  

2
36.0 V 4.00 A

3.00 6.00 
I = =

Ω + Ω
 

To calculate ab a bV V V= −  start at point b and travel to point a, adding up all the potential rises and drops along the 
way. We can do this by going from b up through the 3.00 Ω  resistor: 

2 1(3.00 ) (6.00 )b aV I I V+ Ω − Ω =  
(4.00 A)(3.00 ) (4.00 A)(6.00 ) 12.0 V 24.0 V 12.0 Va bV V− = Ω − Ω = − = −  

12.0 VabV = − (point a is 12.0 V lower in potential than point b) 
EVALUATE: Alternatively, we can go from point b down through the 6.00 Ω  resistor. 

2 1(6.00 ) (3.00 )b aV I I V− Ω + Ω =  
(4.00 A)(6.00 ) (4.00 A)(3.00 ) 24.0 V 12.0 V 12.0 V,a bV V− = − Ω + Ω = − + = −  which checks. 

(b) IDENTIFY: Now there are multiple current paths, as shown in Figure 26.73b. Use junction rule to write the 
current in each branch in terms of three unknown currents I1, I2, and I3. Apply the loop rule to three loops to get 
three equations for the three unknowns. The target variable is I3, the current through the switch. Req is calculated 
from eq ,V IR=  where I is the total current that passes through the network. 
SET UP:  

 

The three unknown currents 1 2 3, ,  and I I I  
are labeled on Figure 26.73b. 

Figure 26.73b  
EXECUTE: Apply the loop rule to loops (1), (2), and (3). 
loop (1): 1 3 2(6.00 ) (3.00 ) (3.00 ) 0I I I− Ω + Ω + Ω =  

2 1 32I I I= −     eq.(1) 
loop (2): 1 3 2 3 3( )(3.00 ) ( )(6.00 ) (3.00 ) 0I I I I I− + Ω + − Ω − Ω =  

2 3 1 2 3 16 12 3 0 so 2 4 0I I I I I I− − = − − =  
Use eq(1) to replace 2:I  

1 3 3 14 2 4 0I I I I− − − =  

1 3 1 33 6  and 2I I I I= =     eq.(2) 
loop (3) (This loop is completed through the battery [not shown], in the direction from the  to the − +  terminal.): 

1 1 3(6.00 ) ( )(3.00 ) 36.0 V 0I I I− Ω − + Ω + =  

1 3 1 39 3 36.0 A and 3 12.0 AI I I I+ = + =     eq.(3) 
Use eq.(2) in eq.(3) to replace 1:I  

3 33(2 ) 12.0 AI I+ =  

3 12.0 A / 7 1.71 AI = =  

1 32 3.42 AI I= =  

2 1 32 2(3.42 A) 1.71 A 5.13 AI I I= − = − =  
The current through the switch is 3 1.71 A.I =  
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(c) From the results in part (a) the current through the battery is 1 2 3.42 A 5.13 A 8.55 A.I I I= + = + =  The 
equivalent circuit is a single resistor that produces the same current through the 36.0 V battery, as shown in 
Figure 26.73c. 

 

36.0 V 0IR− + =  
36.0 V 36.0 V 4.21 

8.55 A
R

I
= = = Ω  

Figure 26.73c  
EVALUATE: With the switch open (part a), point b is at higher potential than point a, so when the switch is closed 
the current flows in the direction from b to a. With the switch closed the circuit cannot be simplified using series 
and parallel combinations but there is still an equivalent resistance that represents the network. 

26.74. IDENTIFY: With S open and after equilibrium has been reached, no current flows and the voltage across each 
capacitor is 18.0 V. When S is closed, current I flows through the 6.00 Ω  and 3.00 Ω resistors. 
SET UP: With the switch closed, a and b are at the same potential and the voltage across the 6.00 Ω  resistor 
equals the voltage across the 6.00 Fμ capacitor and the voltage is the same across the 3.00 Fμ  capacitor and 
3.00 Ω  resistor. 
EXECUTE: (a) With an open switch: 18.0 VabV = =E . 
(b) Point a is at a higher potential since it is directly connected to the positive terminal of the battery. 
(c) When the switch is closed 18.0 V (6.00 3.00 )I= Ω + Ω . 2.00 AI =  and (2.00 A)(3.00 ) 6.00 V.bV = Ω =  
(d) Initially the capacitor’s charges were 6 5

3 (3.00 10 F)(18.0 V) 5.40 10 CQ CV − −= = × = ×  and  

6Q CV= =  6 4(6.00 10  F)(18.0 V) 1.08 10  C.− −× = ×  After the switch is closed 
6 5

3 (3.00 10  F)(18.0 V 12.0 V) 1.80 10  CQ CV − −= = × − = ×  and 
6 5

6 (6.00 10 F)(18.0 V 6.0 V) 7.20 10 C.Q CV − −= = × − = ×  Both capacitors lose 53.60 10 C.−×  
EVALUATE: The voltage across each capacitor decreases when the switch is closed, because there is then current 
through each resistor and therefore a potential drop across each resistor. 

26.75. IDENTIFY: The current through the galvanometer for full-scale deflection is 0.0200 A. For each connection, there 
are two parallel branches and the voltage across each is the same. 
SET UP: The sum of the two currents in the parallel branches for each connection equals the current into the 
meter for that connection. 
EXECUTE: From the circuit we can derive three equations: 
(i) 1 2 3( )(0.100 A 0.0200 A) (48.0 )(0.0200 A)R R R+ + − = Ω and 1 2 3 12.0 .R R R+ + = Ω  
(ii) 1 2 3( )(1.00 A 0.0200 A) (48.0 )(0.0200 A)R R R+ − = Ω +  and 1 2 30.0204 0.980 .R R R+ − = Ω  
(iii) 1 2 3(10.0 A 0.0200 A) (48.0 )(0.0200 A)R R R− = Ω + +  and 1 2 30.002 0.002 0.096 .R R R− − = Ω  
From (i) and (ii), 3 10.8 .R = Ω  From (ii) and (iii), 2 1.08R = Ω . Therefore, 1 0.12R = Ω . 
EVALUATE: For the 0.100 A setting the circuit consists of 48.0 Ω  and 1 2 3 12.0 R R R+ + = Ω  in parallel and the 
equivalent resistance of the meter is 9.6 Ω . For each of the other two settings the equivalent resistance of the 
meter is less than 9.6 Ω . 

26.76. IDENTIFY: In each case the sum of the voltage drops across the resistors in the circuit must equal the full-scale 
voltage reading. The resistors are in series so the total resistance is the sum of the resistances in the circuit. 
SET UP: For each range setting the circuit has the form shown in Figure 26.76. 

 
Figure 26.76 

EXECUTE: 3.00 V  
For 13.00 V, V R R= =  and the total meter resistance m m G 1is .R R R R= +  

3
fs m m 3

fs

3.00 V so 3.00 10  .
1.00 10  A

VV I R R
I −= = = = × Ω

×
 

3
m G 1 1 m G so 3.00 10  40.0 2960 R R R R R R= + = − = × Ω − Ω = Ω  
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15.0 V  
For 1 215.0 V, V R R R= = +  and the total meter resistance is m G 1 2.R R R R= + +  

4
fs m m 3

fs

15.0 V so 1.50 10  .
1.00 10  A

VV I R R
I −= = = = × Ω

×
 

4 4
2 m G 1 1.50 10  40.0 2960 1.20 10  R R R R= − − = × Ω− Ω− Ω = × Ω  

150 V  
For 1 2 3150 V, V R R R R= = + +  and the total meter resistance is m G 1 2 3.R R R R R= + + +  

5
fs m m 3

fs

150 V so 1.50 10  .
1.00 10  A

VV I R R
I −= = = = × Ω

×
 

5 4 5
3 m G 1 2 1.50 10  40.0 2960 1.20 10  1.35 10  .R R R R R= − − − = × Ω− Ω− Ω− × Ω = × Ω  

EVALUATE: The greater the total resistance in series inside the meter the greater the potential difference between 
the two connections to the meter when the same 1.00 mA current flows through it. 

26.77. IDENTIFY: Connecting the voltmeter between point b and ground gives a resistor network and we can solve for 
the current through each resistor. The voltmeter reading equals the potential drop across the 200 kΩ  resistor. 

SET UP: For resistors in parallel, 
eq 1 2

1 1 1
R R R

= + . For resistors in series, eq 1 2R R R= + . 

EXECUTE: (a) 
1

eq
1 1100 k 140 k .

200 k 50 k
R

−
⎛ ⎞

= Ω + + = Ω⎜ ⎟Ω Ω⎝ ⎠
 The total current is 30.400 kV 2.86 10 A

140 k
I −= = ×

Ω
. 

The voltage across the 200 kΩ  resistor is 
1

3
200k

1 1(2.86 10 A) 114.4 V.
200 k 50 k

V IR
−

−
Ω

⎛ ⎞
= = × + =⎜ ⎟Ω Ω⎝ ⎠

 

(b) If 65.00 10 ,RV = × Ω  then we carry out the same calculations as above to find eq 292 kR = Ω , 
31.37 10 AI −= × and 200k 263 V.V Ω =  

(c) If RV = ∞ , then we find eq 300 kR = Ω , 31.33 10 AI −= ×  and 200k 266 V.V Ω =  
EVALUATE: When a voltmeter of finite resistance is connected to a circuit, current flows through the voltmeter 
and the presence of the voltmeter alters the currents and voltages in the original circuit. The effect of the voltmeter 
on the circuit decreases as the resistance of the voltmeter increases. 

26.78. IDENTIFY: The circuit consists of two resistors in series with 110 V applied across the series combination. 
SET UP: The circuit resistance is 30 k RΩ+ . The voltmeter reading of 68 V is the potential across the voltmeter 
terminals, equal to (30 k )I Ω . 

EXECUTE: 110 V
(30 k )

I
R

=
Ω +

. (30 k ) 68 VI Ω = gives (68 V)(30 k ) (110 V)30 kRΩ + = Ω  and 18.5 k .R = Ω . 

EVALUATE: This is a method for measuring large resistances. 
26.79. IDENTIFY and SET UP: Zero current through the galvanometer means the current 1I through N is also the current 

through M and the current 2I through P is the same as the current through X. And it means that points b and c are at 
the same potential, so 1 2I N I P= . 

EXECUTE: (a) The voltage between points a and d is E , so 1I N M
=

+
E and 2I

P X
=

+
E . Using these 

expressions in 1 2I N I P= gives N P
N M P X

=
+ +
E E . ( ) ( )N P X P N M+ = + . NX PM= and /X MP N= . 

(b) (850.0 )(33.48 ) 1897 
15.00 

MPX
N

Ω Ω
= = = Ω

Ω
 

EVALUATE: The measurement of X does not require that we know the value of the emf. 
26.80. IDENTIFY: Add resistors in series and parallel with the second galvanometer, so that the equivalent resistance is 

65.0 Ω  and so that for a current of 1.50 mA into the device the current through the galvanometer is 3.60 Aμ . 
SET UP: In order for the second galvanometer to give the same full-scale deflection and to have the same 
resistance as the first, we need two additional resistances as shown in Figure 26.80. 
EXECUTE: For 3.60 Aμ  through R the current through 1R  is 1.496 mA . R and 1R  are in parallel so have equal 
voltages: 1(3.6 A)(38.0 ) (1.496 mA)Rμ Ω =  and 1 91.4 mR = Ω . And for the total resistance to be 65.0 :Ω  

1

2
1 165.0 

38.0 0.0914
R

−
⎛ ⎞

Ω = + +⎜ ⎟Ω Ω⎝ ⎠
 and 2 64.9R = Ω . 
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EVALUATE: Adding 1R  in parallel lowers the equivalent resistance so 2R  must be added in series to raise the 
equivalent resistance to 65.0 Ω . 

 
Figure 26.80 

26.81. IDENTIFY and SET UP: Without the meter, the circuit consists of the two resistors in series. When the meter is 
connected, its resistance is added to the circuit in parallel with the resistor it is connected across. 
(a) EXECUTE: 1 2I I I= =  

1 2

90.0 V 90.0 V 0.1107 A
224 589 

I
R R

= = =
+ Ω+ Ω

 

( )( ) ( )( )1 1 1 2 2 20.1107 A 224 24.8 V; 0.1107 A 589 65.2 VV I R V I R= = Ω = = = Ω =  
(b) SET UP: The resistor network is sketched in Figure 26.81a. 

 

The voltmeter reads the potential 
difference across its terminals, 
which is 23.8 V. If we can find 
the current 1I  through the 
voltmeter then we can use Ohm's 
law to find its resistance. 

Figure 26.81c  
EXECUTE: The voltage drop across the 589 Ω  resistor is 90.0 V 23.8 V 66.2 V,− =  so 

66.2 V 0.1124 A.
589 

VI
R

= = =
Ω

The voltage drop across the 224 Ω  resistor is 2
23.8 V23.8 V, so 0.1062 A.
224 

VI
R

= = =
Ω

 

Then 1 2 1 2 gives 0.1124 A 0.1062 A 0.0062 A.I I I I I I= + = − = − =  
1

23.8 V 3840 
0.0062 AV

VR
I

= = = Ω  

(c) SET UP: The circuit with the voltmeter connected is sketched in Figure 26.81b. 

 
Figure 26.81b 

EXECUTE: Replace the two resistors in parallel by their equivalent, as shown in Figure 26.81c. 

 

eq

1 1 1 ;
3840 589 R

= +
Ω Ω

 

( )( )
eq

3840 589 
510.7 

3840 589 
R

Ω Ω
= = Ω

Ω + Ω
 

Figure 26.81c  
90.0 V 0.1225 A

224 510.7 
I = =

Ω + Ω
 

The potential drop across the 224 Ω  resistor then is ( )( )0.1225 A 224 27.4 V,IR = Ω =  so the potential drop 
across the 589 Ω  resistor and across the voltmeter (what the voltmeter reads) is 90.0 V 27.4 V 62.6 V.− =  
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(d) EVALUATE: No, any real voltmeter will draw some current and thereby reduce the current through the 
resistance whose voltage is being measured. Thus the presence of the voltmeter connected in parallel with the 
resistance lowers the voltage drop across that resistance. The resistance of the voltmeter is only about a factor of 
ten larger than the resistances in the circuit, so the voltmeter has a noticeable effect on the circuit. 

26.82. IDENTIFY: Just after the connection is made, 0q = and the voltage across the capacitor is zero. After a long time 0.i =  
SET UP: The rate at which the resistor dissipates electrical energy is 2 /RP V R= , where V is the voltage across 
the resistor. The energy stored in the capacitor is 2/2q C . The power output of the source is P iε = E . 

EXECUTE: (a) (i) 
2 2(120 V) 3380 W

4.26R
VP
R

= = =
Ω

. (ii) 
21 ( ) 0.

2C
dU d q iqP
dt C dt C

= = = =  

(iii) 120 V(120 V) 3380 W
4.26

P Iε ε= = =
Ω

. 

(b) After a long time, 0i = , so 0, 0, 0.R CP P Pε= = =  
EVALUATE: Initially all the power output of the source is dissipated in the resistor. After a long time energy is 
stored in the capacitor but the amount stored isn't changing. 

26.83. IDENTIFY: Apply the loop rule to the circuit. The initial current determines R. We can then use the time constant 
to calculate C. 
SET UP: The circuit is sketched in Figure 26.83. 

 

Initially, the charge of the 
capacitor is zero, so by 

/v q C=  the voltage across 
the capacitor is zero. 

Figure 26.83  

EXECUTE: The loop rule therefore gives 0iR− =E  and 6
5

110 V 1.7 10  
6.5 10  A

R
i −= = = × Ω

×
E

 

The time constant is given by RCτ =  (Eq.26.14), so 6

6.2 s 3.6 F.
1.7 10  

C
R
τ μ= = =

× Ω
 

EVALUATE: The resistance is large so the initial current is small and the time constant is large. 
26.84. IDENTIFY: The energy stored in a capacitor is 2/2 .U q C=  The electrical power dissipated in the resistor is 2 .P i R=  

SET UP: For a discharging capacitor, 
qi

RC
= − . 

EXECUTE: (a) 
2 2

0
0 6

(0.0081C) 7.10 J.
2 2(4.62 10 F)
QU

C −= = =
×

 

(b) 
2 2

2 0
0 0 6 2

(0.0081C) 3616 W
(850 )(4.62 10 F)

QP I R R
RC −

⎛ ⎞= = = =⎜ ⎟ Ω ×⎝ ⎠
 

(c) 
2

0
0

1 1When
2 2 2

QU U
C

= = , 0

2
QQ = . This gives 

2 2
0

0
1 1 1808 W.
2 2

Q QP R R P
RC RC

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: All the energy originally stored in the capacitor is dissipated as current flow through the resistor. 
26.85. IDENTIFY: /

0
t RCq Q e−= . The time constant is RCτ = . 

SET UP: The charge of one electron has magnitude 191.60 10  Ce −= × . 
EXECUTE: (a) We will say that a capacitor is discharged if its charge is less than that of one electron. The time this 
takes is then given by /

0 ,t RCq Q e−=  so 5 7 6 19
0ln( / ) (6.7 10  )(9.2 10  F)ln(7.0 10  C/1.6 10  C) 19.36 s,t RC Q e − − −= = × Ω × × × =  

or 31.4 time constants. 
EVALUATE: (b) As shown in part (a), 0ln( )t Q qτ=  and so the number of time constants required to discharge 
the capacitor is independent of and ,R C  and depends only on the initial charge. 

26.86. IDENTIFY: The energy changes exponentially, but it does not obey exactly the same equation as the charge since 
it is proportional to the square of the charge. 
(a) SET UP: For charging, U = Q2/2C = (Q0 e–t/RC)2/2C = U0 e–2t/RC. 
EXECUTE: To reduce the energy to 1/e of its initial value: 

2 /
0 0/ t RCU e U e−=  

/2t RC=  
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(b) SET UP: For discharging, U = Q2/2C = [Q0(1 – e–t/RC)]2/2C = Umax (1 – e–t/RC)2 

EXECUTE: To reach 1/e of the maximum energy, Umax/e = Umax (1 – e–t/RC)2 and t = 1ln 1RC
e

⎛ ⎞− −⎜ ⎟
⎝ ⎠

. 

EVALUATE: The time to reach 1/e of the maximum energy is not the same as the time to discharge to 1/e of the 
maximum energy. 

26.87. IDENTIFY and SET UP: For parts (a) and (b) evaluate the integrals as specified in the problem. The current as a 

function of time is given by Eq.(26.13) / .t RCi e
R

−=
E  The energy stored in the capacitor is given by 2 / 2 .Q C  

EXECUTE: (a) P i= E  

The total energy supplied by the battery is ( ) ( )2 / 2 / 2

00 0 0
/ / .t RC t RCPdt idt R e dt R RCe C

∞ ∞ ∞ ∞− −⎡ ⎤= = = − =⎣ ⎦∫ ∫ ∫E E E E  

(b) 2P i R=  
The total energy dissipated in the resistor is 

( ) ( ) ( )2 2 2 / 2 2 / 21
200 0 0

/ / / 2 .t RC t RCPdt i Rdt R e dt R RC e C
∞ ∞ ∞ ∞− −⎡ ⎤= = = − =⎣ ⎦∫ ∫ ∫E E E  

(c) The final charge on the capacitor is .Q C= E  The energy stored is ( )2 21
2/ 2 .U Q C C= = E  The final energy stored 

in the capacitor ( )21
2 C =E  total energy supplied by the battery ( )2CE – energy dissipated in the resistor ( )21

2 CE  

(d) EVALUATE: 1
2  of the energy supplied by the battery is stored in the capacitor. This fraction is independent of R. 

The other 1
2  of the energy supplied by the battery is dissipated in the resistor. When R is small the current initially 

is large but dies away quickly. When R is large the current initially is small but lasts longer. 

26.88. IDENTIFY: 
0

E Pdt
∞

= ∫ . The energy stored in a capacitor is 2 / 2U q C= . 

SET UP: /0 t RCQi e
RC

−= −  

EXECUTE: 0 t RCQi e
RC

−= −  gives 
2

2 2 /0
2

t RCQP i R e
RC

−= =  and 
2 2 2

20 0 0
02 20
.

2 2
t RCQ Q RC QE e dt U

RC RC C
∞ −= = = =∫  

EVALUATE: Increasing the energy stored in the capacitor increases current through the resistor as the capacitor 
discharges. 

26.89. IDENTIFY and SET UP:  
EXECUTE: (a) Using Kirchhoff’s Rules on the circuit we find: 
Left loop: 1 2 1 292 140 210 55 0 147 140 210 0.I I I I− − + = ⇒ − − =  
Right loop: 3 2 2 357 35 210 55 0 112 210 35 0.I I I I− − + = ⇒ − − =  
Junction rule: 1 2 3 0.I I I− + =  
Solving for the three currents we have: 1 0.300 A,I = 2 0.500 A,I =  3 0.200 A.I =  
(b) Leaving only the 92-V battery in the circuit: 
Left loop: 1 292 140 210 0.I I− − =  Right loop: 3 235 210 0.I I− − =   
Junction rule: 1 2 3 0.I I I− + =  Solving for the three currents: 

1 0.541 A,I =     2 0.077 A,I =     3 0.464 A.I = −  

(c) Leaving only the 57-V battery in the circuit: 
Left loop: 1 2140 210 0.I I+ =  Right loop: 3 257 35 210 0.I I− − =  
Junction rule: 1 2 3 0.I I I− + =  Solving for the three currents: 

1 0.287 A,I = −     2 0.192 A,I =     3 0.480 A.I =  

(d) Leaving only the 55-V battery in the circuit: 
Left loop: 1 255 140 210 0.I I− − =  Right loop: 3 255 35 210 0.I I− − =  
Junction rule: 1 2 3 0.I I I− + =  Solving for the three currents: 

1 0.046 A,I =     2 0.231 A,I =     3 0.185 A.I =  

(e) If we sum the currents from the previous three parts we find: 

1 0.300 A,I =     2 0.500 A,I =     3 0.200 A,I =  just as in part (a). 
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(f )  Changing the 57-V battery for an 80-V battery just affects the calculation in part (c). It changes to: Left loop: 
1 2140 210 0.I I+ =  Right loop: 3 280 35 210 0.I I− − =  

Junction rule: 1 2 3 0.I I I− + =  Solving for the three currents: 

1 0.403 A,I = −     2 0.269 A,I =     3 0.672 A.I =  

The total current for the full circuit is the sum of (b), (d) and (f )  above: 
1 0.184 A,I =     2 0.576 A,I =     3 0.392 A.I =  

EVALUATE: This problem presents an alternative means of solving for currents in multiloop circuits. 
26.90. IDENTIFY and SET UP: When C changes after the capacitor is charged, the voltage across the capacitor changes. 

Current flows through the resistor until the voltage across the capacitor again equals the emf. 
EXECUTE: (a) Fully charged: 12 8(10.0 10 F)(1000 V) 1.00 10 C.Q CV − −= = × = ×  

(b) The initial current just after the capacitor is charged is 0 .CV qI
R R RC

′−
= = −

′
E E  This gives ( ) ,t RCqi t e

R RC
′−⎛ ⎞= −⎜ ⎟′⎝ ⎠

E  

where 1.1C C′ = . 
(c) We need a resistance such that the current will be greater than 1 Aμ  for longer than 200 s.μ  This requires that 

at 200 st μ= , 
4 12

8
6 (2.0 10  s)/ (11 10  F)

11

1 1.0 10  C1.0 10  A 1000 V
1.1(1.0 10  F)

Ri e
R

− −
−

− − × ×
−

⎛ ⎞×
= × = −⎜ ⎟×⎝ ⎠

. This says 

76 (1.8 10 )11.0 10 A (90.9) Re
R

− − × Ω× =  and 718.3 ln 1.8 10 0.R R R− − × =  Solving for R  numerically we find 
6 77.15 10 7.01 10 .R× Ω ≤ ≤ × Ω  

EVALUATE: If the resistance is too small, then the capacitor discharges too quickly, and if the resistance is too 
large, the current is not large enough. 

26.91. IDENTIFY: Consider one segment of the network attached to the rest of the network. 
SET UP: We can re-draw the circuit as shown in Figure 26.91. 

EXECUTE: 
1

2
1 1

2 2

1 12 2 T
T

T T

R RR R R
R R R R

−
⎛ ⎞= + + = +⎜ ⎟ +⎝ ⎠

. 2
1 1 22 2 0T TR R R R R− − = . 2

1 1 1 22TR R R R R= ± + . 0TR > , 

so 2
1 1 1 22TR R R R R= + + . 

EVALUATE: Even though there are an infinite number of resistors, the equivalent resistance of the network is finite. 

 
Figure 26.91 

26.92. IDENTIFY: Assume a voltage V applied between points a and b and consider the currents that flow along each 
path between a and b. 
SET UP: The currents are shown in Figure 26.92. 
EXECUTE: Let current I enter at a and exit at b. At a  there are three equivalent branches, so current is I /3 in each. 
At the next junction point there are two equivalent branches so each gets current I /6 .  Then at b  there are three 
equivalent branches with current I /3  in each. The voltage drop from toa b  then is 

5
6 .

3 6 3
I I IV R R R IR⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 This must be the same as 5

eq eq 6,  so .V IR R R= =  

EVALUATE: The equivalent resistance is less than R, even though there are 12 resistors in the network. 

 
Figure 26.92 
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26.93. IDENTIFY: The network is the same as the one in Challenge Problem 26.91, and that problem shows that the 
equivalent resistance of the network is 2

1 1 22TR R R R= + . 
SET UP: The circuit can be redrawn as shown in Figure 26.93. 

EXECUTE: (a) eq

1 eq 1 eq

1
2 2 / 1cd ab ab

R
V V V

R R R R
= =

+ +
 and 2

eq
2

T

T

R RR
R R

=
+

. But 1 2 1

2 eq

2 ( ) 2T

T

R R R R
R R R

β +
= = , so 

1
1cd abV V

β
=

+
. 

(b) 10 1 0 0
1 2 2(1 ) (1 ) (1 ) (1 ) (1 )

n
n n

VV V V VV V V
β β β β β

−= ⇒ = = ⇒ = =
+ + + + +

. 

If 1 2R R= , then 2
1 1 1 1 12 (1 3)TR R R R R R= + + = +  and 2(2 3) 2.73

1 3
β +
= =

+
. So, for the nth segment to have 1% 

of the original voltage, we need: 1 1 0.01
(1 ) (1 2.73)n nβ

= ≤
+ +

. This says 4n = , and then 4 00.005V V= . 

(c) 2
1 1 1 22TR R R R R= + +  gives 2 8 66400 (6400 ) 2(6400 )(8.0 10 ) 3.2 10TR = Ω + Ω + Ω × Ω = × Ω  and 

6 8
3

6 8

2(6400 )(3.2 10 8.0 10 ) 4.0 10
(3.2 10 )(8.0 10 )

β −Ω × Ω + × Ω
= = ×

× Ω × Ω
. 

(d) Along a length of 2.0 mm of axon, there are 2000 segments each 1.0 mμ  long. The voltage therefore 

attenuates by 0
2000 2000(1 )

VV
β

=
+

, so 42000
3 2000

0

1 3.4 10
(1 4.0 10 )

V
V

−
−= = ×

+ ×
. 

(e) If 12
2 3.3 10R = × Ω , then 82.1 10TR = × Ω  and 56.2 10 .β −= ×  This gives  

2000
5 2000

0

1 0.88.
(1 6.2 10 )

V
V −= =

+ ×
 

EVALUATE: As 2R increases, β  decreases and the potential difference decrease from one section to the next is 
less. 

 
Figure 26.93 
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MAGNETIC FIELD AND MAGNETIC FORCES 

 27.1. IDENTIFY and SET UP: Apply Eq.(27.2) to calculate .F
!

 Use the cross products of unit vectors from Section 1.10. 
EXECUTE: ( ) ( )4 4� �4.19 10  m/s 3.85 10  m/s= + × + − ×v i j!  

(a) ( ) �1.40 T=B i
!

 

( )( ) ( ) ( )8 4 4� � � �1.24 10  C 1.40 T 4.19 10  m/s 3.85 10  m/sq − ⎡ ⎤= × = − × × × − × ×⎣ ⎦F v B i i j i
! !!

 

� � � � �0,  × = × = −i i j i k  

( )( )( )( ) ( )8 4 4� �1.24 10  C 1.40 T 3.85 10  m/s 6.68 10  N− −= − × − × − = − ×F k k
!

 

EVALUATE: The directions of  and v B
!!  are shown in Figure 27.1a. 

 

The right-hand rule gives that ×v B
!!  is directed 

out of the paper (+z-direction). The charge is 
negative so F

!
 is opposite to ;×v B

!!  

Figure 27.1a  

F
!

 is in the -z− direction. This agrees with the direction calculated with unit vectors. 
(b) EXECUTE: ( ) �1.40 T=B k

!
 

( )( ) ( ) ( )8 4 4� � � �1.24 10  C 1.40 T 4.19 10  m/s 3.85 10  m/sq − ⎡ ⎤= × = − × + × × − × ×⎣ ⎦F v B i k j k
! !!

 

� � � � � �,  × = − × =i k j j k i  

( )( ) ( ) ( ) ( )4 4 4 4� � � �7.27 10  N 6.68 10  N 6.68 10  N 7.27 10  N− − − −⎡ ⎤= − × − + × = × + ×⎣ ⎦F j i i j
!

 

EVALUATE: The directions of  and v B
!!  are shown in Figure 27.1b. 

 

The direction of F
!

 is opposite to ×v B
!!

 since  
q is negative. The direction of F

!
 computed 

from the right-hand rule agrees qualitatively 
with the direction calculated with unit vectors. 

Figure 27.1b  
 27.2. IDENTIFY: The net force must be zero, so the magnetic and gravity forces must be equal in magnitude and 

opposite in direction. 
SET UP: The gravity force is downward so the force from the magnetic field must be upward. The charge�s 
velocity and the forces are shown in Figure 27.2. Since the charge is negative, the magnetic force is opposite to the 
right-hand rule direction. The minimum magnetic field is when the field is perpendicular to v! . The force is also 
perpendicular to B

!
, so B
!

is either eastward or westward. 
EXECUTE: If B

!
is eastward, the right-hand rule direction is into the page and BF

!
is out of the page, as required. 

Therefore, B
!

is eastward. sinmg q vB φ= . 90φ = ° and 
3 2

4 8

(0.195 10  kg)(9.80 m/s ) 1.91 T
(4.00 10  m/s)(2.50 10  C)

mgB
v q

−

−

×
= = =

× ×
. 

27
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EVALUATE: The magnetic field could also have a component along the north-south direction, that would not 
contribute to the force, but then the field wouldn�t have minimum magnitude. 

 
Figure 27.2 

 27.3. IDENTIFY: The force F
!

on the particle is in the direction of the deflection of the particle. Apply the right-hand 
rule to the directions of v!  and B

!
. See if your thumb is in the direction of F

!
, or opposite to that direction. Use 

sinF q vB φ=  with 90φ = °  to calculate F. 

SET UP: The directions of v! , B
!

 and F
!

 are shown in Figure 27.3. 
EXECUTE: (a) When you apply the right-hand rule to v!  and B

!
, your thumb points east. F

!
 is in this direction, 

so the charge is positive. 
(b) 6 3sin (8.50 10  C)(4.75 10  m/s)(1.25 T)sin90 0.0505 NF q vB φ −= = × × =°  

EVALUATE: If the particle had negative charge and v! and B
!

are unchanged, the particle would be deflected 
toward the west. 

 
Figure 27.3 

 27.4. IDENTIFY: Apply Newton�s second law, with the force being the magnetic force. 
SET UP: � � �× −j i = k  

EXECUTE: m q ×F = a = v B
! !! ! gives q

m
×

=
v Ba
!!! and  

8 4

3

� �(1.22 10  C)(3.0 10  m/s)(1.63 T) ( ) �(0.330 m/s ) .
1.81 10  kg

−
2

−

× × ×
−

×
j ia = = k!  

EVALUATE: The acceleration is in the -directionz− and is perpendicular to both v! and B
!

. 
 27.5. IDENTIFY:  Apply sinF q vB φ= and solve for v. 

SET UP: An electron has 191.60 10  Cq −= − × . 

EXECUTE: 
15

6
19 3

4.60 10  N 9.49 10 m s
sin (1.6 10  C)(3.5 10  T)sin 60

Fv
q B φ

−

− −

×
= = = ×

× × °
 

EVALUATE: Only the component sinB φ  of the magnetic field perpendicular to the velocity contributes to the 
force. 

 27.6. IDENTIFY: Apply Newton�s second law and sinF q vB φ= . 

SET UP: φ is the angle between the direction of v! and the direction of B
!

. 
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EXECUTE: (a) The smallest possible acceleration is zero, when the motion is parallel to the magnetic field. The 
greatest acceleration is when the velocity and magnetic field are at right angles: 

19 6 2
216

31

(1.6 10 C)(2.50 10 m s )(7.4 10 T) 3.25 10 m s .
(9.11 10 kg)

qvBa
m

− −

−

× × ×
= = = ×

×
 

(b) If 16 21
4

sin(3.25 10  m/s ) ,qvBa
m

φ
= × =  then sin 0.25φ = and 14.5 .φ = °  

EVALUATE: The force and acceleration decrease as the angleφ approaches zero. 
 27.7. IDENTIFY: Apply q ×F = v B

! !! . 

SET UP: �
yvv = j! , with 33.80 10 m syv = − × . 37.60 10 N, 0,x yF F−= + × = and 35.20 10 NzF −= − × . 

EXECUTE: (a) ( )x y z z y y zF q v B v B qv B= − = . 
3 6 3(7.60 10 N) ([7.80 10 C)( 3.80 10 m s )] 0.256 Tz x yB F qv − −= = × × − × = −  

( ) 0,y z x x zF q v B v B= − =  which is consistent with F
!

as given in the problem. There is no force component along 
the direction of the velocity. 

( )z x y y x y xF q v B v B qv B= − = − . 0.175 Tx z yB F qv= − = − . 

(b) yB is not determined. No force due to this component of B
!

along v! ; measurement of the force tells us nothing 

about .yB  

(c) 3 3( 0.175 T)(+7.60 10  N) ( 0.256 T)( 5.20 10  N)x x y y z zB F B F B F − −⋅ = + + = − × + − − ×B F
! !

 

0⋅ =B F
! !

. B
!

and F
!

are perpendicular (angle is 90 )° . 

EVALUATE: The force is perpendicular to both v! and B
!

, so ⋅v F
!! is also zero. 

 27.8. IDENTIFY and SET UP: � � � � � � � �[ ( ) ( ) ( )] [ ( ) ( )].z x y z z x yq qB v v v qB v v× × + × + × − +F = v B = i k j k k k = j i
! !!  

EXECUTE: (a) Set the expression for F
!

equal to the given value of F
!

to obtain: 
7

9

(7.40 10 N) 106 m s
( 5.60 10 C)( 1.25 T)

y
x

z

F
v

qB

−

−

×
= = = −

− − − × −
 

7

9

(3.40 10 N) 48.6 m s.
( 5.60 10 C)( 1.25 T)

x
y

z

Fv
qB

−

−

− ×
= = = −

− × −
 

(b) zv does not contribute to the force, so is not determined by a measurement of F
!

. 

(c) 0; 90 .y x
x x y y z z x y

z z

F Fv F v F v F F F
qB qB

θ⋅ = + + = + = = °
−

v F
!!  

EVALUATE: The force is perpendicular to both v! and B
!

, so ⋅B F
! !

is also zero. 
 27.9. IDENTIFY: Apply q= ×F v B

! !! to the force on the proton and to the force on the electron. Solve for the 

components of B
!

. 
SET UP: F

!
is perpendicular to both v! and B

!
. Since the force on the proton is in the +y-direction, 0yB = and 

� �
x zB B+B = i k

!
. For the proton, �(1.50 km/s)v = i! . 

EXECUTE: (a) For the proton, 3 3� � � �(1.50 10  m/s) ( ) (1.50 10  m/s) ( ).x z zq B B q B× × + = × −F = i i k j
!

 16 �(2.25 10  N) ,−×F = j
!

 

so 
16

19 3

2.25 10  N 0.938 T
(1.60 10  C)(1.50 10  m/s)zB

−

−

×
= − = −

× ×
. The force on the proton is independent of xB . For the 

electron, �(4.75 km/s)( )−v = k! . 3 3� � � �( )(4.75 10  m/s)( ) ( ) (4.75 10  m/s)x z xq e B B e B= × = − × − × + + ×F v B k i k = j
! !! .  

The magnitude of the force is 3(4.75 10  m/s) xF e B= × . Since 168.50 10  NF −= × , 
16

19 3

8.50 10  N 1.12 T
(1.60 10  C)(4.75 10  m/s)xB

−

−

×
= =

× ×
. 1.12 TxB = ± . The sign of xB is not determined by measuring  

the magnitude of the force on the electron. 2 2 2( 1.12 T) ( 0.938 T) 1.46 Tx zB B B= + = ± + − = . 

0.938 Ttan
1.12 T

z

x

B
B

θ −
= =

±
. 40θ = ± ° . B

!
is in the xz-plane and is either at 40°  from the +x-direction toward the 

-directionz− or 40° from the -directionx− toward the -directionz− . 
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(b) � �
x zB B+B = i k

!
. �(3.2 km/s)( )−v = j! . 

3� � � � �( )(3.2 km/s)( ) ( ) (3.2 10  m/s)( ( ) )x z x zq e B B e B B= × = − − × + = × − +F v B j i k k i
! !! . 

3 16 16� � � �(3.2 10  m/s)( [ 1.12 T] [0.938 T] ) (4.80 10  N) (5.73 10  N)e − −× − ± − = − × ± ×F = k i i k
!

2 2 167.47 10  Nx zF F F −= + = × . 
16

16

5.73 10  Ntan
4.80 10  N

z

x

F
F

θ
−

−

± ×
= =

− ×
. 50.0θ = ± ° . The force is in the xz-plane and is 

directed at 50.0° from the -axisx−  toward either the +z or z−  axis, depending on the sign of xB . 
EVALUATE: If the direction of the force on the first electron were measured, then the sign of xB would be 
determined. 

27.10. IDENTIFY: Magnetic field lines are closed loops, so the net flux through any closed surface is zero. 
SET UP: Let magnetic field directed out of the enclosed volume correspond to positive flux and magnetic field 
directed into the volume correspond to negative flux. 
EXECUTE: (a) The total flux must be zero, so the flux through the remaining surfaces must be 0.120− Wb. 
(b) The shape of the surface is unimportant, just that it is closed. 
(c) One possibility is sketched in Figure 27.10. 
EVALUATE: In Figure 27.10 all the field lines that enter the cube also exit through the surface of the cube. 

 
Figure 27.10 

27.11. IDENTIFY and SET UP: B dΦ = ⋅∫ B A
!!

 

Circular area in the xy-plane, so ( )22 20.0650 m 0.01327 mA rπ π= = =  and dA
!

 is in the z-direction. Use 
Eq.(1.18) to calculate the scalar product. 
EXECUTE: (a) ( ) �0.230 T ;  and d=B k B A

!! !
 are parallel ( )0φ = °  so .d B dA⋅ =B A

!!
 

B is constant over the circular area so 2 3(0.230 T)(0.01327 m ) 3.05 10  WbB d B dA B dA BA −Φ = ⋅ = = = = = ×∫ ∫ ∫B A
!!

 

(b) The directions of  and dB A
!!

 are shown in Figure 27.11a. 

 

cos
with 53.1

d B dAφ
φ

⋅ =
= °

B A
!!

 

Figure 27.11a  
B and φ  are constant over the circular area so cos cos cosB d B dA B dA B Aφ φ φΦ = ⋅ = = =∫ ∫ ∫B A

!!
 

( ) ( )2 30.230 T cos53.1 0.01327 m 1.83 10  WbB
−Φ = ° = ×  

(c) The directions of  and dB A
!!

 are shown in Figure 27.11b. 

 

0 since and  are perpendicular ( 90 )d d φ⋅ = = °B A A B
! !! !

 

0.B dΦ = ⋅ =∫ B A
!!

 

Figure 27.11b  
EVALUATE: Magnetic flux is a measure of how many magnetic field lines pass through the surface. It is 
maximum when B

!
 is perpendicular to the plane of the loop (part a) and is zero when B

!
 is parallel to the plane of 

the loop (part c). 
27.12. IDENTIFY: When B

!
is uniform across the surface, cosB BA φΦ = ⋅ =B A

!!
. 

SET UP: A
!

 is normal to the surface and is directed outward from the enclosed volume. For surface abcd, 
�A−A = i

!
. For surface befc, �A−A = k

!
. For surface aefd, cos 3/5φ = and the flux is positive. 
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EXECUTE: (a) ( ) 0.B abcdΦ = ⋅ =B A
!!

 
(b) ( ) (0.128 T)(0.300 m)(0.300 m) 0.0115 Wb.B befcΦ = ⋅ = − = −B A

!!
 

(c) 3
5( ) cos (0.128 T)(0.500 m)(0.300 m) 0.0115 Wb.B aefd BA φΦ = ⋅ = = = +B A

!!
 

(d) The net flux through the rest of the surfaces is zero since they are parallel to the x-axis. The total flux is the 
sum of all parts above, which is zero. 
EVALUATE: The total flux through any closed surface, that encloses a volume, is zero. 

27.13. IDENTIFY: The total flux through the bottle is zero because it is a closed surface.  
SET UP: The total flux through the bottle is the flux through the plastic plus the flux through the open cap, so the 
sum of these must be zero. plastic cap 0.Φ + Φ =  

( )2
plastic cap cos cosB A B rπΦ = −Φ = − Φ = − Φ  

EXECUTE: Substituting the numbers gives plasticΦ  = � (1.75 T)π(0.0125 m)2 cos 25° = �7.8 × 10�4 Wb 
EVALUATE: It would be impossible to calculate the flux through the plastic directly because of the complicated 
shape of the bottle, but with a little thought we can find this flux through a simple calculation. 

27.14. IDENTIFY: p mv=  and L Rp= , since the velocity and linear momentum are tangent to the circular path. 
SET UP: 2 /q vB mv R= . 

EXECUTE: (a) 3 19 21(4.68 10  m)(6.4 10  C)(1.65 T) 4.94 10  kg m/s.RqBp mv m RqB
m

− − −⎛ ⎞= = = = × × = ×⎜ ⎟
⎝ ⎠

 

(b) 2 3 2 19 23 2(4.68 10 m) (6.4 10 C)(1.65 T) 2.31 10 kg m s.L Rp R qB − − −= = = × × = × ⋅  

EVALUATE: p!  is tangent to the orbit and L
!

is perpendicular to the orbit plane. 

27.15. (a) IDENTIFY: Apply Eq.(27.2) to relate the magnetic force F
!

 to the directions of  and .v B
!!  The electron has 

negative charge so F
!

 is opposite to the direction of .×v B
!!  For motion in an arc of a circle the acceleration is 

toward the center of the arc so F
!

 must be in this direction. 2 / .a v R=  
SET UP:  

 

As the electron moves in the semicircle, 
its velocity is tangent to the circular path. 
The direction of 0 ×v B

!!
 at a point along 

the path is shown in Figure 27.15. 

Figure 27.15  
EXECUTE: For circular motion the acceleration of the electron rada!  is directed in toward the center of the circle. 
Thus the force BF

!
 exerted by the magnetic field, since it is the only force on the electron, must be radially inward. 

Since q is negative, BF
!

 is opposite to the direction given by the right-hand rule for 0 .×v B
!!

 Thus B
!

 is directed 

into the page. Apply Newton's 2nd law to calculate the magnitude of :B
!

 rad gives m F ma= =∑ ∑F a
! !  

2( / )BF m v R=  
2sin ,  so ( / )BF q vB q vB q vB m v Rφ= = =  

31 6
4

19

(9.109 10  kg)(1.41 10  m/s) 1.60 10  T
(1.602 10  C)(0.050 m)

mvB
q R

−
−

−

× ×
= = = ×

×
 

(b) IDENTIFY and SET UP: The speed of the electron as it moves along the path is constant. ( BF
!

 changes the 
direction of v!  but not its magnitude.) The time is given by the distance divided by 0.v  

EXECUTE: The distance along the semicircular path is ,Rπ  so 7
6

0

(0.050 m) 1.11 10  s
1.41 10  m/s

Rt
v

π π −= = = ×
×

 

EVALUATE: The magnetic field required increases when v increases or R decreases and also depends on the mass 
to charge ratio of the particle. 

27.16. IDENTIFY: Newton�s second law gives 2 /q vB mv R= . The speed v is constant and equals 0v . The direction of 
the magnetic force must be in the direction of the acceleration and is toward the center of the semicircular path. 
SET UP: A proton has 191.60 10  Cq −= + × and 271.67 10  kgm −= × . The direction of the magnetic force is given 
by the right-hand rule. 
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EXECUTE: (a) 
27 6

19

(1.67 10 kg)(1.41 10 m s) 0.294 T
(1.60  10 C)(0.0500 m)

mvB
qR

−

−

× ×
= = =

×
 

The direction of the magnetic field is out of the page (the charge is positive), in order for F
!

to be directed to the 
right at point A. 
(b) The time to complete half a circle is 7

0/ 1.11 10 s.t R vπ −= = ×  
EVALUATE: The magnetic field required to produce this path for a proton has a different magnitude (because of 
the different mass) and opposite direction (because of opposite sign of the charge) than the field required to 
produce the path for an electron. 

27.17. IDENTIFY and SET UP: Use conservation of energy to find the speed of the ball when it reaches the bottom of the 
shaft. The right-hand rule gives the direction of F

!
 and Eq.(27.1) gives its magnitude. The number of excess 

electrons determines the charge of the ball. 
EXECUTE: ( )( )8 19 114.00 10 1.602 10  C 6.408 10  Cq − −= × − × = − ×  

speed at bottom of shaft: 21
2 ;  2 49.5 m/smv mgy v gy= = =  

v!  is downward and B
!

 is west, so ×v B
!!  is north. Since 0,  q < F

!
 is south. 

( )( )( )11 10sin 6.408 10  C 49.5 m/s 0.250 T sin90 7.93 10  NF q vB θ − −= = × ° = ×  

EVALUATE: Both the charge and speed of the ball are relatively small so the magnetic force is small, much less 
than the gravity force of 1.5 N. 

27.18. IDENTIFY: Since the particle moves perpendicular to the uniform magnetic field, the radius of its path is 
mvR
q B

= . The magnetic force is perpendicular to both v! and B
!

. 

SET UP: The alpha particle has charge 192 3.20 10  Cq e −= + = × . 

EXECUTE: (a) 
27 3

4
19

(6.64 10  kg)(35.6 10  m/s) 6.73 10  m 0.673 mm
(3.20 10  C)(1.10 T)

R
−

−
−

× ×
= = × =

×
. The alpha particle moves in a 

circular arc of diameter 2 1.35 mmR = . 
(b) For a very short time interval the displacement of the particle is in the direction of the velocity. The magnetic 
force is always perpendicular to this direction so it does no work. The work-energy theorem therefore says that the 
kinetic energy of the particle, and hence its speed, is constant. 

(c) The acceleration is 
19 3

12 2
27

sin (3.20 10  C)(35.6 10  m/s)(1.10 T)sin90 1.88 10  m/s .
6.64 10  kg

B q vBFa
m m

φ −

−

× ×
= = = = ×

×
°  We can 

also use 
2va

R
= and the result of part (a) to calculate 

3 2
12 2

4

(35.6 10  m/s) 1.88 10  m/s
6.73 10  m

a −

×
= = ×

×
, the same result. The 

acceleration is perpendicular to v! and B
!

and so is horizontal, toward the center of curvature of the particle�s path. 
EVALUATE: (d) The unbalanced force ( BF

!
) is perpendicular to v! , so it changes the direction of v! but not its 

magnitude, which is the speed. 
27.19. IDENTIFY: In part (a), apply conservation of energy to the motion of the two nuclei. In part (b) apply 2/ .q vB mv R=  

SET UP: In part (a), let point 1 be when the two nuclei are far apart and let point 2 be when they are at their 
closest separation. 
EXECUTE: (a) 1 1 2 2K U K U+ = + . 1 2 0,U K= = so 1 2K U=  and 2 21

2 mv ke r= . 

19 7
27 15

2 2(1.602 10 C) 1.2 10 m s
(3.34 10 kg)(1.0 10 m)

k kv e
mr

−
− −= = × = ×

× ×
 

(b) m∑F = a
""! !

 gives 2qvB mv r= . 
27 7

19

(3.34 10 kg)(1.2 10 m/s) 0.10 T
(1.602 10 C)(2.50 m)

mvB
qr

−

−

× ×
= = =

×
. 

EVALUATE: The speed calculated in part (a) is large, 4% of the speed of light. 
27.20. IDENTIFY: sinF q vB φ= . The direction of F

!
is given by the right-hand rule. 

SET UP: An electron has q e= − . 

EXECUTE: (a) sinF q vB φ= . 
9

19

0.00320 10  N 5.00 T.
sin 8(1.60 10  C)(500,000 m/s)sin90
FB

q v φ

−

−

×
= = =

× °
 If the angleφ  is 

less than 90 ,° a larger field is needed to produce the same force. The direction of the field must be toward the south 
so that ×v B

!!  is downward. 
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(b) sinF q vB φ= . 
12

7
19

4.60 10 N 1.37 10 m s
sin (1.60 10 C)(2.10 T) sin 90

Fv
q B φ

−

−

×
= = = ×

× °
. If φ  is less than 90 ,° the 

speed would have to be larger to have the same force. The force is upward, so ×v B
!!  must be downward since the 

electron is negative, and the velocity must be toward the south. 
EVALUATE: The component of B

!
along the direction of v! produces no force and the component of v! along the 

direction of B
!

produces no force. 
27.21. (a) IDENTIFY and SET UP: Apply Newton's 2nd law, with 2 /a v R=  since the path of the particle is circular. 

EXECUTE: ( )2 says /m q vB m v R= =∑F a
! !  

( )( )( )19 3
5

27

1.602 10  C 2.50 T 6.96 10  m
8.35 10  m/s

3.34 10  kg
q BR

v
m

− −

−

× ×
= = = ×

×
 

(b) IDENTIFY and SET UP: The speed is constant so t = distance/v. 

EXECUTE: 
( )3

8
5

6.96 10  m
2.62 10  s

8.35 10  m/s
Rt
v

ππ −
−

×
= = = ×

×
 

(c) IDENTIFY and SET UP: kinetic energy gained = electric potential energy lost 
EXECUTE: 21

2 mv q V=  

( )( )
( )

227 52
3

19

3.34 10  kg 8.35 10  m/s
7.27 10  V 7.27 kV

2 2 1.602 10  C
mvV

q

−

−

× ×
= = = × =

×
 

EVALUATE: The deutron has a much larger mass to charge ratio than an electron so a much larger B is required 
for the same v and R. The deutron has positive charge so gains kinetic energy when it goes from high potential to 
low potential. 

27.22. IDENTIFY: For motion in an arc of a circle, 
2va

R
= and the net force is radially inward, toward the center of the 

circle. 
SET UP: The direction of the force is shown in Figure 27.22. The mass of a proton is 271.67 10  kg−× . 

EXECUTE: (a) F
!

is opposite to the right-hand rule direction, so the charge is negative. m=F a
! ! gives 

2

sin vq vB m
R

φ = . 90φ = ° and 
19

6
27

3(1.60 10  C)(0.250 T)(0.475 m) 2.84 10  m/s
12(1.67 10  kg)

q BR
v

m

−

−

×
= = = ×

×
. 

(b) 19 6 13sin 3(1.60 10  C)(2.84 10  m/s)(0.250 T)sin90 3.41 10  NBF q vB φ − −= = × × = ×° . 
27 2 2512(1.67 10  kg)(9.80 m/s ) 1.96 10  Nw mg − −= = × = × . The magnetic force is much larger than the weight of the 

particle, so it is a very good approximation to neglect gravity. 
EVALUATE: (c) The magnetic force is always perpendicular to the path and does no work. The particles move 
with constant speed. 

 
Figure 27.22 

27.23. IDENTIFY: Example 27.3 shows that 2m fB
q
π

= , where f is the frequency, in Hz, of the electromagnetic waves 

that are produced. 
SET UP: An electron has charge q e= − and mass 319.11 10  kg.m −= ×  A proton has charge q e= + and mass 

271.67 10  kg.m −= ×  

EXECUTE: (a) 
31 12

19

2 (9.11 10 kg)2 (3.00 10 Hz) 107 T.
(1.60 10 C)

m πf πB
q

−

−

× ×
= = =

×
 This is about 2.4 times the greatest 

magnitude of magnetic field yet obtained on earth. 
(b) Protons have a greater mass than the electrons, so a greater magnetic field would be required to accelerate them 
with the same frequency and there would be no advantage in using them. 
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EVALUATE: Electromagnetic waves with frequency 3.0 THzf = have a wavelength in air of 

43.0 10  m.v
f

λ −= = ×  The shorter the wavelength the greater the frequency and the greater the magnetic field that 

is required. B depends only on f and on the mass-to-charge ratio of the particle that moves in the circular path. 
27.24. IDENTIFY: The magnetic force on the beam bends it through a quarter circle. 

SET UP: The distance that particles in the beam travel is s = Rθ, and the radius of the quarter circle is R = mv/qB. 
EXECUTE: Solving for R gives R = s/θ  = s/(π/2) = 1.18 cm/(π/2) = 0.751 cm. Solving for the magnetic field:  
B = mv/qR = (1.67 × 10�27 kg)(1200 m/s)/[(1.60 × 10�19 C)(0.00751 m)] = 1.67 × 10�3 T 
EVALUATE: This field is about 10 times stronger than the Earth�s magnetic field, but much weaker than many 
laboratory fields. 

27.25. IDENTIFY: When a particle of charge e− is accelerated through a potential difference of magnitude V, it gains 

kinetic energy eV. When it moves in a circular path of radius R, its acceleration is 
2v

R
. 

SET UP: An electron has charge 191.60 10  Cq e −= − = − ×  and mass 319.11 10  kg−× . 

EXECUTE: 21
2 mv eV= and 

19 3
7

31

2 2(1.60 10  C)(2.00 10  V) 2.65 10  m/s
9.11 10  kg

eVv
m

−

−

× ×
= = = ×

×
. m=F a
! ! gives 

2

sin vq vB m
R

φ = . 90φ = ° and 
31 7

4
19

(9.11 10  kg)(2.65 10  m/s) 8.38 10  T
(1.60 10  C)(0.180 m)

mvB
q R

−
−

−

× ×
= = = ×

×
. 

EVALUATE: The smaller the radius of the circular path, the larger the magnitude of the magnetic field that is 
required. 

27.26. IDENTIFY: After being accelerated through a potential difference V the ion has kinetic energy qV. The 
acceleration in the circular path is 2 / .v R  
SET UP: The ion has charge q e= + . 

EXECUTE: .K qV eV= = +  21
2 mv eV= and 

19
4

26

2 2(1.60 10  C)(220 V) 7.79 10  m/s.
1.16 10  kg

eVv
m

−

−

×
= = = ×

×
 sin .BF q vB φ=  

90φ = ° . m=F a
! ! gives 

2vq vB m
R

= . 
26 4

3
19

(1.16 10  kg)(7.79 10  m/s) 7.81 10  m 7.81 mm.
(1.60 10  C)(0.723 T)

mvR
q B

−
−

−

× ×
= = = × =

×
 

EVALUATE: The larger the accelerating voltage, the larger the speed of the particle and the larger the radius of its 
path in the magnetic field. 

27.27. (a) IDENTIFY and SET UP: Eq.(27.4) gives the total force on the proton. At 0,t =  

( )� � � �.x z x z xq q v v B qv B= × = + × =F v B i k i j
! !!  ( )( )( ) ( )19 5 14� �1.60 10  C 2.00 10  m/s 0.500 T 1.60 10  N .− −= × × = ×F j j

!
 

(b) Yes. The electric field exerts a force in the direction of the electric field, since the charge of the proton is 
positive and there is a component of acceleration in this direction. 
(c) EXECUTE: In the plane perpendicular to B

!
 (the yz-plane) the motion is circular. But there is a velocity 

component in the direction of ,B
!

 so the motion is a helix. The electric field in the �+i  direction exerts a force in 

the �+i  direction. This force produces an acceleration in the �+i  direction and this causes the pitch of the helix to 
vary. The force does not affect the circular motion in the yz-plane, so the electric field does not affect the radius of 
the helix. 
(d) IDENTIFY and SET UP: Eq.(27.12) and 2 /T π ω=  to calculate the period of the motion. Calculate xa  
produced by the electric force and use a constant acceleration equation to calculate the displacement in the x-
direction in time T/2. 
EXECUTE: Calculate the period T: /q B mω =  

( )
( )( )

27
7

19

2 1.67 10  kg2 2 1.312 10  s.
1.60 10  C 0.500 T

mT
q B

ππ π
ω

−
−

−

×
= = = = ×

×
 Then 8/ 2 6.56 10  s.t T −= = ×  5

0 1.50 10  m/sxv = ×  

( )( )19 4
12 2

27

1.60 10  C 2.00 10  V/m
1.916 10  m/s

1.67 10  kg
x

x
Fa
m

−

−

× ×
= = = + ×

×
 

21
0 0 2x xx x v t a t− = +  

( )( ) ( )( )25 8 12 2 81
0 21.50 10  m/s 6.56 10  s 1.916 10  m/s 6.56 10  s 1.40 cmx x − −− = × × + × × =  

EVALUATE: The electric and magnetic fields are in the same direction but produce forces that are in 
perpendicular directions to each other. 
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27.28. IDENTIFY: For no deflection the magnetic and electric forces must be equal in magnitude and opposite in 
direction. 
SET UP: /v E B= for no deflection. With only the magnetic force, 2 /q vB mv R=  

EXECUTE: (a) 4 3 6(1.56 10 V m ) (4.62 10 T) 3.38 10 m s.v E B −= = × × = ×  

(b) The directions of the three vectors ,v!  E
!

and B
!

are sketched in Figure 27.28. 

(c) 
31 6

3
19 3

(9.11 10  kg)(3.38 10  m/s) 4.17 10  m.
(1.60 10  C)(4.62 10  T)

mvR
q B

−
−

− −

× ×
= = = ×

× ×
 

3
9

6

2 2 2 (4.17 10 m) 7.74 10 s.
(3.38 10 m s )

m RT
q B v
π π π −

−×
= = = = ×

×
 

EVALUATE: For the field directions shown in Figure 27.28, the electric force is toward the top of the page and 
the magnetic force is toward the bottom of the page. 

 
Figure 27.28 

27.29. IDENTIFY: For the alpha particles to emerge from the plates undeflected, the magnetic force on them must 
exactly cancel the electric force. The battery produces an electric field between the plates, which acts on the alpha 
particles. 
SET UP: First use energy conservation to find the speed of the alpha particles as they enter the plates: qV = 1/2 mv2. 
The electric field between the plates due to the battery is E =Vbd. For the alpha particles not to be deflected, the 
magnetic force must cancel the electric force, so qvB = qE, giving B = E/v. 
EXECUTE: Solve for the speed of the alpha particles just as they enter the region between the plates. Their charge 
is 2e. 

( )19
5

27

4 1.60 10 C (1750 V)2(2 ) 4.11 10 m/s
6.64 10 kg

e Vv
mα

−

−

×
= = = ×

×
 

The electric field between the plates, produced by the battery, is 
E = Vb /d = (150 V)/(0.00820 m) = 18,300 V 

The magnetic force must cancel the electric force: 
B = E/vα  = (18,300 V)/(4.11 × 105 m/s) = 0.0445 T 

The magnetic field is perpendicular to the electric field. If the charges are moving to the right and the electric field 
points upward, the magnetic field is out of the page. 
EVALUATE: The sign of the charge of the alpha particle does not enter the problem, so negative charges of the 
same magnitude would also not be deflected. 

27.30. IDENTIFY: For no deflection the magnetic and electric forces must be equal in magnitude and opposite in 
direction. 
SET UP: /v E B= for no deflection. 
EXECUTE: To pass undeflected in both cases, 3(5.85 10 m s)(1.35 T) 7898 N C.E vB= = × =  

(a) If 90.640 10 C,q −= ×  the electric field direction is given by � � �( ( )) ,− × −j k = i  since it must point in the opposite 
direction to the magnetic force. 
(b) If 90.320 10 C,q −= − ×  the electric field direction is given by � � �(( ) ( )) ,− × − =j k i  since the electric force must 
point in the opposite direction as the magnetic force. Since the particle has negative charge, the electric force is 
opposite to the direction of the electric field and the magnetic force is opposite to the direction it has in part (a). 
EVALUATE: The same configuration of electric and magnetic fields works as a velocity selector for both 
positively and negatively charged particles. 

27.31. IDENTIFY and SET UP: Use the fields in the velocity selector to find the speed v of the particles that pass through. 
Apply Newton's 2nd law with 2 /a v R=  to the circular motion in the second region of the spectrometer. Solve for 
the mass m of the ion. 
EXECUTE: In the velocity selector .q E q vB=  

5
51.12 10  V/m 2.074 10  m/s

0.540 T
Ev
B

×
= = = ×  
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In the region of the circular path givesm=∑F a
! !  2( / ) so /q vB m v R m q RB v= =  

Singly charged ion, so 191.602 10  Cq e −= + = ×  
19

25
5

(1.602 10  C)(0.310 m)(0.540 T) 1.29 10  kg
2.074 10  m/s

m
−

−×
= = ×

×
 

Mass number = mass in atomic mass units, so is 
25

27

1.29 10  kg 78.
1.66 10  kg

−

−

×
=

×
 

EVALUATE: Appendix D gives the average atomic mass of selenium to be 78.96. One of its isotopes has atomic 
mass 78. 

27.32. IDENTIFY and SET UP: For a velocity selector, .E vB=  For parallel plates with opposite charge, .V Ed=  
EXECUTE: (a) 6 6(1.82 10 m s)(0.650 T) 1.18 10 V m.E vB= = × = ×  

(b) 6 3(1.18 10 V m)(5.20 10 m) 6.14 kV.V Ed −= = × × =  

EVALUATE: Any charged particle with 61.82 10 m sv = × will pass through undeflected, regardless of the sign 
and magnitude of its charge. 

27.33. IDENTIFY: The magnetic force is sin .F IlB φ=  For the wire to be completely supported by the field requires that 
F mg= and that F

!
and w! are in opposite directions. 

SET UP: The magnetic force is maximum when 90φ = °.  The gravity force is downward. 

EXECUTE: (a) .IlB mg=  
2

4
4

(0.150 kg)(9.80 m/s ) 1.34 10  A.
(2.00 m)(0.55 10  T)

mgI
lB −= = = ×

×
 This is a very large current and ohmic 

heating due to the resistance of the wire would be severe; such a current isn�t feasible. 
(b) The magnetic force must be upward. The directions of I, B

!
 and F

!
 are shown in Figure 27.33, where we have 

assumed that B
!

is south to north. To produce an upward magnetic force, the current must be to the east. The wire 
must be horizontal and perpendicular to the earth�s magnetic field. 
EVALUATE: The magnetic force is perpendicular to both the direction of I and the direction of .B

!
 

 
Figure 27.33 

27.34. IDENTIFY: Apply sin .F IlB φ=  
SET UP: 0.0500 ml =  is the length of wire in the magnetic field. Since the wire is perpendicular to ,B

!
 90φ = °.  

EXECUTE: (10.8 A)(0.0500 m)(0.550 T) 0.297 N.F IlB= = =  
EVALUATE: The force per unit length of wire is proportional to both B and I. 

27.35. IDENTIFY: Apply sin .F IlB φ=  
SET UP: Label the three segments in the field as a, b, and c. Let x be the length of segment a. Segment b has 
length 0.300 m and segment c has length 0.600 cm .x−  Figure 27.35a shows the direction of the force on each 
segment. For each segment, 90φ = °.  The total force on the wire is the vector sum of the forces on each segment. 
EXECUTE: (4.50 A) (0.240 T).aF IlB x= =  (4.50 A)(0.600 m )(0.240 T).cF x= −  Since aF

!
 and cF

!
 are in the 

same direction their vector sum has magnitude (4.50 A)(0.600 m)(0.240 T) 0.648 Nac a cF F F= + = =  and is 
directed toward the bottom of the page in Figure 27.35a. (4.50 A)(0.300 m)(0.240 T) 0.324 NbF = =  and is 

directed to the right. The vector addition diagram for acF
!

 and bF
!

 is given in Figure 27.35b. 

2 2 2 2(0.648 N) (0.324 N) 0.724 N.ac bF F F= + = + =  0.648 Ntan
0.324 N

ac

b

F
F

θ = =  and 63.4θ = °.  The net force has 

magnitude 0.724 N and its direction is specified by 63.4θ = ° in Figure 27.35b. 
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EVALUATE: All three current segments are perpendicular to the magnetic field, so 90φ = ° for each in the force 
equation. The direction of the force on a segment depends on the direction of the current for that segment. 

  
Figure 27.35 

27.36. IDENTIFY and SET UP: sinF IlB φ= . The direction of F
!

is given by applying the right-hand rule to the 
directions of I and B

!
. 

EXECUTE: (a) The current and field directions are shown in Figure 27.36a. The right-hand rule gives that F
!

is 
directed to the south, as shown. 90φ = ° and 2 3(1.20A)(1.00 10  m)(0.588 T) 7.06 10  NF − −= × = × . 

(b) The right-hand rule gives that F
!

is directed to the west, as shown in Figure 27.36b. 90φ = ° and 
37.06 10  NF −= × , the same as in part (a). 

(c) The current and field directions are shown in Figure 27.36c. The right-hand rule gives that F
!

is 60.0° north of 
west. 90φ = ° so 37.06 10  NF −= × , the same as in part (a). 
EVALUATE: In each case the current direction is perpendicular to the magnetic field. The magnitude of the 
magnetic force is the same in each case but its direction depends on the direction of the magnetic field. 

   
Figure 27.36 

27.37. IDENTIFY: sinF IlB φ= . 
SET UP: Since the field is perpendicular to the rod it is perpendicular to the current and 90φ = ° . 

EXECUTE: 0.13 N 9.7 A
(0.200 m)(0.067 T)

FI
lB

= = =  

EVALUATE: The force and current are proportional. We have assumed that the entire 0.200 m length of the rod is 
in the magnetic field. 

27.38. IDENTIFY: Apply I
→

×F = l B
!!

. 
SET UP: The magnetic field of a bar magnet points away from the north pole and toward the south pole. 
EXECUTE: Between the poles of the magnet, the magnetic field points to the right. Using the fingertips of your 
right hand, rotate the current vector by 90°  into the direction of the magnetic field vector. Your thumb points 
downward�which is the direction of the magnetic force. 
EVALUATE If the two magnets had their poles interchanged, then the force would be upward. 

27.39. IDENTIFY and SET UP: The magnetic force is given by Eq.(27.19). IF mg=  when the bar is just ready to levitate. 
When I becomes larger,  and I IF mg F mg> −  is the net force that accelerates the bar upward. Use Newton's 2nd 
law to find the acceleration. 
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(a) EXECUTE: 
( )( )
( )( )

20.750 kg 9.80 m/s
,  32.67 A

0.500 m 0.450 T
mgIlB mg I
lB

= = = =  

( )( )32.67 A 25.0 817 VIR= = Ω =E  

(b) ( ) ( )2.0 ,  / 816.7 V / 2.0 408 AR I R= Ω = = Ω =E  

92 NIF IlB= =  

( ) 2/ 113 m/sIa F mg m= − =  

EVALUATE: I increases by over an order of magnitude when R changes to IF mg>>  and a is an order of 
magnitude larger than g. 

27.40. IDENTIFY: The magnetic force BF
!

must be upward and equal to mg. The direction of BF
!

is determined by the 
direction of I in the circuit. 

SET UP: sinBF IlB φ= , with 90φ = ° . VI
R

= , where V is the battery voltage. 

EXECUTE: (a) The forces are shown in Figure 27.40. The current I in the bar must be to the right to produce 

BF
!

upward. To produce current in this direction, point a must be the positive terminal of the battery. 

(b) BF mg= . IlB mg= . 2

(175 V)(0.600 m)(1.50 T) 3.21 kg
(5.00 )(9.80 m/s )

IlB VlBm
g Rg

= = = =
Ω

. 

EVALUATE: If the battery had opposite polarity, with point a as the negative terminal, then the current would be 
clockwise and the magnetic force would be downward. 

 
Figure 27.40 

27.41. IDENTIFY: Apply I ×F = l B
!! !

to each segment of the conductor: the straight section parallel to the x axis, the 
semicircular section and the straight section that is perpendicular to the plane of the figure in Example 27.8. 
SET UP: �

xBB = i
!

. The force is zero when the current is along the direction of B
!

. 
EXECUTE: (a) The force on the straight section along the �x-axis is zero. For the half of the semicircle at 
negative x the force is out of the page. For the half of the semicircle at positive x the force is into the page. The net 
force on the semicircular section is zero. The force on the straight section that is perpendicular to the plane of the 
figure is in the �y-direction and has magnitude F ILB.=  The total magnetic force on the conductor is ,ILB in the  
�y-direction. 
EVALUATE: (b) If the semicircular section is replaced by a straight section along the x -axis, then the magnetic 
force on that straight section would be zero, the same as it is for the semicircle. 

27.42. IDENTIFY: sinIABτ φ= . The magnetic moment of the loop is IAμ = . 
SET UP: Since the plane of the loop is parallel to the field, the field is perpendicular to the normal to the loop and 

90φ = ° . 
EXECUTE: (a) 3(6.2 A)(0.050 m)(0.080 m)(0.19 T) 4.7 10  N mIABτ −= = = × ⋅  

(b) 2(6.2 A)(0.050 m)(0.080 m) 0.025 A mIAμ = = = ⋅  
EVALUATE: The torque is a maximum when the field is in the plane of the loop and 90φ = ° . 

27.43. IDENTIFY: The period is 2 /T r vπ= , the current is /Q t and the magnetic moment is IAμ =  

SET UP: The electron has charge e− . The area enclosed by the orbit is 2rπ . 
EXECUTE: (a) 162 1.5 10 sT r vπ −= = ×  
(b) Charge e− passes a point on the orbit once during each period, so 1.1 mAI Q t e t= = = . 

(c) 2 24 29.3 10 A mIA I rμ π −= = = × ⋅  
EVALUATE: Since the electron has negative charge, the direction of the current is opposite to the direction of 
motion of the electron. 
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27.44. IDENTIFY: sinIABτ φ= , where φ  is the angle between B
!

and the normal to the loop. 
SET UP: The coil as viewed along the axis of rotation is shown in Figure 27.44a for its original position and in 
Figure 27.44b after it has rotated 30.0° . 
EXECUTE: (a) The forces on each side of the coil are shown in Figure 27.44a. 1 2 0+ =F F

! !
and 3 4 0+ =F F

! !
. The 

net force on the coil is zero. 0φ = ° and sin 0φ = , so 0τ = . The forces on the coil produce no torque. 
(b) The net force is still zero. 30.0φ = ° and the net torque is 

(1)(1.40 A)(0.220 m)(0.350 m)(1.50 T)sin30.0 0.0808 N mτ = = ⋅° . The net torque is clockwise in Figure 27.44b 
and is directed so as to increase the angleφ . 
EVALUATE: For any current loop in a uniform magnetic field the net force on the loop is zero. The torque on the 
loop depends on the orientation of the plane of the loop relative to the magnetic field direction. 

  
Figure 27.44 

27.45. IDENTIFY: The magnetic field exerts a torque on the current-carrying coil, which causes it to turn. We can use 
the rotational form of Newton�s second law to find the angular acceleration of the coil. 
SET UP: The magnetic torque is given by = × B

!! !τ μ , and the rotational form of Newton�s second law is 
Iτ α=∑ . The magnetic field is parallel to the plane of the loop. 

EXECUTE: (a) The coil rotates about axis A2 because the only torque is along top and bottom sides of the coil. 
(b) To find the moment of inertia of the coil, treat the two 1.00-m segments as point-masses (since all the points in 
them are 0.250 m from the rotation axis) and the two 0.500-m segments as thin uniform bars rotated about their 
centers. Since the coil is uniform, the mass of each segment is proportional to its fraction of the total perimeter of 
the coil. Each 1.00-m segment is 1/3 of the total perimeter, so its mass is (1/3)(210 g) = 70 g = 0.070 kg. The mass 
of each 0.500-m segment is half this amount, or 0.035 kg. The result is 

2 2 21
122(0.070 kg)(0.250 m) 2 (0.035 kg)(0.500 m) 0.0102 kg mI = + = ⋅  

The torque is 
 = sin90 (2.00 A)(0.500 m)(1.00 m)(3.00 T) = 3.00 N mIAB= × ° = ⋅B
!! !τ μ  

Using the above values, the rotational form of Newton�s second law gives 
2290 rad/s

I
τα = =  

EVALUATE: This angular acceleration will not continue because the torque changes as the coil turns. 
27.46. IDENTIFY: = × B

!! !τ μ  and cosU Bμ φ= − , where NIBμ = . sinBτ μ φ= . 

SET UP: φ  is the angle between B
!

and the normal to the plane of the loop. 
EXECUTE: (a) � � �90 .  sin(90 ) , direction .  cos 0.τ NIAB NIAB U Bφ μ φ= ° = ° = × − = − =k j = i  
(b) 0. sin(0) 0, no direction. cos .τ NIAB U B NIABφ μ φ= = = = − = −  
(c) � � �90 .  sin(90 ) , direction .  cos 0.τ NIAB NIAB U Bφ μ φ= ° = ° = − × = − =k j = i  
(d) 180 : sin(180 ) 0, no direction, cos(180 ) .τ NIAB U B NIABφ μ= ° = ° = = − ° =  
EVALUATE: When τ is maximum, 0U = . When U  is maximum, 0τ = . 

27.47. IDENTIFY and SET UP: The potential energy is given by Eq.(27.27): .U = ⋅ B
!!μ  The scalar product depends on 

the angle between and .B
!!μ  

EXECUTE: For  and  parallel, 0  and cos .B Bφ μ φ μ= ° ⋅ = =B B
! !! !μ μ  For and  antiparallel,B

!!μ  
180  and cos .B Bφ μ φ μ= ° ⋅ = = −

!! Bμ  
1 2,  U B U Bμ μ= + = −  

2
2 1 2 2(1.45 A m )(0.835 T) 2.42 JU U U BμΔ = − = − = − ⋅ = −  

EVALUATE: U is maximum when and B
!!μ  are antiparallel and minimum when they are parallel. When the coil 

is rotated as specified its magnetic potential energy decreases. 
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27.48. IDENTIFY: Apply Eq.(27.29) in order to calculate I. The power drawn from the line is supplied abP IV= . The 

mechanical power is the power supplied minus the 2I r  electrical power loss in the internal resistance of the motor. 
SET UP: 120VabV = , 105 V=E , and 3.2 r = Ω . 

EXECUTE: (a) 
120 V 105 V 4.7 A.

3.2 Ω
ab

ab
VV Ir I

r
− −

= + ⇒ = = =
EE  

(b) supplied (4.7 A)(120 V) 564 W.abP IV= = =  

(c) 2 2
mech 564 W (4.7 A) (3.2Ω) 493 W.abP IV I r= − = − =  

EVALUATE: If the rotor isn�t turning, when the motor is first turned on or if the rotor bearings fail, then 0=E  

and 
120V 37.5 A
3.2 

I = =
Ω

. This large current causes large 2I r  heating and can trip the circuit breaker. 

27.49. IDENTIFY: The circuit consists of two parallel branches with the potential difference of 120 V applied across 
each. One branch is the rotor, represented by a resistance rR  and an induced emf that opposes the applied 
potential. Apply the loop rule to each parallel branch and use the junction rule to relate the currents through the 
field coil and through the rotor to the 4.82 A supplied to the motor. 
SET UP: The circuit is sketched in Figure 27.49. 

 

E  is the induced emf developed by 
the motor. It is directed so as to 
oppose the current through the rotor. 

Figure 27.49  
EXECUTE: (a) The field coils and the rotor are in parallel with the applied potential difference f f,  so .V V I R=  

f
f

120 V 1.13 A.
106 

VI
R

= = =
Ω

 

(b) Applying the junction rule to point a in the circuit diagram gives f r 0.I I I− − =  

r f 4.82 A 1.13 A 3.69 A.I I I= − = − =  
(c) The potential drop across the rotor, r r ,I R + E  must equal the applied potential difference r r:V V I R= + E  

( )( )r r 120 V 3.69 A 5.9 98.2 VV I R= − = − Ω =E  
(d) The mechanical power output is the electrical power input minus the rate of dissipation of electrical energy in 
the resistance of the motor: 
electrical power input to the motor 

( )( )in 4.82 A 120 V 578 WP IV= = =  
electrical power loss in the two resistances 

( ) ( ) ( ) ( )2 22 2
loss f f f 1.13 A 106 3.69 A 5.9 216 WP I R I R= + = Ω + Ω =  

mechanical power output 
out in loss 578 W 216 W 362 WP P P= − = − =  

The mechanical power output is the power associated with the induced emf E  
( )( )out r 98.2 V 3.69 A 362 W,P P I= = = =E E  which agrees with the above calculation. 

EVALUATE: The induced emf reduces the amount of current that flows through the rotor. This motor differs from 
the one described in Example 27.12. In that example the rotor and field coils are connected in series and in this 
problem they are in parallel. 

27.50. IDENTIFY: The field and rotor coils are in parallel, so f f r rabV I R I R= = +E and f r ,I I I= +  where I is the current 
drawn from the line. The power input to the motor is .abP V I=  The power output of the motor is the power input 
minus the electrical power losses in the resistances and friction losses. 
SET UP: 120 V.abV =  4.82 A.I =  

EXECUTE: (a) Field current f
120 V 0.550 A.
218Ω

I = =  

(b) Rotor current r total f 4.82 A 0.550 A 4.27 A.I I I= − = − =  
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(c) r rV I R= +E  and r r 120 V (4.27 A)(5.9 Ω) 94.8 V.V I R= − = − =E  
(d) 2 2

f f f (0.550 A) (218Ω) 65.9 W.P I R= = =  
(e) 2 2

r r r (4.27 A) (5.9Ω) 108 W.P I R= = =  
(f ) Power input = (120 V) (4.82 A) = 578 W. 

(g) Efficiency = output

input

(578 W 65.9 W 108 W 45 W) 359 W 0.621.
578 W 578 W

P
P

− − −
= = =  

EVALUATE: 2I R losses in the resistance of the rotor and field coils are larger than the friction losses for this 
motor. 

27.51. IDENTIFY: The drift velocity is related to the current density by Eq.(25.4). The electric field is determined by the 
requirement that the electric and magnetic forces on the current-carrying charges are equal in magnitude and 
opposite in direction. 
(a) SET UP: The section of the silver ribbon is sketched in Figure 27.51a. 

 

dxJ n q v=   

so d
xJv

n q
=  

Figure 27.51a  

EXECUTE: 7 2
3

1 1

120 A 4.42 10  A/m
(0.23 10  m)(0.0118 m)x

I IJ
A y z −= = = = ×

×
 

( )( )
7 2

3
d 28 3 19

4.42 10  A/m 4.7 10  m/s 4.7 mm/s
5.85 10 / m 1.602 10  C

xJv
n q

−
−

×
= = = × =

× ×
 

(b) magnitude of E
!

 

dz yq E q v B=  
3 3

d (4.7 10  m/s)(0.95 T) 4.5 10  V/mz yE v B − −= = × = ×  

direction of E
!

 
The drift velocity of the electrons is in the opposite direction to the current, as shown in Figure 27.51b. 

 

× ↑v B
!!  

B q e= × = − × ↓F v B v B
! ! !! !

 

Figure 27.51b  
The directions of the electric and magnetic forces on an electron in the ribbon are shown in Figure 27.51c. 

 

EF
!

 must oppose BF
!

 so EF
!

 
is in the -directionz−  

Figure 27.51c  
 so E q e= = −F E E E

! ! ! !
 is opposite to the direction of EF

!
 and thus E

!
 is in the -direction.z+  

(c) The Hall emf is the potential difference between the two edges of the strip (at z = 0 and z = 1z ) that results from 
the electric field calculated in part (b). 3

Hall 1 (4.5 10  V/m)(0.0118 m) 53 VEz μ−= = × =E  
EVALUATE: Even though the current is quite large the Hall emf is very small. Our calculated Hall emf is more 
than an order of magnitude larger than in Example 27.13. In this problem the magnetic field and current density are 
larger than in the example, and this leads to a larger Hall emf. 

27.52. IDENTIFY: Apply Eq.(27.30). 
SET UP: 1 1.A y z=  1/ .E z= E  .q e=  

EXECUTE: 1

1

x y y y y

z z

J B IB IB z IB
n

q E A q E A q y q
= = = =E E  

28 3
4 19 4

(78.0 A)(2.29 T) 3.7 10 electrons / m
(2.3 10 m)(1.6 10 C)(1.31 10 V)

n − − −= = ×
× × ×

 

EVALUATE: The value of n for this metal is about one-third the value of n calculated in Example 27.12 for copper. 
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27.53. (a) IDENTIFY: Use Eq.(27.2) to relate ,  ,  and .v B F
! !!  

SET UP: The directions of 1 1 and v F
!!  are shown in Figure 27.53a. 

 

q= ×F v B
! !!  says that F

!
 is perpendicular 

to and .v B
!!  The information given here 

means that B
!

 can have no z-component. 

Figure 27.53a  

The directions of 2 2 and v F
!!  are shown in Figure 27.53b. 

 

F
!

 is perpendicular to and ,v B
!!  so B

!
 can 

have no x-component. 

Figure 27.53b  
Both pieces of information taken together say that B

!
 is in the y-direction; �.yB=B j

!
 

EXECUTE: Use the information given about 2F
!

 to calculate 2 2 2 2
� � �:   ,  ,  .y yF F v B= = =F i v k B j

! !!  

2 2 2 2 2 2 2
� � � � says ( ) and y y yq F qv B qv B F qv B= × = × = − = −F v B i k j i

! !!  

2 2 2 1 2 1/( ) /( ).  has the maginitude /( ) and is in the -direction.yB F qv F qv B F qv y= − = − −
!

 

(b) 1 1 2sin / 2 / 2yF qvB qv B Fφ= = =  

EVALUATE: 1 2 2. v v= v!  is perpendicular to B
!

 whereas only the component of 1v!  perpendicular to B
!

 contributes 
to the force, so it is expected that 2 1,F F>  as we found. 

27.54. IDENTIFY: Apply .q= ×F v B
! !!  

SET UP: 0.450 T,xB =  0yB = and 0.zB =  
EXECUTE: ( ) 0.x y z z yF q v B v B= − =  

8 4 3( ) (9.45 10  C)(5.85 10  m/s)(0.450 T) 2.49 10  N.y z x x zF q v B v B − −= − = × × = ×  
8 4 3( ) (9.45 10  C)( 3.11 10  m/s)(0.450 T) 1.32 10  N.z x y y xF q v B v B − −= − = − × − × = ×  

EVALUATE: F
!

is perpendicular to both v! and .B
!

 We can verify that 0.⋅ =F v
! !  Since B

!
 is along the x-axis, 

xv does not affect the force components. 
27.55. IDENTIFY: The sum of the magnetic, electrical, and gravitational forces must be zero to aim at and hit the target. 

SET UP: The magnetic field must point to the left when viewed in the direction of the target for no net force. The 
net force is zero, so 0B EF F F mg= − − =∑  and qvB � qE � mg = 0. 
EXECUTE: Solving for B gives 

6 2

6

(2500 10  C)(27.5 N/C) + (0.0050 kg)(9.80 m/s ) 3.7 T
(2500 10  C)(12.8 m/s)

qE mgB
qv

−

−

+ ×
= = =

×
 

The direction should be perpendicular to the initial velocity of the coin. 
EVALUATE: This is a very strong magnetic field, but achievable in some labs. 

27.56. IDENTIFY: Apply /R mv q B= . /v Rω =  
SET UP: 191 eV 1.60 10  J−= ×  
EXECUTE: (a) 6 19 132.7 MeV (2.7 10 eV) (1.6 10 J/eV) 4.32 10 J.K − −= = × × = ×  

13
7

27

2 2(4.32 10 J) 2.27 10 m/s
1.67 10 kg

Kv
m

−

−

×
= = = ×

×
. 

27 7

19

(1.67 10 kg) (2.27 10 m/s) 0.068 m.
(1.6 10 C) (3.5 T)

mvR
qB

−

−

× ×
= = =

×

7
82.27 10 m/sAlso, 3.34 10 rad/s.

0.068 m
vω
R

×
= = = ×  

(b) If the energy reaches the final value of 5.4 MeV, the velocity increases by 2 , as does the radius, to 0.096 m. 
The angular frequency is unchanged from part (a) so is 83.34 10× rad/s. 
EVALUATE: /q B mω = , so ω is independent of the energy of the protons. The orbit radius increases when the 
energy of the proton increases. 
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27.57. (a) IDENTIFY and SET UP: The maximum radius of the orbit determines the maximum speed v of the protons. 
Use Newton's 2nd law and 2/ca v R=  for circular motion to relate the variables. The energy of the particle is the 

kinetic energy 21
2 .K mv=  

EXECUTE: m∑F = a
! !  gives 2( / )q vB m v R=  

19
7

27

(1.60 10  C)(0.85 T)(0.40 m) 3.257 10  m/s.
1.67 10  kg

q BR
v

m

−

−

×
= = = ×

×
 The kinetic energy of a proton moving with this 

speed is 2 27 7 2 131 1
2 2 (1.67 10  kg)(3.257 10  m/s) 8.9 10  J 5.6 MeVK mv − −= = × × = × =  

(b) The time for one revolution is the period 8
7

2 2 (0.40 m) 7.7 10  s
3.257 10  m/s

RT
v
π π −= = = ×

×
 

(c) 
2 2 2 2

21 1 1
2 2 2

2. Or, .
q BR q B R KmK mv m B

m m q R
⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

 B is proportional to ,K  so if K is increased by a 

factor of 2 then B must be increased by a factor of 2.  2(0.85 T) 1.2 T.B = =   

(d) 
19

7
27

(3.20 10  C)(0.85 T)(0.40 m) 1.636 10  m/s
6.65 10  kg

q BR
v

m

−

−

×
= = = ×

×
 

2 27 7 2 131 1
2 2 (6.65 10  kg)(1.636 10  m/s) 8.9 10  J 5.5 MeV,K mv − −= = × × = × =  the same as the maximum energy for 

protons. 
EVALUATE: We can see that the maximum energy must be approximately the same as follows: From part (c), 

2

1
2 .

q BR
K m

m
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 For alpha particles q  is larger by a factor of 2 and m is larger by a factor of 4 (approximately). 

Thus 2 /q m  is unchanged and K is the same. 

27.58. IDENTIFY: Apply .q= ×F v B
! !!  

SET UP: �v−v = j!  

EXECUTE: (a) � � � � � � � �[ ( ) ( ) ( )]x y z x zqv B B B qvB qvB= − × + × + × = −F j i j j j k k i
!

 

(b) 0, 0, sign of doesn't matter.x z yB B B> <  

(c) � �
x xq vB q vB−F = i k

!
 and 2 .xq vB=F

!
 

EVALUATE: F
!

is perpendicular to v! , so F
!

 has no y-component. 
27.59. IDENTIFY: The contact at a will break if the bar rotates about b. The magnetic field is directed out of the page, so 

the magnetic torque is counterclockwise, whereas the gravity torque is clockwise in the figure in the problem. The 
maximum current corresponds to zero net torque, in which case the torque due to gravity is just equal to the torque 
due to the magnetic field. 
SET UP: The magnetic force is perpendicular to the bar and has moment arm / 2l , where 0.750 ml =  is the 

length of the bar. The gravity torque is cos60.0
2
lmg ⎛ ⎞

⎜ ⎟
⎝ ⎠

°  

EXECUTE: gravity Bτ τ=  and cos60.0 sin90 .
2 2
l lmg IlB= °°  This gives 

( )2(0.458 kg) 9.80 m/s (cos60.0 )cos60.0 1.93 A
sin90 (0.750 m)(1.55 T)(1)

mgI
lB

= = =
°

°°  

EVALUATE: Once contact is broken, the magnetic torque ceases. The 90.0°  angle in the expression for Bτ is the 

angle between the direction of I and the direction of .B
!

 

27.60. IDENTIFY: Apply mvR
q B

= . 

SET UP: Assume D R<<  
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EXECUTE: (a) The path is sketched in Figure 27.60. 
(b) Motion is circular: 2 2 2 2 2

1x y R x D y R D+ = ⇒ = ⇒ = −  (path of deflected particle) 

2y R=  (equation for tangent to the circle, path of undeflected particle).  
2 2

2 2
2 1 2 21 1 1D Dd y y R R D R R R

R R

⎡ ⎤
= − = − − = − − = − −⎢ ⎥

⎣ ⎦
. If R D>> , 

2 2

2

11 1
2 2

D Dd R
R R

⎡ ⎤⎛ ⎞
≈ − − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
. For a 

particle moving in a magnetic field, .mvR
qB

=  But 21
2

1 2,  so .mVmv qV R
B q

= =  Thus, the deflection 

2 2

.
2 2 2 2

D B q D B ed
mV mV

≈ =  

(c) 
2 5 19

31

(0.50 m) (5.0 10 T) (1.6 10 C) 0.067 m 6.7 cm.
2 2(9.11 10 kg)(750 V)

d
− −

−

× ×
= = =

×
 13% of ,d D≈  which is fairly 

significant. 

EVALUATE: In part (c), 
21 2 3.7

2 2
mV D DR D D

B e d d
⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 and 
2

14R
D

⎛ ⎞ =⎜ ⎟
⎝ ⎠

, so the approximation made in 

part (b) is valid. 

 
Figure 27.60 

27.61. IDENTIFY and SET UP: Use Eq.(27.2) to relate , ,  and .q v B F
! !!  The force and F a

! !  are related by Newton's 2nd law. 
6� � � �(0.120 T) , (1.05 10  m/s)( 3 4 12 ),  1.25 NF= − = × − + + =B k v i j k

! !
 

(a) EXECUTE: q= ×F v B
! !!  

6 � � � � � �( 0.120 T)(1.05 10  m/s)( 3 4 12 )q= − × − × + × + ×F i k j k k k
!

 
� � � � � � � �, , 0× = − × = × =i k j j k i k k  

5 5� � � �(1.26 10  N/C)( 3 4 ) (1.26 10  N/C)( 4 3 )q q= − × + + = − × + +F j i i j
!

 

The magnitude of the vector 2 2� �4 3  is 3 4 5.+ + + =i j  Thus 5(1.26 10  N/C)(5).F q= − ×  

6
5 5

1.25 N 1.98 10  C
5(1.26 10  N/C) 5(1.26 10  N/C)

Fq −= − = − = − ×
× ×

 

(b)  so /m m= =∑F a a F
! !! !  

5 6 5� � � �(1.26 10  N/C)( 4 3 ) ( 1.98 10  C)(1.26 10  N/C)( 4 3 )q −= − × + + = − − × × + +F i j i j
! � �0.250 N(+4 3 )= + +i j  

Then 13 2
15

0.250 N � � � �/ ( 4 3 ) (9.69 10  m/s )( 4 3 )
2.58 10  kg

m −

⎛ ⎞
= = + + = × + +⎜ ⎟×⎝ ⎠

a F i j i j
!!  

(c) IDENTIFY and SET UP: F
!

 is in the xy-plane, so in the z-direction the particle moves with constant speed 
612.6 10  m/s.×  In the xy-plane the force F

!
 causes the particle to move in a circle, with F

!
 directed in towards the 

center of the circle. 
EXECUTE: 2 2 gives ( / ) and /m F m v R R mv F= = =∑F a

! !  
2 2 2 6 2 6 2 13 2 2( 3.15 10  m/s) ( 4.20 10  m/s) 2.756 10  m /sx yv v v= + = − × + + × = ×  

2 2 2 2(0.250 N) 4 3 1.25 Nx yF F F= + = + =  
2 15 13 2 2(2.58 10  kg)(2.756 10  m /s ) 0.0569 m 5.69 cm

1.25 N
mvR
F

−× ×
= = = =  
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(d) IDENTIFY and SET UP: By Eq.(27.12) the cyclotron frequency is / 2 / 2 .f v Rω π π= =  

EXECUTE: The circular motion is in the xy-plane, so 2 2 65.25 10  m/s.x yv v v= + = ×  
6

7 75.25 10  m/s 1.47 10  Hz, and 2 9.23 10  rad/s
2 2 (0.0569 m)

vf f
R

ω π
π π

×
= = = × = = ×  

(e) IDENTIFY and SET UP Compare t to the period T of the circular motion in the xy-plane to find the x and y 
coordinates at this t. In the z-direction the particle moves with constant speed, so 0 .zz z v t= +  

EXECUTE: The period of the motion in the xy-plane is given by 8
7

1 1 6.80 10  s
1.47 10  Hz

T
f

−= = = ×
×

 

In t = 2T the particle has returned to the same x and y coordinates. The z-component of the motion is motion with a 
constant velocity of 612.6 10  m/s.zv = + ×  Thus 6 8

0 0 (12.6 10  m/s)(2)(6.80 10  s) 1.71 m.zz z v t −= + = + × × = +  
The coordinates at 2  are , 0, 1.71 m.t T x R y z= = = = +  
EVALUATE: The circular motion is in the plane perpendicular to .B

!
 The radius of this motion gets smaller when 

B increases and it gets larger when v increases. There is no magnetic force in the direction of B
!

 so the particle 
moves with constant velocity in that direction. The superposition of circular motion in the xy-plane and constant 
speed motion in the z-direction is a helical path. 

27.62. IDENTIFY: The net magnetic force on the wire is the vector sum of the force on the straight segment plus the 
force on the curved section. We must integrate to get the force on the curved section. 

SET UP: straight, top curved straight, bottomF F F F= + +∑ and straight, top straight, bottom straight .F F iL B= =  curved, 
0

sin 2xF iRB d iRB
π

θ θ= =∫  

(the same as if it were a straight segment 2R long) and Fy = 0 due to symmetry. Therefore, F = 2iLstraightB + 2iRB  
EXECUTE: Using Lstraight = 0.55 m, R = 0.95 m, i = 3.40 A, and B = 2.20 T gives F = 22 N, to right. 
EVALUATE: Notice that the curve has no effect on the force. In other words, the force is the same as if the wire 
were simply a straight wire 3.00 m long. 

27.63. IDENTIFY: sinNIABτ φ= . 
SET UP: The area A is related to the diameter D by 21

4A Dπ= . 

EXECUTE: 21
4( ) sinNI D Bτ π φ= . τ is proportional to 2D . Increasing D by a factor of 3 increases τ by a factor of 

23 9= . 
EVALUATE: The larger diameter means larger length of wire in the loop and also larger moment arms because 
parts of the loop are farther from the axis. 

27.64. IDENTIFY: Apply q= ×F v B
! !!

 
SET UP: �vv = k!  
EXECUTE: (a) � �.y xqvB qvB− +F = i j

!
 But 0 0

� �3 4F F+F = i j
!

, so 03 yF qvB= −  and 04 xF qvB=  

Therefore, 03
y

FB
qv

= − , 04
x

FB
qv

= and zB is undetermined. 

(b) 
2 2

2 2 2 2 20 0 0

0 0

6 9 16 25 ,x y z z z
F F qv F qvB B B B B B

qv qv F qv F
⎛ ⎞ ⎛ ⎞= = + + = + + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 so 011
z

FB
qv

= ± ⋅ 

EVALUATE: The force doesn�t depend on zB , since v!  is along the z-direction. 

27.65. IDENTIFY: For the velocity selector, E vB= . For the circular motion in the field B′ , mvR
q B

=
′
. 

SET UP: 0.701 T.B B′= =  

EXECUTE: 
4

41.88 10  N/C 2.68 10  m/s.
0.701 T

Ev
B

×
= = = ×  mvR

qB
=

′
, so 

27 4

82 19

82(1.66 10  kg)(2.68 10  m/s) 0.0325 m.
(1.60 10  C)(0.701 T)

R
−

−

× ×
= =

×
 

27 4

84 19

84(1.66 10  kg)(2.68 10  m/s) 0.0333 m.
(1.60 10  C)(0.701 T)

R
−

−

× ×
= =

×
 

27 4

86 19

86(1.66 10  kg)(2.68 10  m/s) 0.0341 m.
(1.60 10  C)(0.701 T)

R
−

−

× ×
= =

×
 

The distance between two adjacent lines is 1.6 mmRΔ = . 
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EVALUATE: The distance between the 82 Kr line and the 84 Kr line is 1.6 mm and the distance between the 
84 Kr line and the 86 Kr line is 1.6 mm. Adjacent lines are equally spaced since the 82 Kr  versus 84 Kr and 84 Kr versus 
86 Kr mass differences are the same. 

27.66. IDENTIFY: Apply conservation of energy to the acceleration of the ions and Newton�s second law to their motion 
in the magnetic field. 
SET UP: The singly ionized ions have q e= + . A 12C ion has mass 12 u and a 14C ion has mass 14 u, where 

271 u 1.66 10  kg−= ×  

EXECUTE: (a) During acceleration of the ions, 21
2qV mv=  and 2 .qVv

m
=  In the magnetic field, 

2 /m qV mmvR
qB qB

= =  and 
2 2

2
qB Rm

V
= . 

(b) 
2 2 19 2 2

4
27

(1.60 10 C)(0.150 T) (0.500 m) 2.26 10 V
2 2(12)(1.66 10 kg)

qB RV
m

−

−

×
= = = ×

×
 

(c) The ions are separated by the differences in the diameters of their paths. 2

22 2 VmD R
qB

= = , so 

( )14 12 2 2 2
14 12

2 2 2 (1 u)2 2 2 14 12Vm Vm VD D D
qB qB qB

Δ = − = − = − . 

( )
4 27

2
19 2

2(2.26 10  V)(1.66 10  kg)2 14 12 8.01 10  m.
(1.6 10  C)(0.150 T)

D
−

−
−

× ×
Δ = − = ×

×
 This is about 8 cm and is easily distinguishable. 

EVALUATE: The speed of the 12C ion is 
19 4

5
27

2(1.60 10  C)(2.26 10 V) 6.0 10  m/s
12(1.66 10  kg)

v
−

−

× ×
= = ×

×
. This is very fast, but 

well below the speed of light, so relativistic mechanics is not needed. 
27.67. IDENTIFY: The force exerted by the magnetic field is given by Eq.(27.19). The net force on the wire must be zero. 

SET UP: For the wire to remain at rest the force exerted on it by the magnetic field must have a component directed 
up the incline. To produce a force in this direction, the current in the wire must be directed from right to left in 
Figure 27.61 in the textbook. Or, viewing the wire from its left-hand end the directions are shown in Figure 27.67a. 

 
Figure 27.67a 

The free-body diagram for the wire is given in Figure 27.67b. 

 

EXECUTE: 0yF =∑  

cos sin 0IF Mgθ θ− =  
sinIF ILB φ=  

90  since  isφ = ° B
!

perpendicular 
to the current direction.  

Figure 27.67b  

Thus (ILB) cos sin 0Mgθ θ− =  and tanMgI
LB

θ
=  

EVALUATE: The magnetic and gravitational forces are in perpendicular directions so their components parallel to 
the incline involve different trig functions. As the tilt angle θ  increases there is a larger component of Mg down 
the incline and the component of IF  up the incline is smaller; I must increase with θ  to compensate. As 

0,  0 and as 90 , .I Iθ θ→ → → ° → ∞  
27.68. IDENTIFY: The current in the bar is downward, so the magnetic force on it is vertically upwards. The net force on 

the bar is equal to the magnetic force minus the gravitational force, so Newton�s second law gives the acceleration. 
The bar is in parallel with the 10.0-Ω resistor, so we must use circuit analysis to find the initial current through it. 
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SET UP: First find the current. The equivalent resistance across the battery is 30.0 Ω, so the total current is 4.00 A, 
half of which goes through the bar. Applying Newton�s second law to the bar gives .BF ma F mg iLB mg= = − = −∑  
EXECUTE: Solving for the acceleration gives 

2
2

(2.0 A)(1.50 m)(1.60 T)  3.00 N 5.88 m/s .
(3.00 N/9.80 m/s )

iLB mga
m
− −

= = =  

The direction is upward. 
EVALUATE: Once the bar is free of the conducting wires, its acceleration will become 9.8 m/s2 downward since 
only gravity will be acting on it. 

27.69. IDENTIFY: Calculate the acceleration of the ions when they first enter the field and assume this acceleration is 
constant. Apply conservation of energy to the acceleration of the ions by the potential difference. 
SET UP: Assume �

xvv = i! and neglect the y-component of v! that is produced by the magnetic force. 

EXECUTE: (a) 21
2 ,xmv qV=  so 2 .x

qVv
m

=  Also, x
y

qv Ba
m

= and .
x

xt
v

=  

2 2 1/ 2 1/ 22
2 21 1

2 2
1 1 .
2 2 2 8

x
y y

x x

x qv B x qBx m qy a t a Bx
v m v m qV mV

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 

(b) This can be used for isotope separation since the mass in the denominator leads to different locations for 
different isotopes. 
EVALUATE: For 0.1 T,B =  41 10  m/s,v = ×  q e= + and 2612 u 2.0 10  kg,m −= = ×  2 2(1.0 m ) .y x−=  The 
approximation y x<< is valid as long as x is on the order of 10 cm or less. 

27.70. IDENTIFY: Turning the charged loop creates a current, and the external magnetic field exerts a torque on that 
current. 
SET UP: The current is I = q/T = q/(1/f ) = qf = q(ω/2π) = qω/2π. The torque is sin .Bτ μ φ=  
EXECUTE: In this case,  and µ = ,ABφ = 90°  giving .IABτ =  Combining the results for the torque and current 

and using A = πr2 gives 2 21
22

q r B q r Bωτ π ω
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

EVALUATE: Any moving charge is a current, so turning the loop creates a current causing a magnetic force. 

27.71. IDENTIFY: 
mvR
q B

= . 

SET UP: After completing one semicircle the separation between the ions is the difference in the diameters of 
their paths, or 13 122( )R R− . A singly ionized ion has charge e+ . 

EXECUTE: (a) 
26 3

3
19

(1.99 10  kg)(8.50 10  m/s) 8.46 10  T
(1.60 10  C)(0.125 m)

mvB
q R

−
−

−

× ×
= = = ×

×
. 

(b) The only difference between the two isotopes is their masses. constantR v
m q B

= = and 12 13

12 13

R R
m m

= . 

26
13

13 12 26
12

2.16 10  kg(12.5 cm) 13.6 cm.
1.99 10  kg

mR R
m

−

−

⎛ ⎞ ⎛ ⎞×
= = =⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 The diameter is 27.2 cm. 

(c) The separation is 13 122( ) 2(13.6 cm 12.5 cm) 2.2 cm.R R− = − =  This distance can be easily observed. 
EVALUATE: Decreasing the magnetic field increases the separation between the two isotopes at the detector. 

27.72. IDENTIFY: The force exerted by the magnetic field is sinF ILB φ= . /a F m= and is constant. Apply a constant 
acceleration equation to relate v and d. 
SET UP: 90φ = °.  The direction of F

!
is given by the right-hand rule. 

EXECUTE: (a) F = ILB, to the right. 

(b) 2 2
0 02 ( )x x xv v a x x= + − gives 2 2v ad= and 

2 2

.
2 2
v v md
a ILB

= =  

(c) 
4 2

6(1.12 10 m/s) (25 kg) 3.14 10 m 3140 km
2(2000 A)(0.50 m)(0.50 T)

d ×
= = × =  

EVALUATE: 
3

2(20 10  A)(0.50 m)(0.50 T) 20 m/s .
25 kg

ILBa
m

×
= = =  The acceleration due to gravity is not negligible. 

27.73. IDENTIFY: Apply sinF IlB φ=  to calculate the force on each segment of the wire that is in the magnetic field. 
The net force is the vector sum of the forces on each segment. 
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SET UP: The direction of the magnetic force on each current segment in the field is shown in Figure 27.73. By 
symmetry, .a bF F=  aF

!
and bF

!
are in opposite directions so their vector sum is zero. The net force equals .cF  For 

,cF  90φ = ° and 0.450 m.l =  
EXECUTE: (6.00 A)(0.450 m)(0.666 T) 1.80 NcF IlB= = = . The net force is 1.80 N, directed to the left. 
EVALUATE: The shape of the region of uniform field doesn�t matter, as long as all of segment c is in the field and 
as long as the lengths of the portions of segments a and b that are in the field are the same. 

 
Figure 27.73 

27.74. IDENTIFY: Apply .I ×F = l B
!! !

 
SET UP: �l=l k

!
 

EXECUTE: (a) � � �( ) ( ) ( ) .y xI l Il B B⎡ ⎤× − +⎣ ⎦F = k B = i j
! !

 This gives 

(9.00 A) (0.250 m)( 0.985 T) 2.22 Nx yF IlB= − = − − =  and (9.00 A)(0.250 m)( 0.242 T) 0.545 N.y xF IlB= = − = − . 
0zF = , since the wire is in the z-direction. 

(b) 2 2 2 2(2.22 N) (0.545 N) 2.29 N.x yF F F= + = + =  

EVALUATE: F
!

must be perpendicular to the current direction, so F
!

has no z component. 
27.75. IDENTIFY: For the loop to be in equilibrium the net torque on it must be zero. Use Eq.(27.26) to calculate the 

torque due to the magnetic field and use Eq.(10.3) for the torque due to the gravity force. 
SET UP: See Figure 27.75a. 

 

Use 0,Aτ =∑  where 
point A is at the origin. 

Figure 27.75a  

EXECUTE: See Figure 27.75b. 

 

sin (0.400 m)sin30.0mg mgr mgτ φ= = °  

The torque is clockwise; mgτ!  is 
directed into the paper.  

Figure 27.75b  
For the loop to be in equilibrium the torque due to B

!
 must be counterclockwise (opposite to mg

!τ ) and it must be 
that .B mgτ τ=  See Figure 27.75c. 

 

.B = × B
!! !τ μ  For this torque to be 

counterclockwise ( B
!τ  directed out of the 

paper), B
!

 must be in the -direction.y+  

Figure 27.75c  
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sin sin60.0B B IABτ μ φ= = °  

( ) gives sin60.0 0.0400 m sin30.0B mg IAB mgτ τ= ° = °  

( ) ( ) 30.15 g/cm 2 8.00 cm 6.00 cm 4.2 g 4.2 10  kgm −= + = = ×  

( )( ) 3 20.800 m 0.0600 m 4.80 10  mA −= = ×  

( )( )0.0400 m sin30.0
sin 60.0

mg
B

IA
°

=
°

 

( )( )( )3 2

3 2

4.2 10  kg 9.80 m/s 0.0400 m sin30.0
0.024 T

(8.2 A)(4.80 10  m )sin 60.0
B

−

−

× °
= =

× °
 

EVALUATE: As the loop swings up the torque due to B
!

 decreases to zero and the torque due to mg increases 
from zero, so there must be an orientation of the loop where the net torque is zero. 

27.76. IDENTIFY: The torque exerted by the magnetic field is .= ×B
!! !τ μ  The torque required to hold the loop in place is .−

!τ  
SET UP: .IAμ =  !μ  is normal to the plane of the loop, with a direction given by the right-hand rule that is 
illustrated in Figure 27.32 in the textbook. sin ,IABτ φ=  where φ  is the angle between the normal to the loop and 
the direction of .B

!
 

EXECUTE: (a) sin 60 (15.0 A)(0.060 m)(0.080 m)(0.48 T)sin 60 0.030 N mτ IAB= ° = ° = ⋅ , in the �− j  direction. 

To keep the loop in place, you must provide a torque in the �+ j  direction. 

(b) sin 30 (15.0 A)(0.60 m)(0.080 m)(0.48 T)sin30 0.017 N m,τ IAB= ° = ° = ⋅  in the �+ j  direction. You must 

provide a torque in the �− j  direction to keep the loop in place. 
EVALUATE: (c) If the loop was pivoted through its center, then there would be a torque on both sides of the loop 
parallel to the rotation axis. However, the lever arm is only half as large, so the total torque in each case is identical 
to the values found in parts (a) and (b). 

27.77. IDENTIFY: Use Eq.(27.20) to calculate the force and then the torque on each small section of the rod and 
integrate to find the total magnetic torque. At equilibrium the torques from the spring force and from the magnetic 
force cancel. The spring force depends on the amount x the spring is stretched and then 21

2U kx=  gives the energy 
stored in the spring. 
(a) SET UP:  

 

Divide the rod into infinitesimal sections of 
length dr, as shown in Figure 27.77. 

Figure 27.77  

EXECUTE: The magnetic force on this section is IdF IBdr=  and is perpendicular to the rod. The torque dτ  due to 

the force on this section is .Id rdF IBr drτ = =  The total torque is 21
20

0.0442 N m, clockwise.
l

d IB rdr Il Bτ = = = ⋅∫ ∫  

(b) SET UP: IF  produces a clockwise torque so the spring force must produce a counterclockwise torque. The 
spring force must be to the left; the spring is stretched. 
EXECUTE: Find x, the amount the spring is stretched: 

0,τ =∑  axis at hinge, counterclockwise torques positive 
21

2( ) sin53 0kx l Il B° − =  

( )( )( )
( )

6.50 A 0.200 m 0.340 T
0.05765 m

2 sin53.0 2 4.80 N/m sin53.0
IlBx

k
= = =

° °
 

2 31
2 7.98 10  JU kx −= = ×  

EVALUATE: The magnetic torque calculated in part (a) is the same torque calculated from a force diagram in 
which the total magnetic force IF IlB=  acts at the center of the rod. We didn't include a gravity torque since the 
problem said the rod had negligible mass. 
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27.78. IDENTIFY: Apply I
→

×F = l B
!!

 to calculate the force on each side of the loop. 
SET UP: The net force is the vector sum of the forces on each side of the loop. 
EXECUTE: (a) (5.00 A)(0.600 m)(3.00 T)sin(0 ) 0 NPQF = =° . 

(5.00 A) (0.800 m) (3.00 T) sin(90 ) 12.0 NRPF = ° = , into the page. 

( )(5.00 A)(1.00 m)(3.00 T) 0.800/1.00 12.0 NQRF = = , out of the page. 
(b) The net force on the triangular loop of wire is zero. 
(c) For calculating torque on a straight wire we can assume that the force on a wire is applied at the wire�s center. 
Also, note that we are finding the torque with respect to the PR-axis (not about a point), and consequently the lever 
arm will be the distance from the wire�s center to the x-axis. sinrFτ φ=  gives (0 N) 0PQτ r= = , 

(0 m) sin 0RPτ F φ= =  and (0.300 m)(12.0 N)sin(90 ) 3.60 N mQRτ = ° = ⋅ . The net torque is 3.60 N m⋅ . 

(d) According to Eq.(27.28), ( )1
2sin (1)(5.00 A) (0.600 m)(0.800 m)(3.00 T)sin(90 ) 3.60 N mτ NIAB φ= = ° = ⋅ , 

which agrees with part (c). 
(e) Since QRF  is out of the page and since this is the force that produces the net torque, the point Q will be rotated 
out of the plane of the figure. 
EVALUATE: In the expression sinNIABτ φ= , φ  is the angle between the plane of the loop and the direction of 
B
!

. In this problem, 90φ = ° . 
27.79. IDENTIFY: Use Eq.(27.20) to calculate the force on a short segment of the coil and integrate over the entire coil 

to find the total force. 
SET UP: See Figure 27.79a. 

 

Consider the force dF
!

 on a short segment dl at 
the left-hand side of the coil, as viewed in Figure 
27.69 in the textbook. The current at this point is 
directed out of the page. dF

!
 is perpendicular both 

to B
!

 and to the direction of I.  

Figure 27.79a  
See Figure 27.79b. 

 

Consider also the force d ′F
!

 on a short segment 
on the opposite side of the coil, at the right-hand 
side of the coil in Figure 27.69 in the textbook. 
The current at this point is directed into the page. 

Figure 27.79b  
The two sketches show that the x-components cancel and that the y-components add. This is true for all pairs of 
short segments on opposite sides of the coil. The net magnetic force on the coil is in the y-direction and its 
magnitude is given by .yF dF= ∫  

EXECUTE: sin .dF Idl B φ=  But B
!

 is perpendicular to the current direction so 90 .φ = °   

cos30.0 cos30.0ydF dF IB dl= = °  

cos30.0yF dF IB dl= = °∫ ∫  

But ( )2 ,dl N rπ=∫  the total length of wire in the coil.  

( ) ( )( )( )( ) ( )cos30.0 2 0.950 A 0.200 T cos30.0 50 2 0.0078 mF IB N rπ π= ° = ° ( ) �0.444 N and 0.444 N= = −F j
!

 

EVALUATE: The magnetic field makes a constant angle with the plane of the coil but has a different direction at 
different points around the circumference of the coil so is not uniform. The net force is proportional to the 
magnitude of the current and reverses direction when the current reverses direction. 
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27.80. IDENTIFY: Conservation of energy relates the accelerating potential difference V to the final speed of the ions. In 
the magnetic field region the ions travel in an arc of a circle that has radius mvR

q B
= . 

SET UP: The quarter-circle paths of the two ions are shown in Figure 27.80. The separation at the detector is 
18 16r R RΔ = − . Each ion has charge q e= + . 

EXECUTE: (a) Conservation of energy gives 21
2q V mv= and 

2 q V
v

m
= . 

22 q mVq VmR
q B m q B

= = . 

q e= for each ion. 18 16 18 16
2 ( )eVr R R m m
eB

Δ = − = − . 

(b) 
( ) ( ) ( )

2 2 2 19 2 2 2

2 2 2
26 26

18 16 18 16

( ) ( ) (1.60 10  C)(4.00 10  m) (0.050 T)

2 2 2 2.99 10  kg 2.66 10  kg

reB e r BV
e m m m m

− −

− −

Δ Δ × ×
= = =

− − × − ×
 

33.32 10  VV = × . 
EVALUATE: The speed of the 16 O ion after it has been accelerated through a potential difference of 

33.32 10  VV = × is 52.00 10  m/s× . Increasing the accelerating voltage increases the separation of the two isotopes 
at the detector. But it does this by increasing the radius of the path for each ion, and this increases the required size 
of the magnetic field region. 

 
Figure 27.80 

27.81. IDENTIFY: Apply d Id ×F = l B
!! !

 to each side of the loop. 
SET UP: For each side of the loop, dl

!
is parallel to that side of the loop and is in the direction of I. Since the loop 

is in the xy-plane, 0z =  at the loop and 0yB = at the loop. 
EXECUTE: (a) The magnetic field lines in the yz-plane are sketched in Figure 27.81. 

(b) Side 1, that runs from (0,0) to (0,L): 0 1
02

0 0

� �.
L L B y dyId I B LI

L
×∫ ∫F = l B = i = i
!! !

 

Side 2, that runs from (0,L) to (L,L): 0
0

0, 0,

� �
L L

y L y L

B y dxId I IB L
L= =

× −∫ ∫F = l B = j = j
!! !

. 

Side 3, that runs from (L,L) to (L,0): 
0 0

0 1
02

, ,

� �( )
L x L L x L

B y dyId I IB L
L= =

= × − −∫ ∫F l B = i = i
!! !

. 

Side 4, that runs from (L,0) to (0,0): 
0 0

0

, 0 , 0

� 0.
L y L y

B y dxId I
L= =

× =∫ ∫F = l B = j
!! !

 

(c) The sum of all forces is total 0
�.IB L−F = j

!
 

EVALUATE: The net force on sides 1 and 3 is zero. The force on side 4 is zero, since 0y = and 0z =  at that side 
and therefore 0B = there. The net force on the loop equals the force on side 2. 

 
Figure 27.81 
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27.82. IDENTIFY: Apply d Id ×F = l B
!! !

 to each side of the loop. = ×r F
!!!τ . 

SET UP: For each side of the loop, dl
!

is parallel to that side of the loop and is in the direction of I. 
EXECUTE: (a) The magnetic field lines in the xy-plane are sketched in Figure 27.82. 

(b) Side 1, that runs from (0,0) to (0,L): 0 1
02

0 0

 � �( )
L L B y dyId I B LI

L
× − −∫ ∫F = l B = k = k
!! !

. 

Side 2, that runs from (0,L) to (L,L): 0 1
02

0 0

 � �.
L L B x dxId I IB L

L
×∫ ∫F = l B = k = k
!! !

 

Side 3, that runs from (L,L) to (L,0): 0 1
02

0 0

� �
L L B ydyId I IB L

L
× +∫ ∫F = l B = k = k
!! !

 

Side 4, that runs from (L,0) to (0,0): 0 1
02

0 0

� �( ) .
L L B xdxId I IB L

L
× − −∫ ∫F = l B = k = k
!! !

 

(c) If free to rotate about the x-axis, the torques due to the forces on sides 1 and 3 cancel and the torque due to the 

forces on side 4 is zero. For side 2, �L=r j! . Therefore, 
2

0 1
02

� �
2

IB L IAB×= r F = i = i
!!!τ . 

(d) If free to rotate about the y-axis, the torques due to the forces on sides 2 and 4 cancel and the torque due to the 

forces on side 1 is zero. For side 3, �L=r i! . Therefore, 
2

0 1
02

� �
2

IB L IAB× −= r F = j = j
!!!τ . 

EVALUATE: (e) The equation for the torque ×= B
!! !τ μ  is not appropriate, since the magnetic field is not constant. 

 
Figure 27.82 

27.83. IDENTIFY: While the ends of the wire are in contact with the mercury and current flows in the wire, the magnetic 
field exerts an upward force and the wire has an upward acceleration. After the ends leave the mercury the 
electrical connection is broken and the wire is in free-fall. 
(a) SET UP: After the wire leaves the mercury its acceleration is g, downward. The wire travels upward a total 
distance of 0.350 m from its initial position. Its ends lose contact with the mercury after the wire has traveled 
0.025 m, so the wire travels upward 0.325 m after it leaves the mercury. Consider the motion of the wire after it 
leaves the mercury. Take +y to be upward and take the origin at the position of the wire as it leaves the mercury. 

2
09.80 m/s ,  0.325 m, 0y ya y y v= − − = + =  (at maximum height), 0 ?yv =  

( )2 2
0 02y y yv v a y y= + −  

EXECUTE: 2
0 02 ( ) 2( 9.80 m/s )(0.325 m) 2.52 m/sy yv a y y= − − = − − =  

(b) SET UP: Now consider the motion of the wire while it is in contact with the mercury. Take +y to be upward 
and the origin at the initial position of the wire. Calculate the acceleration: 0 00.025 m, 0yy y v− = + =  (starts from 

rest), 2.52 m/syv = + (from part (a)), ?ya =  
2 2

0 02 ( )y y yv v a y y= + −  

EXECUTE: 
2 2

2

0

(2.52 m/s) 127 m/s
2( ) 2(0.025 m)

y
y

v
a

y y
= = =

−
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SET UP: The free-body diagram for the wire is given in Figure 27.83. 

 

EXECUTE: y yF ma=∑  

B yF mg ma− =  

( )yIlB m g a= +  

( )ym g a
I

lB
+

=  

Figure 27.83  
l is the length of the horizontal section of the wire; l = 0.150 m 

5 2 2(5.40 10  kg)(9.80 m/s 127 m/s ) 7.58 A
(0.150 m)(0.00650 T)

I
−× +

= =  

(c) IDENTIFY and SET UP: Use Ohm's law. 

EXECUTE: 1.50 V so 0.198 
7.58 A

VV IR R
I

= = = = Ω  

EVALUATE: The current is large and the magnetic force provides a large upward acceleration. During this 
upward acceleration the wire moves a much shorter distance as it gains speed than the distance is moves while in 
free-fall with a much smaller acceleration, as it loses the speed it gained. The large current means the resistance of 
the wire must be small. 

27.84. IDENTIFY and SET UP: Follow the procedures specified in the problem. 
EXECUTE: (a) �d dll = t

!
, where �t  is a unit vector in the tangential direction. � �sin cos .d Rdθ θ θ⎡ ⎤− +⎣ ⎦l = i j

!
 Note 

that this implies that when 0,θ = the line element points in the +y-direction, and when the angle is 90 ,°  the line 
element points in the �x-direction. This is in agreement with the diagram. 

[ ]� � � �sin cos ( ) cosx xd Id IRdθ θ θ B IB Rdθ θ⎡ ⎤× − + × −⎣ ⎦F = l B = i j i = k
!! !

. 

(b) 
2 2

0 0

� �cos  cos 0.
π π

x xIB R dθ IB R θdθθ− − =∫ ∫F = k = k
""!

 

(c) 2 2� � � � �(cos sin ) (  [ cos ]) (sin cos cos )x xd d R θ θ IB R dθ θ R IB dθ θ θ θ× + × − − −= r F = i j k = i j
!!!τ  

(d) 
22 2

2 2 2

00 0

sin 2� � �sin cos cos
2 4

ππ π

x x
θ θd R IB θ θdθ θdθ IR B

⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫ ∫τ = τ i j = j! ! . 2 2� � � �
x x xIR B π IπR B IA B×τ = j = j = k i!

 

and .= × B
!! !τ μ  

EVALUATE: Section 27.7 of the textbook derived = × B
!! !τ μ  for the case of a rectangular coil. This problem 

shows that the same result also applies to a circular coil. 
27.85. (a) IDENTIFY: Use Eq.(27.27) to relate ,   and U μ B

!
 and use Eq.(27.26) to relate ,   and .B

!! !τ μ  We also know that 
2 2 2 2
0 .x y zB B B B= + +  This gives three equations for the three components of .B

!
 

SET UP: The loop and current are shown in Figure 27.85. 

 

!μ  is into the plane of the 
paper, in the �z-direction 

Figure 27.85  
� �IAμ= − = −k k!μ  

(b) EXECUTE: � �( 4 3 ),D= + −i j!τ  where 0.D >  
� � � �,  x y yIA B B B− + += =k B i j k
!!μ  

� � � � � � � �( )( )x y z y xIA B B B IAB IABμ= × = − × + × + × = −B k i k j k k i j
!! !τ  

Compare this to the expression given for :!τ  4  so 4 /  and 3  so 3 /y y x xIAB D B D IA IAB D B D IA= = − = − =  

zB  doesn't contribute to the torque since !μ  is along the z-direction. But 0B B=  and 2 2 2 2
0 ;x y zB B B B+ + =  with 

0 13 / .B D IA=  Thus ( ) ( )2 2 2
0 / 169 9 16 12 /z x yB B B B D IA D IA= ± − − = ± − − = ±  

That U = − ⋅ B
!!μ  is negative determines the sign of :zB  � � � �( ) ( )x y z zU IA B B B IAB= − ⋅ = − − ⋅ + + = +B k i j k

!!μ  

So U negative says that zB  is negative, and thus 12 / .zB D IA= −  
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EVALUATE: 
!μ  is along the z-axis so only and x yB B  contribute to the torque. xB  produces a y-component of !τ  

and yB  produces an x-component of .!τ  Only zB  affects U, and U is negative when  and zB
!!μ  are parallel. 

27.86. IDENTIFY: qI
t

Δ
=

Δ
 and .IAμ =  

SET UP: The direction of !μ is given by the right-hand rule that is illustrated in Figure 27.32 in the textbook. I is 
in the direction of flow of positive charge and opposite to the direction of flow of negative charge. 

EXECUTE: (a) .
2 3

u
u

dq q q v evI
dt t r rπ π

Δ
= = = =

Δ
 

(b) 2 .
3 3u u
ev evrI A r

r
μ π

π
= = =  

(c) Since there are two down quarks, each of half the charge of the up quark, u .
3d

evrμ μ= =  Therefore, total
2 .

3
evrμ =  

(d) 
27 2

7
19 15

3 3(9.66 10 A m ) 7.55 10 m s.
2 2(1.60 10 C)(1.20 10 m)
μv
er

−

− −

× ⋅
= = = ×

× ×
 

EVALUATE: The speed calculated in part (d) is 25% of the speed of light. 
27.87. IDENTIFY: Eq.(27.8) says that the magnetic field through any closed surface is zero. 

SET UP: The cylindrical Gaussian surface has its top at z L= and its bottom at 0z = . The rest of the surface is 
the curved portion of the cylinder and has radius r and length L. 0B = at the bottom of the surface, since 0z =  
there. 
EXECUTE: (a) 

top curved top curved

( ) 0.z r rd B dA B dA βL dA B dA⋅ = + = + =∫ ∫ ∫ ∫B A
!!ú  This gives 20 2rL r B rLβ π π= + , and 

( ) .
2r
βrB r = −  

(b) The two diagrams in Figure 27.87 show views of the field lines from the top and side of the Gaussian surface. 
EVALUATE: Only a portion of each field line is shown; the field lines are closed loops. 

 
Figure 27.87 

27.88. IDENTIFY: U = − ⋅ B
!!μ . In part (b) apply conservation of energy. 

SET UP: The kinetic energy of the rotating ring is 21
2K Iω= . 

EXECUTE: (a) f i f i 0
� � � � � �( ) ( ) ( ( 0.8 0.6 )) (12 3 4 )U μ B⎡ ⎤ ⎡ ⎤Δ = − ⋅ − ⋅ = − − ⋅ = − − − − + ⋅ + −⎣ ⎦ ⎣ ⎦μ B μ B μ μ B k i j i j k

"!! !! ! ! ! . 
4 2

0[( 0.8)( 12) (0.6)( 3) ( 1)( 4)] (12.5 A)(4.45 10 m )(0.0115 T)( 11.8).U IAB −Δ = − + + + + + − = × −  
47.55 10 JU −Δ = − × . 

(b) 21
2

K IωΔ = . 
4

7 2

2 2(7.55 10 J) 42.1 rad/s.
8.50 10 kg m

Kω
I

−

−

Δ ×
= = =

× ⋅
 

EVALUATE: The potential energy of the ring decreases and its kinetic energy increases. 

27.89. IDENTIFY and SET UP: In the magnetic field, mvR
qB

= . Once the particle exits the field it travels in a straight line. 

Throughout the motion the speed of the particle is constant. 

EXECUTE: (a) 
11 5

6

(3.20 10 kg)(1.45 10 m/s) 5.14 m.
(2.15 10 C)(0.420 T)

mvR
qB

−

−

× ×
= = =

×
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(b) See Figure 27.89. The distance along the curve, ,d is given by d Rθ= . 0.35 msin ,
5.14 m

θ =  so 

2.78 0.0486 rad.θ = =°  (5.14 m)(0.0486 rad) 0.25 m.d Rθ= = =  And 6
5

0.25 m 1.72 10 s.
1.45 10  m/s

dt
v

−= = = ×
×

 

(c) 3
1 tan( / 2) (0.25 m)tan (2.79 / 2) 6.08 10 m.x d θ −Δ = = ° = ×  

(d) 1 2x x xΔ = Δ + Δ , where 2xΔ is the horizontal displacement of the particle from where it exits the field region to 

where it hits the wall. 2 (0.50 m) tan 2.79 0.0244 m.xΔ = =°  Therefore, 36.08 10  m 0.0244 m 0.0305 m.x −Δ = × + =  
EVALUATE: d is much less than R, so the horizontal deflection of the particle is much smaller than the distance it 
travels in the y-direction. 

 
Figure 27.89 

27.90. IDENTIFY: The current direction is perpendicular to B
!

, so F IlB= . If the liquid doesn�t flow, a force 
( )p AΔ from the pressure difference must oppose F. 
SET UP: / ,J I A=  where .A hw=  
EXECUTE: (a) / / .p F A IlB A JlBΔ = = =  

(b) 
5

6 2(1.00 atm)(1.013 10  Pa/atm) 1.32 10 A/m .
(0.0350 m)(2.20 T)

pJ
lB
Δ ×

= = = ×  

EVALUATE: A current of 1 A in a wire with diameter 1 mm corresponds to a current density of 
6 21.36 10  A/m ,J = ×  so the current density calculated in part (c) is a typical value for circuits. 

27.91. IDENTIFY: The electric and magnetic fields exert forces on the moving charge. The work done by the electric 

field equals the change in kinetic energy. At the top point, 
2

y
va
R

=  and this acceleration must correspond to the net 

force. 
SET UP: The electric field is uniform so the work it does for a displacement y in the y-direction is .W Fy qEy= =  

At the top point, BF
!

 is in the -directiony− and EF
!

is in the +y-direction. 
EXECUTE: (a) The maximum speed occurs at the top of the cycloidal path, and hence the radius of curvature is 
greatest there. Once the motion is beyond the top, the particle is being slowed by the electric field. As it returns 
to 0,y =  the speed decreases, leading to a smaller magnetic force, until the particle stops completely. Then the 
electric field again provides the acceleration in the y-direction of the particle, leading to the repeated motion. 

(b) 21
2

W qEy mv= =  and 2 .qEyv
m

=  

(c) At the top, 
2 2 .

2y
mv m qEyF qE qvB qE
R y m

= − = − = − = −  2qE qvB= and 2 .Ev
B

=  

EVALUATE: The speed at the top depends on B because B determines the y-displacement and the work done by 
the electric force depends on the y-displacement. 
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SOURCES OF MAGNETIC FIELD 

 28.1. IDENTIFY and SET UP: Use Eq.(28.2) to calculate B
!

 at each point. 
0 0

2 3

� �,  since .
4 4

q q
r r r

μ μ
π π
v r v r rB r
! ! ! !! × ×

= = =  

( )6 �8.00 10  m/s  and ×v j r! !
=  is the vector from the charge to the point where the field is calculated. 

EXECUTE: (a) ( ) �0.500 m ,  0.500 mr =r i!
=  

� � �vr vr−v r j i k! !
× = × =  

( ) ( )( )
( )

6 6
70

22

6.00 10  C 8.00 10  m/s� �1 10  T m/A
4 0.500 m

qv
r

μ
π

−
−

× ×
− × ⋅B k k

!
= − =  

( )5 �1.92 10  T−− ×B k
!
=  

(b) ( ) �0.500 m ,  0.500 mr− =r j!
=  

� � 0 and 0.vr= −v r j j B
!! !

× × = =  

(c) ( ) �0.500 m ,  0.500 mr =r k!
=  

� � �vr vr= =v r j k i! !
× ×  

( ) ( )( )
( )

( )
6 6

7 5
2

6.00 10  C 8.00 10  m/s � �1 10  T m/A 1.92 10  T
0.500 m

−
− −

× ×
× ⋅ + ×B i = i

!
=  

(d) ( ) ( ) ( ) ( )2 2� �0.500 m 0.500 m ,  0.500 m 0.500 m 0.7071 mr− = + =r j k!
= +  

( )( ) ( )6 2� � � � �0.500 m 4.00 10  m /sv − = ×=v r j j j k i! !
× × + ×  

( ) ( )( )
( )

( )
6 6

7 6
3

6.00 10  C 4.00 10  m /s � �1 10  T m/A 6.79 10  T
0.7071 m

−
− −

× ×
× ⋅ + ×B i i

!
= =  

EVALUATE: At each point B
!

 is perpendicular to both v!  and .r!  B = 0 along the direction of .v!  
 28.2. IDENTIFY: A moving charge creates a magnetic field as well as an electric field. 

SET UP: The magnetic field caused by a moving charge is 0
2

sin
4

qvB
r

μ φ
π

= , and its electric field is 2
0

1
4

eE
rπ

=
P

 

since q = e. 
EXECUTE: Substitute the appropriate numbers into the above equations. 

7 19 6
0

2 11 2

sin 4 10  T m/A (1.60 10 C)(2.2 10 m/s)sin90 
4 4 (5.3 10 m)

qvB
r

μ φ π
π π

− −

−

× ⋅ × × °
= =

×
 = 13 T, out of the page. 

9 2 2 19
11

2 11 2
0

1 (9.00 10  N m /C )(1.60 10  C) 5.1 10  N/C,
4 (5.3 10  m)

eE
rπ

−

−

× ⋅ ×
= = = ×

×P
 toward the electron. 

EVALUATE: There are enormous fields within the atom! 
 28.3. IDENTIFY: A moving charge creates a magnetic field. 

SET UP: The magnetic field due to a moving charge is 0
2

sin
4

qvB
r

μ φ
π

= . 

28
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EXECUTE: Substituting numbers into the above equation gives 

(a) 
7 19 7

0
2 6 2

sin 4 10  T m/A (1.6 10  C)(3.0 10  m/s)sin30 .
4 4 (2.00 10  m)

qvB
r

μ φ π
π π

− −

−

× ⋅ × × °
= =

×
 

B = 6.00 × 10�8 T, out of the paper, and it is the same at point B. 
(b) B = (1.00 × 10�7 T ⋅ m/A)(1.60 × 10�19 C)(3.00 × 107 m/s)/(2.00 × 10�6 m)2 
B = 1.20 × 10�7 T, out of the page. 
(c) B = 0 T since sin(180°) = 0. 
EVALUATE: Even at high speeds, these charges produce magnetic fields much less than the Earth�s magnetic 
field. 

 28.4. IDENTIFY: Both moving charges produce magnetic fields, and the net field is the vector sum of the two fields. 
SET UP: Both fields point out of the paper, so their magnitudes add, giving 

B = Balpha + Bel = ( )0
2 sin 40 2 sin140

4
v e e
r

μ
π

° + °  

EXECUTE: Factoring out an e and putting in the numbers gives 

 ( )
7 19 5

9 2

4 10  T m/A (1.60 10 C)(2.50 10 m/s) sin 40 2sin140
4 (1.75 10 m)

B π
π

− −

−

× ⋅ × ×
= ° + °

×
 

 32.52 10  T 2.52 mT, out of the page.B −= × =  

EVALUATE: At distances very close to the charges, the magnetic field is strong enough to be important. 

 28.5. IDENTIFY: Apply 0
3 .

4
μ q
π r

×v rB =
! !!

 

SET UP: Since the charge is at the origin, � � �.x y z+ +r = i j k!  

EXECUTE: (a) �, ;v rv = i r = i
!! !  0, 0B× = =v r! ! . 

(b) � �, ;v rv = i r = j! !  �,  0.500 m.vr r× = =v r k! !  
7 2 2 6 5

60
2 2

(1.0 10  N s /C )(4.80 10  C)(6.80 10  m/s) 1.31 10  T.
4 (0.500 m)

q vμB
π r

− −
−× ⋅ × ×⎛ ⎞= = = ×⎜ ⎟

⎝ ⎠
 

q is negative, so 6 �(1.31 10  T) .−− ×B = k
!

 

(c) � � �, (0.500 m)( );v +v = i r = i j! ! �(0.500 m) ,  0.7071 m.v r× = =v r k! !  

( )
7 2 2 6 5

30
3

(1.0 10  N s /C )(4.80 10  C)(0.500 m)(6.80 10  m/s) .
4 (0.7071 m)
μB q r
π

− −× ⋅ × ×⎛ ⎞= × =⎜ ⎟
⎝ ⎠

v r! !  

74.62 10  T.B −= ×  7 �(4.62 10  T)−− ×B = k.
!

 

(d) � �, ;v rv = i r = k! !  �, 0.500 mvr r× − =v r = j! !  
7 2 2 6 5

60
2 2

(1.0 10  N s /C )(4.80 10  C)(6.80 10  m/s) 1.31 10  T.
4 (0.500 m)

q vμB
π r

− −
−× ⋅ × ×⎛ ⎞= = = ×⎜ ⎟

⎝ ⎠
 

( )6 �1.31 10  T .−×B = j
!

 

EVALUATE: In each case, B
!

 is perpendicular to both r!  and .v!  

 28.6. IDENTIFY: Apply 0
3 .

4
μ q
π r

×v rB =
! !!

 For the magnetic force, apply the results of Example 28.1, except here the two 

charges and velocities are different. 

SET UP: In part (a), r d= and r! is perpendicular to v! in each case, so 3 2 .v
r d
×

=
v r! !

 For calculating the force 

between the charges, 2 .r d=  

EXECUTE: (a) 0
total 2 2 .

4
qv q vB B B
d d

μ
π

′ ′⎛ ⎞′= + = +⎜ ⎟
⎝ ⎠

 

6 6 6 6
40

2 2

(8.0 10  C)(4.5 10  m/s) (3.0 10  C)(9.0 10  m/s) 4.38 10  T.
4 (0.120 m) (0.120 m)
μB
π

− −
−⎛ ⎞× × × ×

= + = ×⎜ ⎟
⎝ ⎠

 

The direction of B
!

is into the page. 
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(b) Following Example 28.1 we can find the magnetic force between the charges: 
6 6 6 6

70
2 2

(8.00 10 C)(3.00 10 C)(4.50 10 m s)(9.00 10 m s )(10 T m A)
4 (0.240 m)B
μ qq vvF
π r

− −
−′ ′ × × × ×

= = ⋅  

31.69 10  N.BF −= ×  The force on the upper charge points up and the force on the lower charge points down. The 

Coulomb force between the charges is 
6 6

9 2 21 2
C 2 2

(8.0 10 C)(3.0 10 C)(8.99 10 N m C ) 3.75 N
(0.240 m)

q qF k
r

− −× ×= = × ⋅ = . 

The force on the upper charge points up and the force on the lower charge points down. The ratio of the Coulomb 

force to the magnetic force is 
2

3C
3

1 2

3.75 N 2.22 10
1.69 10  NB

F c
F v v −= = = ×

×
; the Coulomb force is much larger. 

(b) The magnetic forces are reversed in direction when the direction of only one velocity is reversed but the 
magnitude of the force is unchanged. 
EVALUATE: When two charges have the same sign and move in opposite directions, the force between them is 
repulsive. When two charges of the same sign move in the same direction, the force between them is attractive. 

 28.7. IDENTIFY: Apply 0
34

μ q
π r

×v rB =
! !!

. For the magnetic force on q′, use B qq′ ×F = v B
! !!  and for the magnetic force on 

q use .B qq ′×F = v B
! !!  

SET UP: In part (a), r d= and 3 2 .v
r d
×

=
v r! !

 

EXECUTE: (a) 0
2;  ,

4q
μ qvq q B
πd

′ = − =  into the page; 0
2 ,

4q
μ qvB
πd′

′
=  out of the page. 

(i) 
2
vv′ =  gives ( )0 01

22 21
4 4 (2 )
μ qv μ qvB
πd π d

= − = , into the page. (ii) v v′ =  gives 0B = . 

(iii) 2v v′ =  gives 0
24

qvB
d

μ
π

= , out of the page. 

(b) The force that q exerts on q′  is given by qq′ ′×F = v B
! !! , so 

2
0

24 (2 )
μ q v vF
π d

′
= . qB

!
 is into the page, so the force on 

q′ is toward q. The force that q′  exerts on q is toward .q′  The force between the two charges is attractive. 

(c) 
2 2

0
C2 2

0

,  
4 (2 ) 4 (2 )B
μ q vv qF F
π d π d

′
= =

P
 so 5 2 6

0 0 0 0
C

(3.00 10  m/s) 1.00 10BF μ vv μ
F

−′= = × = ×P P . 

EVALUATE: When charges of opposite sign move in opposite directions, the force between them is attractive. For 
the values specified in part (c), the magnetic force between the two charges is much smaller in magnitude than the 
Coulomb force between them. 

 28.8. IDENTIFY: Both moving charges create magnetic fields, and the net field is the vector sum of the two. The 
magnetic force on a moving charge is mag sinF qvB φ=  and the electrical force obeys Coulomb�s law. 

SET UP: The magnetic field due to a moving charge is 0
2

sin
4

qvB
r

μ φ
π

= . 

EXECUTE: (a) Both fields are into the page, so their magnitudes add, giving 

 B = Be + Bp = 0
2 2

e p

sin90
4

ev ev
r r

μ
π
⎛ ⎞

+ °⎜ ⎟⎜ ⎟
⎝ ⎠

 

 B = ( )( )190
9 2 9 2

1 11.60 10  C 845,000 m/s
4 (5.00 10  m) (4.00 10  m)
μ
π

−
− −

⎡ ⎤
× +⎢ ⎥× ×⎣ ⎦

 

 B = 1.39 × 10�3 T = 1.39 mT, into the page. 

(b) Using 0
2

sin
4

qvB
r

μ φ
π

= , where r = 41 nm and φ = 180° − arctan(5/4) = 128.7°, we get 

7 19
4

9 2

4 10  T m/A (1.6 10  C)(845,000 m/s)sin128.7 2.58 10  T,
4 ( 41 10  m)

B π
π

− −
−

−

× ⋅ × °
= = ×

×
 into the page. 

(c) 19 4 17
mag sin90 (1.60 10  C)(845,000 m/s)(2.58 10  T) 3.48 10  N,F qvB − − −= ° = × × = ×  in the +x direction. 

9 2 2 19 2
2 2 12

elec 0 9 2

(9.00 10  N m /C )(1.60 10  C)(1/ 4 ) / 5.62 10  N,
( 41 10  m)

F e rπ
−

−
−

× ⋅ ×
= = = ×

×
P  at 51.3° below the +x-axis measured 

clockwise. 
EVALUATE: The electric force is much stronger than the magnetic force. 
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 28.9. IDENTIFY: A current segment creates a magnetic field. 

SET UP: The law of Biot and Savart gives 0
2

sin
4

IdldB
r

μ φ
π

= . 

EXECUTE: Applying the law of Biot and Savart gives 

(a) 
7

2

4π 10  T m/A (10.0 A)(0.00110 m) sin90°
4π (0.0500 m)

dB
−× ⋅

=  = 4.40 × 10�7 T, out of the paper. 

(b) The same as above, except 2 2(5.00 cm) (14.0 cm)r = +  and φ = arctan(5/14) = 19.65°, giving dB = 1.67 × 10�8 T, 
out of the page. 
(c) dB = 0 since φ = 0°. 
EVALUATE: This is a very small field, but it comes from a very small segment of current. 

28.10. IDENTIFY: Apply 0 0
2 3

�
4 4
μ Id μ Idd
π r π r

× ×l r l rB = =
! ! !!

. 

SET UP: The magnitude of the field due to the current element is 0
2

sin
4
μ IdldB
π r

φ= , where φ is the angle between 

r! and the current direction. 
EXECUTE: The magnetic field at the given points is: 

60 0
2 2

sin (200 A)(0.000100 m) 2.00 10  T.
4 4 (0.100 m)a
μ Idl μdB
π r π

φ −= = = ×  

60 0
2 2

sin (200 A)(0.000100 m)sin 45 0.705 10  T.
4 4 2(0.100 m)b
μ Idl μdB
π r π

φ −°
= = = ×  

60 0
2 2

sin (200 A)(0.000100 m) 2.00 10  T.
4 4 (0.100 m)c
μ Idl μdB
π r π

φ −= = = ×  

0 0
2 2

sin sin(0 ) 0
4 4d
μ Idl μ IdldB
π r π r

φ °
= = = . 

60 0
2 2

sin (200 A)(0.00100 m) 2 0.545 10  T
4 4 3(0.100 m) 3e
μ IdldB
π r

φ μ
π

−= = = ×  

The field vectors at each point are shown in Figure 28.10. 
EVALUATE: In each case dB

!
is perpendicular to the current direction. 

 
Figure 28.10 

28.11. IDENTIFY and SET UP: The magnetic field produced by an infinitesimal current element is given by Eq.(28.6). 
0

2

�
4

Id
r

μ
π
l rB
!! ×

=  As in Example 28.2 use this equation for the finite 0.500-mm segment of wire since the 

0.500 mmlΔ =  length is much smaller than the distances to the field points. 

0 0
2 3

�
4 4

I I
r r

μ μ
π π

Δ Δ
=

l r l rB
! ! !! × ×

=  

I is in the ( )3 �-direction, so 0.500 10  mz −+ Δ ×l k
!
=  

EXECUTE: (a) Field point is at x = 2.00 m, y = 0, z = 0 so the vector r!  from the source point (at the origin) to the 
field point is ( ) �2.00 m .r i!

=  

( )( ) ( )3 3 2� � �0.500 10  m 2.00 m 1.00 10  m− −Δ × + ×l r k i j
! !
× = × =  

( )( )( )
( )

( )
7 3 2

11
3

1 10  T m/A 4.00 A 1.00 10  m � �5.00 10  T
2.00 m

− −
−

× ⋅ ×
×B j j

!
= =  
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(b) ( ) �2.00 m ,  2.00 m.r =r j!
=  

( )( ) ( )3 3 2� � �0.500 10  m 2.00 m 1.00 10  m− −Δ × − ×l r k j i
! !
× = × =  

( )( )( )
( )

( )
7 3 2

11
3

1 10  T m/A 4.00 A 1.00 10  m � �5.00 10  T
2.00 m

− −
−

× ⋅ ×
− = − ×B = i i

!
 

(c) ( )( ) ( )� �2.00 m ,  2 2.00 m .r =r = i + j!  

( )( ) ( ) ( )( )3 3 2� � � � �0.500 10  m 2.00 m 1.00 10  m− −Δ × ×+ = �l r = k i j j i
! !
× ×  

( )( )( )
( )

( ) ( )( )
7 3 2

11
3

1 10  T m/A 4.00 A 1.00 10  m � � � �1.77 10  T
2 2.00 m

− −
−

× ⋅ ×
− ×

⎡ ⎤
⎣ ⎦

� = �B = j i i j
!

 

(d) �(2.00 m) ,  2.00 m.r =r = k!  
3 � �(0.500 10  m)(2.00 m) 0;  0.−Δ ×l r = k k = B =

! !!
× ×  

EVALUATE: At each point B
!

 is perpendicular to both and .Δr l
!!  B = 0 along the length of the wire. 

28.12. IDENTIFY: A current segment creates a magnetic field. 

SET UP: The law of Biot and Savart gives 0
2

sin
4

IdldB
r

μ φ
π

= . 

Both fields are into the page, so their magnitudes add. 
EXECUTE: Applying the law of Biot and Savart for the 12.0-A current gives 

7

2

2.50 cm(12.0 A)(0.00150 m)
4π 10  T m/A 8.00 cm 

4π (0.0800 m)
dB

−
⎛ ⎞
⎜ ⎟× ⋅ ⎝ ⎠=  = 8.79 × 10�8 T 

The field from the 24.0-A segment is twice this value, so the total field is 2.64 × 10�7 T, into the page. 
EVALUATE: The rest of each wire also produces field at P. We have calculated just the field from the two 
segments that are indicated in the problem. 

28.13. IDENTIFY: A current segment creates a magnetic field. 

SET UP: The law of Biot and Savart gives 0
2

sin .
4

IdldB
r

μ φ
π

=  Both fields are into the page, so their magnitudes add. 

EXECUTE: Applying the Biot and Savart law, where 2 21
2 (3.00 cm) (3.00 cm)r = +  = 2.121 cm, we have 

7

2

4π 10  T m/A (28.0 A)(0.00200 m)sin 45.0°2
4π (0.02121 m)

dB
−× ⋅

= = 1.76 × 10�5 T, into the paper. 

EVALUATE: Even though the two wire segments are at right angles, the magnetic fields they create are in the 
same direction. 

28.14. IDENTIFY: A current segment creates a magnetic field. 

SET UP: The law of Biot and Savart gives 0
2

sin
4

IdldB
r

μ φ
π

= . All four fields are of equal magnitude and into the 

page, so their magnitudes add. 

EXECUTE: 
7

2

4π 10  T m/A (15.0 A)(0.00120 m) sin90°4
4π (0.0500 m)

dB
−× ⋅

=  = 2.88 × 10�6 T, into the page. 

EVALUATE: A small current element causes a small magnetic field. 
28.15. IDENTIFY: We can model the lightning bolt and the household current as very long current-carrying wires. 

SET UP: The magnetic field produced by a long wire is 0

2
IB
r

μ
π

= . 

EXECUTE: Substituting the numerical values gives 

(a) B = 
7(4π 10  T m/A)(20,000 A)
2π(5.0 m)

−× ⋅  = 8 × 10�4 T 

(b)
7(4π 10  T m/A)(10 A)

2π(0.050 m)
B

−× ⋅
= = 4.0 × 10�5 T. 

EVALUATE: The field from the lightning bolt is about 20 times as strong as the field from the household current. 
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28.16. IDENTIFY: The long current-carrying wire produces a magnetic field. 

SET UP: The magnetic field due to a long wire is 0

2
IB
r

μ
π

= . 

EXECUTE: First find the current: I = (3.50 × 1018 el/s)(1.60 × 10�19 C/el) = 0.560 A 

Now find the magnetic field: 
7(4π 10  T m/A)(0.560 A)

2π(0.0400 m)

−× ⋅  = 2.80 × 10�6 T 

Since electrons are negative, the conventional current runs from east to west, so the magnetic field above the wire 
points toward the north. 
EVALUATE: This magnetic field is much less than that of the Earth, so any experiments involving such a current 
would have to be shielded from the Earth�s magnetic field, or at least would have to take it into consideration. 

28.17. IDENTIFY: The long current-carrying wire produces a magnetic field. 

SET UP: The magnetic field due to a long wire is 0

2
IB
r

μ
π

= . 

EXECUTE: First solve for the current, then substitute the numbers using the above equation. 
(a) Solving for the current gives 

4 7
02 / 2 (0.0200 m)(1.00 10  T)/(4 10  T m/A) 10.0 AI rBπ μ π π− −= = × × ⋅ =  

(b) The earth�s horizontal field points northward, so at all points directly above the wire the field of the wire would 
point northward. 
(c) At all points directly east of the wire, its field would point northward. 
EVALUATE: Even though the Earth�s magnetic field is rather weak, it requires a fairly large current to cancel this 
field. 

28.18. IDENTIFY: For each wire 0

2
IB
r

μ
π

=  (Eq.28.9), and the direction of B
!

 is given by the right-hand rule (Fig. 28.6 in 

the textbook). Add the field vectors for each wire to calculate the total field. 
(a) SET UP: The two fields at this point have the directions shown in Figure 28.18a. 

 

EXECUTE: At point P midway between 
the two wires the fields 1 2and B B

! !
 due to 

the two currents are in opposite directions, 
so 2 1.B B B= −  

Figure 28.18a  

But 0
1 2 ,  so 0.

2
IB B B
a

μ
π

= = =  

(b) SET UP: The two fields at this point have the directions shown in Figure 28.18b. 

 

EXECUTE: At point Q above the upper 
wire 1 2and B B

! !
 are both directed out of 

the page ( -direction),z+  so 1 2.B B B= +  

Figure 28.18b  

0 0
1 2,  

2 2 (3 )
I IB B
a a

μ μ
π π

= =  

( )0 0 01
3

2 2 �1 ;  
2 3 3

I I IB
a a a

μ μ μ
π π π

= + = B = k
!
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(c) SET UP: The two fields at this point have the directions shown in Figure 28.18c. 

 

EXECUTE: At point R below the lower 
wire 1 2and B B

! !
 are both directed into the 

page ( -direction),z−  so 1 2.B B B= +  

Figure 28.18c  

0 0
1 2,  

2 (3 ) 2
I IB B
a a

μ μ
π π

= =  

( )0 0 01
1 3

2 2 �1 ;  
2 3 3

I I IB
a a a

μ μ μ
π π π

= + = −B = k
!

 

EVALUATE: In the figures we have drawn, B
!

 due to each wire is out of the page at points above the wire and into 
the page at points below the wire. If the two field vectors are in opposite directions the magnitudes subtract. 

28.19. IDENTIFY: The total magnetic field is the vector sum of the constant magnetic field and the wire�s magnetic field. 

SET UP: For the wire, 0
wire 2

IB
r

μ
π

= and the direction of wireB is given by the right-hand rule that is illustrated in 

Figure 28.6 in the textbook. 6
0

�(1.50 10  T) .−= ×B i
!

 

EXECUTE: (a) At (0, 0, 1 m), 6 70 0
0

(8.00 A)� � � �(1.50 10  T) (1.0 10  T) .
2 2 (1.00 m)

I
r

μ μ
π π

− −− × − − ×B = B i = i i = i
! !

 

(b) At (1 m, 0, 0), 60 0
0

(8.00 A)� � �(1.50 10  T) .
2 2 (1.00 m)
μ I μ
πr π

−+ × +B = B k = i k
! !

 

6 6 6� �(1.50 10  T) (1.6 10  T) 2.19 10  T, at 46.8θ− − −× + × × = °B = i k =
!

from x to z. 

(c) At (0, 0, �0.25 m), 6 60 0
0

(8.00 A)� � � �(1.50 10  T) (7.9 10  T) .
2 2 (0.25 m)

I μ
πr π
μ − −+ × + ×B = B i = i i = i

! !
 

EVALUATE: At point c the two fields are in the same direction and their magnitudes add. At point a they are in 
opposite directions and their magnitudes subtract. At point b the two fields are perpendicular. 

28.20. IDENTIFY and SET UP: The magnitude of B
!

 is given by Eq.(28.9) and the direction is given by the right-hand rule. 
(a) EXECUTE: Viewed from above, the current is in the direction shown in Figure 28.20. 

 

Directly below the wire the direction of 
the magnetic field due to the current in 
the wire is east. 

Figure 28.20  

7 50 800 A(2 10  T m/A) 2.91 10  T
2 5.50 m

IB
r

μ
π

− −⎛ ⎞= = × ⋅ = ×⎜ ⎟
⎝ ⎠

 

(b) EVALUATE: B from the current is nearly equal in magnitude to the earth's field, so, yes, the current really is a 
problem. 

28.21. IDENTIFY: 0

2
IB
r

μ
π

= . The direction of B
!

 is given by the right-hand rule in Section 20.7. 

SET UP: Call the wires a and b, as indicated in Figure 28.21. The magnetic fields of each wire at points P1 and P2 
are shown in Figure 28.21a. The fields at point 3 are shown in Figure 28.21b. 
EXECUTE: (a) At 1P , a bB B= and the two fields are in opposite directions, so the net field is zero. 

(b) 0

2a
a

IB
r

μ
π

= . 0

2b
b

IB
r

μ
π

= . aB
!

and bB
!

are in the same direction so 

7
60 1 1 (4 10  T m/A)(4.00 A) 1 1 6.67 10  T

2 2 0.300 m 0.200 ma b
a b

IB B B
r r

μ π
π π

−
−⎛ ⎞ × ⋅ ⎡ ⎤= + = + = + = ×⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

 

B
!

has magnitude 6.67 Tμ and is directed toward the top of the page. 
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(c) In Figure 28.21b, aB
!

 is perpendicular to ar
!  and bB

!
 is perpendicular to br

! . 5 cmtan
20 cm

θ =  and 14.04θ = ° . 

2 2(0.200 m) (0.050 m) 0.206 ma br r= = + = and a bB B= . 
7

0 2(4 10  T m/A)(4.0 A)cos14.04cos cos 2 cos 2 cos 7.54 T
2 2 (0.206 m)a b a

a

IB B B B
r

μ πθ θ θ θ μ
π π

−⎛ ⎞ × ⋅
= + = = = =⎜ ⎟

⎝ ⎠

°  

B has magnitude 7.53 Tμ  and is directed to the left. 
EVALUATE: At points directly to the left of both wires the net field is directed toward the bottom of the page. 

  
Figure 28.21 

28.22. IDENTIFY: Use Eq.(28.9) and the right-hand rule to determine points where the fields of the two wires cancel. 
(a) SET UP: The only place where the magnetic fields of the two wires are in opposite directions is between the 
wires, in the plane of the wires. Consider a point a distance x from the wire carrying 2 tot75.0 A. I B=  will be zero 
where 1 2.B B=  

EXECUTE: 0 1 0 2

2 (0.400 m ) 2
I I

x x
μ μ

π π
=

−
 

2 1 1 2(0.400 m ) ;  25.0 A,  75.0 AI x I x I I− = = =  

tot0.300 m; 0x B= =  along a line 0.300 m from the wire carrying 75.0 A and 0.100 m from the wire carrying 
current 25.0 A. 
(b) SET UP: Let the wire with 1 25.0 AI =  be 0.400 m above the wire with 2 75.0 A.I =  The magnetic fields of 
the two wires are in opposite directions in the plane of the wires and at points above both wires or below both 
wires. But to have 1 2B B=  must be closer to wire #1 since 1 2,I I<  so can have tot 0B =  only at points above both 
wires. Consider a point a distance x from the wire carrying 1 tot25.0 A. I B=  will be zero where 1 2.B B=  

EXECUTE: 0 1 0 2

2 2 (0.400 m )
I I
x x

μ μ
π π

=
+

 

2 1(0.400 m );  0.200 mI x I x x= + =  

tot 0B =  along a line 0.200 m from the wire carrying current 25.0 A and 0.600 m from the wire carrying current 

2 75.0 A.I =  
EVALUATE: For parts (a) and (b) the locations of zero field are in different regions. In each case the points of 
zero field are closer to the wire that has the smaller current. 

28.23. IDENTIFY: The net magnetic field at the center of the square is the vector sum of the fields due to each wire. 

SET UP:  For each wire, 0

2
IB
r

μ
π

=  and the direction of B
!

is given by the right-hand rule that is illustrated in 

Figure 28.6 in the textbook. 
EXECUTE: (a) and (b) B = 0 since the magnetic fields due to currents at opposite corners of the square cancel. 
(c) The fields due to each wire are sketched in Figure 28.23. 

0cos45 cos45 cos45 cos 45 4 cos45 4 cos45
2a b c d a
μ IB B B B B B
πr

⎛ ⎞= ° + ° + ° + ° = ° = °⎜ ⎟
⎝ ⎠

. 

2 2(10 cm) (10 cm) 10 2 cm 0.10 2 mr = + = = , so 
7

4(4 10 T m A) (100 A)4 cos 45 4.0 10 T, to the left.
2 (0.10 2 m)

πB
π

−
−× ⋅

= ° = ×  
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EVALUATE: In part (c), if all four currents are reversed in direction, the net field at the center of the square would 
be to the right. 

 
Figure 28.23 

28.24. IDENTIFY: Use Eq.(28.9) and the right-hand rule to determine the field due to each wire. Set the sum of the four 
fields equal to zero and use that equation to solve for the field and the current of the fourth wire. 
SET UP: The three known currents are shown in Figure 28.24. 

 

1 2 3,   ,   ⊗ ⊗B B B
! ! !

"  

0 ;  0.200 m
2

IB r
r

μ
π

= =  for each wire 

Figure 28.24  

EXECUTE: Let "  be the positive z-direction. 1 2 310.0 A,  8.0 A,  20.0 A.I I I= = =  Then 5
1 1.00 10  T,B −= ×  

5
2 0.80 10  T,B −= ×  and 5

3 2.00 10  T.B −= ×  
5 5 5

1z 2z 3z1.00 10  T, 0.80 10  T, 2.00 10  TB B B− − −= − × = − × = + ×  

1 2 3 4 0z z z zB B B B+ + + =  
6

4 1 2 3( ) 2.0 10  Tz z z zB B B B −= − + + = − ×  

To give 4  in the ⊗B
!

 direction the current in wire 4 must be toward the bottom of the page. 
6

0 4
4 4 7

0

(0.200 m)(2.0 10  T) so 2.0 A
2 ( / 2 ) (2 10  T m/A)

I rBB I
r

μ
π μ π

−

−

×
= = = =

× ⋅
 

EVALUATE: The fields of wires #2 and #3 are in opposite directions and their net field is the same as due to a 
current 20.0 A � 8.0 A = 12.0 A in one wire. The field of wire #4 must be in the same direction as that of wire #1, 
and 410.0 A 12.0 A.I+ =  

28.25. IDENTIFY: Apply Eq.(28.11). 
SET UP: Two parallel conductors carrying current in the same direction attract each other. Parallel conductors 
carrying currents in opposite directions repel each other. 

EXECUTE: (a) 60 1 2 0 (5.00 A)(2.00 A)(1.20 m) 6.00 10 N,
2 2 (0.400 m)
I I LF

r
μ μ
π π

−= = = ×  and the force is repulsive since the 

currents are in opposite directions. 
(b) Doubling the currents makes the force increase by a factor of four to 52.40 10 N.F −= ×  
EVALUATE: Doubling the current in a wire doubles the magnetic field of that wire. For fixed magnetic field, 
doubling the current in a wire doubles the force that the magnetic field exerts on the wire. 

28.26. IDENTIFY: Apply Eq.(28.11). 
SET UP: Two parallel conductors carrying current in the same direction attract each other. Parallel conductors 
carrying currents in opposite directions repel each other. 

EXECUTE: (a) 0 1 2

2
F I I
L r

μ
π

=  gives 5
2

0 1 0

2 2 (0.0250 m)(4.0 10 N m) 8.33 A.
(0.60 A)

F rI
L I

π π
μ μ

−= = × =  

(b) The two wires repel so the currents are in opposite directions. 
EVALUATE: The force between the two wires is proportional to the product of the currents in the wires. 



28-10 Chapter 28 

28.27. IDENTIFY: The lamp cord wires are two parallel current-carrying wires, so they must exert a magnetic force on 
each other. 
SET UP: First find the current in the cord. Since it is connected to a light bulb, the power consumed by the bulb is 

P = IV. Then find the force per unit length using F/L = 0

2
I I
r

μ
π

′
. 

EXECUTE: For the light bulb, 100 W = I(120 V) gives I = 0.833 A. The force per unit length is 

F/L = 
7 2

54π 10  T m/A (0.833 A) 4.6 10  N/m
2π 0.003 m

−
−× ⋅

= ×  

Since the currents are in opposite directions, the force is repulsive. 
EVALUATE: This force is too small to have an appreciable effect for an ordinary cord. 

28.28. IDENTIFY: Apply Eq.(28.11) for the force from each wire. 
SET UP: Two parallel conductors carrying current in the same direction attract each other. Parallel conductors 
carrying currents in opposite directions repel each other. 

EXECUTE: On the top wire 
2 2

0 01 1 ,
2 2 4

F I I
L d d d

μ μ
π π

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 upward. On the middle wire, the magnetic forces cancel 

so the net force is zero. On the bottom wire 
2 2

0 01 1 ,
2 2 4

F I I
L d d d

μ μ
π π

⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

 downward. 

EVALUATE: The net force on the middle wire is zero because at the location of the middle wire the net magnetic 
field due to the other two wires is zero. 

28.29. IDENTIFY: The wire CD rises until the upward force IF  due to the currents balances the downward force of 
gravity. 
SET UP: The forces on wire CD are shown in Figure 28.29. 

 

Currents in opposite directions so the force is 
repulsive and IF  is upward, as shown. 

Figure 28.29  

Eq.(28.11) says 
2

0

2I
I LF

h
μ
π

=  where L is the length of wire CD and h is the distance between the wires. 

EXECUTE: mg Lgλ=  

Thus 
2 2

0 00 says  and .
2 2I

I L IF mg Lg h
h g

μ μλ
π π λ

− = = =  

EVALUATE: The larger I is or the smaller λ  is, the larger h will be. 

28.30. IDENTIFY: The magnetic field at the center of a circular loop is 0

2
IB

R
μ

= . By symmetry each segment of the loop 

that has length lΔ contributes equally to the field, so the field at the center of a semicircle is 1
2 that of a full loop. 

SET UP: Since the straight sections produce no field at P, the field at P is 0

4
IB

R
μ

= . 

EXECUTE: 0

4
IB

R
μ

= . The direction of B
!

is given by the right-hand rule: B
!

is directed into the page. 

EVALUATE: For a quarter-circle section of wire the magnetic field at its center of curvature is 0

8
IB

R
μ

= . 

28.31. IDENTIFY: Calculate the magnetic field vector produced by each wire and add these fields to get the total field. 
SET UP: First consider the field at P produced by the current 1I  in the upper semicircle of wire. See Figure 28.31a. 

 

Consider the three parts of this wire 
a: long straight section, 
b: semicircle 
c: long, straight section 

Figure 28.31a  

Apply the Biot-Savart law 0 0
2 3

�
4 4

Id Idd
r r

μ μ
π π

! ! !! l r l rB = =× ×  to each piece. 
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EXECUTE: part a See Figure 28.31b. 

 

0,dl r =
! !
×  

so 0dB =  

Figure 28.31b  
The same is true for all the infinitesimal segments that make up this piece of the wire, so B = 0 for this piece. 
part c See Figure 28.31c. 

 

0,dl r =
! !
×  

so 0 and 0dB B= =  for this piece. 

Figure 28.31c  
part b See Figure 28.31d. 

 

dl r
! !
×  is directed into the paper for all infinitesimal 

segments that make up this semicircular piece, so B
!

 
is directed into the paper and B dB= ∫  (the vector sum 

of the dB
!

 is obtained by adding their magnitudes 
since they are in the same direction). 

Figure 28.31d  

sin .d r dl θ=l r
! !
×  The angle θ  between and  is 90  and ,d r R° =l r

! !  the radius of the semicircle. Thus d Rdl=l r
! !
×  

0 0 1 0 1
3 3 24 4 4

I d I R IdB dl dl
r R R

μ μ μ
π π π

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

l r
! !
×

 

0 1 0 1 0 1
2 2 ( )

4 4 4
I I IB dB dl R
R R R

μ μ μπ
π π

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  

(We used that dl∫  is equal to ,Rπ  the length of wire in the semicircle.) We have shown that the two straight 

sections make zero contribution to ,B
!

 so 1 0 1 / 4B I Rμ=  and is directed into the page.  

 

For current in the direction shown in 
Figure 28.31e, a similar analysis gives 

2 0 2 / 4 ,B I Rμ=  out of the paper 

Figure 28.31e  

1 2 and B B
! !

 are in opposite directions, so the magnitude of the net field at P is 0 1 2
1 2 .

4
I I

B B B
R

μ −
= − =  

EVALUATE: When 1 2,  0.I I B= =  
28.32. IDENTIFY: Apply Eq.(28.16). 

SET UP: At the center of the coil, 0x = . a is the radius of the coil, 0.0240 m. 

EXECUTE: (a) 0 2xB μ NI a= , so 7
0

2 2(0.024 m) (0.0580 T) 2.77 A
(4 10 T m A) (800)

xaBI
μ N π −= = =

× ⋅
 

(b) At the center, c 0 2 .B NI aμ=  At a distance x from the center, 
2 3 3

0 0
c2 2 3 2 2 2 3/2 2 2 3/2 .

2( ) 2 ( ) ( )x
NIa NI a aB B

x a a x a x a
μ μ ⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠

 1
c2xB B=  says 

3
1
22 2 3 2 ,

( )
a

x a
=

+
 and 2 2 3 6( ) 4 .x a a+ =  

Since 0.024 ma = , 0.0184 mx = . 
EVALUATE: As shown in Figure 28.41 in the textbook, the field has its largest magnitude at the center of the coil 
and decreases with distance along the axis from the center. 

28.33. IDENTIFY: Apply Eq.(28.16). 
SET UP: At the center of the coil, 0x = . a is the radius of the coil, 0.020 m. 

EXECUTE: (a) 30 0
center

(600) (0.500 A) 9.42 10 T.
2 2(0.020 m)
NIB
a

μ μ −= = = ×  

(b) 
2

0
2 2 3/2( ) .

2( )
NIaB x

x a
μ

=
+

 
2

40
2 2 3/2

(600)(0.500 A)(0.020 m)(0.08 m) 1.34 10  T.
2((0.080 m) (0.020 m) )

B μ −= = ×
+

 

EVALUATE: As shown in Figure 28.41 in the textbook, the field has its largest magnitude at the center of the coil 
and decreases with distance along the axis from the center. 
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28.34. IDENTIFY and SET UP: The magnetic field at a point on the axis of N circular loops is given by 
2

0
2 2 3 / 2 .

2( )x
NIaB

x a
μ

=
+

 Solve for N and set x = 0.0600 m. 

EXECUTE: 
2 2 3 / 2 4 2 2 3 / 2

2 7 2
0

2 ( ) 2(6.39 10  T)[(0.0600 m) (0.0600 m) ] 69.
(4 10  T m/A)(2.50 A)(0.0600 m)

xB x aN
Iaμ π

−

−

+ × +
= = =

× ⋅
  

EVALUATE: At the center of the coil the field is 30 1.8 10  T.
2x
NIB
a

μ −= = ×  The field 6.00 cm from the center is a 

factor of 3 / 21/ 2  times smaller. 
28.35. IDENTIFY: Apply Ampere�s law. 

SET UP: 7
0 4 10  T m/Aμ π −= × ⋅  

EXECUTE: (a) 4
0 encl 3.83 10  T md μ I −⋅ = = × ⋅B l

!!ú  and encl 305 A.I =  

(b) 43.83 10  T m−− × ⋅ since at each point on the curve the direction of dl
!

is reversed. 

EVALUATE: The line integral d⋅B l
!!ú around a closed path is proportional to the net current that is enclosed by 

the path. 
28.36. IDENTIFY: Apply Ampere�s law. 

SET UP: From the right-hand rule, when going around the path in a counterclockwise direction currents out of the 
page are positive and currents into the page are negative. 
EXECUTE: Path a: encl 0 0.I d= ⇒ ⋅ =B l

!!ú  

Path b: 6
encl 1 04.0 A (4.0 A) 5.03 10  T m.I I d μ −= − = − ⇒ ⋅ = − = − × ⋅B l

!!ú  

Path c: 6
encl 1 2 04.0 A 6.0 A 2.0 A (2.0 A) 2.51 10  T mI I I d μ −= − + = − + = ⇒ ⋅ = = × ⋅B l

!!ú  

Path d: 6
encl 1 2 3 04.0 A (4.0 A) 5.03 10  T m.I I I I d μ −= − + + = ⇒ ⋅ = + = × ⋅B l

!!ú  

EVALUATE: If we instead went around each path in the clockwise direction, the sign of the line integral would be 
reversed. 

28.37. IDENTIFY: Apply Ampere�s law. 
SET UP: To calculate the magnetic field at a distance r from the center of the cable, apply Ampere�s law to a 
circular path of radius r. By symmetry, (2 )d B rπ⋅ =B l

!!ú  for such a path. 

EXECUTE: (a) For 0
encl 0 0,  2 .

2
μ Ia r b I I d μ I B πr μ I B
πr

< < = ⇒ ⋅ = ⇒ = ⇒ =B l
!!ú  

(b) For ,r c>  the enclosed current is zero, so the magnetic field is also zero. 
EVALUATE: A useful property of coaxial cables for many applications is that the current carried by the cable 
doesn�t produce a magnetic field outside the cable. 

28.38. IDENTIFY: Apply Ampere's law to calculate .B
!

 
(a) SET UP: For a < r < b the end view is shown in Figure 28.38a. 

 

Apply Ampere's law to a circle of radius r, 
where a < r < b. Take currents 1 2and I I  to 
be directed into the page. Take this direction 
to be positive, so go around the integration 
path in the clockwise direction. 

Figure 28.38a  

EXECUTE: 0 encld Iμ⋅B l =
!!ú  

encl 1(2 ),  d B r I Iπ⋅ =B l =
!!ú  

Thus 0 1
0 1(2 )  and 

2
IB r I B
r

μπ μ
π

= =  
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(b) SET UP: r > c: See Figure 28.38b. 

 

Apply Ampere's law to a circle of 
radius r, where r > c. Both 
currents are in the positive 
direction. 

Figure 28.38b  

EXECUTE: 0 encld Iμ⋅B l =
!!ú  

encl 1 2(2 ),  d B r I I Iπ⋅ = +B l =
!!ú  

Thus 0 1 2
0 1 2

( )(2 ) ( ) and 
2
I IB r I I B

r
μπ μ

π
+

= + =  

EVALUATE: For a < r < b the field is due only to the current in the central conductor. For r > c both currents 
contribute to the total field. 

28.39. IDENTIFY: The largest value of the field occurs at the surface of the cylinder. Inside the cylinder, the field 
increases linearly from zero at the center, and outside the field decreases inversely with distance from the central 
axis of the cylinder. 

SET UP: At the surface of the cylinder, 0 ,
2
µ IB

Rπ
=  inside the cylinder, Eq. 28.21 gives 0

2 ,
2
µ I rB

Rπ
=  and outside 

the field is 0 .
2
µ IB

rπ
=  

EXECUTE: For points inside the cylinder, the field is half its maximum value when 0 0
2

1 ,
2 2 2
µ I r µ I

R Rπ π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 which 

gives r = R/2. Outside the cylinder, we have 0 01 ,
2 2 2
µ I µ I

r Rπ π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 which gives r = 2R. 

EVALUATE: The field has half its maximum value at all points on cylinders coaxial with the wire but of radius 
R/2 and of radius 2R. 

28.40. IDENTIFY: 0
0

μ NIB μ nI
L

= =  

SET UP: 0.150 mL =  

EXECUTE: 0 (600) (8.00 A) 0.0402 T
(0.150 m)

μB = =  

EVALUATE: The field near the center of the solenoid is independent of the radius of the solenoid, as long as the 
radius is much less than the length. 

28.41. (a) IDENTIFY and SET UP: The magnetic field near the center of a long solenoid is given by Eq.(28.23), 0 .B nIμ=  

EXECUTE: Turns per unit length 7
0

0.0270 T 1790
(4 10  T m/A)(12.0 A)

Bn
Iμ π −= = =

× ⋅
 turns/m 

(b) (1790 turns/m)(0.400 m) 716 turnsN nL= = =  
Each turn of radius R has a length 2 Rπ  of wire. The total length of wire required is 

2(2 ) (716)(2 )(1.40 10  m) 63.0 m.N Rπ π −= × =  
EVALUATE: A large length of wire is required. Due to the length of wire the solenoid will have appreciable 
resistance. 

28.42. IDENTIFY and SET UP: At the center of a long solenoid 0 0 .NB nI I
L

μ μ= =  

EXECUTE: 7
0

(0.150 T)(1.40 m) 41.8 A
(4 10  T m/A)(4000)

BLI
Nμ π −= = =

× ⋅
 

EVALUATE: The magnetic field inside the solenoid is independent of the radius of the solenoid, if the radius is 
much less than the length, as is the case here. 
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28.43. IDENTIFY and SET UP: Use the appropriate expression for the magnetic field produced by each current 
configuration. 

EXECUTE: (a) 0

2
IB
r

μ
π

= so 
2

6
7

0

2 2 (2.00 10  m)(37.2 T) 3.72 10 A
4 10  T m/A

BI π π
μ π

−

−

×
= = = ×

× ⋅
. 

(b) 0

2
N IB

R
μ

= so 5
7

0

2 2(0.210 m)(37.2 T) 1.24 10  A
(100)(4 10  T m/A)

RBI
Nμ π −= = = ×

× ⋅
. 

(c) 0
NB I
L

μ= so 7
0

(37.2 T)(0.320 m) 237 A
(4 10  T m/A)(40,000)

BLI
Nμ π −= = =

× ⋅
. 

EVALUATE: Much less current is needed for the solenoid, because of its large number of turns per unit length. 
28.44. IDENTIFY: Example 28.10 shows that outside a toroidal solenoid there is no magnetic field and inside it the 

magnetic field is given by 0 .
2
μ NIB
πr

=  

SET UP: The torus extends from 1 15.0 cmr = to 2 18.0 cm.r =  
EXECUTE: (a) r = 0.12 m, which is outside the torus, so B = 0. 

(b) r = 0.16 m, so 30 0 (250)(8.50 A) 2.66 10  T.
2 2 (0.160 m)

NIB
r

μ μ
π π

−= = = ×  

(c) r = 0.20 m, which is outside the torus, so B = 0. 
EVALUATE: The magnetic field inside the torus is proportional to 1/ r , so it varies somewhat over the cross-
section of the torus. 

28.45. IDENTIFY: Example 28.10 shows that inside a toroidal solenoid, 0

2
NIB
r

μ
π

= . 

SET UP: 0.070 mr =  

EXECUTE: 30 0 (600)(0.650 A) 1.11 10  T.
2 2 (0.070 m)

NIB
r

μ μ
π π

−= = = ×  

EVALUATE: If the radial thickness of the torus is small compared to its mean diameter, B is approximately 
uniform inside its windings. 

28.46. IDENTIFY: Use Eq.(28.24), with 0μ replaced by m 0Kμ μ= , with m 80.K =  
SET UP: The contribution from atomic currents is the difference between B calculated with μ and B calculated 
with 0.μ  

EXECUTE: (a) m 0 0 (80)(400)(0.25 A) 0.0267 T.
2 2 2 (0.060 m)

NI K NIB
r r

μ μ μ
π π π

= = = =  

(b) The amount due to atomic currents is 79 79 (0.0267 T) 0.0263 T.80 80B B′ = = =  

EVALUATE: The presence of the core greatly enhances the magnetic field produced by the solenoid. 

28.47. IDENTIFY and SET UP: m 0

2
K NIB

r
μ
π

=  (Eq.28.24, with 0μ  replaced by m 0K μ ) 

EXECUTE: (a) m 1400K =  
2

7
0 m

2 (2.90 10  m)(0.350 T) 0.0725 A
(2 10  T m/A)(1400)(500)

rBI
K N
π

μ

−

−

×
= = =

× ⋅
 

(b) m 5200K =  
2

7
0 m

2 (2.90 10  m)(0.350 T) 0.0195 A
(2 10  T m/A)(5200)(500)

rBI
K N
π

μ

−

−

×
= = =

× ⋅
 

EVALUATE: If the solenoid were air-filled instead, a much larger current would be required to produce the same 
magnetic field. 

28.48. IDENTIFY: Apply m 0

2
K μ NIB
πr

= . 

SET UP: mK is the relative permeability and m m 1Kχ = − is the magnetic susceptibility. 

EXECUTE: (a) m
0 0

2 2 (0.2500 m)(1.940 T) 2021.
(500)(2.400 A)

πrB πK
μ NI μ

= = =  

(b) m m 1 2020.Kχ = − =  

EVALUATE: Without the magnetic material the magnetic field inside the windings would be 4/2021 9.6 10  T.B −= ×  
The presence of the magnetic material greatly enhances the magnetic field inside the windings. 
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28.49. IDENTIFY: The magnetic field from the solenoid alone is 0 0 .B μ nI=  The total magnetic field is m 0.B K B=  M is 
given by Eq.(28.29). 
SET UP: 6000 turns/mn =  
EXECUTE: (a) (i) 1 3

0 0 0 (6000 m ) (0.15 A) 1.13 10 T.B μ nI μ − −= = = ×  

(ii) 3 6m
0

0 0

1 5199 (1.13 10 T) 4.68 10 A m.KM B
μ μ

−−
= = × = ×  

(iii) 3
m 0 (5200)(1.13 10 T) 5.88 T.B K B −= = × =  

(b) The directions of B
!

, 0B
!

 and M
!

 are shown in Figure 28.49. Silicon steel is paramagnetic and 0B
!

 and M
!

 are in 
the same direction. 
EVALUATE: The total magnetic field is much larger than the field due to the solenoid current alone. 

 
Figure 28.49 

28.50. IDENTIFY: Curie�s law (Eq.28.32) says that 1/ M is proportional to T, so m1/χ  is proportional to T. 
SET UP: The graph of m1/χ  versus the Kelvin temperature is given in Figure 28.50. 

EXECUTE: The material does obey Curie�s law because the graph in Figure 28.50 is a straight line. BM C
T

=  and 

0

0

B BM
μ
−

= says that 0
m

C
T
μχ = . m

0

1/ T
C

χ
μ

= and the slope of m1/ χ versus T is 01/( )Cμ . Therefore, from the 

graph the Curie constant is 5
1

0 0

1 1 1.55 10 K A T m.
(slope) (5.13 K )

C
μ μ −= = = × ⋅ ⋅  

EVALUATE: For this material Curie�s law is valid over a wide temperature range. 

 
Figure 28.50 

28.51. IDENTIFY: Moving charges create magnetic fields. The net field is the vector sum of the two fields. A charge 
moving in an external magnetic field feels a force. 

(a) SET UP: The magnetic field due to a moving charge is 0
2

sin
4
µ qvB

r
φ

π
= . Both fields are into the paper, so 

their magnitudes add, giving 0
net 2 2

sin sin
4
µ qv q vB B B

r r
φ φ

π
′ ′ ′⎛ ⎞′= + = +⎜ ⎟′⎝ ⎠

. 

EXECUTE: Substituting numbers gives 
4 4

0
net 2 2

(8.00 C)(9.00 10  m/s)sin90° (5.00 C)(6.50 10  m/s)sin90°+
4 (0.300 m) (0.400 m)
µ µ µB
π
⎡ ⎤× ×

= ⎢ ⎥
⎣ ⎦

 

6
net 1.00 10  T 1.00 T,B μ−= × = into the paper. 

(b) SET UP: The magnetic force on a moving charge is ,q= ×F v B
! !!  and the magnetic field of charge q′  at the 

location of charge q is into the page. The force on q is 

0 0 0
2 2 2

� sin sin� � � �( ) ( ) ( )
4 4 4
µ q µ qv µ qq vvq qv qv

r r r
φ φ

π π π
′ ′ ′ ′× ⎛ ⎞ ⎛ ⎞′= × = × = × − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

v rF v B i i k j
!! !!  

where φ  is the angle between ′v!  and �′r . 
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EXECUTE: Substituting numbers gives 

( )( )( )( )
( )

6 6 6 6
0

2

8.00 10  C 5.00 10  C 9.00 10  m/s 6.50 10  m/s 0.400 �
4 0.5000.500 m
µ
π

− − − −⎡ ⎤× × × × ⎛ ⎞⎢ ⎥= ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

F j
!

 

( )8 �7.49 10  N−= ×F j
!

. 

EVALUATE: These are small fields and small forces, but if the charge has small mass, the force can affect its 
motion. 

28.52. IDENTIFY: The wire creates a magnetic field near it, and the moving electron feels a force due to this field. 

SET UP: The magnetic field due to the wire is 0

2
µ IB

rπ
= , and the force on a moving charge is sin .F qvB φ=  

EXECUTE: 0sin ( sin )/2 .F qvB ev I rφ μ φ π= =  Substituting numbers gives 
19 4 7(1.60 10  C)(6.00 10  m/s)(4 10  T m/A)(2.50 A)(sin90 ) /[2 (0.0450 m)]F π π− −= × × × ⋅ °  

F = 1.07 × 10�19 N 
From the right hand rule for the cross product, the direction of ×v B

!!  is opposite to the current, but since the 
electron is negative, the force is in the same direction as the current. 
EVALUATE: This force is small at an everyday level, but it would give the electron an acceleration of about 1011 m/s2. 

28.53. IDENTIFY: Find the force that the magnetic field of the wire exerts on the electron. 
SET UP: The force on a moving charge has magnitude sinF q vB φ= and direction given by the right-hand rule. 

For a long straight wire, 0

2
IB
r

μ
π

= and the direction of B
!

is given by the right-hand rule. 

EXECUTE: (a) 0sin
2

q vBF ev Ia
m m m πr

φ μ⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

 

17 5 7
13 2

31

(1.6 10 C)(2.50 10  m/s)(4 10  T m/A)(25.0 A) 1.1 10  m/s ,
(9.11 10  kg)(2 )(0.0200 m)

πa
π

− −

−

× × × ⋅
= = ×

×
 

away from the wire. 
(b) The electric force must balance the magnetic force. eE evB= , and 

7
0 (250, 000 m/s)(4 10 T m/A)(25.0 A) 62.5 N/C

2 2 (0.0200 m)
I πE vB v
r π

μ
π

−× ⋅
= = = = . The magnetic force is directed away from 

the wire so the force from the electric field must be toward the wire. Since the charge of the electron is negative, 
the electric field must be directed away from the wire to produce a force in the desired direction. 
EVALUATE: (c) 31 2 29(9.11 10 kg)(9.8 m/s ) 10 Nmg − −= × ≈ . 19 17

el (1.6 10 C)(62.5 N/C) 10 NF eE − −= = × ≈ . 
12

el grav10F F≈ , so we can neglect gravity. 
28.54. IDENTIFY: Use Eq.(28.9) and the right-hand rule to calculate the magnetic field due to each wire. Add these field 

vectors to calculate the net field and then use Eq.(27.2) to calculate the force. 
SET UP: Let the wire connected to the 25.0 Ω  resistor be #2 and the wire connected to the 10.0 Ω  resistor be #1. 
Both 1 2 and I I  are directed toward the right in the figure, so at the location of the proton 2 1 is  and .B B⊗ ="  

0 1 0 2
1 2 1 and ,  with 0.0250 m. (100.0 V)/(10.0 ) 10.0 A

2 2
I IB B r I
r r

μ μ
π π

= = = = Ω =  and 2 (100.0 V)/(25.0 ) 4.00 AI = Ω =  

EXECUTE: 5 5 5
1 2 1 28.00 10  T, 3.20 10  T and 4.80 10  TB B B B B− − −= × = × = − = ×  and in the direction ."  

 

Force is to the right. 

Figure 28.54  
19 3 5 18(1.602 10  C)(650 10  m/s)(4.80 10  T) 5.00 10  NF qvB − − −= = × × × = ×  

EVALUATE: The force is perpendicular to both and .v B
!!  The magnetic force is much larger than the gravity 

force on the proton. 
28.55. IDENTIFY: Find the net magnetic field due to the two loops at the location of the proton and then find the force 

these fields exert on the proton. 

SET UP: For a circular loop, the field on the axis, a distance x from the center of the loop is 
2

0
2 2 3 / 22( )

IRB
R x
μ

=
+

. 

0.200 mR =  and 0.125 mx = . 
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EXECUTE: The fields add, so 
2

0
1 2 1 2 2 3 / 22 2

2( )
IRB B B B

R x
μ⎡ ⎤

= + = = ⎢ ⎥+⎣ ⎦
. 

7 2
6

2 2 3/ 2

(4 10  T m/A)(1.50 A)(0.200 m) 5.75 10  T.
[(0.200 m) (0.125 m) ]

πB
−

−× ⋅
= = ×

+
 

19 6 21sin (1.6 10 C)(2400 m/s)(5.75 10 T) sin 90 2.21 10 NF q vB φ − − −= = × × ° = × , perpendicular to the line ab and 
to the velocity. 
EVALUATE: The weight of a proton is 241.6 10  Nw mg −= = × , so the force from the loops is much greater than 
the gravity force on the proton. 

28.56. IDENTIFY: The net magnetic field is the vector sum of the fields due to each wire. 

SET UP: 0

2
IB
r

μ
π

= . The direction of B
!

is given by the right-hand rule. 

EXECUTE: (a) The currents are the same so points where the two fields are equal in magnitude are equidistant 
from the two wires. The net field is zero along the dashed line shown in Figure 28.56a. 
(b) For the magnitudes of the two fields to be the same at a point, the point must be 3 times closer to the wire with 
the smaller current. The net field is zero along the dashed line shown in Figure 28.56b. 
(c) As in (a), the points are equidistant from both wires. The net field is zero along the dashed line shown in 
Figure 28.56c. 
EVALUATE: The lines of zero net field consist of points at which the fields of the two wires have opposite 
directions and equal magnitudes. 

   
Figure 28.56 

28.57. IDENTIFY: 0 0
2

�
4
μ q
π r

×v rB =
!!

 

SET UP: ��r = i  and 0.250 mr = , so 0 0 0
� �� .z yv v× −v r = j k!

 

EXECUTE: ( ) ( )60
0 02

� � �6.00 10  T .
4 z y
μ q v v
π r

−= − = ×B j k j
!

 0 0.yv =  60
02 6.00 10 T

4 z
q v

π r
μ −= ×  and 

6 2

0 3
0

4 (6.00 10 T)(0.25 m) 521 m/s.
( 7.20 10 C)z

πv
μ

−

−

×
= = −

− ×
 2 2 2 2 2

0 0 0 0 (800 m/s) ( 521 m/s) 607 m/s.x y zv v v v= ± − − = ± − − = ±  

The sign of 0xv isn�t determined. 

(b) Now �r = j!  and 0.250 mr = . ( )0 0 0
0 02 2

� � � .
4 4 x z
μ q μ q v v
π r π r

×
= −

v rB = k i
!!

 
3

2 2 60 0 0
0 0 02 2 2

| | | | (7.20 10 C) 800 m/s 9.20 10 T
4 4 4 (0.250 m)x z
μ q μ q μB v v v
π r π r π

−
−×

= + = = = × . 

EVALUATE: The magnetic field in part (b) doesn�t depend on the sign of 0xv . 
28.58. IDENTIFY and SET UP: 0

�( / )B x aB = i
!

 

 

Apply Gauss's law for magnetic fields to 
a cube with side length L, one corner at 
the origin, and sides parallel to the x, y 
and z axes, as shown in Figure 28.58. 

Figure 28.58  
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EXECUTE: Since B
!

 is parallel to the x-axis the only sides that have nonzero flux are the front side (parallel to 
the yz-plane at x = L) and the back side (parallel to the yz-plane at x = 0.) 
front 0 0

� �( / ) ( ) ( / )B d B x a dA B x a dAΦ = ⋅ ⋅ =∫ ∫ ∫B A = i i
!!

 

x L=  on this face so 0 ( / )d B L a dA⋅B A =
!!

 
2 3

0 0 0( / ) ( / ) ( / )B B L a dA B L a L B L aΦ = = =∫  

back On the back face x = 0 so B = 0 and 0.BΦ =  The total flux through the cubical Gaussian surface is 3
0 ( / ).B B L aΦ =  

EVALUATE: This violates Eq.(27.8), which says that 0BΦ =  for any closed surface. The claimed B
!

 is 
impossible because it has been shown to violate Gauss's law for magnetism. 

28.59. IDENTIFY: Use Eq.(28.9) and the right-hand rule to calculate the magnitude and direction of the magnetic field at 
P produced by each wire. Add these two field vectors to find the net field. 
(a) SET UP: The directions of the fields at point P due to the two wires are sketched in Figure 28.59a. 

 

EXECUTE: 1 2and B B
! !

 must be equal and 
opposite for the resultant field at P to be zero. 

2B
!

 is to the right so 2I  is out of the page. 

Figure 28.59a  

0 1 0 0 2 0 2
1 2

1 2

6.00 A
2 2 1.50 m 2 2 0.50 m

I I IB B
r r

μ μ μ μ
π π π π

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

0 0 2
1 2

6.00 A says 
2 1.50 m 2 0.50 m

IB B μ μ
π π
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( )2
0.50 m 6.00 A 2.00 A
1.50 m

I ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(b) SET UP: The directions of the fields at point Q are sketched in Figure 28.59b. 

 

EXECUTE: 0 1
1

12
IB
r

μ
π

=  

7 6
1

6.00 A(2 10  T m/A) 2.40 10  T
0.50 m

B − −⎛ ⎞= × ⋅ = ×⎜ ⎟
⎝ ⎠

 

0 2
2

22
IB
r

μ
π

=  

7 7
2

2.00 A(2 10  T m/A) 2.67 10  T
1.50 m

B − −⎛ ⎞= × ⋅ = ×⎜ ⎟
⎝ ⎠

 

Figure 28.59b  

1 2 and B B
! !

 are in opposite directions and 1 2B B>  so 
6 7 6

1 2 2.40 10  T 2.67 10  T 2.13 10  T,  and B B B − − −= − = × − × = × B
!

 is to the right. 
(c) SET UP: The directions of the fields at point S are sketched in Figure 28.59c. 

 

EXECUTE: 0 1
1

12
IB
r

μ
π

=  

7 6
1

6.00 A(2 10  T m/A) 2.00 10  T
0.60 m

B − −⎛ ⎞= × ⋅ = ×⎜ ⎟
⎝ ⎠

 

0 2
2

22
IB
r

μ
π

=  

7 7
2

2.00 A(2 10  T m/A) 5.00 10  T
0.80 m

B − −⎛ ⎞= × ⋅ = ×⎜ ⎟
⎝ ⎠

 

Figure 28.59c  

1 2 and B B
! !

 are right angles to each other, so the magnitude of their resultant is given by 
2 2 6 2 7 2 6

1 2 (2.00 10  T) (5.00 10  T) 2.06 10  TB B B − − −= + = × + × = ×  
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EVALUATE: The magnetic field lines for a long, straight wire are concentric circles with the wire at the center. 
The magnetic field at each point is tangent to the field line, so B

!
 is perpendicular to the line from the wire to the 

point where the field is calculated. 
28.60. IDENTIFY: Find the vector sum of the magnetic fields due to each wire. 

SET UP: For a long straight wire 0

2
IB
r

μ
π

= . The direction of B
!

 is given by the right-hand rule and is perpendicular 

to the line from the wire to the point where then field is calculated. 
EXECUTE: (a) The magnetic field vectors are shown in Figure 28.60a. 

(b) At a position on the x-axis 0 0 0
net 2 22 2 2 2

2 sin ,
2 ( )
μ I μ I a μ IaB
πr π x aπ x a x a

θ= = =
++ +

 in the positive x-direction. 

(c) The graph of B versus /x a  is given in Figure 28.60b. 
EVALUATE: (d) The magnetic field is a maximum at the origin, x = 0. 

(e) When 0
2, .μ Iax a B

πx
>> ≈  

  
Figure 28.60 

28.61. IDENTIFY: Apply sinF IlB φ= , with the magnetic field at point P that is calculated in problem 28.60. 

SET UP: The net field of the first two wires at the location of the third wire is 0
2 2( )

IaB
x a
μ

π
=

+
, in the +x-direction. 

EXECUTE: (a) Wire is carrying current into the page, so it feels a force in the -directiony− . 

( )
2

50 0
2 2 2 2

(6 00 A) (0 400 m) 1.11 10  N/m.
( ) (0 600 m) (0 400 m)

F μ Ia μ . .IB I
L π x a π . .

−⎛ ⎞
= = = = ×⎜ ⎟+ +⎝ ⎠

 

(b) If the wire carries current out of the page then the force felt will be in the opposite direction as in part (a). Thus 
the force will be 51.11 10 N m,−×  in the +y-direction. 
EVALUATE: We could also calculate the force exerted by each of the first two wires and find the vector sum of 
the two forces. 

28.62. IDENTIFY: The wires repel each other since they carry currents in opposite directions, so the wires will move 
away from each other until the magnetic force is just balanced by the force due to the spring. 

SET UP: The force of the spring is kx and the magnetic force on each wire is Fmag = 
2

0

2
µ I L

xπ
. 

EXECUTE: Call x the distance the springs each stretch. On each wire, Fspr = Fmag, and there are two spring forces 

on each wire. Therefore 2kx = 
2

0

2
µ I L

xπ
, which gives x = 

2
0

2
µ I L

kπ
. 

EVALUATE: Since 0/2μ π  is small, x will likely be much less than the length of the wires. 
28.63. IDENTIFY: Apply ∑ = 0F

!
 to one of the wires. The force one wire exerts on the other depends on I so ∑ = 0F

!
 

gives two equations for the two unknowns T and I. 
SET UP: The force diagram for one of the wires is given in Figure 28.63. 

 

The force one wire exerts on the other is 
2

0 ,
2

IF L
r

μ
π

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

where 32(0.040 m)sin 8.362 10  mr θ −= = ×  is the 
distance between the two wires. 

Figure 28.63  
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EXECUTE: 0 gives cos  and / cosyF T mg T mgθ θ= = =∑  

0 gives sin ( / cos )sin tanxF F T mg mgθ θ θ θ= = = =∑  
And ,  so tanm L F Lgλ λ θ= =  

2
0 tan

2
I L Lg
r

μ λ θ
π

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

0

tan
( / 2 )

grI λ θ
μ π

=  

2 3

7

(0.0125 kg/m)(9.80 m/s) (tan  6.00 )(8.362 10  m) 23.2 A
2 10 T m/A

I
−

−

° ×
= =

× ⋅
 

EVALUATE: Since the currents are in opposite directions the wires repel. When I is increased, the angle θ  from 
the vertical increases; a large current is required even for the small displacement specified in this problem. 

28.64. IDENTIFY: Consider the forces on each side of the loop. 
SET UP: The forces on the left and right sides cancel. The forces on the top and bottom segments of the loop are 
in opposite directions, so the magnitudes subtract. 

EXECUTE: 0 wire 0 wire
t b

t b r l

1 1
2 2
I Il Il μ IlIF F F

r r π r r
μ
π

⎛ ⎞ ⎛ ⎞⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

50 (5.00 A)(0.200 m)(14.0 A) 1 1 7.97 10 N
2 0.100 m 0.026 m

μF
π

−⎛ ⎞
= − = ×⎜ ⎟

⎝ ⎠
. The force on the top segment is away 

from the wire, so the net force is away from the wire. 
EVALUATE: The net force on a current loop in a uniform magnetic field is zero, but the magnetic field of the wire 
is not uniform, it is stronger closer to the wire. 

28.65. IDENTIFY: Find the magnetic field of the first loop at the location of the second loop and apply τ = ×
!! Bμ  and 

U = − ⋅B
!!μ  to find μ and U. 

SET UP: Since x is much larger than a′ , assume B is uniform over the second loop and equal to its value on the 
axis of the first loop. 

EXECUTE: (a) 
2 2

0 0
2 2 3 / 2 32( ) 2
Nμ Ia Nμ Iax a B

x a x
>> ⇒ = ≈

+
. 

2 2 2
0 0

3 3

sinsin ( ) sin
2 2

Nμ Ia NN πI I a aτ μB N I A
x x

μ θθ θ
′ ′ ′⎛ ⎞

′ ′ ′= × = = =⎜ ⎟
⎝ ⎠

μ B
!!  

(b) 
2 2 2

2 0 0
3 3

coscos ( ) cos .
2 2

Nμ Ia NN μ II a aU μB N I a
x x

π θθ π θ
′ ′ ′⎛ ⎞

′ ′ ′= − ⋅ = − = − = −⎜ ⎟
⎝ ⎠

μ B
!!  

EVALUATE: (c) Having x a>> allows us to simplify the form of the magnetic field, whereas assuming x a′>>  
means we can assume that the magnetic field from the first loop is constant over the second loop. 

28.66. IDENTIFY: Apply 0
2

�
4
μ Idd
π r

×l rB =
!!

. 

SET UP: The two straight segments produce zero field at P. The field at the center of a circular loop of radius R is 
0

2
IB

R
μ

= , so the field at the center of curvature of a semicircular loop is 0

4
IB

R
μ

= . 

EXECUTE: The semicircular loop of radius a produces field out of the page at P and the semicircular loop of 

radius b produces field into the page. Therefore, 0 01 1 1 1
2 2 4a b
μ I I aB B B

a b a b
μ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, out of page. 

EVALUATE: If a b= , 0B = . 
28.67. IDENTIFY: Find the vector sum of the fields due to each loop. 

SET UP: For a single loop 
2

0
2 2 3/ 2 .

2( )
IaB

x a
μ

=
+

 Here we have two loops, each of N turns, and measuring the field 

along the x-axis from between them means that the �x� in the formula is different for each case: 
EXECUTE: 

Left coil: 
2

0
l 2 2 3 2 .

2 2(( 2) )
a μ NIax x B

x a a
→ + ⇒ =

+ +
 

Right coil: 
2

0
r 2 2 3 2 .

2 2(( 2) )
a μ NIax x B

x a a
→ − ⇒ =

− +
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So, the total field at a point a distance x from the point between them is 
2

0
2 2 3 2 2 2 3 2

1 1 .
2 (( 2) ) (( 2) )

μ NIaB
x a a x a a

⎛ ⎞
= +⎜ ⎟+ + − +⎝ ⎠

 

(b) B versus x is graphed in Figure 28.67. Figure 28.67a is the total field and Figure 27.67b is the field from the 
right-hand coil. 

(c) At point P, 0x = and
3 22 2

0 0 0
2 2 3 2 2 2 3 2 2 3 2

1 1 4
2 (( 2) ) (( 2) ) (5 4) 5

μ NIa μ NIa μ NIB
a a a a a a

⎛ ⎞ ⎛ ⎞= + = =⎜ ⎟ ⎜ ⎟+ − + ⎝ ⎠⎝ ⎠
 

(d) 
3 2 3 2

0 04 4 (300)(6.00 A) 0.0202 T.
5 5 (0.080 m)

μ NI μB
a

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(e) 
2

0
2 2 5 2 2 2 5 2

3( 2) 3( 2)
2 (( 2) ) (( 2) )

dB μ NIa x a x a
dx x a a x a a

⎛ ⎞− + − −
= +⎜ ⎟+ + − +⎝ ⎠

. At 0x = , 

2
0

2 2 5 2 2 2 5 2
0

3( 2) 3( 2) 0
2 (( 2) ) (( 2) )x

dB μ NIa a a
dx a a a a=

⎛ ⎞− − −
= + =⎜ ⎟+ − +⎝ ⎠

. 

2 2 2 2
0

2 2 2 5 2 2 2 7 2 2 2 5 / 2 2 2 7 / 2

3 6( 2) (5 2) 3 6( 2) (5 2)
2 (( 2) ) (( 2) ) (( 2) ) (( 2) )

d B μ NIa x a x a
dx x a a x a a x a a x a a

⎛ ⎞− + − −
= + + +⎜ ⎟+ + + + − + − +⎝ ⎠

 

At 0x = , 5/ 2

2 2 2 2
0

2 2 2 7 / 2 2 2 5 / 2 2 2 7 / 22 2
0

3 6( 2) (5 2) 3 6( 2) (5 2) 0.
2 (( 2) ) (( 2) ) (( 2) )(( 2) )x

d B μ NIa a a
dx a a a a a aa a=

⎛ ⎞− − −
= + + + =⎜ ⎟⎜ ⎟+ + ++⎝ ⎠

 

EVALUATE: Since both first and second derivatives are zero, the field can only be changing very slowly. 

  
Figure 28.67 

28.68. IDENTIFY: A current-carrying wire produces a magnetic field, but the strength of the field depends on the shape 
of the wire. 
SET UP: The magnetic field at the center of a circular wire of radius a is 0 /2 ,B I aμ=  and the field a distance x 

from the center of a straight wire of length 2a is 0
2 2

2 .
4
µ I aB

x x aπ
=

+
 

EXECUTE: (a) Since the diameter D = 2a, we have 0 0/2 / .B I a I Dμ μ= =  
(b) In this case, the length of the wire is equal to the diameter of the circle, so 2 ,a Dπ=  giving /2,a Dπ=  and 

/2.x D=  Therefore ( )0 0
2 2 2 2

2 / 2
 .

4 ( / 2) / 4 / 4 1

Dµ I µ IB
D D D D

π
π π π

= =
+ +

 

EVALUATE: The field in part (a) is greater by a factor of 21 π+ . It is reasonable that the field due to the 
circular wire is greater than the field due to the straight wire because more of the current is close to point A for the 
circular wire than it is for the straight wire. 

28.69. IDENTIFY: Apply 0
2

�
4
μ Idd
π r

×l rB =
!!

. 

SET UP: The contribution from the straight segments is zero since 0.d × =l r
!!

 The magnetic field from the curved 
wire is just one quarter of a full loop. 

EXECUTE: 0 01
4 2 8
μ I μ IB

R R
⎛ ⎞= =⎜ ⎟
⎝ ⎠

and is directed out of the page. 
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EVALUATE: It is very simple to calculate B at point P but it would be much more difficult to calculate B at other 
points. 

28.70. IDENTIFY: Apply 0
2

�
4
μ Idd
π r

×l rB =
!!

. 

SET UP: The horizontal wire yields zero magnetic field since 0.d × =l r
! !  The vertical current provides the 

magnetic field of half of an infinite wire. (The contributions from all infinitesimal pieces of the wire point in the 
same direction, so there is no vector addition or components to worry about.) 

EXECUTE: 0 01
2 2 4
μ I μ IB
πR πR

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 and is directed out of the page. 

EVALUATE: In the equation preceding Eq.(28.8) the limits on the integration are 0 to a rather than a−  to a and 
this introduces a factor of 1

2  into the expression for B. 
28.71. (a) IDENTIFY: Consider current density J for a small concentric ring and integrate to find the total current in 

terms of α  and R. 
SET UP: We can't say 2,I JA J Rπ= =  since J varies across the cross section. 

 

To integrate J over the cross section of 
the wire divide the wire cross section up 
into thin concentric rings of radius r and 
width dr, as shown in Figure 28.71. 

Figure 28.71  
EXECUTE: The area of such a ring is dA, and the current through it is ;dI J dA=  2dA r drπ=  and 

2(2  ) 2dI J dA r r dr r drα π πα= = =  

2 3
30

32 2 ( /3) so 
2

R II dI r dr R
R

πα πα α
π

= = = =∫ ∫  

(b) IDENTIFY and SET UP: (i) r R≤  
Apply Ampere's law to a circle of radius r < R. Use the method of part (a) to find the current enclosed by the 
Ampere's law path. 
EXECUTE: (2 ),d Bdl B dl B rπ= =B l =

!!ú ú ú⋅  by the symmetry and direction of .B
!

 The current passing through 

the path is encl ,I dl= ∫  where the integration is from 0 to r. 
3 3

2 3
encl 3 30

2 2 32 .
3 3 2

r r I IrI r dr r
R R

πα ππα
π

⎛ ⎞= = − =⎜ ⎟
⎝ ⎠∫  Thus 

3 2
0

0 encl 0 3 3 gives (2 )  and 
2

Ir Ird I B r B
R R

μμ π μ
π

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
B l =
!!ú ⋅  

(ii) IDENTIFY and SET UP: r R≥  
Apply Ampere�s law to a circle of radius .r R>  

EXECUTE: (2 )d B dl B dl B rπ= =B l =
!!ú ú ú⋅  

encl ;I I=  all the current in the wire passes through this path. Thus 0 encld IμB l =
!!ú ⋅  gives 0(2 )B r Iπ μ=  and 0

2
IB
r

μ
π

=  

EVALUATE: Note that at r = R the expression in (i) (for r R≤ ) gives 0 .
2

IB
R

μ
π

=  At r = R the expression in (ii) 

(for r R≥ ) gives 0 ,
2

IB
R

μ
π

=  which is the same. 

28.72. IDENTIFY: Apply Ampere�s law to a circle of radius r in each case. 
SET UP: Assume that the currents are uniform over the cross sections of the conductors. 

EXECUTE: (a) 
2

encl 2
r

a

A rr a I I I
A a

⎛ ⎞ ⎛ ⎞
< ⇒ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

2

0 encl 0 22 rd B πr I μ I
a

μ
⎛ ⎞

⋅ = = = ⎜ ⎟
⎝ ⎠

B l
!!ú  and 0

22
μ IrB
πa

= . When 

0,
2
μ Ir a B
πa

= = , which is just what was found in part (a) of Exercise 28.37. 
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(b) 
2 2

encl 2 21b r

b c

A r bb r c I I I I
A c b

→

→

⎛ ⎞ ⎛ ⎞−
< < ⇒ = − = −⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠

. 
2 2 2 2

0 02 2 2 22 1 r b c rd B πr μ I μ I
c b c b

⎛ ⎞ ⎛ ⎞− −
⋅ = = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

B l
!!ú  and 

2 2
0

2 22
μ I c rB
πr c b

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

. When 0,
2
μ Ir b B
πb

= = , just as in part (a) of Exercise 28.37 and when , 0r c B= = , just as in 

part (b) of Exercise 28.37. 
EVALUATE: Unlike E, B is not zero within the conductors. B varies across the cross section of each conductor. 

28.73. IDENTIFY: Apply 0.d⋅ =B A
!!ú  

SET UP: Take the closed gaussian surface to be a cylinder whose axis coincides with the wire. 
EXECUTE: If there is a magnetic field component in the z-direction, it must be constant because of the symmetry 
of the wire. Therefore the contribution to a surface integral over a closed cylinder, encompassing a long straight 
wire will be zero: no flux through the barrel of the cylinder, and equal but opposite flux through the ends. The 
radial field will have no contribution through the ends, but through the barrel: 

barrel barrel  barrel
0 0r r r rd d d B dA B A= ⋅ = ⋅ = ⋅ = = =∫ ∫B A B A B A

! ! !! ! !ú ú . Therefore, 0.rB =  

EVALUATE: The magnetic field of a long straight wire is everywhere tangent to a circular area whose plane is 
perpendicular to the wire, with the wire passing through the center of the circular area. This field produces zero 
flux through the cylindrical gaussian surface. 

28.74. IDENTIFY: Apply Ampere�s law to a circular path of radius r. 
SET UP: Assume the current is uniform over the cross section of the conductor. 
EXECUTE: (a) encl 0 0.r a I B< ⇒ = ⇒ =  

(b) 
2 2 2 2

encl 2 2 2 2

( ) ( ) .
( ) ( )

a r

a b

A π r a r aa r b I I I I
A π b a b a

→

→

⎛ ⎞ ⎛ ⎞− −
< < ⇒ = = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

 
2 2

0 2 2

( )2
( )
r ad B πr μ I
b a
−

⋅ = =
−

B l
!!ú  and 

2 2
0

2 2

( ) .
2 ( )
μ I r aB
πr b a

−
=

−
 

(c) enclr b I I> ⇒ = . 02d B πr μ I⋅ = =B l
!!ú  and 0

2
μ IB
πr

= . 

EVALUATE: The expression in part (b) gives 0B = at r a=  and this agrees with the result of part (a). The 

expression in part (b) gives 0

2
IB
b

μ
π

= at r b= and this agrees with the result of part (c). 

28.75. IDENTIFY: Use Ampere's law to find the magnetic field at 2r a=  from the axis. The analysis of Example 28.9 
shows that the field outside the cylinder is the same as for a long, straight wire along the axis of the cylinder. 
SET UP:  

 

EXECUTE: Apply Ampere's law to a circular 
path of radius 2a, as shown in Figure 28.75. 

0 encl(2 )B Iπ μ=  
2 2

encl 2 2

(2 ) 3 /8
(3 )

a aI I I
a a

⎛ ⎞−
= =⎜ ⎟−⎝ ⎠

 

Figure 28.75  

03 ;
16 2

IB
a

μ
π

=  this is the magnetic field inside the metal at a distance of 2a from the cylinder axis. Outside the 

cylinder, 0 .
2

IB
r

μ
π

=  The value of r where these two fields are equal is given by 1/ 3/(16 ) and 16 /3.r a r a= =  

EVALUATE: For r < 3a, as r increases the magnetic field increases from zero at r = 0 to 0 /(2 (3 ))I aμ π  at r = 3a. 
For r > 3a the field decreases as r increases so it is reasonable for there to be a r > 3a where the field is the same as 
at r = 2a. 

28.76. IDENTIFY: The net field is the vector sum of the fields due to the circular loop and to the long straight wire. 

SET UP: For the long wire, 0 1

2
IB
D

μ
π

= , and for the loop, 0 2

2
IB
R

μ
= . 

EXECUTE: At the center of the circular loop the current 2I  generates a magnetic field that is into the page, so the 
current 1I  must point to the right. For complete cancellation the two fields must have the same magnitude: 

0 1 0 2

2 2
μ I μ I
πD R

= . Thus, 1 2
πDI IR= . 

EVALUATE: If 1I is to the left the two fields add. 
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28.77. IDENTIFY: Use the current density J to find dI through a concentric ring and integrate over the appropriate cross 
section to find the current through that cross section. Then use Ampere's law to find B

!
 at the specified distance 

from the center of the wire. 
(a) SET UP:  

 

Divide the cross section of the cylinder into 
thin concentric rings of radius r and width 
dr, as shown in Figure 28.77a. The current 
through each ring is 2  .dI J dA J r drπ= =  

Figure 28.77a  

EXECUTE: ( ) ( )2 20 0
2 2

2 41 / 2  1 /  .I IdI r a r dr r a r dr
a a

π
π

⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦  The total current I is obtained by integrating dI 

over the cross section ( )2 2 2 4 20 0
02 20 0

0

4 4 1 11 /  / ,
2 4

a
a aI II dI r a r dr r r a I

a a
⎛ ⎞ ⎛ ⎞ ⎡ ⎤= = − = − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦∫ ∫  as was to be shown. 

(b) SET UP: Apply Ampere's law to a path that is a circle of radius r > a, as shown in Figure 28.77b. 

 

(2 )d B rπ⋅B l =
!!ú  

encl 0I I=  (the path encloses the entire cylinder) 

Figure 28.77b  

EXECUTE: 0 encld Iμ⋅B l =
!!ú  says 0 0(2 )B r Iπ μ=  and 0 0 .

2
IB
r

μ
π

=  

(c) SET UP:  

 

Divide the cross section of the cylinder into concentric 
rings of radius r′  and width ,dr′  as was done in part (a). 
See Figure 28.77c. The current dI through each ring 

is
2

0
2

4 1  I rdI r dr
a a

⎡ ⎤′⎛ ⎞ ′ ′= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

Figure 28.77c  
EXECUTE: The current I is obtained by integrating dI from 0 to :r r r′ ′= =  

( ) ( )
2

2 4 20 0 1 1
2 42 20 0

4 41  /
rrI r II dI r dr r r a

a a a
⎡ ⎤′⎛ ⎞ ⎡ ⎤′ ′ ′ ′= = − = −⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫  

2 2
2 4 20 0

2 2 2

4 ( / 2 / 4 ) 2I I r rI r r a
a a a

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
 

(d) SET UP: Apply Ampere's law to a path that is a circle of radius r < a, as shown in Figure 28.77d.  

 

(2 )d B rπ⋅B l =
!!ú  

2 2
0

encl 2 22I r rI
a a

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (from part (c)) 

Figure 28.77d  

EXECUTE: 
2

2 20
0 encl 0 2 says (2 ) (2 / )I rd I B r r a

a
μ π μ⋅ = −B l =

!!ú  and 2 20 0
2 (2 / )

2
I rB r a

a
μ
π

= −  

EVALUATE: Result in part (b) evaluated at 0 0: .
2

Ir a B
a

μ
π

= =  Result in part (d) evaluated at 

2 20 0 0 0
2: (2 / ) .

2 2
I a Ir a B a a

a a
μ μ
π π

= = − =  The two results, one for r > a and the other for r < a, agree at r = a. 

28.78. IDENTIFY: Apply Ampere�s law to a circle of radius r. 
SET UP: The current within a radius r is I d= ⋅∫ J A

!!
, where the integration is over a disk of radius r. 
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EXECUTE: (a) ( ) ( )/ ( )/ ( )/ /
0  0 0

2 2  2 1 .
aar a r a r a abI d e rdrd b e dr πbδ e bδ e

r
δ δ δ δθ π π− − − −⎛ ⎞= ⋅ = = = = −⎜ ⎟

⎝ ⎠∫ ∫ ∫J A
!!

 

(0.050 / 0.025)
0 2 (600 A/m) (0.025 m) (1 ) 81.5 A.I π e= − =  

(b) For 0 encl 0 0,  2r a d B πr I Iμ μ≥ ⋅ = = =B l
!!ú  and 0 0 .

2
IB
r

μ
π

=  

(c) For ,r a≤  ( )/ ( )/ ( )/

0 0
( ) 2 2 .

rrr a r a r abI r d e r dr dθ πb e dr πbδe
r

δ δ δ′ ′− − −⎛ ⎞ ′ ′= ⋅ = = =⎜ ⎟′⎝ ⎠∫ ∫ ∫J A
!!

 

( )/ / / /( ) 2 ( ) 2 ( 1)r a a a rI r πbδ e e πbδe eδ δ δ δ′− − −= − = −  and 
/

0 /

( 1)( ) .
( 1)

r

a

eI r I
e

δ

δ

−
=

−
 

(d) For r a≤ , 
/

0 encl 0 0 /

( 1)( )2
( 1)

r

a

ed B r πr I I
e

δ

δμ μ −
⋅ = = =

−
B l
!!ú  and 

/
0 0

/

( 1) .
2 ( 1)

r

a

I eB
r e

δ

δ

μ
π

−
=

−
 

(e) At 0.025 m,r δ= =  40 0 0
/ 0.050 / 0.025

( 1) (81.5 A) ( 1) 1.75 10 T
2 ( 1) 2 (0.025 m) ( 1)a

μ I e eB
πδ e π eδ

μ −− −
= = = ×

− −
. 

At 0.050 m,r a= =  
/

40 0 0
/

( 1) (81.5 A) 3.26 10 T.
2 ( 1) 2 (0.050 m)

a

a

I eB
a e

δ

δ

μ μ
π π

−−
= = = ×

−
 

At 2 0.100 m,r a= =  40 0 0 (81.5 A) 1.63 10 T.
2 2 (0.100 m)

IB
r

μ μ
π π

−= = = ×  

EVALUATE: At points outside the cylinder, the magnetic field is the same as that due to a long wire running 
along the axis of the cylinder. 

28.79. IDENTIFY: Evaluate the integral as specified in the problem. 

SET UP: Eq.(28.15) says 
2

0
2 2 3 / 22( )x

IaB
x a
μ

=
+

. 

EXECUTE: 
2

0 0
2 2 3 / 2 2 3/ 2

1 ( / ).
2( ) 2 (( / ) 1)x
μ Ia μ IB dx dx d x a

x a x a
∞ ∞ ∞

−∞ −∞ −∞
= =

+ +∫ ∫ ∫  

/2
/ 2

0 0 0
02 3/ 2 / 2

/2

cos (sin ) ,
2 ( 1) 2 2x
μ I dz μ I μ IB B dx θdθ I

z

π
π

π
π

θ μ
∞ ∞

−∞ −∞ −
−

= ⇒ = = =
+∫ ∫ ∫  

where we used the substitution tanz θ=  to go from the first to second line. 
EVALUATE: This is just what Ampere�s Law tells us to expect if we imagine the loop runs along the x-axis 
closing on itself at infinity: 0 .d μ I⋅ =B l

!!ú  

28.80. IDENTIFY: Follow the procedure specified in the problem. 
SET UP: The field and integration path are sketched in Figure 28.80. 
EXECUTE: 0d⋅ =B l

!!ú  (no currents in the region). Using the figure, let 0
�BB = i

!
 for 0 and 0 for 0.y B y< = >  

Then 0.ab cd
abcde

d B L B L⋅ = − =∫ B l
!!

 0cdB = , so 0abB L = . But we have assumed that 0abB ≠ . This is a contradiction 

and violates Ampere�s Law. 
EVALUATE: It is often convenient to approximate B as confined to a particular region of space, but this result 
tells us that the boundary of such a region isn�t sharp. 

 
Figure 28.80 

28.81. IDENTIFY: Use what we know about the magnetic field of a long, straight conductor to deduce the symmetry of 
the magnetic field. Then apply Ampere's law to calculate the magnetic field at a distance a above and below the 
current sheet. 
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SET UP: Do parts (a) and (b) together. 

 

Consider the individual currents in pairs, 
where the currents in each pair are equidistant 
on either side of the point where B

!
 is being 

calculated. Figure 28.81a shows that for each 
pair the z-components cancel, and that above 
the sheet the field is in the �x-direction and 
that below the sheet it is in the +x-direction.  

Figure 28.81a  
Also, by symmetry the magnitude of B

!
 a distance a above the sheet must equal the magnitude of B

!
 a distance a 

below the sheet. Now that we have deduced the symmetry of ,B
!

 apply Ampere's law. Use a path that is a rectangle, 
as shown in Figure 28.81b. 

 

0 encld Iμ⋅B l =
!!ú  

Figure 28.81b  
I is directed out of the page, so for I to be positive the integral around the path is taken in the counterclockwise 
direction. 
EXECUTE: Since B

!
 is parallel to the sheet, on the sides of the rectangle that have length 2a, 0.d⋅B l =

!!ú  On the 

long sides of length L, B
!

 is parallel to the side, in the direction we are integrating around the path, and has the 
same magnitude, B, on each side. Thus 2 .d BL⋅B l =

!!ú  n conductors per unit length and current I out of the page in 

each conductor gives encl .I InL=  Ampere's law then gives 1
0 022  and .BL InL B Inμ μ= =  

EVALUATE: Note that B is independent of the distance a from the sheet. Compare this result to the electric field 
due to an infinite sheet of charge (Example 22.7). 

28.82. IDENTIFY: Find the vector sum of the fields due to each sheet. 
SET UP: Problem 28.81 shows that for an infinite sheet 1

02B Inμ= . If I is out of the page, B
!

is to the left above 

the sheet and to the right below the sheet. If I is into the page, B
!

is to the right above the sheet and to the left 
below the sheet. B is independent of the distance from the sheet. The directions of the two fields at points P, R and 
S are shown in Figure 28.82. 
EXECUTE: (a) Above the two sheets, the fields cancel (since there is no dependence upon the distance from the 
sheets). 
(b) In between the sheets the two fields add up to yield 0 ,B nIμ= to the right. 
(c) Below the two sheets, their fields again cancel (since there is no dependence upon the distance from the sheets). 
EVALUATE: The two sheets with currents in opposite directions produce a uniform field between the sheets and 
zero field outside the two sheets. This is analogous to the electric field produced by large parallel sheets of charge 
of opposite sign. 

 
Figure 28.82 

28.83. IDENTIFY and SET UP: Use Eq.(28.28) to calculate the total magnetic moment of a volume V of the iron. Use the 
density and atomic mass of iron to find the number of atoms in this volume and use that to find the magnetic dipole 
moment per atom. 
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EXECUTE: total
total,  so M MV

V
μ μ= =  The average magnetic moment per atom is atom total / / ,N MV Nμ μ= =  

where N is the number of atoms in volume V. The mass of volume V is ,m Vρ=  where ρ  is the density. 
3 3

iron( 7.8 10  kg/m ).ρ = ×  The number of moles of iron in volume V is 

3 3 ,
55.847 10  kg/mol 55.847 10  kg/mol

m Vn ρ
− −= =

× ×
 where 355.847 10  kg/mol−×  is the atomic mass  

of iron from appendix D. A ,N nN=  where 23
A 6.022 10N = ×  atoms/mol is Avogadro's number. Thus 

A
A 3 .

55.847 10  kg/mol
VNN nN ρ

−= =
×

 

3 3

atom
A A

55.847 10  kg/mol (55.847 10  kg/mol) .MV MMV
N VN N

μ
ρ ρ

− −⎛ ⎞× ×
= = =⎜ ⎟

⎝ ⎠
 

4 3

atom 3 3 23

(6.50 10  A/m)(55.847 10  kg/mol)
(7.8 10  kg/m )(6.022 10  atoms/mol)

μ
−× ×

=
× ×

 

25 2 25
atom 7.73 10  A m 7.73 10  J/Tμ − −= × ⋅ = ×  

24 2
B atom B9.274 10  A m ,  so 0.0834 .μ μ μ−= × ⋅ =  

EVALUATE: The magnetic moment per atom is much less than one Bohr magneton. The magnetic moments of 
each electron in the iron must be in different directions and mostly cancel each other. 

28.84. IDENTIFY: The force on the cube of iron must equal the weight of the iron cube. The weight is proportional to the 
density and the magnetic force is proportional to μ , which is in turn proportional to mK . 

SET UP: The densities if iron, aluminum and silver are 3 3
Fe 7.8 10  kg/m ,ρ = ×  3 3

Al 2.7 10  kg/mρ = × and 
3 3

Ag 10.5 10  kg/mρ = × . The relative permeabilities of iron, aluminum and silver are Fe 1400K = , Al 1.00022K = and 
5

Ag 1.00 2.6 10K −= − × . 
EXECUTE: (a) The microscopic magnetic moments of an initially unmagnetized ferromagnetic material 
experience torques from a magnet that aligns the magnetic domains with the external field, so they are attracted to 
the magnet. For a paramagnetic material, the same attraction occurs because the magnetic moments align 
themselves parallel to the external field. For a diamagnetic material, the magnetic moments align antiparallel to the 
external field so it is like two magnets repelling each other. 
(b) The magnet can just pick up the iron cube so the force it exerts is 

3 3 3 3 2
Fe Fe Fe (7.8 10  kg/m )(0.020 m) (9.8 m/s ) 0.612 N.F m g a gρ= = = × =  If the magnet tries to lift the aluminum 

cube of the same dimensions as the iron block, then the upward force felt by the cube is 
4Al

Al
Fe

1.000022(0.612 N) (0.612 N) 4.37 10 N.
1400

KF
K

−= = = ×  The weight of the aluminum cube is 

3 3 3 3 2
Al Al Al (2.7 10 kg m )(0.020 m) (9.8 m s ) 0.212 N.W m g ρ a g= = = × =  Therefore, the ratio of the magnetic force 

on the aluminum cube to the weight of the cube is 
4

34.37 10 N 2.1 100.212 N

−
−× = ×  and the magnet cannot lift it. 

(c) If the magnet tries to lift a silver cube of the same dimensions as the iron block, then the downward force felt 

by the cube is 
5

Ag 4
Al

Fe

(1.00 2.6 10 )(0.612 N) (0.612 N) 4.37 10 N.
1400

K
F

K

−
−− ×

= = = ×  But the weight of the silver cube 

is 3 3 3 3 2
Ag Ag Ag (10.5 10  kg/m )(0.020 m) (9.8 m/s ) 0.823 N.W m g a gρ= = = × =  So the ratio of the magnetic force on 

the silver cube to the weight of the cube is 
4

44.37 10 N 5.3 100.823 N

−
−× = × and the magnet�s effect would not be 

noticeable. 
EVALUATE: Silver is diamagnetic and is repelled by the magnet. Aluminum is paramagnetic and is attracted by 
the magnet. But for both these materials the force is much less that the force on a similar cube of ferromagnetic 
iron. 

28.85. IDENTIFY: The current-carrying wires repel each other magnetically, causing them to accelerate horizontally. 
Since gravity is vertical, it plays no initial role. 

SET UP: The magnetic force per unit length is 
2

0

2
F µ I
L dπ
= , and the acceleration obeys the equation F/L = m/L a. 

The rms current over a short discharge time is 0 / 2I . 
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EXECUTE: (a) First get the force per unit length: 
2 2 22

0 0 0 0 0 0

2 2 4 42
F µ I µ I µ V µ Q
L d d d R d RCπ π π π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Now apply Newton�s second law using the result above: 
2

0 0

4
F m µ Qa a
L L d RC

λ
π

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

. Solving for a gives 

2
0 0

2 24
Qa

R C d
μ

πλ
= . From the kinematics equation 0x x xv v a t= + , we have 

2
0 0

0 4
Qv at aRC
RCd

μ
πλ

= = =  

(b) Conservation of energy gives 21
02 mv mgh=  and 

22
0 0

22 2
0 0 04 1 

2 2 2 4

Q
RCdv Qh

g g g RCd

μ
πλ μ

πλ

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= = = ⎜ ⎟

⎝ ⎠
. 

EVALUATE: Once the wires have swung apart, we would have to consider gravity in applying Newton�s second law. 
28.86. IDENTIFY: Approximate the moving belt as an infinite current sheet. 

SET UP: Problem 28.81 shows that 1
02B Inμ=  for an infinite current sheet. Let L be the width of the sheet, so / .n I L=  

EXECUTE: The amount of charge on a length xΔ  of the belt is Q L xσΔ = Δ , so .Q xI L σ Lvσ
t t

Δ Δ
= = =
Δ Δ

 

Approximating the belt as an infinite sheet 0 0 .
2 2
μ I μ vσB

L
= =  B

!
is directed out of the page, as shown in Figure 28.86. 

EVALUATE: The field is uniform above the sheet, for points close enough to the sheet for it to be considered infinite. 

 
Figure 28.86 

28.87. IDENTIFY: The rotating disk produces concentric rings of current. Calculate the field due to each ring and 
integrate over the surface of the disk to find the total field. 

SET UP: At the center of a circular ring carrying current I, 0

2
IB
r

μ
= . 

EXECUTE: The charge on a ring of radius r is 2

22 .Qrdrq A rdr
a

σ σ π= = =  If the disk rotates at n turns per 

second, then the current from that ring is 2

2dq QnrdrdI ndq
dt a

= = = . Therefore, 0 0 0
2 2

2
2 2

I Qnrdr nQdrdB
r r a a

μ μ μ
= = = . 

We integrate out from the center to the edge of the disk and find 0 0
20 0

.
a a nQdr nQB dB

a a
μ μ

= = =∫ ∫  

EVALUATE: The magnetic field is proportional to the total charge on the disk and to its rotation rate. 
28.88. IDENTIFY: There are two parts to the magnetic field: that from the half loop and that from the straight wire 

segment running from a− to a. 
SET UP: Apply Eq.(28.14). Let the φ  be the angle that locates dl around the ring. 

EXECUTE: 
2

01
loop2 2 2 3/ 2( ) .

4( )x
IaB ring B

x a
μ

= = −
+

 

0 0
2 2 2 2 1 2 2 2 3 2

sin( ) sin sin sin
4 ( ) ( ) 4 ( )y

I dl x Iax ddB ring dB
x a x a x a

μ μ φ φθ φ φ
π π

= = =
+ + +

 and 

0 0 0
2 2 3/ 2 2 2 3/ 2 2 2 3/ 20 0

0

sin( ) ( ) cos .
4 ( ) 4 ( ) 2 ( )

π

y y
Iax d Iax IaxB ring dB ring
x a x a x a

π π μ φ φ μ μφ
π π π

= = = = −
+ + +∫ ∫  

0
2 2 1/2( ) ,

2 ( )y
μ IaB rod

πx x a
=

+
 using Eq. (28.8). The total field components are: 

2
0

2 2 3/ 24( )x
IaB

x a
μ

= −
+

 and
2 3

0 0
2 2 1/ 2 2 2 2 2 3/ 21 .

2 ( ) 2 ( )y
Ia x IaB

x x a x a x x a
μ μ

π π
⎛ ⎞

= − =⎜ ⎟+ + +⎝ ⎠
 

EVALUATE: 2 .y x
aB B
xπ

= −  yB  decreases faster than xB  as x increases. For very small 0,  
4x

Ix B
a

μ
= −  and 0 .

2y
IB
a

μ
π

=  

In this limit xB  is the field at the center of curvature of a semicircle and yB  is the field of a long straight wire. 
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ELECTROMAGNETIC INDUCTION 

 29.1. IDENTIFY: Altering the orientation of a coil relative to a magnetic field changes the magnetic flux through the 
coil. This change then induces an emf in the coil. 
SET UP: The flux through a coil of N turns is Φ = NBA cos φ, and by Faraday�s law the magnitude of the induced 
emf is E = dΦ/dt. 
EXECUTE: (a) ΔΦ = NBA = (50)(1.20 T)(0.250 m)(0.300 m) = 4.50 Wb 
(b) E = dΦ/dt = (4.50 Wb)/(0.222 s) = 20.3 V 
EVALUATE: This induced potential is certainly large enough to be easily detectable. 

 29.2. IDENTIFY: B

t
ΔΦ

=
Δ

E . cosB BA φΦ = . BΦ  is the flux through each turn of the coil. 

SET UP: i 0φ = °. f 90φ = °. 

EXECUTE: (a) 5 4 2 8
,i cos0 (6.0 10  T)(12 10  m )(1) 7.2 10  Wb.B BA − − −Φ = = × × = ×°  The total flux through the coil is 

8 5
,i (200)(7.2 10  Wb) 1.44 10  WbBN − −Φ = × = × . ,f cos90 0B BAΦ = =° . 

(b) 
5

4i f 1.44 10  Wb 3.6 10  V 0.36 mV
0.040 s

N N
t

−
−Φ − Φ ×

= = × =
Δ

=E . 

EVALUATE: The average induced emf depends on how rapidly the flux changes. 
 29.3. IDENTIFY and SET UP: Use Faraday�s law to calculate the average induced emf and apply Ohm�s law to the coil 

to calculate the average induced current and charge that flows. 

(a) EXECUTE: The magnitude of the average emf induced in the coil is av .BIN
t

ΔΦ
=

Δ
E  Initially, 

i cos .B BA BAφΦ = =  The final flux is zero, so f i
av .B B NBAN

t t
Φ −Φ

= =
Δ Δ

E  The average induced current is 

av .NBAI
R R t

= =
Δ

E
 The total charge that flows through the coil is .NBA NBAQ I t t

R t R
⎛ ⎞= Δ = Δ =⎜ ⎟Δ⎝ ⎠

 

EVALUATE: The charge that flows is proportional to the magnetic field but does not depend on the time .tΔ  
(b) The magnetic stripe consists of a pattern of magnetic fields. The pattern of charges that flow in the reader coil 
tell the card reader the magnetic field pattern and hence the digital information coded onto the card. 
(c) According to the result in part (a) the charge that flows depends only on the change in the magnetic flux and it 
does not depend on the rate at which this flux changes. 

 29.4. IDENTIFY and SET UP: Apply the result derived in Exercise 29.3: / .Q NBA R=  In the present exercise the flux 
changes from its maximum value of B BAΦ =  to zero, so this equation applies. R is the total resistance so here 

60.0 45.0 105.0 .R = Ω + Ω = Ω  

EXECUTE: 
5

4 2

(3.56 10  C)(105.0 ) says 0.0973 T.
120(3.20 10  m )

NBA QRQ B
R NA

−

−

× Ω
= = = =

×
 

EVALUATE: A field of this magnitude is easily produced. 
 29.5. IDENTIFY: Apply Faraday�s law. 

SET UP: Let +z be the positive direction for A
!

. Therefore, the initial flux is positive and the final flux is zero. 

EXECUTE: (a) and (b) 
2

3

0 (1.5 T) (0.120 m) 34 V.
2.0 10  s

B

t
π

−

ΔΦ −
= − = − = +

Δ ×
E  Since E is positive and A

!
is toward us, 

the induced current is counterclockwise. 
EVALUATE: The shorter the removal time, the larger the average induced emf. 

29
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 29.6. IDENTIFY: Apply Eq.(29.4). / .I R= E  
SET UP: / / .Bd dt AdB dtΦ =  

EXECUTE: (a) ( )5 4 4( ) (0.012 T/s) (3.00 10  T/s )BNd d dNA B NA t t
dt dt dt

−Φ
= = = + ×E  

( )4 4 3 4 3 3(0.012 T/s) (1.2 10  T/s ) 0.0302 V (3.02 10  V/s ) .NA t t− −= + × = + ×E   

(b) At 5.00 s,t =  4 3 30.0302 V (3.02 10  V/s )(5.00 s) 0.0680 V.−= + × =E  40.0680 V 1.13 10  A.
600 

I
R

−= = = ×
Ω

E  

EVALUATE: The rate of change of the flux is increasing in time, so the induced current is not constant but rather 
increases in time. 

 29.7. IDENTIFY: Calculate the flux through the loop and apply Faraday�s law. 
SET UP: To find the total flux integrate BdΦ  over the width of the loop. The magnetic field of a long straight 

wire, at distance r from the wire, is 0

2
IB
r

μ
π

= . The direction of B
!

is given by the right-hand rule. 

EXECUTE: (a) When 0

2
iB
r

μ
π

= , into the page. 

(b) 0 .
2B

id BdA Ldr
r

μ
π

Φ = =  

(c) 0 0 ln( / ).
2 2

b b

B Ba a

iL dr iLd b a
r

μ μ
π π

Φ = Φ = =∫ ∫  

(d) 0 ln( ) .
2

Bd L dib a
dt dt

μ
π

Φ
= =E  

(e) 70 (0.240 m) ln(0.360/0.120)(9.60 A/s) 5.06 10  V.
2

μ
π

−= = ×E  

EVALUATE: The induced emf is proportional to the rate at which the current in the long straight wire is changing 
 29.8. IDENTIFY: Apply Faraday�s law. 

SET UP: Let A
!

be upward in Figure 29.28 in the textbook. 

EXECUTE: (a) ind ( )Bd d B Adt dt ⊥
Φ

= =E  

( )1 1(0.057s ) 2 1 (0.057s )
ind sin60 sin 60 (1.4 T) ( )(sin60 )(1.4 T)(0.057 s )t tdB dA A e r e

dt dt
π

− −− − −= ° = ° = °E
1 12 1 (0.057s ) (0.057  s )

ind (0.75 m) (sin60 )(1.4 T)(0.057 s ) (0.12 V) .t te eπ
− −− − −= ° =E  

(b) 1 1
010 10 (0.12 V).= =E E  

1(0.057  s )1
10 (0.12 V) (0.12 V) .te

−−=  1ln(1/10) (0.057 s )t−= −  and 40.4 s.t =  

(c) B
!

 is in the direction of A
!

 so BΦ is positive. B is getting weaker, so the magnitude of the flux is decreasing 
and / 0.Bd dtΦ <  Faraday�s law therefore says 0.>E  Since 0,>E  the induced current must flow 
counterclockwise as viewed from above. 
EVALUATE: The flux changes because the magnitude of the magnetic field is changing. 

 29.9. IDENTIFY and SET UP: Use Faraday�s law to calculate the emf (magnitude and direction). The direction of the 
induced current is the same as the direction of the emf. The flux changes because the area of the loop is changing; 
relate dA/dt to dc/dt, where c is the circumference of the loop. 
(a) EXECUTE: 2 22  and  so /4c r A r A cπ π π= = =  

2( /4 )B BA B cπΦ = =  

2
Bd B dcc

dt dtπ
Φ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
E  

At 9.0 s, 1.650 m (9.0 s)(0.120 m/s) 0.570 mt c= = − =  
(0.500 T)(1/2 )(0.570 m)(0.120 m/s) 5.44 mVπ= =E  

(b) SET UP: The loop and magnetic field are sketched in Figure 29.9. 

Take into the page to be the 
positive direction for .A

!
 Then 

the magnetic flux is positive. 

Figure 29.9  
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EXECUTE: The positive flux is decreasing in magnitude; /Bd dtΦ  is negative and E  is positive. By the right-

hand rule, for A
!

 into the page, positive E  is clockwise. 
EVALUATE: Even though the circumference is changing at a constant rate, /dA dt  is not constant and E  is not 
constant. Flux ⊗ is decreasing so the flux of the induced current is ⊗ and this means that I is clockwise, which checks. 

29.10. IDENTIFY: A change in magnetic flux through a coil induces an emf in the coil. 
SET UP: The flux through a coil is Φ = NBA cos φ and the induced emf is / .d dt= ΦE  
EXECUTE: (a) and (c) The magnetic flux is constant, so the induced emf is zero. 
(b) The area inside the field is changing. If we let x be the length (along the 30.0-cm side) in the field, then  
A = (0.400 m)x. ΦB = BA = (0.400 m)x 

E = dΦ/dt = B d[(0.400 m)x]/dt = B(0.400 m)dx/dt = B(0.400 m)v 

E = (1.25 T)(0.400 m)(0.0200 m/s) = 0.0100 V 
EVALUATE: It is not a large flux that induces an emf, but rather a large rate of change of the flux. The induced 
emf in part (b) is small enough to be ignored in many instances. 

29.11. IDENTIFY: A change in magnetic flux through a coil induces an emf in the coil. 
SET UP: The flux through a coil is Φ = NBA cos φ and the induced emf is E = dΦ/dt. 
EXECUTE: (a) E = dΦ/dt = d[A(B0 + bx)]/dt = bA dx/dt = bAv 
(b) clockwise 
(c) Same answers except the current is counterclockwise. 
EVALUATE: Even though the coil remains within the magnetic field, the flux through it increases because the 
strength of the field is increasing. 

29.12. IDENTIFY: Use the results of Example 29.5. 

SET UP: max .NBAω=E  av max
2 .
π

=E E  2  rad/rev(440 rev/min) 46.1 rad/s.
60 s/min
πω ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

EXECUTE: (a) 2
max (150)(0.060 T) (0.025 m) (46.1 rad/s) 0.814 VNBAω π= = =E  

(b) av max
2 2 (0.815 V) 0.519 V
π π

= = =E E  

EVALUATE: In max ,NBAω=E  ω must be in rad/s. 
29.13. IDENTIFY: Apply the results of Example 29.5. 

SET UP: max NBAω=E  

EXECUTE: 
2

max
2

2.40 10  V 10.4 rad/s
(120)(0.0750 T)(0.016 m)NBA

ω
−×

= = =
E  

EVALUATE: We may also express ω  as 99.3 rev/min or 1.66 rev/s . 
29.14. IDENTIFY: A change in magnetic flux through a coil induces an emf in the coil. 

SET UP: The flux through a coil is Φ = NBA cos φ and the induced emf is / .d dt= ΦE  
EXECUTE: The flux is constant in each case, so the induced emf is zero in all cases. 
EVALUATE: Even though the coil is moving within the magnetic field and has flux through it, this flux is not 
changing, so no emf is induced in the coil. 

29.15. IDENTIFY and SET UP: The field of the induced current is directed to oppose the change in flux. 
EXECUTE: (a) The field is into the page and is increasing so the flux is increasing. The field of the induced 
current is out of the page. To produce field out of the page the induced current is counterclockwise. 
(b) The field is into the page and is decreasing so the flux is decreasing. The field of the induced current is into the 
page. To produce field into the page the induced current is clockwise. 
(c) The field is constant so the flux is constant and there is no induced emf and no induced current. 
EVALUATE: The direction of the induced current depends on the direction of the external magnetic field and 
whether the flux due to this field is increasing or decreasing. 

29.16. IDENTIFY: By Lenz�s law, the induced current flows to oppose the flux change that caused it. 
SET UP and EXECUTE: The magnetic field is outward through the round coil and is decreasing, so the magnetic 
field due to the induced current must also point outward to oppose this decrease. Therefore the induced current is 
counterclockwise. 
EVALUATE: Careful! Lenz�s law does not say that the induced current flows to oppose the magnetic flux. Instead 
it says that the current flows to oppose the change in flux. 

29.17. IDENTIFY and SET UP: Apply Lenz's law, in the form that states that the flux of the induced current tends to 
oppose the change in flux. 
EXECUTE: (a) With the switch closed the magnetic field of coil A is to the right at the location of coil B. When 
the switch is opened the magnetic field of coil A goes away. Hence by Lenz's law the field of the current induced 
in coil B is to the right, to oppose the decrease in the flux in this direction. To produce magnetic field that is to the 
right the current in the circuit with coil B must flow through the resistor in the direction a to b. 
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(b) With the switch closed the magnetic field of coil A is to the right at the location of coil B. This field is stronger 
at points closer to coil A so when coil B is brought closer the flux through coil B increases. By Lenz's law the field 
of the induced current in coil B is to the left, to oppose the increase in flux to the right. To produce magnetic field 
that is to the left the current in the circuit with coil B must flow through the resistor in the direction b to a. 
(c) With the switch closed the magnetic field of coil A is to the right at the location of coil B. The current in the 
circuit that includes coil A increases when R is decreased and the magnetic field of coil A increases when the 
current through the coil increases. By Lenz's law the field of the induced current in coil B is to the left, to oppose 
the increase in flux to the right. To produce magnetic field that is to the left the current in the circuit with coil B 
must flow through the resistor in the direction b to a. 
EVALUATE: In parts (b) and (c) the change in the circuit causes the flux through circuit B to increase and in part 
(a) it causes the flux to decrease. Therefore, the direction of the induced current is the same in parts (b) and (c) and 
opposite in part (a). 

29.18. IDENTIFY: Apply Lenz�s law. 
SET UP: The field of the induced current is directed to oppose the change in flux in the primary circuit. 
EXECUTE: (a) The magnetic field in A is to the left and is increasing. The flux is increasing so the field due to the 
induced current in B is to the right. To produce magnetic field to the right, the induced current flows through R 
from right to left. 
(b) The magnetic field in A is to the right and is decreasing. The flux is decreasing so the field due to the induced 
current in B is to the right. To produce magnetic field to the right the induced current flows through R from right to 
left. 
(c) The magnetic field in A is to the right and is increasing. The flux is increasing so the field due to the induced 
current in B is to the left. To produce magnetic field to the left the induced current flows through R from left to right. 
EVALUATE: The direction of the induced current depends on the direction of the external magnetic field and 
whether the flux due to this field is increasing or decreasing. 

29.19. IDENTIFY and SET UP: Lenz's law requires that the flux of the induced current opposes the change in flux. 
EXECUTE: (a)  is BΦ "  and increasing so the flux indΦ  of the induced current is ⊗  and the induced current is 
clockwise. 
(b) The current reaches a constant value so BΦ  is constant. / 0Bd dtΦ =  and there is no induced current. 
(c)  is BΦ "  and decreasing, so ind is Φ "  and current is counterclockwise. 
EVALUATE: Only a change in flux produces an induced current. The induced current is in one direction when the 
current in the outer ring is increasing and is in the opposite direction when that current is decreasing. 

29.20. IDENTIFY: Use the results of Example 29.6. Use the three approaches specified in the problem for determining 
the direction of the induced current. /I R= E . 
SET UP: Let A

!
be directed into the figure, so a clockwise emf is positive. 

EXECUTE: (a) (5.0 m/s)(0.750 T)(1.50 m) 5.6 VvBl= = =E  
(b) (i) Let q be a positive charge in the moving bar, as shown in Figure 29.20a. The magnetic force on this charge is 

q ×F = v B
! !! , which points upward. This force pushes the current in a counterclockwise direction through the circuit. 

(ii) BΦ  is positive and is increasing in magnitude, so / 0Bd dtΦ > . Then by Faraday�s law 0<E and the emf and 
induced current are counterclockwise. 
(iii) The flux through the circuit is increasing, so the induced current must cause a magnetic field out of the paper 
to oppose this increase. Hence this current must flow in a counterclockwise sense, as shown in Figure 29.20b. 

(c) .RI=E  5.6 V 0.22 A.
25 

I
R

= = =
Ω

E  

EVALUATE: All three methods agree on the direction of the induced current. 

  
Figure 29.20 

29.21. IDENTIFY: A conductor moving in a magnetic field may have a potential difference induced across it, depending 
on how it is moving. 
SET UP: The induced emf is E = vBL sin φ, where φ is the angle between the velocity and the magnetic field.  
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EXECUTE: (a) E = vBL sin φ = (5.00 m/s)(0.450 T)(0.300 m)(sin 90°) = 0.675 V 
(b) The positive charges are moved to end b, so b is at the higher potential. 
(c) E = V/L = (0.675 V)/(0.300 m) = 2.25 V/m. The direction of E

!
is from, b to a.  

(d) The positive charge are pushed to b, so b has an excess of positive charge. 
(e) (i) If the rod has no appreciable thickness, L = 0, so the emf is zero. (ii) The emf is zero because no magnetic 
force acts on the charges in the rod since it moves parallel to the magnetic field. 
EVALUATE: The motional emf is large enough to have noticeable effects in some cases. 

29.22. IDENTIFY: The moving bar has a motional emf induced across its ends, so it causes a current to flow. 
SET UP: The induced potential is E = vBL and Ohm�s law is E = IR. 
EXECUTE: (a) E = vBL = (5.0 m/s)(0.750 T)(1.50 m) = 5.6 V 
(b) I = E /R = (5.6 V)/(25 Ω) = 0.23 A 
EVALUATE: Both the induced potential and the current are large enough to have noticeable effects. 

29.23. IDENTIFY: vBL=E  
SET UP: 25.00 10  m.L −= ×  1 mph 0.4470 m/s.=  

EXECUTE: 2

1.50 V 46.2 m/s 103 mph.
(0.650 T)(5.00 10  m)

v
BL −= = = =

×
E  

EVALUATE: This is a large speed and not practical. It is also difficult to produce a 5.00 cm wide region of 0.650 T 
magnetic field. 

29.24. IDENTIFY: .vBL=E  
SET UP: 1 mph 0.4470 m/s= . 41 G 10  T−= . 

EXECUTE: (a) 40.4470 m/s(180 mph) (0.50 10  T)(1.5 m) 6.0 mV.
1 mph

−⎛ ⎞
= × =⎜ ⎟

⎝ ⎠
E  This is much too small to be 

noticeable. 

(b) 40.4470 m/s(565 mph) (0.50 10  T)(64.4 m) 0.813 mV.
1 mph

−⎛ ⎞
= × =⎜ ⎟

⎝ ⎠
E  This is too small to be noticeable. 

EVALUATE: Even though the speeds and values of L are large, the earth�s field is small and motional emfs due to 
the earth�s field are not important in these situations. 

29.25. IDENTIFY and SET UP: .vBL=E  Use Lenz's law to determine the direction of the induced current. The force extF  
required to maintain constant speed is equal and opposite to the force IF  that the magnetic field exerts on the rod 
because of the current in the rod. 
EXECUTE: (a) (7.50 m/s)(0.800 T)(0.500 m) 3.00 VvBL= = =E  
(b) B
!

is into the page. The flux increases as the bar moves to the right, so the magnetic field of the induced current 
is out of the page inside the circuit. To produce magnetic field in this direction the induced current must be 
counterclockwise, so from b to a in the rod. 

(c) 3.00 V 2.00 A.
1.50 

I
R

= = =
Ω

E  sin (2.00 A)(0.500 m)(0.800 T)sin90 0.800 NIF ILB φ= = =° . IF
!

 is to the left. To 

keep the bar moving to the right at constant speed an external force with magnitude ext 0.800 NF =  and directed to 
the right must be applied to the bar. 
(d) The rate at which work is done by the force extF is ext (0.800 N)(7.50 m/s) 6.00 W.F v = =  The rate at which 
thermal energy is developed in the circuit is 2 (2.00 A)(1.50 ) 6.00 W.I R = Ω =  These two rates are equal, as is 
required by conservation of energy. 
EVALUATE: The force on the rod due to the induced current is directed to oppose the motion of the rod. This 
agrees with Lenz�s law. 

29.26. IDENTIFY: Use Faraday�s law to calculate the induced emf. Ohm�s law applied to the loop gives I. Use 
Eq.(27.19) to calculate the force exerted on each side of the loop. 
SET UP: The loop before it starts to enter the magnetic field region is sketched in Figure 29.26a. 

 

EXECUTE: For 3 /2 or 3 /2x L x L< − >  
the loop is completely outside the field 

region. 0,  and 0.B
B

d
dt
Φ

Φ = =  

Figure 29.26a  
Thus 0=E  and I = 0, so there is no force from the magnetic field and the external force F necessary to maintain 
constant velocity is zero. 
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SET UP: The loop when it is completely inside the field region is sketched in Figure 29.26b. 

 

EXECUTE: For /2 /2L x L− < <  
the loop is completely inside the 
field region and 2.B BLΦ =  

Figure 29.26b  

But 0 so 0 and 0.Bd I
dt
Φ

= = =E  There is no force IF = l B
!! !
×  from the magnetic field and the external force F 

necessary to maintain constant velocity is zero. 
SET UP: The loop as it enters the magnetic field region is sketched in Figure 29.26c. 

 

EXECUTE: For 3 /2 /2L x L− < < −  
the loop is entering the field region. 
Let x′  be the length of the loop 
that is within the field. 

Figure 29.26c  

Then  and .B
B

dBLx Blv
dt
Φ′Φ = =  The magnitude of the induced emf is Bd BLv

dt
Φ

= =E  and the induced 

current is .BLvI
R R

= =
E

 Direction of I: Let A
!

 be directed into the plane of the figure. Then BΦ  is positive. The 

flux is positive and increasing in magnitude, so Bd
dt
Φ  is positive. Then by Faraday�s law E  is negative, and with 

our choice for direction of A
!

 a negative E  is counterclockwise. The current induced in the loop is 
counterclockwise. 
SET UP: The induced current and magnetic force on the loop are shown in Figure 29.26d, for the situation where 
the loop is entering the field. 

 

EXECUTE: I I=F l B
!! !
×  gives that the 

force IF
!

 exerted on the loop by the 
magnetic field is to the left and has 

magnitude 
2 2

.I
BLv B L vF ILB LB

R R
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

Figure 29.26d  

The external force F
!

 needed to move the loop at constant speed is equal in magnitude and opposite in direction to 
IF
!

 so is to the right and has this same magnitude. 
SET UP: The loop as it leaves the magnetic field region is sketched in Figure 29.26e. 

 

EXECUTE: For /2 3 /2L x L< <  
the loop is leaving the field 
region. Let x′  be the length of 
the loop that is outside the field.  

Figure 29.26e  

Then ( ) and .B
B

dBL L x BLv
dt
Φ′Φ = − =  The magnitude of the induced emf is Bd BLv

dt
Φ

= =E  and the induced 

current is .BLvI
R R

= =
E

 Direction of I: Again let A
!

be directed into the plane of the figure. Then BΦ  is positive 

and decreasing in magnitude, so Bd
dt
Φ  is negative. Then by Faraday�s law E  is positive, and with our choice for 

direction of A
!

 a positive E is clockwise. The current induced in the loop is clockwise. 
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SET UP: The induced current and magnetic force on the loop are shown in Figure 29.26f, for the situation where 
the loop is leaving the field. 

 

EXECUTE: I I=F l B
!! !
×  gives that the 

force IF
!

 exerted on the loop by the 
magnetic field is to the left and has 

magnitude 
2 2

.I
BLv B L vF ILB LB
R R

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

Figure 29.26f  
The external force F

!
 needed to move the loop at constant speed is equal in magnitude and opposite in direction to 

IF
!

 so is to the right and has this same magnitude. 
(a) The graph of F versus x is given in Figure 29.26g. 

 
Figure 29.26g 

(b) The graph of the induced current I versus x is given in Figure 29.26h. 

 
Figure 29.26h 

EVALUATE: When the loop is either totally outside or totally inside the magnetic field region the flux isn�t 
changing, there is no induced current, and no external force is needed for the loop to maintain constant speed. 
When the loop is entering the field the external force required is directed so as to pull the loop in and when the 
loop is leaving the field the external force required is directed so as to pull the loop out of the field. These 
directions agree with Lenz�s law: the force on the induced current (opposite in direction to the required external 
force) is directed so as to oppose the loop entering or leaving the field. 

29.27. IDENTIFY: A bar moving in a magnetic field has an emf induced across its ends. 
SET UP: The induced potential is E = vBL sin φ. 
EXECUTE: Note that φ = 90° in all these cases because the bar moved perpendicular to the magnetic field. But the 
effective length of the bar, L sin θ, is different in each case. 
(a) E = vBL sin θ = (2.50 m/s)(1.20 T)(1.41 m) sin (37.0°) = 2.55 V, with a at the higher potential because positive 
charges are pushed toward that end. 
(b) Same as (a) except θ = 53.0°, giving 3.38 V, with a at the higher potential. 
(c) Zero, since the velocity is parallel to the magnetic field. 
(d) The bar must move perpendicular to its length, for which the emf is 4.23 V. For Vb > Va, it must move upward 
and to the left (toward the second quadrant) perpendicular to its length. 
EVALUATE: The orientation of the bar affects the potential induced across its ends. 

29.28. IDENTIFY: Use Eq.(29.10) to calculate the induced electric field E at a distance r from the center of the solenoid. 
Away from the ends of the solenoid, 0B nIμ=  inside and B = 0 outside. 
(a) SET UP: The end view of the solenoid is sketched in Figure 29.28. 

 

Let R be the radius of the solenoid. 

Figure 29.28  

Apply Bdd
dt
Φ

⋅ −E l =
!!ú  to an integration path that is a circle of radius r, where r < R. We need to calculate just the 

magnitude of E so we can take absolute values. 
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EXECUTE:   (2 )d E rπ⋅ =E l
!!ú  

2 2,  B
B

d dBB r r
dt dt

π πΦ
Φ = − =  

2 implies (2 )Bd dBd E r r
dt dt

π πΦ
⋅ = − =E l
!!ú  

1
2

dBE r
dt

=  

0 0,  so dB dIB nI n
dt dt

μ μ= =  

Thus 7 1 41 1
02 2 (0.00500 m)(4 10  T m/A)(900 m )(60.0 A/s) 1.70 10  V/mdIE r n

dt
μ π − − −= = × ⋅ = ×  

(b) r = 0.0100 cm is still inside the solenoid so the expression in part (a) applies. 
7 1 41 1

02 2 (0.0100 m)(4 10  T m/A)(900 m )(60.0 A/s) 3.39 10  V/mdIE r n
dt

μ π − − −= = × ⋅ = ×  

EVALUATE: Inside the solenoid E is proportional to r, so E doubles when r doubles. 
29.29. IDENTIFY: Apply Eqs.(29.9) and (29.10). 

SET UP: Evaluate the integral if Eq.(29.10) for a path which is a circle of radius r and concentric with the 
solenoid. The magnetic field of the solenoid is confined to the region inside the solenoid, so ( ) 0B r = for r R>  

EXECUTE: (a) 2
1 .Bd dB dBA r

dt dt dt
πΦ

= =  

(b) 
2

1 1

1 1

1 .
2 2 2

Bd r dB r dBE
r dt r dt dt

π
π π

Φ
= = =  The direction of E

!
 is shown in Figure 29.29a. 

(c) All the flux is within r < R, so outside the solenoid 
2 2

2 2 2

1 .
2 2 2

Bd R dB R dBE
r dt r dt r dt

π
π π

Φ
= = =  

(d) The graph is sketched in Figure 29.29b. 

(e) At 2,r R=
2

2( /2) .
4

Bd dB R dBR
dt dt dt

ππΦ
= = =E  

(f) At r R= , 2 .Bd dBR
dt dt

πΦ
= =E  

(g) At 2r R= , 2 .Bd dBR
dt dt

πΦ
= =E  

EVALUATE: The emf is independent of the distance from the center of the cylinder at all points outside it. Even 
though the magnetic field is zero for ,r R>  the induced electric field is nonzero outside the solenoid and a nonzero 
emf is induced in a circular turn that has .r R>  

  
Figure 29.29 

29.30. IDENTIFY: Use Eq.(29.10) to calculate the induced electric field E and use this E in Eq.(29.9) to calculate E  
between two points. 
(a) SET UP: Because of the axial symmetry and the absence of any electric charge, the field lines are concentric 
circles. 
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(b) See Figure 29.30. 

 

E
!

 is tangent to the ring. The direction 
of E
!

 (clockwise or counterclockwise) 
is the direction in which current will 
be induced in the ring. 

Figure 29.30  

EXECUTE: Use the sign convention for Faraday�s law to deduce this direction. Let A
!

 be into the paper. Then 

BΦ  is positive. B decreasing then means Bd
dt
Φ  is negative, so by ,  Bd

dt
Φ

= −E E  is positive and therefore 

clockwise. Thus E
!

 is clockwise around the ring. To calculate E apply Bdd
dt
Φ

⋅ −E l =
!!ú  to a circular path that 

coincides with the ring. 
(2 )d E rπ⋅E l =

!!ú  

2 2;  B
B

d dBB r r
dt dt

π πΦ
Φ = =  

2 31 1
2 2(2 )  and (0.100 m)(0.0350 T/s) 1.75 10  V/mdB dBE r r E r

dt dt
π π −= = = = ×  

(c) The induced emf has magnitude 3 3(2 ) (1.75 10  V/m)(2 )(0.100 m) 1.100 10  V.d E rπ π− −= ⋅ = × = ×E l =
!!

E ú  Then 
3

41.100 10  V 2.75 10  A.
4.00 

I
R

−
−×

= = = ×
Ω

E  

(d) Points a and b are separated by a distance around the ring of rπ  so 
3 4( ) (1.75 10  V/m)( )(0.100 m) 5.50 10  VE rπ π− −= = × = ×E  

(e) The ends are separated by a distance around the ring of 2 rπ  so 31.10 10  V−= ×E  as calculated in part (c). 
EVALUATE: The induced emf, calculated from Faraday�s law and used to calculate the induced current, is 
associated with the induced electric field integrated around the total circumference of the ring. 

29.31. IDENTIFY: Apply Eq.(29.1) with 0B niAμΦ = . 

SET UP: 2A rπ= , where 0.0110 mr = . In Eq.(29.11), 0.0350 mr = . 

EXECUTE: B
0 0( ) ( )d d d diBA niA nA

dt dt dt dt
μ μΦ

= = = =E  and (2 ).E rπ=E  Therefore, 
0

2 .di E r
dt nA

π
μ

=  

6

1 2
0

(8.00 10  V/m)2 (0.0350 m) 9.21 A/s.
(400 m ) (0.0110 m)

di
dt

π
μ π

−

−

×
= =  

EVALUATE: Outside the solenoid the induced electric field decreases with increasing distance from the axis of 
the solenoid. 

29.32. IDENTIFY: A changing magnetic flux through a coil induces an emf in that coil, which means that an electric 
field is induced in the material of the coil. 

SET UP: According to Faraday�s law, the induced electric field obeys the equation .BdE dl
dt
Φ

⋅ = −
!!ú  

EXECUTE: (a) For the magnitude of the induced electric field, Faraday�s law gives  
E2πr = d(Bπr2)/dt = πr2 dB/dt  

30.0225 m (0.250 T/s) = 2.81 10  V/m
2 2
r dBE

dt
−= = ×  

(b) The field points toward the south pole of the magnet and is decreasing, so the induced current is 
counterclockwise. 
EVALUATE: This is a very small electric field compared to most others found in laboratory equipment. 

29.33. IDENTIFY: Apply Faraday�s law in the form av
BN

t
ΔΦ

=
Δ

E . 

SET UP: The magnetic field of a large straight solenoid is 0B nIμ= inside the solenoid and zero outside. 

B BAΦ = , where A is 28.00 cm , the cross-sectional area of the long straight solenoid. 
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EXECUTE: f i
av

( ) .B oNA B B NA nIN
t t t

μΔΦ −
= = =

Δ Δ Δ
E  

4 2 1
40

av
(12)(8.00 10 m )(9000 m )(0.350 A) 9.50 10  V.

0.0400 s
μ − −

−×
= = ×E  

EVALUATE: An emf is induced in the second winding even though the magnetic field of the solenoid is zero at 
the location of the second winding. The changing magnetic field induces an electric field outside the solenoid and 
that induced electric field produces the emf. 

29.34. IDENTIFY: Apply Eq.(29.14). 
SET UP: 113.5 10  F/m−= ×P  

EXECUTE: 11 3 3 2
D (3.5 10  F/m)(24.0 10  V m/s ) .Edi t

dt
−Φ

= = × × ⋅P  6
D 21 10 Ai −= ×  gives 5.0 s.t =  

EVALUATE: Di depends on the rate at which EΦ is changing. 
29.35. IDENTIFY: Apply Eq.(29.14), where 0.K=P P  

SET UP: 3 4 3/ 4(8.76 10  V m/s )Ed dt tΦ = × ⋅ . 12
0 8.854 10  F/m.−= ×P  

EXECUTE: 
( )

12
11

3 4 3 3

12.9 10  A 2.07 10  F/m.
/ 4(8.76 10  V m/s )(26.1 10  s)

D

E

i
d dt

−
−

−

×
= = = ×

Φ × ⋅ ×
P  The dielectric constant is 

0
2.34.K = =PP  

EVALUATE: The larger the dielectric constant, the larger is the displacement current for a given / .Ed dtΦ  
29.36. IDENTIFY and SET UP: Eqs.(29.13) and (29.14) show that C Di i=  and also relate Di  to the rate of change of the 

electric field flux between the plates. Use this to calculate /dE dt  and apply the generalized form of Ampere�s law 
(Eq.29.15) to calculate B. 

(a) EXECUTE: 2D C
C D D 2 2

0.280 A 0.280 A,  so 55.7 A/m
(0.0400 m)

i ii i j
A A rπ π

= = = = = =  

(b) 
2

12D
D 0 12 2 2

0

55.7 A/m so 6.29 10  V/m s
8.854 10  C / N m

dE dE jj
dt dt −= = = = × ⋅

× ⋅
P

P
 

(c) SET UP: Apply Ampere�s law 0 C D encl( )d i iμ⋅ +B l =
!!ú  (Eq.(28.20)) to a circular path with radius r = 0.0200 m. 

An end view of the solenoid is given in Figure 29.36. 

 

By symmetry the magnetic 
field is tangent to the path 
and constant around it. 

Figure 29.36  

EXECUTE: Thus (2 ).d Bdl B dl B rπ⋅ = =∫B l =
!!ú ú  

C 0i =  (no conduction current flows through the air space between the plates) 

The displacement current enclosed by the path is 2
D .j rπ  

Thus 2
0 D(2 ) ( )B r j rπ μ π=  and 7 2 71 1

0 D2 2 (4 10  T m/A)(55.7 A/m )(0.0200 m) 7.00 10  TB j rμ π − −= = × ⋅ = ×  

(d) 1 1
0 D2 2. Now  is B j r rμ=  the value in (c), so B is 1

2  also: 7 71
2 (7.00 10  T) 3.50 10  TB − −= × = ×  

EVALUATE: The definition of displacement current allows the current to be continuous at the capacitor. The 
magnetic field between the plates is zero on the axis (r = 0) and increases as r increases. 

29.37. IDENTIFY: q CV= . For a parallel-plate capacitor, ,AC
d

=
P  where 0.K=P P  C / .i dq dt=  D .Ej

dt
= P  

SET UP: /E q A= P  so C/ / .dE dt i A= P  

EXECUTE: (a) 
4 2

100
3

(4.70) (3.00 10  m )(120 V) 5.99 10  C.
2.50 10  m

Aq CV V
d

−
−

−

×⎛ ⎞= = = = ×⎜ ⎟ ×⎝ ⎠

P P  
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(b) 3
C 6.00 10 A.dq i

dt
−= = ×  

(c) C C
D 0 C

0

,dE i ij K j
dt K A A

= = = =P P
P

 so 3
D C 6.00 10  A.i i −= = ×  

EVALUATE: D C,i i=  so Kirchhoff�s junction rule is satisfied where the wire connects to each capacitor plate. 
29.38. IDENTIFY and SET UP: Use C /i q t=  to calculate the charge q that the current has carried to the plates in time t. 

The two equations preceeding Eq.(24.2) relate q to the electric field E and the potential difference between the 
plates. The displacement current density is defined by Eq.(29.16). 
EXECUTE: (a) 3

C 1.80 10  Ai −= ×  
0 at 0q t= =  

The amount of charge brought to the plates by the charging current in time t is 
3 6 10

C (1.80 10  A)(0.500 10  s) 9.00 10  Cq i t − − −= = × × = ×  
10

5
12 2 2 4 2

0 0

9.00 10  C 2.03 10  V/m
(8.854 10  C / N m )(5.00 10  m )

qE
A

σ −

− −

×
= = = = ×

× ⋅ ×P P
 

5 3(2.03 10  V/m)(2.00 10  m) 406 VV Ed −= = × × =  
(b) 0/E q A= P  

3
11C

12 2 2 4 2
0 0

/ 1.80 10  A 4.07 10  V/m s
(8.854 10  C / N m )(5.00 10  m )

dE dq dt i
dt A A

−

− −

×
= = = = × ⋅

× ⋅ ×P P
 

Since Ci  is constant dE/dt does not vary in time. 

(c) D 0
dEj
dt

= P  (Eq.(29.16)), with P  replaced by 0P  since there is vacuum between the plates.) 

12 2 2 11 2
D (8.854 10  C / N m )(4.07 10  V/m s) 3.60 A/mj −= × ⋅ × ⋅ =  

2 4 2 3
D D D C(3.60 A/m )(5.00 10  m ) 1.80 10  A; i j A i i− −= = × = × =  

EVALUATE: C D.i i=  The constant conduction current means the charge q on the plates and the electric field 
between them both increase linearly with time and Di  is constant. 

29.39. IDENTIFY: Ohm�s law relates the current in the wire to the electric field in the wire. D .dEj
dt

= P  Use Eq.(29.15) to 

calculate the magnetic fields. 
SET UP: Ohm�s law says E Jρ= . Apply Ohm�s law to a circular path of radius r. 

EXECUTE: (a) 
8

6 2

(2.0 10  m)(16 A) 0.15 V/m.
2.1 10  m

IE J
A
ρρ

−

−

× Ω ⋅
= = = =

×
 

(b) 
8

6 2

2.0 10  m (4000 A/s) 38 V/m s.
2.1 10  m

dE d ρI ρ dI
dt dt A A dt

−

−

× Ω ⋅⎛ ⎞= = = = ⋅⎜ ⎟ ×⎝ ⎠
 

(c) 10 2
D 0 0 (38 V/m s) 3.4 10  A/m .dEj

dt
−= = ⋅ = ×P P  

(d) 10 2 6 2 16
D D (3.4 10  A/m )(2.1 10  m ) 7.14 10  A.i j A − − −= = × × = ×  Eq.(29.15) applied to a circular path of radius r 

gives 
16

210 D 0
D

(7.14 10  A) 2.38 10  T,
2 2 (0.060 m)

IB
r

μ μ
π π

−
−×

= = = ×  and this is a negligible contribution. 

50 C 0
C

(16 A) 5.33 10  T.
2 2 (0.060 m)

IB
r

μ μ
π π

−= = = ×  

EVALUATE: In this situation the displacement current is much less than the conduction current. 
29.40. IDENTIFY: Apply Ampere's law to a circular path of radius ,r R<  where R is the radius of the wire. 

SET UP: The path is shown in Figure 29.40. 

 

0 C 0
Edd I

dt
μ Φ⎛ ⎞⋅ +⎜ ⎟
⎝ ⎠

B l =
!!ú P  

Figure 29.40  
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EXECUTE: There is no displacement current, so 0 Cd Iμ⋅B l =
!!ú  

The magnetic field inside the superconducting material is zero, so 0.d⋅B l =
!!ú  But then Ampere�s law says that 

C 0;I =  there can be no conduction current through the path. This same argument applies to any circular path with 
r < R, so all the current must be at the surface of the wire. 
EVALUATE: If the current were uniformly spread over the wire�s cross section, the magnetic field would be like 
that calculated in Example 28.9. 

29.41. IDENTIFY: A superconducting region has zero resistance. 
SET UP: If the superconducting and normal regions each lie along the length of the cylinder, they provide parallel 
conducting paths. 
EXECUTE: Unless some of the regions with resistance completely fill a cross-sectional area of a long type-II 
superconducting wire, there will still be no total resistance. The regions of no resistance provide the path for the 
current.  
EVALUATE: The situation here is like two resistors in parallel, where one has zero resistance and the other is non-
zero. The equivalent resistance is zero. 

29.42. IDENTIFY: Apply Eq.(28.29): 0 0 .μ= +B B M
! ! !

 
SET UP: For magnetic fields less than the critical field, there is no internal magnetic field. For fields greater than 
the critical field, B

!
is very nearly equal to 0.B

!
 

EXECUTE: (a) The external field is less than the critical field, so inside the superconductor 0B =
!

 and 
50

0 0

�(0.130 ) �(1.03 10  A/m) .T
μ μ

− − − ×
B iM = = = i
!!

 Outside the superconductor, 0
�(0.130 )TB = B = i

! !
and 0.M =

!
 

(b) The field is greater than the critical field and 0
�(0.260 T) ,=B = B i

! !
 both inside and outside the superconductor. 

EVALUATE: Below the critical field the external field is expelled from the superconducting material. 
29.43. IDENTIFY: Apply 0 0 .μ= +B B M

! ! !
 

SET UP: When the magnetic flux is expelled from the material the magnetic field B
!

 in the material is zero. 
When the material is completely normal, the magnetization is close to zero. 
EXECUTE: (a) When 0B

!
is just under c1B

!
 (threshold of superconducting phase), the magnetic field in the 

material must be zero, and 
3

4c1

0 0

�(55 10  T) �(4.38 10  A/m) .
μ μ

−×
− − − ×
B iM = = = i
!!

 

(b) When 0B
!

is just over c2B
!

 (threshold of normal phase), there is zero magnetization, and c2
�(15.0 T) .=B = B i

! !
 

EVALUATE: Between c1B and c2B there are filaments of normal phase material and there is magnetic field along 
these filaments. 

29.44. IDENTIFY and SET UP: Use Faraday�s law to calculate the magnitude of the induced emf and Lenz�s law to 
determine its direction. Apply Ohm�s law to calculate I. Use Eq.(25.10) to calculate the resistance of the coil. 
(a) EXECUTE: The angle φ  between the normal to the coil and the direction of B

!
 is 30.0 .°  

2( )( / ) and / .Bd N r dB dt I R
dt

πΦ
= = =E E  

For t < 0 and t > 1.00 s, dB/dt = 0 0=E  and 0.I =  
For 1.00 s, /0 t dB dt≤ ≤ = (0.120 T) sin tπ π  

2( ) (0.120 T)sin (0.9475 V)sinN r t tπ π π π= =E  

R for wire: 8 3
w 2 ;  1.72 10  m, 0.0150 10  mL LR r

A r
ρ ρ ρ

π
− −= = = × Ω ⋅ = ×  

2 (500)(2 )(0.0400 m) 125.7 mL Nc N rπ π= = = =  

w 3058 R = Ω  and the total resistance of the circuit is 3058 600 3658 R = Ω+ Ω = Ω  
/ (0.259 mA)sin .I R tπ= =E  The graph of I versus t is sketched in Figure 29.44a. 

 
Figure 29.44a 
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(b) The coil and the magnetic field are shown in Figure 29.44b. 

 

B increasing so is BΦ "  
and increasing. is BΦ ⊗  
so I is clockwise 

Figure 29.44b  
EVALUATE: The long length of small diameter wire used to make the coil has a rather large resistance, larger 
than the resistance of the 600-Ω resistor connected to it in the circuit. The flux has a cosine time dependence so the 
rate of change of flux and the current have a sine time dependence. There is no induced current for t < 0 or t > 1.00 s. 

29.45. IDENTIFY: Apply Faraday�s law and Lenz�s law. 

SET UP: For a discharging RC circuit, /0( ) t RCVi t e
R

−= , where 0V  is the initial voltage across the capacitor. The 

resistance of the small loop is (25)(0.600 m)(1.0 /m) 15.0 Ω = Ω. 

EXECUTE: (a) The large circuit is an RC circuit with a time constant of 6(10 )(20 10  F) 200 s.RCτ μ−= = Ω × =  Thus, 

the current as a function of time is ( ) / 200 s(100 V) /(10 ) ti e μ−= Ω . At 200 s,t μ=  we obtain 1(10 A)( ) 3.7 A.i e−= =  
(b) Assuming that only the long wire nearest the small loop produces an appreciable magnetic flux through the 

small loop and referring to the solution of Exercise 29.7 we obtain 0 0 ln 1 .
2 2

c a

B c

ib ib adr
r c

μ μ
π π

+ ⎛ ⎞Φ = = +⎜ ⎟
⎝ ⎠∫  Therefore, 

the emf induced in the small loop at 200 s ist μ=  0 ln 1 .
2

d μ b a di
dt π c dt
Φ ⎛ ⎞= − = − +⎜ ⎟

⎝ ⎠
E  

7 2

6

(4 10  Wb/A m )(0.200 m) 3.7 Aln(3.0) 0.81 mV.
2 200 10 s

π
π

−

−

× ⋅ ⎛ ⎞= − − = +⎜ ⎟×⎝ ⎠
E  Thus, the induced current in the small 

loop is 0.81 mV 54 A.15.0 i R μ′ = = =
Ω

E  

(c) The magnetic field from the large loop is directed out of the page within the small loop.The induced current 
will act to oppose the decrease in flux from the large loop. Thus, the induced current flows counterclockwise. 
EVALUATE: (d) Three of the wires in the large loop are too far away to make a significant contribution to the 
flux in the small loop�as can be seen by comparing the distance c  to the dimensions of the large loop. 

29.46. IDENTIFY: A changing magnetic field causes a changing flux through a coil and therefore induces an emf in the 
coil. 

SET UP: Faraday�s law says that the induced emf is Bd
dt
Φ

= −E  and the magnetic flux through a coil is defined 

as cosB BA φΦ = . 
EXECUTE: In this case, ,B BAΦ =  where A is constant. So the emf is proportional to the negative slope of the 
magnetic field. The result is shown in Figure 29.46. 
EVALUATE: It is the rate at which the magnetic field is changing, not the field�s magnitude, that determines the 
induced emf. When the field is constant, even though it may have a large value, the induced emf is zero. 

 
Figure 29.46 

29.47. IDENTIFY: Follow the steps specified in the problem. 
SET UP: Let the flux through the loop due to the current be positive. 

EXECUTE: (a) 20 0 .
2 2B

i i aBA a
a
μ μ ππΦ = = =  
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(b) 0 0

0

2
2 2

Bd d i a a di di RiR iR i
dt dt dt dt a

μ π μ π
μ π

Φ ⎛ ⎞= − = ⇒ − = − = ⇒ = −⎜ ⎟
⎝ ⎠

E  

(c) Solving 
0

2di Rdt
i aμ π
= −  for ( )i t yields 0(2 / )

0( ) .t R ai t i e μ π−=  

(d) We want 0(2 / )
0 0( ) (0.010) ,t R ai t i i e μ π−= =  so 0ln(0.010) (2 / )t R aμ π= −  and 

50 0 (0.50 m)ln(0.010) ln(0.010) 4.55 10  s.
2 2(0.10 )

at
R

μ π μ π −= − = − = ×
Ω

 

EVALUATE: (e) We can ignore the self-induced currents because it takes only a very short time for them to die 
out. 

29.48. IDENTIFY: A changing magnetic field causes a changing flux through a coil and therefore induces an emf in the 
coil. 

SET UP: Faraday�s law says that the induced emf is Bd
dt
Φ

= −E  and the magnetic flux through a coil is defined 

as cos .B BA φΦ =  
EXECUTE: In this case, ,B BAΦ =  where A is constant. So the emf is proportional to the negative slope of the 
magnetic field. The result is shown in Figure 29.48. 
EVALUATE: It is the rate at which the magnetic field is changing, not the field�s magnitude, that determines the 
induced emf. When the field is constant, even though it may have a large value, the induced emf is zero. 

 
Figure 29.48 

29.49. (a) IDENTIFY: (i) .Bd
dt
Φ

=E  The flux is changing because the magnitude of the magnetic field of the wire decreases 

with distance from the wire. Find the flux through a narrow strip of area and integrate over the loop to find the total flux. 
SET UP:  

 

Consider a narrow strip of width dx and a 
distance x from the long wire, as shown in 
Figure 29.49a. The magnetic field of the wire 
at the strip is 0 /2 .B I xμ π=  The flux through 
the strip is 0( /2 )( / )Bd Bb dx Ib dx xμ πΦ = =  

Figure 29.49a  

EXECUTE: The total flux through the loop is 0

2
r a

B B r

Ib dxd
x

μ
π

+⎛ ⎞Φ = Φ = ⎜ ⎟
⎝ ⎠∫ ∫  

0 ln
2B

Ib r a
r

μ
π

+⎛ ⎞ ⎛ ⎞Φ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( )
0

2
B Bd d dr Ib a v

dt dt dt r r a
μ
π
⎛ ⎞Φ Φ

= = −⎜ ⎟⎜ ⎟+⎝ ⎠
 

( )
0

2
Iabv

r r a
μ
π

=
+

E  

(ii) IDENTIFY: Bvl=E  for a bar of length l moving at speed v perpendicular to a magnetic field B. Calculate the 
induced emf in each side of the loop, and combine the emfs according to their polarity. 
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SET UP: The four segments of the loop are shown in Figure 29.49b. 

 

EXECUTE: The emf in each side 

of the loop is 0
1 ,

2
I vb
r

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

E  

0
2 ,

2 ( )
I vb

r r a
μ

π
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
E  2 4 0= =E E  

Figure 29.49b  
Both emfs 1 2 and E E  are directed toward the top of the loop so oppose each other. The net emf is 

0 0
1 2

1 1
2 2 ( )
Ivb Iabv

r r a r r a
μ μ
π π

⎛ ⎞= − = − =⎜ ⎟+ +⎝ ⎠
E E E  

This expression agrees with what was obtained in (i) using Faraday�s law. 
(b) (i) IDENTIFY and SET UP: The flux of the induced current opposes the change in flux. 
EXECUTE:  is .  is B⊗ Φ ⊗B

!
 and decreasing, so the flux indΦ  of the induced current is ⊗  and the current is 

clockwise. 
(ii) IDENTIFY and SET UP: Use the right-hand rule to find the force on the positive charges in each side of the 
loop. The forces on positive charges in segments 1 and 2 of the loop are shown in Figure 29.49c. 

 
Figure 29.49c 

EXECUTE: B is larger at segment 1 since it is closer to the long wire, so BF  is larger in segment 1 and the 
induced current in the loop is clockwise. This agrees with the direction deduced in (i) using Lenz�s law. 
(c) EVALUATE: When v = 0 the induced emf should be zero; the expression in part (a) gives this. When 0a →  
the flux goes to zero and the emf should approach zero; the expression in part (a) gives this. When r →∞  the 
magnetic field through the loop goes to zero and the emf should go to zero; the expression in part (a) gives this. 

29.50. IDENTIFY: Apply Faraday�s law. 
SET UP: For rotation about the y-axis the situation is the same as in Examples 29.4 and 29.5 and we can apply the 
results from those examples. 
EXECUTE: (a) Rotating about the y-axis: the flux is given by cosB BA φΦ =  and 

2
max (35.0 rad/s)(0.450 T)(6.00 10  m) 0.945 V.Bd BA

dt
ω −Φ

= = = × =E  

(b) Rotating about the x-axis: B 0d
dt
Φ

= and 0.=E  

(c) Rotating about the z-axis: the flux is given by cosB BA φΦ =  and 
2

max (35.0 rad/s)(0.450 T)(6.00 10  m) 0.945 V.Bd BA
dt

ω −Φ
= = = × =E  

EVALUATE: The maximum emf is the same if the loop is rotated about an edge parallel to the z-axis as it is when 
it is rotated about the z-axis. 

29.51. IDENTIFY: Apply the results of Example 29.4, so max N BAω=E for N loops. 
SET UP: For the minimum ω, let the rotating loop have an area equal to the area of the uniform magnetic field, 
so 2(0.100 m)A = . 

EXECUTE: 400N = , 1.5 TB = , 2(0.100 m)A = and max 120 V=E  gives 

max/ (20 rad/s)(1 rev/2  rad)(60 s/1 min) 190 rpm.NBAω π= = =E  
EVALUATE: In max ,BAω=E  ω  is in rad/s. 
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29.52. IDENTIFY: Apply the results of Example 29.4, generalized to N loops: max .N BAω=E  v rω= . 

SET UP: In the expression for max ,E  ω  must be in rad/s. 30 rpm 3.14 rad/s=  

EXECUTE: (a) Solving for A  we obtain 20
5

9.0 V 18 m .
(3.14 rad/s)(2000 turns)(8.0 10  T)

A
NBω −= = =

×
E  

(b) Assuming a point on the coil at maximum distance from the axis of rotation we have 
218 m (3.14 rad/s) 7.5 m s.Av rω

π π
ω= = = =  

EVALUATE: The device is not very feasible. The coil would need a rigid frame and the effects of air resistance 
would be appreciable. 

29.53. IDENTIFY: Apply Faraday�s law in the form av
BN

t
ΔΦ

= −
Δ

E  to calculate the average emf. Apply Lenz�s law to 

calculate the direction of the induced current. 
SET UP: B BAΦ = . The flux changes because the area of the loop changes. 

EXECUTE: (a) 
2 2

av
(0.0650/2 m)(0.950 T) 0.0126 V.

0.250 s
B A rB B

t t t
π πΔΦ Δ

= = = = =
Δ Δ Δ

E  

(b) Since the magnetic field is directed into the page and the magnitude of the flux through the loop is decreasing, 
the induced current must produce a field that goes into the page. Therefore the current flows from point a through 
the resistor to point b . 
EVALUATE: Faraday�s law can be used to find the direction of the induced current. Let A

!
 be into the page. Then 

BΦ is positive and decreasing in magnitude, so / 0.Bd dtΦ <  Therefore 0>E  and the induced current is clockwise 
around the loop. 

29.54. IDENTIFY: By Lenz�s law, the induced current flows to oppose the flux change that caused it. 
SET UP: When the switch is suddenly closed with an uncharged capacitor, the current in the outer circuit 
immediately increases from zero to its maximum value. As the capacitor gets charged, the current in the outer 
circuit gradually decreases to zero. 
EXECUTE: (a) (i) The current in the outer circuit is suddenly increasing and is in a counterclockwise direction. 
The magnetic field through the inner circuit is out of the paper and increasing. The magnetic flux through the inner 
circuit is increasing, so the induced current in the inner circuit is clockwise (a to b) to oppose the flux increase. (ii) 
The current in the outer circuit is still counterclockwise but is now decreasing, so the magnetic field through the 
inner circuit is out of the page but decreasing. The flux through the inner circuit is now decreasing, so the induced 
current is counterclockwise (b to a) to oppose the flux decrease. 
(b) The graph is sketched in Figure 29.54. 
EVALUATE: Even though the current in the outer circuit does not change direction, the current in the inner circuit 
does as the flux through it changes from increasing to decreasing. 

 
Figure 29.54 

29.55. IDENTIFY: Use Faraday�s law to calculate the induced emf and Ohm�s law to find the induced current. Use 
Eq.(27.19) to calculate the magnetic force IF  on the induced current. Use the net force IF F−  in Newton�s 2nd 
law to calculate the acceleration of the rod and use that to describe its motion. 
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(a) SET UP: The forces in the rod are shown in Figure 29.55a. 

 

EXECUTE: Bd BLv
dt
Φ

= =E  

BLvI
R

=  

Figure 29.55a  

Use Bd
dt
Φ

= −E  to find the direction of I: Let A
!

 be into the page. Then 0.BΦ >  The area of the circuit is 

increasing, so 0.Bd
dt
Φ

>  Then 0<E  and with our direction for A
!

 this means that E  and I are counterclockwise, 

as shown in the sketch. The force IF  on the rod due to the induced current is given by .I I=F l B
!! !
×  This gives IF

!
 

to the left with magnitude 2 2( / ) / .IF ILB BLv R LB B L v R= = =  Note that IF
!

 is directed to oppose the motion of the 
rod, as required by Lenz�s law. 
EVALUATE: The net force on the rod is ,IF F−  so its acceleration is 2 2( ) / ( / ) / .Ia F F m F B L v R m= − = −  The 
rod starts with v = 0 and a = F/m. As the speed v increases the acceleration a decreases. When a = 0 the rod has 
reached its terminal speed t .v  The graph of v versus t is sketched in Figure 29.55b. 

 

(Recall that a is the slope of the 
tangent to the v versus t curve.) 

Figure 29.55b  

(b) EXECUTE: 
2 2

t
t t 2 2

/ when 0 so 0 and .F B L v R RFv v a v
m B L

−
= = = =  

EVALUATE: A large F produces a large t .v  If B is larger, or R is smaller, the induced current is larger at a given v 
so IF  is larger and the terminal speed is less. 

29.56. IDENTIFY: Apply Newton�s 2nd law to the bar. The bar will experience a magnetic force due to the induced 
current in the loop. Use /a dv dt= to solve for v. At the terminal speed, 0a = .  
SET UP: The induced emf in the loop has a magnitude BLv . The induced emf is counterclockwise, so it opposes 
the voltage of the battery, .E  

EXECUTE: (a) The net current in the loop is .BLvI R
−= E  The acceleration of the bar is 

 sin(90 ) ( ) .ILB BLv LBFa m m mR
−= = =° E  To find ( )v t , set ( )BLv LBdv adt mR

−= = E  and solve for v  using the method 

of separation of variables: 

/ /3.1 s

0 0

2 2
(1 ) (10 m/s)(1 )

( )
v t B L t mR tdv LB dt v e e

BLv mR BL
− −= → = − = −

−∫ ∫
E

E  

The graph of v versus t is sketched in Figure 29.56. Note that the graph of this function is similar in appearance to 
that of a charging capacitor. 
(b) Just after the switch is closed, 0v = and / 2.4 A,I R= =E  2.88 NF ILB= =  and 2/ 3.2 m/s .a F m= =  

(c) When [12 V (1.5 T)(0.8 m)(2.0 m/s)](0.8 m)(1.5 T)2.0 m/s, 2.6 m/s .
(0.90 kg)(5.0 )

v a 2−
= = =

Ω
 

(d) Note that as the speed increases, the acceleration decreases. The speed will asymptotically approach the 
terminal speed 12 V 10 m/s,(1.5 T)(0.8 m)BL = =E  which makes the acceleration zero. 
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EVALUATE: The current in the circuit is counterclockwise and the magnetic force on the bar is to the right. The 
energy that appears as kinetic energy of the moving bar is supplied by the battery. 

 
Figure 29.56 

29.57. IDENTIFY: Apply .BvL=E  Use m∑F = a
! !  applied to the satellite motion to find the speed v  of the satellite.  

SET UP: The gravitational force on the satellite is E
g 2

mmF G
r

= , where m is the mass of the satellite and r is the 

radius of its orbit. 

EXECUTE: 58.0 10  T, 2.0 m.B L−= × =  
2

2
Emm vG m

r r
=  and 3

E400 10  mr R= × +  gives 3E 7.665 10  m/s.Gmv
r

= = ×  

Using this v in vBL=E  gives 5 3(8.0 10  T)(7.665 10  m/s)(2.0 m) 1.2 V.−= × × =E  
EVALUATE: The induced emf is large enough to be measured easily. 

29.58. IDENTIFY: The induced emf is ,BvL=E  where L is measured in a direction that is perpendicular to both the 
magnetic field and the velocity of the bar. 
SET UP: The magnetic force pushed positive charge toward the high potential end of the bullet. 
EXECUTE: (a) 5(8 10  T)(0.004 m)(300 m/s) 96 V.BLv μ−= = × =E  Since a positive charge moving to the east 
would be deflected upward, the top of the bullet will be at a higher potential. 
(b) For a bullet that travels south, v!  and B

!
 are along the same line, there is no magnetic force and the induced emf 

is zero. 
(c) If v!  is horizontal, the magnetic force on positive charges in the bullet is either upward or downward, 
perpendicular to the line between the front and back of the bullet. There is no emf induced between the front and 
back of the bullet. 
EVALUATE: Since the velocity of a bullet is always in the direction from the back to the front of the bullet, and 
since the magnetic force is perpendicular to the velocity, there is never an induced emf between the front and back 
of the bullet, no matter what the direction of the magnetic field is. 

29.59. IDENTIFY: Find the magnetic field at a distance r from the center of the wire. Divide the rectangle into narrow 
strips of width dr, find the flux through each strip and integrate to find the total flux. 
SET UP: Example 28.8 uses Ampere�s law to show that the magnetic field inside the wire, a distance r from the 
axis, is 2

0( ) 2 .B r Ir Rμ π=  
EXECUTE: Consider a small strip of length W and width dr that is a distance r from the axis of the wire, as shown 

in Figure 29.59. The flux through the strip is 0
2( )

2B
IWd B r W dr r dr
R

μ
π

Φ = = . The total flux through the rectangle is 

0 0
2 0

.
2 4

R

B B
IW IWd r dr
R

μ μ
π π

⎛ ⎞Φ = Φ = =⎜ ⎟
⎝ ⎠∫ ∫  

EVALUATE: Note that the result is independent of the radius R of the wire. 

 
Figure 29.59 
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29.60. IDENTIFY: Apply Faraday�s law to calculate the magnitude and direction of the induced emf. 
SET UP: Let A

!
 be directed out of the page in Figure 29.50 in the textbook. This means that counterclockwise emf 

is positive. 
EXECUTE: (a) 2 2 3

0 0 0 0(1 3( ) 2( ) ).B BA B πr t t t tΦ = = − +  

(b) 
2

2 2 3 20 0
0 0 0 0 0 0

0

(1 3( / ) 2( / ) ) ( 6( / ) 6( / ) ).Bd d B πrB πr t t t t t t t t
dt dt t
Φ

= − = − − + = − − +E  
22

0 0

0 0 0

6 .B πr t t
t t t

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

E  At 

35.0 10 s,t −= ×  
22 3 3

06 (0.0420 m) 5.0 10  s 5.0 10  s 0.0665 V.
0.010 s 0.010 s 0.010 s

B π − −⎛ ⎞⎛ ⎞ ⎛ ⎞× ×⎜ ⎟= − − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
E  E is positive so it is 

counterclockwise. 

(c) total 3
total

0.0665 V 12 10.2 .
3.0 10  A

I R r R r
R I −= ⇒ = + = ⇒ = − Ω = Ω

×
E E  

(d) Evaluating the emf at 21.21 10  st −= ×  and using the equations of part (b), 0.0676 V,= −E  and the current flows 
clockwise, from b to a through the resistor. 

(e) 0=E  when 
2

0 0

0 .t t
t t

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

0

1 t
t

=  and 0 0.010 s.t t= =  

EVALUATE: At 0,t t=  0B = . At 35.00 10  st −= × , B
!

 is in the �+k  direction and is decreasing in magnitude. Lenz�s 
law therefore says E  is counterclockwise. At 0.0121 st = , B

!
 is in the �+k  direction and is increasing in magnitude. 

Lenz�s law therefore says E  is clockwise. These results for the direction of E  agree with the results we obtained 
from Faraday�s law. 

29.61. (a) and (b) IDENTIFY and Set Up:  

 

The magnetic field of the wire is given by 
0

2
IB
r

μ
π

=  and varies along the length of the 

bar. At every point along the bar B
!

 has 
direction into the page. Divide the bar up into 
thin slices, as shown in Figure 29.61a. 

Figure 29.61a  
EXECUTE: The emf dE  induced in each slice is given by . d d= ⋅v B l v B

!! !! !E × ×  is directed toward the wire, so 
0 .

2
Id vB dr v dr
r

μ
π

⎛ ⎞= − = − ⎜ ⎟
⎝ ⎠

E  The total emf induced in the bar is 

[ ]0 0 0 ln( )
2 2 2

b d L d L d L
ba da d d

Iv Iv dr IvV d dr r
r r

μ μ μ
π π π

+ + +⎛ ⎞= = − = − = −⎜ ⎟
⎝ ⎠∫ ∫ ∫E  

0 0(ln( ) ln( ))  ln(1 / )
2 2ba

Iv IvV d L d L dμ μ
π π

= − + − = − +  

EVALUATE: The minus sign means that baV  is negative, point a is at higher potential than point b. (The force 
qF = v B

! !!
×  on positive charge carriers in the bar is towards a, so a is at higher potential.) The potential difference 

increases when I or v increase, or d decreases. 
(c) IDENTIFY: Use Faraday�s law to calculate the induced emf. 
SET UP: The wire and loop are sketched in Figure 29.61b. 

 

EXECUTE: As the loop moves 
to the right the magnetic flux 
through it doesn�t change. Thus 

0Bd
dt
Φ

= − =E  and I = 0. 

Figure 29.61b  
EVALUATE: This result can also be understood as follows. The induced emf in section ab puts point a at higher 
potential; the induced emf in section dc puts point d at higher potential. If you travel around the loop then these 
two induced emf�s sum to zero. There is no emf in the loop and hence no current. 
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29.62. IDENTIFY: ,vBL=E  where v is the component of velocity perpendicular to the field direction and perpendicular 
to the bar. 
SET UP: Wires A and C have a length of 0.500 m and wire D has a length of 22(0.500 m) 0.707 m.=  
EXECUTE: Wire A: v!  is parallel to ,B

!
 so the induced emf is zero.  

Wire C: v!  is perpendicular to .B
!

 The component of v! perpendicular to the bar is cos 45v °. 
(0.350 m/s)(cos45 )(0.120 T)(0.500 m) 0.0148 V.= =°E  

Wire D: v!  is perpendicular to .B
!

 The component of v!perpendicular to the bar is cos45v °. 
(0.350 m/s)(cos45 )(0.120 T)(0.707 m) 0.0210 V.= =°E  

EVALUATE: The induced emf depends on the angle between v!  and B
!

 and also on the angle between v!  and the bar. 
29.63. (a) IDENTIFY: Use the expression for motional emf to calculate the emf induced in the rod. 

SET UP: The rotating rod is shown in Figure 29.63a. 

 

The emf induced in a thin 
slice is .d d= ⋅v B l

!!!E ×  

Figure 29.63a  

EXECUTE: Assume that B
!

 is directed out of the page. Then v B
!!

×  is directed radially outward and 
,  so  dl dr d vB dr= ⋅v B l =

!!!
×  

 so  .v r d Br drω ω= =E  
The dE  for all the thin slices that make up the rod are in series so they add: 

2 21 1
2 20

(8.80 rad/s)(0.650 T)(0.240 m) 0.165 V
L

d Br dr BLω ω= = = = =∫ ∫E E  

EVALUATE: E  increases with 2,   or .B Lω  
(b) No current flows so there is no IR drop in potential. Thus the potential difference between the ends equals the 
emf of 0.165 V calculated in part (a). 
(c) SET UP: The rotating rod is shown in Figure 29.63b. 

 
Figure 29.63b 

EXECUTE: The emf between the center of the rod and each end is 21 1
2 4( / 2) (0.165 V) 0.0412 V,B Lω= = =E  

with the direction of the emf from the center of the rod toward each end. The emfs in each half of the rod thus 
oppose each other and there is no net emf between the ends of the rod. 
EVALUATE: ω  and B are the same as in part (a) but L of each half is 1

2 L  for the whole rod. E  is proportional to 
2 ,L  so is smaller by a factor of 1

4 .  
29.64. IDENTIFY: The power applied by the person in moving the bar equals the rate at which the electrical energy is 

dissipated in the resistance. 

SET UP: From Example 29.7, the power required to keep the bar moving at a constant velocity is 
2( )BLvP R= . 

EXECUTE: (a) 
22 [(0.25 T)(3.0 m)(2.0 m s)]( ) 0.090Ω.25 W

BLvR P= = =  

(b) For a 50 W power dissipation we would require that the resistance be decreased to half the previous value. 
(c) Using the resistance from part (a) and a bar length of 0.20 m, 

2 2( ) [(0.25 T)(0.20 m)(2.0 m s)] 0.11 W
0.090Ω

BLvP
R

= = = . 

EVALUATE: When the bar is moving to the right the magnetic force on the bar is to the left and an applied force 
directed to the right is required to maintain constant speed. When the bar is moving to the left the magnetic force 
on the bar is to the right and an applied force directed to the left is required to maintain constant speed. 
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29.65. (a) IDENTIFY: Use Faraday�s law to calculate the induced emf, Ohm�s law to calculate I, and Eq.(27.19) to 
calculate the force on the rod due to the induced current. 
SET UP: The force on the wire is shown in Figure 29.65. 

 

EXECUTE: When the wire has speed v 
the induced emf is Bva=E  and the 

induced current is / BvaI R
R

= =E  

Figure 29.65  

The induced current flows upward in the wire as shown, so the force IF = l B
!! !
×  exerted by the magnetic field on 

the induced current is to the left. F
!

 opposes the motion of the wire, as it must by Lenz�s law. The magnitude of 
the force is 2 2 / .F IaB B a v R= =  
(b) Apply m∑F a

! !
=  to the wire. Take +x to be toward the right and let the origin be at the location of the wire at 

t = 0, so 0 0.x =  

 says x x xF ma F ma= − =∑  
2 2

x
F B a va
m mR

= − = −  

Use this expression to solve for v(t): 
2 2 2 2

 and x
dv B a v dv B aa dt
dt mR v mR

= = − = −  

0

2 2

0

v t

v

dv B a dt
v mR
′

′= −
′∫ ∫  

2 2

0ln( )  ln( ) B a tv v
mR

− = −  

2 2
2 2

/
0

0

ln  and B a t mRv B a t v v e
v mR

−⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
 

Note: At 00,   and 0 when t v v v t= = → →∞  
Now solve for x(t): 

2 2 2 2/ /
0 0 so B a t mR B a t mRdxv v e dx v e dt

dt
− −= = =  

2 2 /
00 0

x t B a t mRdx v e dt−′ ′=∫ ∫  

( )2 2 2 2/ /0
0 2 2 2 20

1
t

B a t mR B a t mRmR mRvx v e e
B a B a

′− −⎛ ⎞ ⎡ ⎤= − = −⎜ ⎟⎣ ⎦⎝ ⎠
 

Comes to rest implies v = 0. This happens when .t →∞  
0

2 2 gives .mRvt x
B a

→∞ =  Thus this is the distance the wire travels before coming to rest. 

EVALUATE: The motion of the slide wire causes an induced emf and current. The magnetic force on the induced 
current opposes the motion of the wire and eventually brings it to rest. The force and acceleration depend on v and 
are constant. If the acceleration were constant, not changing from its initial value of 2 2

0 / ,xa B a v mR= −  then the 

stopping distance would be 2 2 2
0 0/ 2 / 2 .xx v a mRv B a= − =  The actual stopping distance is twice this. 

29.66. IDENTIFY: Since the bar is straight and the magnetic field is uniform, integrating d dε = × ⋅v B l
!!! along the length 

of the bar gives ( )= × ⋅v B L
! !!E  

SET UP: �(4.20 m/s)v = i! . � �(0.250 m)(cos36.9 sin36.9 ).+L = i j
!

° °  

EXECUTE: (a) ( )� � � �( ) (4.20 m/s) ((0.120 T) 0.220 T (0.0900 T) ) .= × ⋅ = × − − ⋅v B L i i j k L
! ! !!E  

( ) ( )( ) ( )� � � �0.378 V/m 0.924 V/m (0.250 m)(cos 36.9 sin36.9 ) .= ⋅ ° + °�j k i jE  

(0.378 V/m)(0.250 m)sin36.9 0.0567 V.= ° =E  
(b) The higher potential end is the end to which positive charges in the rod are pushed by the magnetic force. 
×v B
!! has a positive y-component, so the end of the rod marked + in Figure 29.66 is at higher potential. 
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EVALUATE: Since ×v B
!! has nonzero �j and �k components, and L

!
 has nonzero �i and �j  components, only the 

�k component of B
!

contributes to .E  In fact, (4.20 m/s)(0.0900 T)(0.250 m)sin36.9 0.0567 V.x z yv B L= = =°E  

 
Figure 29.66 

29.67. IDENTIFY: Use Eq.(29.10) to calculate the induced electric field at each point and then use .qF = E
! !

 
SET UP:  

 

Apply Bdd
dt
Φ

−E l =
!!

⋅ú  to a concentric circle of 

radius r, as shown in Figure 29.67a. Take A
!

 to 
be into the page, in the direction of .B

!
 

Figure 29.67a  

EXECUTE: B increasing then gives 0,  so Bd d
dt
Φ

> E l
!!

⋅ú  is negative. This means that E is tangent to the circle in 

the counterclockwise direction, as shown in Figure 29.67b. 

 

(2 )d E rπ−E l =
!!

⋅ú  

2Bd dBr
dt dt

πΦ
=  

Figure 29.67b  

2 1
2(2 )  so dB dBE r r E r

dt dt
π π− = − =  

point a The induced electric field and the force on q are shown in Figure 29.67c. 

 

1
2

dBF qE qr
dt

= =  

F
!

 is to the left 
(F
!

 is in the same direction as E
!

 since 
q is positive.) 

Figure 29.67c  
point b The induced electric field and the force on q are shown in Figure 29.67d. 

 

1
2

dBF qE qr
dt

= =  

F
!

 is toward the top of the page. 

Figure 29.67d  
point c r = 0 here, so E = 0 and F = 0. 
EVALUATE: If there were a concentric conducting ring of radius r in the magnetic field region, Lenz�s law tells 
us that the increasing magnetic field would induce a counterclockwise current in the ring. This agrees with the 
direction of the force we calculated for the individual positive point charges. 

29.68. IDENTIFY: A bar moving in a magnetic field has an emf induced across its ends. The propeller acts as such a bar. 
SET UP: Different parts of the propeller are moving at different speeds, so we must integrate to get the total 
induced emf. The potential induced across an element of length dx is ,d vBdx=E  where B is uniform. 
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EXECUTE: (a) Call x the distance from the center to an element of length dx, and L the length of the propeller. 

The speed of dx is xω, giving .d vBdx x Bdxω= =E  
/ 2 2

0
/8.

L
x Bdx BLω ω= =∫E  

(b) The potential difference is zero since the potential is the same at both ends of the propeller. 

(c) ( )
3

4 4220 rev (2.0 m)2 0.50 10  T =5.8 10  V = 0.58 mV
60 s 8

π − −⎛ ⎞= × ×⎜ ⎟
⎝ ⎠

E  

EVALUATE: A potential difference of about 1
2 mV  is not large enough to be concerned about in a propeller. 

29.69. IDENTIFY: Follow the steps specified in the problem. 
SET UP: The electric field region is sketched in Figure 29.69. 

EXECUTE: .Bdd
dt
Φ

⋅ = −E l
!!ú  If B

!
is constant then B 0,d

dt
Φ

=  so 0.d⋅ =E l
!!ú  0.ab cdabcda

d E L E L⋅ = − =∫ E l
!!

 But 

0cdE = , so 0.abE L = But since we assumed 0,abE ≠  this contradicts Faraday�s law. Thus, we can�t have a 
uniform electric field abruptly drop to zero in a region in which the magnetic field is constant. 
EVALUATE: If the magnetic field in the region is constant, then the integral d⋅E l

!!ú  must be zero. 

 
Figure 26.69 

29.70. IDENTIFY and SET UP: At the terminal speed t ,v  the upward force IF  exerted on the loop due to the induced 
current equals the downward force of gravity: .IF mg=  Use Eq.(29.6) to find the induced emf in the side of the 
loop that is totally within the magnetic field. There is no induced emf in the other sides of the loop. 
EXECUTE: 2 2,  /  and /IBvs I Bvs R F IsB B s v R= = = −E  

2 2
t

t 2 2 and B s v mgRmg v
R B s

= =  

2 2(4 ) ( / 2)m m mm V s d dρ ρ π ρ π= = =  

2 21
4

4 16R RL s sR
A d d
ρ ρ ρ

π π
= = =  

Using these expressions for m and R gives 2
t 16 /m Rv g Bρ ρ=  

EVALUATE: We know 38900 kg/mmρ =  (Table 14.1) and 81.72 10  mRρ
−= × Ω ⋅   

(Table 25.1). Taking B = 0.5 T gives t 9.6 cm/s.v =  
29.71. IDENTIFY: Follow the steps specified in the problem. 

SET UP: (a) The magnetic field region is sketched in Figure 29.71. 
EXECUTE: (b) 0d⋅ =B l

!!ú  (no currents in the region). Using the figure, let 0
�BB= i

!
 for 0y <  and 0B =  for 0.y >  

0ab cdabcde
d B L B L⋅ = − =∫ B l
!!

 but 0.  0, but 0.cd ab abB B L B= = ≠  This is a contradiction and violates Ampere�s Law. 

EVALUATE: We often describe a magnetic field as being confined to a region, but this result shows that the edges 
of such a region can't be sharp. 

 
Figure 29.71 
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29.72. IDENTIFY and SET UP: Apply Ohm�s law to the dielectric to relate the current in the dielectric to the charge on 
the plates. Use Eq.(25.1) for the current and obtain a differential equation for q(t). Integrate this equation to obtain 
q(t) and i(t). Use /E q A= P  and Eq.(29.16) to calculate D.j  
EXECUTE: (a) Apply Ohm�s law to the dielectric: The capacitor is sketched in Figure 29.72. 

 

( )( ) v ti t
R

=  

0( )( )  and q t Av t C K
C d

= =
P  

Figure 29.72  

0

( ) ( )dv t q t
K A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠P

 

The resistance R of the dielectric slab is / .R d Aρ=  Thus 
0 0

( ) ( ) ( )( ) .v t q t d A q ti t
R K A d Kρ ρ

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠P P
 But the current i(t) 

in the dielectric is related to the rate of change dq/dt of the charge q(t) on the plates by i(t) = �dq/dt (a positive i in the 
direction from the + to the � plate of the capacitor corresponds to a decrease in the charge). Using this in the above 

gives 
0

1 ( ).dq q t
dt Kρ

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠P
 

0

dq dt
q Kρ
= −

P
. Integrate both sides of this equation from t = 0, where q = 0,Q  to a later 

time t when the charge is q(t). 
0 0

0

1 .
q t

Q

dq dt
q Kρ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ ∫P

 0/
0

0 0

ln  and ( ) .t Kq t q t Q e
Q K

ρ

ρ
−⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

P

P
 Then 

0/0

0

( ) t Kdq Qi t e
dt K

ρ

ρ
−⎛ ⎞

= − = ⎜ ⎟
⎝ ⎠

P

P
 and 0/0

C
0

( ) .t Ki t Qj e
A AK

ρ

ρ
−⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

P

P
 The conduction current flows from the positive to 

the negative plate of the capacitor. 

(b) 
0

( ) ( )( ) q t q tE t
A K A

= =
P P

 

C
D 0 0 C

0

( ) / ( )( ) ( )dE dE dq t dt i tj t K K j t
dt dt K A A

= = = = − = −P P P
P

 

The minus sign means that D ( )j t  is directed from the negative to the positive plate. E
!

 is from + to � but dE/dt is 
negative (E decreases) so D ( )j t  is from � to +. 
EVALUATE: There is no conduction current to and from the plates so the concept of displacement current, with 

D C= −j j
! !

 in the dielectric, allows the current to be continuous at the capacitor. 
29.73. IDENTIFY: The conduction current density is related to the electric field by Ohm's law. The displacement current 

density is related to the rate of change of the electric field by Eq.(29.16). 
SET UP: 0/ cosdE dt E tω ω=  

EXECUTE: (a) 4 20
C

0.450 V/m(max) 1.96 10  A/m
2300 m

Ej
ρ

−= = = ×
Ω⋅

 

(b) 9 2
D 0 0 0 0 0 0

max

(max) 2 2 (120 Hz)(0.450 V/m) 3.00 10  A/mdEj E fE
dt

ω π π −⎛ ⎞= = = = = ×⎜ ⎟
⎝ ⎠

P P P P  

(c) If C Dj j= then 0
0 0

E Eω
ρ
= P and 7

0

1 4.91 10  rad/sω
ρ

= = ×
P

 

7
64.91 10 rad s 7.82 10  Hz.

2 2
f ω

π π
×

= = = ×  

EVALUATE: (d) The two current densities are out of phase by 90°  because one has a sine function and the other 
has a cosine, so the displacement current leads the conduction current by 90 .°  

29.74. IDENTIFY: A current is induced in the loop because of its motion and because of this current the magnetic field 
exerts a torque on the loop. 
SET UP: Each side of the loop has mass / 4m  and the center of mass of each side is at the center of each side. The 
flux through the loop is cosB BA φΦ = . 
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EXECUTE: (a) g cm mτ = ×∑r g! !!  summed over each leg. 

g sin(90 ) sin(90 ) ( ) sin(90 )
2 4 2 4 4
L m L m mg g L gτ φ φ φ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
° ° °  

g cos  (clockwise).
2

mgLτ φ=  

sinB IABτ φ= × =B
!!τ  (counterclockwise). 

cos sin sin .BA d BA d BAI
R R dt R dt R

φ ωφ φ φ= = = − =
E  The current is going counterclockwise looking to the �−k  direction. 

Therefore, 
2 2 2 4

2 2sin sin .B
B A B L

R R
ω ωτ φ φ= =  The net torque is 

2 4
2cos sin ,

2
mgL B L

R
ωτ φ φ= −  opposite to the 

direction of the rotation. 

(b) τ Iα= (I being the moment of inertia). About this axis 25 .
12

I mL=  Therefore, 

2 4 2 2
2 2

2

12 1 6 12cos sin cos sin .
5 2 5 5

mgL B L g B L
mL R L mR

ω ωα φ φ φ φ
⎡ ⎤

= − = −⎢ ⎥
⎣ ⎦

 

EVALUATE: (c) The magnetic torque slows down the fall (since it opposes the gravitational torque). 
(d) Some energy is lost through heat from the resistance of the loop. 

29.75. IDENTIFY: Apply Eq.(29.10). 
SET UP: Use an integration path that is a circle of radius r. By symmetry the induced electric field is tangent to 
this path and constant in magnitude at all points on the path. 
EXECUTE: (a) The induced electric field at these points is shown in Figure 29.75a. 
(b) To work out the amount of the electric field that is in the direction of the loop at a general position, we will use 

the geometry shown in Figure 29.75b. loop cosE E θ=  but cos .
2 2 ( /cos ) 2

E
r a a

θ
π π θ π

= = =
E E E  Therefore, 

2

loop
cos .
2

E
a
θ

π
=
E  But 

2
2

2 ,
cos

Bd dB dB a dBA r
dt dt dt dt

ππ
θ

Φ
= = = =E  so 

2

loop .
2 2

a dB a dBE
a dt dt

π
π

= =  This is exactly the value 

for a ring, obtained in Exercise 29.30, and has no dependence on the part of the loop we pick. 

(c) 
2 2

4(0.20 m) (0.0350 T/s) 7.37 10  A.
1.90 

A dB L dBI
R R dt R dt

−= = = = = ×
Ω

E  

(d) 
2

2 41 1 (0.20 m) (0.0350 T/s) 1.75 10  V.
8 8 8ab

dBL
dt

−= = = = ×E E  But there is potential drop 41.75 10  V,V IR −= = − ×  

so the potential difference is zero. 
EVALUATE: The magnitude of the induced emf between any two points equals the magnitudes of the potential 
drop due to the current through the resistance of that portion of the loop. 

  
Figure 29.75 

29.76. IDENTIFY: Apply Eq.(29.10). 
SET UP: Use an integration path that is a circle of radius r. By symmetry the induced electric field is tangent to 
this path and constant in magnitude at all points on the path. 
EXECUTE: (a) The induced emf at these points is shown in Figure 29.76. 
(b) The induced emf on the side ac is zero, because the electric field is always perpendicular to the line ac. 

(c) To calculate the total emf in the loop, 2 .Bd dB dBA L
dt dt dt
Φ

= = =E  2 3(0.20 m) (0.035 T/s) 1.40 10  V.−= = ×E  
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(d) 
3

41.40 10 V 7.37 10 A
1.90

I
R

−
−×

= = = ×
Ω

E  

(e) Since the loop is uniform, the resistance in length ac is one quarter of the total resistance. Therefore the 
potential difference between a and c is 4 4(7.37 10 A)(1.90 4) 3.50 10 Vac acV IR − −= = × Ω = × and the point a is at a 
higher potential since the current is flowing from a to c. 
EVALUATE: This loop has the same resistance as the loop in Challenge Problem 29.75 and the induced current is 
the same. 

 
Figure 29.76 

29.77. IDENTIFY: The motion of the bar produces an induced current and that results in a magnetic force on the bar. 
SET UP: BF

!
is perpendicular to B

!
, so is horizontal. The vertical component of the normal force equals cosmg φ , 

so the horizontal component of the normal force equals tanmg φ . 
EXECUTE: (a) As the bar starts to slide, the flux is decreasing, so the current flows to increase the flux, which 

means it flows from a to b. 
2 2 2

( cos ) cos .B
B

LB LB d LB dA LB vL BF iLB B vL
R R dt R dt R R

φ φΦ
= = = = = =E  At the terminal 

speed the horizontal forces balance, so 
2 2

tan costv L Bmg
R

φ φ=  and t 2 2

tan .
cos

Rmgv
L B

φ
φ

=  

(c) 1 1 cos tan( cos ) .Bd dA B vLB mgi B vL
R R dt R dt R R LB

φ φφΦ
= = = = = =
E  

(d) 
2 2 2

2
2 2

tan .Rm gP i R
L B

φ
= =  

(e) g 2 2

tancos(90 ) sin
cos

RmgP Fv mg
L B

φφ φ
φ

⎛ ⎞
= ° − = ⎜ ⎟

⎝ ⎠
 and 

2 2 2

g 2 2

tanRm gP
L B

φ
= . 

EVALUATE: The power in part (e) equals that in part (d), as is required by conservation of energy. 
29.78. IDENTIFY: Follow the steps indicated in the problem. 

SET UP: The primary assumption throughout the problem is that the square patch is small enough so that the 
velocity is constant over its whole area, that is, .v r dω ω= ≈  

EXECUTE: (a) clockwise, into page.Bω → → vBL dBLω= =E . .A dBAI
R L

ω
ρ ρ

= = =
E E  Since ×v B

!! points 

outward, A  is just the cross-sectional area .tL  Therefore, dBLtI ω
ρ

=  flowing radially outward since ×v B
!!  points 

outward. 

(b) ×= d F
! !!τ  and B I ILB× =F = L B

! ! !
 pointing counterclockwise. So 

2 2 2d B L tωτ
ρ

=  pointing out of the page (a 

counterclockwise torque opposing the clockwise rotation). 
(c) If counterclockwise and into page,Bω → → then I →  inward radially since ×v B

!!  points inward. 
τ → clockwise (again opposing the motion). If ω → counterclockwise and B → out of the page, then I → radially 
outward. τ → clockwise (opposing the motion) 
The magnitudes of andI τ  are the same as in part (a). 
EVALUATE: In each case the magnetic torque due to the induced current opposes the rotation of the disk, as is 
required by conservation of energy. 
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INDUCTANCE 

 30.1. IDENTIFY and SET UP: Apply Eq.(30.4). 

EXECUTE: (a) 41
2 (3.25 10  H)(830 A/s) 0.270 V;diM

dt
−= = × =E  yes, it is constant. 

(b) 2
1 ;diM

dt
=E  M is a property of the pair of coils so is the same as in part (a). Thus 1 0.270 V.=E  

EVALUATE: The induced emf is the same in either case. A constant /di dt  produces a constant emf. 

 30.2. IDENTIFY: 2
1

iM
t

Δ
=

Δ
E  and 1

2 .iM
t

Δ
=

Δ
E  2 2

1

BNM
i
Φ

= , where 2BΦ  is the flux through one turn of the second 

coil. 
SET UP: M is the same whether we consider an emf induced in coil 1 or in coil 2. 

EXECUTE: (a) 
3

32

1

1.65 10  V 6.82 10  H 6.82 mH
/ 0.242 A/s

M
i t

−
−×

= = = × =
Δ Δ
E  

(b) 
3

41
2

2

(6.82 10  H)(1.20 A) 3.27 10  Wb
25B

Mi
N

−
−×

Φ = = = ×  

(c) 3 32
1 (6.82 10  H)(0.360 A/s) 2.46 10  V 2.46 mViM

t
− −Δ

= = × = × =
Δ

E  

EVALUATE: We can express M either in terms of the total flux through one coil produced by a current in the 
other coil, or in terms of the emf induced in one coil by a changing current in the other coil. 

 30.3. IDENTIFY: Replace units of Wb, A and Ω by their equivalents. 
SET UP: 21 Wb 1 T m .= ⋅  1 T 1 N/(A m).= ⋅  1 N m 1 J.⋅ =  1 A 1 C/s.=  1 V 1 J/C.=  1 V/A 1 .= Ω  

EXECUTE: 2 2 21 H 1 Wb/A 1T m /A 1 N m/A 1 J/A 1(J/[A C])s 1 (V/A)s 1Ω s.= = ⋅ = ⋅ = = ⋅ = = ⋅  
EVALUATE: We may use whichever equivalent unit is the most convenient in a particular problem. 

 30.4. IDENTIFY: Changing flux from one object induces an emf in another object. 
(a) SET UP: The magnetic field due to a solenoid is 0 .B nIμ=  
EXECUTE: The above formula gives 

( )7
4

1

4 10  T m/A (300)(0.120 A)
=1.81 10  T

0.250 m
B

π −
−

× ⋅
= ×  

The average flux through each turn of the inner solenoid is therefore 

( )4 2 8
1 1.81 10  T (0.0100 m)  = 5.68 10  WbB B A π− −Φ = = × ×  

(b) SET UP: The flux is the same through each turn of both solenoids due to the geometry, so 

2 ,2 2 ,1

1 1

B BN N
M

i i
Φ Φ

= =  

EXECUTE: ( )8
5(25) 5.68 10  Wb

1.18 10  H
0.120 A

M
−

−
×

= = ×  

(c) SET UP: The induced emf is 1
2 .diM

dt
= −E  

EXECUTE: ( )5
2 1.18 10  H (1750 A/s) 0.0207 V−= − × = −E  

EVALUATE: A mutual inductance around 510−  H is not unreasonable. 

30
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 30.5. IDENTIFY and SET UP: Apply Eq.(30.5). 

EXECUTE: (a) ( )2 2

1

400 0.0320 Wb
1.96 H

6.52 A
BNM

i
Φ

= = =  

(b) 31 1 2
1

2 1

(1.96 H)(2.54 A) so 7.11 10  Wb
700

B
B

N MiM
i N

−Φ
= Φ = = = ×  

EVALUATE: M relates the current in one coil to the flux through the other coil. Eq.(30.5) shows that M is the 
same for a pair of coils, no matter which one has the current and which one has the flux. 

 30.6. IDENTIFY: A changing current in an inductor induces an emf in it. 

(a) SET UP: The self-inductance of a toroidal solenoid is 
2

0 .
2
N AL

r
μ
π

=  

EXECUTE: 
7 2 4 2

4(4 10   T m/A)(500) (6.25 10  m ) 7.81 10  H
2 (0.0400 m)

L π
π

− −
−× ⋅ ×

= = ×  

(b) SET UP: The magnitude of the induced emf is .diL
dt

=E  

EXECUTE: ( )4
3

5.00 A 2.00 A7.81 10  H 0.781 V
3.00 10  s

−
−

−⎛ ⎞= × =⎜ ⎟×⎝ ⎠
E  

(c) The current is decreasing, so the induced emf will be in the same direction as the current, which is from a to b, 
making b at a higher potential than a. 
EVALUATE: This is a reasonable value for self-inductance, in the range of a mH. 

 30.7. IDENTIFY: iL
t
Δ

=
Δ

E  and .BNL
i
Φ

=  

SET UP: 0.0640 A/si
t
Δ

=
Δ

 

EXECUTE: (a) 0.0160 V 0.250 H
/ 0.0640 A/s

L
i t

= = =
Δ Δ
E  

(b) The average flux through each turn is 4(0.250 H)(0.720 A) 4.50 10  Wb.
400B

Li
N

−Φ = = = ×  

EVALUATE: The self-induced emf depends on the rate of change of flux and therefore on the rate of change of 
the current, not on the value of the current. 

 30.8. IDENTIFY: Combine the two expressions for L: /BL N i= Φ and /( / ).L di dt= E  
SET UP: BΦ  is the average flux through one turn of the solenoid. 

EXECUTE: Solving for N  we have 
3(12.6 10  V)(1.40 A)/ ( / ) 238 turns.

(0.00285 Wb)(0.0260 A/s)BN i di dt
−×

= Φ = =E  

EVALUATE: The induced emf depends on the time rate of change of the total flux through the solenoid. 
 30.9. IDENTIFY and SET UP: Apply / .L di dt=E  Apply Lenz�s law to determine the direction of the induced emf in 

the coil. 
EXECUTE: (a) 3( / ) (0.260 H)(0.0180 A/s) 4.68 10  VL di dt −= = = ×E  
(b) Terminal a is at a higher potential since the coil pushes current through from b to a and if replaced by a 
battery it would have the +  terminal at .a  
EVALUATE: The induced emf is directed so as to oppose the decrease in the current. 

30.10. IDENTIFY: Apply .diL
dt

= −E  

SET UP: The induced emf points from low potential to high potential across the inductor. 
EXECUTE: (a) The induced emf points from b to a, in the direction of the current. Therefore, the current is 
decreasing and the induced emf is directed to oppose this decrease. 
(b) / ,L i t= Δ ΔE  so / / (1.04 V) /(0.260 H) 4.00 A/s.abi t V LΔ Δ = = =  In 2.00 s the decrease in i is 8.00 A and the 
current at 2.00 s is 12.0 A 8.0 A 4.0 A.− =  
EVALUATE: When the current is decreasing the end of the inductor where the current enters is at the lower 
potential. This agrees with our result and with Figure 30.6d in the textbook. 

30.11. IDENTIFY and SET UP: Use Eq.(30.6) to relate L to the flux through each turn of the solenoid. Use Eq.(28.23) for 
the magnetic field through the solenoid. 
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EXECUTE: .BNL
i
Φ

=  If the magnetic field is uniform inside the solenoid .B BAΦ =  From Eq.(28.23), 

0
0 0  so .B

N NiAB ni i
l l

μμ μ ⎛ ⎞= = Φ =⎜ ⎟
⎝ ⎠

 Then 
2

0 0 .N NiA N AL
i l l

μ μ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

EVALUATE: Our result is the same as L for a torodial solenoid calculated in Example 30.3, except that the 
average circumference 2 rπ  of the toroid is replaced by the length l of the straight solenoid. 

30.12. IDENTIFY and SET UP: The stored energy is 21
2 .U LI=  The rate at which thermal energy is developed is 2 .P I R=  

EXECUTE: (a) 2 21 1
2 2 (12.0 H)(0.300 A) 0.540 JU LI= = =  

(b) 2 2(0.300 A) (180 ) 16.2 W 16.2 J/sP I R= = Ω = =  
EVALUATE: (c) No. If I is constant then the stored energy U is constant. The energy being consumed by the 
resistance of the inductor comes from the emf source that maintains the current; it does not come from the energy 
stored in the inductor. 

30.13. IDENTIFY and SET UP: Use Eq.(30.9) to relate the energy stored to the inductance. Example 30.3 gives the 

inductance of a toroidal solenoid to be 
2

0 ,
2
N AL

r
μ
π

=  so once we know L we can solve for N. 

EXECUTE: 2 31
2 2 2

2 2(0.390 J) so 5.417 10  H
(12.0 A)

UU LI L
I

−= = = = ×  

3

7 4 2
0

2 2 (0.150 m)(5.417 10  H) 2850.
(4 10  T m/A)(5.00 10  m )

rLN
A

π π
μ π

−

− −

×
= = =

× ⋅ ×
 

EVALUATE: L and hence U increase according to the square of N. 
30.14. IDENTIFY: A current-carrying inductor has a magnetic field inside of itself and hence stores magnetic energy. 

(a) SET UP: The magnetic field inside a toroidal solenoid is 0 .
2

NIB
r

μ
π

=  

EXECUTE: 30 (300)(5.00 A) 2.50 10  T 2.50 mT
2 (0.120 m)

B μ
π

−= = × =  

(b) SET UP: The self-inductance of a toroidal solenoid is 
2

0 .
2
N AL

r
μ
π

=  

EXECUTE: 
7 2 4 2

5(4 10  T m/A)(300) (4.00 10  m ) 6.00 10  H
2 (0.0120 m)

L π
π

− −
−× ⋅ ×

= = ×  

(c) SET UP: The energy stored in an inductor is 21
2 .LU LI=  

EXECUTE: 5 2 41
2 (6.00 10  H)(5.00 A) 7.50 10   JLU − −= × = ×  

(d) SET UP: The energy density in a magnetic field is 
2

0

.
2
Bu
μ

=  

EXECUTE: 
3 2

3
7

(2.50 10  T) 2.49 J/m
2(4 10  T m/A)

u
π

−

−

×
= =

× ⋅
 

(e) 
4

3
4 2

energy energy 7.50 10  J 2.49 J/m
volume 2 2 (0.120 m)(4.00 10  m )

u
rAπ π

−

−

×
= = = =

×
 

EVALUATE: An inductor stores its energy in the magnetic field inside of it. 
30.15. IDENTIFY: A current-carrying inductor has a magnetic field inside of itself and hence stores magnetic energy. 

(a) SET UP: The magnetic field inside a solenoid is 0 .B nIμ=  

EXECUTE: 
7(4 10  T m/A)(400)(80.0 A) = 0.161 T

0.250 m
B π −× ⋅
=  

(b) SET UP: The energy density in a magnetic field is 
2

0

.
2
Bu
μ

=  

EXECUTE: 
2

4 3
7

(0.161  T) 1.03 10  J/m
2(4 10  T m/A)

u
π −= = ×
× ⋅

 

(c) SET UP: The total stored energy is U = uV. 
EXECUTE: 4 3 4 2( ) (1.03 10  J/m )(0.250 m)(0.500 10  m ) 0.129 JU uV u lA −= = = × × =  
(d) SET UP: The energy stored in an inductor is 21

2 .U LI=  
EXECUTE: Solving for L and putting in the numbers gives 

5
2 2

2 2(0.129 J) 4.02 10  H
(80.0 A)

UL
I

−= = = ×  

EVALUATE: An inductor stores its energy in the magnetic field inside of it. 
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30.16. IDENTIFY: Energy Pt= . 21
2 .U LI=  

SET UP: 200 W 200 J/sP = =  
EXECUTE: (a) 7Energy (200 W)(24 h)(3600 s/h) 1.73 10  J= = ×  

(b) 
7

3
2 2

2 2(1.73 10  J) 5.41 10  H
(80.0 A)

UL
I

×
= = = ×  

EVALUATE: A large value of L and a large current would be required, just for one light bulb. Also, the resistance 
of the inductor would have to be very small, to avoid a large 2P I R=  rate of electrical energy loss. 

30.17. IDENTIFY and SET UP: Starting with Eq. (30.9), follow exactly the same steps as in the text except that the 
magnetic permeability μ  is used in place of 0.μ  

EXECUTE: Using 
2

2
N AL

r
μ
π

=  and 
2

NIB
r

μ
π

= gives 
2

.
2
Bu
μ

=  

EVALUATE: For a given value of B, the energy density is less when μ is larger than 0μ . 
30.18. IDENTIFY and SET UP: The energy density (energy per unit volume) in a magnetic field (in vacuum) is given by 

2

02
U Bu
V μ

= =  (Eq.30.10). 

EXECUTE: (a) 
7 6

30
2 2

2 2(4 10  T m/A)(3.60 10  J) 25.1 m .
(0.600 T)

UV
B
μ π −× ⋅ ×

= = =  

(b) 
2

02
U Bu
V μ

= =  

( )

7 6
0

3
2 2(4 10  T m/A)(3.60 10  J) 11.9 T

0.400 m
UB

V
μ π −× ⋅ ×

= = =  

EVALUATE: Large-scale energy storage in a magnetic field is not practical. The volume in part (a) is quite large 
and the field in part (b) would be very difficult to achieve. 

30.19. IDENTIFY: Apply Kirchhoff�s loop rule to the circuit. i(t) is given by Eq.(30.14). 
SET UP: The circuit is sketched in Figure 30.19. 

 

di
dt

 is positive as the current 

increases from its initial value of zero. 
 

Figure 30.19  
EXECUTE: 0R Lv v− − =E  

( )( / )0 so 1 R L tdiiR L i e
dt R

−− − = = −
EE  

(a) Initially (t = 0), i = 0 so 0diL
dt

− =E  

6.00 V 2.40 A/s
2.50 H

di
dt L
= = =
E  

(b) 0diiR L
dt

− − =E  (Use this equation rather than Eq.(30.15) since i rather than t is given.) 

Thus 6.00 V (0.500 A)(8.00 ) 0.800 A/s
2.50 H

di iR
dt L

− − Ω
= = =
E  

(c) ( ) ( )( / ) (8.00 / 2.50 H)(0.250 s) 0.8006.00 V1 1 0.750 A(1 ) 0.413 A
8.00 

R L ti e e e
R

− − Ω −⎛ ⎞= − = − = − =⎜ ⎟Ω⎝ ⎠

E  

(d) Final steady state means  and 0,  so 0.dit iR
dt

→∞ → − =E  

6.00 V 0.750 A
8.00 

i
R

= = =
Ω

E  

EVALUATE: Our results agree with Fig.30.12 in the textbook. The current is initially zero and increases to its 
final value of / .RE  The slope of the current in the figure, which is di/dt, decreases with t. 
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30.20. IDENTIFY: The current decays exponentially. 
SET UP: After opening the switch, the current is /

0 ,tR Li I e−=  and the time constant is τ = L /R. 
EXECUTE: (a) The initial current is 0I = (6.30 V)/(15.0 Ω) = 0.420 A. Now solve for L and put in the numbers. 

0

(2.00 ms)(15.0  ) 43.3 mH
0.210 Aln( / ) ln
0.420 A

tRL
i I
− − Ω

= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(b) τ = L/R = (43.3 mH)/(15.0 Ω) = 2.89 ms 
(c) Solve /

0
ti I e τ−=  for t, giving 0ln( / ) (2.89 ms)ln(0.0100) 13.3 ms.t i Iτ= − = − =  

EVALUATE: In less than 5 time constants, the current is only 1% of its initial value. 
30.21. IDENTIFY: // (1 ),ti R e τ−= −E  with / .L Rτ =  The energy stored in the inductor is 21

2 .U Li=  
SET UP: The maximum current occurs after a long time and is equal to / .RE  
EXECUTE: (a) max /i R= E  so max /2i i= when 1

2(1 )t/τe−− =  and 1
2 .t/τe− =  ( )1

2/ ln .t τ− =  
3ln 2 (ln 2)(1.25 10  H) 17.3 s

50.0 
Lt μ

R

−×
= = =

Ω
 

(b) 1
max max2  when 2 .U U i i= =  /1 1 2 ,t τe−− =  so /e 1 1 2 0.2929.t τ− = − =  ln (0.2929)/ 30.7 s.t L R μ= − =  

EVALUATE: 5/ 2.50 10  s 25.0 s.L Rτ μ−= = × =  The time in part (a) is 0.692τ and the time in part (b) is 1.23 .τ  
30.22. IDENTIFY: With 1S  closed and 2S  open, ( )i t  is given by Eq.(30.14). With 1S open and 2S closed, ( )i t is given 

by Eq.(30.18). 
SET UP: 21

2 .U Li=  After 1S  has been closed a long time, i has reached its final value of / .I R= E  

EXECUTE: (a) 21
2U LI=  and 2 2(0.260 J) 2.13 A.

0.115 H
UI
L

= = =  (2.13 A)(120 ) 256 V.IR= = Ω =E  

(b) ( / )R L ti Ie−=  and ( )2 2 2( / ) 21 1 1 1 1
02 2 2 2 2 .R L tU Li LI e U LI−= = = =  2( / ) 1

2 ,R L te− =  so 

( ) ( ) 41 1
2 2

0.115 Hln ln 3.32 10  s.
2 2(120 )
Lt
R

−= − = − = ×
Ω

 

EVALUATE: 4/ 9.58 10  s.L Rτ −= = ×  The time in part (b) is ln(2) / 2 0.347 .τ τ=  
30.23. IDENTIFY: L has units of H and R has units of Ω . 

SET UP: 1 H 1 s= Ω⋅  
EXECUTE: Units of / H / ( s) / sL R = Ω = Ω ⋅ Ω = = units of time. 
EVALUATE: / /Rt L t τ= is dimensionless. 

30.24. IDENTIFY: Apply the loop rule. 
SET UP: In applying the loop rule, go around the circuit in the direction of the current. The voltage across the 
inductor is / .Ldi dt−  

EXECUTE: / 0.Ldi dt iR− − =  di Ri
dt L
= −  gives 

0 0

i t

I

di R dt
i L
′

′= −
′∫ ∫  and 0ln( / ) .Ri I t

L
= −  ( / )

0 .t R Li I e−=  

EVALUATE: /di dt is negative, so there is a potential rise across the inductor; point c is at higher potential than 
point b. There is a potential drop across the resistor. 

30.25. IDENTIFY: Apply the concepts of current decay in an R-L circuit. Apply the loop rule to the circuit. i(t) is given 
by Eq.(30.18). The voltage across the resistor depends on i and the voltage across the inductor depends on di/dt. 
SET UP: The circuit with 1S  closed and 2S  open is sketched in Figure 30.25a. 

 

0diiR L
dt

− − =E  

Figure 30.25a  

Constant current established means 0.di
dt
=  

EXECUTE: 60.0 V 0.250 A
240 

i
R

= = =
Ω

E  
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(a) SET UP: The circuit with 2S  closed and 1S  open is shown in Figure 30.25b. 

 

( / )
0

R L ti I e−=  
At 00,  0.250 At i I= = =  

Figure 30.25b  
The inductor prevents an instantaneous change in the current; the current in the inductor just after 2S  is closed and 

1S  is opened equals the current in the inductor just before this is done. 

(b) EXECUTE: 
4( / ) (240 / 0.160 H)(4.00 10  s) 0.600

0 (0.250 A) (0.250 A) 0.137 AR L ti I e e e
−− − Ω × −= = = =  

(c) SET UP: See Figure 30.25c. 

 
Figure 30.25c 

EXECUTE: If we trace around the loop in the direction of the current the potential falls as we travel through the 
resistor so it must rise as we pass through the inductor: 0 and 0.ab bcv v> <  So point c is at higher potential than 
point b. 

0 and ab bc bc abv v v v+ = = −  
Or, (0.137 A)(240 ) 32.9 Vcb abv v iR= = = Ω =  

(d) ( / )
0

R L ti I e−=  
( / ) ( / )1 1 1

0 0 02 2 2 says  and R L t R L ti I I I e e− −= = =  
Taking natural logs of both sides of this equation gives 1

2ln( ) /Rt L= −  

40.160 H ln 2 4.62 10  s
240 

t −⎛ ⎞= = ×⎜ ⎟Ω⎝ ⎠
 

EVALUATE: The current decays, as shown in Fig. 30.13 in the textbook. The time constant is 4/ 6.67 10  s.L Rτ −= = ×  
The values of t in the problem are less than one time constant. At any instant the potential drop across the resistor 
(in the direction of the current) equals the potential rise across the inductor. 

30.26. IDENTIFY: Apply Eq.(30.14). 

SET UP: .abv iR=  .bc
div L
dt

=  The current is increasing, so /di dt is positive. 

EXECUTE: (a) At 0,t =  0.i =  0 and 60 V.ab bcv v= =  
(b) As ,t →∞  /i R→ E  and / 0.di dt →  60 V and 0.ab bcv v→ →  
(c)  When 0.150 A,i =  36.0 V and 60.0 V 36.0 V 24.0 V.ab bcv iR v= = = − =  
EVALUATE: At all times, ,ab bcv v= +E  as required by the loop rule. 

30.27. IDENTIFY: ( )i t is given by Eq.(30.14). 

SET UP: The power input from the battery is .iE  The rate of dissipation of energy in the resistance is 2 .i R  The 
voltage across the inductor has magnitude / ,Ldi dt  so the rate at which energy is being stored in the inductor is 

/ .iLdi dt  

EXECUTE: (a) 
2 2

( / ) ( / ) (8.00 / 2.50 H)
0

(6.00 V)(1 ) (1 ) (1 ).
8.00 

R L t R L t tP i I e e e
R

− − − Ω= = − = − = −
Ω

EE E  
1(3.20 s )(4.50 W)(1 ).tP e
−−= −  

(b) 
1

2 2
2 ( / ) 2 (8.00 / 2.50 H) 2 (3.20 s ) 2(6.00 V)(1 ) (1 ) (4.50 W)(1 )

8.00 
R L t t t

RP i R e e e
R

−− − Ω −= = − = − = −
Ω

E  

(c) 
2

( / ) ( / ) ( / ) 2( / )(1 ) ( )R L t R L t R L t R L t
L

diP iL e L e e e
dt R L R

− − − −⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠

E E E  

1 1(3.20 s ) (6.40 s )(4.50 W)( ).t t
LP e e

− −− −= −  
EVALUATE: (d) Note that if we expand the square in part (b), then parts (b) and (c) add to give part (a), and the 
total power delivered is dissipated in the resistor and inductor. Conservation of energy requires that this be so. 
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30.28. IDENTIFY: An L-C circuit oscillates, with the energy going back and forth between the inductor and capacitor. 

(a) SET UP: The frequency is 
2

f ω
π

=  and 1 ,
LC

ω =  giving 1 .
2

f
LCπ

=  

EXECUTE: 
( )( )

3

3 6

1 2.13 10  Hz = 2.13 kHz
2 0.280 10  H 20.0 10  F

f
π − −

= = ×
× ×

 

(b) SET UP: The energy stored in a capacitor is 21
2 .U CV=  

EXECUTE: 6 21
2 (20.0 10  F)(150.0 V) 0.225 JU −= × =  

(c) SET UP: The current in the circuit is sini Q tω ω= − , and the energy stored in the inductor is 21
2 .U Li=  

EXECUTE: First find ω and Q. ω = 2π f  = 1.336 × 104 rad/s. 
Q = CV = (20.0 × 10�6 F)(150.0 V) = 3.00 × 10�3 C 

Now calculate the current: 
i = − (1.336 × 104 rad/s)(3.00 × 10�3 C) sin[(1.336 × 104 rad/s)(1.30 × 10�3 s)] 

Notice that the argument of the sine is in radians, so convert it to degrees if necessary. The result is i = − 39.92 A 
Now find the energy in the inductor: 2 3 21 1

2 2 (0.280 10  H)( 39.92 A) 0.223 JU Li −= = × − =  
EVALUATE: At the end of 1.30 ms, nearly all the energy is now in the inductor, leaving very little in the capacitor. 

30.29. IDENTIFY: The energy moves back and forth between the inductor and capacitor. 

(a) SET UP: The period is 1 1 2 2 .
/ 2

T LC
f

π π
ω π ω

= = = =  

EXECUTE: Solving for L gives 
2 5 2

2
2 2 9

(8.60 10  s) 2.50 10  H = 25.0 mH
4 4 (7.50 10  C)

TL
Cπ π

−
−

−

×
= = = ×

×
 

(b) SET UP: The charge on a capacitor is Q = CV. 
EXECUTE: Q = CV = (7.50 × 10�9 F)(12.0 V) = 9.00 × 10�8 C 
(c) SET UP: The stored energy is U = Q2/2C. 

EXECUTE: ( )
( )

28
7

9

9.00 10  C
5.40 10  J

2 7.50 10  F
U

−
−

−

×
= = ×

×
 

(d) SET UP: The maximum current occurs when the capacitor is discharged, so the inductor has all the initial 
energy. Total.L CU U U+ =  21

Total2 0 .LI U+ =  
EXECUTE: Solve for the current: 

( )7
3Total

2

2 5.40 10  J2 6.58 10  A = 6.58 mA
2.50 10  H

UI
L

−
−

−

×
= = = ×

×
 

EVALUATE: The energy oscillates back and forth forever. However if there is any resistance in the circuit, no 
matter how small, all this energy will eventually be dissipated as heat in the resistor. 

30.30. IDENTIFY: The circuit is described in Figure 30.14 of the textbook. 
SET UP: The energy stored in the inductor is 21

2LU Li=  and the energy stored in the capacitor is 2/2 .CU q C=  Initially, 
21

2 ,CU CV=  with 12.0 V.V =  The period of oscillation is 3 62 2 (12.0 10  H)(18.0 10  F) 2.92 ms .T LCπ π − −= = × × =  

EXECUTE: (a) Energy conservation says (max) = (max),L CU U  and 2 21 1
max2 2 .Li CV=  

6

max 3

18 10  F/ (22.5 V) 0.871 A.
12 10  H

i V C L
−

−

×
= = =

×
 The charge on the capacitor is zero because all the energy is in 

the inductor. 
(b) From Figure 30.14 in the textbook, 0q = at /4 0.730 mst T= = and at 3 /4 2.19 ms.t T= =  
(c) 0 (18 F) (22.5 V) 405 Cq CV μ μ= = =  is the maximum charge on the plates. The graphs are sketched in  
Figure 30.30. q refers to the charge on one plate and the sign of i indicates the direction of the current. 
EVALUATE: If the capacitor is fully charged at 0t = it is fully charged again at /2,t T=  but with the opposite polarity. 

 
Figure 30.30 
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30.31. IDENTIFY and SET UP: The angular frequency is given by Eq.(30.22). q(t) and i(t) are given by Eqs.(30.21) and 
(30.23). The energy stored in the capacitor is 2 21

2 /2 .CU CV q C= =  The energy stored in the inductor is 21
2 .LU Li=  

EXECUTE: (a) 
5

1 1 105.4 rad/s,
(1.50 H)(6.00 10  F)LC

ω
−

= = =
×

 which rounds to 105 rad/s. The period is 

given by 2 2 0.0596 s
105.4 rad/s

T π π
ω

= = =  

(b) The circuit containing the battery and capacitor is sketched in Figure 30.31. 

 

0Q
C

− =E  

5 4(12.0 V)(6.00 10  F) 7.20 10  CQ C − −= = × = ×E  
 

Figure 30.31  
(c) 2 5 2 31 1

2 2 (6.00 10  F)(12.0 V) 4.32 10  JU CV − −= = × = ×  
(d) cos( )q Q tω φ= +  (Eq.30.21) 

 at 0 so 0q Q t φ= = =  
4 4cos (7.20 10  C)cos([105.4 rad/s][0.0230 s]) 5.42 10  Cq Q tω − −= = × = − ×  

The minus sign means that the capacitor has discharged fully and then partially charged again by the current 
maintained by the inductor; the plate that initially had positive charge now has negative charge and the plate that 
initially had negative charge now has positive charge. 
(e) sin( )i Q tω ω φ= − + (Eq.30.23) 

4(105 rad/s)(7.20 10  C)sin([105.4 rad/s][0.0230 s]) 0.050 Ai −= − × = −  
The negative sign means the current is counterclockwise in Figure 30.15 in the textbook. 
or 

2 2
2 2 21

2
1 gives 

2 2
q QLi i Q q
C C LC

+ = = ± −  (Eq.30.26) 

4 2 4 2(105 rad/s) (7.20 10  C) ( 5.42 10  C) 0.050 A,i − −= ± × − − × = ±  which checks. 

(f ) 
2 4 2

3
5

( 5.42 10  C) 2.45 10  J
2 2(6.00 10  F)C
qU
C

−
−

−

− ×
= = = ×

×
 

2 2 31 1
2 2 (1.50 H)(0.050 A) 1.87 10  JLU Li −= = = ×  

EVALUATE: Note that 3 3 32.45 10  J 1.87 10  J 4.32 10  J.C LU U − − −+ = × + × = ×  

This agrees with the total energy initially stored in the capacitor, 
2 4 2

3
5

(7.20 10  C) 4.32 10  J.
2 2(6.00 10  F)
QU
C

−
−

−

×
= = = ×

×
 

Energy is conserved. At some times there is energy stored in both the capacitor and the inductor. When i = 0 all the 
energy is stored in the capacitor and when q = 0 all the energy is stored in the inductor. But at all times the total 
energy stored is the same. 

30.32. IDENTIFY: 1 2ω πf
LC

= =  

SET UP: ω is the angular frequency in rad/s and f is the corresponding frequency in Hz. 

EXECUTE: (a) 3
2 2 2 6 2 12

1 1 2.37 10  H.
4 4 (1.6 10  Hz) (4.18 10  F)

L
f Cπ π

−
−= = = ×

× ×
 

(b) The maximum capacitance corresponds to the minimum frequency. 
11

max 2 2 2 5 2 3
min

1 1 3.67 10  F 36.7 pF
4 4 (5.40 10  Hz) (2.37 10  H)

C
f Lπ π

−
−= = = × =

× ×
 

EVALUATE: To vary f by a factor of three (approximately the range in this problem), C must be varied by a factor 
of nine. 

30.33. IDENTIFY: Apply energy conservation and Eqs. (30.22) and (30.23). 

SET UP: If I is the maximum current, 
2

21
2 2

QLI
C

= . For the inductor, 21
2LU Li= . 

EXECUTE: (a) 
2

21
2 2

QLI
C

=  gives 9 6(0.750 A) (0.0800 H)(1.25 10  F) 7.50 10  CQ i LC − −= = × = × . 

(b) 5

9

1 1 1.00 10  rad/s
(0.0800 H)(1.25 10  F)LC

ω
−

= = = ×
×

. 41.59 10  Hz
2

f ω
π

= = × . 
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(c) q Q=  at 0t =  means 0φ = . sin( )i Q tω ω= − , so 
5 6 5 3(1.00 10  rad/s)(7.50 10  C)sin([1.00 10  rad/s][2.50 10  s]) 0.7279 Ai − −= − × × × × = − . 

2 21 1
2 2 (0.0800 H)( 0.7279 A) 0.0212 JLU Li= = − = . 

EVALUATE: The total energy of the system is 21
2 0.0225 JLI = . At 2.50 mst = , the current is close to its 

maximum value and most of the system�s energy is stored in the inductor. 
30.34. IDENTIFY: Apply Eq.(30.25). 

SET UP: q Q=  when 0i = . maxi i= when 0q = . 11/ 1917 sLC −= . 

EXECUTE: (a) 
2

21
max2 2

QLi
C

= . 3 6 7
max (0.850 10  A) (0.0850 H)(3.20 10  F) 4.43 10  CQ i LC − − −= = × × = ×  

(b) 
24

2 2 7 2 7
1

5.00 10 A(4.43 10 C) 3.58 10 C
1917s

q Q LCi
−

− −
−

⎛ ⎞×
= − = × − = ×⎜ ⎟

⎝ ⎠
. 

EVALUATE: The value of q calculated in part (b) is less than the maximum value Q calculated in part (a). 
30.35. IDENTIFY: cos( )q Q tω φ= + and sin( )i Qω ω φ= − +  

SET UP: 
2

2C
qU
C

= . 21
2LU Li= . 

EXECUTE: (a) 
2 2 2

1 1
2 2

cos ( ) .C
q Q ωtU
C C

φ+
= =  

2 2
2 2 2 21 1 1

2 2 2
sin ( )sin ( )L

Q ωtU Li Lω Q ωt
C

φφ +
= = + = , since 2 1ω

LC
= . 

(b) 
2

2 2 2 2
Total

1 1cos ( ) sin ( )
2 2C L

QU U U ωt Lω Q ωt
C

φ φ= + = + + +  
2 2 2

2 2 2 2 21 1 1 1
total 2 2 2 2

1cos ( ) sin ( ) (cos ( ) sin ( ))Q Q QU ωt L Q ωt ωt ωt
C LC C C

φ φ φ φ⎛ ⎞= + + + = + + + =⎜ ⎟
⎝ ⎠

 

TotalU  is a constant. 
EVALUATE: Eqs.(30.21) and (30.23) are consistent with conservation of energy in the L-C circuit. 

30.36. IDENTIFY: Evaluate 
2

2

d q
dt

and insert into Eq.(20.20). 

SET UP: Equation (30.20) is 
2

2

1 0.d q q
dt LC

+ =  

EXECUTE: 
2

2
2cos( ) sin( ) cos( ).dq d qq Q ωt ωQ ωt ω Q ωt

dt dt
φ φ φ= + ⇒ = − + ⇒ = − +  

2
2 2

2

1 1 1cos( ) cos( ) 0d q Qq ω Q ωt ωt ω
dt LC LC LC LC

φ φ ω+ = − + + + = ⇒ = ⇒ = . 

EVALUATE: The value of φ depends on the initial conditions, the value of q at 0t = . 
30.37. IDENTIFY: The unit of L is H and the unit of C is F. 

SET UP: / abC q V=  says 1 F 1 C/V= . 21 H 1 V s/A 1 V s /C= ⋅ = ⋅ . 

EXECUTE: 2 21 H F (1 V s /C)(1 C/V) 1 s⋅ = ⋅ = . Therefore, LC has units of 2s and LC  has units of s. 
EVALUATE: Our result shows that tω is dimensionless, since 1/ LCω = . 

30.38. IDENTIFY: The presence of resistance in an L-R-C circuit affects the frequency of oscillation and causes the 
amplitude of the oscillations to decrease over time. 

(a) SET UP: The frequency of damped oscillations is 
2

2

1
4
R

LC L
ω′ = − . 

EXECUTE: ( )( ) ( )
2

4
23 9 3

1 (75.0  ) 5.5 10  rad/s
22 10  H 15.0 10  F 4 22 10  H

ω
− − −

Ω′ = − = ×
× × ×

 

The frequency f is 
4

35.50 10  rad/s 8.76 10  Hz = 8.76 kHz
2 2

f ω
π π

×
= = = × . 

(b) SET UP: The amplitude decreases as A(t) = A0 e�(R/2L)t. 
EXECUTE: Solving for t and putting in the numbers gives: 

( )3
30

2 22.0 10  H ln(0.100)2  ln( / ) 1.35 10  s = 1.35 ms
75.0  

L A At
R

−
−

− ×−
= = = ×

Ω
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(c) SET UP: At critical damping, 4 /R L C= . 

EXECUTE: ( )3

9

4 22.0 10  H
2420  

15.0 10  F
R

−

−

×
= = Ω

×
 

EVALUATE: The frequency with damping is almost the same as the resonance frequency of this circuit (1/ LC ), 
which is plausible because the 75-Ω resistance is considerably less than the 2420 Ω required for critical damping. 

30.39. IDENTIFY: Follow the procedure specified in the problem. 

SET UP: Make the substitutions 1, ,  ,  x q m L b R k
C

→ → → → . 

EXECUTE: (a) Eq. (13.41): 
2

2 0d x b dx kx
dt m dt m

+ + = . This becomes 
2

2 0d q R dq q
dt L dt LC

+ + = , which is Eq.(30.27). 

(b) Eq. (13.43): 
2

24
k bω
m m

′ = − . This becomes 
2

2

1
4
Rω

LC L
′ = − , which is Eq.(30.29). 

(c) Eq. (13.42): ( / 2 ) cos( )b m tx Ae ω t φ− ′= + . This becomes ( / 2 ) cos( )R L tq Ae ω t φ− ′= + , which is Eq.(30.28). 
EVALUATE: Equations for the L-R-C circuit and for a damped harmonic oscillator have the same form. 

30.40. IDENTIFY: For part (a), evaluate the derivatives as specified in the problem. For part (b) set q Q=  in Eq.(30.28) 
and set / 0dq dt = in the expression for /dq dt . 

SET UP: In terms of ω′ , Eq.(30.28) is ( / 2 )( ) cos( )R L tq t Ae tω φ− ′= + . 

EXECUTE: (a) ( / 2 ) cos( )R L tq Ae ω t φ− ′= + . ( / 2 ) ( / 2 )cos( ) sin( ).
2

R L t R L tdq RA e ω t ω Ae ω t
dt L

φ φ− −′ ′ ′= − + − +  

22
( / 2 ) ( / 2 ) 2 ( / 2 )

2 cos( ) 2 sin( ) cos( )
2 2

R L t R L t R L td q R RA e ω t ω A e ω t ω Ae ω t
dt L L

φ φ φ− − −⎛ ⎞ ′ ′ ′ ′ ′= + + + − +⎜ ⎟
⎝ ⎠

22 2
2

2 2

1 0
2 2

d q R dq q R Rq
dt L dt LC L L LC

ω
⎛ ⎞⎛ ⎞ ′+ + = − − + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, so
2

2
2

1
4
Rω

LC L
′ = − . 

(b) At 0, , 0dqt q Q i
dt

= = = = , so cosq A Qφ= =  and cos sin 0
2

dq R A ω A
dt L

φ φ′= − − = . This gives 
cos

QA
φ

=  and 

2 2
tan

2 2 1/ / 4
R R
Lω L LC R L

φ = − = −
′ −

. 

EVALUATE: If 0R = , then A Q=  and 0φ = . 
30.41. IDENTIFY: Evaluate Eq.(30.29). 

SET UP: The angular frequency of the circuit is ω′ . 

EXECUTE: (a) When 0 5

1 10, 298 rad s.
(0.450 H) (2.50 10 F)

R ω
LC −

= = = =
×

 

(b) We want 
0

0.95ω
ω

= , so 
2 2 2

2(1 4 ) 1 (0.95)
1 4

LC R L R C
LC L
−

= − = . This gives 

2
5

4 4(0.450 H)(0.0975)(1 (0.95) ) 83.8 .
(2.50 10 F)

LR
C −= − = = Ω

×
 

EVALUATE: When R increases, the angular frequency decreases and approaches zero as 2 /R L C→ . 
30.42. IDENTIFY: L has units of H and C has units of F. 

SET UP: 1 H 1 s= Ω⋅ . /C q V= says 1 F 1 C/V.=  V IR= says 1 V/A 1 = Ω . 

EXECUTE: The units of /L C are 2H s V .
F C V A

Ω⋅ Ω⋅
= = = Ω   Therefore, the unit of /L C is .Ω  

EVALUATE: For Eq.(30.28) to be valid, 1
LC

 and 
2

24
R
L

must have the same units, so R and /L C  must have the 

same units, and we have shown that this is indeed the case. 

30.43. IDENTIFY: The emf 2E in solenoid 2 produced by changing current 1i in solenoid 1 is given by 1
2 .iM

t
Δ

=
Δ

E  The 

mutual inductance of two solenoids is derived in Example 30.1. For the two solenoids in this problem 
0 1 2 ,AN NM

l
μ

=  where A is the cross-sectional area of the inner solenoid and l is the length of the outer solenoid. 



Inductance  30-11 

SET UP: 7
0 4 10  T m/Aμ π −= × ⋅ . Let the outer solenoid be solenoid 1. 

EXECUTE: (a) 
7 4 2

7(4 10  T m/A) (6.00 10  m) (6750)(15) 2.88 10  H 0.288 H
0.500 m

M π π μ
− −

−× ⋅ ×
= = × =  

(b) 7 51
2 (2.88 10  H)(37.5 A/s) 1.08 10  Vi

t
− −Δ

= = × = ×
Δ

E  

EVALUATE: If current in the inner solenoid changed at 37.5 A/s, the emf induced in the outer solenoid would be 
51.08 10  V.−×  

30.44. IDENTIFY: Apply diL
dt

= −E  and .BLi N= Φ  

SET UP: BΦ  is the flux through one turn. 

EXECUTE: (a) 3(3.50 10 H) ((0.680 A)cos( /[0.0250 s])).di dL t
dt dt

π−= − = − ×E  

3(3.50 10 H)(0.680 A) sin( /[0.0250 s])
0.0250 s

tπ πε −= × . Therefore, 

3
max (3.50 10 H)(0.680 A) 0.299 V.

0.0250 s
π−= × =E  

(b) 
3

6max
max

(3.50 10 H)(0.680 A) 5.95 10  Wb.
400B

Li
N

−
−×

Φ = = = ×  

(c) 3( ) (3.50 10 H)(0.680 A)( / 0.0250 s)sin( / 0.0250 s).dit L t
dt

π π−= − = − ×E  

1( ) (0.299 V)sin((125.6 s ) )t t−= −E .Therefore, at 0.0180 st = , 
1(0.0180 s) (0.299 V)sin((125.6 s )(0.0180 s)) 0.230 V−= − =E . The magnitude of the induced emf is 0.230 V. 

EVALUATE: The maximum emf is when 0i = and at this instant 0.BΦ =  

30.45. IDENTIFY: .diL
dt

= −E  

SET UP: During an interval in which the graph of i versus t is a straight line, /di dt is constant and equal to the 
slope of that line. 
EXECUTE: (a) The pattern on the oscilloscope is sketched in Figure 30.45. 
EVALUATE: (b) Since the voltage is determined by the derivative of the current, the V versus t graph is indeed 
proportional to the derivative of the current graph. 

 
Figure 30.45 

30.46. IDENTIFY: Apply .diL
dt

= −E  

SET UP: cos( ) sin( )d t t
dt

ω ω ω= −  

EXECUTE: (a) ((0.124 A)cos[(240 s) ].di dL L π t
dt dt

= − = −E  

(0.250 H) (0.124 A) (240 /s)sin((240 s) ) (23.4 V) sin ((240 s) ).t π tπ π= + = +E  

The graphs are given in Figure 30.46. 
(b) max 23.4 V; 0,i= =E since the emf and current are 90° out of phase. 
(c) max 0.124 A; 0,i = =E since the emf and current are 90°  out of phase. 
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EVALUATE: The induced emf depends on the rate at which the current is changing. 

 
Figure 30.46 

30.47. IDENTIFY: Apply diL
dt

= −E  to the series and parallel combinations. 

SET UP: In series, 1 2i i= and the voltages add. In parallel the voltages are the same and the currents add. 

EXECUTE: (a) Series: 1 2
1 2 eq ,di di diL L L

dt dt dt
+ =  but 1 2i i i= = for series components so 1 2di di di

dt dt dt
= = and 

1 2 eqL L L+ = . 

(b) Parallel: Now 1 2
1 2 eq 1 2,   where .di di diL L L i i i

dt dt dt
= = = +  Therefore, 1 2di di di

dt dt dt
= + . But eq1

1

Ldi di
dt L dt

= and 

eq2

2

Ldi di
dt L dt

= . eq eq

1 2

L Ldi di di
dt L dt L dt
= + and 

1

eq
1 2

1 1 .L
L L

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

EVALUATE: Inductors in series and parallel combine in the same way as resistors. 
30.48. IDENTIFY: Follow the steps outlined in the problem. 

SET UP: The energy stored is 21
2U Li= . 

EXECUTE: (a) 0
0 encl 02 .

2
μ id μ I B πr μ i B
πr

⋅ = ⇒ = ⇒ =B l
!!A  

(b) 0 .
2B
μ id BdA ldr
πr

Φ = =  

(c) 0 0 ln ( )
2 2

b b

B B
a a

μ il dr μ ild b a .
π r π

Φ = Φ = =∫ ∫  

(d) 0 ln( ).
2

BN μL l b a
i π
Φ

= =  

(e) 
2

2 20 01 1 ln( ) ln( ).
2 2 2 4

μ μ liU Li l b a i b a
π π

= = =  

EVALUATE: The magnetic field between the conductors is due only to the current in the inner conductor. 
30.49. (a) IDENTIFY and SET UP: An end view is shown in Figure 30.49. 

 

Apply Ampere�s law to a circular 
path of radius r. 

0 encld Iμ⋅B l =
!!A  

 

Figure 30.49  
EXECUTE: (2 )d B rπB l =

!!
⋅A  

encl ,I i=  the current in the inner conductor 

Thus 0
0(2 )  and .

2
iB r i B
r

μπ μ
π

= =  
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(b) IDENTIFY and SET UP: Follow the procedure specified in the problem. 

EXECUTE: 
2

02
Bu
μ

=  

,  where 2dU u dV dV rl drπ= =  
2 2

0 0

0

1 (2 )
2 2 4

i i ldU rl dr dr
r r

μ μπ
μ π π
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(c) 
2 2

0 0 [ln ]
4 4

b b
aa

i l dr i lU dU r
r

μ μ
π π

= = =∫ ∫  

2 2
0 0(ln ln ) ln

4 4
i l i l bU b a

a
μ μ
π π

⎛ ⎞= − = ⎜ ⎟
⎝ ⎠

 

(d) Eq.(30.9): 21
2U Li=  

Part (c): 
2

0 ln
4

i l bU
a

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

2
2 01

2 ln
4

i l bLi
a

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

0 ln .
2

l bL
a

μ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EVALUATE: The value of L we obtain from these energy considerations agrees with L calculated in part (d) of 
Problem 30.48 by considering flux and Eq.(30.6) 

30.50. IDENTIFY: Apply BNL
i
Φ

= to each solenoid, as in Example 30.3. Use 2 2

1

BNM
i
Φ

=  to calculate the mutual 

inductance M. 
SET UP: The magnetic field produced by solenoid 1 is confined to the space within its windings and is equal to 

0 1 1
1 2

N iB
r

μ
π

= . 

EXECUTE: (a) 1

2
1 1 0 1 1 0 1

1
1 1

,
2 2

BN N A μ N i μ N AL
i i πr πr
Φ ⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 2

2
2 2 0 2 2 0 2

2
2 2 2 2

BN N A μ N i μ N AL
i i πr πr
Φ ⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

.  

(b) 2 1 0 1 2

1 2
N AB N N AM

i r
μ

π
= = . 

2 2 2
2 0 1 2 0 1 0 2

1 2.2 2 2
μ N N A μ N A μ N AM L L
πr πr πr

⎛ ⎞
= = =⎜ ⎟
⎝ ⎠

 

EVALUATE: If the two solenoids are identical, so that 1 2N N= , then M L= . 

30.51. IDENTIFY: 21
2U LI= . The self-inductance of a solenoid is found in Exercise 30.11 to be 

2
0 ANL

l
μ

= . 

SET UP: The length l of the solenoid is the number of turns divided by the turns per unit length. 

EXECUTE: (a) 2 2

2 2(10.0 J) 8.89 H
(1.50 A)

UL
I

= = =  

(b) 
2

0 ANL
l

μ
= . If α is the number of turns per unit length, then N lα=  and 2

0L A lμ α= . For this coil 

310 coils/mm 10 10  coils/mα = = × . 2 7 2 3 2
0

8.89 H 56.3 m
(4 10  T m/A) (0.0200 m) (10 10  coils/m)

Ll
Aμ α π π−= = =

× ⋅ ×
. 

This is not a practical length for laboratory use. 
EVALUATE: The number of turns is 3 5(56.3 m)(10 10  coils/m) 5.63 10  turnsN = × = × . The length of wire in the 
solenoid is the circumference C of one turn times the number of turns. 2(4.00 10  m) 0.126 mC dπ π −= = × = . The 
length of wire is 5 4(0.126 m)(5.63 10 ) 7.1 10  m 71 km× = × = . This length of wire will have a large resistance and 

2I R  electrical energy loses will be very large. 
30.52. IDENTIFY: This is an R-L circuit and ( )i t  is given by Eq.(30.14). 

SET UP: When t →∞ , f /i i V R→ = . 

EXECUTE: (a) 3
f

12.0 V 1860 .
6.45 10 A

VR
i −= = = Ω

×
 

(b) ( / )
f (1 )R L ti i e−= −  so fln(1 / )Rt i i

L
= − −  and

4

f

(1860 )(7.25 10 s) 0.963 H
ln(1 / ) ln(1 (4.86 / 6.45))

RtL
i i

−− − Ω ×
= = =

− −
. 
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EVALUATE: The current after a long time depends only on R and is independent of L. The value of 
/R Ldetermines how rapidly the final value of i is reached. 

30.53. IDENTIFY and SET UP: Follow the procedure specified in the problem. 2.50 H, 8.00 ,L R= = Ω  
/6.00 V. ( / )(1 ),  /ti R e L Rτ τ−= = − =E E  

EXECUTE: (a) Eq.(30.9):  21
2LU Li=  

1 1 so ( / )(1 ) (6.00 V/8.00 )(1 ) 0.474 At i R e eτ − −= = − = Ω − =E  
Then 2 21 1

2 2 (2.50 H)(0.474 A) 0.281 JLU Li= = =  

Exercise 30.27 (c):  L
L

dU diP Li
dt dt

= =  

/ ( / ) /(1 );  t R L t tdii e e e
R dt L L

τ τ− − −⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
E E E  

2
/ / / 2 /(1 ) ( )t t t

LP L e e e e
R L R

τ τ τ τ− − − − ±⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

E E E  

2 2
/ 2 / / 2 /

0 0
0

( )
2

t t t t
L LU P dt e e dt e e

R R

τ
τ τ τ τ τ τττ− − − −⎡ ⎤= = − = − +⎢ ⎥⎣ ⎦∫ ∫

E E  

2 2
/ 2 / 1 21 1 1

2 2 20
1t t

LU e e e e
R R

ττ ττ τ− − − −⎡ ⎤ ⎡ ⎤= − − = − − +⎣ ⎦ ⎣ ⎦
E E  

22
1 2 1 21

2(1 2 ) (1 2 )
2L

LU e e L e e
R R R

− − − −⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

E E  

2
1
2

6.00 V (2.50 H)(0.3996) 0.281 J,
8.00 LU ⎛ ⎞= =⎜ ⎟Ω⎝ ⎠

 which checks. 

(b) Exercise 30.27(a):  The rate at which the battery supplies energy is 
2

/ /(1 ) (1 )t tP i e e
R R

τ τ− −⎛ ⎞= = − = −⎜ ⎟
⎝ ⎠

E
E EE E  

2 2 2
/ / 1

00 0
(1 ) ( )t tU P dt e dt t e e

R R R
τ τ ττ ττ τ τ τ− − −⎛ ⎞

⎡ ⎤= = − = + = + −⎜ ⎟⎣ ⎦
⎝ ⎠

∫ ∫E E
E E E  

22 2
1 1 1LU e e Le

R R R R
τ − − −⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
E

E E E  

26.00 V (2.50 H)(0.3679) 0.517 J
8.00 

U ⎛ ⎞= =⎜ ⎟Ω⎝ ⎠
E  

(c) 
2 2

2 / 2 / 2 /(1 ) (1 2 )t t t
RP i R e e e

R R
τ τ τ− − −⎛ ⎞

= = − = − +⎜ ⎟
⎝ ⎠

E E  

2 2
/ 2 / / 2 /

0 0
0

(1 2 ) 2
2

t t t t
R RU P dt e e dt t e e

R R

τ
τ τ τ τ τ τττ− − − −⎡ ⎤= = − + = + −⎢ ⎥⎣ ⎦∫ ∫

E E  

2 2
1 2 1 22 2 2

2 2 2 2RU e e e e
R R

τ τ τ ττ τ τ τ− − − −⎡ ⎤ ⎡ ⎤= + − − + = − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
E E  

2
1 21 4

2R
LU e e

R R
− −⎛ ⎞⎛ ⎞⎡ ⎤= − + −⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

E  

2 2
1 21 1

2 2
6.00 V( ) 1 4 (2.50 H)(0.3362) 0.236 J
8.00 RU L e e

R
− −⎛ ⎞ ⎛ ⎞⎡ ⎤= − + − = =⎜ ⎟ ⎜ ⎟⎣ ⎦ Ω⎝ ⎠ ⎝ ⎠

E  

(d) EVALUATE: . (0.517 J 0.236 J 0.281 J)R LU U U= + = +E  
The energy supplied by the battery equals the sum of the energy stored in the magnetic field of the inductor and the 
energy dissipated in the resistance of the inductor. 

30.54. IDENTIFY: This is a decaying R-L circuit with 0 /I R= E . ( / )
0( ) R L ti t I e−= . 

SET UP: 60.0 V=E , 240 R = Ω  and 0.160 HL = . The rate at which energy stored in the inductor is decreasing 
is /iLdi dt . 

EXECUTE: (a) 
22

2 3
0

1 1 1 60 V(0.160 H) 5.00 10 J.
2 2 2 240

U LI L
R

−⎛ ⎞⎛ ⎞= = = = ×⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠

E  
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(b) 
2

( / ) 2 2( / )R L t R L tLdi R dU dii e i iL Ri e
R dt L dt dt R

− −= ⇒ = − ⇒ = = − =
E E . 

4
2

2(240 / 0.160)(4.00 10 )(60 V) 4.52 W.
240

LdU e
dt

−− ×= − = −
Ω

 

(c) In the resistor, 
4

2 2
2 2( / ) 2(240 / 0.160)(4.00 10 )(60 V) 4.52 W

240
R L tR

R
dUP i R e e
dt R

−− − ×= = = = =
Ω

E . 

(d) 
2

2 2( / )( ) R L t
RP t i R e

R
−= =

E . 
2 2 2

2( / ) 3
2

0

(60 V) (0.160 H) 5.00 10  J,
2 2(240 )

R L t
R

LU e
R R R

∞
− −= = = = ×

Ω∫
E E which is the same as 

part (a). 
EVALUATE: During the decay of the current all the electrical energy originally stored in the inductor is dissipated 
in the resistor. 

30.55. IDENTIFY and SET UP: Follow the procedure specified in the problem. 21
2 Li  is the energy stored in the inductor 

and 2 / 2q C  is the energy stored in the capacitor. The equation is 0.di qiR L
dt C

− − − =  

EXECUTE: Multiplying by �i gives 2 0.di qii R Li
dt C

+ + =  ( ) ( )2 21 1 1
2 2 2 2 ,L

d d d di diU Li L i L i Li
dt dt dt dt dt

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 the 

second term. 
2

21 1( ) (2 ) ,
2 2 2C

d d q d dq qiU q q
dt dt C C dt C dt C

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
 the third term. 2 ,Ri R P=  the rate at which 

electrical energy is dissipated in the resistance. ,L L
d U P
dt

=  the rate at which the amount of energy stored in the 

inductor is changing. ,C C
d U P
dt

=  the rate at which the amount of energy stored in the capacitor is changing. 

EVALUATE: The equation says that 0;R L CP P P+ + =  the net rate of change of energy in the circuit is zero. Note 
that at any given time one of  or C LP P  is negative. If the current and LU  are increasing the charge on the capacitor 
and CU  are decreasing, and vice versa. 

30.56. IDENTIFY: The energy stored in a capacitor is 21
2CU Cv= . The energy stored in an inductor is 21

2LU Li= . 
Energy conservation requires that the total stored energy be constant. 
SET UP: The current is a maximum when the charge on the capacitor is zero and the energy stored in the 
capacitor is zero. 
EXECUTE: (a) Initially 16.0 Vv = and 0i = . 0LU = and 2 6 2 41 1

2 2 (5.00 10  F)(16.0 V) 6.40 10  JCU Cv − −= = × = × . 
The total energy stored is 0.640 mJ . 
(b) The current is maximum when 0q = and 0CU = . 46.40 10  JC LU U −+ = × so 46.40 10  JLU −= × . 

2 41
max2 6.40 10  JLi −= × and 

4

max 3

2(6.40 10  J) 0.584 A
3.75 10  H

i
−

−

×
= =

×
. 

EVALUATE: The maximum charge on the capacitor is 80.0 CQ CV μ= = . 

30.57. IDENTIFY and SET UP: Use 21
2C CU CV=  (energy stored in a capacitor) to solve for C. Then use Eq.(30.22) and 

2 fω π=  to solve for the L that gives the desired current oscillation frequency. 

EXECUTE: 2 2 21
212.0 V;  so 2 / 2(0.0160 J)/(12.0 V) 222 FC C C C CV U CV C U V μ= = = = =  

2

1 1 so 
(2 )2

f L
f CLC ππ

= =  

3500 Hz gives 9.31 Hf L μ= =  
EVALUATE: f is in Hz and ω  is in rad/s; we must be careful not to confuse the two. 

30.58. IDENTIFY: Apply energy conservation to the circuit. 
SET UP: For a capacitor /V q C=  and 2 / 2U q C= . For an inductor 21

2U Li=  

EXECUTE: (a) 
6

max 4

6.00 10  C 0.0240 V.
2.50 10  F

QV
C

−

−

×
= = =

×
 

(b) 
2

2
max

1
2 2

QLi
C

= , so 
6

3
max 4

6.00 10  C 1.55 10 A
(0.0600 H)(2.50 10  F)

Qi
LC

−
−

−

×
= = = ×

×
 

(c) 2 3 2 8
max max

1 1 (0.0600 H)(1.55 10 A) 7.21 10  J.
2 2

U Li − −= = × = ×  
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(d) If max
1
2

i i=  then 8
max

1 1.80 10  J
4LU U −= = × and 

( )2
2

max

(3/ 4)3
4 2 2C

Q qU U
C C

= = = . This gives 

63 5.20 10  C.
4

q Q −= = ×  

EVALUATE: 
2

2
max

1 1
2 2

qU Li
C

= +  for all times. 

30.59. IDENTIFY: Set BU K= , where 21
2K mv= . 

SET UP: The energy density in the magnetic field is 2
0/ 2Bu B μ= . Consider volume 31 mV =  of sunspot 

material. 
EXECUTE: The energy density in the sunspot is 2 4 3

0/2 6.366 10 J /m .Bu B μ= = ×  The total energy stored in 
volume V of the sunspot is .B BU u V=  The mass of the material in volume V of the sunspot is .m ρV=  

21
2 so B BK U mv U= = . 21

2 BVv u Vρ = . The volume divides out, and 42 / 2 10 m/sBv u ρ= = × . 
EVALUATE: The speed we calculated is about 30 times smaller than the escape speed. 

30.60. IDENTIFY: ( )i t  is given by Eq.(30.14). 
SET UP: The graph shows 0V =  at 0t = and V approaches the constant value of 25 V at large times. 
EXECUTE: (a) The voltage behaves the same as the current. Since RV  is proportional to i, the scope must be 
across the 150Ω resistor. 
(b) From the graph, as , 25 V,Rt V→∞ → so there is no voltage drop across the inductor, so its internal resistance 

must be zero. /
max (1 )t r

RV V e−= − . When t τ= , max max
11 0.63 .RV V V
e

⎛ ⎞= − ≈⎜ ⎟
⎝ ⎠

 From the graph, max0.63 16 VV V= = at 

0.5 mst ≈ . Therefore 0.5 msτ = . / 0.5 msL R =  gives (0.5 ms) (150 ) 0.075 HL = Ω = . 
(c) The graph if the scope is across the inductor is sketched in Figure 30.60. 
EVALUATE: At all times 25.0 VR LV V+ = . At 0t =  all the battery voltage appears across the inductor since 

0i = . At t →∞  all the battery voltage is across the resistance, since / 0di dt = . 

 
Figure 30.60 

30.61. IDENTIFY and SET UP: The current grows in the circuit as given by Eq.(30.14). In an R-L circuit the full emf 
initially is across the inductance and after a long time is totally across the resistance. A solenoid in a circuit is 
represented as a resistance in series with an inductance. Apply the loop rule to the circuit; the voltage across a 
resistance is given by Ohm�s law. 
EXECUTE: (a) In the R-L circuit the voltage across the resistor starts at zero and increases to the battery voltage. 
The voltage across the solenoid (inductor) starts at the battery voltage and decreases to zero. In the graph, the 
voltage drops, so the oscilloscope is across the solenoid. 
(b) At t →∞  the current in the circuit approaches its final, constant value. The voltage doesn�t go to zero because 
the solenoid has some resistance .LR  The final voltage across the solenoid is ,LIR  where I is the final current in 
the circuit. 
(c) The emf of the battery is the initial voltage across the inductor, 50 V. Just after the switch is closed, the current 
is zero and there is no voltage drop across any of the resistance in the circuit. 
(d) As ,  0Lt IR IR→∞ − − =E  

50 V=E  and from the graph 15 VLIR =  (the final voltage across the inductor), so 
35 V and (35 V)/ 3.5 AIR I R= = =  

(e) 15 V, so (15 V)/(3.5 A) 4.3 L LIR R= = = Ω 
0,LV iR− − =E  where LV  includes the voltage across the resistance of the solenoid. 

( )/ /

tot tot

,  1 ,  so 1 (1 )t t
L L

RV iR i e V e
R R

τ τ− −⎡ ⎤= − = − = − −⎢ ⎥
⎣ ⎦

EE E  

tot50 V, 10 ,  14.3 ,  so when ,  27.9 . From the graph,  has this value when 3.0 msL LR R t V V V tτ= = Ω = Ω = = =E  
(read approximately from the graph), so tot/ 3.0 ms.L Rτ = =  Then (3.0 ms)(14.3 ) 43 mH.L = Ω =  
EVALUATE: At t = 0 there is no current and the 50 V measured by the oscilloscope is the induced emf due to the 
inductance of the solenoid. As the current grows, there are voltage drops across the two resistances in the circuit. 
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We derived an equation for ,LV  the voltage across the solenoid. At t = 0 it gives LV = E  and at t →∞  it gives 

tot/ .LV R R iR= =E  
30.62. IDENTIFY: At 0t = , 0i = through each inductor. At t →∞ , the voltage is zero across each inductor. 

SET UP: In each case redraw the circuit. At 0t =  replace each inductor by a break in the circuit and at t →∞  
replace each inductor by a wire. 
EXECUTE: (a) Initially the inductor blocks current through it, so the simplified equivalent circuit is shown in 

Figure 30.62a. 50 V 0.333 A
150

i
R

= = =
Ω

E . 1 (100 )(0.333 A) 33.3 VV = Ω = . 4 (50 )(0.333 A) 16.7 VV = Ω = . 3 0V =  

since no current flows through it. 2 4 16.7 VV V= = , since the inductor is in parallel with the 50 Ω  resistor. 

1 3 20.333 A, 0A A A= = = . 
(b) Long after S is closed, steady state is reached, so the inductor has no potential drop across it. The simplified 

circuit is sketched in Figure 30.62b. 50 V/ 0.385 A
130

i R= = =
Ω

E . 1 (100 )(0.385 A) 38.5 VV = Ω = ; 2 0V = ; 

3 4 50 V 38.5 V 11.5 VV V= = − = . 1 2 3
11.5 V 11.5 V0.385 A; 0.153 A;  0.230 A
75 50

i i i= = = = =
Ω Ω

. 

EVALUATE: Just after the switch is closed the current through the battery is 0.333 A. After a long time the 
current through the battery is 0.385 A. After a long time there is an additional current path, the equivalent 
resistance of the circuit is decreased and the current has increased. 

     
Figure 30.62 

30.63. IDENTIFY and SET UP: Just after the switch is closed, the current in each branch containing an inductor is zero 
and the voltage across any capacitor is zero. The inductors can be treated as breaks in the circuit and the capacitors 
can be replaced by wires. After a long time there is no voltage across each inductor and no current in any branch 
containing a capacitor. The inductors can be replaced by wires and the capacitors by breaks in the circuit. 
EXECUTE: (a) Just after the switch is closed the voltage 5V  across the capacitor is zero and there is also no current 
through the inductor, so 3 2 3 4 50. ,V V V V V= + = =  and since 5 3 4 20 and 0,   and V V V V= =  are also zero. 

4 30 means V V=  reads zero. 1V  then must equal 40.0 V, and this means the current read by 1A  is 
(40.0 V)/(50.0 ) 0.800 A.Ω =  2 3 4 1 2 3 4 1,  but 0 so 0.800 A.A A A A A A A A+ + = = = = =  1 4 0.800 A;A A= =  all other 
ammeters read zero. 1 40.0 VV =  and all other voltmeters read zero. 
(b) After a long time the capacitor is fully charged so 4 0.A =  The current through the inductor isn�t changing, so 

2 0.V =  The currents can be calculated from the equivalent circuit that replaces the inductor by a short circuit, as 
shown in Figure 30.63a. 

 
Figure 30.63a 

1(40.0 V)/(83.33 ) 0.480 A;  reads 0.480 AI A= Ω =  

1 (50.0 ) 24.0 VV I= Ω =  
The voltage across each parallel branch is 40.0 V � 24.0 V = 16.0 V 

2 3 4 50,  16.0 VV V V V= = = =  

3 16.0 VV =  means 2A  reads 0.160 A. 4 16.0 VV =  means 3A  reads 0.320 A. 4A  reads zero. Note that 2 3 1.A A A+ =  
(c) 5 16.0 V so (12.0 F)(16.0 V) 192 CV Q CV μ μ= = = =  
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(d) At t = 0 and 2,  0.t V→∞ =  As the current in this branch increases from zero to 0.160 A the voltage 2V  reflects 
the rate of change of the current. The graph is sketched in Figure 30.63b. 

 
Figure 30.63b 

EVALUATE: This reduction of the circuit to resistor networks only apply at t = 0 and .t →∞  At intermediate 
times the analysis is complicated. 

30.64. IDENTIFY: At all times 1 2 25.0 Vv v+ = . The voltage across the resistor depends on the current through it and the 
voltage across the inductor depends on the rate at which the current through it is changing. 
SET UP: Immediately after closing the switch the current thorough the inductor is zero. After a long time the 
current is no longer changing. 
EXECUTE: (a) 0i = so 1 0v = and 2 25.0 Vv = . The ammeter reading is 0A = . 

(b) After a long time, 2 0v = and 1 25.0 V.v =  1v iR=  and 1 25.0 V 1.67 A.
15.0 

vi
R

= = =
Ω

 The ammeter reading is 

1.67A.A =  
(c) None of the answers in (a) and (b) depend on L so none of them would change. 
EVALUATE: The inductance L of the circuit affects the rate at which current reaches its final value. But after a 
long time the inductor doesn�t affect the circuit and the final current does not depend on L. 

30.65. IDENTIFY: At 0t = , 0i = through each inductor. At t →∞ , the voltage is zero across each inductor. 
SET UP: In each case redraw the circuit. At 0t =  replace each inductor by a break in the circuit and at t →∞  
replace each inductor by a wire. 
EXECUTE: (a) Just after the switch is closed there is no current through either inductor and they act like breaks in 
the circuit. The current is the same through the 40.0 and 15.0Ω Ω  resistors and is equal to 

1 4(25.0 V) (40.0 15.0 ) 0.455 A. 0.455 A;A AΩ+ Ω = = =  2 3 0.A A= =  
(b) After a long time the currents are constant, there is no voltage across either inductor, and each inductor can be 
treated as a short-circuit . The circuit is equivalent to the circuit sketched in Figure 30.65. 

(25.0 V) (42.73 ) 0.585 AI = Ω = . 1 reads 0.585 A.A  The voltage across each parallel branch is 
25.0 V (0.585 A)(40.0 ) 1.60 V− Ω = . 2A  reads (1.60 V) /(5.0 ) 0.320 AΩ = . 3A  reads 
(1.60 V) (10.0 ) 0.160 AΩ = . 4A  reads (1.60 V) (15.0 ) 0.107 A.Ω =  
EVALUATE: Just after the switch is closed the current through the battery is 0.455 A. After a long time the 
current through the battery is 0.585 A. After a long time there are additional current paths, the equivalent resistance 
of the circuit is decreased and the current has increased. 

 
Figure 30.65 

30.66. IDENTIFY: Closing 2S and simultaneously opening 1S  produces an L-C circuit with initial current through the 
inductor of 3.50 A. When the current is a maximum the charge q on the capacitor is zero and when the charge q is 
a maximum the current is zero. Conservation of energy says that the maximum energy 21

max2 Li stored in the inductor 

equals the maximum energy 
2
max1

2
q
C

 stored in the capacitor. 

SET UP: max 3.50 Ai = , the current in the inductor just after the switch is closed. 
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EXECUTE: (a) 
2

2 max1 1
max2 2

qLi
C

= . 

3 6 4
max max( ) (2.0 10  H)(5.0 10  F)(3.50 A) 3.50 10  C 0.350 mCq LC i − − −= = × × = × = . 

(b) When q is maximum, 0i = . 
EVALUATE: In the final circuit the current will oscillate. 

30.67. IDENTIFY: Apply the loop rule to each parallel branch. The voltage across a resistor is given by iR and the 
voltage across an inductor is given by / .L di dt  The rate of change of current through the inductor is limited. 
SET UP: With S closed the circuit is sketched in Figure 30.67a. 

 

The rate of change of the 
current through the inductor 
is limited by the induced 
emf. Just after the switch is 
closed the current in the 
inductor has not had time to 
increase from zero, so 

2 0.i =  
 

Figure 30.67a  
EXECUTE: (a) 0,  so 60.0 Vab abv v− = =E  
(b) The voltage drops across R, as we travel through the resistor in the direction of the current, so point a is at 
higher potential. 
(c) 

22 2 20 so 0Ri v i R= = =  

2
0 so 60.0 VR L Lv v v− − = = =E E  

(d) The voltage rises when we go from b to a through the emf, so it must drop when we go from a to b through the 
inductor. Point c must be at higher potential than point d. 

(e) After the switch has been closed a long time, 2 0 so 0.L
di v
dt

→ =  Then 
2 2 20 and Rv i R− = =E E  

2
2

60.0 Vso 2.40 A.
25.0 

i
R

= = =
Ω

E  

SET UP: The rate of change of the current through the inductor is limited by the induced emf. Just after the 
switch is opened again the current through the inductor hasn�t had time to change and is still 2 2.40 A.i =  The 
circuit is sketched in Figure 30.67b. 

 

EXECUTE: The current through 
1 2is 2.40 A,R i =  in the direction b 

to a. Thus 
2 1 (2.40 A)(40.0 )abv i R= − = − Ω

96.0 Vabv = −  
 

Figure 30.67b  
(f ) Point where current enters resistor is at higher potential; point b is at higher potential. 
(g) 

1 2
0L R Rv v v− − =  

1 2L R Rv v v= +  

1 2 2 296.0 V; (2.40 A)(25.0 ) 60.0 VR ab Rv v v i R= − = = = Ω =  

Then 
1 2

96.0 V 60.0 V 156 V.L R Rv v v= + = + =  
As you travel counterclockwise around the circuit in the direction of the current, the voltage drops across each 
resistor, so it must rise across the inductor and point d is at higher potential than point c. The current is decreasing, 
so the induced emf in the inductor is directed in the direction of the current. Thus, 156 V.cdv = −  
(h) Point d is at higher potential. 
EVALUATE: The voltage across 1R  is constant once the switch is closed. In the branch containing 2,R  just after 
S is closed the voltage drop is all across L and after a long time it is all across 2.R  Just after S is opened the same 
current flows in the single loop as had been flowing through the inductor and the sum of the voltage across the 
resistors equals the voltage across the inductor. This voltage dies away, as the energy stored in the inductor is 
dissipated in the resistors. 
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30.68. IDENTIFY: Apply the loop rule to the two loops. The current through the inductor doesn't change abruptly. 

SET UP: For the inductor diL
dt

=E  and E is directed to oppose the change in current. 

EXECUTE: (a) Switch is closed, then at some later time 

50.0 A/s (0.300 H) (50.0 A/s) 15.0 V.cd
di div L
dt dt
= ⇒ = = =  

The top circuit loop: 60.0 1 1 1
60.0 VV 1.50 A.
40.0

i R i= ⇒ = =
Ω

 

The bottom loop: 2 2 2
45.0 V60 V 15.0 V 0 1.80 A.
25.0

i R i− − = ⇒ = =
Ω

 

(b) After a long time: 2
60.0 V 2.40 A,
25.0

i = =
Ω

 and immediately when the switch is opened, the inductor maintains 

this current, so 1 2 2.40 A.i i= =  
EVALUATE: The current through 1R  changes abruptly when the switch is closed. 

30.69. IDENTIFY and SET UP: The circuit is sketched in Figure 30.69a. Apply the loop rule. Just after 1S  is closed, i = 0. 
After a long time i has reached its final value and di/dt = 0. The voltage across a resistor depends on i and the 
voltage across an inductor depends on di/dt. 

 
Figure 30.69a 

EXECUTE: (a) At time 0 0 00,  0 so 0.act i v i R= = = =  By the loop rule 0,ac cbv v− − =E  so 36.0 V.cb acv v= − = =E E  
( 0 0i R =  so this potential difference of 36.0 V is across the inductor and is an induced emf produced by the 
changing current.) 

(b) After a long time 0 0di
dt

→  so the potential 0diL
dt

−  across the inductor becomes zero. The loop rule gives 

0 0( ) 0.i R R− + =E  

0
0

36.0 V 0.180 A
50.0 150 

i
R R

= = =
+ Ω+ Ω
E

 

0 0 (0.180 A)(50.0 ) 9.0 Vacv i R= = Ω =  

Thus 0
0 (0.180 A)(150 ) 0 27.0 Vcb

div i R L
dt

= + = Ω + =  (Note that .ac cbv v+ = E ) 

(c) 0ac cbv v− − =E  

0 0diiR iR L
dt

− − − =E  

0
0 0

( ) and di L diL i R R i
dt R R dt R R

⎛ ⎞
= − + = − +⎜ ⎟+ +⎝ ⎠

EE  

0

0/( )
di R R dt

i R R L
+⎛ ⎞= ⎜ ⎟− + + ⎝ ⎠E  

Integrate from t = 0, when i = 0, to t, when 0 :i i=
0

0 0 0
0 0

0 0 0

ln ,
/( )

i
i tdi R R R Rdt i t

i R R L R R L
⎡ ⎤+ +⎛ ⎞= = − − + =⎢ ⎥ ⎜ ⎟− + + + ⎝ ⎠⎣ ⎦

∫ ∫
E

E  

so 0
0

0 0

ln ln R Ri t
R R R R L

⎛ ⎞ ⎛ ⎞ +⎛ ⎞− + − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + ⎝ ⎠⎝ ⎠ ⎝ ⎠

E E
 

0 0 0

0

/( )ln
/( )

i R R R R t
R R L

⎛ ⎞− + + +⎛ ⎞= −⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠

E
E  

Taking exponentials of both sides gives 0( ) /0 0

0

/( )
/( )

R R t Li R R e
R R

− +− + +
=

+
E

E  and ( )0( ) /
0

0

1 R R t Li e
R R

− += −
+
E

 

Substituting in the numerical values gives ( ) ( )(200 / 4.00 H) / 0.020 s
0

36.0 V 1 (0.180 A) 1
50 150 

t ti e e− Ω −= − = −
Ω+ Ω
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At 00,  (0.180 A)(1 1) 0t i→ = − =  (agrees with part (a)). At 0,  (0.180 A)(1 0) 0.180 At i→∞ = − = (agrees with part (b)). 

( ) ( )0( ) / / 0.020 s0
0 0

0

1 9.0 V 1R R t L t
ac

Rv i R e e
R R

− + −= = − = −
+
E  

/0.020 s / 0.020 s36.0 V 9.0 V(1 ) 9.0 V(3.00 )t t
cb acv v e e− −= − = − − = +E  

At 0,  0,  36.0 Vac cbt v v→ = =  (agrees with part (a)). At ,  9.0 V, 27.0 Vac cbt v v→∞ = =  (agrees with part (b)). 
The graphs are given in Figure 30.69b. 

 
Figure 30.69b 

EVALUATE: The expression for i(t) we derived becomes Eq.(30.14) if the two resistors 0R  and R in series are 
replaced by a single equivalent resistance 0 .R R+  

30.70. IDENTIFY: Apply the loop rule. The current through the inductor doesn't change abruptly. 
SET UP: With 2S closed, cbv must be zero. 
EXECUTE: (a) Immediately after 2S is closed, the inductor maintains the current 0.180 Ai =  through .R  The 
loop rule around the outside of the circuit yields 

0 0 036.0 V (0.18 A)(150 ) (0.18 A)(150 ) (50 ) 0L iR i R i+ − − = + Ω − Ω − Ω =E E . 0
36 V 0.720 A
50

i = =
Ω

. 

(0.72 A)(50 V) 36.0 Vacv = =  and 0cbv = . 

(b) After a long time, 36.0 V,acv =  and 0.cbv =  Thus 0
0

36.0 V 0.720 A
50

i
R

= = =
Ω

E , 0Ri = and 2 0.720 Asi = . 

(c) 0 0.720 Ai = , ( )

total

( ) R L t
Ri t e

R
−=

E and 
1(12.5 s )( ) (0.180 A) t

Ri t e
−−= . 

( )1 1

2
(12.5 s ) (12.5 s )( ) (0.720 A) (0.180 A) (0.180 A) 4 .t t

si t e e
− −− −= − = −  The graphs of the currents are given in Figure 30.70. 

EVALUATE: 0R  is in a loop that contains just E and 0R , so the current through 0R  is constant. After a long time 
the current through the inductor isn't changing and the voltage across the inductor is zero. Since cbv is zero, the 
voltage across R must be zero and Ri  becomes zero. 

 
Figure 30.70 
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30.71. IDENTIFY: The current through an inductor doesn't change abruptly. After a long time the current isn't changing 
and the voltage across each inductor is zero. 
SET UP: Problem 30.47 shows how to find the equivalent inductance of inductors in series and parallel. 
EXECUTE: (a) Just after the switch is closed there is no current in the inductors. There is no current in the 
resistors so there is no voltage drop across either resistor. A reads zero and V reads 20.0 V. 
(b) After a long time the currents are no longer changing, there is no voltage across the inductors, and the inductors 
can be replaced by short-circuits. The circuit becomes equivalent to the circuit shown in Figure 30.71a. 

(20.0 V) (75.0 ) 0.267 AI = Ω = . The voltage between points a and b is zero, so the voltmeter reads zero. 
(c) Use the results of Problem 30.49 to combine the inductor network into its equivalent, as shown in Figure 30.71b. 

75.0R = Ω  is the equivalent resistance. Eq.(30.14) says ( )(1 )ti R e τ−= −E with 
/ (10.8 mH) (75.0 ) 0.144 msL Rτ = = Ω = . 20.0 V=E , 75.0R = Ω , 0.115 mst = so 0.147Ai = . 

(0.147 A)(75.0 ) 11.0 VRV iR= = Ω = . 20.0 V 0R LV V− − = and 20.0 V 9.0 VL RV V= − = . The ammeter reads 0.147 
A and the voltmeter reads 9.0 V. 
EVALUATE: The current through the battery increases from zero to a final value of 0.267 A. The voltage across 
the inductor network drops from 20.0 V to zero. 

   
Figure 30.71 

30.72. IDENTIFY: At steady state with the switch in position 1, no current flows to the capacitors and the inductors can 
be replaced by wires. Apply conservation of energy to the circuit with the switch in position 2. 
SET UP: Replace the series combinations of inductors and capacitors by their equivalents. For the inductors use 
the results of Problem 30.47. 

EXECUTE: (a) At steady state 75.0 V 0.600 A
125

i
R

= = =
Ω

E . 

(b) The equivalent circuit capacitance of the two capacitors is given by 
s

1 1 1
25 F 35 FC μ μ

= + and s 14.6 FC μ= . 

s 15.0 mH 5.0 mH 20.0 mHL = + = . The equivalent circuit is sketched in Figure 30.72a. 

Energy conservation: 
2

2
0

1
2 2
q Li
C
= . 3 6 4

0 (0.600 A) (20 10  H)(14.6 10  F) 3.24 10  Cq i LC − − −= = × × = × . As shown 

in Figure 30.72b, the capacitors have their maximum charge at / 4t T= . 
3 6 41 1

4 4 (2 ) (20 10  H)(14.6 10  F) 8.49 10  s
2 2

t T LC LCπ ππ − − −= = = = × × = ×  

EVALUATE: With the switch closed the battery stores energy in the inductors. This then is the energy in the L-C 
circuit when the switch is in position 2. 

     
Figure 30.72 

30.73. IDENTIFY: Follow the steps specified in the problem. 

SET UP: Find the flux through a ring of height h, radius r and thickness dr. Example 28.19 shows that 0

2
NiB
r

μ
π

=  

inside the toroid. 
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EXECUTE: (a) 0 0 0( ) ( ) ln( ).
2 2 2

b b b

B
a a a

Ni Nih dr NihB hdr hdr b a
r r

μ μ μ
π π π

⎛ ⎞Φ = = = =⎜ ⎟
⎝ ⎠∫ ∫ ∫  

(b) 
2

0 ln( ).
2

BN N hL b a
i

μ
π

Φ
= =  

(c) 
2 2

0
2

( )ln( / ) ln(1 ( ) / ) .
2 2

b a b a N h b ab a b a a L
a a a

μ
π

− − −⎛ ⎞= − − ≈ + + ⋅⋅⋅⇒ ≈ ⎜ ⎟
⎝ ⎠

 

EVALUATE: ( )h b a−  is the cross-sectional area A of the toroid and a is approximately the radius r, so this result 
is approximately the same as the result derived in Example 30.3. 

30.74. IDENTIFY: The direction of the current induced in circuit A is given by Lenz�s law. 
SET UP: When the switch is closed current flows counterclockwise in the circuit on the left, from the positive 
plate of the capacitor. The current decreases as a function of time, as the charge and voltage of the capacitor 
decrease. 
EXECUTE:  At loop A the magnetic field from the wire of the other circuit adjacent to A is into the page. The 
magnetic field of this current is decreasing, as the current decreases. Therefore, the magnetic field of the induced 
current in A is directed into the page inside A and to produce a magnetic field in this direction the induced current 
is clockwise. 
EVALUATE: The magnitude of the emf induced in circuit A decreases with time after the switch is closed, 
because the rate of change of the current in the other circuit decreases. 

30.75. (a) IDENTIFY and SET UP: With switch S closed the circuit is shown in Figure 30.75a. 

 

Apply the loop rule to loops 1 and 2. 
EXECUTE: 
loop 1 

1 1 0i R− =E  

1
1

i
R

=
E  (independent of t) 

Figure 30.75a  
loop (2) 

2
2 2 0dii R L

dt
− − =E  

This is in the form of equation (30.12), so the solution is analogous to Eq.(30.14): ( )2 /
2

2

1 R t Li e
R

−= −
E  

(b) EVALUATE: The expressions derived in part (a) give that as 1
1

,  t i
R

→∞ =
E  and 2

2

.i
R

=
E  Since 2 0di

dt
→  at 

steady-state, the inductance then has no effect on the circuit. The current in 1R  is constant; the current in 2R  starts 
at zero and rises to 2/ .RE  
(c) IDENTIFY and SET UP: The circuit now is as shown in Figure 30.75b. 

 

Let t = 0 now be when S is opened. 

At t = 0, 
2

.i
R

=
E  

Figure 30.75b  
Apply the loop rule to the single current loop. 

EXECUTE: 1 2( ) 0.dii R R L
dt

− + − = (Now di
dt

 is negative.) 

1 2
1 2( ) gives di di R RL i R R dt

dt i L
+⎛ ⎞= − + = −⎜ ⎟

⎝ ⎠
 

Integrate from t = 0, when 0 2/ ,  to .i I R t= = E  

0

1 2
0

i t

I

di R R dt
i L

+⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ ∫  and 1 2

0

ln i R R t
I L

⎛ ⎞ +⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

Taking exponentials of both sides of this equation gives 1 2 1 2( ) / ( ) /
0

2

R R t L R R t Li I e e
R

− + − += =
E  
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(d) IDENTIFY and SET UP: Use the equation derived in part (c) and solve for 2 and .R E  
EXECUTE: 22.0 HL =  

1

1

2 2 2

1
1

(120 V)40.0 W gives 360 .
40.0 WR

R

V VR R
R P

= = = = = Ω  

We are asked to find 2  and .R E  Use the expression derived in part (c). 

0 20.600 A so / 0.600 AI R= =E  

1 2( ) /

2

0.150 A when 0.080 s, so R R t Li t i e
R

− += = =
E  gives 1 2( ) /0.150 A (0.600 A) R R t Le− +=  

1 2( ) /1
1 24  so ln 4 ( ) /R R t Le R R t L− += = +  

2 1
ln 4 (22.0 H)ln 4 360 381.2 360 21.2 

0.080 s
LR R

t
= − = − Ω = Ω− Ω = Ω  

Then 2(0.600 A) (0.600 A)(21.2 ) 12.7 V.R= = Ω =E  
(e) IDENTIFY and SET UP: Use the expressions derived in part (a). 

EXECUTE: The current through the light bulb before the switch is opened is 1
1

12.7 V 0.0353 A
360 

i
R

= = =
Ω

E  

EVALUATE: When the switch is opened the current through the light bulb jumps from 0.0353 A to 0.600 A. Since 
the electrical power dissipated in the bulb (brightness) depend on 2,i  the bulb suddenly becomes much brighter. 

30.76. IDENTIFY: Follow the steps specified in the problem. 
SET UP: The current in an inductor does not change abruptly. 
EXECUTE: (a) Using Kirchhoff�s loop rule on the left and right branches: 

Left: 1 1
1 2 1 2( ) 0 ( ) .di dii i R L R i i L

dt dt
− + − = ⇒ + + =E E  

Right: 2 2
1 2 1 2( ) 0 ( ) .q qi i R R i i

C C
− + − = ⇒ + + =E E  

(b) Initially, with the switch just closed, 1 2 20,  and 0.i i q
R

= = =
E  

(c) The substitution of the solutions into the circuit equations to show that they satisfy the equations is a somewhat 
tedious exercise but straightforward exercise. We will show that the initial conditions are satisfied: 

2At 0,  sin( ) sin(0) 0tt q e t
R R

β ω
ω ω

−= = = =
E E . 

1
1 1( ) (1 [(2 ) sin( ) cos( )] (0) (1 [cos(0)]) 0.ti t e RC t t i

R R
β ω ω ω− −= − + ⇒ = − =

E E  

(d) When does 2i  first equal zero? 2

1 1 625 rad/s
(2 )LC RC

ω = − = . 

1 1
2 ( ) 0 [ (2 ) sin( ) cos( )] (2 ) tan( ) 1 0ti t e RC t t RC t

R
β ω ω ω ω ω− − −= = − + ⇒ − + =

E  and 

6tan( ) 2 2(625 rad/s)(400 )(2.00 10 F) 1.00.t RCω ω −= + = + Ω × = +  
30.785arctan( 1.00) 0.785 1.256 10 s.

625 rad/s
t tω −= + = + ⇒ = = ×  

EVALUATE: As t →∞ , 1 /i R→ E , 2 0q → and 2 0i → . 

30.77. IDENTIFY: Apply BNL
i
Φ

= to calculate L. 

SET UP: In the air the magnetic field is 0
Air

NiB
W
μ

= . In the liquid, L
NiB

W
μ

=  

EXECUTE: (a) 0 0
L L Air Air 0(( ) ) ( ) [( ) ]B

Ni K NiBA B A B A D d W dW Ni D d Kd
W W
μ μ μΦ = = + = − + = − + . 

2 f 0
0 0 0 f 0[( ) ]BN d d L LL N D d Kd L L L L d

i D D D
μΦ −⎛ ⎞= = − + = − + = + ⎜ ⎟

⎝ ⎠
. 

2 20
0 0 0

f 0

, where , and .f
L Ld D L N D L K N D
L L

μ μ
⎛ ⎞−

= = =⎜ ⎟−⎝ ⎠
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(b) Using m 1K χ= +  we can find the inductance for any height 0 m1 dL L
D

χ⎛ ⎞= +⎜ ⎟
⎝ ⎠

. 

_______________________________________________________________________________ 
Height of Fluid  Inductance of Liquid Oxygen  Inductance of Mercury 

4d D=     0.63024 H   0.63000 H 
2d D=     0.63048 H   0.62999 H 

3 4d D=    0.63072 H   0.62999 H 
d D=     0.63096 H   0.62998 H 
________________________________________________________________________________ 
The values 3 5

m 2 m(O ) 1.52 10 and (Hg) 2.9 10χ χ− −= × = − ×  have been used. 
EVALUATE: (d) The volume gauge is much better for the liquid oxygen than the mercury because there is an 
easily detectable spread of values for the liquid oxygen, but not for the mercury. 

30.78. IDENTIFY: The induced emf across the two coils is due to both the self-inductance of each and the mutual 
inductance of the pair of coils. 

SET UP: The equivalent inductance is defined by eq
diL
dt

=E , where E and i are the total emf and current across 

the combination. 

EXECUTE: Series: 1 2 1 2
1 2 21 12 eq .di di di di diL L M M L

dt dt dt dt dt
+ + + ≡  

But 1 2
1 2 12 21anddi di dii i i M M M

dt dt dt
= + ⇒ = + = ≡ , so 1 2 eq( 2 ) di diL L M L

dt dt
+ + = and eq 1 2 2L L L M= + + . 

Parallel: We have 1 2
1 12 eq

di di diL M L
dt dt dt
+ =  and 2 1

2 21 eq
di di diL M L
dt dt dt

+ = , with 1 2di di di
dt dt dt
+ =  and 12 21M M M= ≡ . 

To simplify the algebra let 1 2, ,  and .di di diA B C
dt dt dt

= = =  So 1 eq 2 eq,  , .L A MB L C L B MA L C A B C+ = + = + =  Now 

solve for and in terms of .A B C  1 2( ) ( ) 0 usingL M A M L B A C B− + − = = − . 1 2( )( ) ( ) 0L M C B M L B− − + − = . 

1 1 2( ) ( ) ( ) 0L M C L M B M L B− − − + − = . 1 2 1(2 ) ( )M L L B M L C− − = −  and 1

1 2

( ) .
(2 )

M LB C
M L L

−
=

− −
 

But 1 1 2 1

1 2 1 2

( ) (2 ) ,
(2 ) (2 )

M L C M L L M LA C B C C
M L L M L L

− − − − +
= − = − =

− − − −
 or 2

1 22
M LA C

M L L
−

=
− −

. Substitute A in B back 

into original equation: 
1 2 1

eq
1 2 1 2

( ) ( )
2 (2 )
L M L C M M L C L C

M L L M L L
− −

+ =
− − − −

and 
2

1 2
eq

1 2

.
2

M L L C L C
M L L

−
=

− −
 Finally, 

2
1 2

eq
1 2 2
L L ML

L L M
−

=
+ −

. 

EVALUATE: If the flux of one coil doesn't pass through the other coil, so 0M = , then the results reduce to those 
of problem 30.47. 

30.79. IDENTIFY: Apply Kirchhoff�s loop rule to the top and bottom branches of the circuit. 
SET UP: Just after the switch is closed the current through the inductor is zero and the charge on the capacitor is 
zero. 

EXECUTE: 1( )1
1 1 1

1

0 (1 ).R L tdii R L i e
dt R

−− − = ⇒ = −
EE   2(1 )2 2 2

2 2 2 2
2

0 0 )R C tq di ii R R i e
C dt C R

−− − = ⇒ − − = ⇒ =
EE . 

2 2(1/ ) (1/ )
2 2 20

2 0

(1 )
t

t R C t R C tq i dt R Ce C e
R

′− −′= = − = −∫
E E . 

(b) 0 0 3
1 2

1 2

48.0 V(0) (1 ) 0,  9.60 10 A.
5000

i e i e
R R

−= − = = = = ×
Ω

E E  

(c) As 1 2
1 1 2

48.0 V:  ( ) (1 ) 1.92 A,  0.
25.0

t i e i e
R R R

−∞ −∞→∞ ∞ = − = = = = =
Ω

E E E  A good definition of a �long time� is 

many time constants later. 
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(d) 1 2 1 2( ) (1 ) ( ) (1 )1
1 2

1 2 2

(1 ) (1 ) .R L t R C t R L t R C tRi i e e e e
R R R

− − − −= ⇒ − = ⇒ − =
E E  Expanding the exponentials like 

2 3

1 , we find:
2 3!

x x xe x= + + + +"  
2 2

21 1 1
2 2

2

1 1
2 2

R R R t tt t
L L R RC R C

⎛ ⎞⎛ ⎞− + = − + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

" "  and 

21 1 1
2

2 2

( ) ,R R Rt O t
L R C R

⎛ ⎞
+ + + ⋅⋅⋅ =⎜ ⎟

⎝ ⎠
 if we have assumed that 1.t <<  Therefore: 

5
32

2 2 2 5
2 2 2

1 1 (8.0 H)(5000 )(2.0 10  F) 1.6 10 s.
(1 ) (1 ) 8.0 H (5000 ) (2.0 10  F)

LR Ct
R L R C L R C

−
−

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Ω ×
≈ = = = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + Ω ×⎝ ⎠⎝ ⎠ ⎝ ⎠

 

(e) At 1( )3 (25 8) 3
1

1

48 V1.57 10 s :  (1 ) (1 ) 9.4 10 A.
25

R L t tt i e e
R

−− − −= × = − = − = ×
Ω

E  

(f ) We want to know when the current is half its final value. We note that the current 2i is very small to begin with, 
and just gets smaller, so we ignore it and find: 

1 1( ) ( )
1 2 1

1

0.960 A (1 ) (1.92 A)(1 ).R L t R L ti i e e
R

− −= = = − = −
E  1( )

1

8.0 H0.500 ln(0.5) ln(0.5) 0.22 s
25

R L t Le t
R

− = ⇒ = = =
Ω

. 

EVALUATE: 1i is initially zero and rises to a final value of 1.92 A. 2i is initially 9.60 mA and falls to zero, 2q is 
initially zero and rises to 2 960 Cq C μ= =E . 
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ALTERNATING CURRENT 

 31.1. IDENTIFY: cosi I tω=  and rms / 2.I I=  
SET UP: The specified value is the root-mean-square current; rms 0.34 A.I =  
EXECUTE: (a) rms 0.34 AI =  

(b) rms2 2(0.34 A) 0.48 A.I I= = =  
(c) Since the current is positive half of the time and negative half of the time, its average value is zero. 
(d) Since rmsI is the square root of the average of 2,i  the average square of the current is 2 2 2

rms (0.34 A) 0.12 A .I = =  
EVALUATE: The current amplitude is larger than its rms value. 

 31.2. IDENTIFY and SET UP: Apply Eqs.(31.3) and (31.4) 
EXECUTE: (a) rms2 2(2.10 A) 2.97 A.I I= = =  

(b) rav
2 2 (2.97 A) 1.89 A.I I
π π

= = =  

EVALUATE: (c) The root-mean-square voltage is always greater than the rectified average, because squaring the 
current before averaging, and then taking the square root to get the root-mean-square value will always give a 
larger value than just averaging. 

 31.3. IDENTIFY and SET UP: Apply Eq.(31.5). 

EXECUTE: (a) rms
45.0 V 31.8 V.

2 2
VV = = =  

(b) Since the voltage is sinusoidal, the average is zero. 
EVALUATE: The voltage amplitude is larger than rms.V  

 31.4. IDENTIFY: CV IX=  with 1
CX

Cω
= . 

SET UP: ω is the angular frequency, in rad/s. 

EXECUTE: (a) C
IV IX
Cω

= =  so 6(60.0 V)(100 rad s)(2.20 10 F) 0.0132 A.I V Cω −= = × =  

(b) 6(60.0 V)(1000 rad s)(2.20 10 F) 0.132 A.I V Cω −= = × =  

(c) 6(60.0 V)(10,000 rad s)(2.20 10  F) 1.32 A.I V Cω −= = × =  
(d) The plot of log I versus logω is given in Figure 31.4. 
EVALUATE: I VCω= so log log( ) log .I VC ω= +  A graph of log I versus logω should be a straight line with 
slope +1, and that is what Figure 31.4 shows. 

 
Figure 31.4 

31



31-2 Chapter 31 

 31.5. IDENTIFY: LV IX=  with LX Lω= . 
SET UP: ω  is the angular frequency, in rad/s. 

EXECUTE: (a) LV IX I Lω= =  and 60.0 V 0.120 A.
(100 rad s)(5.00 H)

VI
Lω

= = =  

(b) 60.0 V 0.0120 A
(1000 rad s)(5.00 H)

VI
Lω

= = = . 

(c) 60.0 V 0.00120 A
(10,000 rad s)(5.00 H)

VI
Lω

= = = . 

(d) The plot of log I versus logω is given in Figure 31.5. 

EVALUATE: VI
Lω

=  so log log( / ) logI V L ω= − . A graph of log I  versus logω  should be a straight line with 

slope 1− , and that is what Figure 31.5 shows. 

 
Figure 31.5 

 31.6. IDENTIFY: The reactance of capacitors and inductors depends on the angular frequency at which they are 
operated, as well as their capacitance or inductance. 
SET UP: The reactances are 1/CX Cω=  and LX Lω= . 

EXECUTE: (a) Equating the reactances gives 1 1    L
C LC

ω ω
ω

= ⇒ =  

(b) Using the numerical values we get 1 1
(5.00 mH)(3.50 F)LC µ

ω = =  = 7560 rad/s 

XC = XL = ωL = (7560 rad/s)(5.00 mH) = 37.8 Ω 
EVALUATE: At other angular frequencies, the two reactances could be very different. 

 31.7. IDENTIFY and SET UP: For a resistor .Rv iR=  For an inductor, cos( 90 ).Lv V tω= + °  For a capacitor, 
cos( 90 ).Cv V tω= − °  

EXECUTE: The graphs are sketched in Figures 31.7a-c. The phasor diagrams are given in Figure 31.7d. 
EVALUATE: For a resistor only in the circuit, the current and voltage in phase. For an inductor only, the voltage 
leads the current by 90°.  For a capacitor only, the voltage lags the current by 90°.  

  
Figure 31.7a and b 
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Figure 31.7c 

 
Figure 31.7d 

 31.8. IDENTIFY: The reactance of an inductor is 2LX L fLω π= = . The reactance of a capacitor is 1 1
2CX

C fCω π
= = . 

SET UP: The frequency f is in Hz. 
EXECUTE: (a) At 60.0 Hz, 2 (60.0 Hz)(0.450 H) 170 .LX π= = Ω  LX is proportional to f so at 600 Hz, 1700 .LX = Ω  

(b) At 60.0 Hz, 3
6

1 1.06 10  .
2 (60.0 Hz)(2.50 10  F)CX
π −= = × Ω

×
 CX is proportional to 1/ ,f  so at 600 Hz, 106 .CX = Ω  

(c) L CX X=  says 12
2

fL
fC

π
π

= and 
6

1 1 150 Hz.
2 2 (0.450 H)(2.50 10  F)

f
LCπ π −

= = =
×

 

EVALUATE: LX increases when f increases. CX increases when f increases. 
 31.9. IDENTIFY and SET UP: Use Eqs.(31.12) and (31.18). 

EXECUTE: (a) 2 2 (80.0 Hz)(3.00 H) 1510 LX L fLω π π= = = = Ω  

(b) 120 2  gives 0.239 H
2 2 (80.0 Hz)

L
L

XX fL L
f

π
π π

Ω
= = = =  

(c) 6

1 1 1 497 
2 2 (80.0 Hz)(4.00 10  F)CX

C fCω π π −= = = = Ω
×

 

(d) 51 1 1 gives 1.66 10  F
2 2 2 (80.0 Hz)(120 )C

C

X C
fC f Xπ π π

−= = = = ×
Ω

 

EVALUATE: LX  increases when L increases; CX  decreases when C increases. 
31.10. IDENTIFY: LV I Lω=  

SET UP: ω is the angular frequency, in rad/s. 
2

f ω
π

= is the frequency in Hz. 

EXECUTE: LV I Lω= so 6
3 4

(12.0 V) 1.63 10 Hz.
2 2 (2.60 10 A)(4.50 10 H)

LVf
ILω π − −= = = ×

× ×
 

EVALUATE: When f is increased, I decreases. 
31.11. IDENTIFY and SET UP: Apply Eqs.(31.18) and (31.19). 

EXECUTE: 170 V so 200 
0.850 AC C

VV IX X
I

= = = = Ω  

51 1 1 gives 1.33 10  F 13.3 F
2 2 (60.0 Hz)(200 )C

C

X C
C f X

μ
ω π π

−= = = = × =
Ω

 

EVALUATE: The reactance relates the voltage amplitude to the current amplitude and is similar to Ohm�s law. 
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31.12. IDENTIFY: Compare Cv that is given in the problem to the general form sinC
Iv t
C

ω
ω

= and determine .ω  

SET UP: 1
CX

Cω
= . Rv iR=  and cos .i I ω=  

EXECUTE: (a) 6

1 1 1736
(120 rad s)(4.80 10 F)CX

Cω −= = = Ω
×

 

(b) 37.60 V 4.378 10  A
1736 

C

C

VI
X

−= = = ×
Ω

 and 3cos (4.378 10  A)cos[(120 rad/s) ].i I t tω −= = ×  Then 

3(4.38 10 A)(250 )cos((120 rad s) ) (1.10 V)cos((120 rad s) ).Rv iR t t−= = × Ω =  
EVALUATE: The voltage across the resistor has a different phase than the voltage across the capacitor. 

31.13. IDENTIFY and SET UP: The voltage and current for a resistor are related by .Rv iR=  Deduce the frequency of the 
voltage and use this in Eq.(31.12) to calculate the inductive reactance. Eq.(31.10) gives the voltage across the 
inductor. 
EXECUTE: (a) (3.80 V)cos[(720 rad/s) ]Rv t=  

3.80 V,  so cos[(720 rad/s) ] (0.0253 A)cos[(720 rad/s) ]
150 

R
R

vv iR i t t
R

⎛ ⎞= = = =⎜ ⎟Ω⎝ ⎠
 

(b) LX Lω=  
720 rad/s, 0.250 H, so (720 rad/s)(0.250 H) 180 LL X Lω ω= = = = = Ω 

(c) If cosi I tω=  then cos( 90 )L Lv V tω= + °  (from Eq.31.10). (0.02533 A)(180 ) 4.56 VL LV I L IXω= = = Ω =  
(4.56 V)cos[(720 rad/s) 90 ]Lv t= + °  

But cos( 90 ) sina a+ ° = −  (Appendix B), so (4.56 V)sin[(720 rad/s) ].Lv t= −  
EVALUATE: The current is the same in the resistor and inductor and the voltages are 90°  out of phase, with the 
voltage across the inductor leading. 

31.14. IDENTIFY: Calculate the reactance of the inductor and of the capacitor. Calculate the impedance and use that 
result to calculate the current amplitude. 

SET UP: With no capacitor, 2 2
LZ R X= + and tan .LX

R
φ =  .LX Lω=  .VI

Z
=  L LV IX= and .RV IR=  For an 

inductor, the voltage leads the current. 
EXECUTE: (a) (250 rad/s)(0.400 H) 100 .LX Lω= = = Ω  2 2(200 ) (100 ) 224 .Z = Ω + Ω = Ω  

(b) 30.0 V 0.134 A
224 

VI
Z

= = =
Ω

 

(c) (0.134 A)(200 ) 26.8 V.RV IR= = Ω =  (0.134 A)(100 ) 13.4 V.L LV IX= = Ω =  

(d) 100 tan
200 

LX
R

φ Ω
= =

Ω
and 26.6φ = + °. Since φ is positive, the source voltage leads the current. 

(e) The phasor diagram is sketched in Figure 31.14. 
EVALUATE: Note that R LV V+ is greater than V. The loop rule is satisfied at each instance of time but the voltages 
across R and L reach their maxima at different times. 

 
Figure 31.14 

31.15. IDENTIFY: ( )Rv t is given by Eq.(31.8). ( )Lv t  is given by Eq.(31.10). 
SET UP: From Exercise 31.14, 30.0 VV = , 26.8 VRV = , 13.4 VLV =  and 26.6φ = °. 
EXECUTE: (a) The graph is given in Figure 31.15. 
(b) The different voltages are (30.0 V)cos(250 26.6 ),  (26.8 V)cos(250 ),Rv t v t= + ° =  

(13.4 V)cos(250 90 ).Lv t= + ° At 20 ms:t =  20.5 V,  7.60 V,  12.85 V.R Lv v v= = =  Note that .R Lv v v+ =  
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(c) At 40 ms:t =  15.2 V,  22.49 V,  7.29 V.R Lv v v= − = − =  Note that .R Lv v v+ =  
EVALUATE: It is important to be careful with radians versus degrees in above expressions! 

 
Figure 31.15 

31.16. IDENTIFY: Calculate the reactance of the inductor and of the capacitor. Calculate the impedance and use that 
result to calculate the current amplitude. 

SET UP: With no resistor, 2( ) .L C L CZ X X X X= − = −  tan .
zero
L CX Xφ −

=  1 .CX
Cω

=  .LX Lω=  For an 

inductor, the voltage leads the current. For a capacitor, the voltage lags the current. 

EXECUTE: (a) (250 rad/s)(0.400 H) 100 .LX Lω= = = Ω  6

1 1 667 .
(250 rad/s)(6.00 10  F)CX

Cω −= = = Ω
×

 

100 667 567 .L CZ X X= − = Ω− Ω = Ω  

(b) 30.0 V 0.0529 A
567 

VI
Z

= = =
Ω

 

(c) (0.0529 A)(667 ) 35.3 V.C CV IX= = Ω =  (0.0529 A)(100 ) 5.29 V.L LV IX= = Ω =  

(d) 100 667 tan
zero zero
L CX Xφ − Ω− Ω

= = = −∞  and 90φ = − °. The phase angle is negative and the source voltage lags 

the current. 
(e) The phasor diagram is sketched in Figure 31.16. 
EVALUATE: When C LX X> the phase angle is negative and the source voltage lags the current. 

 
Figure 31.16 

31.17. IDENTIFY and SET UP: Calculate the impendance of the circuit and use Eq.(31.22) to find the current amplitude. 
The voltage amplitudes across each circuit element are given by Eqs.(31.7), (31.13), and (31.19). The phase angle 
is calculated using Eq.(31.24). The circuit is shown in Figure 31.17a. 

 

No inductor means 0LX =  
6200 ,  6.00 10  F,R C −= Ω = ×  

30.0 V, 250 rad/sV ω= =  
 

      Figure 31.17a  
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EXECUTE: (a) 6

1 1 666.7 
(250 rad/s)(6.00 10  F)CX

Cω −= = = Ω
×

 

2 2 2 2( ) (200 ) (666.7 ) 696 L CZ R X X= + − = Ω + Ω = Ω  

(b) 30.0 V 0.0431 A 43.1 mA
696 

VI
Z

= = = =
Ω

 

(c) Voltage amplitude across the resistor: (0.0431 A)(200 ) 8.62 VRV IR= = Ω =  
Voltage amplitude across the capacitor: (0.0431 A)(666.7 ) 28.7 VC CV IX= = Ω =  

(d) 0 666.7 tan 3.333 so 73.3
200 

L CX X
R

φ φ− − Ω
= = = − = − °

Ω
 

The phase angle is negative, so the source voltage lags behind the current. 
(e) The phasor diagram is sketched qualitatively in Figure 31.17b. 

 
Figure 31.17b 

EVALUATE: The voltage across the resistor is in phase with the current and the capacitor voltage lags the current 
by 90 .°  The presence of the capacitor causes the source voltage to lag behind the current. Note that .R CV V V+ >  
The instantaneous voltages in the circuit obey the loop rule at all times but because of the phase differences the 
voltage amplitudes do not. 

31.18. IDENTIFY: ( )Rv t  is given by Eq.(31.8). ( )Cv t is given by Eq.(31.16). 
SET UP: From Exercise 31.17, 30.0 V,V =  8.62 V,RV =  28.7 VCV =  and 73.3φ = − °. 
EXECUTE: (a) The graph is given in Figure 31.18. 
(b) The different voltage are: 

(30.0 V)cos(250 73.3 ),  (8.62 V)cos(250 ),  (28.7 V)cos(250 90 ).R Cv t v t v t= − ° = = − °  At 20 mst = : 
25.1 V,  2.45 V,  27.5 V.R Cv v v= − = = −  Note that .R Cv v v+ =  

(c) At 40 ms:t = 22.9 V,  7.23 V,  15.6 V.R Cv v v= − = − = −  Note that .R Cv v v+ =  
EVALUATE: It is important to be careful with radians vs. degrees! 

 
Figure 31.18 

31.19. IDENTIFY: Apply the equations in Section 31.3. 
SET UP: 250 rad/s,ω =  200 ,R = Ω  0.400 H,L =  6.00 FC μ=  and 30.0 V.V =  

EXECUTE: (a) 2 2( 1/ ) .Z R L Cω ω= + −  
2 6 2(200 ) ((250 rad/s)(0.0400 H) 1/((250 rad/s)(6.00 10 F))) 601Z −= Ω + − × = Ω  

(b) 30 V 0.0499 A.
601

VI
Z

= = =
Ω

 

(c) 
1/ 100 667arctan arctan 70.6 ,

200
L C

R
ω ωφ

⎛ ⎞− Ω− Ω⎛ ⎞= = = − °⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠
 and the voltage lags the current. 
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(d) (0.0499 A)(200 ) 9.98 V;RV IR= = Ω =  

(0.0499 A)(250 rad s)(0.400 H) 4.99 V;LV I Lω= = = 6

(0.0499 A) 33.3 V.
(250 rad/s)(6.00 10 F)C

IV
Cω −= = =

×
 

EVALUATE: (e) At any instant, .R C Lv v v v= + +  But Cv  and Lv  are 180°  out of phase, so Cv  can be larger than v 
at a value of t, if L Rv v+  is negative at that t. 

31.20. IDENTIFY: ( )Rv t  is given by Eq.(31.8). ( )Cv t  is given by Eq.(31.16). ( )Lv t  is given by Eq.(31.10). 
SET UP: From Exercise 31.19, 30.0 V,V =  4.99 V,LV =  9.98 V,RV =  33.3 VCV =  and 70.6φ = − °.  
EXECUTE: (a) The graph is sketched in Figure 31.20. The different voltages plotted in the graph are: 

(30 V)cos(250 70.6 ),v t= − °  (9.98 V)cos(250 ),Rv t=  (4.99 V)cos(250 90 )Lv t= + °  and (33.3 V)cos(250 90 ).Cv t= − °  
(b) At 20 ms:t =  24.3 V,  2.83 V,  4.79 V,  31.9 V.R L Cv v v v= − = = = −  
(c) At 40 ms:t =  23.8 V,  8.37 V,  2.71 V,  18.1 V.R L Cv v v v= − = − = = −  
EVALUATE: In both parts (b) and (c), note that the source voltage equals the sum of the other voltages at the 
given instant. Be careful with degrees versus radians! 

 
Figure 31.20 

31.21. IDENTIFY and SET UP: The current is largest at the resonance frequency. At resonance, L CX X= and .Z R=  For 
part (b), calculate Z and use / .I V Z=  

EXECUTE: (a) 0
1 113 Hz.

2
f

LCπ
= =  / 15.0 mA.I V R= =  

(b) 1/ 500 .CX Cω= = Ω  160 .LX Lω= = Ω  2 2 2 2( ) (200 ) (160 500 ) 394.5 .L CZ R X X= + − = Ω + Ω − Ω = Ω  

/ 7.61 mA.I V Z= =  C LX X>  so the source voltage lags the current. 
EVALUATE: 0 02 710 rad/s.fω π= =  400 rad/sω = and is less than 0.ω  When 0ω ω< , .C LX X>  Note that I in 
part (b) is less than I in part (a). 

31.22. IDENTIFY: The impedance and individual reactances depend on the angular frequency at which the circuit is 
driven. 

SET UP: The impedance is 
2

2 1 ,Z R L
C

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 the current amplitude is I = V/Z, and the instantaneous 

values of the potential and current are v = V cos(ωt + φ), where tan φ = (XL � XC)/R, and i = I cos ωt. 

EXECUTE: (a) Z is a minimum when 1L
C

ω
ω

= , which gives 1 1
(8.00 mH)(12.5 F)LC µ

ω = =  = 3162 rad/s = 

3160 rad/s and Z = R = 175 Ω. 
(b) I = V/Z = (25.0 V)/(175 Ω) = 0.143 A 
(c) i = I cos ωt = I/2, so cosωt = 1

2 ,  which gives ωt = 60° = π/3 rad. v = V cos(ωt + φ), where tan φ = (XL � XC)/R =  
0/R =0. So, v = (25.0 V) cosωt = (25.0 V)(1/2) = 12.5 V. 
vR = Ri = (175 Ω)(1/2)(0.143 A) = 12.5 V. 

vC = VC cos(ωt � 90°) = IXC cos(ωt � 90°) = 0.143 A cos(60 90 )
(3162 rad/s)(12.5 F)µ

° − °  = +3.13 V. 
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vL = VL cos(ωt + 90°) = IXL cos(ωt + 90°) = (0.143 A)(3162 rad/s)(8.00 mH) cos(60° + 90°). 
vL = �3.13 V. 
(d) vR + vL + vC = 12.5 V + (�3.13 V) + 3.13 V = 12.5 V = vsource 
EVALUATE: The instantaneous potential differences across all the circuit elements always add up to the value of 
the source voltage at that instant. In this case (resonance), the potentials across the inductor and capacitor have the 
same magnitude but are 180° out of phase, so they add to zero, leaving all the potential difference across the 
resistor. 

31.23. IDENTIFY and SET UP: Use the equation that preceeds Eq.(31.20): 2 2 2( )R L CV V V V= + −  

EXECUTE: 2 2(30.0 V) (50.0 V 90.0 V) 50.0 VV = + − =  
EVALUATE: The equation follows directly from the phasor diagrams of Fig.31.13 (b or c). Note that the voltage 
amplitudes do not simply add to give 170.0 V for the source voltage. 

31.24. IDENTIFY and SET UP: LX Lω= and 1
CX

Cω
= . 

EXECUTE: (a) If 0
1
LC

ω ω= = , then 1X L
C

ω
ω

= − and 1 0.LX
LC C LC

= − =  

(b) When 0,ω ω>  0X >  
(c) When 0,ω ω>  0X <  
(d) The graph of X versus ω is given in Figure 31.24. 
EVALUATE: 2 2Z R X= + and tan / .X Rφ =  

 
Figure 31.24 

31.25. IDENTIFY: For a pure resistance, 2
av rms rms rms .P V I I R= =  

SET UP: 20.0 W is the average power av.P  
EXECUTE: (a) The average power is one-half the maximum power, so the maximum instantaneous power is  
40.0 W. 

(b) av
rms

rms

20.0 W 0.167 A
120 V

PI
V

= = =  

(c) av
2 2
rms

20.0 W 720 
(0.167 A)

PR
I

= = = Ω 

EVALUATE: We can also calculate the average power as 
2 2 2
,rms rms

av
(120 V) 20.0 W.
750 

RV VP
R R

= = = =
Ω

 

31.26. IDENTIFY: The average power supplied by the source is rms rms cosP V I φ= . The power consumed in the resistance 
is 2

rms .P I R=  

SET UP: 3 32 2 (1.25 10  Hz) 7.854 10  rad/s.fω π π= = × = ×  157 .LX Lω= = Ω  1 909 .CX
Cω

= = Ω  

EXECUTE: (a) First, let us find the phase angle between the voltage and the current: 
157 909 tan

350
L CX X

R
φ − Ω− Ω
= =

Ω
 and 65.04 .φ = − °  The impedance of the circuit is 

2 2 2 2( ) (350 ) ( 752 ) 830 .L CZ R X X= + − = Ω + − Ω = Ω  The average power provided by the generator is then 
2 2

rms
rms rms

(120 V)cos( ) cos( ) cos( 65.04 ) 7.32 W
830

VP V I
Z

φ φ= = = − ° =
Ω

 



Alternating Current  31-9 

(b) The average power dissipated by the resistor is 
2

2
rms

120 V (350 ) 7.32 W.830 RP I R ⎛ ⎞= = Ω =⎜ ⎟Ω⎝ ⎠
 

EVALUATE: Conservation of energy requires that the answers to parts (a) and (b) are equal. 
31.27. IDENTIFY: The power factor is cos ,φ  where φ  is the phase angle in Fig.31.13. The average power is given by 

Eq.(31.31). Use the result of part (a) to rewrite this expression. 
(a) SET UP: The phasor diagram is sketched in Figure 31.27. 

 

EXECUTE: 
From the diagram 

cos ,RV IR R
V IZ Z

φ = = =  

as was to be shown. 
 

Figure 31.27  

(b) rms
av rms rms rms rms rmscos .

Z
R VP V I V I I R
Z

φ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 But 2rms
rms av rms,  so .

Z
V I P I R= =  

EVALUATE: In an L-R-C circuit, electrical energy is stored and released in the inductor and capacitor but none is 
dissipated in either of these circuit elements. The power delivered by the source equals the power dissipated in the 
resistor. 

31.28. IDENTIFY and SET UP: av rms rms cos .P V I φ=  rms
rms .VI

Z
=  cos .R

Z
φ =  

EXECUTE: rms
80.0 V 0.762 A.
105 

I = =
Ω

 75.0 cos 0.714.
105 

φ Ω
= =

Ω
 av (80.0 V)(0.762 A)(0.714) 43.5 W.P = =  

EVALUATE: Since the average power consumed by the inductor and by the capacitor is zero, we can also 
calculate the average power as 2 2

av rms (0.762 A) (75.0 ) 43.5 W.P I R= = Ω =  
31.29. IDENTIFY and SET UP: Use the equations of Section 31.3 to calculate rms,   and .Z Vφ  The average power 

delivered by the source is given by Eq.(31.31) and the average power dissipated in the resistor is 2
rmsI R  

EXECUTE: (a) 2 2 (400 Hz)(0.120 H) 301.6 LX L f Lω π π= = = = Ω  

6

1 1 1 54.51 
2 2 (400 Hz)(7.3 10  Hz)CX

C fCω π π −= = = = Ω
×

 

301.6 54.41 tan ,  so 45.8 .
240 

L CX X
R

φ φ− Ω− Ω
= = = + °

Ω
 The power factor is cos 0.697.φ = +  

(b) 2 2 2 2( ) (240 ) (301.6 54.51 ) 344 L CZ R X X= + − = Ω + Ω − Ω = Ω 
(c) rms rms (0.450 A)(344 ) 155 VV I Z= = Ω =  
(d) av rms rms cos (0.450 A)(155 V)(0.697) 48.6 WP I V φ= = =  
(e) 2 2

av rms (0.450 A) (240 ) 48.6 WP I R= = Ω =  
EVALUATE: The average electrical power delivered by the source equals the average electrical power consumed 
in the resistor. 
(f ) All the energy stored in the capacitor during one cycle of the current is released back to the circuit in another 
part of the cycle. There is no net dissipation of energy in the capacitor. 
(g) The answer is the same as for the capacitor. Energy is repeatedly being stored and released in the inductor, but 
no net energy is dissipated there. 

31.30. IDENTIFY: The angular frequency and the capacitance can be used to calculate the reactance CX  of the 
capacitor. The angular frequency and the inductance can be used to calculate the reactance LX  of the inductor. 
Calculate the phase angle φ and then the power factor is cos .φ  Calculate the impedance of the circuit and then the 
rms current in the circuit. The average power is av rms rms cos .P V I φ=  On the average no power is consumed in the 
capacitor or the inductor, it is all consumed in the resistor. 

SET UP: The source has rms voltage rms
45 V 31.8 V.

2 2
VV = = =  
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EXECUTE: 3(360 rad/s)(15 10  H) 5.4 .LX Lω −= = × = Ω  6

1 1 794 .
(360 rad/s)(3.5 10  F)CX

Cω −= = = Ω
×

 

5.4 794 tan
250 

L CX X
R

φ − Ω− Ω
= =

Ω
 and 72.4φ = − °.  The power factor is cos 0.302.φ =  

(b) 2 2 2 2( ) (250 ) (5.4 794 ) 827 .L CZ R X X= + − = Ω + Ω − Ω = Ω  rms
rms

31.8 V 0.0385 A.
827 

VI
Z

= = =
Ω

 

av rms rms cos (31.8 V)(0.0385 A)(0.302) 0.370 W.P V I φ= = =  

(c) The average power delivered to the resistor is 2 2
av rms (0.0385 A) (250 ) 0.370 W.P I R= = Ω =  The average power 

delivered to the capacitor and to the inductor is zero. 
EVALUATE: On average the power delivered to the circuit equals the power consumed in the resistor. The 
capacitor and inductor store electrical energy during part of the current oscillation but each return the energy to the 
circuit during another part of the current cycle. 

31.31. IDENTIFY and SET UP: At the resonance frequency, Z = R. Use that V = IZ, av,   and . R L L C CV IR V IX V IX P= = =  
is given by Eq.(31.31). 
(a) EXECUTE: (0.500 A)(300 ) 150 VV IZ IR= = = Ω =  
(b) 150 VRV IR= =  

(1/ ) / 2582 ;  1290 VL L LX L L LC L C V IXω= = = = Ω = =  

1/( ) / 2582 ;  1290 VC C CX C L C V IXω= = = Ω = =  

(c) 21 1
av 2 2cos ,  since  and cos 1P VI I R V IRφ φ= = = =  at resonance. 

21
av 2 (0.500 A) (300 ) 37.5 WP = Ω =  

EVALUATE: At resonance .L CV V=  Note that .L CV V V+ >  However, at any instant 0.L Cv v+ =  
31.32. IDENTIFY: The current is maximum at the resonance frequency, so choose C such that 50.0 rad/sω =  is the 

resonance frequency. At the resonance frequency .Z R=  
SET UP: LV I Lω=  

EXECUTE: (a) The amplitude of the current is given by 
2 2

.
1( )

VI
R L Cω ω

=
+ −

 Thus, the current will have a 

maximum amplitude when 1 .L Cω ω=  Therefore, 2 2
1 1 44.4 F.

(50.0 rad/s) (9.00 H)
C

L
μ

ω
= = =  

(b) With the capacitance calculated above we find that ,Z R=  and the amplitude of the current is 
120 V 0.300 A.400

VI R= = =
Ω

 Thus, the amplitude of the voltage across the inductor is 

( ) (0.300 A)(50.0 rad/s)(9.00 H) 135 V.LV I Lω= = =  
EVALUATE: Note that LV  is greater than the source voltage amplitude. 

31.33. IDENTIFY and SET UP: At resonance ,  0 and .L CX X Z Rφ= = =  150 ,  0.750 H,R L= Ω =  
0.0180 F, 150 VC Vμ= =  

EXECUTE: (a) At the resonance frequency L CX X=  and from tan L CX X
R

φ −
=  we have that 0φ = ° and the 

power factor is cos 1.00.φ =  
(b) 1

av 2 cosP VI φ=  (Eq.31.31) 

At the resonance frequency Z = R, so V VI
Z R

= =  
2 2

1 1 1
av 2 2 2

(150 V)cos 75.0 W
150 

V VP V
R R

φ⎛ ⎞= = = =⎜ ⎟ Ω⎝ ⎠
 

(c) EVALUATE: When C and f are changed but the circuit is kept on resonance, nothing changes in 
2

av /(2 ),P V R=  so the average power is unchanged: av 75.0 W.P =  The resonance frequency changes but since Z = 
R at resonance the current doesn�t change. 

31.34. IDENTIFY: 0
1 .
LC

ω =  .C CV IX=  .V IZ=  

SET UP: At resonance, .Z R=  
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EXECUTE: (a) 4
0 6

1 1 1.54 10  rad/s
(0.350 H)(0.0120 10  F)LC

ω
−

= = = ×
×

 

(b) .C C

C C

V VV IZ Z R
X X

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 3

4 6

1 1 5.41 10  .
(1.54 10  rad/s)(0.0120 10  F)CX

Cω −= = = × Ω
× ×

 

3

550 V (400 ) 40.7 V.
5.41 10  

V ⎛ ⎞= Ω =⎜ ⎟× Ω⎝ ⎠
 

EVALUATE: The voltage amplitude for the capacitor is more than a factor of 10 times greater than the voltage 
amplitude of the source. 

31.35. IDENTIFY and SET UP: The resonance angular frequency is 0
1 .
LC

ω =  .LX Lω=  1
CX

Cω
=  and 

2 2( ) .L CZ R X X= + −  At the resonance frequency L CX X=  and .Z R=  
EXECUTE: (a) 115 Z R= = Ω  

(b) 4
0 3 6

1 1.33 10  rad/s
(4.50 10  H)(1.26 10  F)

ω
− −

= = ×
× ×

. 4
02 2.66 10  rad/s.ω ω= = ×  

4 3(2.66 10  rad/s)(4.50 10  H) 120 .LX Lω −= = × × = Ω  4 6

1 1 30 
(2.66 10  rad/s)(1.25 10  F)CX

Cω −= = = Ω
× ×

 

2 2(115 ) (120 30 ) 146 Z = Ω + Ω− Ω = Ω  

(c) 3
0 / 2 6.65 10  rad/s.ω ω= = ×  30 .LX = Ω  1 120 .CX

Cω
= = Ω  2 2(115 ) (30 120 ) 146 ,Z = Ω + Ω − Ω = Ω  the 

same value as in part (b). 
EVALUATE: For 02 ,ω ω=  .L CX X>  For 0 / 2,ω ω=  .L CX X<  But 2( )L CX X− has the same value at these two 
frequencies, so Z is the same. 

31.36. IDENTIFY: At resonance Z R=  and .L CX X=  

SET UP: 0
1 .
LC

ω =  .V IZ=  ,RV IR=  L LV IX=  and .C LV V=  

EXECUTE: (a) 
( )( )0 6

1 1 945 rad s.
0.280 H 4.00 10  FLC

ω
−

= = =
×

 

(b) I = 1.20 A at resonance, so 120 V 70.6
1.70 A

VR Z
I

= = = = Ω  

(c) At resonance, ( )( )( )120 V,  1.70 A 945 rad s 0.280 H 450 V.R L CV V V I Lω= = = = =  

EVALUATE: At resonance, RV V=  and 0.L CV V− =  
31.37. IDENTIFY and SET UP: Eq.(31.35) relates the primary and secondary voltages to the number of turns in each. I = 

V/R and the power consumed in the resistive load is 2 2
rms rms / .I V R=  

EXECUTE: (a) 2 2 1 1

1 1 2 2

120 V so 10
12.0 V

V N N V
V N N V
= = = =  

(b) 2
2

12.0 V 2.40 A
5.00 

VI
R

= = =
Ω

 

(c) 2 2
av 2 (2.40 A) (5.00 ) 28.8 WP I R= = Ω =  

(d) The power drawn from the line by the transformer is the 28.8 W that is delivered by the load. 
2 2 2

av
av

(120 V)so 500 
28.8 W

V VP R
R P

= = = = Ω  

And 
2

21

2

(5.00 ) (10) (5.00 ) 500 ,N
N

⎛ ⎞
Ω = Ω = Ω⎜ ⎟

⎝ ⎠
 as was to be shown. 

EVALUATE: The resistance is �transformed�. A load of resistance R connected to the secondary draws the same 
power as a resistance 2

1 2( / )N N R  connected directly to the supply line, without using the transformer. 
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31.38. IDENTIFY: avP VI=  and av,1 av,2.P P=  1 1

2 2

.N V
N V

=  

SET UP: 1 120 V.V =  2 13,000 V.V =  

EXECUTE: (a) 2 2

1 1

13,000 V 108
120 V

N V
N V

= = =  

(b) 3
av 2 2 (13,000 V)(8.50 10  A) 110 WP V I −= = × =  

(c) av
1

1

110 W 0.917 A
120 V

PI
V

= = =  

EVALUATE: Since the power supplied to the primary must equal the power delivered by the secondary, in a step-
up transformer the current in the primary is greater than the current in the secondary. 

31.39. IDENTIFY: A transformer transforms voltages according to 2 2

1 1

.V N
V N
=  The effective resistance of a secondary 

circuit of resistance R is eff 2
2 1

.
( / )

RR
N N

=  Resistance R is related to avP  and V by 
2

av .VP
R

=  Conservation of energy 

requires av,1 av,2P P=  so 1 1 2 2.V I V I=  
SET UP: Let 1 240 VV =  and 2 120 V,V =  so 2,av 1600 W.P =  These voltages are rms. 
EXECUTE: (a) 1 240 VV =  and we want 2 120 V,V =  so use a step-down transformer with 1

2 1 2/ .N N =  

(b) av ,P VI=  so av 1600 W 6.67 A.
240 V

PI
V

= = =  

(c) The resistance R of the blower is 
2 2(120 V) 9.00 .

1600 W
VR
P

= = = Ω  The effective resistance of the blower is 

eff 2

9.00 36.0 .
(1/ 2)

R Ω
= = Ω  

EVALUATE: 2 2 (13.3 A)(120 V) 1600 W.I V = =  Energy is provided to the primary at the same rate that it is 
consumed in the secondary. Step-down transformers step up resistance and the current in the primary is less than 
the current in the secondary. 

31.40. IDENTIFY: 2 2( ) ,L CZ R X X= + −  with LX Lω=  and 1 .CX
Cω

=  

SET UP: The woofer has a R and L in series and the tweeter has a R and C in series. 
EXECUTE: (a) 2 2

tweeter (1 )Z R Cω= +  

(b) ( )22
wooferZ R Lω= +  

(c) If tweeter woofer ,Z Z=  then the current splits evenly through each branch. 

(d) At the crossover point, where currents are equal, ( ) ( )22 2 21 .R C R Lω ω+ = +  1
LC

ω =  and 

1 .
2 2

f
LC

ω
π π

= =  

EVALUATE: The crossover frequency corresponds to the resonance frequency of a R-C-L circuit, since the 
crossover frequency is where .L CX X=  

31.41. IDENTIFY and SET UP: Use Eq.(31.24) to relate L and R to .φ  The voltage across the coil leads the current in it 
by 52.3 ,  so 52.3 .φ° = + °  

EXECUTE: tan .L CX X
R

φ −
=  But there is no capacitance in the circuit so 0.CX =  Thus tan  and L

L
X X
R

φ = =  

tan (48.0 ) tan52.3 62.1 .R φ = Ω ° = Ω
62.1 2  so 0.124 H.

2 2 (80.0 Hz)
L

L
XX L f L L

f
ω π

π π
Ω

= = = = =  

EVALUATE: 45φ > °  when ( ) ,L CX X R− >  which is the case here. 

31.42. IDENTIFY: 2 2( ) .L CZ R X X= + −  rms
rms .VI

Z
=  rms rms .V I R=  ,rms rms .C CV I X=  ,rms rms .L LV I X=  

SET UP: rms
30.0 V 21.2 V.

2 2
VV = = =  



Alternating Current  31-13 

EXECUTE: (a) 200 rad/sω = , so (200 rad/s)(0.400 H) 80.0 LX Lω= = = Ω  and 

6

1 1 833 .
(200 rad/s)(6.00 10  F)CX

Cω −= = = Ω
×

 2 2(200 ) (80.0 833 ) 779 .Z = Ω + Ω− Ω = Ω  

rms
rms

21.2 V 0.0272 A.
779 

VI
Z

= = =
Ω

 1V  reads ,rms rms (0.0272 A)(200 ) 5.44 V.RV I R= = Ω =  2V  reads 

,rms rms (0.0272 A)(80.0 ) 2.18 V.L LV I X= = Ω =  3V  reads ,rms rms (0.0272 A)(833 ) 22.7 V.C CV I X= = Ω =  4V  reads 

,rms ,rms 2.18 V 22.7 V 20.5 V.
2

L C
L C

V V V V−
= − = − =  5V  reads rms 21.2 V.V =  

(b) 1000 rad/sω = so (5)(80.0 ) 400 LX Lω= = Ω = Ω  and 1 833 167 .
5CX

Cω
Ω

= = = Ω  

2 2(200 ) (400 167 ) 307 .Z = Ω + Ω− Ω = Ω  rms
rms

21.2 V 0.0691 A.
307 

VI
Z

= = =
Ω

 1V  reads ,rms 13.8 V.RV =  2V  reads 

,rms 27.6 V.LV =  3V  reads ,rms 11.5 V.CV =  4V  reads ,rms ,rms 27.6 V 11.5 V 16.1 V.L CV V− = − =  5V  reads 

rms 21.2 V.V =  

EVALUATE: The resonance frequency for this circuit is 0
1 645 rad/s.
LC

ω = =  200 rad/s is less than the 

resonance frequency and .C LX X>  1000 rad/s is greater than the resonance frequency and .L CX X>  
31.43. IDENTIFY and SET UP: The rectified current equals the absolute value of the current i. Evaluate the integral as 

specified in the problem. 
EXECUTE: (a) From Fig.31.3b, the rectified current is zero at the same values of t for which the sinusoidal 
current is zero. At these t, cos 0 and / 2,  3 / 2, .t tω ω π π= = ± ± …  The two smallest positive times are 

1 2/ 2 ,  3 / 2 .t tπ ω π ω= =  

(b) 
2

2 2

1 1
1

2 1
1cos sin (sin sin )

t
t t

t t
t

IA idt I tdt I t t tω ω ω ω
ω ω
⎡ ⎤= = − = − = − −⎢ ⎥⎣ ⎦∫ ∫  

1sin sin[ ( / 2 )] sin( / 2) 1tω ω π ω π= = =  

2sin sin[ (3 / 2 )] sin(3 / 2) 1tω ω π ω π= = = −  
2(1 ( 1))I IA

ω ω
⎛ ⎞= − − =⎜ ⎟
⎝ ⎠

 

(c ) rav 2 1( ) 2 /I t t I ω− =  

rav
2 1

2 2 2 ,
( ) (3 / 2 / 2 )

I I II
t tω ω π ω π ω π

= = =
− −

 which is Eq.(31.3). 

EVALUATE: We have shown that Eq.(31.3) is correct. The average rectified current is less than the current 
amplitude I, since the rectified current varies between 0 and I. The average of the current is zero, since it has both 
positive and negative values. 

31.44. IDENTIFY: .LX Lω=  av rms rms cosP V I φ=  
SET UP: 120 Hz;f =  2 .fω π=  

EXECUTE: (a) 
( )
250 0.332

2 120 Hz
L

L
XX L Lω
ω π

Ω
= ⇒ = = = Ω  

(b) ( ) ( )2 22 2 400 250 472 .LZ R X= + = Ω + Ω = Ω  cos R
Z

φ =  and rms
rms .VI

Z
=  

2
rms

av ,V RP
Z Z

=  so 

( )av
rms

800 W472 668 V.
400

PV Z
R

= = Ω =
Ω

 

EVALUATE: rms
rms

668 V 1.415 A.
472 

VI
Z

= = =
Ω

 We can calculate avP as 2 2
rms (1.415 A) (400 ) 800 W,I R = Ω =  which 

checks. 
31.45. (a) IDENTIFY and SET UP: Source voltage lags current so it must be that C LX X>  and we must add an inductor 

in series with the circuit. When C LX X=  the power factor has its maximum value of unity, so calculate the 
additional L needed to raise LX  to equal .CX  
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(b) EXECUTE: power factor cosφ  equals 1 so 0φ =  and .C LX X=  Calculate the present value of C LX X−  to 
see how much more LX  is needed: cos (60.0 )(0.720) 43.2 R Z φ= = Ω = Ω  

tan  so tanL C
L C

X X X X R
R

φ φ−
= − =  

cos 0.720 gives 43.95φ φ= = − °  (φ  is negative since the voltage lags the current) 
Then tan (43.2 ) tan( 43.95 ) 41.64 .L CX X R φ− = = Ω − ° = − Ω  
Therefore need to add 41.64  of .LXΩ  

41.64 2  and 0.133 H,
2 2 (50.0 Hz)

L
L

XX L f L L
f

ω π
π π

Ω
= = = = =  amount of inductance to add. 

EVALUATE: From the information given we can�t calculate the original value of L in the circuit, just how much 
to add. When this L is added the current in the circuit will increase. 

31.46. IDENTIFY: Use rms rmsV I Z= to calculate Z and then find R. 2
av rmsP I R=  

SET UP: 50.0 CX = Ω  

EXECUTE: ( )22 2 2rms

rms

240 V 80.0 50.0 .3.00 A C
VZ R X RI= = = Ω = + = + Ω  Thus, 

( ) ( )2 280.0 50.0 62.4 .R = Ω − Ω = Ω  The average power supplied to this circuit is equal to the power dissipated 

by the resistor, which is ( ) ( )22
rms 3.00 A 62.4 562 W.P I R= = Ω =  

EVALUATE: 50.0 tan
62.4 

L CX X
R

φ − − Ω
= =

Ω
and 38.7φ = − °.  

av rms rms cos (240 V)(3.00 A)cos( 38.7 ) 562 W,P V I φ= = − =°  which checks. 
31.47. IDENTIFY: The voltage and current amplitudes are the maximum values of these quantities, not necessarily the 

instantaneous values. 
SET UP: The voltage amplitudes are VR = RI, VL = XLI, and VC = XCI, where I = V/Z and 

2
2 1 .Z R L

C
ω

ω
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

EXECUTE: (a) ω = 2πf = 2π(1250 Hz) = 7854 rad/s. Carrying extra figures in the calculator gives XL = ωL = 
(7854 rad/s)(3.50 mH) = 27.5 Ω; XC = 1/ωC = 1/[(7854 rad/s)(10.0 µF)] = 12.7 Ω; 

2 2( )L CZ R X X= + −  = 2 2(50.0  ) (27.5  12.7  )Ω + Ω− Ω  = 52.1 Ω; 
I = V/Z = (60.0 V)/(52.1 Ω) = 1.15 A; VR = RI = (50.0 Ω)(1.15 A) = 57.5 V; 
VL = XLI = (27.5 Ω)(1.15 A) = 31.6 V; VC = XCI = (12.7 Ω)(1.15 A) = 14.7 V. 
The voltage amplitudes can add to more than 60.0 V because these voltages do not all occur at the same instant of 
time. At any instant, the instantaneous voltages all add to 60.0 V. 
(b) All of them will change because they all depend on ω. XL = ωL will double to 55.0 Ω, and XC = 1/ωC will 
decrease by half to 6.35 Ω. Therefore 2 2(50.0  ) (55.0  6.35  )Z = Ω + Ω− Ω  = 69.8 Ω; I = V/Z = (60.0 V)/(69.8 Ω) = 
0.860 A; VR = IR = (0.860 A)(50.0 Ω) = 43.0 V; 
VL = IXL = (0.860 A)(55.0 Ω) = 47.3 V; VC = IXC = (0.860 A)(6.35 Ω) = 5.47 V. 
EVALUATE: The new amplitudes in part (b) are not simple multiples of the values in part (a) because the 
impedance and reactances are not all the same simple multiple of the angular frequency. 

31.48. IDENTIFY and SET UP: 1 .CX
Cω

=  .LX Lω=  

EXECUTE: (a) 1
1

1 L
C

ω
ω

=  and 2
1

1 .LC
ω

=  At angular frequency 2,ω  2 22
2 1 2

2 1

1(2 ) 4.
1/

L

C

X L LC
X C

ω ω ω
ω ω

= = = =  

.L CX X>  

(b) At angular frequency 3,ω  
2

2 1
3 2

1

1 1 .
3 9

L

C

X LC
X

ωω
ω
⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 .C LX X>  

EVALUATE: When ω increases, LX  increases and CX  decreases. When ω decreases, LX  decreases and CX  
increases. 
(c) The resonance angular frequency 0ω  is the value of ω for which ,C LX X=  so 0 1.ω ω=  
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31.49. IDENTIFY and SET UP: Express Z and I in terms of ,ω  L, C and R. The voltages across the resistor and the 

inductor are 90°  out of phase, so 2 2
out .R LV V V= +  

EXECUTE: The circuit is sketched in Figure 31.49. 
1,  L CX L X
C

ω
ω

= =  

2
2 1Z R L

C
ω

ω
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

s s
2

2
Z 1

V VI

R L
C

ω
ω

= =
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 

Figure 31.49  
2 2 2

2 2 2 2 2
out s 2

2 1L
R LV I R X I R L V

R L
C

ωω
ω

ω

+
= + = + =

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 

2 2 2
out

2
s 2 1

V R L
V

R L
C

ω

ω
ω

+
=

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

 

 smallω  

As ω  gets small, 
2

2 2 2 2 2
2 2

1 1 ,R L R L R
C C

ω ω
ω ω

⎛ ⎞+ − → + →⎜ ⎟
⎝ ⎠

 

Therefore 
2

out
2 2

s

as 
(1/ )

V R RC
V C

ω ω
ω

→ = becomes small. 

 largeω  

As ω  gets large, 
2

2 2 2 2 2 2 2 2 2 2 21 ,  R L R L L R L L
C

ω ω ω ω ω
ω

⎛ ⎞+ − → + → + →⎜ ⎟
⎝ ⎠

 

Therefore, 
2 2

out
2 2

s

1 as V L
V L

ω ω
ω

→ =  becomes large. 

EVALUATE: out s/ 0 as V V ω→  becomes small, so there is outV  only when the frequency ω  of sV  is large. If the 
source voltage contains a number of frequency components, only the high frequency ones are passed by this filter. 

31.50. IDENTIFY: .C CV V IX= =  / .I V Z=  

SET UP: ,LX Lω=  1 .CX
Cω

=  

EXECUTE: 
( )

out
out 22s

1

1
C

I VV V .
C V C R L Cω ω ω ω

= = ⇒ =
+ −

 

If ω  is large: 
( ) ( ) ( )

out
22 22s

1 1 1 .
1

V
V LCC R L C C L ωω ω ω ω ω

= ≈ =
+ −

 

If ω  is small: 
( )

out
2

s

1 1.
1

V C
V CC C

ω
ωω ω

≈ = =  

EVALUATE: When ω is large, CX  is small and LX  is large so Z is large and the current is small. Both factors in 

C CV IX=  are small. When ω is small, CX  is large and the voltage amplitude across the capacitor is much larger 
than the voltage amplitudes across the resistor and the inductor. 

31.51. IDENTIFY: /I V Z=  and 21
av 2 .P I R=  

SET UP: 2 2( 1/ )Z R L Cω ω= + −  

EXECUTE: (a) 
( )22

.
1

V VI
Z R L Cω ω

= =
+ −
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(b)
( )

2 2
2

av 22

1 1 2 .
2 2 1

V V RP I R R
Z R L Cω ω

⎛ ⎞= = =⎜ ⎟
⎝ ⎠ + −

 

(c) The average power and the current amplitude are both greatest when the denominator is smallest, which occurs 

for 0
0

1L
C

ω
ω

= , so 0
1 .
LC

ω =  

(d) ( ) ( )
( ) ( )( ) ( )

2 2

av 2 22 6 2 2

100 V 200 2 25 .
200 2.00 H 1 [ (0.500 10 F)] 40 000 2 2 000 000

P
, , ,

ω

ω ω ω ω−

Ω
= =

Ω + − × + −
 

The graph of avP versus ω is sketched in Figure 31.51. 
EVALUATE: Note that as the angular frequency goes to zero, the power and current are zero, just as they are 
when the angular frequency goes to infinity. This graph exhibits the same strongly peaked nature as the light 
purple curve in Figure 31.19 in the textbook. 

 
Figure 31.51 

31.52. IDENTIFY: LV I Lω= and .C
IV
Cω

=  

SET UP: Problem 31.51 shows that 
2 2

.
( 1/[ ])

VI
R L Cω ω

=
+ −

 

EXECUTE: (a) 
( )22

.
1/[ ]

L
V L V LV I L

Z R L C

ω ωω
ω ω

= = =
+ −

 

(b) 
( )22

1

1 [ ]
C

I IV .
C CZ C R L Cω ω ω ω ω

= = =
+ −

 

(c) The graphs are given in Figure 31.52.  
EVALUATE: (d) When the angular frequency is zero, the inductor has zero voltage while the capacitor has 
voltage of 100 V (equal to the total source voltage). At very high frequencies, the capacitor voltage goes to zero, 

while the inductor�s voltage goes to 100 V. At resonance, 0
1 1000 rad s,
LC

ω = =  the two voltages are equal, and 

are a maximum, 1000 V. 

 

Figure 31.52 
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31.53. IDENTIFY: 21
2 .BU Li=  21

2 .EU Cv=  

SET UP: Let x〈 〉 denote the average value of the quantity x. 2 21
2i I〈 〉 =  and 2 21

2 .C Cv V〈 〉 =  Problem 31.51 shows 

that 
2 2

.
( 1/[ ])

VI
R L Cω ω

=
+ −

 Problem 31.52 shows that 
2 2

.
( 1/[ ])

C
VV

C R L Cω ω ω
=

+ −
 

EXECUTE: (a)
2

2 2 2 21 1 1 1 1
rms2 2 2 2 4 .

2B B
IU Li U L i LI L LI⎛ ⎞= ⇒ = = = =⎜ ⎟

⎝ ⎠
 

2
2 2 2 21 1 1 1

,rms2 2 2 4
1
2 2

C
E C E C C C

VU Cv U C v CV C CV⎛ ⎞= ⇒ = = = =⎜ ⎟
⎝ ⎠

 

(b) Using Problem 31.51a 

( ) ( )( )

2
2 2

2
22 22

1 1
4 4 4 11

B
V LVU LI L .

R L CR L C ω ωω ω

⎛ ⎞
⎜ ⎟= = =
⎜ ⎟ + −+ −⎝ ⎠

 

Using Problem (31.47b): 
( )( ) ( )( )

2 2
2

2 22 2 2 2 2

1 1 .
4 4 1 4 1

E C
V VU CV C

C R L C C R L Cω ω ω ω ω ω
= = =

+ − + −
 

(c) The graphs of the magnetic and electric energies are given in Figure 31.53. 
EVALUATE: (d) When the angular frequency is zero, the magnetic energy stored in the inductor is zero, while the 
electric energy in the capacitor is 2 4.EU CV=  As the frequency goes to infinity, the energy noted in both 

inductor and capacitor go to zero. The energies equal each other at the resonant frequency where 0
1
LC

ω =  and 

2

2 .
4B E
LVU U

R
= =  

 
Figure 31.53 

31.54. IDENTIFY: At any instant of time the same rules apply to the parallel ac circuit as to parallel dc circuit: the 
voltages are the same and the currents add. 
SET UP: For a resistor the current and voltage in phase. For an inductor the voltage leads the current by 90°  and 
for a capacitor the voltage lags the current by 90°.  
EXECUTE: (a) The parallel L-R-C circuit must have equal potential drops over the capacitor, inductor and 
resistor, so .R L Cv v v v= = =  Also, the sum of currents entering any junction must equal the current leaving the 
junction. Therefore, the sum of the currents in the branches must equal the current through the 
source: .R L Ci i i i= + +  

(b) R
vi R=  is always in phase with the voltage. L

vi Lω=  lags the voltage by 90 ,°  and Ci v Cω=  leads the voltage 

by 90 .°  The phase diagram is sketched in Figure 31.54. 

(c) From the diagram, ( )
22

22 2 .R C L
V VI I I I V C
R L

ω
ω

⎛ ⎞⎛ ⎞= + − = + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(d) From part (c): 
2

2

1 1 .I V C
R L

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 But ,VI
Z

=  so 
2

2

1 1 1 .C
Z R L

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠
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EVALUATE: For large ,ω  1 .Z
Cω

→  The current in the capacitor branch is much larger than the current in the 

other branches. For small ,ω  .Z Lω→  The current in the inductive branch is much larger than the current in the 
other branches. 

 
Figure 31.54 

31.55. IDENTIFY: Apply the expression for I from problem 31.54 when 0 1/ .LCω =  

SET UP: From Problem 31.54, 
2

2

1 1I V C
R L

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

EXECUTE: (a) At resonance, 0 0 0
0 0

1 1
C L

VC I V C I
L LLC

ω ω ω
ω ω

= ⇒ = ⇒ = = =  so RI I=  and I is a minimum. 

(b) 
2 2

rms
av cosV VP

Z R
φ= =  at resonance where R < Z so power is a maximum. 

(c) At 0ω ω= , I and V are in phase, so the phase angle is zero, which is the same as a series resonance. 
EVALUATE: (d) The parallel circuit is sketched in Figure 31.55. At resonance, C Li i=  and at any instant of time 
these two currents are in opposite directions. Therefore, the net current between a and b is always zero. 
(e) If the inductor and capacitor each have some resistance, and these resistances aren�t the same, then it is no 
longer true that 0C Li i+ = and the statement in part (d) isn�t valid. 

 
Figure 31.55 

31.56. IDENTIFY: Refer to the results and the phasor diagram in Problem 31.54. The source voltage is applied across 
each parallel branch. 
SET UP: rms2 311 VV V= =  

EXECUTE: (a) 311 V 0.778 A.
400R

VI
R

= = =
Ω

 

(b) ( )( )( )6311 V 360 rad s 6.00 10 F 0.672 A.CI V Cω −= = × =  

(c) 0.672 Aarctan arctan 40.8 .
0.778 A

C

R

I
I

φ
⎛ ⎞ ⎛ ⎞

= = = °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(d) ( ) ( )2 22 2 0.778 A 0.672 A 1.03 A.R CI I I= + = + =  
(e) Leads since 0.φ >  
EVALUATE: The phasor diagram shows that the current in the capacitor always leads the source voltage. 

31.57. IDENTIFY and SET UP: Refer to the results and the phasor diagram in Problem 31.54. The source voltage is 
applied across each parallel branch. 

EXECUTE: (a) ; ; .R C L
V VI I V C I
R L

ω
ω

= = =  

(b) The graph of each current versus ω is given in Figure 31.57a. 
(c) 0 : 0; .C LI Iω → → →∞  : ; 0.C LI Iω →∞ →∞ →  
At low frequencies, the current is not changing much so the inductor�s back-emf doesn�t �resist.� This allows the 
current to pass fairly freely. However, the current in the capacitor goes to zero because it tends to �fill up� over the 
slow period, making it less effective at passing charge. At high frequency, the induced emf in the inductor resists 
the violent changes and passes little current. The capacitor never gets a chance to fill up so passes charge freely. 
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(d) 
6

1 1 1000 rad sec
(2.0 H)(0.50 10 F)LC

ω
−

= = =
×

 and 159 Hz.f =  The phasor diagram is sketched in 

Figure 31.57b. 

(e) 
2 2

.V VI V C
R L

ω
ω

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

2 2
1 6

1

100 V 100 V(100 V)(1000 s )(0.50 10 F) 0.50 A
200 (1000 s )(2.0 H)

I − −
−

⎛ ⎞ ⎛ ⎞
= + × − =⎜ ⎟ ⎜ ⎟Ω ⎝ ⎠⎝ ⎠

 

(f ) At resonance 1 6(100 V)(1000 s )(0.50 10 F) 0.0500 AL CI I V Cω − −= = = × =  and 100 V 0.50 A.
200R

VI
R

= = =
Ω

 

EVALUATE: At resonance 0C Li i= = at all times and the current through the source equals the current through the 
resistor. 

 
Figure 31.57 

31.58. IDENTIFY: The average power depends on the phase angle φ. 

SET UP: The average power is Pav = VrmsIrmscos φ, and the impedance is 
2

2 1 .Z R L
C

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

EXECUTE:  (a) Pav = VrmsIrmscos φ = 1
2  (VrmsIrms), which gives cos φ = 1

2 ,  so φ = π/3 = 60°. tan φ = (XL � XC)/R, 
which gives tan 60° = (ωL � 1/ωC)/R. Using R = 75.0 Ω, L = 5.00 mH, and C = 2.50 µF and solving for ω we get 
ω = 28760 rad/s = 28,800 rad/s. 
(b) 2 2( ) ,L CZ R X X= + −  where XL = ωL = (28,760 rad/s)(5.00 mH) = 144 Ω and  

XC = 1/ωC = 1/[(28,760 rad/s)(2.50 µF)] = 13.9 Ω, giving 2 2(75  ) (144  13.9  )Z = Ω + Ω− Ω  = 150 Ω; 
I = V/Z = (15.0 V)/(150 Ω) = 0.100 A and Pav = 1

2  VI cos φ = 1
2  (15.0 V)(0.100 A)(1/2) = 0.375 W. 

EVALUATE: All this power is dissipated in the resistor because the average power delivered to the inductor and 
capacitor is zero. 

31.59. IDENTIFY: We know R,  and CX φ  so Eq.(31.24) tells us .LX  Use 2
av rmsP I R=  from Exercise 31.27 to calculate 

rms.I  Then calculate Z and use Eq.(31.26) to calculate rmsV  for the source. 
SET UP: Source voltage lags current so av54.0 . 350 ,  180 ,  140 WCX R Pφ = − ° = Ω = Ω =  

EXECUTE:  (a) tan L CX X
R

φ −
=  

tan (180 ) tan( 54.0 ) 350 248 350 102 L CX R Xφ= + = Ω − ° + Ω = − Ω+ Ω = Ω  

(b) 2
av rms rms rmscosP V I I Rφ= =  (Exercise 31.27). av

rms
140 W 0.882 A
180 

PI
R

= = =
Ω

 

(c) 2 2 2 2( ) (180 ) (102 350 ) 306 L CZ R X X= + − = Ω + Ω− Ω = Ω  

rms rms (0.882 A)(306 ) 270 V.V I Z= = Ω =  
EVALUATE: We could also use Eq.(31.31): av rms rms cosP V I φ=  

av
rms

rms

140 W 270 V,
cos (0.882 A)cos( 54.0 )

PV
I φ

= = =
− °

 which agrees. The source voltage lags the current when 

,C LX X>  and this agrees with what we found. 
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31.60. IDENTIFY and SET UP: Calculate Z and / .I V Z=  
EXECUTE: (a) For 800 rad s:ω =  

2 2 2 7 2( 1 ) (500 ) ((800 rad/s)(2.0 H) 1 ((800 rad/s)(5.0 10 F))) .Z R L Cω ω −= + − = Ω + − ×  1030Z = Ω. 
100 V 0.0971 A.

1030
VI
Z

= = =
Ω

 (0.0971 A)(500 ) 48.6 V,RV IR= = Ω =  7

1 0.0971 A 243 V
(800 rad s)(5.0 10 F)CV

Cω −= = =
×

 

and (0.0971 A)(800 rad s)(2.00 H) 155 V.LV I Lω= = =  1 ( )arctan 60.9 .L C
R

ω ωφ −⎛ ⎞= = − °⎜ ⎟
⎝ ⎠

 The graph of each 

voltage versus time is given in Figure 31.60a. 
(b) Repeating exactly the same calculations as above for 1000 rad/s:ω =  

CZ 500 ;  0;  0.200 A;  100 V; 400 V.R LR I V V V Vφ= = Ω = = = = = =  The graph of each voltage versus time is 
given in Figure 31.60b. 
(c) Repeating exactly the same calculations as part (a) for 1250 rad/sω = : 

1030 ;  60.9 ;  0.0971 A;  48.6 V;  155 V; 243 V.R C LZ R I V V Vφ= = Ω = + ° = = = =  The graph of each voltage 
versus time is given in Figure 31.60c. 

EVALUATE: The resonance frequency is 0
1 1 1000 rad/s.

(2.00 H)(0.500 F)LC
ω

μ
= = =  For 0ω ω<  the phase 

angle is negative and for 0ω ω>  the phase angle is positive. 

 

 
Figure 31.60 
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31.61. IDENTIFY and SET UP: Eq.(31.19) allows us to calculate I and then Eq.(31.22) gives Z. Solve Eq.(31.21) for L. 

EXECUTE: (a) 360 V so 0.750 A
480 

C
C C

C

VV IX I
X

= = = =
Ω

 

(b) 120 V so 160 
0.750 A

VV IZ Z
I

= = = = Ω  

(c) 2 2 2( )L CZ R X X= + −  
2 2 ,L CX X Z R− = ± −  so 

2 2 2 2480  ± (160 ) (80.0 ) 480  ± 139 L CX X Z R= ± − = Ω Ω − Ω = Ω Ω  
619  or 341 LX = Ω Ω  

(d) EVALUATE: 1  and .C LX X L
C

ω
ω

= =  At resonance, .C LX X=  As the frequency is lowered below the 

resonance frequency CX  increases and LX  decreases. Therefore, for 0 , .L CX Xω ω< <  So for 341 LX = Ω  the 
angular frequency is less than the resonance angular frequency. ω  is greater than 0ω  when 619 .LX = Ω  But at 
these two values of ,LX  the magnitude of L CX X−  is the same so Z and I are the same. In one case ( 691 )LX = Ω  
the source voltage leads the current and in the other ( 341 )LX = Ω  the source voltage lags the current. 

31.62. IDENTIFY and SET UP: The maximum possible current amplitude occurs at the resonance angular frequency 
because the impedance is then smallest. 
EXECUTE: (a) At the resonance angular frequency 0 1/ ,LCω =  the current is a maximum and Z = R, giving  
Imax = V/R. At the required frequency, I = Imax/3. I = V/Z = Imax/3 = (V/R)/3, which means that Z = 3R. Squaring 
gives R2 + (ωL � 1/ωC)2 = 9R2 . Solving for ω gives ω = 3.192 × 105 rad/s and ω = 8.35 × 104 rad/s. 

(b) rms2 2(35.0 V) 49.5 V.V V= = =  max 49.5 V 0.132 A.
3 3 3(125 )

I VI
R

= = = =
Ω

 

For 48.35 10  rad/s:ω = ×  125 R = Ω  and 16.5 ;RV IR= = Ω  125 LX Lω= = Ω  and 16.5 V;LV =  
1 479 CX
Cω

= = Ω  and 63.2 V.CV =  

For 53.192 10  rad/s:ω = ×  125 R = Ω  and 16.5 ;RV IR= = Ω  479 LX Lω= = Ω  and 63.2 V;LV =  
1 125 CX
Cω

= = Ω  and 16.5 V.CV =  

EVALUATE: For the lower frequency, C LX X>  and .C LV V>  For the higher frequency, L CX X>  and .L CV V>  
31.63. IDENTIFY and SET UP: Consider the cycle of the repeating current that lies between 1 2/ 2 and 3 / 2.t tτ τ= =  In 

this interval 02 ( ).Ii t τ
τ

= −  2 2

1 1

2 2
av rms

2 1 2 1

1 1 and 
t t

t t
I i dt I i dt

t t t t
= =

− −∫ ∫  

EXECUTE: 2

1

3 / 2
3 / 2 20 0

av 2/ 2
/ 22 1

1 1 2 2 1( )
2

t

t

I II i dt t dt t t
t t

τ
τ

τ
τ

τ τ
τ τ τ

⎡ ⎤= = − = −⎢ ⎥− ⎣ ⎦∫ ∫  

2 2 2
0 01

av 0 82

2 9 3 2 (2 ) (9 12 1 4) (13 13) 0.
8 2 8 2 4

I II Iτ τ τ τ
τ

⎛ ⎞⎛ ⎞= − − + = − − + = − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

2

1

23 / 22 2 2 20
rms av 2/ 2

2 1

1 1 4( ) ( )
t

t

II I i dt t dt
t t

τ

τ
τ

τ τ
= = = −

− ∫ ∫  

3 32 2 23 / 2 3 / 22 2 30 0 01
rms 33 3 3/ 2/ 2

4 4 4( ) ( )
3 2 2

I I II t dt t
τ τ

ττ

τ ττ τ
τ τ τ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤= − = − = − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫  

2
2 20 1
rms 03[1 1]

6
II I= + =  

2 0
rms rms .

3
II I= =  

EVALUATE: In each cycle the current has as much negative value as positive value and its average is zero. 2i  is 
always positive and its average is not zero. The relation between rmsI  and the current amplitude for this current is 
different from that for a sinusoidal current (Eq.31.4). 



31-22 Chapter 31 

31.64. IDENTIFY: Apply rms rmsV I Z=  

SET UP: 0
1
LC

ω = and 2 2( ) .L CZ R X X= + −  

EXECUTE: (a) 0 7

1 1 786 rad s.
(1.80 H)(9.00 10 F)LC

ω
−

= = =
×

 

(b) 2 2( 1 ) .Z R L Cω ω= + −  2 7 2(300 ) ((786 rad s)(1.80 H) 1 ((786 rad s)(9.00 10 F))) 300 .Z −= Ω + − × = Ω  

rms
rms-0

60 V 0.200 A.
300

VI
Z

= = =
Ω

 

(c) We want rms rms
rms-0 2 2

1 .
2 ( 1 )

V VI I
Z R L Cω ω

= = =
+ −

 
2

2 2 rms
2
rms-0

4( 1 ) .VR L C
I

ω ω+ − =  

2
2 2 2 rms

2 2 2
rms-0

1 2 4 0L VL R
C C I

ω
ω

+ − + − =  and 
2

2 2 2 2 2 rms
2 2
rms-0

2 4 1( ) 0.L VL R
C I C

ω ω
⎛ ⎞

+ − − + =⎜ ⎟
⎝ ⎠

 

Substituting in the values for this problem, the equation becomes 2 2 2 6 12( ) (3.24) ( 4.27 10 ) 1.23 10 0.ω ω+ − × + × =  

Solving this quadratic equation in 2ω we find 2 5 2 2 5 2 28.90 10 rad s or 4.28 10  rad /sω = × ×  and 
943 rad s or  654 rad s.ω =  

(d) (i) rms-0 1 2300 , 0.200 A,  289 rad s.R I ω ω= Ω = − =  (ii) rms-0 1 230 ,  2A,  28 rad/s.R I ω ω= Ω = − =  

(iii) rms-0 1 23 ,  20 A, 2 88 rad/sR I . .ω ω= Ω = − =  

EVALUATE: The width gets smaller as R gets smaller; rms-0I gets larger as R gets smaller. 
31.65. IDENTIFY: The resonance frequency, the reactances, and the impedance all depend on the values of the circuit 

elements. 
SET UP: The resonance frequency is 0 1/ ,LCω =  the reactances are XL = ωL and XC = 1/ωC, and the impedance 

is 2 2( ) .L CZ R X X= + −  

EXECUTE: (a) 0 1/ LCω =  becomes 1 1/ 2,
2 2L C

→  so ω0 decreases by 1
2 . 

(b) Since XL = ωL, if L is doubled, XL increases by a factor of 2. 
(c) Since XC = 1/ωC, doubling C decreases XC by a factor of 1

2 . 
(d) 2 2( )L CZ R X X= + −  2 21

2  (2 ) (2 ) ,L CZ R X X→ = + −  so Z does not change by a simple factor of 2 or 1
2 . 

EVALUATE: The impedance does not change by a simple factor, even though the other quantities do. 

31.66. IDENTIFY: A transformer transforms voltages according to 2 2

1 1

.V N
V N
=  The effective resistance of a secondary 

circuit of resistance R is eff 2
2 1

.
( / )

RR
N N

=   

SET UP: 2 275N =  and 1 25.0 V.V =  
EXECUTE: (a) 2 1 2 1( / ) (25.0 V)(834/ 275) 75.8 VV V N N= = =  

(b) eff 2 2
2 1

125 13.6 
( / ) (834/ 275)

RR
N N

Ω
= = = Ω  

EVALUATE: The voltage across the secondary is greater than the voltage across the primary since 2 1.N N>  The 
effective load resistance of the secondary is less than the resistance R connected across the secondary. 

31.67. IDENTIFY: The resonance angular frequency is 0
1
LC

ω =  and the resonance frequency is 0
1 .

2
f

LCπ
=  

SET UP: 0ω is independent of R. 
EXECUTE: (a) 0ω (or 0f ) depends only on L and C so change these quantities. 
(b) To double 0ω , decrease L and C by multiplying each of them by 1

2 . 
EVALUATE: Increasing L and C decreases the resonance frequency; decreasing L and C increases the resonance 
frequency. 

31.68. IDENTIFY: At resonance, .Z R=  / .I V R=  ,RV IR=  C CV IX=  and .L LV IX=  21
2E CU CV=  and 21

2 .LU LI=  
SET UP: The amplitudes of each time dependent quantity correspond to the maximum values of those quantities. 
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EXECUTE: (a) 
( )22

.
1/

V VI
Z R L Cω ω

= =
+ −

 At resonance 1L
C

ω
ω

=  and max .VI
R

=  

(b) 
0

.C C
V V LV IX

R C R Cω
= = =  

(c) 0 .L L
V V LV IX L
R R C
ω= = =  

(d) 
2 2

2
C 2 2

1 1 1 .
2 2 2C

V L VU CV C L
R C R

= = =  

(e) 
2

2
2

1 1 .
2 2L

VU LI L
R

= =  

EVALUATE: At resonance C LV V=  and the maximum energy stored in the inductor equals the maximum energy 
stored in the capacitor. 

31.69. IDENTIFY: / .I V R=  ,RV IR=  C CV IX=  and .L LV IX=  21
2E CU CV=  and 21

2 .LU LI=  
SET UP: The amplitudes of each time dependent quantity correspond to the maximum values of those quantities. 

EXECUTE: 0 .
2
ωω =  

(a) 
2

22 0
0

9
2/ 42

V V VI .
Z LL RR C C

ω ω

= = =
⎛ ⎞ ++ −⎜ ⎟
⎝ ⎠

 

(b) 
2 20

2 2 .
9 9
4 4

C C
V L VV IX

C CL LR R
C C

ω
= = =

+ +
 

(c) 0

2 2

2 .
2 9 9

4 4

L L
L V L VV IX

CL LR R
C C

ω
= = =

+ +
 

(d) 
2

2
C

2

1 2 .92
4

C
LVU CV LR

C

= =
+

 

(e) 
2

2

2

1 1 .92 2
4

L
LVU LI LR

C

= =
+

 

EVALUATE: For 0ω ω< , C LV V> and the maximum energy stored in the capacitor is greater than the maximum 
energy stored in the inductor. 

31.70. IDENTIFY: /I V R= . RV IR= , C CV IX=  and L LV IX= . 21
2E CU CV=  and 21

2LU LI= . 
SET UP: The amplitudes of each time dependent quantity correspond to the maximum values of those quantities. 
EXECUTE: 02 .ω ω=  

(a) 
2 2

20 0

.
9(2 1/ 2 )
4

V V VI
Z LR L C R

C
ω ω

= = =
+ − +

 

(b) 
2 20

1 2 .
2 9 9

4 4

C C
V L VV IX

C CL LR R
C C

ω
= = =

+ +
 

(c) 0
2 2

22 .
9 9
4 4

L L
V L VV IX L

CL LR R
C C

ω= = =
+ +

 

(d) 
2

2

2

1 .
2 98

4

C C
LVU CV

LR
C

= =
+

 



31-24 Chapter 31 

(e) 
2

2

2

1 .
2 92

4

L
LVU LI

LR
C

= =
+

 

EVALUATE: For 0,ω ω>  L CV V>  and the maximum energy stored in the inductor is greater than the maximum 
energy stored in the capacitor. 

31.71. IDENTIFY and SET UP: Assume the angular frequency ω  of the source and the resistance R of the resistor are 
known. 

EXECUTE: Connect the source, capacitor, resistor, and inductor in series. Measure RV and .LV  L

R

V I L L
V IR R

ω ω
= =  

and L can be calculated. 
EVALUATE: There are a number of other approaches. The frequency could be varied until ,C LV V=  and then this 

frequency is equal to 1/ .LC  If C is known, then L can be calculated. 

31.72. IDENTIFY: av rms rms cosP V I φ=  and rms
rms .VI

Z
=  Calculate Z. cos .R Z φ=  

SET UP: 50.0 Hzf = and 2 .fω π=  The power factor is cos .φ  

EXECUTE: (a) 
2

rms
av cos .VP

Z
φ=  

2 2
rms

av

cos (120 V) (0.560) 36.7 .
(220 W)

VZ
P

φ
= = = Ω  

cos (36.7 )(0.560) 20.6 .R Z φ= = Ω = Ω  

(b) 2 2 2 2 2 2(36.7 ) (20.6 ) 30.4 .L LZ R X X Z R= + ⋅ = − = Ω − Ω = Ω  But 0φ = is at resonance, so the inductive 

and capacitive reactances equal each other. Therefore we need to add 30.4 .CX = Ω  1
CX

Cω
= therefore gives 

41 1 1 1.05 10 F.
2 2 (50.0 Hz)(30.4 )C C

C
X f Xω π π

−= = = = ×
Ω

 

(c) At resonance, 
2 2

av
(120 V) 699 W.
20.6

VP
R

= = =
Ω

 

EVALUATE: 2
av rmsP I R=  and rmsI  is maximum at resonance, so the power drawn from the line is maximum at 

resonance. 

31.73. IDENTIFY: 2 .Rp i R=  .L
dip iL
dt

=  .C
qp i
C

=  

SET UP: cosi I tω=  

EXECUTE: (a) 2 2 2 2 1cos ( ) cos ( ) (1 cos(2 )).
2R R Rp i R I t R V I t V I tω ω ω= = = = +  

1
av 0 20 0

1( ) (1 cos(2 )) [ ] .
2 2

T T TR R
R R

V I V IP R p dt t dt t V I
T T T

ω= = + = =∫ ∫  

(b) 2 1
2cos( )sin( ) sin(2 ).L L

dip Li LI t t V I t
dt

ω ω ω ω= = − = −  But av0
sin(2 ) 0 ( ) 0.

T
t dt P Lω = ⇒ =∫  

(c) 1
2sin( )cos( ) sin(2 ).C C C C

qp i v i V I t t V I t
C

ω ω ω= = = =  But av0
sin(2 ) 0 ( ) 0.

T
t dt P Cω = ⇒ =∫  

(d) 2 1 1
2 2cos ( ) sin(2 ) sin(2 )R L c R L Cp p p p V I t V I t V I tω ω ω= + + = − +  and 

cos( )( cos( ) sin( ) sin( )).R L Cp I t V t V t V tω ω ω ω= − +  But cos RV
V

φ =  and sin ,L CV V
V

φ −
=  so 

cos( )(cos cos( ) sin sin( )),p VI t t tω φ ω φ ω= − at any instant of time. 
EVALUATE: At an instant of time the energy stored in the capacitor and inductor can be changing, but there is no 
net consumption of electrical energy in these components. 

31.74. IDENTIFY: .L LV IX=  0LdV
dω

=  at the ω where LV  is a maximum. .C CV IX=  0CdV
dω

=  at the ω where CV is a 

maximum. 

SET UP: Problem 31.51 shows that 
2 2

.
( 1/ )

VI
R L Cω ω

=
+ −

 

EXECUTE: (a) RV =maximum when 0
1 .C LV V
LC

ω ω= ⇒ = =  



Alternating Current  31-25 

(b) LV =maximum when 0.LdV
dω

= Therefore: 
2 2

0 .
( 1 )

LdV d V L
d d R L C

ω
ω ω ω ω

⎛ ⎞
⎜ ⎟= =
⎜ ⎟+ −⎝ ⎠

 

2 2 2

2 2 3 22 2

( 1 )( 1 )0 .
( ( 1 ) )( 1 )

VL V L L C L C
R L CR L C

ω ω ω
ω ωω ω

− +
= −

+ −+ −
 2 2 2 2 4 2( 1 ) ( 1 ) .R L C L Cω ω ω ω+ − = −  

2
2 2 2 2

1 2 1 .LR
C C Cω ω

+ − = −  
2 2

2

1
2

R CLC
ω

= −  and 
2 2

1 .
2LC R C

ω =
−

 

(c) CV =maximum when 0.CdV
dω

=  Therefore: 
2 2

0 .
( 1 )

CdV d V
d d C R L Cω ω ω ω ω

⎛ ⎞
⎜ ⎟= =
⎜ ⎟+ −⎝ ⎠

 

2 2

2 2 3 22 2 2

( 1 )( 1 )0 .
( ( 1 ) )( 1 )

V V L C L C
C R L CC R L C

ω ω
ω ωω ω ω

− +
= − −

+ −+ −
 2 2 2 2 4 2( 1 ) ( 1 ).R L C L Cω ω ω ω+ − = − −  

2 2 2 2 22LR L L
C

ω ω+ − = −  and 
2

2

1 .
2
R

LC L
ω = −  

2 2 2 2 22 .LR L L
C

ω ω+ − = −  

EVALUATE: LV  is maximum at a frequency greater than the resonance frequency and CX  is a maximum at a 
frequency less than the resonance frequency. These frequencies depend on R , as well as on L and on C. 

31.75. IDENTIFY: Follow the steps specified in the problem. 
SET UP: In part (a) use Eq.(31.23) to calculate Z and then / .I V Z=  φ is given by Eq.(31.24). In part (b) let 

.Z R iX= +  
EXECUTE: (a) From the current phasors we know that 2 2( 1 ) .Z R L Cω ω= + −  

2
2

6

1(400 ) (1000 rad s)(0.50 H) 500 .
(1000 rad s)(1.25 10 F)

Z −

⎛ ⎞
= Ω + − = Ω⎜ ⎟×⎝ ⎠

 

200 V 0.400 A.
500

VI
Z

= = =
Ω

 

(b) 1 ( )arctan .L C
R

ω ωφ −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
6(1000 rad s)(0.500 H) 1 (1000 rad s)(1.25 10 F)arctan 36.9

400
φ

−⎛ ⎞− ×
= = + °⎜ ⎟Ω⎝ ⎠

 

(c) cpx
1 .Z R i L
C

ω
ω

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 cpx 6

1400 (1000 rad s)(0.50 H) 400 300 .
(1000 rad s)(1.25 10 F)

Z i i−

⎛ ⎞
= Ω− − = Ω− Ω⎜ ⎟×⎝ ⎠

 

2 2(400 ) ( 300 ) 500 .Z = Ω + − Ω = Ω  

(d) cpx
cpx

200 V 8 6 A (0.320 A) (0.240 A) .
(400 300 ) 25

V iI i
Z i

+⎛ ⎞= = = = +⎜ ⎟− Ω ⎝ ⎠
 8 6 8 6 0.400 A.

25 25
i iI + −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(e) cpx

cpx

Im( ) 6 25tan 0.75 36.9 .
Re( ) 8 25

I
I

φ φ= = = ⇒ = + °  

(f ) cpx cpx
8 6 (400 ) (128 96 )V.

25R
iV I R i+⎛ ⎞= = Ω = +⎜ ⎟

⎝ ⎠
 

cpx cpx
8 6 (1000 rad s)(0.500 H) ( 120 160 ) V.

25L
iV iI L i iω +⎛ ⎞= = = − +⎜ ⎟

⎝ ⎠
 

cpx
Ccpx 6

8 6 1 ( 192 256 ) V.
25 (1000 rad s)(1.25 10 F)

I iV i i i
Cω −

+⎛ ⎞= = = + −⎜ ⎟ ×⎝ ⎠
 

(g) cpx cpx cpx cpx (128 96 ) V ( 120 160 )V (192 256 ) V 200 V.R L CV V V V i i i= + + = + + − + + − =  
EVALUATE: Both approaches yield the same value for I and for .φ



32-1 

ELECTROMAGNETIC WAVES 

 32.1. IDENTIFY: Since the speed is constant, distance .x ct=  
SET UP: The speed of light is 83.00 10  m/sc = × . 71 yr 3.156 10  s.= ×  

EXECUTE: (a) 
8

8

3.84 10  m 1.28 s
3.00 10  m/s

xt
c

×
= = =

×
 

(b) 8 7 16 13(3.00 10  m/s)(8.61 yr)(3.156 10  s/yr) 8.15 10  m 8.15 10  kmx ct= = × × = × = ×  
EVALUATE: The speed of light is very great. The distance between stars is very large compared to terrestrial 
distances. 

 32.2. IDENTIFY: Since the speed is constant the difference in distance is .c tΔ  
SET UP: The speed of electromagnetic waves in air is 83.00 10  m/s.c = ×  
EXECUTE: A total time difference of 0.60 sμ corresponds to a difference in distance of 

8 6(3.00 10  m/s)(0.60 10  s) 180 m.c t −Δ = × × =  
EVALUATE: The time delay doesn�t depend on the distance from the transmitter to the receiver, it just depends on 
the difference in the length of the two paths. 

 32.3. IDENTIFY: Apply .c f λ=  

SET UP: 83.00 10  m/sc = ×  

EXECUTE: (a)
8

43.0 10 m s 6.0 10  Hz.
5000 m

cf
λ

×
= = = ×  

(b)
8

73.0 10 m s 6.0 10  Hz.
5.0 m

cf
λ

×
= = = ×  

(c) 
8

13
6

3.0 10 m s 6.0 10  Hz.
5.0 10 m

cf
λ −

×
= = = ×

×
 

(d)
8

16
9

3.0 10 m s 6.0 10 Hz.
5.0 10  m

cf
λ −

×
= = = ×

×
 

EVALUATE: f increases when λ decreases. 

 32.4. IDENTIFY: c f λ= and 2 .k π
λ

=  

SET UP: 83.00 10  m/sc = × . 

EXECUTE: (a) cf
λ

= . UVA: 147.50 10  Hz×  to 149.38 10  Hz× . UVB: 149.38 10  Hz×  to 151.07 10  Hz× . 

(b) 2k π
λ

= . UVA: 71.57 10  rad/m×  to 71.96 10  rad/m× . UVB: 71.96 10  rad/m× to 72.24 10  rad/m× . 

EVALUATE: Larger λ corresponds to smaller f and k. 
 32.5. IDENTIFY: c f λ= . max maxE cB= . 2 /k π λ= . 2 .fω π=  

SET UP: Since the wave is traveling in empty space, its wave speed is 83.00 10  m/sc = × . 

EXECUTE: (a) 
8

14
9

3.00 10  m/s 6.94 10  Hz
432 10  m

cf
λ −

×
= = = ×

×
 

(b) 8 6
max max (3.00 10  m/s)(1.25 10  T) 375 V/mE cB −= = × × =  

32
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(c) 7
9

2 2  rad 1.45 10  rad/m
432 10  m

k π π
λ −= = = ×

×
. 14 15(2  rad)(6.94 10  Hz) 4.36 10  rad/sω π= × = × . 

7 15
max cos( ) (375 V/m)cos([1.45 10  rad/m] [4.36 10  rad/s] )E E kx t x tω= − = × − ×  

6 7 15
max cos( ) (1.25 10  T)cos([1.45 10  rad/m] [4.36 10 rad/s] )B B kx t x tω −= − = × × − ×  

EVALUATE: The cos( )kx tω− factor is common to both the electric and magnetic field expressions, since these 
two fields are in phase. 

 32.6. IDENTIFY: c f λ= . max maxE cB= . Apply Eqs.(32.17) and (32.19). 

SET UP: The speed of the wave is 83.00 10  m/s.c = ×  

EXECUTE: (a) 
8

14
9

3.00 10  m/s 6.90 10  Hz
435 10  m

cf
λ −

×
= = = ×

×
 

(b) 
3

12max
max 8

2.70 10  V/m 9.00 10  T
3.00 10  m/s

EB
c

−
−×

= = = ×
×

 

(c) 72 1.44 10  rad/mk π
λ

= = × . 152 4.34 10  rad/sfω π= = × . If max
�( ,  ) cos( )ω= +

!
z t E kz tE i , then 

max
�( ,  ) cos( )ω= − +

!
z t B kz tB j , so that ×E B

! !
will be in the �−k direction. 

3 7 15�( ,  ) (2.70 10  V/m)cos([1.44 10  rad/s) [4.34 10  rad/s] )−= × × + ×
!

z t z tE i and 
12 7 15�( ,  ) (9.00 10  T)cos([1.44 10  rad/s) [4.34 10  rad/s] )−= − × × + ×

!
z t z tB j . 

EVALUATE: The directions of E
!

and B
!

and of the propagation of the wave are all mutually perpendicular. The 
argument of the cosine is kz tω+ since the wave is traveling in the -directionz− . Waves for visible light have very 
high frequencies. 

 32.7. IDENTIFY and SET UP: The equations are of the form of Eqs.(32.17), with x replaced by z. B
!

 is along the y-axis; 
deduce the direction of .E

!
 

EXECUTE: 14 152 2 (6.10 10  Hz) 3.83 10  rad/sfω π π= = × = ×  
15

7
8

2 2 3.83 10  rad/s 1.28 10  rad/m
3.00 10  m/s

fk
c c

π π ω
λ

×
= = = = = ×

×
 

4
max 5.80 10  TB −= ×  

8 4 5
max max (3.00 10  m/s)(5.80 10  T) 1.74 10  V/mE cB −= = × × = ×  

B
!

 is along the y-axis. E B
! !
×  is in the direction of propagation (the +z-direction). From this we can deduce the 

direction of ,E
!

 as shown in Figure 32.7. 

 

E
!

 is along the x-axis. 
 

Figure 32.7  

max
�cos( )E kz tω−E i

!
= = 5 7 15�(1.74 10  V/m) cos[(1.28 10  rad/m) (3.83 10  rad/s) ]z t× × − ×i  

max
�cos( )B kz tω−B j

!
= = ( )4 7 15�5.80 10  T cos[(1.28 10  rad/m) (3.83 10  rad/s) ]−× × − ×z tj  

EVALUATE:  and E B
! !

 are perpendicular and oscillate in phase. 
 32.8. IDENTIFY: For an electromagnetic wave propagating in the negative x direction, max cos( )E E kx tω= + . 2 fω π=  

and 2k π
λ

= . 1T
f

= . max max.E cB=  

SET UP: The wave specified in the problem has a different phase, so max sin( )E E kx tω= − + . max 375 V/mE = , 
71.99 10  rad/mk = × and 155.97 10  rad/sω = × . 

EXECUTE: (a) max
max 1.25 TEB

c
μ= = . 
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(b) 149.50 10  Hz
2

f ω
π

= = × . 72 3.16 10  m 316 nm
k
πλ −= = × = . 151 1.05 10  sT

f
−= = × . This wavelength is too short 

to be visible. 
(c) 14 7 8(9.50 10  Hz)(3.16 10  m) 3.00 10  m/sc f λ −= = × × = × . This is what the wave speed should be for an 
electromagnetic wave propagating in vacuum. 

EVALUATE: 2
2

c f
k k

ω π ωλ
π

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 is an alternative expression for the wave speed. 

 32.9. IDENTIFY and SET UP: Compare the ( ,  )
!

y tE  given in the problem to the general form given by Eq.(32.17). Use 

the direction of propagation and of E
!

 to find the direction of .B
!

 
(a) EXECUTE: The equation for the electric field contains the factor sin( )ky tω−  so the wave is traveling in the 
+y-direction. The equation for ( ,  )

!
y tE  is in terms of sin( )ky tω−  rather than cos( );ky tω−  the wave is shifted in 

phase by 90°  relative to one with a cos( )ky tω−  factor. 

(b) 5 12�( , ) (3.10 10  V/m) sin[ (2.65 10  rad/s) ]y t ky t− × − ×E k
!

=  
Comparing to Eq.(32.17) gives 122.65 10  rad/sω = ×  

8
4

12

2 2 2 (2.998 10  m/s)2  so 7.11 10  m
(2.65 10  rad/s)

π π πω π λ
λ ω

−×
= = = = = ×

×
c cf  

(c) 
E B
! !
×  must be in the +y-

direction (the direction in 
which the wave is traveling). 
When E

!
 is in the �z-direction 

then B
!

 must be in the �x-
direction, as shown in 
Figure 32.9. 
 

Figure 32.9  
12

3
8

2 2.65 10  rad/s 8.84 10  rad/m
2.998 10  m/s

k
c

π ω
λ

×
= = = = ×

×
 

5
max 3.10 10  V/mE = ×  

Then 
5

3max
max 8

3.10 10  V/m 1.03 10  T
2.998 10  m/s

EB
c

−×
= = = ×

×
 

Using Eq.(32.17) and the fact that B
!

 is in the �−i  direction when E
!

 is in the �−k  direction, 
3 3 12�(1.03 10  T) sin[(8.84 10  rad/m) (2.65 10  rad/s) ]y t−− × × − ×B i

!
=  

EVALUATE: E
!

 and B
!

 are perpendicular and oscillate in phase. 
32.10. IDENTIFY: Apply Eqs.(32.17) and (32.19). /f c λ= and 2 /k π λ= . 

SET UP: The wave in this problem has a different phase, so max( ,  ) sin( ).yB z t B kx tω= +  
EXECUTE: (a) The phase of the wave is given by kx tω+ , so the wave is traveling in the x−  direction. 

(b) 2 2 fk
c

π π
λ

= = . 
4 8

11(1.38 10 rad m)(3.0 10 m s) 6.59 10 Hz.
2 2
kcf
π π

× ×
= = = ×  

(c) Since the magnetic field is in the y+ -direction, and the wave is propagating in the x− -direction, then the 

electric field is in the z+ -direction so that ×
! !
E B will be in the x− -direction. 

max
� �( ,  ) ( ,  ) sin( ) .x t cB x t cB kx tω= + = +E k k

!

( )9 4 12 �( ,  ) ( (3.25 10  T))sin (1.38 10  rad/m) (4.14 10 rad/s) .x t c x t−= × × + ×E k
!

 

( )4 12 �( ,  ) (2.48 V m)sin (1.38 10  rad/m) (4.14 10  rad/s) .x t x t= + × + ×E k
!

 

EVALUATE: E
!

and B
!

have the same phase and are in perpendicular directions. 
32.11. IDENTIFY and SET UP: c f λ=  allows calculation of .λ  2 /k π λ=  and 2 .fω π=  Eq.(32.18) relates the electric 

and magnetic field amplitudes. 

EXECUTE: (a) 
8

3

2.998 10  m/s so 361 m
830 10  Hz

cc f
f

λ λ ×
= = = =

×
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(b) 2 2  rad 0.0174 rad/m
361 m

k π π
λ

= = =  

(c) 3 62 (2 )(830 10  Hz) 5.22 10  rad/sfω π π= = × = ×  

(d) Eq.(32.18): 8 11
max max (2.998 10  m/s)(4.82 10  T) 0.0144 V/mE cB −= = × × =  

EVALUATE: This wave has a very long wavelength; its frequency is in the AM radio braodcast band. The electric 
and magnetic fields in the wave are very weak. 

32.12. IDENTIFY: max max.E cB=  

SET UP: The magnetic field of the earth is about 410  T.−  

EXECUTE: 
3

11
8

3.85 10  V/m 1.28 10  T.
3.00 10  m/s

EB
c

−
−×

= = = ×
×

 

EVALUATE: The field is much smaller than the earth's field. 
32.13. IDENTIFY and SET UP: v f λ=  relates frequency and wavelength to the speed of the wave. Use Eq.(32.22) to 

calculate n and K. 

EXECUTE: (a) 
8

7
14

2.17 10  m/s 3.81 10  m
5.70 10  Hz

v
f

λ −×
= = = ×

×
 

(b) 
8

7
14

2.998 10  m/s 5.26 10  m
5.70 10  Hz

c
f

λ −×
= = = ×

×
 

(c) 
8

8

2.998 10  m/s 1.38
2.17 10  m/s

×
= = =

×
cn
v

 

(d) 2 2
m  so (1.38) 1.90n KK K K n= ≈ = = =  

EVALUATE: In the material  and v c f<  is the same, so λ  is less in the material than in air. v c<  always, so n is 
always greater than unity. 

32.14. IDENTIFY: Apply Eq.(32.21). max maxE cB= . v f λ= . Apply Eq.(32.29) with m 0Kμ μ= in place of 0μ . 
SET UP: 3.64K = . m 5.18K =  

EXECUTE: (a) 
8

7

m

(3.00 10 m s) 6.91 10 m s.
(3.64)(5.18)

cv
KK

×
= = = ×  

(b) 
7

66.91 10 m s 1.06 10 m.
65.0 Hz

v
f

λ ×
= = = ×  

(c) 
3

10max
max 7

7.20 10 V m 1.04 10 T.
6.91 10 m s

EB
v

−
−×

= = = ×
×

 

(d) 
3 10

8 2max max

m 0 0

(7.20 10 V m)(1.04 10 T) 5.75 10 W m .
2 2(5.18)

E BI
K μ μ

− −
−× ×

= = = ×  

EVALUATE: The wave travels slower in this material than in air.  
32.15. IDENTIFY: /I P A= . 21

0 max2I cE= P . max maxE cB= . 

SET UP: The surface area of a sphere of radius r is 24A rπ= . 12 2 2
0 8.85 10  C /N m−= × ⋅P . 

EXECUTE: (a) 2
2 2

(0.05)(75 W) 330 W/m
4 (3.0 10  m)

PI
A π −= = =

×
. 

(b) 
2

max 12 2 2 8
0

2 2(330 W/m ) 500 V/m
(8.85 10  C /N m )(3.00 10  m/s)

IE
c −= = =

× ⋅ ×P
. 6max

max 1.7 10  T 1.7 TEB
c

μ−= = × = . 

EVALUATE: At the surface of the bulb the power radiated by the filament is spread over the surface of the bulb. 
Our calculation approximates the filament as a point source that radiates uniformly in all directions. 

32.16. IDENTIFY and SET UP: The direction of propagation is given by ×
! !
E B . 

EXECUTE: (a) � � � �( ) .= × − = −S i j k  

(b) � � � �.= × = −S j i k  

(c) � � � �= − × − =( ) ( ) .S k i j  

(d) � � � �.= × − =( )S i k j  

EVALUATE: In each case the directions of E
!

, B
!

and the direction of propagation are all mutually perpendicular. 
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32.17. IDENTIFY: max maxE cB= . ×
! !
E B  is in the direction of propagation. 

SET UP: 83.00 10  m/sc = × . max 4.00 V/m.E =  

EXECUTE: 8
max max 1.33 10 TB E c −= = × . For E

!
 in the +x-direction, ×

! !
E B  is in the +z-direction when B

!
 is in 

the +y-direction. 
EVALUATE: E

!
, B
!

and the direction of propagation are all mutually perpendicular. 
32.18. IDENTIFY: The intensity of the electromagnetic wave is given by Eq.(32.29): 2 21

0 max 0 rms2 .= =I cE cEP P The total 
energy passing through a window of area A during a time t  is IAt. 
SET UP: 12

0 8.85 10  F/m−= ×P  

EXECUTE: 2 12 8 2 2
0 rmsEnergy (8.85 10  F m)(3.00 10  m s)(0.0200 V m) (0.500 m )(30.0 s) 15.9 Jμ−= = × × =cE AtP  

EVALUATE: The intensity is proportional to the square of the electric field amplitude. 
32.19. IDENTIFY and SET UP: Use Eq.(32.29) to calculate I, Eq.(32.18) to calculate max ,B  and use 2

av / 4I P rπ=  to 
calculate av.P  

(a) EXECUTE: 2 5 21
0 max max2 ;  0.090 V/m, so 1.1 10  W/mI E E I −= = = ×P  

(b) 10
max max max max so / 3.0 10  TE cB B E c −= = = ×  

(c) 2 5 2 3 2
av (4 ) (1.075 10  W/m )(4 )(2.5 10  m) 840 WP I rπ π−= = × × =  

(d) EVALUATE: The calculation in part (c) assumes that the transmitter emits uniformly in all directions. 
32.20. IDENTIFY and SET UP: av /I P A= and 2

0 rms.=I cEP  

EXECUTE: (a) The average power from the beam is 2 4 2 4
av (0.800 W m )(3.0 10  m ) 2.4 10  W− −= = × = ×P IA . 

(b) 
2

rms 12 8
0

0.800 W m 17.4 V m
(8.85 10  F m)(3.00 10  m s)−= = =

× ×
IE
cP

 

EVALUATE: The laser emits radiation only in the direction of the beam. 
32.21: IDENTIFY: av /I P A=  

SET UP: At a distance r from the star, the radiation from the star is spread over a spherical surface of area 
24A rπ= . 

EXECUTE: 2 3 2 10 2 25
av (4 ) (5.0 10 W m )(4 )(2.0 10  m) 2.5 10 JP I rπ π= = × × = ×  

EVALUATE: The intensity decreases with distance from the star as 21/ r . 
32.22. IDENTIFY and SET UP: c f λ= , max maxE cB= and max max 0/ 2I E B μ=  

EXECUTE: (a) 
8

83.00 10 m s 8.47 10 Hz.
0.354 m

cf
λ

×
= = = ×  

(b) 10max
max 8

0.0540 V m 1.80 10  T.
3.00 10 m s

EB
c

−= = = ×
×

 

(c) 
10

6 2max max
av

0 0

(0.0540 V m)(1.80 10  T) 3.87 10  W m .
2 2μ μ

−
−×

= = = = ×
E BI S  

EVALUATE: Alternatively, 21
0 max2=I cEP . 

32.23. IDENTIFY: avP IA= and 21
0 max2=I cEP  

SET UP: The surface area of a sphere is 24 .A rπ=  

EXECUTE: 
2

2max
av av

0

(4 )
2
EP S A r
c

π
μ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
. 

8
av 0 0

max 2 2

(60.0 W)(3.00 10 m s) 12.0 V m.
2 2 (5.00 m)
P cE

r
μ μ

π π
×

= = =  

8max
max 8

12.0 V m 4.00 10  T.
3.00 10  m s

−= = = ×
×

EB
c

 

EVALUATE: maxE and maxB are both inversely proportional to the distance from the source. 

32.24. IDENTIFY: The Poynting vector is .= ×
! ! !
S E B  

SET UP: The electric field is in the +y-direction, and the magnetic field is in the +z-direction. 
2 1

2cos (1 cos2 )φ φ= +  

EXECUTE: (a) � � � �� � ( ) .= × = − × = −S E B j k i  The Poynting vector is in the �x-direction, which is the direction of 
propagation of the wave. 
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(b) ( )2max max max max

0 0 0

( ,  ) ( ,  )( ,  ) cos ( ) 1 cos(2( )) .
2

E x t B x t E B E BS x t kx t t kxω ω
μ μ μ

= = + = + +  But over one period, the 

cosine function averages to zero, so we have max max
av

02
E BS

μ
= . This is Eq.(32.29). 

EVALUATE: We can also show that these two results also apply to the wave represented by Eq.(32.17). 
32.25. IDENTIFY: Use the radiation pressure to find the intensity, and then 2

av (4 ).P I rπ=  

SET UP: For a perfectly absorbing surface, rad
Ip
c

=  

EXECUTE: radp I c= so 3 2
rad 2.70 10  W/m .= = ×I cp  Then 

2 3 2 2 5
av (4 ) (2.70 10 W m )(4 )(5.0 m) 8.5 10 W.P I rπ π= = × = ×  

EVALUATE: Even though the source is very intense the radiation pressure 5.0 m from the surface is very small. 
32.26. IDENTIFY: The intensity and the energy density of an electromagnetic wave depends on the amplitudes of the 

electric and magnetic fields. 
SET UP: Intensity is av /I P A= , and the average power is Pav = 2I /c, where 21

0 max2I cE= P . The energy density is 
2

0 .u E= P  

EXECUTE: (a) I = Pav /A = 2

316,000 W
2 (5000 m)π

 = 0.00201 W/m2. Pav = 2I /c = 
2

8

2(0.00201 W/m )
3.00 10  m/s×

 = 1.34 × 1110−  Pa 

(b) 21
0 max2I cE= P  gives 

max
0

2IE
c

=
P

 = 
2

12 2 2 8

2(0.00201 W/m )
(8.85 10  C /N m )(3.00 10  m/s)−× ⋅ ×

 = 1.23 N/C 

Bmax = Emax /c = (1.23 N/C)/(3.00 × 108 m/s) = 4.10 × 910−  T 

(c) 2
0 ,u E= P  so 2

av 0 av( )u E= P  and Eav = max

2
E , so 

uav = 
( )12 2 2 22

0 max
8.85 10  C /N m (1.23 N/C)

2 2
E −× ⋅

=
P  = 6.69 × 1210−  J/m3 

(d) As was shown in Section 32.4, the energy density is the same for the electric and magnetic fields, so each one 
has 50% of the energy density. 
EVALUATE: Compared to most laboratory fields, the electric and magnetic fields in ordinary radiowaves are 
extremely weak and carry very little energy. 

32.27. IDENTIFY and SET UP: Use Eqs.(32.30) and (32.31). 

EXECUTE: (a) By Eq.(32.30) the average momentum density is av
2 2

dp S I
dV c c

= =  

3 2
15 2

8 2

0.78 10  W/m 8.7 10  kg/m s
(2.998 10  m/s)

dp
dV

−×
= = × ⋅

×
 

(b) By Eq.(32.31) the average momentum flow rate per unit area is 
3 2

6av
8

0.78 10  W/m 2.6 10  Pa
2.998 10  m/s

S I
c c

−×
= = = ×

×
 

EVALUATE: The radiation pressure that the sunlight would exert on an absorbing or reflecting surface is very 
small. 

32.28. IDENTIFY: Apply Eqs.(32.32) and (32.33). The average momentum density is given by Eq.(32.30), with S 
replaced by avS I= . 

SET UP: 51 atm 1.013 10  Pa= ×  

EXECUTE: (a) Absorbed light: 
2

6
rad 8

2500 W m 8.33 10 Pa.
3.0 10 m s

Ip
c

−= = = ×
×

 Then 

6
11

rad 5

8.33 10  Pa 8.23 10  atm.
1.013 10  Pa atm

p
−

−×
= = ×

×
 

(b) Reflecting light: 
2

5
rad 8

2 2(2500 W m ) 1.67 10 Pa.
3.0 10 m s

Ip
c

−= = = ×
×

 Then 

5
10

rad 5

1.67 10  Pa 1.65 10  atm.
1.013 10  Pa atm

p
−

−×
= = ×

×
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(c) The momentum density is 
2

14 2av
2 8 2

2500 W m 2.78 10 kg m s.
(3.0 10 m s)

dp S
dV c

−= = = × ⋅
×

 

EVALUATE: The factor of 2 in radp for the reflecting surface arises because the momentum vector totally reverses 
direction upon reflection. Thus the change in momentum is twice the original momentum. 

32.29. IDENTIFY: Apply Eq.(32.4) and (32.9). 
SET UP: Eq.(32.26) is 2

0S cE= P . 

EXECUTE: 
2

2 2 20 0 0 0 0
0

0 0 0 0 0 00 0 0 0

1E EB ES E E Ec c EB EB cE
c cμ μ μ μ μ μμ μ

= = = = = = = =
P P P P P

P
P P

 

EVALUATE: We can also write 2 3 2
0 0( ) .S c cB c B= =P P  S can be written solely in terms of E or solely in terms of B. 

32.30. IDENTIFY: The electric field at the nodes is zero, so there is no force on a point charge placed at a node. 
SET UP: The location of the nodes is given by Eq.(32.36), where x is the distance from one of the planes. 

/ .c fλ =  

EXECUTE: 
8

nodes 8

3.00 10 m s 0.200 m 20.0 cm.
2 2 2(7.50 10 Hz)

cx
f

λ ×
Δ = = = = =

×
 There must be nodes at the planes, which 

are 80.0 cm apart, and there are two nodes between the planes, each 20.0 cm from a plane. It is at 20 cm, 40 cm, 
and 60 cm from one plane that a point charge will remain at rest, since the electric fields there are zero. 
EVALUATE: The magnetic field amplitude at these points isn�t zero, but the magnetic field doesn�t exert a force 
on a stationary charge. 

32.31. IDENTIFY and SET UP: Apply Eqs.(32.36) and (32.37). 
EXECUTE: (a) By Eq.(32.37) we see that the nodal planes of the B

!
 field are a distance / 2λ  apart, so 

/ 2 3.55 mmλ =  and 7.10 mm.λ =  
(b) By Eq.(32.36) we see that the nodal planes of the E

!
 field are also a distance / 2 3.55 mmλ =  apart. 

(c) 10 3 8(2.20 10  Hz)(7.10 10  m) 1.56 10  m/s.v f λ −= = × × = ×  

EVALUATE: The spacing between the nodes of E
!

 is the same as the spacing between the nodes of .B
!

 Note that 
,v c<  as it must. 

32.32. IDENTIFY: The nodal planes of E
!

and B
!

are located by Eqs.(32.26) and (32.27). 

SET UP: 
8

6

3.00 10  m/s 4.00 m
75.0 10  Hz

c
f

λ ×
= = =

×
 

EXECUTE: (a) 2.00 m.
2

x λ
Δ = =  

(b) The distance between the electric and magnetic nodal planes is one-quarter of a wavelength, so is 
2.00 m 1.00 m.

4 2 2
xλ Δ

= = =  

EVALUATE: The nodal planes of B
!

 are separated by a distance / 2λ  and are midway between the nodal planes of .E
!

 
32.33. (a) IDENTIFY and SET UP: The distance between adjacent nodal planes of is / 2.λB

!
 There is an antinodal plane 

of B
!

 midway between any two adjacent nodal planes, so the distance between a nodal plane and an adjacent 
antinodal plane is / 4.λ  Use v f λ=  to calculate .λ  

EXECUTE: 
8

10

2.10 10  m/s 0.0175 m
1.20 10  Hz

v
f

λ ×
= = =

×
 

30.0175 m 4.38 10  m 4.38 mm
4 4
λ −= = × =  

(b) IDENTIFY and SET UP: The nodal planes of E
!

 are at x = 0, / 2,  ,  3 /2, . . . ,λ λ λ  so the antinodal planes of E
!

 
are at / 4,  3 /4, 5 /4, . . . .x λ λ λ=  The nodal planes of B

!
 are at / 4,  3 / 4,  5 /4, . . . ,x λ λ λ=  so the antinodal planes 

of B
!

 are at / 2,  , 3 /2, . . . .λ λ λ  
EXECUTE: The distance between adjacent antinodal planes of E

!
 and antinodal planes of B

!
 is therefore 

/ 4 4.38 mm.λ =  
(c) From Eqs.(32.36) and (32.37) the distance between adjacent nodal planes of E

!
 and B

!
 is / 4 4.38 mm.λ =  

EVALUATE: The nodes of E
!

 coincide with the antinodes of ,B
!

 and conversely. The nodes of B
!

 and the nodes 
of E
!

 are equally spaced. 
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32.34. IDENTIFY: Evaluate the derivatives of the expressions for ( ,  )yE x t and ( ,  )zB x t that are given in Eqs.(32.34) and 
(32.35). 

SET UP: sin coskx k kx
x
∂

=
∂

, sin cost t
t

ω ω ω∂
=

∂
. cos sinkx k kx

x
∂

= −
∂

, cos sint t
t

ω ω ω∂
= −

∂
. 

EXECUTE: (a) 
2 2

max max2 2

( ,  )
( 2 sin sin ) ( 2 cos sin )yE x t

E kx t kE kx t
x x x

ω ω
∂ ∂ ∂

= − = −
∂ ∂ ∂

 and 

2 22
2

max max 0 02 2 2

( ,  ) ( ,  )
2 sin sin 2 sin sin .y yE x t E x t

k E kx t E kx t
x c t

ωω ω μ
∂ ∂

= = =
∂ ∂

P   

Similarly: 
2 2

max max2 2

( ,  ) ( 2 cos cos ) ( 2 sin cos )zB x t B kx t kB kx t
x x x

ω ω∂ ∂ ∂
= − = +

∂ ∂ ∂
and 

2 2 2
2

max max 0 02 2 2

( ,  ) ( ,  )2 cos cos 2 cos cos .z zB x t B x tk B kx t B kx t
x c t

ωω ω μ∂ ∂
= = =

∂ ∂
P  

(b) max max

( ,  )
( 2 sin sin ) 2 cos sinyE x t

E kx t kE kx t
x x

ω ω
∂ ∂

= − = −
∂ ∂

.

max
max max

( ,  )
2 cos sin 2 cos sin 2 cos sinyE x t EE kx t kx t B kx t

x c c
ω ω ω ω ω ω

∂
= − = − = −

∂
. 

max

( ,  ) ( ,  )(2 cos cos ) .y zE x t B x tB kx t
x t t

ω
∂ ∂ ∂

= + = −
∂ ∂ ∂

 

Similarly: max max
( ,  ) ( 2 cos cos ) 2 sin coszB x t B kx t kB kx t
x x

ω ω∂ ∂
− = + = −

∂ ∂
. 

max max2

( ,  ) 2 sin cos 2 sin coszB x t B kx t cB kx t
x c c

ω ωω ω∂
− = − = −

∂
. 

0 0 max 0 0 max 0 0

( ,  )( ,  ) 2 sin cos ( 2 sin sin ) .yz E x tB x t E kx t E kx t
x t t

μ ω ω μ ω μ
∂∂ ∂

− = − = − =
∂ ∂ ∂

P P P  

EVALUATE: The standing waves are linear superpositions of two traveling waves of the same k and ω . 
32.35. IDENTIFY: The nodal and antinodal planes are each spaced one-half wavelength apart. 

SET UP: 1
22  wavelengths fit in the oven, so ( )1

22 ,Lλ =  and the frequency of these waves obeys the equation fλ = c. 

EXECUTE: (a) Since ( )1
22 ,Lλ =  we have L = (5/2)(12.2 cm) = 30.5 cm. 

(b) Solving for the frequency gives f = c/λ = (3.00 × 108 m/s)/(0.122 m) = 2.46 × 109 Hz. 
(c) L = 35.5 cm in this case. ( )1

22 ,Lλ =  so λ = 2L/5 = 2(35.5 cm)/5 = 14.2 cm. 

f = c/λ = (3.00 × 108 m/s)/(0.142 m) = 2.11 × 109 Hz 
EVALUATE: Since microwaves have a reasonably large wavelength, microwave ovens can have a convenient size 
for household kitchens. Ovens using radiowaves would need to be far too large, while ovens using visible light 
would have to be microscopic. 

32.36. IDENTIFY: Evaluate the partial derivatives of the expressions for ( ,  )yE x t  and ( ,  )zB x t . 

SET UP: sin( ) cos( )kx t k kx t
x

ω ω∂
− = −

∂
, sin( ) cos( )kx t kx t

t
ω ω ω∂

− = − −
∂

. cos( ) sin( )kx t k kx t
x

ω ω∂
− = − −

∂
, 

cos( ) sin( )kx t kx t
t

ω ω ω∂
− = −

∂
 

EXECUTE: Assume max
�sin( )E kx tω= −E j

!
and max

�sin( ), with .B kx tω φ π φ π= − + − < <B k
!

 Eq. (32.12) is 

y zE B
x t

∂ ∂
= −

∂ ∂
. This gives max maxcos( ) cos( )kE kx t B kx tω ω ω φ− = + − + , so 0φ = , and max maxkE Bω= , so 

max max max max max
2 .

2 /
fE B B f B cB

k
ω π ω

π ω
= = = =  Similarly for Eq.(32.14), 0 0

yz EB
x t

μ
∂∂

− =
∂ ∂

P  gives 

max 0 0 maxcos( ) cos( )kB kx t E kx tω φ μ ω ω− − + = − −P , so 0φ = and max 0 0 maxkB Eμ ω= P , so 

0 0
max max max max max2 2

2 1 .
2 /

f fB E E E E
k c c c
μ ω π ω

π ω
= = = =
P  

EVALUATE: The E
!

and B
!

fields must oscillate in phase. 
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32.37. IDENTIFY and SET UP: Take partial derivatives of Eqs.(32.12) and (32.14), as specified in the problem. 

EXECUTE: Eq.(32.12): y zE B
x t

∂ ∂
= −

∂ ∂
 

Taking 
t
∂
∂

 of both sides of this equation gives 
2 2

2
y zE B

x t t
∂ ∂

= −
∂ ∂ ∂

. Eq.(32.14) says 0 0 .yz EB
x t

μ
∂∂

− =
∂ ∂

P  Taking 
x
∂
∂

 of 

both sides of this equation gives 
2 22 2

0 02 2
0 0

1,  so y yz zE EB B
x t x t x x

μ
μ

∂ ∂∂ ∂
− = = −
∂ ∂ ∂ ∂ ∂ ∂

P
P

. But 
2 2

y yE E
x t t x
∂ ∂

=
∂ ∂ ∂ ∂

 (The order in 

which the partial derivatives are taken doesn't change the result.) So 
2 2

2 2
0 0

1z zB B
t xμ

∂ ∂
− = −
∂ ∂P

 and 
2 2

0 02 2 ,z zB B
x t

μ∂ ∂
=

∂ ∂
P  

as was to be shown. 
EVALUATE: Both fields, electric and magnetic, satisfy the wave equation, Eq.(32.10). We have also shown that 
both fields propagate with the same speed 0 01/ .v μ= P  

32.38. IDENTIFY: The average energy density in the electric field is 21
,av 0 av2 ( )Eu E= P and the average energy density in 

the magnetic field is 2
,av av

0

1 ( )
2Bu B
μ

= . 

SET UP: ( )2 1
2av

cos ( )kx tω− = . 

EXECUTE: max( ,  ) cos( )yE x t E kx tω= − . 2 2 21 1
0 0 max2 2 cos ( )E yu E E kx tω= = −P P and 21

,av 0 max4Eu E= P . 

max( ,  ) cos( )zB x t B kx tω= − , so 2 2 2
max

0 0

1 1 cos ( )
2 2B zu B B kx tω
μ μ

= = − and 2
,av max

0

1
4Bu B
μ

= . max maxE cB= , so 

2 21
,av 0 max4Eu c B= P . 

0 0

1c
μ

=
P

, so 2
,av max

0

1
2Eu B
μ

= , which equals ,avBu . 

EVALUATE: Our result allows us to write 21
av ,av 0 max22 Eu u E= = P  and 2

av ,av max
0

12
2Bu u B
μ

= = . 

32.39. IDENTIFY: The intensity of an electromagnetic wave depends on the amplitude of the electric and magnetic 
fields. Such a wave exerts a force because it carries energy. 
SET UP: The intensity of the wave is 21

av 0 max2/I P A cE= = P , and the force is avF P A=  where av /P I c= . 
EXECUTE: (a) I = Pav /A = (25,000 W)/[4π(575 m)2] = 0.00602 W/m2 

(b) 21
0 max2I cE= P , so max

0

2IE
c

=
P

 = 
2

12 2 2 8

2(0.00602 W/m )
(8.85 10  C /N m )(3.00 10  m/s)−× ⋅ ×

 = 2.13 N/C. 

Bmax = Emax/c = (2.13 N/C)/(3.00 × 108 m/s) = 7.10 × 910−  T 

(c) F =Pav A = ( I /c)A = (0.00602 W/m2)(0.150 m)(0.400 m)/(3.00 × 108 m/s) = 1.20 × 1210−  N 
EVALUATE: The fields are very weak compared to ordinary laboratory fields, and the force is hardly worth 
worrying about! 

32.40. IDENTIFY: c f λ= . max maxE cB= . 21
0 max2I cE= P . For a totally absorbing surface the radiation pressure is .I

c
 

SET UP: The wave speed in air is 83.00 10  m/sc = × . 

EXECUTE: (a) 
8

9
2

3.00 10  m/s 7.81 10  Hz
3.84 10  m

cf
λ −

×
= = = ×

×
 

(b) 9max
max 8

1.35 V/m 4.50 10  T
3.00 10  m/s

EB
c

−= = = ×
×

 

(c) 2 12 2 2 8 2 3 21 1
0 max2 2 (8.854 10  C /N m )(3.00 10  m/s)(1.35 V/m) 2.42 10  W/mI cE − −= = × ⋅ × = ×P  

(d) 
3 2 2

12
8

(2.42 10  W/m )(0.240 m )(pressure) 1.94 10  N
3.00 10  m/s

IAF A
c

−
−×

= = = = ×
×

 

EVALUATE: The intensity depends only on the amplitudes of the electric and magnetic fields and is independent 
of the wavelength of the light. 
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32.41. (a) IDENTIFY and SET UP: Calculate I and then use Eq.(32.29) to calculate maxE  and Eq.(32.18) to calculate max.B  

EXECUTE: The intensity is power per unit area: 
3

2
3 2

3.20 10  W 652 W/m .
(1.25 10  m)

PI
A π

−

−

×
= = =

×
 

2
max

max 0
0

,  so 2
2
EI E cI

c
μ

μ
= =  

7 8 2
max 2(4 10  T m/A)(2.998 10  m/s)(652 W/m ) 701 V/mE π −= × ⋅ × =  

6max
max 8

701 V/m 2.34 10  T
2.998 10  m/s

EB
c

−= = = ×
×

 

EVALUATE: The magnetic field amplitude is quite small. 
(b) IDENTIFY and SET UP: Eqs.(24.11) and (30.10) give the energy density in terms of the electric and magnetic 
field values at any time. For sinusoidal fields average over 2E  and 2B  to get the average energy densities. 
EXECUTE: The energy density in the electric field is 21

02 .Eu E= P  max cos( )E E kx tω= −  and the average value of 
2 1

2cos ( ) is .kx tω−  The average energy density in the electric field then is 
2 12 2 2 2 6 31 1

,av 0 max4 4 (8.854 10  C / N m )(701 V/m) 1.09 10  J/m .Eu E − −= = × ⋅ = ×P  The energy density in the magnetic field 

is 
2

0

.
2B
Bu
μ

=  The average value is 
2 6 2

6 3max
,av 7

0

(2.34 10  T) 1.09 10  J/m .
4 4(4 10  T m/A)B
Bu
μ π

−
−

−

×
= = = ×

× ⋅
 

EVALUATE: Our result agrees with the statement in Section 32.4 that the average energy density for the electric 
field is the same as the average energy density for the magnetic field. 
(c) IDENTIFY and SET UP: The total energy in this length of beam is the total energy density 

6 3
av ,av ,av 2.18 10  J/mE Bu u u −= + = ×  times the volume of this part of the beam. 

EXECUTE: 6 3 3 2 11
av (2.18 10  J/m )(1.00 m) (1.25 10  m) 1.07 10  J.U u LA π− − −= = × × = ×  

EVALUATE: This quantity can also be calculated as the power output times the time it takes the light to travel L = 

1.00 m: 3 11
8

1.00 m(3.20 10  W) 1.07 10  J,
2.998 10  m/s

LU P
c

− −⎛ ⎞ ⎛ ⎞= = × = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 which checks. 

32.42. IDENTIFY: Use the gaussian surface specified in the hint. 
SET UP: The wave is in free space, so in Gauss�s law for the electric field, encl 0Q = and 0.d⋅ =E A

!!A  Gauss�s law 

for the magnetic field says 0d⋅ =B A
!!A  

EXECUTE: Use a gaussian surface such that the front surface is ahead of the wave front (no electric or magnetic 

fields) and the back face is behind the wave front, as shown in Figure 32.42. encl

0

0x
Qd E A
ε

⋅ = = =E A
!!A , so 0.xE =  

0xd B A⋅ = =B A
!!A and 0.xB =  

EVALUATE: The wave must be transverse, since there are no components of the electric or magnetic field in the 
direction of propagation. 

 
Figure 32.42 

32.43. IDENTIFY: av /I P A= . For an absorbing surface, the radiation pressure is rad
Ip
c

=  

SET UP: Assume the electromagnetic waves are formed at the center of the sun, so at a distance r from the center 
of the sun 2

av /(4 ).I P rπ=  
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EXECUTE: (a) At the sun�s surface: 
26

7 2av
2 8 2

3.9 10 W 6.4 10 W m
4 4 (6.96 10 m)

PI
Rπ π

×
= = = ×

×
and 

7 2

rad 8

6.4 10 W m 0.21 Pa.
3.00 10 m s

Ip
c

×
= = =

×
 

(b) Halfway out from the sun�s center, the intensity is 4 times more intense, and so is the radiation pressure: 
8 22.6 10  W/mI = × and rad 0.85 Pa.p =  At the top of the earth�s atmosphere, the measured sunlight intensity is 
2 61400 W m 5 10  Pa−= × , which is about 100,000 times less than the values above. 

EVALUATE: (b) The gas pressure at the sun�s surface is 50,000 times greater than the radiation pressure, and 
halfway out of the sun the gas pressure is believed to be about 136 10×  times greater than the radiation pressure. 
Therefore it is reasonable to ignore radiation pressure when modeling the sun�s interior structure. 

32.44. IDENTIFY: PI
A

= . 21
0 max2I cE= P . 

SET UP: 83.00 10  m/s×  

EXECUTE: 
3

2
2

2.80 10  W 77.8 W/m
36.0 m

PI
A

×
= = = . 

2

max 12 2 2 8
0

2 2(77.8 W/m ) 242 N/C
(8.854 10  C /N m )(3.00 10  m/s)

IE
c −= = =

× ⋅ ×P
. 

EVALUATE: This value of maxE is similar to the electric field amplitude in ordinary light sources. 
32.45. IDENTIFY: The same intensity light falls on both reflectors, but the force on the reflecting surface will be twice as 

great as the force on the absorbing surface. Therefore there will be a net torque about the rotation axis. 
SET UP: For a totally absorbing surface, av ( / ) ,F P A I c A= =  while for a totally reflecting surface the force will be 

twice as great. The intensity of the wave is 21
0 max2 .I cE= P  Once we have the torque, we can use the rotational form 

of Newton�s second law, τnet
 = Iα, to find the angular acceleration. 

EXECUTE: The force on the absorbing reflector is 
21

20 max2 1
Abs av 0 max2( / )

cE A
F p A I c A AE

c
= = = =

P
P  

For a totally reflecting surface, the force will be twice as great, which is 2
0 maxcEP . The net torque is therefore  

2
net Refl Abs 0 max( /2) ( /2) /4F L F L AE Lτ = − = P  

Newton�s 2nd law for rotation gives net .Iτ α= 2
0 max /4 2 ( /2)AE L m L α2=P  

Solving for α gives 
( )12 2 2 2 2

2 13 2
0 max

8.85 10  C /N m (0.0150 m) (1.25 N/C)
/(2 ) 3.89 10  rad/s

(2)(0.00400 kg)(1.00 m)
AE mLα

−
−

× ⋅
= = = ×P  

EVALUATE: This is an extremely small angular acceleration. To achieve a larger value, we would have to greatly 
increase the intensity of the light wave or decrease the mass of the reflectors. 

32.46. IDENTIFY: For light of intensity absI incident on a totally absorbing surface, the radiation pressure is 

abs
rad,abs

Ip
c

= . For light of intensity reflI  incident on a totally reflecting surface, refl
rad,refl

2Ip
c

= . 

SET UP: The total radiation pressure is rad rad,abs rad,reflp p p= + . absI wI= and refl (1 )I w I= −  

EXECUTE: (a) abs refl
rad rad,abs rad,refl

2 2(1 ) (2 )I I wI w I w Ip p p
c c c c c

− −
= + = + = + = . 

(b) (i) For totally absorbing rad1so Iw p
c

= = . (ii) For totally reflecting rad
20 so .Iw p
c

= =  These are just equations 

32.32 and 32.33. 

(c) For 2 20.9 and 1.40 10  W/m ,w I= = ×  
3 2

6
rad 8

(2 0.9)(1.40 10  W m ) 5.13 10  Pa.
3.00 10  m/s

p −− ×
= = ×

×
 For 0.1w =  and 

3 21.40 10  W m ,I = ×  
2 2

6
rad 8

(2 0.1)(1.40 10  W m ) 8.87 10  Pa.
3.00 10  m/s

p −− ×
= = ×

×
 

EVALUATE: The radiation pressure is greater when a larger fraction is reflected. 
32.47. IDENTIFY and SET UP: In the wire the electric field is related to the current density by Eq.(25.7). Use Ampere�s 

law to calculate .B
!

 The Poynting vector is given by Eq.(32.28) and the equation that follows it relates the energy 
flow through a surface to .S

!
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EXECUTE: (a) The direction of E
!

 is parallel to the axis of the cylinder, in the direction of the current. From 
Eq.(25.7), 2/ .E J I aρ ρ π= =  (E is uniform across the cross section of the conductor.) 
(b) A cross-sectional view of the conductor is given in Figure 32.47a; take the current to be coming out of the page. 

Apply Ampere�s law to a 
circle of radius a. 

(2 )d B aπ⋅B l =
!!A  

enclI I=  

Figure 32.47a  

0 encld Iμ⋅B l =
!!A  gives 0(2 )B a Iπ μ=  and 0

2
IB
a

μ
π

=  

The direction of B
!

 is counterclockwise around the circle. 
(c) The directions of  and E B

! !
 are shown in Figure 32.47b. 

The direction of 
0

1
μ

S = E B
! ! !

×  

is radially inward. 
0

2
0 0

1 1
2

I IS EB
a a
ρ μ

μ μ π π
⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

2

2 32
IS
a

ρ
π

=  

Figure 32.47b  
(d) EVALUATE: Since S is constant over the surface of the conductor, the rate of energy flow P is given by S 

times the surface of a length l of the conductor: 
2 2

2 3 2(2 ) (2 ) .
2

I lIP SA S al al
a a

ρ ρπ π
π π

= = = =  But 2 ,lR
a
ρ
π

=  so the 

result from the Poynting vector is 2.P RI=  This agrees with 2 ,RP I R=  the rate at which electrical energy is being 

dissipated by the resistance of the wire. Since S
!

 is radially inward at the surface of the wire and has magnitude 
equal to the rate at which electrical energy is being dissipated in the wire, this energy can be thought of as entering 
through the cylindrical sides of the conductor. 

32.48. IDENTIFY: The intensity of the wave, not the electric field strength, obeys an inverse-square distance law. 
SET UP: The intensity is inversely proportional to the distance from the source, and it depends on the amplitude 
of the electric field by I = Sav = 1

02 P cEmax
2. 

EXECUTE: Since I = 1
02 P cEmax

2, maxE I∝ . A point at 20.0 cm (0.200 m) from the source is 50 times closer to 
the source than a point that is 10.0 m from it. Since I ∝ 1/r2 and (0.200 m)/(10.0 m) = 1/50, we have I0.20 = 502 I10. 
Since maxE I∝ , we have E0.20 = 50E10 = (50)(1.50 N/C) = 75.0 N/C. 
EVALUATE: While the intensity increases by a factor of 502 = 2500, the amplitude of the wave only increases by 
a factor of 50. Recall that the intensity of any wave is proportional to the square of its amplitude. 

32.49. IDENTIFY and SET UP: The magnitude of the induced emf is given by Faraday�s law: .Bd
dt
Φ

=E  To calculate 

/Bd dtΦ  we need /dB dt  at the antenna. Use the total power output to calculate I and then combine Eq.(32.29) and 
(32.18) to calculate max .B  The time dependence of B is given by Eq.(32.17). 
EXECUTE: 2 ,B B RπΦ =  where R = 0.0900 m is the radius of the loop. (This assumes that the magnetic field is 

uniform across the loop, an excellent approximation.) 2 dBR
dt

π=E  

max maxcos( ) so sin( )dBB B kx t B kx t
dt

ω ω ω= − = −  

The maximum value of 2
max maxmax

 is ,  so .dB B R B
dt

ω π ω=E  

6 80.0900 m, 2 2 (95.0 10  Hz) 5.97 10  rad/sR fω π π= = = × = ×  
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Calculate the intensity I at this distance from the source, and from that the magnetic field amplitude max:B  
3

4 2
2 3 2

55.0 10  W 7.00 10  W/m .
4 4 (2.50 10  m)

PI
rπ π

−×
= = = ×

×
 

2 2
2max max
max

0 0 0

( )
2 2 2
E cB cI B

c cμ μ μ
= = =  

Thus 
7 4 2

90
max 8

2 2(4 10  T m/A)(7.00 10  W/m ) 2.42 10  T.
2.998 10  m/s

IB
c
μ π − −

−× ⋅ ×
= = = ×

×
 Then 

2 2 9 8
maxmax

(0.0900 m) (2.42 10  T)(5.97 10  rad/s) 0.0368 V.R Bπ ω π −= = × × =E  
EVALUATE: An induced emf of this magnitude is easily detected. 

32.50. IDENTIFY: The nodal planes are one-half wavelength apart. 
SET UP: The nodal planes of B are at x = λ/4, 3λ/4, 5λ/4, �, which are λ/2 apart. 
EXECUTE: (a) The wavelength is λ = c / f  = (3.000 × 108 m/s)/(110.0 × 106 Hz) = 2.727 m. So the nodal planes 
are at (2.727 m)/2 = 1.364 m apart. 
(b) For the nodal planes of E, we have λn = 2L/n, so L = nλ/2 = (8)(2.727 m)/2 = 10.91 m 
EVALUATE: Because radiowaves have long wavelengths, the distances involved are easily measurable using 
ordinary metersticks. 

32.51. IDENTIFY and SET UP: Find the force on you due to the momentum carried off by the light. Express this force in 
terms of the radiated power of the flashlight. Use this force to calculate your acceleration and use a constant 
acceleration equation to find the time. 
(a) EXECUTE: rad rad av/  and  gives / /p I c F p A F IA c P c= = = =  

8 9 2
av/ /( ) (200 W)/[(150 kg)(3.00 10  m/s)] 4.44 10 m/sxa F m P mc −= = = × = ×  

Then 21
0 0 2x xx x v t a t− = +  gives 9 2 4

02( )/ 2(16.0 m)/(4.44 10  m/s ) 8.49 10  s 23.6 hxt x x a −= − = × = × =  
EVALUATE: The radiation force is very small. In the calculation we have ignored any other forces on you. 
(b) You could throw the flashlight in the direction away from the ship. By conservation of linear momentum you 
would move toward the ship with the same magnitude of momentum as you gave the flashlight. 

32.52. IDENTIFY: avP IA= and 21
0 max2 .I cE= P  max maxE cB=  

SET UP: The power carried by the current i is P Vi= . 

EXECUTE: 2av 1
02

PI cE
A

= = P and 
5

4av
max 2 8

0 0 0

2 2 2(5.00 10  V)(1000 A) 6.14 10  V m.
(100 m ) (3.00 10  m s)

P ViE
A c A c

×
= = = = ×

×P P P
 

4
4max

max 8

6.14 10 V m 2.05 10 T.
3.00 10 m s

EB
c

−×
= = = ×

×
 

EVALUATE: 
5

6 2
2

(5.00 10  V)(1000 A)/ 5.00 10  W/m
100 m

I Vi A ×
= = = × . This is a very intense beam spread over a 

large area. 
32.53. IDENTIFY: The orbiting satellite obeys Newton�s second law of motion. The intensity of the electromagnetic 

waves it transmits obeys the inverse-square distance law, and the intensity of the waves depends on the amplitude 
of the electric and magnetic fields. 
SET UP: Newton�s second law applied to the satellite gives mv2/R = GmM/r2, where M is the mass of the Earth 
and m is the mass of the satellite. The intensity I of the wave is I = Sav = 1

02 P cEmax
2, and by definition, I = Pav /A. 

EXECUTE: (a) The period of the orbit is 12 hr. Applying Newton�s 2nd law to the satellite gives mv2/R = GmM/r2, 

which gives ( )2

2

2 /m r T GmM
r r
π

= . Solving for r, we get 

( )( )( )
1/ 321/ 3 11 2 2 242

7
2 2

6.67 10  N m /kg 5.97 10  kg 12 3600 s
2.66 10  m

4 4
GMTr
π π

−⎡ ⎤× ⋅ × ×⎛ ⎞ ⎢ ⎥= = = ×⎜ ⎟
⎝ ⎠ ⎣ ⎦

 

The height above the surface is h = 2.66 × 107 m � 6.38 × 106 m = 2.02 × 107 m. The satellite only radiates its 
energy to the lower hemisphere, so the area is 1/2 that of a sphere. Thus, from the definition of intensity, the 
intensity at the ground is 

I = Pav /A = Pav /(2πh2) = (25.0 W)/[2π(2.02 × 107 m)2] = 9.75 × 1510−  W/m2 

(b) I = Sav = 1
02 P cEmax

2, so 
15 2

6
max 12 2 2 8

0

2 2(9.75 10  W/m ) 2.71 10  N/C
(8.85 10  C /N m )(3.00 10  m/s)

IE
c

−
−

−

×
= = = ×

× ⋅ ×P
 

6 8 15
max max/ (2.71 10  N/C)/(3.00 10  m/s) 9.03 10  TB E c − −= = × × = ×  

7 8/ (2.02 10  m)/(3.00 10  m/s) 0.0673 st d c= = × × =  
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(c) Pav = I /c = (9.75×10�15 W/m2)/(3.00×108 m/s) = 3.25×10 � 2 3  Pa 
(d) λ = c / f  = (3.00×108 m/s)/(1575.42×106 Hz) = 0.190 m 
EVALUATE: The fields and pressures due to these waves are very small compared to typical laboratory quantities. 

32.54. IDENTIFY: For a totally reflective surface the radiation pressure is 2 .I
c

 Find the force due to this pressure and 

express the force in terms of the power output P of the sun. The gravitational force of the sun is sun
g 2 .mMF G

r
=  

SET UP: The mass of the sum is 30
sun 1.99 10  kg.M = ×  11 2 26.67 10  N m /kg .G −= × ⋅  

EXECUTE: (a) The sail should be reflective, to produce the maximum radiation pressure. 

(b) rad
2IF A
c

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where A is the area of the sail. 24
PI
rπ

= , where r is the distance of the sail from the sun. 

rad 2 2

2
4 2

A P PAF
c r r cπ π

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. rad gF F=  so sun
2 22

PA mMG
r c rπ

= . 

8 11 2 2 30
sun

26

2 2 (3.00 10  m/s)(6.67 10  N m /kg )(10,000 kg)(1.99 10  kg)
3.9 10  W

cGmMA
P

π π −× × ⋅ ×
= =

×
. 

6 2 26.42 10  m 6.42 kmA = × = . 
(c) Both the gravitational force and the radiation pressure are inversely proportional to the square of the distance 
from the sun, so this distance divides out when we set rad g.F F=  
EVALUATE: A very large sail is needed, just to overcome the gravitational pull of the sun. 

32.55. IDENTIFY and SET UP: The gravitational force is given by Eq.(12.2). Express the mass of the particle in terms of 
its density and volume. The radiation pressure is given by Eq.(32.32); relate the power output L of the sun to the 
intensity at a distance r. The radiation force is the pressure times the cross sectional area of the particle. 

EXECUTE: (a) The gravitational force is g 2 .mMF G
r

=  The mass of the dust particle is 34
3 .m V Rρ ρ π= =  Thus 

3

g 2

4 .
3

G MRF
r

ρ π
=  

(b) For a totally absorbing surface rad .Ip
c

=  If L is the power output of the sun, the intensity of the solar radiation 

a distance r from the sun is 2 .
4

LI
rπ

=  Thus rad 2 .
4

Lp
crπ

=  The force radF  that corresponds to radp  is in the 

direction of propagation of the radiation, so rad rad ,F p A⊥=  where 2A Rπ⊥ =  is the component of area of the particle 

perpendicular to the radiation direction. Thus 
2

2
rad 2 2( ) .

4 4
L LRF R
cr cr

π
π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

(c) radgF F=  
3 2

2 2

4
3 4

G MR LR
r cr

ρ π
=  

4 3 and 
3 4 16

G M L LR R
c c G M

ρ π
ρ π

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 

26

8 3 11 2 2 30

3(3.9 10  W)
16(2.998 10  m/s)(3000 kg/m )(6.673 10  N m /  kg ) (1.99 10  kg)

R
π−

×
=

× × ⋅ ×
 

71.9 10  m 0.19 m.R μ−= × =  

EVALUATE: The gravitational force and the radiation force both have a 2r−  dependence on the distance from the 
sun, so this distance divides out in the calculation of R. 

(d) 
2 2

rad
rad2 3

g

3 3 . 
4 4 16

F LR r L F
F cr G mR c G MRρ π ρ π

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 is proportional to 2R  and gF  is proportional to 3,R  so this 

ratio is proportional to 1/R. If 0.20 mR μ<  then rad gF F>  and the radiation force will drive the particles out of the 
solar system. 

32.56. IDENTIFY: The electron has acceleration 
2va

R
= . 

SET UP: 191 eV 1.60 10  C−= × . An electron has 191.60 10  Cq e −= = × . 
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EXECUTE: For the electron in the classical hydrogen atom, its acceleration is 
2 2 191

22 22
31 111

2

2(13.6 eV)(1.60 10 J eV) 9.03 10 m/s .
(9.11 10 kg)(5.29 10 m)

v mva
R mR

−

− −

×
= = = = ×

× ×
 Then using the formula for the rate of energy 

emission given in Problem 32.57: 
2 2 19 2 22 2 2

8 11
3 8 3

0 0

(1.60 10  C) (9.03 10  m s ) 4.64 10  J s 2.89 10  eV s.
6 6 (3.00 10  m s)

dE q a
dt cπ π

−
−× ×

= = = × = ×
×P P

 This large value of dE
dt

 

would mean that the electron would almost immediately lose all its energy! 
EVALUATE: The classical physics result in Problem 32.57 must not apply to electrons in atoms. 

32.57. IDENTIFY: The orbiting particle has acceleration 
2

.va
R

=  

SET UP: 21
2K mv= . An electron has mass 31

e 9.11 10  kgm −= ×  and a proton has mass 27
p 1.67 10  kgm −= × . 

EXECUTE: (a) 
22 2 2 2

3 2 2 3
0

C (m s ) N m J W .
6 (C N m )(m s) s s
q a dE

c dtπ
⎡ ⎤ ⋅ ⎡ ⎤= = = = =⎢ ⎥ ⎢ ⎥⋅ ⎣ ⎦⎣ ⎦P

 

(b) For a proton moving in a circle, the acceleration is 
2 2 6 191

2152
271

2

2(6.00 10 eV) (1.6 10 J eV) 1.53 10 m s .
(1.67 10 kg) (0.75 m)

v mva
R mR

−

−

× ×
= = = = ×

×
The rate at which it emits energy because of 

its acceleration is 
2 2 19 2 15 2 2

23 5
3 8 3

0 0

(1.6 10  C) (1.53 10  m s ) 1.33 10  J s 8.32 10  eV s.
6 6 (3.0 10  m s)

dE q a
dt cπ π

−
− −× ×

= = = × = ×
×P P

 

Therefore, the fraction of its energy that it radiates every second is 
5

11
6

( )(1s) 8.32 10 eV 1.39 10 .
6.00 10 eV

dE dt
E

−
−×

= = ×
×

 

(c) Carry out the same calculations as in part (b), but now for an electron at the same speed and radius. That means 
the electron�s acceleration is the same as the proton, and thus so is the rate at which it emits energy, since they also 
have the same charge. However, the electron�s initial energy differs from the proton�s by the ratio of their masses: 

31
6e

e p 27
p

(9.11 10 kg)(6.00 10 eV) 3273 eV.
(1.67 10 kg)

mE E
m

−

−

×
= = × =

×
 Therefore, the fraction of its energy that it radiates every 

second is 
5

8( )(1s) 8.32 10 eV 2.54 10 .
3273 eV

dE dt
E

−
−×

= = ×  

EVALUATE: The proton has speed 
6 19

7
27

p

2 2(6.0 10  eV)(1.60 10  J/eV) 3.39 10  m/s
1.67 10  kg

Ev
m

−

−

× ×
= = = ×

×
. The electron 

has the same speed and kinetic energy 3.27 keV. The particles in the accelerator radiate at a much smaller rate than 
the electron in Problem 32.56 does, because in the accelerator the orbit radius is very much larger than in the atom, 
so the acceleration is much less. 

32.58. IDENTIFY and SET UP: Follow the steps specified in the problem. 
EXECUTE: (a) C

max C( , ) e sin ( ).k x
yE x t E k x tω−= −  

C C
max C C max C C( )e sin( ) ( )e cos( )y k x k xE

E k k x t E k k x t
x

ω ω− −∂
= − − + + −

∂
 

C C

2
2 2

max C C max C C2 ( )e sin( ) ( )e cos( )y k x k xE
E k k x t E k k x t

x
ω ω− −∂

= + − + − −
∂

 

 C C2 2
max C C max C C( )e cos( ) ( )e sin( )k x k xE k k x t E k k x tω ω− −+ − − + − − . 

C

2
2

max C C2 2 e cos( )y k xE
E k k x t

x
ω−∂

= − −
∂

. C
max Ce cos( ).y k xE

E k x t
t

ω ω−∂
= −

∂
 

Setting 
2

2
y yE E

x t
μ
ρ

∂ ∂
=

∂ ∂
 gives C C2

max C C max C2 e cos( ) e cos( )k x k xE k k x t E k x tω ω ω− −− = − . This will only be true if 

2
C2k μ

ω ρ
= , or C .

2
k ωμ

ρ
=  

(b) The energy in the wave is dissipated by the 2i R  heating of the conductor. 

(c) 
8

0 5
C 6

C 0

1 2 2(1.72 10 m)1,  6.60 10 m.
2 (1.0 10 Hz)

y
y

E
E k x x

e k
ρ

ωμ π μ

−
−× Ω⋅

= ⇒ = = = = = ×
×

 

EVALUATE: The lower the frequency of the waves, the greater is the distance they can penetrate into a conductor. 
A dielectric (insulator) has a much larger resistivity and these waves can penetrate a greater distance in these 
materials. 
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THE NATURE AND PROPAGATION OF LIGHT 

 33.1. IDENTIFY: For reflection, r aθ θ= . 
SET UP: The desired path of the ray is sketched in Figure 33.1. 

EXECUTE: 14.0 cmtan
11.5 cm

φ = , so 50.6φ = ° . 90 39.4rθ φ= − =° ° and 39.4r aθ θ= = ° . 

EVALUATE: The angle of incidence is measured from the normal to the surface. 

 
Figure 33.1 

 33.2 IDENTIFY: For reflection, r aθ θ= . 
SET UP: The angles of incidence and reflection at each reflection are shown in Figure 33.2. For the rays to be 
perpendicular when they cross, 90α = ° . 

EXECUTE: (a) 90θ φ+ = ° and 90β φ+ = ° , so β θ= . 90
2
α β+ = ° and 180 2α θ= −° . 

(b) 1 1
2 2(180 ) (180 90 ) 45θ α= − = − =° ° ° ° . 

EVALUATE: As 0θ → ° , 180α → ° . This corresponds to the incident and reflected rays traveling in nearly the 
same direction. As 90θ → ° , 0α → ° . This corresponds to the incident and reflected rays traveling in nearly 
opposite directions. 

 
Figure 33.2 

33



33-2 Chapter 33 

 33.3. IDENTIFY and SET UP: Use Eqs.(33.1) and (33.5) to calculate v and .λ  

EXECUTE: (a) 
8

82.998 10  m/s so 2.04 10  m/s
1.47

c cn v
v n

×
= = = = ×  

(b) 0 650 nm 442 nm
1.47n

λλ = = =  

EVALUATE: Light is slower in the liquid than in vacuum. By ,v f λ=  when v is smaller, λ  is smaller. 

 33.4. IDENTIFY: In air, 0c f λ= . In glass, 0

n
λλ = . 

SET UP: 83.00 10  m/sc = ×  

EXECUTE: (a) 
8

0 14

3.00 10  m/s 517 nm
5.80 10  Hz

c
f

λ ×
= = =

×
 

(b) 0 517 nm 340 nm
1.52n

λλ = = =  

EVALUATE: In glass the light travels slower than in vacuum and the wavelength is smaller. 

 33.5. IDENTIFY: cn
v

= . 0

n
λλ = , where 0λ is the wavelength in vacuum. 

SET UP: 83.00 10  m/sc = × . n for air is only slightly larger than unity. 

EXECUTE: (a) 
8

8

3.00 10 m/s 1.54.
1.94 10 m/s

cn
v

×
= = =

×
 

(b) 7 7
0 (1.54)(3.55 10 m) 5.47 10 m.nλ λ − −= = × = ×  

EVALUATE: In quartz the speed is lower and the wavelength is smaller than in air. 

 33.6. IDENTIFY: 0

n
λλ = . 

SET UP: From Table 33.1, water 1.333n =  and benzene 1.501n = . 

EXECUTE: (a) water water benzene benzene 0n nλ λ λ= = . water
benzene water

benzene

1.333(438 nm) 389 nm
1.501

n
n

λ λ
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. 

(b) 0 water water (438 nm)(1.333) 584 nmnλ λ= = =  
EVALUATE: λ is smallest in benzene, since n is largest for benzene. 

 33.7. IDENTIFY: Apply Eqs.(33.2) and (33.4) to calculate and .r bθ θ  The angles in these equations are measured with 
respect to the normal, not the surface. 
(a) SET UP: The incident, reflected and refracted rays are shown in Figure 33.7. 

 

EXECUTE: 42.5r aθ θ= = °  

The reflected ray makes an 
angle of 90.0 47.5rθ° − = °  
with the surface of the glass. 

Figure 33.7  
(b) sin sin ,a a b bn nθ θ=  where the angles are measured from the normal to the interface. 

sin (1.00)(sin 42.5 )sin 0.4070
1.66

a a
b

b

n
n

θθ °
= = =  

24.0bθ = °  
The refracted ray makes an angle of 90.0 66.0bθ° − = °  with the surface of the glass. 
EVALUATE: The light is bent toward the normal when the light enters the material of larger refractive index. 

 33.8. IDENTIFY: Use the distance and time to find the speed of light in the plastic. cn
v

= . 

SET UP: 83.00 10  m/sc = ×  

EXECUTE: 8
9

2.50 m 2.17 10 m s
11.5 10 s

dv
t −= = = ×

×
. 

8

8

3.00 10 m/s 1.38
2.17 10 m/s

cn
v

×
= = =

×
. 

EVALUATE: In air light travels this same distance in 8

2.50 m 8.3 ns
3.00 10  m/s

=
×

. 
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 33.9. IDENTIFY and SET UP: Use Snell�s law to find the index of refraction of the plastic and then use Eq.(33.1) to 
calculate the speed v of light in the plastic. 
EXECUTE: sin sina a b bn nθ θ=  

sin sin 62.71.00 1.194
sin sin 48.1

a
b a

b

n n θ
θ

⎛ ⎞ °⎛ ⎞= = =⎜ ⎟ ⎜ ⎟°⎝ ⎠⎝ ⎠
 

8 8 so (3.00 10  m/s) /1.194 2.51 10  m/sc cn v
v n

= = = × = ×  

EVALUATE: Light is slower in plastic than in air. When the light goes from air into the plastic it is bent toward 
the normal. 

33.10. IDENTIFY: Apply Snell�s law at both interfaces. 
SET UP: The path of the ray is sketched in Figure 33.10. Table 33.1 gives 1.329n = for the methanol. 
EXECUTE: (a) At the air-glass interface glass(1.00)sin 41.3 sinn α° = . At the glass-methanol interface 

glass sin (1.329)sinn α θ= . Combining these two equations gives sin 41.3 1.329sinθ° = and 29.8θ = °. 
(b) The same figures applies as for part (a), except 20.2θ = ° . (1.00)sin 41.3 sin 20.2n° = ° and 1.91n = . 
EVALUATE: The angle α is 25.2°. The index of refraction of methanol is less than that of the glass and the ray is 
bent away from the normal at the glass → methanol interface. The unknown liquid has an index of refraction 
greater than that of the glass, so the ray is bent toward the normal at the glass → liquid interface. 

 
Figure 33.10 

33.11. IDENTIFY: Apply Snell�s law to each refraction. 
SET UP: Let the light initially be in the material with refractive index an and let the final slab have refractive 
index bn . In part (a) let the middle slab have refractive index 1n . 
EXECUTE: (a) 1st interface: 1 1sin sina an nθ θ= . 2nd interface: 1 1sin sinb bn nθ θ= . Combining the two equations 
gives sin sina a b bn nθ θ= . This is the equation that would apply if the middle slab were absent. 
(b) For N slabs, 1 1sin sina an nθ θ= , 1 1 2 2sin sinn nθ θ= , �, 2 2sin sinN N b bn nθ θ− − = . Combining all these equations 
gives sin sina a b bn nθ θ= . 
EVALUATE: The final direction of travel depends on the angle of incidence in the first slab and the refractive 
indices of the first and last slabs. 

33.12. IDENTIFY: Apply Snell's law to the refraction at each interface. 
SET UP: air 1.00n = . water 1.333n = . 

EXECUTE: (a) air
water air

water

1.00arcsin sin arcsin sin35.0 25.5 .
1.333

n
n

θ θ
⎛ ⎞ ⎛ ⎞= = ° = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE: (b) This calculation has no dependence on the glass because we can omit that step in the 
air air glass glass wate waterchain: sin sin sin .rn n nθ θ θ= =  

33.13. IDENTIFY: When a wave passes from one material into another, the number of waves per second that cross the 
boundary is the same on both sides of the boundary, so the frequency does not change. The wavelength and speed 
of the wave, however, do change. 

SET UP: In a material having index of refraction n, the wavelength is 0 ,
n
λλ =  where λ0 is the wavelength in 

vacuum, and the speed is .c
n

 

EXECUTE: (a) The frequency is the same, so it is still f. The wavelength becomes 0 ,
n
λλ =  so λ0 = nλ. The speed 

is ,cv
n

=  so c = nv. 

(b) The frequency is still f. The wavelength becomes 0 n n
n n n
λ λλ λ⎛ ⎞′ = = = ⎜ ⎟′ ′ ′⎝ ⎠

 and the speed becomes 

c nv nv v
n n n

⎛ ⎞′ = = = ⎜ ⎟′ ′ ′⎝ ⎠
 

EVALUATE: These results give the speed and wavelength in a new medium in terms of the original medium 
without referring them to the values in vacuum (or air). 
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33.14. IDENTIFY: Apply the law of reflection. 
SET UP: The mirror in its original position and after being rotated by an angle θ are shown in Figure 33.14. α is 
the angle through which the reflected ray rotates when the mirror rotates. The two angles labeled φ  are equal and 
the two angles labeled φ′are equal because of the law of reflection. The two angles labeled θ are equal because the 
lines forming one angle are perpendicular to the lines forming the other angle. 
EXECUTE: From the diagram, 2 2 2( )α φ φ φ φ′ ′= − = − and θ φ φ′= − . 2α θ= , as was to be shown. 
EVALUATE: This result is independent of the initial angle of incidence. 

 
Figure 33.14 

33.15. IDENTIFY: Apply sin sina a b bn nθ θ= . 
SET UP: The light refracts from the liquid into the glass, so 1.70an = , 62.0aθ = °. 1.58bn = . 

EXECUTE: 1.70sin sin sin 62.0 0.950
1.58

a
b a

b

n
n

θ θ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
° and 71.8bθ = ° . 

EVALUATE: The ray refracts into a material of smaller n, so it is bent away from the normal. 
33.16. IDENTIFY: Apply Snell's law. 

SET UP: aθ  and bθ are measured relative to the normal to the surface of the interface. 60.0 15.0 45.0aθ = − =° ° ° . 

EXECUTE: 1.33arcsin sin arcsin sin 45.0 38.2
1.52

a
b a

b

n
n

θ θ⎛ ⎞ ⎛ ⎞= = ° =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
°. But this is the angle from the normal to the surface, 

so the angle from the vertical is an additional 15° because of the tilt of the surface. Therefore, the angle is 53.2°. 
EVALUATE: Compared to Example 33.1, aθ  is shifted by 15° but the shift in bθ  is only 53.2 49.3 3.9− =° ° ° . 

33.17. IDENTIFY: The critical angle for total internal reflection is aθ that gives 90bθ = ° in Snell's law. 
SET UP: In Figure 33.17 the angle of incidence aθ  is related to angle θ  by 90aθ θ+ = ° . 
EXECUTE: (a) Calculate aθ  that gives 90bθ = °. 1.60an = , 1.00bn =  so sin sina a b bn nθ θ=  gives 

(1.60)sin (1.00)sin90aθ = °. 1.00sin
1.60aθ =  and 38.7aθ = ° . 90 51.3aθ θ= =°− °. 

(b) 1.60an = , 1.333bn = . (1.60)sin (1.333)sin90aθ = °. 1.333sin
1.60aθ =  and 56.4aθ = ° . 90 33.6aθ θ= =°− °. 

EVALUATE: The critical angle increases when the ratio a

b

n
n

 increases. 

 
Figure 33.17 
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33.18. IDENTIFY: Since the refractive index of the glass is greater than that of air or water, total internal reflection will 
occur at the cube surface if the angle of incidence is greater than or equal to the critical angle. 
SET UP: At the critical angle θc, Snell�s law gives nglass sin θc = nair sin 90° and likewise for water. 
EXECUTE: (a) At the critical angle θc , nglass sin θc = nair sin 90°. 1.53 sin θc = (1.00)(1) andθc = 40.8°. 
(b) Using the same procedure as in part (a), we have 1.53 sin θc = 1.333 sin 90° and θc = 60.6°. 
EVALUATE: Since the refractive index of water is closer to the refractive index of glass than the refractive index 
of air is, the critical angle for glass-to-water is greater than for glass-to-air. 

33.19. IDENTIFY: Use the critical angle to find the index of refraction of the liquid. 
SET UP: Total internal reflection requires that the light be incident on the material with the larger n, in this case 
the liquid. Apply sin sina a b bn nθ θ=  with a = liquid and b = air, so liqan n=  and 1.0.bn =  

EXECUTE: crit liq crit when 90 ,  so sin (1.0)sin90a b nθ θ θ θ= = ° = °  

liq
crit

1 1 1.48.
sin sin 42.5

n
θ

= = =
°

 

(a) sin sina a b bn nθ θ=  (a = liquid, b = air) 
sin (1.48)sin35.0sin 0.8489 and 58.1

1.0
a a

b b
b

n
n

θθ θ°
= = = = °  

(b) Now sin sina a b bn nθ θ=  with a = air, b = liquid 
sin (1.0)sin35.0sin 0.3876 and 22.8

1.48
a a

b b
b

n
n

θθ θ°
= = = = °  

EVALUATE: For light traveling liquid →  air the light is bent away from the normal. For light traveling air →  
liquid the light is bent toward the normal. 

33.20. IDENTIFY: The largest angle of incidence for which any light refracts into the air is the critical angle for 
water air→ . 
SET UP: Figure 33.20 shows a ray incident at the critical angle and therefore at the edge of the ring of light. The 
radius of this circle is r and 10.0 md = is the distance from the ring to the surface of the water. 
EXECUTE: From the figure, crittanr d θ= . critθ is calculated from sin sina a b bn nθ θ=  with 1.333an = , critaθ θ= , 

1.00bn =  and 90bθ = °. crit
(1.00)sin90sin

1.333
θ =

°  and crit 48.6θ = ° . (10.0 m) tan 48.6 11.3 mr = =° . 

2 2 2(11.3 m) 401 mA rπ π= = = . 
EVALUATE: When the incident angle in the water is larger than the critical angle, no light refracts into the air. 

 
Figure 33.20 

33.21. IDENTIFY and SET UP: For glass →  water, crit 48.7 .θ = °  Apply Snell�s law with critaθ θ=  to calculate the index 
of refraction an  of the glass. 

EXECUTE: crit
crit

1.333sin sin90 ,  so 1.77
sin sin 48.7

b
a b a

nn n nθ
θ

= ° = = =
°

 

EVALUATE: For total internal reflection to occur the light must be incident in the material of larger refractive 
index. Our results give glass water ,n n>  in agreement with this. 
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33.22. IDENTIFY: If no light refracts out of the glass at the glass to air interface, then the incident angle at that interface 
is crit .θ  
SET UP: The ray has an angle of incidence of 0° at the first surface of the glass, so enters the glass without being 
bent, as shown in Figure 33.22. The figure shows that crit 90α θ+ = °.  
EXECUTE: (a) For the glass-air interface crit ,aθ θ=  1.52,an =  1.00bn = and 90 .bθ = °  sin sina a b bn nθ θ=  gives 

crit
(1.00)(sin90 )sin

1.52
θ =

°  and crit 41.1θ = °.  crit90 48.9α θ= − =° °.  

(b) Now the second interface is glass water→ and 1.333bn = . sin sina a b bn nθ θ=  gives crit
(1.333)(sin90 )sin

1.52
θ =

°  

and crit 61.3θ = °. crit90 28.7α θ= − =° ° . 
EVALUATE: The critical angle increases when the air is replaced by water and rays are bent as they refract out of 
the glass. 

 
Figure 33.22 

33.23. IDENTIFY: Apply sin sina a b bn nθ θ= . 
SET UP: The light is in diamond and encounters an interface with air, so 2.42an = and 1.00bn = . The largest 

aθ is when 90bθ = ° . 

EXECUTE: (2.42)sin (1.00)sin90aθ = ° . 1sin
2.42aθ =  and 24.4aθ = ° . 

EVALUATE: Diamond has an usually large refractive index, and this results in a small critical angle. 

33.24. IDENTIFY: Snell's law is sin sina a b bn nθ θ= . cv
n

= .  

SET UP: aira = , glassb = . 

EXECUTE: (a) red: sin (1.00)sin57.0 1.36
sin sin38.1
a a

b
b

nn θ
θ

= = =
°

°
. violet: (1.00)sin57.0 1.40

sin36.7bn = =
°

°
. 

(b) red: 
8

83.00 10  m/s 2.21 10  m/s
1.36

cv
n

×
= = = × ; violet: 

8
83.00 10  m/s 2.14 10  m/s

1.40
cv
n

×
= = = × . 

EVALUATE: n is larger for the violet light and therefore this light is bent more toward the normal, and the violet 
light has a smaller speed in the glass than the red light. 

33.25. IDENTIFY: When unpolarized light passes through a polarizer the intensity is reduced by a factor of 1
2 and the 

transmitted light is polarized along the axis of the polarizer. When polarized light of intensity maxI is incident on a 

polarizer, the transmitted intensity is 2
max cosI I φ= , where φ is the angle between the polarization direction of the 

incident light and the axis of the filter. 
SET UP: For the second polarizer 60φ = ° . For the third polarizer, 90 60 30φ = − =° ° ° . 
EXECUTE: (a) At point A the intensity is 0 / 2I and the light is polarized along the vertical direction. At point B 

the intensity is 2
0 0( / 2)(cos60 ) 0.125I I=° , and the light is polarized along the axis of the second polarizer. At  

point C the intensity is 2
0 0(0.125 )(cos30 ) 0.0938I I=° . 

(b) Now for the last filter 90φ = °  and 0I = . 
EVALUATE: Adding the middle filter increases the transmitted intensity. 

33.26. IDENTIFY: Apply Snell's law. 
SET UP: The incident, reflected and refracted rays are shown in Figure 33.26. 

EXECUTE: From the figure, 37.0bθ = ° and sin sin 531.33 1.77.
sin sin 37

a
b a

b

n n θ
θ

°
= = =

°
 



The Nature and Propagation of Light  33-7 

EVALUATE: The refractive index of b is greater than that of a, and the ray is bent toward the normal when it 
refracts. 

 
Figure 33.26 

33.27. IDENTIFY and SET UP: Reflected beam completely linearly polarized implies that the angle of incidence equals 
the polarizing angle, so p 54.5 .θ = °  Use Eq.(33.8) to calculate the refractive index of the glass. Then use Snell�s 
law to calculate the angle of refraction. 

EXECUTE: (a) p glass air ptan  gives tan (1.00) tan54.5 1.40.b

a

n n n
n

θ θ= = = ° =  

(b) sin sina a b bn nθ θ=  
sin (1.00)sin54.5sin 0.5815 and 35.5

1.40
a a

b b
b

n
n

θθ θ°
= = = = °  

EVALUATE: 

 

Note: 180.0  and .r b r aφ θ θ θ θ= ° − − = Thus 
180.0 54.5 35.5 90.0 ;φ = ° − ° − ° = °  the 

reflected ray and the refracted ray are 
perpendicular to each other. This agrees 
with Fig.33.28. 

Figure 33.27  
33.28. IDENTIFY: Set 0 /10I I= , where I is the intensity of light passed by the second polarizer. 

SET UP: When unpolarized light passes through a polarizer the intensity is reduced by a factor of 1
2 and the 

transmitted light is polarized along the axis of the polarizer. When polarized light of intensity maxI is incident on a 

polarizer, the transmitted intensity is 2
max cosI I φ= , where φ is the angle between the polarization direction of the 

incident light and the axis of the filter. 

EXECUTE: (a) After the first filter 0

2
II = and the light is polarized along the vertical direction. After the second 

filter we want 0 ,
10
II =  so 20 0 (cos )

10 2
I I φ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. cos 2 /10φ = and 63.4φ = ° . 

(b) Now the first filter passes the full intensity 0I of the incident light. For the second filter 20
0 (cos )

10
I I φ= . 

cos 1/10φ = and 71.6φ = ° . 
EVALUATE: When the incident light is polarized along the axis of the first filter, φ must be larger to achieve the 
same overall reduction in intensity than when the incident light is unpolarized. 

33.29. IDENTIFY: From Malus�s law, the intensity of the emerging light is proportional to the square of the cosine of the 
angle between the polarizing axes of the two filters. 
SET UP: If the angle between the two axes is θ, the intensity of the emerging light is I = Imax cos2θ. 

EXECUTE: At angle θ, I = Imax cos2θ, and at the new angle α, 1
2

I = Imax cos2α. Taking the ratio of the intensities 

gives 
2 1

max 2
2

max

cos
cos

I I
I I

α
θ

= , which gives us coscos
2
θα = . Solving for α yields cosarccos

2
θα ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. 

EVALUATE: Careful! This result is not cos2θ. 
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33.30. IDENTIFY: The reflected light is completely polarized when the angle of incidence equals the polarizing angle 

pθ , where ptan b

a

n
n

θ = . 

SET UP:  1.66bn = . 

EXECUTE: (a) 1.00an = . p
1.66tan
1.00

θ =  and p 58.9θ = ° . 

(b) 1.333an = . p
1.66tan
1.333

θ = and p 51.2θ = ° . 

EVALUATE: The polarizing angle depends on the refractive indicies of both materials at the interface. 
33.31. IDENTIFY: When unpolarized light of intensity 0I is incident on a polarizing filter, the transmitted light has 

intensity 1
02 I and is polarized along the filter axis. When polarized light of intensity 0I is incident on a polarizing 

filter the transmitted light has intensity 2
0 cosI φ . 

SET UP: For the second filter, 62.0 25.0 37.0φ = − =° ° ° . 

EXECUTE: After the first filter the intensity is 21
02 10.0 W mI = and the light is polarized along the axis of the 

first filter. The intensity after the second filter is 2
0cosI I φ= , where 2

0 10.0  W mI = and 37.0φ = ° . This 

gives 26.38 W m .I =  
EVALUATE: The transmitted intensity depends on the angle between the axes of the two filters. 

33.32. IDENTIFY: After passing through the first filter the light is linearly polarized along the filter axis. After the 
second filter, 2

max (cos )I I φ= , where φ  is the angle between the axes of the two filters. 
SET UP: The maximum amount of light is transmitted when 0φ = . 

EXECUTE: (a) 2
0 0(cos22.5 ) 0.854I I I= =°  

(b) 2
0 0(cos45.0 ) 0.500I I I= =°  

(c) 2
0 0(cos67.5 ) 0.146I I I= =°  

EVALUATE: As φ increases toward 90°  the axes of the two filters are closer to being perpendicular to each other 
and the transmitted intensity decreases. 

33.33. IDENTIFY and SET UP: Apply Eq.(33.7) to polarizers #2 and #3. The light incident on the first polarizer is 
unpolarized, so the transmitted light has half the intensity of the incident light, and the transmitted light is 
polarized. 
(a) EXECUTE: The axes of the three filters are shown in Figure 33.33a. 

 

2
max cosI I φ=  

Figure 33.33a  
After the first filter the intensity is 1

1 02I I=  and the light is linearly polarized along the axis of the first polarizer. 

After the second filter the intensity is 2 21
2 1 0 02cos ( )(cos45.0 ) 0.250I I I Iφ= = ° =  and the light is linearly polarized 

along the axis of the second polarizer. After the third filter the intensity is 2 2
3 2 0cos 0.250 (cos45.0 )I I Iφ= = ° =  

00.125I  and the light is linearly polarized along the axis of the third polarizer. 
(b) The axes of the remaining two filters are shown in Figure 33.33b. 

 

After the first filter the intensity is 1
1 02I I=  and the 

light is linearly polarized along the axis of the first 
polarizer. 
 

Figure 33.33b  

After the next filter the intensity is 2 21
3 1 02cos ( )(cos90.0 ) 0.I I Iφ= = ° =  No light is passed. 

EVALUATE: Light is transmitted through all three filters, but no light is transmitted if the middle polarizer is removed. 
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33.34. IDENTIFY: Use the transmitted intensity when all three polairzers are present to solve for the incident intensity 
0I . Then repeat the calculation with only the first and third polarizers. 

SET UP: For unpolarized light incident on a filter, 1
02I I=  and the light is linearly polarized along the filter axis. 

For polarized light incident on a filter, 2
max (cos )I I φ= , where maxI is the intensity of the incident light, and the 

emerging light is linearly polarized along the filter axis. 
EXECUTE: With all three polarizers, if the incident intensity is 0I the transmitted intensity is 

2 21
0 02( )(cos23.0 ) (cos[62.0 23.0 ]) 0.256I I I= − =° ° ° . 

2
2

0
75.0 W/cm  293 W/cm

0.256 0.256
II = = = . With only the first 

and third polarizers, 2 2 21
0 02( )(cos62.0 ) 0.110 (0.110)(293 W/cm ) 32.2 W/cmI I I= = = =° . 

EVALUATE: The transmitted intensity is greater when all three filters are present. 
33.35. IDENTIFY: The shorter the wavelength of light, the more it is scattered. The intensity is inversely proportional to 

the fourth power of the wavelength. 
SET UP: The intensity of the scattered light is proportional to 1/λ4, we can write it as I = (constant)/ λ4. 
EXECUTE: (a) Since I is proportional to 1/λ4, we have I = (constant)/ λ4. Taking the ratio of the intensity of the 

red light to that of the green light gives 
4 44

R R G
4
G R

(constant) / 520 nm
(constant) / 665 nm

I
I

λ λ
λ λ

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 = 0.374, so IR = 0.374I. 

(b) Following the same procedure as in part (a) gives 
4 4

V G

V

520 nm
420 nm

I
I

λ
λ

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 = 2.35, so IV = 2.35I. 

EVALUATE: In the scattered light, the intensity of the short-wavelength violet light is about 7 times as great as 
that of the red light, so this scattered light will have a blue-violet color. 

33.36. IDENTIFY: As the wave front reaches the sharp object, every point on the front will act as a source of secondary 
wavelets. 
SET UP: Consider a wave front that is just about to go past the corner. Follow it along and draw the successive 
wave fronts. 
EXECUTE: The path of the wavefront is drawn in Figure 33.36. 
EVALUATE: The wave fronts clearly bend around the sharp point, just as water waves bend around a rock and 
light waves bend around the edge of a slit. 

 
Figure 33.36 

33.37. IDENTIFY: Reflection reverses the sign of the component of light velocity perpendicular to the reflecting surface 
but leaves the other components unchanged. 
SET UP: Consider three mirrors, M1 in the (x,y)-plane, M2 in the (y,z)-plane, and M3 in the (x,z)-plane. 
EXECUTE: A light ray reflecting from M1 changes the sign of the z-component of the velocity, reflecting from M2 
changes the x-component, and from M3 changes the y-component. Thus the velocity, and hence also the path, of the 
light beam flips by 180° 
EVALUATE: Example 33.3 discusses some uses of corner reflectors. 

33.38. IDENTIFY: The light travels slower in the jelly than in the air and hence will take longer to travel the length of the 
tube when it is filled with jelly than when it contains just air. 
SET UP: The definition of the index of refraction is n = c/v, where v is the speed of light in the jelly. 
EXECUTE: First get the length L of the tube using air. In the air, we have L = ct = (3.00 × 108 m/s)(8.72 ns) = 2.616 m. 

The speed in the jelly is v = L
t

 = (2.616 m)/(8.72 ns + 2.04 ns) = 2.431 × 108 m/s. n = c
v

 =  

(3.00 × 108 m/s)/(2.431 × 108 m/s) = 1.23 
EVALUATE: A high-speed timer would be needed to measure times as short as a few nanoseconds. 
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33.39. IDENTIFY and SET UP: Apply Snell's law at each interface. 
EXECUTE: (a) 1 1 2 2sin sinn nθ θ= and 2 2 3 3sin sinn nθ θ= , so 1 1 3 3sin sinn nθ θ=  and 3 1 1 3sin ( sin ) /n nθ θ= . 
(b) 3 3 2 2sin sinn nθ θ= and 2 2 1 1sin sinn nθ θ= , so 1 1 3 3sin sinn nθ θ=  and the light makes the same angle with respect 
to the normal in the material that has refractive index 1n  as it did in part (a). 
(c) For reflection, .r aθ θ=  These angles are still equal if rθ  becomes the incident angle; reflected rays are also reversible. 
EVALUATE: Both the refracted and reflected rays are reversible, in the sense that if the direction of the light is 
reversed then each of these rays follow the path of the incident ray. 

33.40. IDENTIFY: Use the change in transit time to find the speed v of light in the slab, and then apply cn
v

=  and 0

n
λλ = . 

SET UP: It takes the light an additional 4.2 ns to travel 0.840 m after the glass slab is inserted into the beam. 

EXECUTE: 0.840 m 0.840 m 0.840 m( 1) 4.2 ns.
/

n
c n c c

− = − =  We can now solve for the index of refraction: 
9 8(4.2 10 s) (3.00 10 m s) 1 2.50.
0.840 m

n
−× ×

= + =  The wavelength inside of the glass is 490 nm 196 nm
2.50

λ = = . 

EVALUATE: Light travels slower in the slab than in air and the wavelength is shorter. 
33.41. IDENTIFY: The angle of incidence at A is to be the critical angle. Apply Snell�s law at the air to glass refraction at 

the top of the block. 
SET UP: The ray is sketched in Figure 33.41. 
EXECUTE: For glass air→ at point A, Snell's law gives crit(1.38)sin (1.00)sin90θ = °and crit 46.4θ = ° . 

crit90 43.6bθ θ= − =° ° . Snell's law applied to the refraction from air to glass at the top of the block gives 
(1.00)sin (1.38)sin(43.6 )aθ = ° and 72.1aθ = °. 
EVALUATE: If aθ is larger than 72.1°then the angle of incidence at point A is less than the initial critical angle and 
total internal reflection doesn�t occur. 

 
Figure 33.41 

33.42. IDENTIFY: As the light crosses the glass-air interface along AB, it is refracted and obeys Snell�s law. 
SET UP: Snell�s law is na sin θa = nb sin θb and n = 1.000 for air. At point B the angle of the prism is 30.0° . 
EXECUTE: Apply Snell�s law at AB. The prism angle at A is 60.0°, so for the upper ray, the angle of incidence at 
AB is 60.0° + 12.0° = 72.0°. Using this value gives n1 sin 60.0° = sin 72.0° and n1 = 1.10. For the lower ray, the 
angle of incidence at AB is 60.0° + 12.0° + 8.50° = 80.5°, giving n2 sin 60.0° = sin 80.5° and n2 = 1.14. 
EVALUATE: The lower ray is deflected more than the upper ray because that wavelength has a slightly greater 
index of refraction than the upper ray. 



The Nature and Propagation of Light  33-11 

33.43. IDENTIFY: Circularly polarized light consists of the superposition of light polarized in two perpendicular 
directions, with a quarter-cycle ( 90° ) phase difference between the two polarization components. 
SET UP: A quarter-wave plate shifts the relative phase of the two perpendicular polarization components by 90° . 
EXECUTE: In the circularly polarized light the two perpendicular polarization components are 90° out of phase. 
The quarter-wave plate shifts the relative phase by 90± °  and then the two components are either in phase or 
180° out of phase. Either corresponds to linearly polarized light. 
EVALUATE: Either left circularly polarized light or right circularly polarized light is converted to linearly 
polarized light by the quarter-wave plate. 

33.44. IDENTIFY: Apply 0

n
λλ = . The number of wavelengths in a distance d of a material is d

λ
 where λ is the 

wavelength in the material. 
SET UP: The distance in glass is glass 0.00250 md = . The distance in air is 

air 0.0180 m 0.00250 m 0.0155 md = − =  
EXECUTE: number of wavelengths = number in air + number in glass. 

glass 4air
7 7

0.0155 m 0.00250 mnumber of wavelengths (1.40) 3.52 10
5.40 10  m 5.40 10 m

dd n
λ λ − −= + = + = ×

× ×
. 

EVALUATE: Without the glass plate the number of wavelengths between the source and screen is 
4

3

0.0180 m 3.33 10
5.40 10  m− = ×

×
. The wavelength is shorter in the glass so there are more wavelengths in a distance in 

glass than there are in the same distance in air. 
33.45. IDENTIFY: Find the critical angle for glass →  air. Light incident at this critical angle is reflected back to the 

edge of the halo. 
SET UP: The ray incident at the critical angle is sketched in Figure 33.45. 

 
Figure 33.45 

EXECUTE: From the distances given in the sketch, crit crit
2.67 mmtan 0.8613;  40.7 .
3.10 mm

θ θ= = = °  

Apply Snell�s law to the total internal reflection to find the refractive index of the glass: sin sina a b bn nθ θ=  

glass critsin 1.00sin90n θ = °  

glass
crit

1 1 1.53
sin sin 40.7

n
θ

= = =
°

 

EVALUATE: Light incident on the back surface is also totally reflected if it is incident at angles greater than crit .θ  
If it is incident at less than critθ  it refracts into the air and does not reflect back to the emulsion. 

33.46. IDENTIFY: Apply Snell's law to the refraction of the light as it passes from water into air. 

SET UP: 1.5 marctan 51
1.2 maθ

⎛ ⎞
= = °⎜ ⎟

⎝ ⎠
. 1.00an = . 1.333bn = . 

EXECUTE: 1.00arcsin sin arcsin sin51 36 .
1.333

a
b a

b

n
n

θ θ
⎛ ⎞ ⎛ ⎞= = ° = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 Therefore, the distance along the bottom of the 

pool from directly below where the light enters to where it hits the bottom is (4.0 m)tan (4.0 m)tan36bx θ= = ° =  
2.9 m.  total 1.5 m 1.5 m 2.9 m 4.4 m.x x= + = + =  
EVALUATE: The light ray from the flashlight is bent toward the normal when it refracts into the water. 
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33.47. IDENTIFY: Use Snell�s law to determine the effect of the liquid on the direction of travel of the light as it enters 
the liquid. 
SET UP: Use geometry to find the angles of incidence and refraction. Before the liquid is poured in the ray along 
your line of sight has the path shown in Figure 33.47a. 

 

8.0 cmtan 0.500
16.0 cmaθ = =  

26.57aθ = °  

Figure 33.47a  
After the liquid is poured in, aθ  is the same and the refracted ray passes through the center of the bottom of the 
glass, as shown in Figure 33.47b. 

 

4.0 cmtan 0.250
16.0 cmbθ = =  

14.04bθ = °  

Figure 33.47b  
EXECUTE: Use Snell�s law to find ,bn  the refractive index of the liquid: 

sin sina a b bn nθ θ=  
sin (1.00)(sin 26.57 ) 1.84

sin sin14.04
a a

b
b

nn θ
θ

°
= = =

°
 

EVALUATE: When the light goes from air to liquid (larger refractive index) it is bent toward the normal. 
33.48. IDENTIFY: Apply Snell�s law to each refraction and apply the law of reflection at the mirrored bottom. 

SET UP: The path of the ray is sketched in Figure 33.48. The problem asks us to calculate bθ ′. 
EXECUTE: Apply Snell's law to the air liquid→ refraction. (1.00)sin(42.5 ) (1.63)sin bθ=° and 24.5bθ = ° . 

bθ φ= and aφ θ ′= , so 24.5a bθ θ′ = = °. Snell's law applied to the liquid air→ refraction gives 

(1.63)sin(24.5 ) (1.00)sin bθ ′=° and 42.5bθ ′ = ° . 
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EVALUATE: The light emerges from the liquid at the same angle from the normal as it entered the liquid. 

 
Figure 33.48 

33.49. IDENTIFY: Apply Snell�s law to the water →  ice and ice →  air interfaces. 
(a) SET UP: Consider the ray shown in Figure 33.49. 

 

We want to find the incident angle aθ  at 
the water-ice interface that causes the 
incident angle at the ice-air interface to be 
the critical angle. 

Figure 33.49  
EXECUTE: ice-air interface: ice critsin 1.0sin90n θ = °  

ice crit crit
ice

1sin 1.0 so sinn
n

θ θ= =  

But from the diagram we see that crit
ice

1,  so sin .b b n
θ θ θ= =  

water-ice interface: w icesin sina bn nθ θ=  

But 
ice

1sin  so sin 1.0.b w an
n

θ θ= =  
w

1 1sin 0.7502 and 48.6 .
1.333a an

θ θ= = = = °  

(b) EVALUATE: The angle calculated in part (a) is the critical angle for a water-air interface; the answer would be 
the same if the ice layer wasn�t there! 

33.50. IDENTIFY: The incident angle at the prism water→ interface is to be the critical angle. 
SET UP: The path of the ray is sketched in Figure 33.50. The ray enters the prism at normal incidence so is not 
bent. For water, water 1.333n = . 
EXECUTE: From the figure, crit 45θ = ° . sin sina a b bn nθ θ= gives glass sin 45 (1.333)sin90n =° ° . 

glass
1.333 1.89
sin 45

n = =
°

. 
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EVALUATE: For total internal reflection the ray must be incident in the material of greater refractive index. 
glass watern n> , so that is the case here. 

 
Figure 33.50 

33.51. IDENTIFY: Apply Snell�s law to the refraction of each ray as it emerges from the glass. The angle of incidence 
equals the angle 25.0 .A = °  
SET UP: The paths of the two rays are sketched in Figure 33.51. 

 
Figure 33.51 

EXECUTE: sin sina a b bn nθ θ=  

glas sin 25.0 1.00sin bn θ° =  

glasssin sin 25.0b nθ = ° 
sin 1.66sin 25.0 0.7015bθ = ° =  

44.55bθ = ° 
90.0 45.45bβ θ= ° − = °  

Then 90.0 90.0 25.0 45.45 19.55 .Aδ β= ° − − = ° − ° − ° = °  The angle between the two rays is 2 39.1 .δ = °  
EVALUATE: The light is incident normally on the front face of the prism so the light is not bent as it enters the prism. 

33.52. IDENTIFY: The ray shown in the figure that accompanies the problem is to be incident at the critical angle. 
SET UP: 90bθ = ° . The incident angle for the ray in the figure is 60° . 

EXECUTE: sin sina a b bn nθ θ=  gives sin 1.62sin 60 1.40.
sin sin90
a a

b
b

nn θ
θ

⎛ ⎞ °⎛ ⎞= = =⎜ ⎟ ⎜ ⎟°⎝ ⎠⎝ ⎠
 

EVALUATE: Total internal reflection occurs only when the light is incident in the material of the greater 
refractive index. 

33.53. IDENTIFY: No light enters the gas because total internal reflection must have occurred at the water-gas interface. 
SET UP: At the minimum value of S, the light strikes the water-gas interface at the critical angle. We apply 
Snell�s law, na sinθa = nb sinθb, at that surface. 

EXECUTE: (a) In the water, θ = S
R

 = (1.09 m)/(1.10 m) = 0.991 rad = 56.77°. This is the critical angle. So, using 

the refractive index for water from Table 33.1, we get n = (1.333) sin 56.77° = 1.12 
(b) (i) The laser beam stays in the water all the time, so  

t = 2R/v = 2R/
water

c
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = waterDn
c

 = (2.20 m)(1.333)/(3.00 × 108 m/s) = 9.78 ns 
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(ii) The beam is in the water half the time and in the gas the other half of the time. 

tgas = gasRn
c

 = (1.10 m)(1.12)/(3.00 × 108 m/s) = 4.09 ns 

The total time is 4.09 ns + (9.78 ns)/2 = 8.98 ns 
EVALUATE: The gas must be under considerable pressure to have a refractive index as high as 1.12. 

33.54. IDENTIFY: No light enters the water because total internal reflection must have occurred at the glass-water surface. 
SET UP: A little geometry tells us that θ is the angle of incidence at the glass-water face in the water. Also, θ = 
59.2° must be the critical angle at that surface, so the angle of refraction is 90.0°. Snell�s law, na sin θa = nb sin θb, 

applies at that glass-water surface, and the index of refraction is defined as n = .c
v

 

EXECUTE: Snell�s law at the glass-water surface gives n sin 59.2° = (1.333)(1.00), which gives n = 1.55. v = c
n

 = 

(3.00 × 108 m/s)/1.55 = 1.93 × 108 m/s. 
EVALUATE: Notice that θ is not the angle of incidence at the reflector, but it is the angle of incidence at the glass-
water surface. 

33.55. (a) IDENTIFY: Apply Snell�s law to the refraction of the light as it enters the atmosphere. 
SET UP: The path of a ray from the sun is sketched in Figure 33.55. 

 

a bδ θ θ= −   

From the diagram sin b
R

R h
θ =

+
 

 arcsin b
R

R h
θ ⎛ ⎞= ⎜ ⎟+⎝ ⎠

 

Figure 33.55  
EXECUTE: Apply Snell�s law to the refraction that occurs at the top of the atmosphere: sin sina a b bn nθ θ=  
(a = vacuum of space, refractive, index 1.0; b = atmosphere, refractive index n) 

sin sin  so arcsina b a
R nRn n

R h R h
θ θ θ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

arcsin arcsina b
nR R

R h R h
δ θ θ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

(b) 
6

6 3

6.38 10  m 0.99688
6.38 10  m 20 10  m

R
R h

×
= =

+ × + ×
 

1.0003(0.99688) 0.99718nR
R h

= =
+

 

arcsin 85.47b
R

R h
θ ⎛ ⎞= = °⎜ ⎟+⎝ ⎠

 

arcsin 85.70b
nR

R h
θ ⎛ ⎞= °⎜ ⎟+⎝ ⎠

 

85.70 85.47 0.23a bδ θ θ= − = ° − ° = °  
EVALUATE: The calculated δ  is about the same as the angular radius of the sun. 

33.56. IDENTIFY and SET UP: Follow the steps specified in the problem. 
EXECUTE: (a) The distance traveled by the light ray is the sum of the two diagonal segments: 

2 2 1/2 2 2 1/2
1 2( ) (( ) ) .d x y l x y= + + − +  Then the time taken to travel that distance is 

2 2 1/ 2 2 2 1/ 2
1 2( ) (( ) ) .d x y l x yt

c c
+ + − +

= =  

(b) Taking the derivative with respect to x of the time and setting it to zero yields 

( ) ( )1 2 1 22 2 1 2 2 2 2 2 1 2 2 2
1 2 1 2

1 1( ) ( ) ( ) ( ) ( ) 0dt d dtx y l x y x x y l x l x y
dx c dt dx c

−−⎡ ⎤ ⎡ ⎤= + + − + = + − − − + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. This gives 

2 2 2 2
1 2

( )
( )

x l x
x y l x y

−
=

+ − +
, 1 2sin sinθ θ=  and 1 2.θ θ=  

EVALUATE: For any other path between points 1 and 2, that includes a point on the reflective surface, the 
distance traveled and therefore the travel time is greater than for this path. 
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33.57. IDENTIFY and SET UP: Find the distance that the ray travels in each medium. The travel time in each medium is 
the distance divided by the speed in that medium. 
(a) EXECUTE: The light travels a distance 2 2

1h x+  in traveling from point A to the interface. Along this path  

the speed of the light is 1,v  so the time it takes to travel this distance is 
2 2

1
1

1

.
h x

t
v
+

=  The light travels a 

distance 2 2
2 ( )h l x+ −  in traveling from the interface to point B. Along this path the speed of the light is 2 ,v  

so the time it takes to travel this distance is 
2 2
2

2
2

( )
.

h l x
t

v
+ −

=  The total time to go from A to B is 

2 2 2 2
1 2

1 2
1 2

( )
.

h x h l x
t t t

v v
+ + +

= + = +  

(b) 2 2 1/ 2 2 2 1/ 2
1 2

1 2

1 1 1 1( ) (2 ) ( ( ) ) 2( )( 1) 0
2 2

dt h x x h l x l x
dx v v

− −⎛ ⎞ ⎛ ⎞= + + + − − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2 2 2 2
1 1 2 2 ( )

x l x
v h x v h l x

−
=

+ + −
 

Multiplying both sides by c gives 
2 2 2 2

1 21 2 ( )
c x c l x
v vh x h l x

−
=

+ + −
 

1 2
1 2

 and c cn n
v v

= =  (Eq.33.1) 

From Fig.33.55 in the textbook, 1 22 2 2 2
1 2

sin  and sin .
( )

x l x
h x h l x

θ θ −
= =

+ + −
 

So 1 1 2 2sin sin ,n nθ θ=  which is Snell�s law. 
EVALUATE: Snell�s law is a result of a change in speed when light goes from one material to another. 

33.58. IDENTIFY: Apply Snell's law to each refraction. 
SET UP: Refer to the angles and distances defined in the figure that accompanies the problem. 
EXECUTE: (a) For light in air incident on a parallel-faced plate, Snell�s Law yields: 

sin sin sin sin sin sin .a b b a a a a an n n nθ θ θ θ θ θ θ θ′ ′ ′ ′ ′ ′= = = ⇒ = ⇒ =  
(b) Adding more plates just adds extra steps in the middle of the above equation that always cancel out. The 
requirement of parallel faces ensures that the angle n nθ θ′ =  and the chain of equations can continue. 
(c) The lateral displacement of the beam can be calculated using geometry: 

sin( )sin( ) and .
cos cos

a b
a b

b b

t td L L d θ θθ θ
θ θ

′−′= − = ⇒ =
′ ′

 

(d) sin sin 66.0arcsin arcsin 30.5
1.80

a
b

n
n

θθ °⎛ ⎞ ⎛ ⎞′ = = = °⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠
 and (2.40 cm)sin(66.0 30.5 ) 1.62 cm.

cos30.5
d ° − °

= =
°

 

EVALUATE: The lateral displacement in part (d) is large, of the same order as the thickness of the plate. 
33.59. IDENTIFY: Apply Snell�s law to each refraction and apply the law of reflection to each reflection. 

SET UP: The paths of rays A and B are sketched in Figure 33.59. Let θ be the angle of incidence for the 
combined ray. 
EXECUTE: For ray A its final direction of travel is at an angle θ with respect to the normal, by the law of 
reflection. Let the final direction of travel for ray B be at angleφ with respect to the normal. At the upper surface, 
Snell�s law gives 1 2sin sinn nθ α= . The lower surface reflects ray B at angle α . Ray B returns to the upper 
surface of the film at an angle of incidence α . Snell�s law applied to the refraction as ray B leaves the film gives 

2 1sin sinn nα φ= . Combining the two equations gives 1 1sin sinn nθ φ=  and θ φ= ; the two rays are parallel after 
they emerge from the film. 
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EVALUATE: Ray B is bent toward the normal as it enters the film and away from the normal as it refracts out of 
the film. 

 
Figure 33.59 

33.60. IDENTIFY: Apply Snell's law and the results of Problem 33.58. 
SET UP: From Figure 33.58 in the textbook, r 1.61n = for red light and v 1.66n = for violet. In the notation of 
Problem 33.58, t is the thickness of the glass plate and the lateral displacement is d. We want the difference in d for 

the two colors of light to be 1.0 mm. 70.0aθ = ° . For red light, sin sina a b bn nθ θ ′=  gives (1.00)sin 70.0sin
1.61bθ ′ =

°  

and 35.71bθ ′ = ° . For violet light, (1.00)sin 70.0sin
1.66bθ ′ =

° and 34.48bθ ′ = ° . 

EXECUTE: (a) n decreases with increasing λ , so n is smaller for red than for blue. So beam a is the red one. 

(b) Problem 33.58 says sin( )
cos

a b

b

d t θ θ
θ

′−
=

′
. For red light, r

sin(70 35.71 ) 0.6938
cos35.71

d t t−
= =

° °
°

and for violet light, 

v
sin(70 35.48 ) 0.7048

cos35.48
d t t−

= =
° °

°
. v r 1.0 mmd d− = gives 0.10 cm 9.1 cm

0.7048 0.6958
t = =

−
. 

EVALUATE: Our calculation shown that the violet light has greater lateral displacement and this is ray b. 
33.61. IDENTIFY: Apply Snell's law to the two refractions of the ray. 

SET UP: Refer to the figure that accompanies the problem. 

EXECUTE: (a) sin sina a b bn nθ θ= gives sin sin
2a b
Anθ = . But 

2a
Aθ α= + , so 2sin sin sin .

2 2 2
A A Anαα +⎛ ⎞+ = =⎜ ⎟

⎝ ⎠
 

At each face of the prism the deviation is α , so 2α δ= and sin sin .
2 2

A Anδ+
=  

(b) From part (a), 2arcsin sin
2
An Aδ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
. 60.02arcsin (1.52)sin 60.0 38.9 .

2
δ °⎛ ⎞= − ° = °⎜ ⎟

⎝ ⎠
 

(c) If two colors have different indices of refraction for the glass, then the deflection angles for them will differ: 

red

violet

60.02arcsin (1.61)sin 60.0 47.2
2
60.02arcsin (1.66)sin 60.0 52.2 52.2 47.2 5.0

2

δ

δ δ

°⎛ ⎞= − ° = °⎜ ⎟
⎝ ⎠

°⎛ ⎞= − ° = ° ⇒ Δ = ° − ° = °⎜ ⎟
⎝ ⎠

 

EVALUATE: The violet light has a greater refractive index and therefore the angle of deviation is greater for the 
violet light. 

33.62. IDENTIFY: The reflected light is totally polarized when light strikes a surface at Brewster�s angle. 
SET UP: At the plastic wall, Brewster�s angle obeys the equation tan θp = nb /na, and Snell�s law,  
na sinθa = nb sinθb, applies at the air-water surface. 
EXECUTE: To be totally polarized, the reflected sunlight must have struck the wall at Brewster�s angle. tan θp = 
nb /na = (1.61)/(1.00) and θp = 58.15° 
This is the angle of incidence at the wall. A little geometry tells us that the angle of incidence at the water surface 
is 90.00° � 58.15° = 31.85°. Applying Snell�s law at the water surface gives 

(1.00) sin31.85° = 1.333 sin θ and θ = 23.3° 
EVALUATE: We have two different principles involved here: Reflection at Brewster�s angle at the wall and 
Snell�s law at the water surface.  
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33.63. IDENTIFY and SET UP: The polarizer passes 1
2  of the intensity of the unpolarized component, independent of .φ  

Out of the intensity pI  of the polarized component the polarizer passes intensity 2
p cos ( ),I φ θ−  where φ θ−  is the 

angle between the plane of polarization and the axis of the polarizer. 
(a) Use the angle where the transmitted intensity is maximum or minimum to find .θ  See  
Figure 33.63. 

 
Figure 33.63 

EXECUTE: The total transmitted intensity is 21
0 p2 cos ( ).I I I φ θ= + −  This is maximum when θ φ=  and from the 

table of data this occurs for φ  between 30  and 40 ,° °  say at 35  and 35 .θ° = °  Alternatively, the total transmitted 
intensity is minimum when 90φ θ− = °  and from the data this occurs for 125 .φ = °  Thus, 

90 125 90 35 ,θ φ= − ° = ° − ° = °  in agreement with the above. 

(b) IDENTIFY and SET UP: 21
0 p2 cos ( )I I I φ θ= + −  

Use data at two values of φ  to determine the two constants 0 pand .I I  Use data where the pI  term is large 

( 30 )φ = °  and where it is small ( 130 )φ = °  to have the greatest sensitivity to both 0 pand :I I  

EXECUTE: 2 21
0 p230  gives 24.8 W/m cos (30 35 )I Iφ = ° = + ° − °  

2
0 p24.8 W/m 0.500 0.9924I I= +  

2 21
0 p2130  gives 5.2 W/m cos (130 35 )I Iφ = ° = + ° − °  

2
0 p5.2 W/m 0.500 0.0076I I= +  

Subtracting the second equation from the first gives 2 2
p p19.6 W/m 0.9848  and 19.9 W/m .I I= =  And then 

2 2 2
0 2(5.2 W/m 0.0076(19.9 W/m )) 10.1 W/m .I = − =  

EVALUATE: Now that we have 0 p,   and I I θ  we can verify that 21
0 p2 cos ( )I I I φ θ= + −  describes that data in the 

table. 
33.64. IDENTIFY: The number of wavelengths in a distance D of material is /D λ , where λ is the wavelength of the 

light in the material. 

SET UP: The condition for a quarter-wave plate is 
1 2

1
4

D D
λ λ

= + , where we have assumed 1 2n n>  so 2 1λ λ> . 

EXECUTE: (a) 1 2

0 0

1
4

n D n D
λ λ

= +  and 0

1 2

.
4( )

D
n n

λ
=

−
 

(b)
7

70

1 2

5 89 10 m 6.14 10 m.
4( ) 4(1.875 1.635)

.D
n n

λ −
−×

= = = ×
− −

  

EVALUATE: The thickness of the quarter-wave plate in part (b) is 614 nm, which is of the same order as the 
wavelength in vacuum of the light. 

33.65. IDENTIFY: Follow the steps specified in the problem. 
SET UP: cos( ) sin sin cos cosα β α β α β− = + . sin( ) sin cos cos sinα β α β α β− = − . 
EXECUTE: (a) Multiplying Eq.(1) by sin β  and Eq.(2) by sinα  yields:  

(1): sin sin cos sin cos sin sinx t t
a

β ω α β ω α β= −  and (2): sin sin cos sin cos sin siny t t
a

α ω β α ω β α= − .  

Subtracting yields: sin sin sin (cos sin cos sin ).x y t
a

β α ω α β β α−
= −  
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(b) Multiplying Eq. (1) by cos β  and Eq. (2) by cosα  yields: 

(1) : cos sin cos cos cos sin cosx t t
a

β ω α β ω α β= − and (2) : cos sin cos cos cos sin cosy t t
a

α ω β α ω β α= − . 

Subtracting yields: cos cos cos (sin cos sin cos ).x y t
a

β α ω α β β α−
= − −  

(c) Squaring and adding the results of parts (a) and (b) yields: 
2 2 2 2( sin sin ) ( cos cos ) (sin cos sin cos )x y x y aβ α β α α β β α− + − = −  

(d) Expanding the left-hand side, we have: 
2 2 2 2 2 2

2 2 2 2

(sin cos ) (sin cos ) 2 (sin sin cos cos )
2 (sin sin cos cos ) 2 cos( ).

x y xy
x y xy x y xy

β β α α α β α β

α β α β α β

+ + + − +

= + − + = + − −
 

The right-hand side can be rewritten: 2 2 2 2(sin cos sin cos ) sin ( ).a aα β β α α β− = −  Therefore, 
2 2 2 22 cos( ) sin ( ).x y xy aα β α β+ − − = −  Or, 2 2 2 22 cos sin , where .x y xy aδ δ δ α β+ − = = −  

EVALUATE: (e) 2 2 20 : 2 ( ) 0 ,x y xy x y x yδ = + − = − = ⇒ =  which is a straight diagonal line 
2

2 2: 2 , which is an ellipse
4 2

ax y xyπδ = + − =   

2 2 2: ,which is a circle.
2

x y aπδ = + =  This pattern repeats for the remaining phase differences. 

33.66. IDENTIFY: Apply Snell's law to each refraction. 
SET UP: Refer to the figure that accompanies the problem. 
EXECUTE: (a) By the symmetry of the triangles, , and .A B C B B A

b a a r a bθ θ θ θ θ θ= = = =  Therefore, 

sin sin sin sin .C C A A C A
b a b a b an nθ θ θ θ θ θ= = = = =  

(b) The total angular deflection of the ray is 2 2 4 .A A B C C A A
a b a b a a bθ θ π θ θ θ θ θ πΔ = − + − + − = − +  

(c) From Snell�s Law, sin 1sin arcsin sinA A A A
a b b an

n
θ θ θ θ⎛ ⎞= ⇒ = ⎜ ⎟

⎝ ⎠
. 

12 4 2 4arcsin sin .A A A A
a b a an

θ θ π θ θ π⎛ ⎞Δ = − + = − +⎜ ⎟
⎝ ⎠

 

(d) 1
2

1
2

1 4 cos0 2 4 arcsin sin 0 2
sin1

A
aA A

a a

d d
d d n n

n

θθ
θ θ θ
Δ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = − ⇒ = − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ −

. 
2 2

1 1
2 2

sin 16cos4 1
n n

θ θ⎛ ⎞ ⎛ ⎞
− =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

2 2 2
1 14cos 1 cosnθ θ= − + . 2 2

13cos 1nθ = − . 2 2
1

1cos ( 1).
3

nθ = −  

(e) For violet: 2 2
1

1 1arccos ( 1) arccos (1.342 1) 58.89
3 3

nθ
⎛ ⎞ ⎛ ⎞

= − = − = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

violet violet139.2 40.8 .θΔ = ° ⇒ = °  

For red: 2 2
1

1 1arccos ( 1) arccos (1.330 1) 59.58
3 3

nθ
⎛ ⎞ ⎛ ⎞

= − = − = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. red red137.5 42.5 .θΔ = ° ⇒ = °  

EVALUATE: The angles we have calculated agree with the values given in Figure 37.20d in the textbook. 1θ  is 
larger for red than for violet, so red in the rainbow is higher above the horizon. 

33.67. IDENTIFY: Follow similar steps to Challenge Problem 33.66. 
SET UP: Refer to Figure 33.20e in the textbook. 
EXECUTE: The total angular deflection of the ray is 

2 2 2 6 2 ,A A A A A A A A
a b b b a b a bθ θ π θ π θ θ θ θ θ πΔ = − + − + − + − = − +  where we have used the fact from the previous 

problem that all the internal angles are equal and the two external equals are equal. Also using the Snell�s Law 

relationship, we have: 1arcsin sinA A
b an

θ θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 12 6 2 2 6arcsin sin 2 .A A A A
a b a an

θ θ π θ θ π⎛ ⎞Δ = − + = − +⎜ ⎟
⎝ ⎠
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(b) 2

2
2

1 6 cos0 2 6 arcsin sin 0 2 .
sin1

A
aA A

a a

d d
d d n n

n

θθ
θ θ θ
Δ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = − ⇒ = −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ −
. 

2
2 2 2 22

2 22

sin1 ( 1 cos ) 9cosn n
n

θ θ θ
⎛ ⎞

− = − + =⎜ ⎟
⎝ ⎠

. 2 2
2

1cos ( 1)
8

nθ = − . 

(c) For violet, 2 2
2

1 1arccos ( 1) arccos (1.342 1) 71.55
8 8

nθ
⎛ ⎞ ⎛ ⎞

= − = − = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. violet 233.2Δ = ° and violet 53.2 .θ = °  

For red, 2 2
2

1 1arccos ( 1) arccos (1.330 1) 71.94 .
8 8

nθ
⎛ ⎞ ⎛ ⎞

= − = − = °⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 red 230.1Δ = ° and red 50.1 .θ = °  

EVALUATE: The angles we calculated agree with those given in Figure 37.20e in the textbook. The color that 
appears higher above the horizon is violet. The colors appear in reverse order in a secondary rainbow compared to 
a primary rainbow. 
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GEOMETRIC OPTICS 

 34.1. IDENTIFY and SET UP: Plane mirror:  s s′= −  (Eq.34.1) and / / 1m y y s s′ ′= = − = +  (Eq.34.2). We are given s 
and y and are asked to find  and .s y′ ′  
EXECUTE:  The object and image are shown in Figure 34.1. 

 

39.2 cms s′ = − = −  
( 1)(4.85 cm)y m y′ = = +  

4.85 cmy′ =  
 

Figure 34.1  
The image is 39.2 cm to the right of the mirror and is 4.85 cm tall. 
EVALUATE: For a plane mirror the image is always the same distance behind the mirror as the object is in front 
of the mirror. The image always has the same height as the object. 

 34.2. IDENTIFY: Similar triangles say tree tree

mirror mirror

h d
h d

= . 

SET UP: mirror 0.350 m,d =  mirror 0.0400 mh = and tree 28.0 m 0.350 m.d = +  

EXECUTE:  tree
tree mirror

mirror

28.0 m 0.350 m0.040 m 3.24 m.
0.350 m

dh h
d

+
= = =  

EVALUATE: The image of the tree formed by the mirror is 28.0 m behind the mirror and is 3.24 m tall. 
 34.3. IDENTIFY: Apply the law of reflection. 

SET UP: If up is the +y-direction and right is the +x-direction, then the object is at 0 0( , )x y− − and 2P′  is at 

0 0( , )x y− . 
EXECUTE: Mirror 1 flips the y-values, so the image is at 0 0( , )x y which is 3.P′  
EVALUATE: Mirror 2 uses 1P′ as an object and forms an image at 3P′ . 

 34.4. IDENTIFY: / 2f R=  
SET UP: For a concave mirror 0.R >  

EXECUTE: (a) 34.0 cm 17.0 cm
2 2
Rf = = =  

EVALUATE: (b) The image formation by the mirror is determined by the law of reflection and that is unaffected 
by the medium in which the light is traveling. The focal length remains 17.0 cm. 

 34.5. IDENTIFY and SET UP: Use Eq.(34.6) to calculate s′  and use Eq.(34.7) to calculate .y′  The image is real if s′  is 
positive and is erect if 0.m >  Concave means R and f are positive, 22.0 cm; / 2 11.0 cm.R f R= + = = +  
EXECUTE: (a) 

 

Three principal rays, 
numbered as in Sect. 34.2, 
are shown in Figure 34.5. 
The principal ray diagram 
shows that the image is 
real, inverted, and 
enlarged. 
 

Figure 34.5  

34
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(b) 1 1 1
s s f
+ =

′
 

1 1 1 (16.5 cm)(11.0 cm) so 33.0 cm
16.5 cm 11.0 cm

s f sfs
s f s sf s f

− ′= − = = = = +
′ − −

 

0s′ >  so real image, 33.0 cm to left of mirror vertex 
33.0 cm 2.00
16.5 cm

sm
s
′

= − = − = −  (m < 0 means inverted image) 2.00(0.600 cm) 1.20 cmy m y′ = = =  

EVALUATE: The image is 33.0 cm to the left of the mirror vertex. It is real, inverted, and is 1.20 cm tall 
(enlarged). The calculation agrees with the image characterization from the principal ray diagram. A concave 
mirror used alone always forms a real, inverted image if s > f and the image is enlarged if f < s < 2f. 

 34.6. IDENTIFY: Apply 1 1 1
s s f
+ =

′
 and 

sm
s
′

= − . 

SET UP: For a convex mirror, 0R < .  22.0 cmR = − and 11.0 cm
2
Rf = = − . 

EXECUTE: (a) The principal-ray diagram is sketched in Figure 34.6. 

(b) 1 1 1
s s f
+ =

′
.  (16.5 cm)( 11.0 cm) 6.6 cm

16.5 cm ( 11.0 cm)
sfs

s f
−′ = = = −

− − −
.  

6.6 cm 0.400
16.5 cm

sm
s
′ −

= − = − = + . 

(0.400)(0.600 cm) 0.240 cmy m y′ = = = . The image is 6.6 cm to the right of the mirror. It is 0.240 cm tall. 
0s′ < , so the image is virtual.  0m > , so the image is erect. 

EVALUATE: The calculated image properties agree with the image characterization from the principal-ray diagram. 

 
Figure 34.6 

 34.7. IDENTIFY: 1 1 1
s s f
+ =

′
.  sm

s
′

= − .  
y

m
y
′

= . Find m and calculate y′ . 

SET UP: 1.75 mf = + . 
EXECUTE:  s f! so 1.75 ms f′ = = . 

11
10

1.75 m 3.14 10 .
5.58 10  m

sm
s

−′
= − = − = − ×

×
11 6 4(3.14 10 )(6.794 10  m) 2.13 10  m 0.213 mmy m y − −′ = = × × = × = . 

EVALUATE: The image is real and is 1.75 m in front of the mirror. 

 34.8. IDENTIFY: Apply 1 1 1
s s f
+ =

′
 and sm

s
′

= − . 

SET UP: The mirror surface is convex so 3.00 cmR = − .  24.0 cm 3.00 cm 21.0 cms = − = . 

EXECUTE: 1.50 cm
2
Rf = = − . 1 1 1

s s f
+ =

′
. (21.0 cm)( 1.50 cm) 1.40 cm

21.0 cm ( 1.50 cm)
sfs

s f
−′ = = = −

− − −
. The image is  

1.40 cm behind the surface so it is 3.00 cm 1.40 cm 1.60 cm− = from the center of the ornament, on the same side 

as the object.  1.40 cm 0.0667
21.0 cm

sm
s
′ −

= − = − = + . (0.0667)(3.80 mm) 0.253 mmy m y′ = = = . 

EVALUATE: The image is virtual, upright and smaller than the object. 
 34.9. IDENTIFY: The shell behaves as a spherical mirror. 

SET UP: The equation relating the object and image distances to the focal length of a spherical mirror is 
1 1 1
s s f
+ =

′
, and its magnification is given by sm

s
′

= − . 
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EXECUTE: 1 1 1 1 2 1 18.0 cm
18.0 cm 6.00 cm

s
s s f s
+ = ⇒ = − ⇒ =

′ − −
 from the vertex. 

6.00 cm 1 1 (1.5 cm) = 0.50 cm
18.0 cm 3 3

sm y
s
′ − ′= − = − = ⇒ = . The image is 0.50 cm tall, erect, and virtual. 

EVALUATE: Since the magnification is less than one, the image is smaller than the object. 
34.10. IDENTIFY: The bottom surface of the bowl behaves as a spherical convex mirror. 

SET UP: The equation relating the object and image distances to the focal length of a spherical mirror is 
1 1 1
s s f
+ =

′
, and its magnification is given by sm

s
′

= − . 

EXECUTE: 1 1 1 1 2 1 15 cm
35 cm 90 cm

s
s s f s

− ′+ = ⇒ = − ⇒ = −
′ ′

 behind bowl. 

15 cm 0.167  (0.167)(2.0 cm) 0.33 cm
90 cm

sm y
s
′

′= − = = ⇒ = = . The image is 0.33 cm tall, erect, and virtual. 

EVALUATE: Since the magnification is less than one, the image is smaller than the object. 
34.11. IDENTIFY: We are dealing with a spherical mirror. 

SET UP: The equation relating the object and image distances to the focal length of a spherical mirror is 
1 1 1
s s f
+ =

′
, and its magnification is given by sm

s
′

= − . 

EXECUTE: (a) 1 1 1 1 1 1 . Also .s f sf s fs m
s s f s f s fs s f s f s

′− ′+ = ⇒ = − = ⇒ = = − =
′ ′ − −

 

(b) The graph is given in Figure 34.11a. 
(c) 0 for , 0.s s f s′ > > <  
(d) 0 for 0 .s s f′ < < <  
(e) The image is at negative infinity, �behind� the mirror. 
(f ) At the focal point, s = f. 
(g) The image is at the mirror, 0s′ = . 
(h) The graph is given in Figure 34.11b. 
(i) Erect and larger if 0 < s < f. 
(j) Inverted if .s f>  
(k) The image is smaller if 2 or 0.s f s> <  
(l) As the object is moved closer and closer to the focal point, the magnification increases to infinite values. 
EVALUATE: As the object crosses the focal point, both the image distance and the magnification undergo 
discontinuities. 

 
Figure 34.11 
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34.12. IDENTIFY: sfs
s f

′ =
−

 and fm
f s

=
−

. 

SET UP: With f f= − , 
s f

s
s f

′ = −
+

 and 
f

m
s f

=
+

. 

EXECUTE:  The graphs are given in Figure 34.12. 
(a) 0 for 0.s f s′ > − < <  
(b) 0 for s and 0.s f s′ < < − <  
(c) If the object is at infinity, the image is at the outward going focal point. 
(d) If the object is next to the mirror, then the image is also at the mirror 
(e) The image is erect (magnification greater than zero) for .s f> −  
(f) The image is inverted (magnification less than zero) for .s f< −  
(g) The image is larger than the object (magnification greater than one) for 2 0.f s− < <  
(h) The image is smaller than the object (magnification less than one) for 0 and 2 .s s f> < −  
EVALUATE: For a real image ( 0)s > , the image formed by a convex mirror is always virtual and smaller than the 
object.  

 
Figure 34.12 

34.13. IDENTIFY: 1 1 1
s s f
+ =

′
 and y sm

y s
′ ′

= = − . 

SET UP: 2.00m = +  and 1.25 cms = . An erect image must be virtual. 

EXECUTE: (a) sfs
s f

′ =
−

 and fm
s f

= −
−

. For a concave mirror, m can be larger than 1.00. For a convex mirror, 

f f= −  so 
f

m
s f

= +
+

 and m is always less than 1.00. The mirror must be concave ( 0)f > . 

(b) 1 s s
f ss

′ +
=

′
. ssf

s s
′

=
′+
. 2.00sm

s
′

= − = +  and 2.00s s′ = − . ( 2.00 ) 2.00 2.50 cm
2.00

s sf s
s s
−

= = + = +
−

. 

2 5.00 cmR f= = + . 
(c) The principal ray diagram is drawn in Figure 34.13. 
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EVALUATE: The principal-ray diagram agrees with the description from the equations. 

 
Figure 34.13 

34.14. IDENTIFY: Apply 1 1 1
s s f
+ =

′
 and sm

s
′

= − . 

SET UP: For a concave mirror, 0R > .  32.0 cmR =  and 16.0 cm
2
Rf = = . 

EXECUTE:  (a) 1 1 1
s s f
+ =

′
.  (12.0 cm)(16.0 cm) 48.0 cm

12.0 cm 16.0 cm
sfs

s f
′ = = = −

− −
.  48.0 cm 4.00

12.0 cm
sm
s
′ −

= − = − = + . 

(b) 48.0 cms′ = − , so the image is 48.0 cm to the right of the mirror. 0s′ < so the image is virtual. 
(c) The principal-ray diagram is sketched in Figure 34.14. The rules for principal rays apply only to paraxial rays.  
Principal ray 2, that travels to the mirror along a line that passes through the focus, makes a large angle with the 
optic axis and is not described well by the paraxial approximation.  Therefore, principal ray 2 is not included in the 
sketch. 
EVALUATE: A concave mirror forms a virtual image whenever s f< . 

 
Figure 34.14 

34.15. IDENTIFY: Apply Eq.(34.11), with . R s′→∞  is the apparent depth. 
SET UP The image and object are shown in Figure 34.15. 

 

;a b b an n n n
s s R

−
+ =

′
 

R →∞  (flat surface), so 

0a bn n
s s
+ =

′
 

 

Figure 34.15  

EXECUTE: (1.00)(3.50 cm) 2.67 cm
1.309

b

a

n ss
n

′ = − = − = −  

The apparent depth is 2.67 cm. 
EVALUATE: When the light goes from ice to air (larger to smaller n), it is bent away from the normal and the 
virtual image is closer to the surface than the object is. 
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34.16. IDENTIFY: The surface is flat so R →∞ and 0a bn n
s s
+ =

′
. 

SET UP: The light travels from the fish to the eye, so 1.333an = and 1.00bn = . When the fish is viewed, 
7.0 cms = . The fish is 20.0 cm 7.0 cm 13.0 cm− = above the mirror, so the image of the fish is 13.0 cm below the 

mirror and 20.0 cm 13.0 cm 33.0 cm+ = below the surface of the water. When the image is viewed, 33.0 cms = . 

EXECUTE: (a) 1.00 (7.0 cm) 5.25 cm
1.333

b

a

ns s
n
⎛ ⎞ ⎛ ⎞′ = − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. The apparent depth is 5.25 cm. 

(b) 1.00 (33.0 cm) 24.8 cm
1.333

b

a

ns s
n

⎛ ⎞ ⎛ ⎞′ = − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. The apparent depth of the image of the fish in the mirror is 24.8 cm. 

EVALUATE: In each case the apparent depth is less than the actual depth of what is being viewed. 

34.17. IDENTIFY: a b b an n n n
s s R

−
+ =

′
.  a

b

n sm
n s
′

= − . Light comes from the fish to the person�s eye. 

SET UP: 14.0 cmR = − . 14.0 cms = + . 1.333an = (water). 1.00bn = (air). Figure 34.17 shows the object and the 
refracting surface. 

EXECUTE: (a) 1.333 1.00 1.00 1.333
14.0 cm 14.0 cms

−
+ =

′ −
.  14.0 cms′ = − .  (1.333)( 14.0 cm) 1.33

(1.00)(14.0 cm)
m −
= − = + . 

The fish�s image is 14.0 cm to the left of the bowl surface so is at the center of the bowl and the magnification is 1.33. 

(b) The focal point is at the image location when s →∞ .  b b an n n
s R

−
=

′
.  1.00an = .  1.333bn = .  14.0 cmR = + . 

1.333 1.333 1.00
14.0 cms

−
=

′
. 56.0 cms′ = + . s′ is greater than the diameter of the bowl, so the surface facing the sunlight 

does not focus the sunlight to a point inside the bowl.  The focal point is outside the bowl and there is no danger to the fish. 
EVALUATE: In part (b) the rays refract when they exit the bowl back into the air so the image we calculated is not 
the final image. 

     
Figure 34.17 

34.18. IDENTIFY: Apply a b b an n n n
s s R

−
+ =

′
. 

SET UP: For a convex surface, 0R > .  3.00 cmR = + .  1.00an = , 1.60bn = . 

EXECUTE: (a) s →∞ .  b b an n n
s R

−
=

′
. 1.60 ( 3.00 cm) 8.00 cm

1.60 1.00
b

b a

ns R
n n

⎛ ⎞ ⎛ ⎞′ = = + = +⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
.  The image is 

8.00 cm to the right of the vertex. 

(b) 12.0 cms = .  1.00 1.60 1.60 1.00
12.0 cm 3.00 cms

−
+ =

′
.  13.7 cms′ = + .  The image is 13.7 cm to the right of the vertex. 

(c) 2.00 cms = .  1.00 1.60 1.60 1.00
2.00 cm 3.00 cms

−
+ =

′
.  5.33 cms′ = − .  The image is 5.33 cm to the left of the vertex. 

EVALUATE: The image can be either real ( 0s′ > ) or virtual ( 0s′ < ), depending on the distance of the object 
from the refracting surface. 

34.19. IDENTIFY: The hemispherical glass surface forms an image by refraction. The location of this image depends on 
the curvature of the surface and the indices of refraction of the glass and oil. 
SET UP: The image and object distances are related to the indices of refraction and the radius of curvature by the 

equation a b b an n n n
s s R

−
+ =

′
. 



Geometric Optics  34-7 

EXECUTE: 1.45 1.60 0.15 0.395 cm
1.20 m 0.0300 m

a b b an n n n s
s s R s

−
+ = ⇒ + = ⇒ =

′
 

EVALUATE: The presence of the oil changes the location of the image. 

34.20. IDENTIFY: a b b an n n n
s s R

−
+ =

′
.  a

b

n sm
n s
′

= − . 

SET UP: 4.00 cmR = + .  1.00an = .  1.60bn = .  24.0 cms = .   

EXECUTE: 1 1.60 1.60 1.00
24.0 cm 4.00 cms

−
+ =

′
.  14.8 cms′ = + .  (1.00)(14.8 cm) 0.385

(1.60)(24.0 cm)
m = − = − .  

(0.385)(1.50 mm) 0.578 mmy m y′ = = = .  The image is 14.8 cm to the right of the vertex and is 0.578 mm tall.  
0m < , so the image is inverted. 

EVALUATE: The image is real. 
34.21. IDENTIFY: Apply Eqs.(34.11) and (34.12). Calculate s′  and .y′  The image is erect if m > 0. 

SET UP: The object and refracting surface are shown in Figure 34.21. 

 
Figure 34.21 

EXECUTE: a b b an n n n
s s R

−
+ =

′
 

1.00 1.60 1.60 1.00
24.0 cm 4.00 cms

−
+ =

′ −
 

Multiplying by 24.0 cm gives 38.41.00 3.60
s

+ = −
′

 

38.4 cm 4.60
s

= −
′

 and 38.4 cm 8.35 cm
4.60

s′ = − = −  

Eq.(34.12): (1.00)( 8.35 cm) 0.217
(1.60)( 24.0 cm)

a

b

n sm
n s
′ −

= − = − = +
+

 

(0.217)(1.50 mm) 0.326 mmy m y′ = = =  
EVALUATE: The image is virtual ( 0)s′ <  and is 8.35 cm to the left of the vertex. The image is erect ( 0)m >  and 
is 0.326 mm tall. R is negative since the center of curvature of the surface is on the incoming side. 

34.22. IDENTIFY: The hemispherical glass surface forms an image by refraction. The location of this image depends on 
the curvature of the surface and the indices of refraction of the glass and liquid. 
SET UP: The image and object distances are related to the indices of refraction and the radius of curvature by the 

equation a b b an n n n
s s R

−
+ =

′
. 

EXECUTE: 1.60 1.60 1.24
14.0 cm 9.00 cm 4.00 cm

a b b a a a
a

n n n n n n n
s s R

− −
+ = ⇒ + = ⇒ =

′
. 

EVALUATE: The result is a reasonable refractive index for liquids. 

34.23. IDENTIFY: Use 
1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 to calculate f.  The apply 1 1 1

s s f
+ =

′
 and y sm

y s
′ ′

= = − .  

SET UP: 1R →∞ .  2 13.0 cmR = − .  If the lens is reversed, 1 13.0 cmR = + and 2R →∞ . 

EXECUTE:  (a) 1 1 1 0.70(0.70)
13.0 cm 13.0 cmf

⎛ ⎞= − =⎜ ⎟∞ −⎝ ⎠
and 18.6 cmf = .  1 1 1 s f

s f s sf
−

= − =
′

. 

(22.5 cm)(18.6 cm) 107 cm
22.5 cm 18.6 cm

sfs
s f

′ = = =
− −

.  107 cm 4.76
22.5 cm

sm
s
′

= − = − = − . 

( 4.76)(3.75 mm) 17.8 mmy my′ = = − = − .  The image is 107 cm to the right of the lens and is 17.8 mm tall.  The 
image is real and inverted. 

(b) 1 1 1( 1)
13.0 cm

n
f

⎛ ⎞= − −⎜ ⎟∞⎝ ⎠
and 18.6 cmf = .  The image is the same as in part (a). 

EVALUATE: Reversing a lens does not change the focal length of the lens. 
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34.24. IDENTIFY: 1 1 1
s s f
+ =

′
.  The sign of f determines whether the lens is converging or diverging.  

SET UP: 16.0 cms = .  12.0 cms′ = − . 

EXECUTE:  (a) (16.0 cm)( 12.0 cm) 48.0 cm
16.0 cm ( 12.0 cm)

ssf
s s

′ −
= = = −

′+ + −
.  0f < and the lens is diverging. 

(b) 12.0 cm 0.750
16.0 cm

sm
s
′ −

= − = − = + .  (0.750)(8.50 mm) 6.38 mmy m y′ = = = .  0m > and the image is erect. 

(c) The principal-ray diagram is sketched in Figure 34.24. 
EVALUATE: A diverging lens always forms an image that is virtual, erect and reduced in size. 

 
Figure 34.24 

34.25. IDENTIFY: The liquid behaves like a lens, so the lensmaker�s equation applies. 

SET UP: The lensmaker�s equation is 
1 2

1 1 1 1( 1)n
s s R R

⎛ ⎞
+ = − −⎜ ⎟′ ⎝ ⎠

, and the magnification of the lens is sm
s
′

= − . 

EXECUTE: (a) 
1 2

1 1 1 1 1 1 1 1( 1) (1.52 1)
24.0 cm 7.00 cm 4.00 cm

n
s s R R s

⎛ ⎞ ⎛ ⎞
+ = − − ⇒ + = − −⎜ ⎟ ⎜ ⎟′ ′ − −⎝ ⎠⎝ ⎠

 

71.2 cms′⇒ = , to the right of the lens. 

(b) 71.2 cm 2.97
24.0 cm

sm
s
′

= − = − = −  

EVALUATE: Since the magnification is negative, the image is inverted. 

34.26. IDENTIFY: Apply y sm
y s
′ ′

= = −  to relate s′ and s and then use 1 1 1
s s f
+ =

′
. 

SET UP: Since the image is inverted, 0y′ < and 0m < . 

EXECUTE:   4.50 cm 1.406
3.20 cm

ym
y
′ −

= = = − .  sm
s
′

= −  gives 1.406s s′ = + .  1 1 1
s s f
+ =

′
 gives 

1 1 1
1.406 90.0 cms s

+ =  and 154 cms = .  (1.406)(154 cm) 217 cms′ = = .  The object is 154 cm to the left of the 

lens.  The image is 217 cm to the right of the lens and is real. 
EVALUATE: For a single lens an inverted image is always real. 

34.27. IDENTIFY: The thin-lens equation applies in this case. 

SET UP: The thin-lens equation is 1 1 1
s s f
+ =

′
, and the magnification is s ym

s y
′ ′

= − = . 

EXECUTE: 34.0 mm 12.0 cm4.25 2.82 cm
8.00 mm

y sm s
y s s
′ ′ −

= = = = − = − ⇒ = . The thin-lens equation gives 

1 1 1 3.69 cmf
s s f
+ = ⇒ =

′
. 

EVALUATE: Since the focal length is positive, this is a converging lens. The image distance is negative because 
the object is inside the focal point of the lens. 

34.28. IDENTIFY: Apply sm
s
′

= − to relate s and s′ .  Then use 1 1 1
s s f
+ =

′
. 

SET UP: Since the image is to the right of the lens, 0s′ > .  6.00 ms s′ + = . 
EXECUTE:  (a) 80.0s s′ =  and 6.00 ms s′+ = gives 81.00 6.00 ms = and 0.0741 ms = . 5.93 ms′ = . 
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(b) The image is inverted since both the image and object are real ( 0, 0).s s′ > >  

(c) 1 1 1 1 1 0.0732 m,
0.0741 m 5.93 m

f
f s s
= + = + ⇒ =

′
and the lens is converging. 

EVALUATE: The object is close to the lens and the image is much farther from the lens.  This is typical for slide 
projectors. 

34.29. IDENTIFY: Apply 
1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
. 

SET UP: For a distant object the image is at the focal point of the lens.  Therefore, 1.87 cmf = .  For the double-
convex lens, 1R R= + and 2R R= − , where 2.50 cmR = . 

EXECUTE:  1 1 1 2( 1)( 1) nn
f R R R

−⎛ ⎞= − − =⎜ ⎟−⎝ ⎠
.  2.50 cm1 1 1.67

2 2(1.87 cm)
Rn
f

= + = + = . 

EVALUATE: 0f > and the lens is converging.  A double-convex lens is always converging. 

34.30. IDENTIFY and SET UP: Apply 
1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 

EXECUTE: We have a converging lens if the focal length is positive, which requires 

1 2 1 2

1 1 1 1 1( 1) 0 0.n
f R R R R

⎛ ⎞ ⎛ ⎞
= − − > ⇒ − >⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 This can occur in one of three ways: 

(i) 1R and 2R both positive and 1 2R R< . 1 2(ii) 0, 0R R≥ ≤  (double convex and planoconvex). 
(iii) 1R and 2R both negative and 1 2R R> (meniscus). The three lenses in Figure 35.32a in the textbook fall into 
these categories. 
We have a diverging lens if the focal length is negative, which requires 

1 2 1 2

1 1 1 1 1( 1) 0 0.n
f R R R R

⎛ ⎞ ⎛ ⎞
= − − < ⇒ − <⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 This can occur in one of three ways: 

(i) 1R and 2R both positive and 1 2R R>  (meniscus). (ii) 1R and 2R both negative and 2 1R R> .  (iii) 1 20, 0R R≤ ≥  
(planoconcave and double concave).  The three lenses in Figure 34.32b in the textbook fall into these categories. 
EVALUATE: The converging lenses in Figure 34.32a are all thicker at the center than at the edges.  The diverging 
lenses in Figure 34.32b are all thinner at the center than at the edges. 

34.31. IDENTIFY and SET UP: The equations 1 1 1
s s f
+ =

′
 and sm

s
′

= − apply to both thin lenses and spherical mirrors. 

EXECUTE:  (a) The derivation of the equations in Exercise 34.11 is identical and one gets: 
1 1 1 1 1 1 , and also .s f sf s fs m
s s f s f s fs s f s f s

′− ′+ = ⇒ = − = ⇒ = = − =
′ ′ − −

 

(b) Again, one gets exactly the same equations for a converging lens rather than a concave mirror because the 
equations are identical. The difference lies in the interpretation of the results. For a lens, the outgoing side is not 
that on which the object lies, unlike for a mirror. So for an object on the left side of the lens, a positive image 
distance means that the image is on the right of the lens, and a negative image distance means that the image is on 
the left side of the lens. 
(c) Again, for Exercise 34.12, the change from a convex mirror to a diverging lens changes nothing in the 
exercises, except for the interpretation of the location of the images, as explained in part (b) above. 
EVALUATE: Concave mirrors and converging lenses both have 0f > . Convex mirrors and diverging lenses both 
have 0f < . 

34.32. IDENTIFY: Apply 1 1 1
s s f
+ =

′
and y sm

y s
′ ′

= = − . 

SET UP: 12.0 cmf = + and 17.0 cms′ = − . 

EXECUTE: 1 1 1 1 1 1 7.0 cm.
12.0 cm 17.0 cm

s
s s f s
+ = ⇒ = − ⇒ =

′ −
 

( 17.0) 0.800 cm2.4 0.34 cm,
7.2 2.4

s ym y
s m
′ ′−

= − = − = + ⇒ = = = +
+

so the object is 0.34 cm tall, erect, same side as the 

image.  The principal-ray diagram is sketched in Figure 34.32. 
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EVALUATE: When the object is inside the focal point, a converging lens forms a virtual, enlarged image. 

 
Figure 34.32 

34.33. IDENTIFY: Use Eq.(34.16) to calculate the object distance s. m calculated from Eq.(34.17) determines the size 
and orientation of the image. 
SET UP: 48.0 cm.f = −  Virtual image 17.0 cm from lens so 17.0 cm.s′ = −  

EXECUTE: 1 1 1 1 1 1,  so s f
s s f s f s sf

−
+ = = − =

′ ′
 

( 17.0 cm)( 48.0 cm) 26.3 cm
17.0 cm ( 48.0 cm)

s fs
s f
′ − −

= = = +
′ − − − −

 

17.0 cm 0.646
26.3 cm

sm
s
′ −

= − = − = +
+

 

8.00 mm so 12.4 mm
0.646

yym y
y m

′′
= = = =  

The principal-ray diagram is sketched in Figure 34.33. 
EVALUATE: Virtual image, real object (s > 0) so image and object are on same side of lens. 
m > 0 so image is erect with respect to the object. The height of the object is 12.4 mm. 

 
Figure 34.33 

34.34. IDENTIFY: Apply 1 1 1
s s f
+ =

′
. 

SET UP: The sign of f determines whether the lens is converging or diverging.  16.0 cms = .  36.0 cms′ = + . Use 
sm
s
′

= −  to find the size and orientation of the image. 

EXECUTE: (a) (16.0 cm)(36.0 cm) 11.1 cm
16.0 cm 36.0 cm

ssf
s s

′
= = =

′+ +
.  0f > and the lens is converging. 

(b) 36.0 cm 2.25
16.0 cm

sm
s
′

= − = − = − .  (2.25)(8.00 mm) 18.0 mmy m y′ = = = .  0m < so the image is inverted. 

(c) The principal-ray diagram is sketched in Figure 34.34. 
EVALUATE: The image is real so the lens must be converging. 

 
Figure 34.34 
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34.35. IDENTIFY: Apply 1 1 1
s s f
+ =

′
. 

SET UP: The image is to be formed on the film, so 20.4 cms′ = + . 

EXECUTE: 1 1 1 1 1 1 1020 cm 10.2 m.
20.4 cm 20.0 cm

s
s s f s
+ = ⇒ + = ⇒ = =

′
 

EVALUATE: The object distance is much greater than f, so the image is just outside the focal point of the lens. 

34.36. IDENTIFY: Apply 1 1 1
s s f
+ =

′
and y sm

y s
′ ′

= = − . 

SET UP: 3.90 ms = .  0.085 mf = . 

EXECUTE: 1 1 1 1 1 1 0.0869 m.
3.90 m 0.085 m

s
s s f s

′+ = ⇒ + = ⇒ =
′ ′

 0.08691750 mm 39.0 mm,
3.90

sy y
s
′

′ = − = − = − so 

it will not fit on the 24-mm× 36-mm film. 
EVALUATE: The image is just outside the focal point and s f′ ≈ .  To have 36 mmy′ = , so that the image will fit 

on the film, (0.085 m)(1.75 m) 4.1 m
0.036 m

s ys
y
′

= − ≈ − =
′ −

.  The person would need to stand about 4.1 m from the lens. 

34.37. IDENTIFY: sm
s
′

= . 

SET UP: s f! , so s f′ ≈ . 

EXECUTE: (a) 428 mm 1.4 10 .
200,000 mm

s fm m
s s

−′
= ≈ ⇒ = = ×  

(b) 4105 mm 5.3 10 .
200,000 mm

s fm m
s s

−′
= ≈ ⇒ = = ×  

(c) 3300 mm 1.5 10 .
200,000 mm

s fm m
s s

−′
= ≈ ⇒ = = ×  

EVALUATE: The magnitude of the magnification increases when f increases. 

34.38. IDENTIFY: 
ysm

s y
′′

= =  

SET UP: s f! , so s f′ ≈ . 

EXECUTE: 3

5.00 m (70.7 m) 0.0372 m 37.2 mm.
9.50 10 m

s fy y y
s s
′

′ = ≈ = = =
×

 

EVALUATE: A very long focal length lens is needed to photograph a distant object. 
34.39. IDENTIFY and SET UP: Find the lateral magnification that results in this desired image size. Use Eq.(34.17) to 

relate m and s′  and Eq.(34.16) to relate s and s′  to f. 

EXECUTE: (a) We need 
3

424 10  m 1.5 10 .
160 m

m
−

−×
= − = − × Alternatively, 

3
436 10  m 1.5 10 .

240 m
m

−
−×

= − = − ×  

 so s f s f′ ≈!  

Then 41.5 10s fm
s s

−′
= − = − = − ×  and 4(1.5 10 )(600 m) 0.090 m 90 mm.f −= × = =  

A smaller f means a smaller s′  and a smaller m, so with f = 85 mm the object�s image nearly fills the picture area. 

(b) We need 
3

336 10  m 3.75 10 .
9.6 m

m
−

−×
= − = − ×  Then, as in part (a), 33.75 10f

s
−= ×  and 

3(40.0 m)(3.75 10 ) 0.15 m 150 mm.f −= × = =  Therefore use the 135 mm lens. 
EVALUATE: When s f!  and ,  ( / ).s f y f y s′ ′≈ = −  For the mobile home y/s is smaller so a larger f is needed. 
Note that m is very small; the image is much smaller than the object. 

34.40. IDENTIFY: Apply 1 1 1
s s f
+ =

′
to each lens.  The image of the first lens serves as the object for the second lens. 

SET UP: For a distant object, s →∞  
EXECUTE:  (a) 1 1 1 12 cm.s s f′= ∞⇒ = =  
(b) 2 4.0 cm 12 cm 8 cm.s = − = −  
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(c) 2
2

1 1 1 1 1 1 24 cm,
8 cm 12 cm

s
s s f s

′+ = ⇒ + = ⇒ =
′ ′− −

to the right. 

(d) 
11 1 12 cm.s s f′= ∞⇒ = =  2 8.0 cm 12 cm 4 cm.s = − = −  2

2

1 1 1 1 1 1 6 cm.
4 cm 12 cm

s
s s f s

′+ = ⇒ + = ⇒ =
′ ′− −

 

EVALUATE: In each case the image of the first lens serves as a virtual object for the second lens, and 2 0s < . 
34.41. IDENTIFY: The f-number of a lens is the ratio of its focal length to its diameter. To maintain the same exposure, 

the amount of light passing through the lens during the exposure must remain the same. 
SET UP: The f-number is f/D. 

EXECUTE: (a) 180.0 mm-number -number -number = /11
16.36 mm

ff f f f
D

= ⇒ = ⇒ . (The f-number is an integer.) 

(b) f/11 to f/2.8 is four steps of 2 in intensity, so one needs 1/16th the exposure. The exposure should be 1/480 s = 
32.1 10−×  s = 2.1 ms. 

EVALUATE: When opening the lens from f/11 to f/2.8, the area increases by a factor of 16, so 16 times as much 
light is allowed in. Therefore the exposure time must be decreased by a factor of 1/16 to maintain the same 
exposure on the film or light receptors of a digital camera. 

34.42. IDENTIFY and  SET UP: The square of the aperture diameter is proportional to the length of the exposure time 
required. 

EXECUTE: 
2

1 8 mm 1 s  s
30 23.1 mm 250

⎛ ⎞⎛ ⎞ ⎛ ⎞≈⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

EVALUATE: An increase in the aperture diameter decreases the exposure time. 

34.43. IDENTIFY and SET UP: Apply 1 1 1
s s f
+ =

′
to calculate s′ . 

EXECUTE:  (a) A real image is formed at the film, so the lens must be convex. 

(b) 1 1 1 1so and , with 50.0.0 mms f sfs f
s s f s sf s f

− ′+ = = = = +
′ ′ −

. For 45 cm 450 mm, s 56 mm.s ′= = =  For 

, 50 mm.s s f′= ∞ = =   The range of distances between the lens and film is 50 mm to 56 mm.  
EVALUATE: The lens is closer to the film when photographing more distant objects. 

34.44. IDENTIFY: The projector lens can be modeled as a thin lens. 

SET UP: The thin-lens equation is 1 1 1
s s f
+ =

′
, and the magnification of the lens is sm

s
′

= − . 

EXECUTE: (a) 1 1 1 1 1 1 147.5 mm
0.150 m 9.00 m

f
s s f f
+ = ⇒ = + ⇒ =

′
, so use a f = 148 mm lens. 

(b) 60  Area 1.44 m 2.16 msm m
s
′

= − ⇒ = ⇒ = × . 

EVALUATE: The lens must produce a real image to be viewed on the screen. Since the magnification comes out 
negative, the slides to be viewed must be placed upside down in the tray. 

34.45. (a) IDENTIFY: The purpose of the corrective lens is to take an object 25 cm from the eye and form a virtual 
image at the eye�s near point. Use Eq.(34.16) to solve for the image distance when the object distance is 25 cm. 

SET UP: 1 2.75
f
= +  diopters means 1 m 0.3636 m

2.75
f = + = +  (converging lens) 

36.36 cm; 25  cm; ?f s s′= = =  

EXECUTE:  1 1 1  so
s s f
+ =

′
 

(25 cm)(36.36 cm) 80.0 cm
25 cm 36.36 cm

sfs
s f

′ = = = −
− −

 

The eye�s near point is 80.0 cm from the eye. 
(b) IDENTIFY: The purpose of the corrective lens is to take an object at infinity and form a virtual image of it at 
the eye�s far point. Use Eq.(34.16) to solve for the image distance when the object is at infinity. 

SET UP: 1 1.30
f
= −  diopters means 1 m 0.7692 m

1.30
f = − = −  (diverging lens) 

76.92 cm; ;  ?f s s′= − = ∞ =  

EXECUTE: 1 1 1
s s f
+ =
′

 and s =∞  says 1 1
s f
=
′

 and 76.9 cm.s f′ = = −  The eye�s far point is 76.9 cm from the eye. 
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EVALUATE: In each case a virtual image is formed by the lens. The eye views this virtual image instead of the 
object. The object is at a distance where the eye can�t focus on it, but the virtual image is at a distance where the 
eye can focus. 

34.46. IDENTIFY: a b b an n n n
s s R

−
+ =

′
 

SET UP: 1.00an = , 1.40bn = .  40.0 cms = , 2.60 cms′ = . 

EXECUTE: 1 1.40 0.40
40.0 cm 2.60 cm R

+ =  and 0.710 cmR = . 

EVALUATE: The cornea presents a convex surface to the object, so 0R > . 
34.47. IDENTIFY: In each case the lens forms a virtual image at a distance where the eye can focus.  Power in diopters 

equals 1/ f , where f is in meters. 
SET UP: In part (a), 25 cms = and in part (b), s →∞ . 

EXECUTE: (a) 1 1 1 1 1 1power 2.33
0.25 m 0.600 mf s s f

= + = + ⇒ = = +
′ −

 diopters. 

(b) 1 1 1 1 1 1power 1.67
0.600 mf s s f

= + = + ⇒ = = −
′ ∞ −

 diopters. 

EVALUATE: A converging lens corrects the near vision and a diverging lens corrects the far vision. 

34.48. IDENTIFY: When the object is at the focal point, 25.0 cmM
f

= .  In part (b), apply 1 1 1
s s f
+ =

′
 to calculate s for 

25.0 cms′ = − . 
SET UP: Our calculation assumes the near point is 25.0 cm from the eye. 

EXECUTE:  (a) Angular magnification 25.0 cm 25.0 cm 4.17.
6.00 cm

M
f

= = =  

(b) 1 1 1 1 1 1 4.84 cm.
25.0 cm 6.00 cm

s
s s f s
+ = ⇒ + = ⇒ =

′ −
 

EVALUATE: In part (b), y
s

θ′ = , 
25.0 cm

yθ =  and 25.0 cm 25.0 cm 5.17
4.84 cm

M
s

= = = .  M is greater when the image 

is at the near point than when the image is at infinity. 
34.49. IDENTIFY: Use Eqs.(34.16) and (34.17) to calculate s and .y′  

(a) SET UP: 8.00 cm; 25.0 cm; ?f s s′= = − =  
1 1 1 1 1 1,  so s f
s s f s f s s f

′ −
+ = = − =

′ ′ ′
 

EXECUTE: ( 25.0 cm)( 8.00 cm) 6.06 cm
25.0 cm 8.00 cm

s fs
s f
′ − +

= = = +
′ − − −

 

(b) 25.0 cm 4.125
6.06 cm

sm
s
′ −

= − = − = +  

 so (4.125)(1.00 mm) 4.12 mm
y

m y m y
y
′

′= = = =  

EVALUATE: The lens allows the object to be much closer to the eye than the near point. The lense allows the eye 
to view an image at the near point rather than the object. 

34.50. IDENTIFY: For a thin lens, s y
s y
′ ′

− = , so y y
s s
′
=

′
, and the angular size of the image equals the angular size of the 

object. 

SET UP: The object has angular size y
f

θ = , with θ in radians. 

EXECUTE: 2.00 mm 80.0 mm 8.00 cm.
0.025 rad

y yf
f

θ
θ

= ⇒ = = = =  

EVALUATE: If the insect is at the near point of a normal eye, its angular size is 2.00 mm 0.0080 rad
250 mm

= . 

34.51. IDENTIFY: The thin-lens equation applies to the magnifying lens. 

SET UP: The thin-lens equation is 1 1 1
s s f
+ =

′
. 
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EXECUTE: The image is behind the lens, so 0s′ < . The thin-lens equation gives 
1 1 1 1 1 1 4.17 cm

5.00 cm 25.0 cm
s

s s f s
+ = ⇒ = − ⇒ =

′ −
, on the same side of the lens as the ant. 

EVALUATE: Since 0s′ < , the image will be erect. 
34.52. IDENTIFY: Apply Eq.(34.24). 

SET UP: 1 160 mm 5.0 mm 165 mms′ = + =  

EXECUTE: (a) 1

1 2

(250 mm) (250 mm)(165 mm) 317.
(5.00 mm)(26.0 mm)

sM
f f

′
= = =  

(b) The minimum separation is 40.10 mm 0.10 mm 3.15 10 mm.
317M

−= = ×  

EVALUATE: The angular size of the image viewed by the eye when looking through the microscope is 317 times 
larger than if the object is viewed at the near-point of the unaided eye. 

34.53. (a) IDENTIFY and SET UP: 

 
Figure 34.53 

Final image is at ∞  so the object for the eyepiece is at its focal point. But the object for the eyepiece is the image 
of the objective so the image formed by the objective is 19.7 cm � 1.80 cm = 17.9 cm to the right of the lens. 
Apply Eq.(34.16) to the image formation by the objective, solve for the object distance s. 

0.800 cm; 17.9 cm; ?f s s′= = =  
1 1 1 1 1 1,  so s f
s s f s f s s f

′ −
+ = = − =

′ ′ ′
 

EXECUTE: (17.9 cm)( 0.800 cm) 8.37 mm
17.9 cm 0.800 cm

s fs
s f
′ +

= = = +
′ − −

 

(b) SET UP: Use Eq.(34.17). 

EXECUTE:  1
17.9 cm 21.4
0.837 cm

sm
s
′

= − = − = −  

The linear magnification of the objective is 21.4. 
(c) SET UP: Use Eq.(34.23):  1 2M m M=  

EXECUTE: 2
2

25 cm 25 cm 13.9
1.80 cm

M
f

= = =  

1 2 ( 21.4)(13.9) 297M m M= = − = −  
EVALUATE: M is not accurately given by 1 1 2(25 cm) / 311,s f f′ =  because the object is not quite at the focal point 
of the objective 1 1( 0.837 cm and 0.800 cm).s f= =  

34.54. IDENTIFY: Eq.(34.24) can be written 1
1 2 2

1

sM m M M
f
′

= = . 

SET UP: 1 1 120 mms f′ = +  

EXECUTE:  16 mm : 120 mm 16 mm 136 mm; 16 mmf s s′= = + = = .  1
136 mm 8.5
16 mm

sm
s
′

= = = . 

1
124 mm4 mm : 120 mm 4 mm 124 mm; 4 mm 31

4 mm
sf s s m
s
′

′= = + = = ⇒ = = = . 

1
122 mm1.9 mm : 120 mm 1.9 mm 122 mm; 1.9 mm 64
1.9 mm

sf s s m
s
′

′= = + = = ⇒ = = = . 

The eyepiece magnifies by either 5 or 10, so: 
(a) The maximum magnification occurs for the 1.9-mm objective and 10x eyepiece: 

1 e (64)(10) 640.M m M= = =  
(b) The minimum magnification occurs for the 16-mm objective and 5x eyepiece: 

1 e (8.5)(5) 43.M m M= = =  
EVALUATE: The smaller the focal length of the objective, the greater the overall magnification. 
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34.55. IDENTIFY: -number /f f D=  
SET UP: 1.02 mD =  

EXECUTE: 19.0 (19.0) (19.0)(1.02 m) 19.4 m.f f D
D
= ⇒ = = =  

EVALUATE: Camera lenses can also have an f-number of 19.0. For a camera lens, both the focal length and lens 
diameter are much smaller, but the f-number is a measure of their ratio. 

34.56. IDENTIFY: For a telescope, 1

2

fM
f

= − . 

SET UP: 2 9.0 cmf = .  The distance between the two lenses equals 1 2f f+ . 

EXECUTE: 1 2 11.80 m 1.80 m 0.0900 m 1.71 mf f f+ = ⇒ = − = .  1

2

171 19.0.
9.00

fM
f

= − = − = −  

EVALUATE: For a telescope, 1 2f f! . 
34.57. (a) IDENTIFY and SET UP: Use Eq.(34.24), with 1 95.0 cmf =  (objective) and 2 15.0 cmf =  (eyepiece). 

EXECUTE: 1

2

95.0 cm 6.33
15.0 cm

fM
f

= − = − = −  

(b) IDENTIFY and SET UP: Use Eq.(34.17) to calculate .y′  

SET UP: 33.00 10  ms = ×  
1 95.0 cms f′ = =  (since s is very large, s f′ ≈ ) 

EXECUTE: 4
3

0.950 m 3.167 10
3.00 10  m

sm
s

−′
= − = − = − ×

×
 

4(3.167 10 )(60.0 m) 0.0190 m 1.90 cmy m y −′ = = × = =  
(c) IDENTIFY: Use Eq.(34.21) and the angular magnification M obtained in part (a) to calculate .θ′  The angular 
size θ  of the image formed by the objective (object for the eyepiece) is its height divided by its distance from the 
objective. 

EXECUTE: The angular size of the object for the eyepiece is 0.0190 m 0.0200 rad.
0.950 m

θ = =  

(Note that this is also the angular size of the object for the objective: 3

60.0 m 0.0200 rad.
3.00 10  m

θ = =
×

 For a thin lens 

the object and image have the same angular size and the image of the objective is the object for the eyepiece.) 

M θ
θ
′

=  (Eq.34.21) so the angular size of the image is (6.33)(0.0200 rad) 0.127 radMθ θ′ = = − = −  (The minus 

sign shows that the final image is inverted.) 
EVALUATE: The lateral magnification of the objective is small; the image it forms is much smaller than the 
object. But the total angular magnification is larger than 1.00; the angular size of the final image viewed by the eye 
is 6.33 times larger than the angular size of the original object, as viewed by the unaided eye. 

34.58. IDENTIFY: The angle subtended by Saturn with the naked eye is the same as the angle subtended by the image of 
Saturn formed by the objective lens (see Fig. 34.53 in the textbook). 

SET UP: The angle subtended by Saturn is 
1

diameter of Saturn
distance to Saturn

y
f

θ
′

= = . 

EXECUTE: Putting in the numbers gives 5

1

1.7 mm 0.0017 m 9.4 10 rad 0.0054
18 m 18 m

y
f

θ −′
= = = = × = °  

EVALUATE: The angle subtended by the final image, formed by the eyepiece, would be much larger than 0.0054°. 

34.59. IDENTIFY: / 2f R= and 1

2

fM
f

= − . 

SET UP: For object and image both at infinity, 1 2f f+  equals the distance d between the two mirrors.  

2 1.10 cmf = .  1 1.30 mR = . 

EXECUTE: (a) 1
1 1 20.650 m 0.661 m.

2
Rf d f f= = ⇒ = + =  

(b) 1

2

0.650 m 59.1.
0.011 m

fM
f

= = =  

EVALUATE: For a telescope, 1 2f f! . 
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34.60. IDENTIFY: The primary mirror forms an image which then acts as the object for the secondary mirror.  
SET UP: The equation relating the object and image distances to the focal length of a spherical mirror is 
1 1 1
s s f
+ =

′
. 

EXECUTE: For the first image (formed by the primary mirror): 
1 1 1 1 1 1 2.5 m

2.5 m
s

s s f s
′+ = ⇒ = − ⇒ =

′ ′ ∞
. 

For the second image (formed by the secondary mirror), the distance between the two vertices is x. Assuming that 
the image formed by the primary mirror is to the right of the secondary mirror, the object distance is s = x � 2.5 m 
and the image distance is s′  = x + 0.15 m. Therefore we have 

1 1 1 1 1 1
2.5 m 0.15 m 1.5 ms s f x x

+ = ⇒ + =
′ − + −

 

The positive root of the quadratic equation gives x = 1.7 m, which is the distance between the vertices. 
EVALUATE: Some light is blocked by the secondary mirror, but usually not enough to make much difference. 

34.61. IDENTIFY and SET UP: For a plane mirror . dss s v
dt

′ = − =  and ,dsv
dt
′

′ =  so .v v′ = −  

EXECUTE:  The velocities of the object and image relative to the mirror are equal in magnitude and opposite in 
direction. Thus both you and your image are receding from the mirror surface at 2.40 m/s, in opposite directions. 
Your image is therefore moving at 4.80 m/s relative to you. 
EVALUATE: The result derives from the fact that for a plane mirror the image is the same distance behind the 
mirror as the object is in front of the mirror. 

34.62. IDENTIFY: Apply the law of reflection. 
SET UP: The image of one mirror can serve as the object for the other mirror. 
EXECUTE:  (a) There are three images formed, as shown in Figure 34.62a. 
(b) The paths of rays for each image are sketched in Figure 34.62b. 
EVALUATE: Our results agree with Figure 34.9 in the textbook. 

   
Figure 34.62 

34.63. IDENTIFY: Apply the law of reflection for rays from the feet to the eyes and from the top of the head to the eyes.   
SET UP: In Figure 34.63, ray 1 travels from the feet of the woman to her eyes and ray 2 travels from the top of 
her head to her eyes.  The total height of the woman is h. 
EXECUTE:  The two angles labeled 1θ  are equal because of the law of reflection, as are the two angles labeled 

2θ .  Since these angles are equal, the two distances labeled 1y are equal and the two distances labeled 2y are equal.  
The height of the woman is w 1 22 2h y y= + . As the drawing shows, the height of the mirror is m 1 2h y y= + . 
Comparing, we find that m w / 2h h= . The minimum height required is half the height of the woman. 
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EVALUATE: The height of the image is the same as the height of the woman, so the height of the image is twice 
the height of the mirror. 

 
Figure 34.63 

34.64. IDENTIFY: Apply 1 1 2
s s R
+ =

′
and sm

s
′

= − . 

SET UP: Since the image is projected onto the wall it is real and 0s′ > .  sm
s
′

= −  so m is negative and 

2.25m = − . The object, mirror and wall are sketched in Figure 34.64. The sketch shows that 400 cms s′ − = . 

EXECUTE: 2.25 sm
s
′

= − = −  and 2.25s s′ = . 2.25 400 cms s s s′ − = − =  and 320 cms = .  

400 cms′ = +  320 cm 720 cm= . The mirror should be 7.20 m from the wall. 1 1 2
s s R
+ =

′
. 1 1 2

320 cm 720 cm R
+ = . 

4.43 m.R =  
EVALUATE: The focal length of the mirror is / 2 222 cmf R= = .  s f> , as it must if the image is to be real. 

 
Figure 34.64 

34.65. IDENTIFY: We are given the image distance, the image height, and the object height. Use Eq.(34.7) to calculate 
the object distance s. Then use Eq.(34.4) to calculate R. 
(a) SET UP: Image is to be formed on screen so is real image; 0.s′ >  Mirror to screen distance is 8.00 m, so 

800 cm.s′ = +  0sm
s
′

= − <  since both s and s′  are positive. 
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EXECUTE: 36.0 m 60.0
0.600 cm

y
m

y
′

= = =  and 60.0.m = −  Then sm
s
′

= −  gives 800 cm 13.3 cm.
60.0

ss
m
′

= − = − = +
−

 

(b) 1 1 2 ,
s s R
+ =

′
 so 2 s s

R ss
′+

=
′

 

(13.3 cm)(800 cm)2 2 26.2 cm
800 cm 13.3 cm

ssR
s s

′⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟′+ +⎝ ⎠ ⎝ ⎠
 

EVALUATE: R is calculated to be positive, which is correct for a concave mirror. Also, in part (a) s is calculated 
to be positive, as it should be for a real object. 

34.66. IDENTIFY: Apply 1 1 1
s s f
+ =

′
 to calculate s′ and then use s ym

s y
′ ′

= − = to find the height of the image. 

SET UP: For a convex mirror, 0R < , so 18.0 cmR = −  and 9.00 cm
2
Rf = = − . 

EXECUTE: (a) 1 1 1
s s f
+ =

′
.  (1300 cm)( 9.00 cm) 8.94 cm

1300 cm ( 9.00 cm)
sfs

s f
−′ = = = −

− − −
. 38.94 cm 6.88 10

1300 cm
sm
s

−′ −
= − = − = × . 

3(6.88 10 )(1.5 m) 0.0103 m 1.03 cmy m y −′ = = × = = . 
(b) The height of the image is much less than the height of the car, so the car appears to be farther away than its 
actual distance. 
EVALUATE: The image formed by a convex mirror is always virtual and smaller than the object. 

34.67. IDENTIFY: Apply 1 1 2
s s R
+ =

′
 and sm

s
′

= − . 

SET UP: 19.4 cmR = + . 

EXECUTE: (a) 1 1 2 1 1 2 46 cm,
8.0 cm 19.4 cm

s
s s R s

′+ = ⇒ + = ⇒ = −
′ ′

 so the image is virtual. 

(b) 46 5.8,
8.0

sm
s
′ −

= − = − =  so the image is erect, and its height is (5.8) (5.8)(5.0 mm) 29 mm.y y′ = = =  

EVALUATE: (c) When the filament is 8 cm from the mirror, the image is virtual and cannot be projected onto a wall. 

34.68. IDENTIFY: Combine 1 1 2
s s R
+ =

′
 and sm

s
′

= − . 

SET UP: 2.50m = + .  0R > . 

EXECUTE: 2.50sm
s
′

= − = + .  2.50s s′ = − .  1 1 2
2.50s s R

+ =
−

.  0.600 2
s R

=  and 0.300s R= .  

2.50s s′ = − =  ( 2.50)(0.300 ) 0.750R R− = − . The object is a distance of 0.300R  in front of the mirror and the image 
is a distance of 0.750R  behind the mirror. 
EVALUATE: For a single mirror an erect image is always virtual. 

34.69. IDENTIFY and SET UP: Apply Eqs.(34.6) and (34.7). For a virtual object 0.s <  The image is real if 0.s′ >  
EXECUTE: (a) Convex implies 0;  24.0 cm; / 2 12.0 cmR R f R< = − = = −  
1 1 1 ,
s s f
+ =

′
 so 1 1 1 s f

s f s sf
−

= − =
′

 

( 12.0 cm)
12.0 cm

sf ss
s f s

−′ = =
− +

 

s is negative, so write as 
(12.0 cm)

; .
12.0 cm

s
s s s

s
′= − = +

−
 Thus 0s′ >  (real image) for 12.0 cm.s <  Since s is negative 

this means 12.0 cm 0.s− < <  A real image is formed if the virtual object is closer to the mirror than the focus. 

(b) ;sm
s
′

= −  real image implies 0;s′ >  virtual object implies 0.s <  Thus 0m >  and the image is erect. 
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(c) The principal-ray diagram is given in Figure 34.69. 

 
Figure 34.69 

EVALUATE: For a real object, only virtual images are formed by a convex mirror. The virtual object considered 
in this problem must have been produced by some other optical element, by another lens or mirror in addition to 
the convex one we considered. 

34.70. IDENTIFY: Apply a b b an n n n
s s R

−
+ =

′
, with R →∞  since the surfaces are flat. 

SET UP: The image formed by the first interface serves as the object for the second interface. 
EXECUTE: For the water-benzene interface to get the apparent water depth: 

1.33 1.500 0 7.33 cm.
6.50 cm

a bn n s
s s s

′+ = ⇒ + = ⇒ = −
′ ′

 

For the benzene-air interface, to get the total apparent distance to the bottom: 
1.50 10 0 6.62 cm.

(7.33 cm 2.60 cm)
a bn n s
s s s

′+ = ⇒ + = ⇒ = −
′ ′+

 

EVALUATE: At the water-benzene interface the light refracts into material of greater refractive index and the 
overall effect is that the apparent depth is greater than the actual depth. 

34.71. IDENTIFY: The focal length is given by 
1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
. 

SET UP: 1 4.0 cmR = ± or 8.0 cm± .  2 8.0 cmR = ± or 4.0 cm± .  The signs are determined by the location of the 
center of curvature for each surface. 

EXECUTE: 1 1 1(0.60)
4.00 cm 8.00 cmf

⎛ ⎞
= −⎜ ⎟± ±⎝ ⎠

, so 4.44 cm, 13.3 cm.f = ± ±   The possible lens shapes are 

sketched in Figure 34.71. 
1 2 3 4 5 6

7 8

13.3 cm; 4.44 cm; 4.44 cm; 13.3 cm; 13.3 cm; 13.3 cm;
4.44 cm; 4.44 cm.

f f f f f f
f f
= + = + = = − = − = +
= − = −

 

EVALUATE: f is the same whether the light travels through the lens from right to left or left to right, so for the 
pairs (1,6), (4,5) and (7,8) the focal lengths are the same. 

 
Figure 34.71 

34.72. IDENTIFY: Apply 1 1 1
s s f
+ =

′
 and the concept of principal rays. 

SET UP: 10.0 cms = . If extended backwards the ray comes from a point on the optic axis 18.0 cm from the lens 
and the ray is parallel to the optic axis after it passes through the lens. 
EXECUTE:  (a) The ray is bent toward the optic axis by the lens so the lens is converging. 
(b) The ray is parallel to the optic axis after it passes through the lens so it comes from the focal point; 

18.0 cmf = . 
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(c) The principal ray diagram is drawn in Figure 34.72. The diagram shows that the image is 22.5 cm to the left of 
the lens.   

(d) 1 1 1
s s f
+ =

′
 gives (10.0 cm)(18.0 cm) 22.5 cm

10.0 cm 18.0 cm
sfs

s f
′ = = = −

− −
. The calculated image position agrees with the 

principal ray diagram. 
EVALUATE: The image is virtual. A converging lens produces a virtual image when the object is inside the focal point. 

 
Figure 34.72 

34.73. IDENTIFY: Since the truck is moving toward the mirror, its image will also be moving toward the mirror. 
SET UP: The equation relating the object and image distances to the focal length of a spherical mirror is 
1 1 1
s s f
+ =

′
, where f = R/2. 

EXECUTE: Since the mirror is convex, f = R/2 = (�1.50 m)/2 = �0.75 m. Applying the equation for a spherical 

mirror gives 1 1 1 fss
s s f s f

′+ = ⇒ =
′ −

. 

Using the chain rule from calculus and the fact that v = ds/dt, we have 
2

2( )
ds ds ds fv v
dt ds dt s f
′ ′

′ = = =
−

 

Solving for v gives 
2 22.0 m ( 0.75 m)(1.5 m/s) 20.2 m/s

0.75 m
s fv v

f
⎛ ⎞− − −⎡ ⎤′= = =⎜ ⎟ ⎢ ⎥−⎣ ⎦⎝ ⎠

. 

This is the velocity of the truck relative to the mirror, so the truck is approaching the mirror at 20.2 m/s. You are 
traveling at 25 m/s, so the truck must be traveling at 25 m/s + 20.2 m/s = 45 m/s relative to the highway. 
EVALUATE: Even though the truck and car are moving at constant speed, the image of the truck is  not moving at 
constant speed because its location depends on the distance from the mirror to the truck. 

34.74. IDENTIFY: In this context, the microscope just looks at an image or object. Apply 0a bn n
s s
+ =

′
to the image 

formed by refraction at the top surface of the second plate. In this calculation the object is the bottom surface of the 
second plate. 
SET UP: The thickness of the second plate is 2.50 mm 0.78 mm+ , and this is s.  The image is 2.50 mm below 
the top surface, so 2.50 mms′ = − . 

EXECUTE: 1 2.50 mm 0.780 mm0 0 1.31.
2.50 mm

a bn n n sn
s s s s s

+
+ = ⇒ + = ⇒ = − = − =

′ ′ ′ −
   

EVALUATE: The object and image distances are measured from the front surface of the second plate, and the 
image is virtual. 

34.75. IDENTIFY and SET UP: In part (a) use 1 1 1
s s f
+ =

′
 to evaluate /ds ds′ .  Compare to sm

s
′

= − . In part (b) use 

1 1 2
s s R
+ =

′
to find the location of the image of each face of the cube. 

EXECUTE: (a) 1 1 1
s s f
+ =

′
 and taking its derivative with respect to s we have 2 2

1 1 1 1 10 d ds
ds s s f s s ds

′⎛ ⎞
= + − = − −⎜ ⎟′ ′⎝ ⎠

 

and 
2

2
2

ds s m
ds s
′ ′
= − = − .  But ds m

ds
′

′= , so 2.m m′ = −  Images are always inverted longitudinally. 

(b) (i) Front face: 1 1 2 1 1 2 120.00 cm.
200.000 cm 150.000 cm

s
s s R s

′+ = ⇒ + = ⇒ =
′ ′
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Rear face: 1 1 2 1 1 2 119.96 cm.
200.100 cm 150.000 cm

s
s s R s

′+ = ⇒ + = ⇒ =
′ ′

 

(ii) 120.000 0.600
200.000

sm
s
′

= − = − = − .  ( )22 0.600 0.360.m m′ = − = − − = −  

(iii) The two faces perpendicular to the axis (the front and rear faces):  squares with side length 0.600 mm.  The 
four faces parallel to the axis (the side faces):  rectangles with sides of length 0.360 mm parallel to the axis and 
0.600 mm perpendicular to the axis. 
EVALUATE: Since the lateral and longitudinal magnifications have different values the image of the cube is not a cube. 

34.76. IDENTIFY: /m ds ds′ ′= and a

b

n sm
n s
′

= − . 

SET UP: Use a b b an n n n
s s R

−
+ =

′
 to evaluate /ds ds′ . 

EXECUTE: a b b an n n n
s s R

−
+ =

′
 and taking its derivative with respect to s we have 

2 20 a b b a a bd n n n n n n ds
ds s s R s s ds

′−⎛ ⎞= + − = − −⎜ ⎟′ ′⎝ ⎠
 and 

2 2 2
2

2 2 2 .a a b b

b b a a

ds s n s n n nm
ds s n s n n n

⎛ ⎞′ ′ ′
= − = − = −⎜ ⎟

⎝ ⎠
 

But ds m
ds
′

′= , so 2 b

a

nm m
n

′ = − . 

EVALUATE: m′ is always negative.  This means that images are always inverted longitudinally. 

34.77. IDENTIFY and SET UP: Rays that pass through the hole are undeflected.  All other rays are blocked.  sm
s
′

= − . 

EXECUTE: (a) The ray diagram is drawn in Figure 34.77. The ray shown is the only ray from the top of the object 
that reaches the film, so this ray passes through the top of the image.  An inverted image is formed on the far side 
of the box, no matter how far this side is from the pinhole and no matter how far the object is from the pinhole. 

(b) 1.5 ms = .  20.0 cms′ = .  20.0 cm 0.133
150 cm

sm
s
′

= − = − = − . ( 0.133)(18 cm) 2.4 cmy my′ = = − = − . The image is 

2.4 cm tall. 
EVALUATE: A defect of this camera is that not much light energy passes through the small hole each second, so 
long exposure times are required. 

 
Figure 34.77 

34.78. IDENTIFY: Apply a b b an n n n
s s R

−
+ =

′
 and a

b

n sm
n s
′

= − to each refraction.  The overall magnification is 1 2m m m= . 

SET UP: For the first refraction, 6.0 cmR = + , 1.00an =  and 1.60bn = .  For the second refraction, 12.0 cmR = − , 
1.60an =  and 1.00bn = . 

EXECUTE: (a) The image from the left end acts as the object for the right end of the rod. 

(b) 1 1.60 0.60 28.3 cm.
23.0 cm 6.0 cm

a b b an n n n s
s s R s

− ′+ = ⇒ + = ⇒ =
′ ′

 

So the second object distance is 2 40.0 cm 28.3 cm 11.7 cm.s = − =  
( )( )1

28.3 0.769.
1.60 23.0

a

b

n sm
n s
′

= − = − = −  

(c) The object is real and inverted. 

(d) 
2 2 2

1.60 1 0.60 11.5 cm.
11.7 cm 12.0 cm

a b b an n n n s
s s R s

− − ′+ = ⇒ + = ⇒ = −
′ ′ −

 

( )( ) ( )( )2 1 2

1.60 11.5
1.57 0.769 1.57 1.21.

11.7
a

b

n sm m m m
n s

−′
= − = − = ⇒ = = − = −  

(e) The final image is virtual, and inverted. 
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(f) ( )( )1.50 mm 1.21 1.82 mm.y′ = − = −  
EVALUATE: The first image is to the left of the second surface, so it serves as a real object for the second surface, 
with positive object distance. 

34.79. IDENTIFY: Apply Eqs.(34.11) and (34.12) to the refraction as the light enters the rod and as it leaves the rod. The 
image formed by the first surface serves as the object for the second surface. The total magnification is 

tot 1 2 ,m m m=  where 1m  and 2m  are the magnifications for each surface. 
SET UP: The object and rod are shown in Figure 34.79. 

 
Figure 34.79 

(a) image formed by refraction at first surface (left end of rod): 
23.0 cm; 1.00;  1.60;  6.00 cma bs n n R= + = = = +  

a b b an n n n
s s R

−
+ =

′
 

EXECUTE: 1 1.60 1.60 1.00
23.0 cm 6.00 cms

−
+ =

′
 

1.60 1 1 23 10 13
10.0 cm 23.0 cm 230 cm 230 cms

−
= − = =

′
 

230 cm1.60 28.3 cm;
13

s ⎛ ⎞′ = = +⎜ ⎟
⎝ ⎠

 image is 28.3 cm to right of first vertex. 

This image serves as the object for the refraction at the second surface (right-hand end of rod). It is 
28.3 cm 25.0 cm 3.3 cm− =  to the right of the second vertex. For the second surface 3.3 cms = −  (virtual object). 
(b) EVALUATE: Object is on side of outgoing light, so is a virtual object. 
(c) SET UP: Image formed by refraction at second surface (right end of rod): 

3.3 cm; 1.60;  1.00;  12.0 cma bs n n R= − = = = −  

a b b an n n n
s s R

−
+ =

′
 

EXECUTE: 1.60 1.00 1.00 1.60
3.3 cm 12.0 cms

−
+ =

′− −
 

1.9 cm; 0s s′ ′= + >  so image is 1.9 cm to right of vertex at right-hand end of rod. 
(d) 0s′ >  so final image is real. 
Magnification for first surface: 

(1.60)( 28.3 cm) 0.769
(1.00)( 23.0 cm)

a

b

n sm
n s
′ +

= − = − = −
+

 

Magnification for second surface: 
(1.60)( 1.9 cm) 0.92
(1.00)( 3.3 cm)

a

b

n sm
n s
′ +

= − = − = +
−

 

The overall magnification is tot 1 2 ( 0.769)( 0.92) 0.71m m m= = − + = −  tot 0m <  so final image is inverted with respect 
to the original object. 
(e) tot ( 0.71)(1.50 mm) 1.06 mmy m y′ = = − = −  
The final image has a height of 1.06 mm. 
EVALUATE: The two refracting surfaces are not close together and Eq.(34.18) does not apply. 

34.80. IDENTIFY: Apply 1 1 1
s s f
+ =

′
 and y sm

y s
′ ′

= = − .  The type of lens determines the sign of f.  The sign of 

s′ determines whether the image is real or virtual. 
SET UP: 8.00 cms = + .  3.00 cms′ = − . s′  is negative because the image is on the same side of the lens as the 
object. 

EXECUTE:  (a) 1 s s
f ss

′+
=

′
 and (8.00 cm)( 3.00 cm) 4.80 cm

8.00 cm 3.00 cm
ssf

s s
′ −

= = = −
′+ −

.  f  is negative so the lens is 

diverging. 
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(b) 3.00 cm 0.375
8.00 cm

sm
s
′ −

= − = − = + .  (0.375)(6.50 mm) 2.44 mmy my′ = = = .  0s′ <  and the image is virtual. 

EVALUATE: A converging lens can also form a virtual image, if the object distance is less than the focal length. 
But in that case s s′ > and the image would be farther from the lens than the object is. 

34.81. IDENTIFY: 1 1 1
s s f
+ =

′
.  The type of lens determines the sign of f.  y sm

y s
′ ′

= = − .  The sign of s′ depends on 

whether the image is real or virtual.  16.0 cms = . 
SET UP: 22.0 cms′ = − ; s′ is negative because the image is on the same side of the lens as the object. 

EXECUTE: (a) 1 s s
f ss

′+
=

′
 and (16.0 cm)( 22.0 cm) 58.7 cm

16.0 cm 22.0 cm
ssf

s s
′ −

= = = +
′+ −

. f is positive so the lens is converging. 

(b) 22.0 cm 1.38
16.0 cm

sm
s
′ −

= − = − = .  (1.38)(3.25 mm) 4.48 mmy my′ = = = .  0s′ < and the image is virtual. 

EVALUATE: A converging lens forms a virtual image when the object is closer to the lens than the focal point. 

34.82. IDENTIFY: Apply a b b an n n n
s s R

−
+ =

′
.  Use the image distance when viewed from the flat end to determine the 

refractive index n of the rod. 
SET UP: When viewing from the flat end, an n= , 1.00bn = and R →∞ .  When viewing from the curved end, 

an n= , 1.00bn = and 10.0 cmR = − . 

EXECUTE: 1 15.00 0 1.58.
15.0 cm 9.50 cm 9.50

a bn n n n
s s
+ = ⇒ + = ⇒ = =

′ −
 When viewed from the curved end of the 

rod 1 1 1.58 1 0.58
15.0 cm 10.0 cm

a b b an n n n n n
s s R s s R s

− − −
+ = ⇒ + = ⇒ + =

′ ′ ′ −
 , and 21.1cms′ = − .  The image is 21.1 cm 

within the rod from the curved end. 
EVALUATE:  In each case the image is virtual and on the same side of the surface as the object. 

34.83. (a) IDENTIFY: Apply Snell�s law to the refraction of a ray at each side of the beam to find where these rays strike 
the table. 
SET UP: The path of a ray is sketched in Figure 34.83. 

 
Figure 34.83 

The width of the incident beam is exaggerated in the sketch, to make it easier to draw. Since the diameter of the 
beam is much less than the radius of the hemisphere, angles aθ  and bθ  are small. The diameter of the circle of 
light formed on the table is 2 .x  Note the two right triangles containing the angles aθ  and .bθ  

0.190 cmr =  is the radius of the incident beam. 
12.0 cmR =  is the radius of the glass hemisphere. 

EXECUTE: aθ  and bθ  small imply ;  sin ,  sina b
r x xx x
R R R

θ θ
′

′≈ = = ≈  

Snell�s law: sin sina a b bn nθ θ=  

Using the above expressions for sin aθ  and sin bθ  gives a b
r xn n
R R
=  

a bn r n x=  so 1.00(0.190 cm) 0.1267 cm
1.50

a

b

n rx
n

= = =  

The diameter of the circle on the table is 2 2(0.1267 cm) 0.253 cm.x = =  
(b) EVALUATE: R divides out of the expression; the result for the diameter of the spot is independent of the radius R 
of the hemisphere. It depends only on the diameter of the incident beam and the index of refraction of the glass. 
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34.84. IDENTIFY and SET UP: Treating each of the goblet surfaces as spherical surfaces, we have to pass, from left to 

right, through four interfaces. Apply a b b an n n n
s s R

−
+ =

′
to each surface.  The image formed by one surface serves as 

the object for the next surface. 
EXECUTE: (a) For the empty goblet: 

1
1

1 1.50 0.50 12 cm
4.00 cm

a b b an n n n s
s s R s

− ′+ = ⇒ + = ⇒ =
′ ′∞

. 

2 2
2

1.50 1 0.500.60 cm 12 cm 11.4 cm 64.6 cm.
11.4 cm 3.40 cm

s s
s

− ′= − = − ⇒ + = ⇒ = −
′−

3 3
3

1 1.50 0.5064.6 cm 6.80 cm 71.4 cm 9.31cm.
71.4 cm 3.40 cm

s s
s

′= + = ⇒ + = ⇒ = −
′ −

 

4 4
4

1.50 1 0.509.31cm 0.60 cm 9.91cm 37.9 cm.
9.91cm 4.00 cm

s s
s

− ′= + = ⇒ + = ⇒ = −
′ −

 The final image is 

37.9 cm 2(4.0 cm) 29.9 cm− = to the left of the goblet. 
(b) For the wine-filled goblet: 

1
1

1 1.50 0.50 12 cm
4.00 cm

a b b an n n n s
s s R s

− ′+ = ⇒ + = ⇒ =
′ ′∞

. 

2 2
2

1.50 1.37 0.130.60 cm 12 cm 11.4 cm 14.7 cm.
11.4 cm 3.40 cm

s s
s

− ′= − = − ⇒ + = ⇒ =
′−

 

3 3
3

1.37 1.50 0.136.80 cm 14.7 cm 7.9 cm 11.1cm.
7.9 cm 3.40 cm

s s
s

′= − = − ⇒ + = ⇒ =
′− −

 

4 4
4

1.50 1 0.500.60 cm 11.1cm 10.5 cm 3.73 cm
10.5 cm 4.00 cm

s s
s

− ′= − = − ⇒ + = ⇒ =
′− −

. The final image is 3.73 cm to the 

right of the goblet. 
EVALUATE: If the object for a surface is on the outgoing side of the light, then the object is virtual and the object 
distance is negative. 

34.85. IDENTIFY: The image formed by refraction at the surface of the eye is located by a b b an n n n
s s R

−
+ =

′
. 

SET UP: 1.00an = , 1.35bn = .  0R > .  For a distant object, s ≈ ∞  and 1 0
s
≈ . 

EXECUTE: (a) s ≈ ∞  and 2.5 cms′ = :  1.35 1.35 1.00
2.5 cm R

−
=  and 0.648 cm 6.48 mmR = = . 

(b) 0.648 cmR = and 25 cms = : 1.00 1.35 1.35 1.00
25 cm 0.648s

−
+ =

′
.  1.35 0.500

s
=

′
 and 2.70 cm 27.0 mms′ = = . The 

image is formed behind the retina. 

(c) Calculate s′ for s ≈ ∞  and 0.50 cmR = :  1.35 1.35 1.00
0.50 cms

−
=

′
.  1.93 cm 19.3 mms′ = = . The image is formed in 

front of the retina. 
EVALUATE: The cornea alone cannot achieve focus of both close and distant objects. 

34.86. IDENTIFY: Apply a b b an n n n
s s R

−
+ =

′
 and a

b

n sm
n s
′

= − to each surface.  The overall magnification is 1 2m m m= . The 

image formed by the first surface is the object for the second surface. 
SET UP: For the first surface, 1.00an = , 1.60bn =  and 15.0 cmR = + .  For the second surface, 1.60an = , 

1.00bn =  and R =→∞ . 

EXECUTE: (a) 1 1.60 0.60 36.9 cm.
12.0 cm 15.0 cm

a b b an n n n s
s s R s

− ′+ = ⇒ + = ⇒ = −
′ ′

 The object distance for the far end 

of the rod is 50.0 cm ( 36.9 cm) 86.9 cm.− − =  The final image is 4.3 cm to the left of the vertex of the 

hemispherical surface.  1.60 1 0 54.3 cm.
86.9 cm

a b b an n n n s
s s R s

− ′+ = ⇒ + = ⇒ = −
′ ′

 

(b) The magnification is the product of the two magnifications: 

1 2 1 2
36.9 1.92, 1.00 1.92.

(1.60)(12.0)
a

b

n sm m m m m
n s
′ −

= − = − = = ⇒ = =  

EVALUATE: The final image is virtual, erect and larger than the object. 
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34.87. IDENTIFY: Apply Eq.(34.11) to the image formed by refraction at the front surface of the sphere. 
SET UP: Let gn  be the index of refraction of the glass. The image formation is shown in Figure 34.87. 

 

s = ∞  
2 ,s r′ = +  where r is the 

radius of the sphere 
1.00,  ,  a b gn n n R r= = = +  

 
Figure 34.87  

a b b an n n n
s s R

−
+ =

′
 

EXECUTE: 
1.001

2
g gn n
r r

−
+ =

∞
 

1 1;  
2 2

g g gn n n
r r r r r
= − =  and 2.00gn =  

EVALUATE: The required refractive index of the glass does not depend on the radius of the sphere. 

34.88. IDENTIFY: Apply a b b an n n n
s s R

−
+ =

′
to each surface. The image of the first surface is the object for the second 

surface.  The relation between 1s′  and 2s involves the length d of the rod. 
SET UP: For the first surface, 1.00an = , 1.55bn = and 6.00 cmR = + .  For the second surface, 1.55an = , 

1.00bn = and 6.00 cmR = − . 
EXECUTE: We have images formed from both ends. From the first surface: 

1 1.55 0.55 30.0 cm.
25.0 cm 6.00 cm

a b b an n n n s
s s R s

− ′+ = ⇒ + = ⇒ =
′ ′

 

This image becomes the object for the second end: 1.55 1 0.55
30.0 cm 65.0 cm 6.00 cm

a b b an n n n
s s R d

− −
+ = ⇒ + =

′ − −
. 

30.0 cm 20.3 cm 50.3 cm.d d− = ⇒ =  
EVALUATE: The final image is real.  The first image is 20.3 cm to the right of the second surface and serves as a 
real object. 

34.89. IDENTIFY: The first lens forms an image which then acts as the object for the second lens. 

SET UP: The thin-lens equation is 1 1 1
s s f
+ =

′
 and the magnification is sm

s
′

= − . 

EXECUTE: (a) For the first lens: 1 1 1 1 1 1 3.75 cm
5.00 cm 15.0 cm

s
s s f s

′+ = ⇒ + = ⇒ = −
′ ′ −

, to the left of the lens 

(virtual image). 
(b) For the second lens, s = 12.0 cm + 3.75 cm = 15.75 cm. 
1 1 1 1 1 1 315 cm

15.75 cm 15.0 cm
s

s s f s
′+ = ⇒ + = ⇒ =

′ ′
, or 332 cm from the object. 

(c) The final image is real. 

(d) 1 2 total,  0.750,  20.0,  15.0 6.00 cm,sm m m m y
s
′

′= − = = − = − ⇒ = −  inverted. 

EVALUATE: Note that the total magnification is the product of the individual magnifications. 

34.90. IDENTIFY and SET UP: Use 
1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 to calculate the focal length of the lenses.  The image formed 

by the first lens serves at the object for the second lens.  tot 1 2m m m= .  1 1 1
s s f
+ =

′
 gives sfs

s f
′ =

−
. 

EXECUTE: (a) 1 1 1(0.60)
12.0 cm 28.0 cmf
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 and 35.0 cmf = + . 

Lens 1:  1 35.0 cmf = + .  1 45.0 cms = + .  1 1
1

1 1

(45.0 cm)(35.0 cm) 158 cm
45.0 cm 35.0 cm

s fs
s f

′ = = = +
− −

.  

1
1

1

158 cm 3.51
45.0 cm

sm
s
′

= − = − = − .  1 1 1 (3.51)(5.00 mm) 17.6 mmy m y′ = = = .  The image of the first lens is 158 cm 

to the right of lens 1 and is 17.6 mm tall. 
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(b) The image of lens 1 is 315 cm 158 cm 157 cm− =  to the left of lens 2. 2 35.0 cmf = + .  2 157 cms = + .  

2 2
2

2 2

(157 cm)(35.0 cm) 45.0 cm
157 cm 35.0 cm

s fs
s f

′ = = = +
− −

.  2
2

2

45.0 cm 0.287
157 cm

sm
s
′

= − = − = − .  

tot 1 2 ( 3.51)( 0.287) 1.00m m m= = − − = + .  The final image is 45.0 cm to the right of lens 2.  The final image is 5.00 
mm tall.  tot 0m > . So the final image is erect. 
EVALUATE: The final image is real.  It is erect because each lens produces an inversion of the image, and two 
inversions return the image to the orientation of the object. 

34.91. IDENTIFY and SET UP: Apply Eq.(34.16) for each lens position. The lens to screen distance in each case is the 
image distance. There are two unknowns, the original object distance x and the focal length f of the lens. But each 
lens position gives an equation, so there are two equations for these two unknowns. The object, lens and screen 
before and after the lens is moved are shown in Figure 34.91. 

 

;  30.0 cms x s′= =  
1 1 1
s s f
+ =

′
 

1 1 1
30.0 cmx f

+ =  

 

Figure 34.91  
4.00 cm;  22.0 cms x s′= + =  

1 1 1
s s f
+ =

′
 gives 1 1 1

4.00 cm 22.0 cmx f
+ =

+
 

EXECUTE: Equate these two expressions for 1/f: 
1 1 1 1

30.0 cm 4.00 cm 22.0 cmx x
+ = +

+
 

1 1 1 1
4.00 cm 22.0 cm 30.0 cmx x

− = −
+

 

4.00 cm 30.0 22.0
( 4.00 cm) 660 cm

x x
x x
+ − −

=
+

 and 4.00 cm 8
( 4.00 cm) 660 cmx x

=
+

 

2 2(4.00 cm) 330 cm 0x x+ − =  and 1 ( 4.00 16.0 4(330))  cm
2

x = − ± +  

x must be positive so 1 ( 4.00 36.55) cm 16.28 cm
2

x = − + =  

Then 1 1 1
30.0 cmx f

+ =  and 1 1 1
16.28 cm 30.0 cmf

= +  

10.55 cm,f = +  which rounds to 10.6 cm. 0;f >  the lens is converging. 
EVALUATE: We can check that 16.28 cms =  and 10.55 cmf =  gives 30.0 cms′ =  and that 

(16.28 4.0) cm 20.28 cms = + =  and 10.55 cmf =  gives 22.0 cm.s′ =  

34.92. IDENTIFY and SET UP: Apply a b b an n n n
s s R

−
+ =

′
. 

EXECUTE: (a) and .a b b a a b b a a b b an n n n n n n n n n n n
s s R f R f R

− − −
+ = ⇒ + = + =

′ ′∞ ∞
 

 and a b a b b an n n n n n
f R f R

− −
= =

′
.  Therefore, a bn n

f f
=

′
 and /a b

fn n
f

=
′
. 

(b) (1 )a b b a b b bn n n n n f n n f f
s s R sf s R

′− −
+ = ⇒ + =

′ ′ ′
.  Therefore, (1 ) 1f f f f f f f

s s R R
′ ′ ′ ′− −

+ = = =
′

. 

EVALUATE: For a thin lens the first and second focal lengths are equal. 
34.93. (a) IDENTIFY: Use Eq.(34.6) to locate the image formed by each mirror. The image formed by the first mirror 

serves as the object for the 2nd mirror. 
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SET UP: The positions of the object and the two mirrors are shown in Figure 34.93a. 

 

0.360 mR =  

/ 2 0.180 mf R= =  
 

Figure 34.93a  
EXECUTE: Image formed by convex mirror (mirror #1): 
convex means 1 10.180 m; f s L x= − = −  

1 1
1

1 1

( )( 0.180 m) 0.600 m(0.180 m) 0
0.180 m 0.780 m

s f L x xs
s f L x x

− − −⎛ ⎞′ = = = − <⎜ ⎟− − + −⎝ ⎠
 

The image is 0.600 m(0.180 m)
0.780 m

x
x

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 to the left of mirror #1 so is 

20.600 m 0.576 m (0.780 m)0.600 m (0.180 m)
0.780 m 0.780 m

x x
x x

− −⎛ ⎞+ =⎜ ⎟− −⎝ ⎠
 to the left of mirror #2. 

Image formed by concave mirror (mirror #2); 
concave implies 2 0.180 mf = +  

2

2
0.576 m (0.780 m)

0.780 m
xs

x
−

=
−

 

Rays return to the source implies 2 .s x′ =  Using these expressions in 2 2
2

2 2

s fs
s f
′

=
′ −

 gives 

20.576 m (0.780 m) (0.180 m)
0.780 m 0.180 m

x x
x x

−
=

− −
 

2 20.600 (0.576 m) 0.10368 m 0x x− + =  
21 1(0.576 (0.576) 4(0.600)(0.10368) ) m (0.576 0.288) m

1.20 1.20
x = ± − = ±  

0.72 mx =  (impossible; can�t have 0.600 m)x L> =  or 0.24 m.x =  
(b) SET UP: Which mirror is #1 and which is #2 is now reversed form part (a). This is shown in Figure 34.93b. 

 
Figure 34.93b 

EXECUTE: Image formed by concave mirror (mirror #1): 
concave means 1 10.180 m; f s x= + =  

1 1
1

1 1

(0.180 m)
0.180 m

s f xs
s f x

′ = =
− −

 

The image is (0.180 m)
0.180 m

x
x −

 to the left of mirror #1, so 
2

2
(0.180 m) (0.420 m) 0.180 m0.600 m

0.180 m 0.180 m
x xs

x x
−

= − =
− −

 

Image formed by convex mirror (mirror #2): 
convex means 2 0.180 mf = −  
rays return to the source means 2 0.600 ms L x x′ = − = −  
1 1 1
s s f
+ =

′
 gives 

2

0.180 m 1 1
(0.420 m) 0.180 m 0.600 m 0.180 m

x
x x

−
+ = −

− −
 

2 2

0.180 m 0.780 m
(0.420 m) 0.180 m 0.180 m (0.180 m)

x x
x x

⎛ ⎞− −
= −⎜ ⎟− −⎝ ⎠

 

2 20.600 (0.576 m) 0.1036 m 0x x− + =  
This is the same quadratic equation as obtained in part (a), so again 0.24 m.x =  
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EVALUATE: For 0.24 mx =  the image is at the location of the source, both for rays that initially travel from the 
source toward the left and for rays that travel from the source toward the right. 

34.94. IDENTIFY: 1 1 1
s s f
+ =

′
 gives sfs

s f
′ =

−
, for both the mirror and the lens. 

SET UP: For the second image, the image formed by the mirror serves as the object for the lens. For the mirror, 
m 10.0 cmf = + . For the lens, 32.0 cmf = . The center of curvature of the mirror is m2 20.0 cmR f= = to the right 

of the mirror vertex. 
EXECUTE: (a) The principal-ray diagrams from the two images are sketched in Figures 34.94a-b.  In Figure 
34.94b, only the image formed by the mirror is shown. This image is at the location of the candle so the principal 
ray diagram that shows the image formation when the image of the mirror serves as the object for the lens is 
analogous to that in Figure 34.94a and is not drawn. 
(b) Image formed by the light that passes directly through the lens:  The candle is 85.0 cm to the left of the lens.  

(85.0 cm)(32.0 cm) 51.3 cm
85.0 cm 32.0 cm

sfs
s f

′ = = = +
− −

.  51.3 cm 0.604
85.0 cm

sm
s
′

= − = − = − . This image is 51.3 cm to the right of 

the lens. 0s′ >  so the image is real. 0m <  so the image is inverted. Image formed by the light that first reflects off 
the mirror: First consider the image formed by the mirror. The candle is 20.0 cm to the right of the mirror, so 

20.0 cms = + .  (20.0 cm)(10.0 cm) 20.0 cm
20.0 cm 10.0 cm

sfs
s f

′ = = =
− −

.  1
1

1

20.0 cm 1.00
20.0 cm

sm
s
′

= − = − = − . The image formed by 

the mirror is at the location of the candle, so 2 85.0 cms = + and 2 51.3 cms ′ = . 2 0.604m = − . tot 1 2m m m= =  

( 1.00)( 0.604) 0.604− − = . The second image is 51.3 cm to the right of the lens. 2 0s ′ > , so the final image is real.  

tot 0m > , so the final image is erect. 
EVALUATE: The two images are at the same place.  They are the same size.  One is erect and one is inverted. 

 
Figure 34.94 

34.95. IDENTIFY: Apply a b b an n n n
s s R

−
+ =

′
 to each case. 

SET UP: 20.0 cms = .  0R > .  Use 9.12 cms′ = + to find R.  For this calculation, 1.00an = and 1.55bn = .  Then 
repeat the calculation with 1.33an = . 

EXECUTE: a b b an n n n
s s R

−
+ =

′
 gives 1.00 1.55 1.55 1.00

20.0 cm 9.12 cm R
−

+ = .  2.50 cmR = . 
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Then 1.33 1.55 1.55 1.33
20.0 cm 2.50 cms

−
+ =

′
gives 72.1 cms′ = − .  The image is 72.1 cm to the left of the surface vertex. 

EVALUATE: With the rod in air the image is real and with the rod in water the image is virtual. 

34.96. IDENTIFY: Apply 1 1 1
s s f
+ =

′
 to each lens.  The image formed by the first lens serves as the object for the second 

lens.  The focal length of the lens combination is defined by 
1 2

1 1 1
s s f
+ =

′
.  In part (b) use 

1 2

1 1 1( 1)n
f R R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
to 

calculate f for the meniscus lens and for the 4CCl , treated as a thin lens. 
SET UP: With two lenses of different focal length in contact, the image distance from the first lens becomes 
exactly minus the object distance for the second lens. 

EXECUTE: (a) 
1 1 1 1 1 1

1 1 1 1 1 1
s s f s f s
+ = ⇒ = −

′ ′
 and 

2 2 1 2 1 1 2 2

1 1 1 1 1 1 1 1 .
s s s s s f s f

⎛ ⎞
+ = + = − + =⎜ ⎟′ ′ ′ ′− ⎝ ⎠

 But overall for the lens 

system, 
1 2 2 1

1 1 1 1 1 1 .
s s f f f f
+ = ⇒ = +

′
 

(b) With carbon tetrachloride sitting in a meniscus lens, we have two lenses in contact. All we need in order to 
calculate the system�s focal length is calculate the individual focal lengths, and then use the formula from part (a). 

For the meniscus lens 1

m 1 2

1 1 1 1 1( ) (0.55) 0.061 cm
4.50 cm 9.00 cmb an n

f R R
−⎛ ⎞ ⎛ ⎞

= − − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 and m 16.4 cmf = . 

For the 1
4

w 1 2

1 1 1 1 1CCl : ( ) (0.46) 0.051 cm
9.00 cmb an n

f R R
−⎛ ⎞ ⎛ ⎞

= − − = − =⎜ ⎟ ⎜ ⎟∞⎝ ⎠⎝ ⎠
 and w 19.6 cmf = . 

1

w m

1 1 1 0.112 cm
f f f

−= + =  and 8.93 cmf = . 

EVALUATE: 1 2

1 2

f ff
f f

=
+

, so f  for the combination is less than either 1f or 2f . 

34.97. IDENTIFY: Apply Eq.(34.11) with R →∞  to the refraction at each surface. For refraction at the first surface the 
point P serves as a virtual object. The image formed by the first refraction serves as the object for the second 
refraction. 
SET UP: The glass plate and the two points are shown in Figure 37.97. 

 

plane faces means R →∞  and 

0a bn n
s s
+ =

′
 

b

a

ns s
n

′ = −  

 
Figure 34.97  

EXECUTE: refraction at the first (left-hand) surface of the piece of glass: 
The rays converging toward point P constitute a virtual object for this surface, so 

14.4 cm.s = −  
1.00,  1.60.a bn n= =  
1.60 ( 14.4 cm) 23.0 cm
1.00

s′ = − − = +  

This image is 23.0 cm to the right of the first surface so is a distance 23.0 cm t−  to the right of the second surface. 
This image serves as a virtual object for the second surface. 
refraction at the second (right-hand) surface of the piece of glass: 

The image is at P′  so 14.4 cm 0.30 cm 14.7 cm .s t t′ = + − = −  (23.0 cm );  1.60;  1.00a bs t n n= − − = =  b

a

ns s
n

′ = −  

gives 1.0014.7 cm ( [23.0 cm ]).
1.60

t t⎛ ⎞− = − − −⎜ ⎟
⎝ ⎠

 14.7 cm 14.4 cm 0.625 .t t− = + −  

0.375 0.30 cmt =  and 0.80 cmt =  
EVALUATE: The overall effect of the piece of glass is to diverge the rays and move their convergence point to the 
right. For a real object, refraction at a plane surface always produces a virtual image, but with a virtual object the 
image can be real. 
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34.98. IDENTIFY: Apply the two equations 
1 1 1 2 2 2

anda b b a b c c bn n n n n n n n
s s R s s R

− −
+ = + =

′ ′
. 

SET UP: liqa cn n n= = , bn n= , and 1 2s s′ = − . 

EXECUTE: (a) liq liq liq liq

1 1 1 1 2 2

and
n n n n n nn n
s s R s s R

− −
+ = + =

′ ′ ′−
.  liq

1 2 1 2

1 1 1 1 1 1 1( 1)n n
s s s s f R R

⎛ ⎞
+ = + = = − −⎜ ⎟′ ′ ′ ⎝ ⎠

. 

(b) Comparing the equations for focal length in and out of air we have: 

liq liq
liq

liq liq

( 1)
( 1) ( 1) .

n n n n
f n f n n f f f

n n n
⎛ ⎞ ⎡ ⎤− −

′ ′ ′− = − = ⇒ =⎜ ⎟ ⎢ ⎥⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎣ ⎦
 

EVALUATE: When liq 1n = , f f′ = , as it should. 

34.99. IDENTIFY: Apply 1 1 1
s s f
+ =

′
. 

SET UP: The image formed by the converging lens is 30.0 cm from the converging lens, and becomes a virtual 
object for the diverging lens at a position 15.0 cm to the right of the diverging lens. The final image is projected 
15 cm 19.2 cm 34.2 cm+ =  from the diverging lens. 

EXECUTE: 1 1 1 1 1 1 26.7 cm.
15.0 cm 34.2 cm

f
s s f f
+ = ⇒ + = ⇒ = −

′ −
 

EVALUATE: Our calculation yields a negative value of f, which should be the case for a diverging lens. 
34.100. IDENTIFY: The spherical mirror forms an image of the object.  It forms another image when the image of the 

plane mirror serves as an object. 
SET UP: For the convex mirror 24.0 cmf = − .  The image formed by the plane mirror is 10.0 cm to the right of 
the plane mirror, so is 20.0 cm 10.0 cm 30.0 cm+ = from the vertex of the spherical mirror. 
EXECUTE: The first image formed by the spherical mirror is the one where the light immediately strikes its 
surface, without bouncing from the plane mirror. 
1 1 1 1 1 1 7.06 cm,

10.0 cm 24.0 cm
s

s s f s
′+ = ⇒ + = ⇒ = −

′ ′ −
and the image height 

is 7.06 (0.250 cm) 0.177 cm.
10.0

sy y
s
′ −′ = − = − =  

The second image is of the plane mirror image is located 30.0 cm from the vertex of the spherical mirror. 
1 1 1 1 1 1 13.3 cm

30.0 cm 24.0 cm
s

s s f s
′+ = ⇒ + = ⇒ = −

′ ′ −
 and the image height is 

13.3 (0.250 cm) 0.111cm.
30.0

sy y
s
′ −′ = − = − =  

EVALUATE: Other images are formed by additional reflections from the two mirrors. 
34.101. IDENTIFY: In the sketch in Figure 34.101 the light travels upward from the object. Apply Eq.(34.11) with 

R →∞  to the refraction at each surface. The image formed by the first surface serves as the object for the second 
surface. 
SET UP: The locations of the object and the glass plate are shown in Figure 34.101. 

 

For a plane (flat) surface 

R →∞  so 0a bn n
s s
+ =

′
 

b

a

ns s
n

′ = −  

 

Figure 34.101  
EXECUTE: First refraction (air glass):→  

1.00;  1.55;  6.00 cma bn n s= = =  
1.55 (6.00 cm) 9.30 cm
1.00

b

a

ns s
n

′ = − = − = −  

The image is 9.30 cm below the lower surface of the glass, so is 9.30 cm 3.50 cm 12.8 cm+ =  below the upper 
surface. 
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Second refraction (glass air):→  

1.55;  1.00;  12.8 cma bn n s= = = +  
1.00 (12.8 cm) 8.26 cm
1.55

b

a

ns s
n

′ = − = − = −  

The image of the page is 8.26 cm below the top surface of the glass plate and therefore 
9.50 cm 8.26 cm 1.24 cm− =  above the page. 
EVALUATE: The image is virtual. If you view the object by looking down from above the plate, the image of the 
page that you see is closer to your eye than the page is. 

34.102. IDENTIFY: Light refracts at the front surface of the lens, refracts at the glass-water interface, reflects from the 
plane mirror and passes through the two interfaces again, now traveling in the opposite direction. 
SET UP: Use the focal length in air to find the radius of curvature R of the lens surfaces. 

EXECUTE: (a) 
1 2

1 1 1 1 2( 1) 0.52 41.6 cm.
40 cm

n R
f R R R

⎛ ⎞ ⎛ ⎞= − − ⇒ = ⇒ =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

At the air�lens interface: 
1

1 1.52 0.52
70.0 cm 41.6 cm

a b b an n n n
s s R s

−
+ = ⇒ + =

′ ′
 and 1 2851 cm and 851 cm.s s′ = − =  

At the lens�water interface:
2

1.52 1.33 0.187
851cm 41.6 cms

−
⇒ + =

′ −
and 2 491cms′ = . 

The mirror reflects the image back (since there is just 90 cm between the lens and mirror.) So, the position of the 
image is 401 cm to the left of the mirror, or 311 cm to the left of the lens. 

At the water�lens interface:
3

1.33 1.52 0.187
311cm 41.6 cms

⇒ + =
′−

 and 3 173 cms′ = + . 

At the lens�air interface:
4

1.52 1 0.52
173 cm 41.6 cms

−
⇒ + =

′− −
 and 4 47.0 cms′ = + , to the left of lens. 

1 1 2 2 3 3 4 4
1 2 3 4

1 1 2 2 3 3 4 4

851 491 173 47.0 1.06.
70 851 311 173

a a a a

b b b b

n s n s n s n sm m m m m
n s n s n s n s

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞′ ′ ′ ′ − + +⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= = = = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
 

(Note all the indices of refraction cancel out.) 
(b) The image is real. 
(c) The image is inverted. 
(d) The final height is (1.06)(4.00 mm) 4.24 mm.y my′ = = =  
EVALUATE: The final image is real even though it is on the same side of the lens as the object! 

34.103. IDENTIFY: The camera lens can be modeled as a thin lens that forms an image on the film. 

SET UP: The thin-lens equation is 1 1 1
s s f
+ =

′
, and the magnification of the lens is sm

s
′

= − .  

EXECUTE: (a) 41 (0.0360 m) (7.50 10 )
4 (12.0 m)

s ym s s
s y

−′ ′
′= − = = ⇒ = × , 

4 4

1 1 1 1 1 1 1 11 46.7 m
(7.50 10 ) 7.50 10 0.0350 m

s
s s s s s f− −

⎛ ⎞+ = + = + = = ⇒ =⎜ ⎟′ × ×⎝ ⎠
. 

(b) To just fill the frame, the magnification must be 33.00 10−×  so: 

3

1 1 1 11 11.7 m
3.00 10 0.0350 m

s
s f−

⎛ ⎞+ = = ⇒ =⎜ ⎟×⎝ ⎠
. 

Since the boat is originally 46.7 m away, the distance you must move closer to the boat is  
46.7 m � 11.7 m = 35.0 m. 
EVALUATE: This result seems to imply that if you are 4 times as far, the image is ¼ as large on the film. 
However this result is only an approximation, and would not be true for very close distances. It is a better 
approximation for large distances. 

34.104. IDENTIFY: Apply 1 1 1
s s f
+ =

′
 and sm

s
′

= − . 

SET UP: 18.0 cms s′+ =  

EXECUTE: (a) 1 1 1
18.0 cm 3.00 cms s

+ =
′ ′−

. 2 2( ) (18.0 cm) 54.0 cm 0s s′ ′− + = so 14.2 cm or 3.80 cms′ = . 

3.80 cm or 14.2 cms = , so the screen must either be 3.80 cm or 14.2 cm from the object. 
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(b) 3.803.80 cm : 0.268.
14.2

ss m
s
′

= = − = − = −  14.214.2 cm : 3.74.
3.80

ss m
s
′

= = − = − = −  

EVALUATE: Since the image is projected onto the screen, the image is real and s′ is positive.  We assumed this 
when we wrote the condition 18.0 cms s′+ = . 

34.105. IDENTIFY: Apply Eq.(34.16) to calculate the image distance for each lens. The image formed by the 1st lens 
serves as the object for the 2nd lens, and the image formed by the 2nd lens serves as the object for the 3rd lens. 
SET UP: The positions of the object and lenses are shown in Figure 34.105. 

 

1 1 1
s s f
+ =

′
 

1 1 1 s f
s f s sf

−
= − =
′

 

sfs
s f

′ =
−

 

 
Figure 34.105  

EXECUTE: lens #1 
80.0 cm; 40.0 cms f= + = +  

( 80.0 cm)( 40.0 cm) 80.0 cm
80.0 cm 40.0 cm

sfs
s f

+ +′ = = = +
− + −

 

The image formed by the first lens is 80.0 cm to the right of the first lens, so it is 80.0 cm 52.0 cm 28.0 cm− =  to 
the right of the second lens. 
lens #2 

28.0 cm; 40.0 cms f= − = +  
( 28.0 cm)( 40.0 cm) 16.47 cm

28.0 cm 40.0 cm
sfs

s f
− +′ = = = +

− − −
 

The image formed by the second lens is 16.47 cm to the right of the second lens, so it is 
52.0 cm 16.47 cm 35.53 cm− =  to the left of the third lens. 
lens #3 

35.53 cm; 40.0 cms f= + = +  
( 35.53 cm)( 40.0 cm) 318 cm
+35.53 cm 40.0 cm

sfs
s f

+ +′ = = = −
− −

 

The final image is 318 cm to the left of the third lens, so it is 318 cm 52 cm 52 cm 80 cm 134 cm− − − =  to the left 
of the object. 
EVALUATE: We used the separation between the lenses and the sign conventions for s and s′  to determine the 
object distances for the 2nd and 3rd lenses. The final image is virtual since the final s′  is negative. 

34.106. IDENTIFY: Apply 1 1 1
s s f
+ =

′
 and calculate s′ for each s. 

SET UP: 90 mmf =  

EXECUTE: 1 1 1 1 1 1 96.7 mm.
1300 mm 90 mm

s
s s f s

′+ = ⇒ + = ⇒ =
′ ′

 

1 1 1 1 1 1 91.3 mm.
6500 mm 90 mm

96.7 mm 91.3 mm 5.4 mm toward the film

s
s s f s

s

′+ = ⇒ + = ⇒ =
′ ′
′⇒ Δ = − =

 

EVALUATE: sfs
s f

′ =
−

.  For 0f > and s f> , s′ decreases as s increases. 

34.107. IDENTIFY and SET UP: The generalization of Eq.(34.22) is near point ,M
f

=  so near point .f
M

=  

EXECUTE: (a) age 10, near point 7 cm=  
7 cm 3.5 cm
2.0

f = =  

(b) age 30, near point 14 cm=  
14 cm 7.0 cm

2.0
f = =  
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(c) age 60, near point 200 cm=  
200 cm 100 cm

2.0
f = =  

(d) 3.5 cmf =  (from part (a)) and near point 200 cm=  (for 60-year-old) 
200 cm 57
3.5 cm

M = =  

(e) EVALUATE: No. The reason 3.5 cmf =  gives a larger M for a 60-year-old than for a 10-year-old is that the 
eye of the older person can�t focus on as close an object as the younger person can. The unaided eye of the 60-
year-old must view a much smaller angular size, and that is why the same f gives a much larger M. The angular 
size of the image depends only on f and is the same for the two ages. 

34.108. IDENTIFY: Use 1 1 1
s s f
+ =

′
 to calculate s that gives 25 cms′ = − .  M θ

θ
′

= . 

SET UP: Let the height of the object be y , so y
s

θ′ = and 
25 cm

yθ = . 

EXECUTE: (a) 1 1 1 1 1 1 (25 cm) .
25 cm 25 cm

fs
s s f s f f
+ = ⇒ + = ⇒ =

′ − +
 

(b) ( 25 cm) ( 25 cm)arctan arctan .
(25 cm) (25 cm)

y y f y f
s f f

θ
⎛ ⎞+ +⎛ ⎞′ = = ≈⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(c) ( 25 cm) 1 25 cm .
(25 cm) / 25 cm

y f fM
f y f

θ
θ
′ + +

= = =  

(d) If 10 cm 25 cm10 cm 3.5.
10 cm

f M +
= ⇒ = = This is 1.4 times greater than the magnification obtained if the image 

if formed at infinity 25 cm( 2.5).M
f∞ = =  

EVALUATE: (e) Having the first image form just within the focal length puts one in the situation described above, 
where it acts as a source that yields an enlarged virtual image. If the first image fell just outside the second focal 
point, then the image would be real and diminished. 

34.109. IDENTIFY: Apply 1 1 1
s s f
+ =

′
.   The near point is at infinity, so that is where the image must be formed for any 

objects that are close. 

SET UP: The power in diopters equals 1
f

, with f in meters. 

EXECUTE: 1 1 1 1 1 1 4.17
24 cm 0.24 mf s s

= + = + = =
′ −∞

diopters. 

EVALUATE: To focus on closer objects, the power must be increased. 

34.110. IDENTIFY: Apply a b b an n n n
s s R

−
+ =

′
. 

SET UP: 1.00an = , 1.40bn = . 

EXECUTE: 1 1.40 0.40 2.77 cm.
36.0 cm 0.75 cm

s
s

′+ = ⇒ =
′

  

EVALUATE: This distance is greater than the normal eye, which has a cornea vertex to retina distance of about 
2.6 cm.  

34.111. IDENTIFY: Use similar triangles in Figure 34.63 in the textbook and Eq.(34.16) to derive the expressions called 
for in the problem. 
(a) SET UP: The effect of the converging lens on the ray bundle is sketched in Figure 34.111. 

 

EXECUTE: From similar 
triangles in Figure 34.111a, 

0 0

1 1

r r
f f d

′
=

−
 

 
Figure 34.111a  
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Thus 1
0 0

1

,f dr r
f

⎛ ⎞−′ = ⎜ ⎟
⎝ ⎠

 as was to be shown. 

(b) SET UP: The image at the focal point of the first lens, a distance 1f  to the right of the first lens, serves as the 
object for the second lens. The image is a distance 1f d−  to the right of the second lens, so 2 1 1( ) .s f d d f= − − = −  

EXECUTE: 2 2 1 2
2

2 2 1 2

( )s f d f fs
s f d f f

−′ = =
− − −

 

2 0f <  so 2 2f f= −  and 1 2
2

2 1

( )
,

f d f
s

f f d
−

′ =
− +

 as was to be shown. 

(c) SET UP: The effect of the diverging lens on the ray bundle is sketched in Figure 34.111b. 

 

EXECUTE:  From similar 

triangles in the sketch, 0 0

2

r r
f s

′
=

′
 

Thus 0

0 2

r f
r s
=
′ ′

 

Figure 34.111b  

From the results of part (a), 0 1

0 1

.r f
r f d
=
′ −

 Combining the two results gives 1

1 2

f f
f d s

=
′−

 

( )
1 2 1 1 21

2
1 2 1 1 2 1

( )
,

( )
f d f f f fff s

f d f f d f d f f d
−⎛ ⎞

′= = =⎜ ⎟− − + − − +⎝ ⎠
 as was to be shown. 

(d) SET UP: Put the numerical values into the expression derived in part (c). 

EXECUTE: 1 2

2 1

f f
f

f f d
=

− +
 

2

1 2
216 cm12.0 cm, 18.0 cm, so 

6.0 cm
f f f

d
= = =

+
 

0d =  gives 36.0 cm;f =  maximum f 
4.0 cmd =  gives 21.6 cm;f =  minimum f 

30.0 cmf =  says 
2216 cm30.0 cm

6.0 cm d
=

+
 

6.0 cm 7.2 cmd+ =  and 1.2 cmd =  
EVALUATE: Changing d produces a range of effective focal lengths. The effective focal length can be both 
smaller and larger than 1 2 .f f+  

34.112. IDENTIFY: M θ
θ
′

= .  1 2

1 2

, andy y
f s

θ θ
′ ′

′= =
′

.  This gives 2 1

2 1

.y fM
s y
′

=
′ ′

. 

SET UP: Since the image formed by the objective is used as the object for the eyepiece, 1 2y y′ = . 

EXECUTE: 2 1 2 1 2 1 1

2 2 2 2 2 2 2

. . . .y f y f s f fM
s y y s s s s
′ ′ ′

= = = =
′ ′ ′

 Therefore, 1
2

48.0 cm 1.33 cm,
36

fs
M

= = = and this is just 

outside the eyepiece focal point. 
Now the distance from the mirror vertex to the lens is 1 2 49.3 cm,f s+ = and so 

1

2
2 2 2

1 1 1 1 1 12.3 cm.
1.20 cm 1.33 cm

s
s s f

−
⎛ ⎞

′+ = ⇒ = − =⎜ ⎟′ ⎝ ⎠
 Thus we have a final image which is real and 12.3 cm from 

the eyepiece. (Take care to carry plenty of figures in the calculation because two close numbers are subtracted.) 
EVALUATE: Eq.(34.25) gives 40M = , somewhat larger than M for this telescope. 

34.113. IDENTIFY and SET UP: The image formed by the objective is the object for the eyepiece. The total lateral 
magnification is tot 1 2 1. 8.00 mmm m m f= =  (objective); 2 7.50 cmf =  (eyepiece) 
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(a) The locations of the object, lenses and screen are shown in Figure 34.113. 

 
Figure 34.113 

EXECUTE: 1Find the object distance  for the objective:s  

1 1 118.0 cm, 0.800 cm, ?s f s′ = + = =  

1 1 1

1 1 1 ,
s s f
+ =

′
 so 1 1

1 1 1 1 1

1 1 1 s f
s f s s f

′ −
= − =

′ ′
 

1 1
1

1 1

(18.0 cm)(0.800 cm) 0.8372 cm
18.0 cm 0.800 cm

s fs
s f
′

= = =
′ − −

 

Find the object distance 2s  for the eyepiece: 

2 2 2200 cm, 7.50 cm, ?s f s′ = + = =  

2 2 2

1 1 1
s s f
+ =

′
 

2 2
2

2 2

(200 cm)(7.50 cm) 7.792 cm
200 cm 7.50 cm

s fs
s f
′

= = =
′ − −

 

Now we calculate the magnification for each lens: 
1

1
1

18.0 cm 21.50
0.8372 cm

sm
s
′

= − = − = −  

2
2

2

200 cm 25.67
 7.792 cm

sm
s
′

= − = − = −  

tot 1 2 ( 21.50)( 25.67) 552.m m m= = − − =  
(b) From the sketch we can see that the distance between the two lenses is 1 2 18.0 cm 7.792 cm 25.8 cm.s s′ + = + =  
EVALUATE: The microscope is not being used in the conventional way; it merely serves as a two-lens system. In 
particular, the final image formed by the eyepiece in the problem is real, not virtual as is the case normally for a 
microscope. Eq.(34.23) does not apply here, and in any event gives the angular not the lateral magnification. 

34.114. IDENTIFY: For u and u′ as defined in Figure 34.64 in the textbook, uM
u
′

= . 

SET UP: 2f  is negative.  From Figure 34.64, the length of the telescope is 1 2f f+ . 

EXECUTE: (a) From the figure, 
1 2 2

and .y y yu u
f f f

′= = = −  The angular magnification is 1

2

.u fM
u f
′

= = −  

(b) 1 1
2

2

95.0 cm 15.0 cm.
6.33

f fM f
f M

= − ⇒ = − = − = −  

(c) The length of the telescope is 95.0 cm 15.0 cm 80.0 cm,− =  compared to the length of 110 cm for the telescope 
in Exercise 34.57. 
EVALUATE: An advantage of this construction is that the telescope is somewhat shorter. 

34.115. IDENTIFY: Use 1 1 1
s s f
+ =

′
 to calculate s′  (the distance of each point from the lens), for points A, B and C. 

SET UP: The object and lens are shown in Figure 34.115a. 

EXECUTE: (a) 1 1 1 1 1 1For point : 36.0 cm.
45.0 cm 20.0 cm

C s
s s f s

′+ = ⇒ + = ⇒ =
′ ′

 

36.0 (15.0 cm) 12.0 cm
45.0

sy y
s
′

′ = − = − = − , so the image of point C is 36.0 cm to the right of the lens, and 

12.0 cm below the axis. 
For point A: 45.0 cm 8.00 cm(cos45 ) 50.7 cms = + ° = . 
1 1 1 1 1 1 33.0 cm.

50.7 cm 20.0 cm
s

s s f s
′+ = ⇒ + = ⇒ =

′ ′
33.0 (15.0 cm 8.00 cm(sin 45 )) 6.10 cm,
45.0

sy y
s
′

′ = − = − − ° = −  

so the image of point A is 33.0 cm to the right of the lens, and 6.10 cm below the axis. 
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For point B: 45.0 cm 8.00 cm(cos45 ) 39.3 cms = − ° = . 1 1 1 1 1 1 40.7 cm.
39.3 cm 20.0 cm

s
s s f s

′+ = ⇒ + = ⇒ =
′ ′

 

40.7 (15.0 cm 8.00 cm(sin 45 )) 21.4 cm,
39.3

sy y
s
′

′ = − = − + ° = −  so the image of point B is 40.7 cm to the right of the 

lens, and 21.4 cm below the axis. The image is shown in Figure 34.115b. 
(b) The length of the pencil is the distance from point A to B: 

2 2 2 2( ) ( ) (33.0 cm 40.7 cm) (6.10 cm 21.4 cm) 17.1 cmA B A BL x x y y= − + − = − + − =  
EVALUATE: The image is below the optic axis and is larger than the object. 

 
Figure 34.115 

34.116. IDENTIFY and SET UP: Consider the ray diagram drawn in Figure 34.116. 

EXECUTE: (a) Using the diagram and law of sines, sin sin but sin sin
( )

h
R f g R

θ α θ α= = =
−

(law of 

reflection), ( ).g R f= −  Bisecting the triangle: 2cos cos cos
( ) 2

R RR f
R f

θ θ θ= ⇒ − =
−

. 

0
1 12 2

2 cos cos
Rf f

θ θ
⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

.  0 2
Rf =  is the value of f for θ near zero (incident ray near the axis).  When θ  

increases, (2 1/ cos )θ−  decreases and f decreases. 

(b) 0

0 0

10.02 0.98 so2 0.98
cos

f f f
f f θ
−

= − ⇒ = − = .  1cos 0.98
2 0.98

θ = =
−

 and 11.4 .θ = °  

EVALUATE: For 45θ = °, 00.586f f= , and f approaches zero as θ  approaches 60°. 

 
Figure 34.116 
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34.117. IDENTIFY: The distance between image and object can be calculated by taking the derivative of the separation 
distance and minimizing it. 
SET UP: For a real image 0s′ > and the distance between the object and the image is D s s′= + .  For a real 
image must have s f> . 

EXECUTE:  
2

but sf sf sD s s s D s
s f s f s f

′ ′= + = ⇒ = + =
− − −

. 

2 2 2

2 2

2 2 0
( ) ( )

dD d s s s s sf
ds ds s f s f s f s f

⎛ ⎞ −
= = − = =⎜ ⎟− − − −⎝ ⎠

. 2 2 0s sf− = . ( 2 ) 0s s f− = .  2s f= is the solution for which 

s f> .  For 2s f= , 2s f′ = .  Therefore, the minimum separation is 2 2 4f f f+ = . 
(b) A graph of /D f  versus /s f  is sketched in Figure 34.117. Note that the minimum does occur for 4D f= . 
EVALUATE: If, for example, 3 / 2s f= , then 3s f′ = and 4.5D s s f′= + = , greater than the minimum value. 

 
Figure 34.117 

34.118. IDENTIFY and SET UP: For a plane mirror, s s′ = − . 
EXECUTE: (a) By the symmetry of image production, any image must be the same distance D as the object from 
the mirror intersection point. But if the images and the object are equal distances from the mirror intersection, they 
lie on a circle with radius equal to D. 
(b) The center of the circle lies at the mirror intersection as discussed above. 
(c) The diagram is sketched in Figure 34.118. 
EVALUATE: To see the image, light from the object must be able to reflect from each mirror and reach the 
person's eyes. 

 
Figure 34.118 

34.119. IDENTIFY: Apply a b b an n n n
s s R

−
+ =

′
 to refraction at the cornea to find where the object for the cornea must be in 

order for the image to be at the retina.  Then use 1 1 1
s s f
+ =

′
 to calculate f so that the lens produces an image of a 

distant object at this point. 
SET UP: For refraction at the cornea, 1.33an =  and 1.40bn = .  The distance from the cornea to the retina in this 
model of the eye is 2.60 cm.  From Problem 34.46, 0.71 cmR = . 
EXECUTE:  (a) People with normal vision cannot focus on distant objects under water because the image is 
unable to be focused in a short enough distance to form on the retina. Equivalently, the radius of curvature of the 
normal eye is about five or six times too great for focusing at the retina to occur. 
(b) When introducing glasses, let�s first consider what happens at the eye: 

2
2 2 2

1.33 1.40 0.07 3.02 cm.
2.6 cm 0.71cm

a b b an n n n s
s s R s

−
+ = ⇒ + = ⇒ = −

′
 That is, the object for the cornea must be 3.02 cm 

behind the cornea. Now, assume the glasses are 2.00 cm in front of the eye, so 1 22.00 cm 5.02 cms s′ = + = . 
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1 1 1

1 1 1
s s f
+ =

′ ′
 gives 

1

1 1 1
5.02 cm f

+ =
′∞
 and 1 5.02 cm.f ′=  This is the focal length in water, but to get it in air, we use 

the formula from Problem 34.98: liq
1 1

liq

1.52 1.333(5.02 cm) 1.35 cm
( 1) 1.333(1.52 1)

n n
f f

n n
⎡ ⎤− ⎡ ⎤−′= = =⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦

. 

EVALUATE: A converging lens is needed. 
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INTERFERENCE 

 35.1. IDENTIFY: Compare the path difference to the wavelength. 
SET UP: The separation between sources is 5.00 m, so for points between the sources the largest possible path 
difference is 5.00 m. 
EXECUTE: (a) For constructive interference the path difference is , 0, 1, 2, . . .m mλ = ± ±  Thus only the path 
difference of zero is possible. This occurs midway between the two sources, 2.50 m from A. 
(b) For destructive interference the path difference is 1

2( ) ,  0, 1, 2, . . .m mλ+ = ± ±  
A path difference of 2 3.00/λ± =  m is possible but a path difference as large as 3 / 2 9.00λ = m is not possible. For 
a point a distance x from A and 5.00 fromx B−  the path difference is 

(5.00 m ).  (5.00 m ) 3.00 m gives 4.00 m.x x x x x− − − − = + =  (5.00 m ) 3.00 m gives 1.00 mx x x− − = − = . 
EVALUATE: The point of constructive interference is midway between the points of destructive interference. 

 35.2. IDENTIFY: For destructive interference the path difference is 1
2( ) , 0, 1, 2,m mλ+ = ± ± … . The longest wavelength 

is for 0m = . For constructive interference the path difference is ,  0, 1, 2,m mλ = ± ± …   The longest wavelength is 
for 1m = . 
SET UP: The path difference is 120 m. 

EXECUTE: (a) For destructive interference 120 m  240 m.
2
λ λ= ⇒ =  

(b) The longest wavelength for constructive interference is 120 m.λ =  
EVALUATE: The path difference doesn't depend on the distance of point Q from B. 

 35.3. IDENTIFY: Use c f λ=  to calculate the wavelength of the transmitted waves. Compare the difference in the 
distance from A to P and from B to P. For constructive interference this path difference is an integer multiple of the 
wavelength. 
SET UP: Consider Figure 35.3 

 

The distance of point P 
from each coherent source 
is Ar x=  and 

9.00 m .Br x= −  
 

Figure 35.3  
EXECUTE: The path difference is 9.00 m 2 .B Ar r x− = −  

,  0,  1, 2, B Ar r m mλ− = = ± ± …  
8

6

2.998 10  m/s 2.50 m
120 10  Hz

c
f

λ ×
= = =

×
 

Thus 9.00 m 2 (2.50 m)x m− =  and 9.00 m (2.50 m) 4.50 m (1.25 m) .
2
mx m−

= = −  x must lie in the range 0 to 

9.00 m since P is said to be between the two antennas. 
0m =  gives 4.50 mx =  

1m = +  gives 4.50 m 1.25 m 3.25 mx = − =  
2m = +  gives 4.50 m 2.50 m 2.00 mx = − =  
3m = +  gives 4.50 m 3.75 m 0.75 mx = − =  
1m = −  gives 4.50 m 1.25 m 5.75 mx = + =  
2m = −  gives 4.50 m 2.50 m 7.00 mx = + =  
3m = −  gives 4.50 m 3.75 m 8.25 mx = + =  

35
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All other values of m give values of x out of the allowed range. Constructive interference will occur for 
0.75 m, 2.00 m, 3.25 m, 4.50 m, 5.75 m, 7.00 m, and 8.25 m.x =  

EVALUATE: Constructive interference occurs at the midpoint between the two sources since that point is the 
same distance from each source. The other points of constructive interference are symmetrically placed relative to 
this point. 

 35.4. IDENTIFY: For constructive interference the path difference d is related to λ by ,  0,1,2,d m mλ= = …   For 
destructive interference 1

2( ) ,  0,1,2,d m mλ= + = …  
SET UP: 2040 nmd =  
EXECUTE: (a) The brightest wavelengths are when constructive interference occurs: 

3 4

5

2040 nm 2040 nm680 nm, 510 nm and
3 4

2040 nm 408 nm.
5

m m
dd m
m

λ λ λ λ

λ

= ⇒ = ⇒ = = = =

= =
 

(b) The path-length difference is the same, so the wavelengths are the same as part (a). 

(c) 1
2( ) md m λ= + so 

1 1
2 2

2040 nm
m

d
m m

λ = =
+ +

.  The visible wavelengths are 3 583 nmλ =  and 4 453 nmλ = . 

EVALUATE: The wavelengths for constructive interference are between those for destructive interference. 
 35.5. IDENTIFY: If the path difference between the two waves is equal to a whole number of wavelengths, constructive 

interference occurs, but if it is an odd number of half-wavelengths, destructive interference occurs. 
SET UP: We calculate the distance traveled by both waves and subtract them to find the path difference. 
EXECUTE: Call P1 the distance from the right speaker to the observer and P2 the distance from the left speaker to 
the observer. 
(a) P1 = 8.0 m and 2 2

2 (6.0 m) (8.0 m) 10. 0 mP = + = . The path distance is 

2 1P P PΔ = −  = 10.0 m � 8.0 m = 2.0 m 

(b) The path distance is one wavelength, so constructive interference occurs. 
(c) P1 = 17.0 m and 2 2

2 (6.0 m) (17.0 m) 18.0 mP = + = . The path difference is 18.0 m � 17.0 m = 1.0 m, which is 
one-half wavelength, so destructive interference occurs. 
EVALUATE: Constructive interference also occurs if the path difference 2λ , 3 λ , 4 λ , etc., and destructive 
interference occurs if it is λ /2, 3 λ /2, 5 λ /2, etc. 

 35.6. IDENTIFY: At an antinode the interference is constructive and the path difference is an integer number of 
wavelengths; path difference ,  0, 1, 2,m mλ= = ± ± …  at an antinode. 
SET UP: The maximum magnitude of the path difference is the separation d between the two sources. 
EXECUTE: (a) At 1 2 1, 4 ,S r r λ− = and this path difference stays the same all along the -axis,y so 

2 2 14.  At , 4m S r r ,λ= + − = −  and the path difference below this point, along the negative y-axis, stays the same, so 
4.m = −  

(b) The wave pattern is sketched in Figure 35.6. 

(c) The maximum and minimum m-values are determined by the largest integer less than or equal to .d
λ

 

(d) If 17 7 7,
2

d mλ= ⇒ − ≤ ≤ +  so there will be a total of 15 antinodes between the sources. 

EVALUATE: We are considering points close to the two sources and the antinodal curves are not straight lines. 

 
Figure 35.6 
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 35.7. IDENTIFY: At an antinodal point the path difference is equal to an integer number of wavelengths. 
SET UP: For 3m = , the path difference is 3λ . 
EXECUTE: Measuring with a ruler from both 1 2andS S to the different points in the antinodal line labeled 3m = , 
we find that the difference in path length is three times the wavelength of the wave, as measured from one crest to 
the next on the diagram. 
EVALUATE: There is a whole curve of points where the path difference is 3λ . 

 35.8. IDENTIFY: The value of 20y is much smaller than R and the approximate expression m
my R
d
λ

= is accurate. 

SET UP: 3
20 10.6 10  my −= × . 

EXECUTE: 
9

3
3

20

20 (20)(1.20 m)(502 10  m) 1.14 10  m 1.14 mm
10.6 10  m

Rd
y
λ −

−
−

×
= = = × =

×
 

EVALUATE: 20
20tan y

R
θ = so 20 0.51θ = °  and the approximation 20 20sin tanθ θ≈  is very accurate. 

 35.9. IDENTIFY and SET UP: The dark lines correspond to destructive interference and hence are located by Eq.(35.5): 
1

1 2sin  so sin ,  0, 1, 2,
2

m
d m m

d

λ
θ λ θ

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎝ ⎠= + = = ± ±⎜ ⎟
⎝ ⎠

…  

Solve for θ  that locates the second and third dark lines. Use tany R θ=  to find the distance of each of the dark 
lines from the center of the screen. 
EXECUTE: 1st dark line is for 0m =  

2nd dark line is for 1m =  and 
9

3
1 3

3 3(500 10  m)sin 1.667 10
2 2(0.450 10 m)d
λθ

−
−

−

×
= = = ×

×
 and 3

1 1.667 10  radθ −= ×  

3rd dark line is for 2m =  and 
9

3
2 3

5 5(500 10  m)sin 2.778 10
2 2(0.450 10 m)d
λθ

−
−

−

×
= = = ×

×
 and 3

2 2.778 10  radθ −= ×  

(Note that 1θ  and 2θ  are small so that the approximation sin tanθ θ θ≈ ≈  is valid.) The distance of each dark line 
from the center of the central bright band is given by tan ,my R θ=  where 0.850 mR =  is the distance to the 
screen. 
tan  so m my Rθ θ θ≈ =  

3 3
1 1 (0.750 m)(1.667 10  rad) 1.25 10  my Rθ − −= = × = ×  

3 3
2 2 (0.750 m)(2.778 10  rad) 2.08 10  my Rθ − −= = × = ×  

3 3
2 1 2.08 10  m 1.25 10  m 0.83 mmy y y − −Δ = − = × − × =  

EVALUATE: Since 1θ  and 2θ  are very small we could have used Eq.(35.6), generalized to destructive 

interference: 1 / .
2my R m dλ⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

35.10. IDENTIFY: Since the dark fringes are eqully spaced, mR y" , the angles are small and the dark bands are located 

by 1
2

1
2( )

m

m
y R

d
λ

+

+
= . 

SET UP: The separation between adjacent dark bands is Ry
d
λ

Δ = . 

EXECUTE: 
7

4
3

(1.80 m) (4.50 10 m) 1.93 10  m 0.193 m.
4.20 10 m

R Ry d
d y
λ λ −

−
−

×
Δ = ⇒ = = = × =

Δ ×
 

EVALUATE: When the separation between the slits decreases, the separation between dark fringes increases. 
35.11. IDENTIFY and SET UP: The positions of the bright fringes are given by Eq.(35.6): ( / ).my R m dλ=  For each 

fringe the adjacent fringe is located at 1 ( 1) / .my R m dλ+ = +  Solve for .λ  
EXECUTE: The separation between adjacent fringes is 1 / .m my y y R dλ+Δ = − =  

3 3
7(0.460 10  m)(2.82 10  m) 5.90 10  m 590 nm

2.20 m
d y

R
λ

− −
−Δ × ×

= = = × =  

EVALUATE: Eq.(35.6) requires that the angular position on the screen be small. The angular position of bright 
fringes is given by sin / .m dθ λ=  The slit separation is much larger than the wavelength 3( / 1.3 10 ),dλ −= ×  so θ  
is small so long as m is not extremely large. 
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35.12. IDENTIFY: The width of a bright fringe can be defined to be the distance between its two adjacent destructive 

minima. Assuming the small angle formula for destructive interference 
1
2( )

m
m

y R
d

λ+
= . 

SET UP: 30.200 10  md −= × .  4.00 mR = . 
EXECUTE: The distance between any two successive minima 

is
9

1 3

(400 10 m)(4.00 m) 8.00 mm.
(0.200 10 m)m my y R

d
λ −

+ −

×
− = = =

×
 Thus, the answer to both part (a) and part (b) is that the 

width is 8.00 mm. 
EVALUATE: For small angles, when my R# , the interference minima are equally spaced. 

35.13. IDENTIFY and SET UP:  The dark lines are located by 1sin .
2

d mθ λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 The distance of each line from the 

center of the screen is given by tan .y R θ=  
EXECUTE: First dark line is for 0m =  and 1sin / 2.d θ λ=  

9

1 16

550 10  msin 0.1528 and 8.789 .
2 2(1.80 10  m)d
λθ θ

−

−

×
= = = = °

×
 Second dark line is for 1m =  and 2sin 3 / 2.d θ λ=  

9

2 6

3 550 10  msin 3 0.4583
2 2(1.80 10  m)d
λθ

−

−

⎛ ⎞×
= = =⎜ ⎟×⎝ ⎠

 and 2 27.28 .θ = °  

1 1tan (0.350 m) tan8.789 0.0541 my R θ= = ° =  

2 2tan (0.350 m) tan 27.28 0.1805 my R θ= = ° =  
The distance between the lines is 2 1 0.1805 m 0.0541 m 0.126 m 12.6 cm.y y yΔ = − = − = =  
EVALUATE: 1sin 0.1528θ =  and 1 2tan 0.1546. sin 0.4583θ θ= =  and 2tan 0.5157.θ =  As the angle increases, 
sin tanθ θ≈  becomes a poorer approximation. 

35.14. IDENTIFY: Using Eq.(35.6) for small angles: m
my R
d
λ

= . 

SET UP: First-order means 1m = . 
EXECUTE: The distance between corresponding bright fringes is 

9
3

(5.00 m)(1) (660 470) (10 m) 3.17 mm.
(0.300 10 m)

Rmy
d

λ −
−Δ = Δ = − × =

×
 

EVALUATE: The separation between these fringes for different wavelengths increases when the slit separation 
decreases. 

35.15. IDENTIFY and SET UP: Use the information given about the bright fringe to find the distance d between the two 
slits. Then use Eq.(35.5) and tany R θ=  to calculate λ  for which there is a first-order dark fringe at this same 
place on the screen. 

EXECUTE: 
9

41 1
1 3

1

(3.00 m)(600 10  m),  so 3.72 10  m.
4.84 10  m

R Ry d
d y
λ λ −

−
−

×
= = = = ×

×
 (R is much greater than d, so Eq.35.6 

is valid.) The dark fringes are located by 1sin ,  0, 1, 2,
2

d m mθ λ⎛ ⎞= + = ± ±⎜ ⎟
⎝ ⎠

…  The first order dark fringe is located 

by 2sin / 2 ,dθ λ=  where 2λ  is the wavelength we are seeking. 

2tan sin
2

Ry R R
d

λθ θ= ≈ =  

We want 2λ  such that 1.y y=  This gives 1 2

2
R R
d d
λ λ
=  and 2 12 1200 nm.λ λ= =  

EVALUATE: For 600 nmλ =  the path difference from the two slits to this point on the screen is 600 nm. For this 
same path difference (point on the screen) the path difference is / 2λ  when 1200 nm.λ =  

35.16. IDENTIFY: Bright fringes are located at m
my R
d
λ

= , when my R# . Dark fringes are at 1
2sin ( )d mθ λ= + and 

tany R θ= . 

SET UP: 
8

7
14

3.00 10  m/s 4.75 10  m
6.32 10  Hz

c
f

λ −×
= = = ×

×
.  For the third bright fringe (not counting the central bright 

spot), 3m = .  For the third dark fringe, 2m = . 
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EXECUTE: (a) 
7

53(4.75 10  m)(0.850 m) 3.89 10  m 0.0389 mm
0.0311 mm

m Rd
y
λ −

−×
= = = × =  

(b) 
7

1
2 5

4.75 10  msin (2 ) (2.5) 0.0305
3.89 10  md

λθ
−

−

⎛ ⎞×
= + = =⎜ ⎟×⎝ ⎠

and 1.75θ = ° .  tan (85.0 cm) tan1.75 2.60 cmy R θ= = =° . 

EVALUATE: The third dark fringe is closer to the center of the screen than the third bright fringe on one side of 
the central bright fringe. 

35.17. IDENTIFY: Bright fringes are located at angles θ given by sind mθ λ= . 
SET UP: The largest value sinθ can have is 1.00. 

EXECUTE: (a) sindm θ
λ

= .  For sin 1θ = , 
3

7

0.0116 10  m 19.8
5.85 10  m

dm
λ

−

−

×
= = =

×
.  Therefore, the largest m for fringes 

on the screen is 19m = .  There are 2(19) 1 39+ = bright fringes, the central one and 19 above and 19 below it. 

(b) The most distant fringe has 19m = ± .  
7

3

5.85 10  msin 19 0.958
0.0116 10  m

m
d
λθ

−

−

⎛ ⎞×
= = ± = ±⎜ ⎟×⎝ ⎠

and 73.3θ = ± ° . 

EVALUATE: For small θ the spacing yΔ between adjacent fringes is constant but this is no longer the case for 
larger angles. 

35.18. IDENTIFY: At large distances from the antennas the equation sin ,  0, 1, 2,d m mθ λ= = ± ± …gives the angles where 
maximum intensity is observed and 1

2sin ( ) ,  0, 1, 2,d m mθ λ= + = ± ± …  gives the angles where minimum intensity 
is observed. 

SET UP: 12.0 md = .  c
f

λ = . 

EXECUTE: (a) 
8

6

3.00 10  m/s 2.78 m
107.9 10  Hz

c
f

λ ×
= = =

×
.  2.78 msin (0.232)

12.0 m
m m m
d
λθ ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
. 

13.4 ,  27.6 , 44.1 , 68.1θ = ± ± ± ±° ° ° ° . 

(b) 1 1
2 2sin ( ) ( )(0.232)m m

d
λθ = + = + .  6.66 ,  20.4 , 35.5 , 54.3θ = ± ± ± ±° ° ° ° . 

EVALUATE: The angles for zero intensity are approximately midway between those for maximum intensity. 
35.19. IDENTIFY: Eq.(35.10):  2

0 cos ( 2)I I φ= .  Eq.(35.11):  2 1(2 / )( )r rφ π λ= − . 
SET UP: φ  is the phase difference and 2 1( )r r− is the path difference. 

EXECUTE: (a) 2
0 0(cos 30.0 ) 0.750I I I= ° =  

(b) 60.0 ( /3) radπ° = . [ ]2 1( ) ( / 2 ) ( /3) / 2 / 6 80 nmr r φ π λ π π λ λ− = = = = . 

EVALUATE: 360 / 6φ = ° and 2 1( ) / 6r r λ− = . 

35.20. IDENTIFY: path difference
2
φ
π λ
Δ

= relates the path difference to the phase difference φΔ . 

SET UP: The sources and point P are shown in Figure 35.20. 

EXECUTE: 524 cm 486 cm2 119 radians
2 cm

φ π
⎛ ⎞−

Δ = =⎜ ⎟
⎝ ⎠

 

EVALUATE: The distances from B to P and A to P aren't important, only the difference in these distances. 

 
Figure 35.20 

35.21. IDENTIFY and SET UP: The phase difference φ  is given by (2 / )sindφ π λ θ=  (Eq.35.13.) 

EXECUTE: 3 9[2 (0.340 10  m)/(500 10  m)]sin 23.0 1670 radφ π − −= × × ° =  
EVALUATE: The mth bright fringe occurs when 2 ,mφ π=  so there are a large number of bright fringes within 
23.0°  from the centerline. Note that Eq.(35.13) gives φ  in radians. 
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35.22. IDENTIFY: The maximum intensity occurs at all the points of constructive interference. At these points, the path 
difference between waves from the two transmitters is an integral number of wavelengths. 
SET UP: For constructive interference, sin θ = mλ/d. 
EXECUTE: (a) First find the wavelength of the UHF waves: 

λ = c/f = (3.00 × 108 m/s)/(1575.42 MHz) = 0.1904 m 
For maximum intensity (πd sin θ )/λ = mπ, so 

sin θ = mλ/d = m[(0.1904 m)/(5.18 m)] = 0.03676m 
The maximum possible m would be for θ = 90°, or sin θ = 1, so 

mmax = d/λ = (5.18 m)/(0.1904 m) = 27.2 
which must be ±27 since m is an integer. The total number of maxima is 27 on either side of the central fringe, plus 
the central fringe, for a total of 27 + 27 + 1 = 55 bright fringes. 
(b) Using sin θ = mλ/d, where m = 0, ±1, ±2, and ±3, we have 
      sin θ = mλ/d = m[(0.1904 m)/(5.18 m)] = 0.03676m 

      m = 0: sin θ = 0, which gives θ = 0° 

m = ±1: sin θ = ±(0.03676)(1), which gives θ = ±2.11° 

m = ±2: sin θ = ±(0.03676)(2), which gives θ = ±4.22° 

m = ±3: sin θ = ±(0.03676)(3), which gives θ = ±6.33° 

(c) 2
0

sincos dI I π θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 = ( )2 2 (5.18 m)sin(4.65 )2.00 W/m cos
0.1904 m

π °⎡ ⎤
⎢ ⎥⎣ ⎦

 = 1.28 W/m2. 

EVALUATE: Notice that sinθ  increases in integer steps, but θ only increases in integer steps for small θ. 

35.23. (a) IDENTIFY and SET UP: The minima are located at angles θ  given by 1sin .
2

d mθ λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 The first minimum 

corresponds to 0.m =  Solve for .θ  Then the distance on the screen is tan .y R θ=  

EXECUTE: 
9

3
3

660 10  msin 1.27 10
2 2(0.260 10  m)d
λθ

−
−

−

×
= = = ×

×
 and 31.27 10  radθ −= ×  

3(0.700 m) tan(1.27 10  rad) 0.889 mm.y −= × =  
(b) IDENTIFY and SET UP: Eq.(35.15) given the intensity I as a function of the position y on the screen: 

2
0 cos .dyI I

R
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Set 0 / 2I I=  and solve for y. 

EXECUTE: 0
1
2

I I=  says 2 1cos
2

dy
R

π
λ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

1cos
2

dy
R

π
λ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 so  rad
4

dy
R

π π
λ

=  

9

3

(660 10  m)(0.700 m) 0.444 mm
4 4(0.260 10  m)

Ry
d
λ −

−

×
= = =

×
 

EVALUATE: 0 / 2I I=  at a point on the screen midway between where 0I I=  and 0.I =  

35.24. IDENTIFY: Eq. (35.14): 2
0 cos sin .dI I π θ

λ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

SET UP: The intensity goes to zero when the cosine�s argument becomes an odd integer multiple of 
2
π  

EXECUTE: sin ( 1/ 2)d mπ θ π
λ

= +  gives sin ( 1/ 2),d mθ λ= +  which is Eq. (35.5). 

EVALUATE: Section 35.3 shows that the maximum-intensity directions from Eq.(35.14) agree with Eq.(35.4). 
35.25. IDENTIFY: The intensity decreases as we move away from the central maximum. 

SET UP: The intensity is given by 2
0 cos dyI I

R
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

EXECUTE: First find the wavelength: λ = c/f  = (3.00 × 108 m/s)/(12.5 MHz) = 24.00 m 
At the farthest the receiver can be placed, I = I0/4, which gives 

20
0 cos

4
I dyI

R
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 ⇒ 2 1cos
4

dy
R

π
λ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 ⇒ 1cos
2

dy
R

π
λ

⎛ ⎞ = ±⎜ ⎟
⎝ ⎠
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The solutions are  πdy/λR = π/3 and 2π/3. Using π/3, we get 
y = λR/3d = (24.00 m)(500 m)/[3(56.0 m)] = 71.4 m 

It must remain within 71.4 m of point C. 
EVALUATE: Using πdy/λR = 2π/3 gives y = 142.8 m. But to reach this point, the receiver would have to go 
beyond 71.4 m from C, where the signal would be too weak, so this second point is not possible. 

35.26. IDENTIFY: The phase difference φ and the path difference 1 2r r− are related by 1 2
2 ( )r rπφ
λ

= − . The intensity is 

given by 2
0 cos

2
I I φ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. 

SET UP: 
8

8

3.00 10 m/s 2.50 m
1.20 10 Hz

c
f

λ ×
= = =

×
. When the receiver measures zero intensity 0I , 0φ = . 

EXECUTE: (a) 1 2
2 2( ) (1.8 m) 4.52 rad.

2.50 m
r rπ πφ

λ
= − = =  

(b) 2 2
0 0 0

4.52 radcos cos 0.404 .
2 2

I I I Iφ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: 1 2( )r r−  is greater than / 2λ , so one minimum has been passed as the receiver is moved. 
35.27. IDENTIFY: Consider interference between rays reflected at the upper and lower surfaces of the film. Consider 

phase difference due to the path difference of 2t and any phase differences due to phase changes upon reflection. 
SET UP: Consider Figure 35.27. 

 

Both rays (1) and (2) 
undergo a 180°  phase 
change on reflection, so 
these is no net phase 
difference introduced and 
the condition for 
destructive interference is 

12 .
2

t m λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
Figure 35.27  

EXECUTE: 

1
2 ;

2

m
t

λ⎛ ⎞+⎜ ⎟
⎝ ⎠=  thinnest film says 0m =  so 

4
t λ
=  

0

1.42
λλ =  and 

9
70 650 10  m 1.14 10  m 114 nm

4(1.42) 4(1.42)
t λ −

−×
= = = × =  

EVALUATE: We compared the path difference to the wavelength in the film, since that is where the path 
difference occurs. 

35.28. IDENTIFY: Require destructive interference for light reflected at the front and rear surfaces of the film. 
SET UP: At the front surface of the film, light in air ( 1.00n = ) reflects from the film ( 2.62n = ) and there is a 
180°  phase shift due to the reflection.  At the back surface of the film, light in the film ( 2.62n = ) reflects from 
glass ( 1.62n = ) and there is no phase shift due to reflection.  Therefore, there is a net 180°  phase difference 
produced by the reflections.  The path difference for these two rays is 2t, where t is the thickness of the film.  The 

wavelength in the film is 505 nm
2.62

λ = . 

EXECUTE: (a) Since the reflection produces a net 180°  phase difference, destructive interference of the reflected 

light occurs when 2t mλ= .  505 nm (96.4 nm)
2[2.62]

t m m⎛ ⎞
= =⎜ ⎟

⎝ ⎠
.  The minimum thickness is 96.4 nm. 

(b) The next three thicknesses are for 2m = , 3 and 4:  192 nm, 289 nm and 386 nm. 
EVALUATE: The minimum thickness is for / 2t nλ= .  Compare this to Problem 35.27, where the minimum 
thickness for destructive interference is / 4t nλ= . 

35.29. IDENTIFY: The fringes are produced by interference between light reflected from the top and bottom surfaces of 
the air wedge.  The refractive index of glass is greater than that of air, so the waves reflected from the top surface 
of the air wedge have no reflection phase shift and the waves reflected from the bottom surface of the air wedge do 
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have a half-cycle reflection phase shift.  The condition for constructive interference (bright fringes) is therefore 
1
22 ( )t m λ= + . 

SET UP: The geometry of the air wedge is sketched in Figure 35.29. At a distance x from the point of contact of 
the two plates, the thickness of the air wedge is t. 

EXECUTE: tan t
x

θ =  so tant x θ= .  1
2( )

2mt m λ
= + . 1

2( )
2 tanmx m λ

θ
= +  and 3

1 2( )
2 tanmx m λ

θ+ = + .  The 

distance along the plate between adjacent fringes is 1 2 tanm mx x x λ
θ+Δ = − = .  1.0015.0 fringes/cm

x
=
Δ

 and 

1.00 0.0667 cm
15.0 fringes/cm

xΔ = = .  
9

4
2

546 10  mtan 4.09 10
2 2(0.0667 10  m)x
λθ

−
−

−

×
= = = ×

Δ ×
.  The angle of the wedge is 

44.09 10  rad 0.0234−× = ° . 
EVALUATE: The fringes are equally spaced; xΔ is independent of m. 

 
Figure 35.29 

35.30. IDENTIFY: The fringes are produced by interference between light reflected from the top and from the bottom 
surfaces of the air wedge.  The refractive index of glass is greater than that of air, so the waves reflected from the 
top surface of the air wedge have no reflection phase shift and the waves reflected from the bottom surface of the 
air wedge do have a half-cycle reflection phase shift.  The condition for constructive interference (bright fringes) 
therefore is 1

22 ( )t m λ= + . 
SET UP: The geometry of the air wedge is sketched in Figure 35.30. 

EXECUTE: 40.0800 mmtan 8.89 10
90.0 mm

θ −= = × .  tan t
x

θ = so 4(8.89 10 )t x−= × .  1
2( )

2mt m λ
= + . 

1
2 4( )

2(8.89 10 )mx m λ
−= +

×
and 3

1 2 4( )
2(8.89 10 )mx m λ

+ −= +
×

.  The distance along the plate between adjacent fringes 

is 
9

4
1 4 4

656 10  m 3.69 10  m 0.369 mm
2(8.89 10 ) 2(8.89 10 )m mx x x λ −

−
+ − −

×
Δ = − = = = × =

× ×
.  The number of fringes per cm is 

1.00 1.00 27.1 fringes/cm
0.0369 cmx

= =
Δ

. 

EVALUATE: As 0t → the interference is destructive and there is a dark fringe at the line of contact between the 
two plates. 

 
Figure 35.30 

35.31. IDENTIFY: The light reflected from the top of the TiO2 film interferes with the light reflected from the top of the 
glass surface. These waves are out of phase due to the path difference in the film and the phase differences caused 
by reflection. 
SET UP: There is a π phase change at the TiO2 surface but none at the glass surface, so for destructive 
interference the path difference must be mλ in the film. 
EXECUTE: (a) Calling T the thickness of the film gives 2T = mλ0/n, which yields T = mλ0/(2n). Substituting the 
numbers gives 

T = m (520.0 nm)/[2(2.62)] = 99.237m 
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T must be greater than 1036 nm, so m = 11, which gives T = 1091.6 nm, since we want to know the minimum 
thickness to add. 

ΔT = 1091.6 nm � 1036 nm = 55.6 nm 
(b) (i) Path difference = 2T = 2(1092 nm) = 2184 nm = 2180 nm. 
(ii) The wavelength in the film is λ = λ0/n = (520.0 nm)/2.62 = 198.5 nm. 

Path difference = (2180 nm)/[(198.5 nm)/wavelength] = 11.0 wavelengths 
EVALUATE: Because the path difference in the film is 11.0 wavelengths, the light reflected off the top of the film 
will be 180° out of phase with the light that traveled through the film and was reflected off the glass due to the 
phase change at reflection off the top of the film. 

35.32. IDENTIFY: Consider the phase difference produced by the path difference and by the reflections.  For destructive 
interference the total phase difference is an integer number of half cycles. 
SET UP: The reflection at the top surface of the film produces a half-cycle phase shift.  There is no phase shift at 
the reflection at the bottom surface. 
EXECUTE: (a) Since there is a half-cycle phase shift at just one of the interfaces, the minimum thickness for 

constructive interference is 0 550 nm 74.3 nm.
4 4 4(1.85)

t
n

λ λ
= = = =    

(b) The next smallest thickness for constructive interference is with another half wavelength thickness added: 
( )0 3 550 nm3 3 223 nm.

4 4 4(1.85)
t

n
λ λ

= = = =  

EVALUATE: Note that we must compare the path difference to the wavelength in the film. 
35.33. IDENTIFY: Consider the interference between rays reflected from the two surfaces of the soap film. Strongly 

reflected means constructive interference. Consider phase difference due to the path difference of 2t and any phase 
difference due to phase changes upon reflection. 
(a) SET UP: Consider Figure 35.33. 

 

There is a 180°  phase 
change when the light is 
reflected from the outside 
surface of the bubble and 
no phase change when the 
light is reflected from the 
inside surface. 
 

Figure 35.33  
EXECUTE: The reflections produce a net 180°  phase difference and for there to be constructive interference the 
path difference 2t must correspond to a half-integer number of wavelengths to compensate for the / 2λ  shift due to 

the reflections. Hence the condition for constructive interference is 0
12 ( / ), 0,1,2,
2

t m n mλ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

…  Here 0λ  is 

the wavelength in air and 0( / )nλ  is the wavelength in the bubble, where the path difference occurs. 

0
2 2(290 nm)(1.33) 771.4 nm

1 1 1
2 2 2

tn

m m m
λ = = =

+ + +
 

for 0,  1543 nm;m λ= =  for 1,  514 nm;m λ= =  for 2,  308 nm;m λ= = …  Only 514 nm is in the visible region; 
the color for this wavelength is green. 

(b) 0
2 2(340 nm)(1.33) 904.4 nm

1 1 1
2 2 2

tn

m m m
λ = = =

+ + +
 

for 0,  1809 nm;m λ= =  for 1,  603 nm;m λ= =  for 2,  362 nm;m λ= = …  Only 603 nm is in the visible region; 
the color for this wavelength is orange. 
EVALUATE: The dominant color of the reflected light depends on the thickness of the film. If the bubble has 
varying thickness at different points, these points will appear to be different colors when the light reflected from 
the bubble is viewed. 

35.34. IDENTIFY: The number of waves along the path is the path length divided by the wavelength.  The path 
difference and the reflections determine the phase difference. 

SET UP: The path length is 62 17.52 10  mt −= × .  The wavelength in the film is 0

n
λλ = . 
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EXECUTE: (a) 648 nm 480 nm
1.35

λ = = .  The number of waves is 
6

9

2 17.52 10  m 36.5
480 10  m

t
λ

−

−

×
= =

×
. 

(b) The path difference introduces a / 2λ , or 180° , phase difference.  The ray reflected at the top surface of the 
film undergoes a 180° phase shift upon reflection.  The reflection at the lower surface introduces no phase shift.  
Both rays undergo a 180° phase shift, one due to reflection and one due to reflection.  The two effects cancel and 
the two rays are in phase as they leave the film. 
EVALUATE: Note that we must use the wavelength in the film to determine the number of waves in the film. 

35.35. IDENTIFY: Require destructive interference between light reflected from the two points on the disc. 
SET UP: Both reflections occur for waves in the plastic substrate reflecting from the reflective coating, so they 
both have the same phase shift upon reflection and the condition for destructive interference (cancellation) is 

1
22 ( )t m λ= + , where t is the depth of the pit.  0

n
λλ = .  The minimum pit depth is for 0m = . 

EXECUTE: 2
2

t λ
= .  0 790 nm 110 nm 0.11 m

4 4 4(1.8)
t

n
λ λ μ= = = = = . 

EVALUATE: The path difference occurs in the plastic substrate and we must compare the wavelength in the 
substrate to the path difference. 

35.36. IDENTIFY: Consider light reflected at the front and rear surfaces of the film. 
SET UP: At the front surface of the film, light in air ( 1.00n = ) reflects from the film ( 2.62n = ) and there is a 
180°  phase shift due to the reflection.  At the back surface of the film, light in the film ( 2.62n = ) reflects from 
glass ( 1.62n = ) and there is no phase shift due to reflection.  Therefore, there is a net 180°  phase difference 
produced by the reflections.  The path difference for these two rays is 2t, where t is the thickness of the film.  The 

wavelength in the film is 505 nm
2.62

λ = . 

EXECUTE: (a) Since the reflection produces a net 180°  phase difference, destructive interference of the reflected 

light occurs when 2t mλ= .  505 nm (96.4 nm)
2[2.62]

t m m⎛ ⎞
= =⎜ ⎟

⎝ ⎠
.  The minimum thickness is 96.4 nm. 

(b) The next three thicknesses are for 2m = , 3 and 4:  192 nm, 289 nm and 386 nm. 
EVALUATE: The minimum thickness is for / 2t nλ= .  Compare this to Problem 34.27, where the minimum 
thickness for destructive interference is / 4t nλ= . 

35.37. IDENTIFY and SET UP: Apply Eq.(35.19) and calculate y for 1800.m =  
EXECUTE: Eq.(35.19): 9 4( / 2) 1800(633 10  m) / 2 5.70 10  m 0.570 mmy m λ − −= = × = × =  
EVALUATE: A small displacement of the mirror corresponds to many wavelengths and a large number of fringes 
cross the line. 

35.38. IDENTIFY: Apply Eq.(35.19). 
SET UP: 818m = .  Since the fringes move in opposite directions, the two people move the mirror in opposite 
directions. 

EXECUTE: (a) For Jan, the total shift was 
7

41
1

818(6.06 10 m) 2.48 10 m.
2 2

my λ −
−×

= = = ×  For Linda, the total shift 

was 
7

42
2

818(5.02 10 m) 2.05 10 m.
2 2

my λ −
−×

= = = ×  

(b) The net displacement of the mirror is the difference of the above values: 

1 2 0.248 mm 0.205 mm 0.043 mm.y y yΔ = − = − =  

EVALUATE: The person using the larger wavelength moves the mirror the greater distance. 
35.39. IDENTIFY: Consider the interference between light reflected from the top and bottom surfaces of the air film 

between the lens and the glass plate. 

SET UP: For maximum intensity, with a net half-cycle phase shift due to reflections, 12
2

t m λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

.  

2 2t R R r= − − . 

EXECUTE: 2 2 2 2(2 1) (2 1)
4 4

m mR R r R r Rλ λ+ +
= − − ⇒ − = −  

2 2
2 2 2 (2 1) (2 1) (2 1) (2 1)

4 2 2 4

(2 1) , for .
2

m m R m R mR r R r

m Rr R

λ λ λ λ

λ λ

+ + + +⎡ ⎤ ⎡ ⎤⇒ − = + − ⇒ = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+
⇒ ≈ "
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The second bright ring is when 1:m =  
7

4(2(1) 1) (5.80 10 m) (0.952 m) 9.10 10 m 0.910 mm.
2

r
−

−+ ×
≈ = × =  

So the diameter of the second bright ring is 1.82 mm. 
EVALUATE: The diameter of the thm  ring is proportional to 2 1m + , so the rings get closer together as m 
increases.  This agrees with Figure 35.17b in the textbook. 

35.40. IDENTIFY: As found in Problem 35.39, the radius of the thm  bright ring is (2 1) ,
2

m Rr λ+
≈ for .R λ"  

SET UP: Introducing a liquid between the lens and the plate just changes the wavelength from  to 
n
λλ , where n 

is the refractive index of the liquid. 

EXECUTE: (2 1) 0.850 mm( ) 0.737 mm.
2 1.33

m R rr n
n n
λ+

≈ = = =  

EVALUATE: The refractive index of the water is less than that of the glass plate, so the phase changes on 
reflection are the same as when air is in the space. 

35.41. IDENTIFY: The liquid alters the wavelength of the light and that affects the locations of the interference minima. 
SET UP: The interference minima are located by 1

2sin ( )d mθ λ= + .  For a liquid with refractive index n, 

air
liq n

λλ = . 

EXECUTE: 
1
2( )sin  constant

m
d

θ
λ

+
= = , so liqair

air liq

sinsin θθ
λ λ

= .  liqair

air air

sinsin
/ n
θθ

λ λ
= and air

liq

sin sin35.20 1.730
sin sin19.46

n θ
θ

= = =
°
°

. 

EVALUATE: In the liquid the wavelength is shorter and 1
2sin ( )m

d
λθ = + gives a smaller θ than in air, for the 

same m. 
35.42. IDENTIFY: As the brass is heated, thermal expansion will cause the two slits to move farther apart. 

SET UP: For destructive interference, d sin θ = λ/2. The change in separation due to thermal expansion is dw = 
αw0 dT, where w is the distance between the slits. 
EXECUTE: The first dark fringe is at d sin θ = λ/2 ⇒ sin θ = λ/2d. 
Call d ≡ w for these calculations to avoid confusion with the differential. sin θ = λ/2w 
Taking differentials gives d(sin θ) = d(λ/2w) and cosθ dθ = − λ/2 dw/w2. 

For thermal expansion, dw = αw0 dT, which gives 0
2
0 0

cos  
2 2

w dT dTd
w w

λ α λαθ θ = − = − . Solving for dθ gives 

0 02 cos
dTd

w
λαθ

θ
= − . Get λ:  w0 sin θ0 = λ/2 → λ = 2w0 sinθ0. Substituting this quantity into the equation for dθ gives 

0 0
0

0 0

2 sin tan  
2 cos

w dTd dT
w

θ αθ θ α
θ

= − = − . 

5 1tan(32.5 )(2.0 10  K )(115 K) 0.001465 rad 0.084dθ − −= − × = − = −° ° 
The minus sign tells us that the dark fringes move closer together. 
EVALUATE: We can also see that the dark fringes move closer together because sinθ is proportional to 1/d, so as 
d increases due to expansion, θ decreases. 

35.43. IDENTIFY: Both frequencies will interfere constructively when the path difference from both of them is an 
integral number of wavelengths. 
SET UP: Constructive interference occurs when sinθ = mλ/d. 
EXECUTE: First find the two wavelengths. 

λ1 = v/f1 = (344 m/s)/(900 Hz) = 0.3822 m 

λ2 = v/f2 = (344 m/s)/(1200 Hz) = 0.2867 m 
To interfere constructively at the same angle, the angles must be the same, and hence the sines of the angles must 
be equal. Each sine is of the form sin θ = mλ/d, so we can equate the sines to get 
     m1λ1/d = m2λ2/d 

     m1(0.3822 m) = m2(0.2867 m) 

     m2 = 4/3 m1 



35-12 Chapter 35 

Since both m1 and m2 must be integers, the allowed pairs of values of m1 and m2 are 
     m1 = m2 = 0 

     m1 = 3,  m2 = 4 

     m1 = 6,  m2 = 8 

     m1 = 9,  m2 = 12 

     etc. 
For m1 = m2 = 0, we have θ = 0. 
For m1 = 3,  m2 = 4, we have  sin θ1 = (3)(0.3822 m)/(2.50 m), giving θ1 = 27.3° 
For m1 = 6,  m2 = 8, we have  sin θ1 = (6)(0.3822 m)/(2.50 m), giving θ1 = 66.5° 
For m1 = 9,  m2 = 12, we have  sin θ1 = (9)(0.3822 m)/(2.50 m) = 1.38 > 1, so no angle is possible. 
EVALUATE: At certain other angles, one frequency will interfere constructively, but the other will not. 

35.44. IDENTIFY: For destructive interference, 2 1
1
2

d r r m λ⎛ ⎞= − = +⎜ ⎟
⎝ ⎠

. 

SET UP: 2 2
2 1 (200 m)r r x x− = + −  

EXECUTE: 
2

2 2 2 1 1(200 m) 2
2 2

x x m x mλ λ⎡ ⎤⎛ ⎞ ⎛ ⎞+ = + + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
. 

220,000 m 1 1 .
1 2 2
2

x m
m

λ
λ

⎛ ⎞= − +⎜ ⎟⎛ ⎞ ⎝ ⎠+⎜ ⎟
⎝ ⎠

 The wavelength is calculated by 
8

6

3.00 10 m s 51.7 m.
5.80 10 Hz

c
f

λ ×
= = =

×
 

0 : 761 m; 1: 219 m;  2 : 90.1 m;  3; 20.0 m.m x m x m x m x= = = = = = = =  
EVALUATE: For 3m = , 3.5 181 md λ= = .  The maximum possible path difference is the separation of 200 m 
between the sources. 

35.45. IDENTIFY: The two scratches are parallel slits, so the light that passes through them produces an interference 
pattern. However the light is traveling through a medium (plastic) that is different from air. 
SET UP: The central bright fringe is bordered by a dark fringe on each side of it. At these dark fringes, d sin θ = 
½ λ/n, where n is the refractive index of the plastic. 
EXECUTE: First use geometry to find the angles at which the two dark fringes occur. At the first dark fringe  
tanθ = [(5.82 mm)/2]/(3250 mm), giving θ = ±0.0513° 
For destructive interference, we have d sin θ = ½ λ/n and 

n = λ/(2dsin θ) = (632.8 nm)/[2(0.000225 m)(sin 0.0513°)] = 1.57 
EVALUATE: The wavelength of the light in the plastic is reduced compared to what it would be in air. 

35.46. IDENTIFY: Interference occurs due to the path difference of light in the thin film. 
SET UP: Originally the path difference was an odd number of half-wavelengths for cancellation to occur. If the 
path difference decreases by ½ wavelength, it will be a multiple of the wavelength, so constructive interference 
will occur. 
EXECUTE: Calling ΔT the thickness that must be removed, we have 

path difference = 2ΔT = ½ λ/n and  ΔT = λ/4n = (525 nm)/[4(1.40)] = 93.75 nm, 
At 4.20 nm/yr, we have (4.20 nm/yr)t = 93.75 nm and t = 22.3 yr. 
EVALUATE: If you were giving a warranty on this film, you certainly could not give it a �lifetime guarantee�! 

35.47. IDENTIFY and SET UP: If the total phase difference is an integer number of cycles the interference is constructive 
and if it is a half-integer number of cycles it is destructive. 
EXECUTE: (a) If the two sources are out of phase by one half-cycle, we must add an extra half a wavelength to 
the path difference equations Eq.(35.1) and Eq.(35.2).  This exactly changes one for the other, for 

1 1
2 2and ,m m m m→ + + →  since m  in any integer. 

(b) If one source leads the other by a phase angleφ , the fraction of a cycle difference is .
2
φ
π

 Thus the path length 

difference for the two sources must be adjusted for both destructive and constructive interference, by this amount. 
So for constructive inference: 1 2 ( 2 ) ,r r m φ π λ− = +  and for destructive interference, 1 2 ( 1 2 2 )r r m φ π λ− = + + , 
where in each case 0, 1, 2,m = ± ± … 
EVALUATE: If 0φ =  these results reduce to Eqs.(35.1) and (35.2). 

35.48. IDENTIFY: Follow the steps specified in the problem. 
SET UP: Use cos( / 2) cos( )cos( / 2) sin( )sin( / 2)t t tω φ ω φ ω φ+ = − .  Then 

22cos( / 2)cos( / 2) 2cos( )cos ( / 2) 2sin( )sin( / 2)cos( / 2)t t tφ ω φ ω φ ω φ φ+ = − .  Then use 2 1 cos( )cos ( / 2)
2
φφ +

= and 
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2sin( / 2)cos( / 2) sinφ φ φ= .  This gives cos( ) (cos( )cos( ) sin( )sin( )) cos( ) cos( )t t t t tω ω φ ω φ ω ω φ+ − = + + , using 
again the trig identity for the cosine of the sum of two angles. 
EXECUTE: (a) The electric field is the sum of the two fields and can be written as 

2 1( ) ( ) ( ) cos( ) cos( )PE t E t E t E t E tω ω φ= + = + + .  ( ) 2 cos( / 2)cos( / 2)PE t E tφ ω φ= + . 
(b) ( ) cos( / 2),pE t A tω φ= +  so comparing with part (a), we see that the amplitude of the wave (which is always 
positive) must be 2 | cos( / 2) | .A E φ=  

(c) To have an interference maximum, 2
2

mφ π= .  So, for example, using 1,m = the relative phases are 

2 1: 0;  : 4 ;  : 2
2pE E E φφ π π= = , and all waves are in phase. 

(d) To have an interference minimum, 1 .
2 2

mφ π ⎛ ⎞= +⎜ ⎟
⎝ ⎠

  So, for example using 0,m = relative phases are 

2 1: 0;  : ;  : /2 /2,pE E Eφ π φ π= =  and the resulting wave is out of phase by a quarter of a cycle from both of the 
original waves. 
(e) The instantaneous magnitude of the Poynting vector is 

2 2 2 2
0 0| | ( ) (4 cos ( 2)cos ( 2)).pcE t c E tε ε φ ω φ= = +S

$%
 

For a time average, 2 2 2
av 0

1cos ( 2) ,  so 2 cos ( 2).
2

t S cEω φ ε φ+ = =  

EVALUATE: The result of part (e) shows that the intensity at a point depends on the phase difference φ at that 
point for the waves from each source. 

35.49. IDENTIFY: Follow the steps specified in the problem. 
SET UP: The definition of hyperbola is the locus of points such that the difference between 2 1to and toP S P S is 
a constant. 
EXECUTE: (a) r mλΔ = .  2 2

1 ( )r x y d= + − and 2 2
2 ( )r x y d= + + . 

2 2 2 2( ) ( )r x y d x y d mλΔ = + + − + − = . 
(b) For a given andm λ , rΔ  is a constant and we get a hyperbola. Or, in the case of all m for a given λ , a family 
of hyperbolas. 
(c) 2 2 2 2 1

2( ) ( ) ( ) .x y d x y d m λ+ + − + − = +  
EVALUATE: The hyperbolas approach straight lines at large distances from the source. 

35.50. IDENTIFY: Follow the derivation of Eq.(35.7), but with different amplitudes for the two waves. 
SET UP: cos( ) cosπ φ φ− = −  

EXECUTE: (a) 2 2 2 2 2 2
1 2 1 22 cos( ) 4 4 cospE E E E E E E Eπ φ φ= + − − = + + = 2 25 4 cosE E φ+  

2 2 2 2
0 0 0 0

1 5 4 9cos .  0 .
2 2 2 2pI cE c E E I cEε ε φ φ ε⎡ ⎤⎛ ⎞ ⎛ ⎞= = + = ⇒ =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

  Therefore, 0
5 4 cos .
9 9

I I φ⎡ ⎤= +⎢ ⎥⎣ ⎦
 

(b) The graph is shown in Figure 35.50. min 0
1 which occurs when ( odd).
9

I I n nφ π= =  

EVALUATE: The maxima and minima occur at the same points on the screen as when the two sources have the 
same amplitude, but when the amplitudes are different the intensity is no longer zero at the minima. 

 
Figure 35.50 
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35.51. IDENTIFY and SET UP: Consider interference between rays reflected from the upper and lower surfaces of the 
film to relate the thickness of the film to the wavelengths for which there is destructive interference. The thermal 
expansion of the film changes the thickness of the film when the temperature changes. 
EXECUTE: For this film on this glass, there is a net / 2λ  phase change due to reflection and the condition for 
destructive interference is 2 ( / ),t m nλ=  where 1.750.n =  
Smallest nonzero thickness is given by / 2 .t nλ=  
At 020.0 C, (582.4 nm) /[(2)(1.750)] 166.4 nm.t° = =  
At 0170 C, (588.5 nm) /[(2)(1.750)] 168.1 nm.t° = =  

0 (1 )t t Tα= + Δ  so 
5 1

0 0( ) /( ) (1.7 nm) /[(166.4 nm)(150 C)] 6.8 10 (C )t t t Tα − −= − Δ = ° = × °  
EVALUATE: When the film is heated its thickness increases, and it takes a larger wavelength in the film to equal 
2t.The value we calculated for α  is the same order of magnitude as those given in Table 17.1. 

35.52. IDENTIFY and SET UP: At the 3m = bright fringe for the red light there must be destructive interference at this 
same θ  for the other wavelength. 
EXECUTE: For constructive interference: 1sin sin 3(700 nm) 2100 nm.d m dθ λ θ= ⇒ = =     For destructive 

interference: 2 2 1 1
2 2

1 sin 2100 nmsin  .
2

dd m
m m

θθ λ λ⎛ ⎞= + ⇒ = =⎜ ⎟ + +⎝ ⎠
  So the possible wavelengths are 

2 2600 nm, for 3, and 467 nm, for 4.m mλ λ= = = =  
EVALUATE: Both andd θ  drop out of the calculation since their combination is just the path difference, which is 
the same for both types of light. 

35.53. IDENTIFY: Apply 0 cos sindI I π θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

SET UP: 0 / 2I I= when sindπ θ
λ

 is rad
4
π , 3 rad

4
π ,�. 

EXECUTE: First we need to find the angles at which the intensity drops by one-half from the value of the thm  

bright fringe.  2 0
0 cos sin sin ( 1 2) .

2 2
md I d dI I mπ π π θ πθ θ

λ λ λ
⎛ ⎞= = ⇒ ≈ = +⎜ ⎟
⎝ ⎠

 

30 : ; 1:
4 4 2m m mm m

d d d
λ λ λθ θ θ θ θ− += = = = = = ⇒ Δ = .  

EVALUATE: There is no dependence on the m-value of the fringe, so all fringes at small angles have the same 
half-width. 

34.54. IDENTIFY: Consider the phase difference produced by the path difference and by the reflections. 
SET UP: There is just one half-cycle phase change upon reflection, so for constructive interference 

1 1
1 1 2 22 22 ( ) ( )t m mλ λ= + = + , where these wavelengths are in the glass.  The two different wavelengths differ by just 

one 2 1-value, 1.m m m= −  

EXECUTE: 1 2 1 2
1 1 1 2 1 2 1 1

2 1

1 1 ( )
2 2 2 2( )

m m m mλ λ λ λλ λ λ λ
λ λ

+ +⎛ ⎞ ⎛ ⎞+ = − ⇒ − = ⇒ =⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠
. 

01
1

477.0 nm 540.6 nm 1 17(477.0 nm)8.  2 8 1334 nm.
2(540.6 nm 477.0 nm) 2 4(1.52)

m t t
n
λ+ ⎛ ⎞= = = + ⇒ = =⎜ ⎟− ⎝ ⎠

 

EVALUATE: Now that we have t we can calculate all the other wavelengths for which there is constructive 
interference. 

35.55. IDENTIFY: Consider the phase difference due to the path difference and due to the reflection of one ray from the 
glass surface. 
(a) SET UP: Consider Figure 35.55 

 

path 
difference = 

2 22 / 4h x x+ − =  
2 24h x x+ −  

 

Figure 35.55  
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Since there is a 180°  phase change for the reflected ray, the condition for constructive interference is path 

difference 1
2

m λ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 and the condition for destructive interference is path difference .mλ=  

(b) EXECUTE: Constructive interference: 2 21 4
2

m h x xλ⎛ ⎞+ = + −⎜ ⎟
⎝ ⎠

 and 
2 24 .1

2

h x x

m
λ + −
=

+
 Longest λ  is for 

0m =  and then ( ) ( )2 2 2 22 4 2 4(0.24 m) (0.14 m) 0.14 m 0.72 mh x xλ = + − = + − =  

EVALUATE: For 0.72 mλ =  the path difference is / 2.λ  
35.56. IDENTIFY: Require constructive interference for the reflection from the top and bottom surfaces of each 

cytoplasm layer and each guanine layer. 
SET UP: At the water (or cytoplasm) to guanine interface, there is a half-cycle phase shift for the reflected light, 
but there is not one at the guanine to cytoplasm interface. Therefore there will always be one half-cycle phase 
difference between two neighboring reflected beams, just due to the reflections. 
EXECUTE: For the guanine layers: 

g g
g 1 1 1

g 2 2 2

21 2(74 nm) (1.80) 266 nm2 ( ) 533 nm ( 0).
2 ( ) ( ) ( )

t n
t m m

n m m m
λ λ λ= + ⇒ = = = ⇒ = =

+ + +
 

For the cytoplasm layers: 
c c

c 1 1 1
c 2 2 2

1 2 2(100 nm) (1.333) 267 nm2 533 nm ( 0).
2 ( ) ( ) ( )

t nt m m
n m m m
λ λ λ⎛ ⎞= + ⇒ = = = ⇒ = =⎜ ⎟ + + +⎝ ⎠

 

(b) By having many layers the reflection is strengthened, because at each interface some more of the transmitted 
light gets reflected back, increasing the total percentage reflected. 
(c) At different angles, the path length in the layers changes (always to a larger value than the normal incidence 
case). If the path length changes, then so do the wavelengths that will interfere constructively upon reflection. 
EVALUATE: The thickness of the guanine and cytoplasm layers are inversely proportional to their refractive 

indices 100 1.80
74 1.333

⎛ ⎞=⎜ ⎟
⎝ ⎠

, so both kinds of layers produce constructive interference for the same wavelength in air. 

35.57. IDENTIFY: The slits will produce an interference pattern, but in the liquid, the wavelength of the light will be less 
than it was in air. 
SET UP: The first bright fringe occurs when d sin θ = λ/n. 
EXECUTE: In air: dsin18.0° = λ. In the liquid: dsin12.6° = λ/n. Dividing the equations gives 

n = (sin 18.0°)/(sin 12.6°) = 1.42 
EVALUATE: It was not necessary to know the spacing of the slits, since it was the same in both air and the liquid. 

35.58. IDENTIFY: Consider light reflected at the top and bottom surfaces of the film. Wavelengths that are predominant 
in the transmitted light are those for which there is destructive interference in the reflected light. 
SET UP: For the waves reflected at the top surface of the oil film there is a half-cycle reflection phase shift.  For 
the waves reflected at the bottom surface of the oil film there is no reflection phase shift.  The condition for 
constructive interference is 1

22 ( )t m λ= + .  The condition for destructive interference is 2t mλ= . The range of 

visible wavelengths is approximately 400 nm to 700 nm.  In the oil film, 0

n
λλ = . 

EXECUTE: (a) 01 1
2 22 ( ) ( )t m m

n
λλ= + = + .  0 1 1 1

2 2 2

2 2(380 nm)(1.45) 1102 nmtn
m m m

λ = = =
+ + +

.  

0m = : 0 2200 nmλ = .  1m = : 0 735 nmλ = .  2m = : 0 441 nmλ = .  3m = : 0 315 nmλ = .  The visible 
wavelength for which there is constructive interference in the reflected light is 441 nm. 

(b) 02t m m
n
λλ= = .  0

2 1102 nmtn
m m

λ = = .  1m = : 0 1102 nmλ = .  2m = : 0 551 nmλ = .  3m = : 0 367 nmλ = .  

The visible wavelength for which there is destructive interference in the reflected light is 551 nm.  This is the 
visible wavelength predominant in the transmitted light. 
EVALUATE: At a particular wavelength the sum of the intensities of the reflected and transmitted light equals the 
intensity of the incident light. 

35.59. (a) IDENTIFY: The wavelength in the glass is decreased by a factor of 1/ ,n  so for light through the upper slit a 
shorter path is needed to produce the same phase at the screen. Therefore, the interference pattern is shifted 
downward on the screen. 
(b) SET UP: Consider the total phase difference produced by the path length difference and also by the different 
wavelength in the glass. 
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EXECUTE: At a point on the screen located by the angle θ  the difference in path length is sin .d θ  This 

introduces a phase difference of 
0

2 ( sin ),dπφ θ
λ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 where 0λ  is the wavelength of the light in air or vacuum. 

In the thickness L of glass the number of wavelengths is 
0

.L nL
λ λ
=  A corresponding length L of the path of the ray 

through the lower slit, in air, contains 0/L λ  wavelengths. The phase difference this introduces is 

0 0

2 nL Lφ π
λ λ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 and 02 ( 1)( / ).n Lφ π λ= −  The total phase difference is the sum of these two, 

0 0
0

2 ( sin ) 2 ( 1)( / ) (2 / )( sin ( 1)).d n L d L nπ θ π λ π λ θ
λ

⎛ ⎞
+ − = + −⎜ ⎟

⎝ ⎠
 Eq.(35.10) then gives 

2
0

0

cos ( sin ( 1)) .I I d L nπ θ
λ

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 

(c) Maxima means cos / 2 1φ = ±  and / 2 ,  0,  1,  2,m mφ π= = ± ± …  0( / )( sin ( 1))d L n mπ λ θ π+ − =  

0sin ( 1)d L n mθ λ+ − =  

0 ( 1)sin m L n
d

λθ − −
=  

EVALUATE: When 0L →  or 1n →  the effect of the plate goes away and the maxima are located by Eq.(35.4). 
35.60. IDENTIFY:  Dark fringes occur because the path difference is one-half of a wavelength. 

SET UP: At the first dark fringe, dsinθ = λ/2. The intensity at any angle θ is given by 2
0

sincos dI I π θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

(a) At the first dark fringe, we have 
d sin θ = λ/2 

d/λ = 2/(2 sin 15.0°) = 1.93 

(b) 2 0
0

sincos
10

d II I π θ
λ

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 ⇒ sin 1cos
10

dπ θ
λ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

sin 1arccos
10

dπ θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 = 71.57° = 1.249 rad 

Using the result from part (a), that d/λ = 1.93, we have π(1.93)sin θ  = 1.249. sin θ = 0.2060 and 
θ = ±11.9° 

EVALUATE: Since the first dark fringes occur at ±15.0°, it is reasonable that at  ≈12° the intensity is reduced to 
only 1/10 of its maximum central value. 

35.61. IDENTIFY: There are two effects to be considered: first, the expansion of the rod, and second, the change in the 
rod�s refractive index. 

SET UP: 0

n
λλ = and 5 1

0 (2.50 10  (C ) )n n T− −Δ = × Δ° .  6 1
0 (5.00 10  (C ) )L L T− −Δ = × Δ° . 

EXECUTE: The extra length of rod replaces a little of the air so that the change in the number of wavelengths due 

to this is given by: glass glass 0air
1

0 0 0

2 2( 1)2n L n L Tn LN
α

λ λ λ
Δ − ΔΔ

Δ = − =  and 

6

1 7

2(1.48 1)(0.030 m)(5.00 10 C )(5.00 C ) 1.22.
5.89 10 m

N
−

−

− × ° °
Δ = =

×
 

The change in the number of wavelengths due to the change in refractive index of the rod is: 
5

glass 0
2 7

0

2 2(2.50 10 C )(5.00 C min)(1.00 min)(0.0300 m) 12.73.
5.89 10 m

n L
N

λ

−

−

Δ × ° °
Δ = = =

×
 

So, the total change in the number of wavelengths as the rod expands is 12.73 1.22 14.0NΔ = + = fringes/minute. 
EVALUATE: Both effects increase the number of wavelengths along the length of the rod.  Both LΔ and 

glassnΔ are very small and the two effects can be considered separately. 

35.62. IDENTIFY: Apply Snell's law to the refraction at the two surfaces of the prism.  1S and 2S serve as coherent 

sources so the fringe spacing is Ry
d
λ

Δ = , where d is the distance between 1S and 2S . 
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SET UP: For small angles, sinθ θ≈ , withθ expressed in radians. 
EXECUTE: (a) Since we can approximate the angles of incidence on the prism as being small, Snell�s Law tells 
us that an incident angle of θ on the flat side of the prism enters the prism at an angle of ,nθ  where n  is the 
index of refraction of the prism. Similarly on leaving the prism, the in-going angle is / n Aθ −  from the normal, 
and the outgoing angle, relative to the prism, is ( ).n n Aλ −  So the beam leaving the prism is at an angle of 

( )n n A Aθ θ′ = − +  from the optical axis. So ( 1) .n Aθ θ′− = −  At the plane of the source 0S , we can calculate the 

height of one image above the source: tan( ) ( ) ( 1) 2 ( 1).
2
d a a n Aa d aA nθ θ θ θ′ ′= − ≈ − = − ⇒ = −  

(b) To find the spacing of fringes on a screen, we use 
7

3
3

(2.00 m 0.200 m) (5.00 10 m) 1.57 10 m.
2 ( 1) 2(0.200 m) (3.50 10 rad) (1.50 1.00)

R Ry
d aA n
λ λ −

−
−

+ ×
Δ = = = = ×

− × −
 

EVALUATE: The fringe spacing is proportional to the wavelength of the light.  The biprism serves as an 
alternative to two closely spaced narrow slits.
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DIFFRACTION 

 36.1. IDENTIFY: Use tany x θ=  to calculate the angular position θ  of the first minimum. The minima are located by 

Eq.(36.2): sin ,
m

a

λθ =  1,  2,m = ± ± …  First minimum means 1m =  and 1sin / aθ λ=  and 1sin .aλ θ=  Use this 

equation to calculate .λ  
SET UP: The central maximum is sketched in Figure 36.1. 

 

EXECUTE: 1 1tany x θ=  

1
1tan

y

x
θ = = 

3
31.35 10  m

0.675 10
2.00 m

−
−× = ×  

3
1 0.675 10  radθ −= ×  

 
Figure 36.1  

3 3
1sin (0.750 10  m)sin(0.675 10  rad) 506 nmaλ θ − −= = × × =  

EVALUATE: 1θ  is small so the approximation used to obtain Eq.(36.3) is valid and this equation could have been 

used. 

 36.2. IDENTIFY: The angle is small, so m

m
y x

a

λ= . 

SET UP: 1 10.2 mmy =  

EXECUTE: 
7

5
1 3

1

(0.600 m)(5.46 10 m)
3.21 10  m.

10.2 10  m

x x
y a

a y

λ λ −
−

−

×= ⇒ = = ×
×

 

EVALUATE: The diffraction pattern is observed at a distance of 60.0 cm from the slit. 

 36.3. IDENTIFY: The dark fringes are located at angles θ  that satisfy sin ,  1,  2,  ....
m

m
a

λθ = = ± ±  

SET UP: The largest value of sinθ  is 1.00. 

EXECUTE: (a) Solve for m that corresponds to sin 1θ = : 
3

9

0.0666 10  m
113.8

585 10  m

a
m

λ

−

−

×= = =
×

. The largest value m 

can have is 113.  1m = ± , 2± , …, 113±  gives 226 dark fringes. 

(b) For 113m = ± , 
9

3

585 10  m
sin 113 0.9926

0.0666 10  m
θ

−

−

⎛ ⎞×= ± = ±⎜ ⎟×⎝ ⎠
 and 83.0θ = ± °. 

EVALUATE: When the slit width a is decreased, there are fewer dark fringes. When a λ< there are no dark 
fringes and the central maximum completely fills the screen. 

 36.4. IDENTIFY and SET UP: / aλ is very small, so the approximate expression m

m
y R

a

λ=  is accurate. The distance 

between the two dark fringes on either side of the central maximum is 12y . 

EXECUTE: 
9

3
1 3

(633 10  m)(3.50 m)
2.95 10  m 2.95 mm

0.750 10  m

R
y

a

λ −
−

−

×= = = × =
×

.  12 5.90 mmy = . 

EVALUATE: When a is decreased, the width 12y of the central maximum increases. 

 36.5. IDENTIFY: The minima are located by sin
m

a

λθ =  

SET UP: 12.0 cma = . 40.0 cmx = . 

36
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EXECUTE: The angle to the first minimum is θ  = arcsin
a

λ⎛ ⎞
⎜ ⎟
⎝ ⎠

 = arcsin
9.00 cm

48.6 .
12.00 cm

⎛ ⎞
= °⎜ ⎟

⎝ ⎠
 

So the distance from the central maximum to the first minimum is just 1 tany x θ= =  

(40.0 cm) tan(48.6 ) 45.4 cm.° = ±  

EVALUATE: 2 / aλ is greater than 1, so only the 1m =  minimum is seen. 
 36.6. IDENTIFY: The angle that locates the first diffraction minimum on one side of the central maximum is given by 

sin
a

λθ = . The time between crests is the period T.  
1

f
T

=  and 
v

f
λ = . 

SET UP: The time between crests is the period, so 1.0 hT = . 

EXECUTE: (a) 11 1
1.0 h

1.0 h
f

T
−= = = .  

1

800 km/h
800 km

1.0 h

v

f
λ −= = = . 

(b) Africa-Antarctica:  
800 km

sin
4500 km

θ =  and 10.2θ = ° . 

Australia-Antarctica:  
800 km

sin
3700 km

θ =  and 12.5θ = ° . 

EVALUATE: Diffraction effects are observed when the wavelength is about the same order of magnitude as the 
dimensions of the opening through which the wave passes. 

 36.7. IDENTIFY: We can model the hole in the concrete barrier as a single slit that will produce a single-slit diffraction 
pattern of the water waves on the shore. 
SET UP: For single-slit diffraction, the angles at which destructive interference occurs are given by sinθm = mλ/a, 
where m = 1, 2, 3, …. 
EXECUTE: (a) The frequency of the water waves is f = 75.0 1 1min 1.25 s 1.25− −= =  Hz, so their wavelength is λ = v/f = 
(15.0 cm/s)/(1.25 Hz) = 12.0 cm. 
At the first point for which destructive interference occurs, we have 
tan θ = (0.613 m)/(3.20 m) ⇒ θ = 10.84°. a sin θ = λ and 

a = λ/sin θ = (12.0 cm)/(sin 10.84°) = 63.8 cm. 

(b) First find the angles at which destructive interference occurs. 

sin θ2 = 2λ/a = 2(12.0 cm)/(63.8 cm) → θ2 = ±22.1° 

sin θ3 = 3λ/a = 3(12.0 cm)/(63.8 cm) → θ3 = ±34.3° 

sin θ4 = 4λ/a = 4(12.0 cm)/(63.8 cm) → θ4 = ±48.8° 

sin θ5 = 5λ/a = 5(12.0 cm)/(63.8 cm) → θ5 = ±70.1° 

EVALUATE: These are large angles, so we cannot use the approximation that θm ≈ mλ/a. 

 36.8. IDENTIFY: The minima are located by sin
m

a

λθ = . For part (b) apply Eq.(36.7). 

SET UP: For the first minimum, 1m = . The intensity at 0θ = is 0I . 

EXECUTE: (a) sin sin90.0 1
m m

a a a

λ λ λθ = = ° = = = .  Thus  4580 nm 5.80 10  mm.a λ −= = = ×  

(b) According to Eq.(36.7), 

[ ] [ ]2 2

0

sin (sin ) sin (sin / 4)
0.128.

(sin ) (sin / 4)

aI

I a

π θ λ π π
π θ λ π π

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 

EVALUATE: If / 2a λ= , for example, then at 45θ = °, 
[ ] 2

0

sin ( / 2)(sin / 4)
0.81

( / 2)(sin / 4)

I

I

π π
π π

⎧ ⎫⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭

. As /a λ decreases, 

the screen becomes more uniformly illuminated. 
 36.9. IDENTIFY and SET UP: v f λ=  gives .λ  The person hears no sound at angles corresponding to diffraction 

minima. The diffraction minima are located by sin / ,  1,  2,m a mθ λ= = ± ± …  Solve for .θ  
EXECUTE: / (344 m/s) /(1250 Hz) 0.2752 m;v fλ = = =  1.00 m. 1,a m= = ±  16.0 ;θ = ± °  2,  m = ±  

33.4 ;  3,  55.6 ;mθ θ= ± ° = ± = ± °  no solution for larger m 
EVALUATE: / 0.28aλ =  so for the large wavelength sound waves diffraction by the doorway is a large effect. 
Diffraction would not be observable for visible light because its wavelength is much smaller and / 1.aλ V  
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36.10. IDENTIFY: Compare yE  to the expression max sin( )yE E kx tω= −  and determine k, and from that calculate λ . 

/f c λ= . The dark bands are located by sin
m

a

λθ = . 

SET UP: 83.00 10  m/sc = × .  The first dark band corresponds to 1m = . 

EXECUTE: (a) max sin( )E E kx tω= − . 7
7 1

2 2 2
5.24 10 m

1.20 10 m
k

k

π π πλ
λ

−
−= ⇒ = = = ×

×
. 

8
14

7

3.0 10 m s
5.73 10  Hz

5.24 10 m

c
f c fλ

λ −

×= ⇒ = = = ×
×

. 

(b) sina θ λ= . 
7

65.24 10  m
1.09 10  m

sin sin 28.6
a

λ
θ

−
−×= = = ×

°
. 

(c) sin ( 1,  2,  3,  . . .)a m mθ λ= = .  
7

2 6
5.24 10 msin 2 2
1.09 10 ma

λθ
−

−
×= ± = ±
×

 and 2 74θ = ± . 

EVALUATE: For 3m = , 
m

a

λ
 is greater than 1 so only the first and second dark bands appear. 

36.11. IDENTIFY and SET UP:  sin / aθ λ=  locates the first minimum.  tany x θ= . 

EXECUTE: tan (36.5 cm) (40.0 cm) and 42.38y xθ θ= = = ° .  
9sin (620 10 m) (sin 42.38 ) 0.920 ma λ θ μ−= = × ° =  

EVALUATE: 0.74 radθ =  and sin 0.67θ = , so the approximation sinθ θ≈  would not be accurate. 

36.12. IDENTIFY: The angle is small, so m

m
y x

a

λ=  applies. 

SET UP: The width of the central maximum is 12y , so 1 3.00 mmy = . 

EXECUTE: (a) 
7

4
1 3

1

(2.50 m)(5.00 10 m)
4.17 10  m.

3.00 10 m

x x
y a

a y

λ λ −
−

−

×= ⇒ = = = ×
×

 

(b) 
5

2
3

1

(2.50 m)(5.00 10  m)
4.17 10  m 4.2 cm.

3.00 10  m

x
a

y

λ −
−

−

×= = = × =
×

 

(c) 
10

7
3

1

(2.50 m)(5.00 10  m)
4.17 10  m.

3.00 10  m

x
a

y

λ −
−

−

×= = = ×
×

 

EVALUATE: The ratio /a λ  stays constant, so a is smaller when λ  is smaller. 
36.13. IDENTIFY: Calculate the angular positions of the minima and use tany x θ=  to calculate the distance on the 

screen between them. 
(a) SET UP: The central bright fringe is shown in Figure 36.13a. 

 

EXECUTE: The first 
minimum is located by 

1sin
a

λθ = =
9

3
3

633 10  m
1.809 10

0.350 10  m

−
−

−

× = ×
×

 

3
1 1.809 10  radθ −= ×  

 
Figure 36.13a  

3 3
1 1tan (3.00 m) tan(1.809 10  rad) 5.427 10  my x θ − −= = × = ×  

3 2
12 2(5.427 10  m) 1.09 10  m 10.9 mmw y − −= = × = × =  

(b) SET UP: The first bright fringe on one side of the central maximum is shown in Figure 36.13b. 

 

EXECUTE: 2 1w y y= −  
3

1 5.427 10  m (part (a))y −= ×  

3
2

2
sin 3.618 10

a

λθ −= = ×  

3
2 3.618 10  radθ −= ×  

2
2 2tan 1.085 10  my x θ −= = ×  

 
Figure 36.13b  

2 3
2 1 1.085 10  m 5.427 10  m 5.4 mmw y y − −= − = × − × =  

EVALUATE: The central bright fringe is twice as wide as the other bright fringes. 
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36.14. IDENTIFY: 
2

0

sin( / 2)

/ 2
I I

β
β

⎛ ⎞= ⎜ ⎟
⎝ ⎠

.  
2

sina
πβ θ
λ

= . 

SET UP: The angle θ  is small, so sin tan /y xθ θ≈ ≈ . 

EXECUTE: 
4

1
7

2 2 2 (4.50 10  m)
sin (1520 m ) .

(6.20 10 m)(3.00 m)

a a y
y y

x

π π πβ θ
λ λ

−
−

−

×= ≈ = =
×

 

(a) 
1 3

3 (1520 m )(1.00 10 m)
1.00 10 m : 0.760.

2 2
y

β − −
− ×= × = =   

2 2

0 0 0

sin( 2) sin(0.760)
0.822

2 0.760
I I I I

β
β

⎛ ⎞ ⎛ ⎞⇒ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(b) 
1 3

3 (1520 m )(3.00 10 m)
3.00 10 m : 2.28.

2 2
y

β − −
− ×= × = =  

2 2

0 0 0

sin( 2) sin(2.28)
0.111 .

2 2.28
I I I I

β
β

⎛ ⎞ ⎛ ⎞⇒ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

(c) 
1 3

3 (1520 m )(5.00 10 m)
5.00 10 m : 3.80.

2 2
y

β − −
− ×= × = =  

2 2

0 0 0

sin( 2) sin(3.80)
0.0259 .

2 3.80
I I I I

β
β

⎛ ⎞ ⎛ ⎞⇒ = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: The first minimum occurs at 
7

1 4

(6.20 10  m)(3.00 m)
4.1 mm

4.50 10  m

x
y

a

λ −

−

×= = =
×

. The distances in parts (a) 

and (b) are within the central maximum.  5.00 mmy =  is within the first secondary maximum. 

36.15. (a) IDENTIFY: Use Eq.(36.2) with 1m =  to locate the angular position of the first minimum and then use 
tany x θ=  to find its distance from the center of the screen. 

SET UP: The diffraction pattern is sketched in Figure 36.15. 

 

1sin
a

λθ = =  

9
3

3

540 10  m
2.25 10

0.240 10  m

−
−

−

× = ×
×

 

3
1 2.25 10  radθ −= ×  

 

Figure 36.15  
3 3

1 1tan (3.00 m) tan(2.25 10  rad) 6.75 10  m 6.75 mmy x θ − −= = × = × =  

(b) IDENTIFY and SET UP: Use Eqs.(36.5) and (36.6) to calculate the intensity at this point. 
EXECUTE: Midway between the center of the central maximum and the first minimum implies 

31
(6.75 mm) 3.375 10  m.

2
y −= = ×  

3
3 33.375 10  m

tan 1.125 10 ;  1.125 10  rad
3.00 m

y

x
θ θ

−
− −×= = = × = ×  

The phase angle β  at this point on the screen is 

3 3
9

2 2
sin (0.240 10  m)sin(1.125 10  rad) .

540 10  m
a

π πβ θ π
λ

− −
−

⎛ ⎞= = × × =⎜ ⎟ ×⎝ ⎠
 

Then 
2 2

6 2
0

sin / 2 sin / 2
(6.00 10  W/m )

/ 2 / 2
I I

β π
β π

−⎛ ⎞ ⎛ ⎞= = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

6 2 6 2
2

4
(6.00 10  W/m ) 2.43 10  W/m .I

π
− −⎛ ⎞= × = ×⎜ ⎟

⎝ ⎠
 

EVALUATE: The intensity at this point midway between the center of the central maximum and the first 
minimum is less than half the maximum intensity. Compare this result to the corresponding one for the two-slit 
pattern, Exercise 35.23. 
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36.16. IDENTIFY: In the single-slit diffraction pattern, the intensity is a maximum at the center and zero at the dark 
spots. At other points, it depends on the angle at which one is observing the light. 
SET UP: Dark fringes occur when sin θm = mλ/a, where m = 1, 2, 3, …, and the intensity is given by 

2

0

sin / 2

/ 2
I

β
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where 
sin

/ 2
aπ θβ

λ
= . 

EXECUTE: (a) At the maximum possible angle, θ = 90°, so 

mmax = (asin90°)/λ = (0.0250 mm)/(632.8 nm) = 39.5 

Since m must be an integer and sin θ must be ≤ 1, mmax = 39. The total number of dark fringes is 39 on each side of 
the central maximum for a total of 78. 
(b) The farthest dark fringe is for m = 39, giving 

sinθ39 = (39)(632.8 nm)/(0.0250 mm) ⇒ θ39 = ±80.8° 

(c) The next closer dark fringe occurs at sinθ38 = (38)(632.8 nm)/(0.0250 mm) ⇒θ38 = 74.1°. 
The angle midway these two extreme fringes is (80.8° + 74.1°)/2 = 77.45°, and the intensity at this angle is I = 

2

0

sin / 2

/ 2
I

β
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where 
sin (0.0250 mm)sin(77.45 )

/ 2
632.8 nm

aπ θ πβ
λ

°= =  = 121.15 rad, which 

gives ( )
2

2 sin(121.15 rad)
8.50  W/m

121.15 rad
I

⎡ ⎤= ⎢ ⎥⎣ ⎦
 = 5.55 × 10-4 W/m2 

EVALUATE: At the angle in part (c), the intensity is so low that the light would be barely perceptible. 
36.17. IDENTIFY and SET UP: Use Eq.(36.6) to calculate λ  and use Eq.(36.5) to calculate I. 3.25 ,θ = °  

356.0 rad, 0.105 10  m.aβ −= = ×  

(a) EXECUTE: 
2

sina
πβ θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 so 

32 sin 2 (0.105 10  m)sin3.25
668 nm

56.0 rad

aπ θ πλ
β

−× °= = =  

(b) 
2

2 2 5
0 0 0 02 2

sin / 2 4 4
(sin( / 2)) [sin(28.0 rad)] 9.36 10

/ 2 (56.0 rad)
I I I I I

β β
β β

−⎛ ⎞ ⎛ ⎞= = = = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: At the first minimum 2β π=  rad and at the point considered in the problem 17.8β π=  rad, so the 
point is well outside the central maximum. Since β  is close to mπ  with 18,m =  this point is near one of the 
minima. The intensity here is much less than 0.I  

36.18. IDENTIFY: Use 
2

sin
aπβ θ

λ
=  to calculate β . 

SET UP: The total intensity is given by drawing an arc of a circle that has length 0E  and finding the length of the 

chord which connects the starting and ending points of the curve. 

EXECUTE: (a) 
2 2

sin .
2

a a

a

π π λβ θ π
λ λ

= = =  From Figure 36.18a, 0 0

2
.

2
p

p

E
E E Eπ

π
= ⇒ =  

The intensity is 
2

0
0 02

2 4
0.405 .

I
I I I

π π
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 This agrees with Eq.(36.5). 

(b)
2 2

sin 2 .
a a

a

π π λβ θ π
λ λ

= = =  From Figure 36.18b, it is clear that the total amplitude is zero, as is the intensity. 

This also agrees with Eq.(36.5). 

(c)
2 2 3

sin 3 .
2

a a

a

π π λβ θ π
λ λ

= = =  From Figure 36.18c, 0 0

2
3 .

2 3
p

p

E
E E Eπ

π
= ⇒ =  The intensity is 

2

0 02

2 4
.

3 9
I I I

π π
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 This agrees with Eq.(36.5). 
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EVALUATE: In part (a) the point is midway between the center of the central maximum and the first minimum.  
In part (b) the point is at the first maximum and in (c) the point is approximately at the location of the first 
secondary maximum.  The phasor diagrams help illustrate the rapid decrease in intensity at successive maxima. 

      
Figure 36.18 

36.19. IDENTIFY: The space between the skyscrapers behaves like a single slit and diffracts the radio waves. 
SET UP:  Cancellation of the waves occurs when a sin θ = mλ, m = 1, 2, 3, …, and the intensity of the waves is 

given by 
2

0

sin / 2

/ 2
I

β
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where 
sin

/ 2
aπ θβ

λ
= .   

EXECUTE: (a) First find the wavelength of the waves: 
λ = c/f = (3.00 × 108 m/s)/(88.9 MHz) = 3.375 m 
For no signal, a sin θ = mλ. 
m = 1: sin θ1 = (1)(3.375 m)/(15.0 m) ⇒ θ1

 = ±13.0° 
m = 2: sin θ2 = (2)(3.375 m)/(15.0 m) ⇒ θ2

 = ±26.7° 
m = 3: sin θ3 = (3)(3.375 m)/(15.0 m) ⇒ θ3

 = ±42.4° 
m = 4: sin θ4 = (4)(3.375 m)/(15.0 m) ⇒ θ4

 = ±64.1° 

(b) 
2

0

sin / 2

/ 2
I

β
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where 
sin (15.0 m)sin(5.00 )

/ 2
3.375 m

aπ θ πβ
λ

°= =  = 1.217 rad 

( )
2

2 sin(1.217 rad)
3.50 W/m

1.217 rad
I

⎡ ⎤= ⎢ ⎥⎣ ⎦
 = 2.08 W/m2 

EVALUATE: The wavelength of the radio waves is very long compared to that of visible light, but it is still 
considerably shorter than the distance between the buildings. 

36.20. IDENTIFY: The net intensity is the product of the factor due to single-slit diffraction and the factor due to double 
slit interference. 

SET UP: The double-slit factor is 2
DS 0 cos

2
I I

φ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 and the single-slit factor is 
2

SS

sin / 2

/ 2
I

β
β

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

EXECUTE: (a) d sinθ = mλ ⇒ sinθ = mλ/d. 
sinθ1 = λ/d,  sinθ2 = 2λ/d,    sinθ3 = 3λ/d,  sinθ4 = 4λ/d 

(b) At the interference bright fringes, cos2φ/2 = 1 and
sin ( /3)sin

/ 2
a dπ θ π θβ

λ λ
= = . 

At θ1, sin θ1 = λ/d, so 
( /3)( / )

/ 2 /3
d dπ λβ π

λ
= = . The intensity is therefore 

2

2
1 0

sin / 2
cos

2 / 2
I I

φ β
β

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 = 
2

0

sin /3
(1)

/3
I

π
π

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0.684 I0 

At θ2, sin θ2 = 2λ/d, so 
( /3)(2 / )

/ 2 2 /3
d dπ λβ π

λ
= = . Using the same procedure as for θ1, we have  I2 = 

2

0

sin 2 /3
(1)

2 /3
I

π
π

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 0.171 I0 

At θ3, we get / 2β π= , which gives I3 = 0 since sin π = 0. 

At θ4, sin θ4 = 4λ/d, so / 2 4 /3β π= , which gives 
2

4 0

sin 4 /3

4 /3
I I

π
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 = 0.0427 I0 

(c) Since d = 3a, every third interference maximum is missing. 
(d) In Figure 36.12c in the textbook, every fourth interference maximum at the sides is missing because d = 4a. 
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EVALUATE: The result in this problem is different from that in Figure 36.12c because in this case d = 3a, so 
every third interference maximum at the sides is missing. Also the “envelope” of the intensity function decreases 
more rapidly here than in Figure 36.12c because the first diffraction minimum is reached sooner, and the decrease 
in intensity from one interference maximum to the next is faster for a = d/3 than for a = d/4. 

36.21. (a) IDENTIFY and SET UP: The interference fringes (maxima) are located by sin ,d mθ λ=  with 

0,  1,  2,  .m = ± ± …  The intensity I in the diffraction pattern is given by 
2

0

sin / 2
,

/ 2
I I

β
β

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 with 

2
sin .a

πβ θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

We want 3m = ±  in the first equation to give θ  that makes 0I =  in the second equation. 

EXECUTE: sind mθ λ=  gives 
2 3

2 (3 / ).a a d
d

π λβ π
λ

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

0I =  says 
sin / 2

0
/ 2

β
β

=  so 2β π=  and then 2 2 (3 / )a dπ π=  and ( / ) 3.d a =  

(b) IDENTIFY and SET UP: Fringes 0,  1,  2m = ± ±  are within the central diffraction maximum and the 3m = ±  
fringes coincide with the first diffraction minimum. Find the value of m for the fringes that coincide with the 
second diffraction minimum. 
EXECUTE: Second minimum implies 4 .β π=  

2 2
sin 2 ( / ) 2 ( /3)

m
a a m a d m

d

π π λβ θ π π
λ λ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Then 4β π=  says 4 2 ( /3)mπ π=  and 6.m =  Therefore the 4m = ±  and 5m = +  fringes are contained within the 

first diffraction maximum on one side of the central maximum; two fringes. 
EVALUATE: The central maximum is twice as wide as the other maxima so it contains more fringes. 

36.22. IDENTIFY and SET UP: Use Figure 36.14b in the textbook.  There is totally destructive interference between slits 
whose phasors are in opposite directions. 
EXECUTE: By examining the diagram, we see that every fourth slit cancels each other. 
EVALUATE: The total electric field is zero so the phasor diagram corresponds to a point of zero intensity.  The 
first two maxima are at 0φ = and φ π= , so this point is not midway between two maxima. 

36.23. (a) IDENTIFY and SET UP: If the slits are very narrow then the central maximum of the diffraction pattern for 
each slit completely fills the screen and the intensity distribution is given solely by the two-slit interference. The 
maxima are given by 

sind mθ λ=  so sin / .m dθ λ=  Solve for .θ  

EXECUTE: 1st order maximum: 1,m =  so 
9

3
3

580 10  m
sin 1.094 10 ;

0.530 10  md

λθ
−

−
−

×= = = ×
×

 0.0627θ = °  

2nd order maximum: 2,m =  so 32
sin 2.188 10 ;

d

λθ −= = ×  0.125θ = °  

(b) IDENTIFY and SET UP: The intensity is given by Eq.(36.12): 
2

2
0

sin / 2
cos ( / 2) .

/ 2
I I

βφ
β

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Calculate φ  and 

β  at each θ  from part (a). 

EXECUTE: 
2 2

sin 2 ,
d d m

m
d

π π λφ θ π
λ λ

⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 so 2 2cos ( / 2) cos ( ) 1mφ π= =  

(Since the angular positions in part (a) correspond to interference maxima.) 
2 2 0.320 mm

sin 2 ( / ) 2 (3.794 rad)
0.530 mm

a a m
m a d m m

d

π π λβ θ π π
λ λ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

1st order maximum: 1,m =  so 
2

0 0

sin(3.794/ 2) rad
(1) 0.249

(3.794 / 2) rad
I I I

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

2nd order maximum: 2,m =  so 
2

0 0

sin3.794 rad
(1) 0.0256

3.794 rad
I I I

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

EVALUATE: The first diffraction minimum is at an angle θ  given by sin / aθ λ=  so 0.104 .θ = °  The first order 
fringe is within the central maximum and the second order fringe is inside the first diffraction maximum on one 
side of the central maximum. The intensity here at this second fringe is much less than 0.I  

36.24. IDENTIFY: A double-slit bright fringe is missing when it occurs at the same angle as a double-slit dark fringe. 
SET UP: Single-slit diffraction dark fringes occur when a sin θ = mλ, and double-slit interference bright fringes 
occur when d sin θ = m′ λ. 
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EXECUTE: (a) The angles are the same for cancellation, so dividing the equations gives 

d/a = m′ /m ⇒ m′ /m = 7 ⇒ m′  = 7m 

When m = 1, m′  = 7; when m = 2, m′  = 14, and so forth, so every 7th bright fringe is missing from the double-slit 
interference pattern. 
EVALUATE: (b) The result is independent of the wavelength, so every 7th fringe will be cancelled for all 
wavelengths. But the bright interference fringes occur when d sin θ = mλ, so the location of the cancelled fringes 
does depend on the wavelength. 

36.25. IDENTIFY and SET UP: The phasor diagrams are similar to those in Fig.36.14. An interference minimum occurs 
when the phasors add to zero. 
EXECUTE: (a) The phasor diagram is given in Figure 36.25a 

 
Figure 36.25a 

There is destructive interference between the light through slits 1 and 3 and between 2 and 4. 
(b) The phasor diagram is given in Figure 36.25b. 

 
Figure 36.25b 

There is destructive interference between the light through slits 1 and 2 and between 3 and 4. 
(c) The phasor diagram is given in Figure 36.25c. 

 
Figure 36.25c 

There is destructive interference between light through slits 1 and 3 and between 2 and 4. 
EVALUATE: Maxima occur when 0,  2 ,  4 , etc.φ π π=  Our diagrams show that there are three minima between 
the maxima at 0φ = and 2 .φ π=  This agrees with the general result that for N slits there are 1N −  minima 
between each pair of principal maxima. 

36.26. IDENTIFY: A double-slit bright fringe is missing when it occurs at the same angle as a double-slit dark fringe. 
SET UP:  Single-slit diffraction dark fringes occur when a sin θ = mλ, and double-slit interference bright fringes 
occur when d sin θ = m′ λ. 
EXECUTE: (a) The angle at which the first bright fringe occurs is given by 
tan θ1 = (1.53 mm)/(2500 mm) ⇒ θ1 = 0.03507°.  d sin θ1 = λ and 

d = λ/(sinθ1) = (632.8 nm)/sin(0.03507°) = 0.00103 m = 1.03 mm 

(b) The 7th double-slit interference bright fringe is just cancelled by the 1st diffraction dark fringe, so sinθdiff = λ/a  
and  sinθinterf = 7λ/d 
The angles are equal, so λ/a = 7λ/d  → a = d/7 = (1.03 mm)/7 = 0.148 mm. 
EVALUATE: We can generalize that if d = na, where n is a positive integer, then every nth double-slit bright fringe 
will be missing in the pattern. 

36.27. IDENTIFY: The diffraction minima are located by dsin
m

a

λθ =  and the two-slit interference maxima are located 

by isin .
m

d

λθ = The third bright band is missing because the first order single slit minimum occurs at the same 

angle as the third order double slit maximum. 

SET UP: The pattern is sketched in Figure 36.27. 
3 cm

tan
90 cm

θ = , so 1.91θ = ° . 

EXECUTE: Single-slit dark spot: sina θ λ= and  4500 nm
1.50 10 nm 15.0 m (width)

sin sin1.91
a

λ μ
θ

= = = × =
°

 

Double-slit bright fringe: sin 3d θ λ= and 43 3(500 nm)
4.50 10 nm 45.0 m (separation)

sin sin1.91
d

λ μ
θ

= = = × =
°

. 
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EVALUATE: Note that / 3.0d a = . 

 
Figure 36.27 

36.28. IDENTIFY: The maxima are located by sind mθ λ= . 
SET UP: The order corresponds to the values of m. 
EXECUTE: First-order: 1sind θ λ= . Fourth-order: 4sin 4d θ λ= . 

4
4 1 4

1

sin 4
,  sin 4sin 4sin8.94  and 38.4

sin

d

d

θ λ θ θ θ
θ λ

= = = ° = ° . 

EVALUATE: We did not have to solve for d. 
36.29. IDENTIFY and SET UP: The bright bands are at angles θ  given by sin .d mθ λ=  Solve for d and then solve for θ  

for the specified order. 
EXECUTE: (a) 78.4θ = °  for 3m =  and 681 nm,λ =  so 4/ sin 2.086 10  cmd mλ θ −= = ×  
The number of slits per cm is 1/ 4790 slits/cmd =  

(b) 1st order: 1,m =  so 9 6sin / (681 10  m) /(2.086 10  m)dθ λ − −= = × ×  and 19.1θ = °  

2nd order: 2,m =  so sin 2 / dθ λ=  and 40.8θ = °  
(c) For 4,  sin 4 /m dθ λ= =  is greater than 1.00, so there is no 4th-order bright band. 
EVALUATE: The angular position of the bright bands for a particular wavelength increases as the order increases. 

36.30. IDENTIFY: The bright spots are located by sind mθ λ= . 
SET UP: Third-order means 3m =  and second-order means 2m = . 

EXECUTE: constant
sin

m
d

λ
θ

= = , so r r v v

r vsin sin

m mλ λ
θ θ

= .  

v v
v r

r r

2 400 nm
sin sin (sin 65.0 ) 0.345

3 700 nm

m

m

λθ θ
λ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
°  and v 20.2θ = ° . 

EVALUATE: The third-order line for a particular λ occurs at a larger angle than the second-order line.  In a given 
order, the line for violet light (400 nm) occurs at a smaller angle than the line for red light (700 nm). 

36.31. IDENTIFY and SET UP: Calculate d for the grating. Use Eq.(36.13) to calculate θ  for the longest wavelength in 
the visible spectrum and verify that θ  is small. Then use Eq.(36.3) to relate the linear separation of lines on the 
screen to the difference in wavelength. 

EXECUTE: (a) 51
 cm 1.111 10  m

900
d −⎛ ⎞= = ×⎜ ⎟

⎝ ⎠
 

For 2700 nm, / 6.3 10 .dλ λ −= = ×  The first-order lines are located at sin / ;dθ λ=  sinθ  is small enough for 
sinθ θ≈  to be an excellent approximation. 
(b) / ,y x dλ=  where 2.50 m.x =  

The distance on the screen between 1st order bright bands for two different wavelengths is ( ) / ,y x dλΔ = Δ  so 
5 3( ) / (1.111 10  m)(3.00 10  m) /(2.50 m) 13.3 nmd y xλ − −Δ = Δ = × × =  

EVALUATE: The smaller d is (greater number of lines per cm) the smaller the λΔ  that can be measured. 
36.32. IDENTIFY: The maxima are located by sind mθ λ= . 

SET UP: 6
5 1

1
350 slits mm 2.86 10 m

3.50 10 m
d −

−⇒ = = ×
×
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EXECUTE: 
7

400 6

4.00 10 m
1:  arcsin arcsin 8.05

2.86 10 m
m

d

λθ
−

−

⎛ ⎞×⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
. 

7

700 6

7.00 10 m
arcsin arcsin 14.18

2.86 10 md

λθ
−

−

⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
.  1 14.18 8.05 6.13θΔ = ° − ° = °. 

7

400 6

3 3(4.00 10 m)
3:  arcsin arcsin 24.8

2.86 10 m
m

d

λθ
−

−

⎛ ⎞×⎛ ⎞= = = = °⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
.  

7

700 6

3 3(7.00 10 m)
arcsin arcsin 47.3

2.86 10 md

λθ
−

−

⎛ ⎞×⎛ ⎞= = = °⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
.  1 47.3 24.8 22.5θΔ = ° − ° = °. 

EVALUATE: θΔ is larger in third order. 
36.33. IDENTIFY: The maxima are located by sind mθ λ= . 

SET UP: 61.60 10  md −= ×  

EXECUTE: 
7

6

[6.328 10  m]
arcsin arcsin arcsin([0.396] )

1.60 10  m

m m
m

d

λθ
−

−

⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
.  For 11,  23.3m θ= = ° .  For 

2m = , 2 52.3θ = ° .  There are no other maxima. 

EVALUATE: The reflective surface produces the same interference pattern as a grating with slit separation d. 
36.34. IDENTIFY: The maxima are located by sind mθ λ= . 

SET UP: 6
5 1

1
5000 slits cm 2.00 10 m.

5.00 10 m
d −

−⇒ = = ×
×

 

EXECUTE: (a) 
6

7sin (2.00 10 m)sin13.5
4.67 10 m.

1

d

m

θλ
−

−×= = = ×  

(b) 
7

6

2(4.67 10 m)
2 :  arcsin arcsin 27.8 .

2.00 10 m

m
m

d

λθ
−

−

⎛ ⎞×⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
 

EVALUATE: Since the angles are fairly small, the second-order deviation is approximately twice the first-order 
deviation. 

36.35. IDENTIFY: The maxima are located by sind mθ λ= . 

SET UP:  6
5 1

1
350 slits mm 2.86 10 m

3.50 10 m
d −

−⇒ = = ×
×

 

EXECUTE: 
7

6

(5.20 10 m)
arcsin arcsin arcsin((0.182) )

2.86 10 m

m m
m

d

λθ
−

−

⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
. 

1:  10.5 ; 2 :  21.3 ; 3 :  33.1 .m m mθ θ θ= = ° = = ° = = °  

EVALUATE: The angles are not precisely proportional to m, and deviate more from being proportional as the 
angles increase. 

36.36. IDENTIFY: The resolution is described by R Nm
λ
λ

= =
Δ

.  Maxima are located by sind mθ λ= . 

SET UP: For 500 slits/mm, 1 1(500 slits mm) (500,000 slits m)d − −= = . 

EXECUTE: (a) 
7

7 7

6.5645 10 m
1820 slits.

2(6.5645 10 m 6.5627 10 m)
N

m

λ
λ

−

− −

×= = =
Δ × − ×

 

(b) 1sin
m

d

λθ − ⎛ ⎞= ⇒⎜ ⎟
⎝ ⎠

1 7 1
1 sin ((2)(6.5645 10 m)(500,000 m )) 41.0297θ − − −= × = ° and 

1 7 1
2 sin ((2)(6.5627 10 m)(500,000 m )) 41.0160θ − − −= × = ° .  0.0137θΔ = °  

EVALUATE: cos  /d d Nθ θ λ= , so for 1820 slits the angular interval θΔ between each of these maxima and the 

first adjacent minimum is 
7

6

6.56 10  m
0.0137 .

cos (1820)(2.0 10  m)cos41Nd

λθ
θ

−
°

−

×Δ = = =
× °

 This is the same as the angular 

separation of the maxima for the two wavelengths and 1820 slits is just sufficient to resolve these two wavelengths 
in second order. 

36.37. IDENTIFY: The resolving power depends on the line density and the width of the grating. 
SET UP: The resolving power is given by R = Nm = = λ/Δλ. 
EXECUTE: (a) R = Nm = (5000 lines/cm)(3.50 cm)(1) = 17,500 
(b) The resolving power needed to resolve the sodium doublet is 

R = λ/Δλ = (589 nm)/(589.59 nm – 589.00 nm) = 998 
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so this grating can easily resolve the doublet. 
(c) (i) R = λ/Δλ. Since R = 17,500 when m = 1, R = 2 × 17,500 = 35,000 for m = 2. Therefore 

Δλ = λ/R = (587.8 nm)/35,000 = 0.0168 nm 

λmin = λ +Δλ = 587.8002 nm + 0.0168 nm = 587.8170 nm 

(ii) max 587.8002 nm 0.0168 nm 587.7834 nm λ λ λ= − Δ = − =  

EVALUATE: (iii) Therefore the range of resolvable wavelengths is 587.7834 nm < λ < 587.8170 nm. 

36.38. IDENTIFY and SET UP: Nm
λ
λ

=
Δ

 

EXECUTE: 
587.8002 nm 587.8002

3302 slits
(587.9782 nm 587.8002 nm) 0.178

N
m

λ
λ

= = = =
Δ −

. 
3302 slits

2752 .
1.20 cm 1.20 cm cm

N = =  

EVALUATE: A smaller number of slits would be needed to resolve these two lines in higher order. 
36.39. IDENTIFY and SET UP: The maxima occur at angles θ  given by Eq.(36.16), 2 sin ,d mθ λ=  where d is the 

spacing between adjacent atomic planes. Solve for d. 
EXECUTE: second order says 2.m =  

9
102(0.0850 10  m)

2.32 10  m 0.232 nm
2sin 2sin 21.5

m
d

λ
θ

−
−×= = = × =

°
 

EVALUATE: Our result is similar to d calculated in Example 36.5. 
36.40. IDENTIFY: The maxima are given by 2 sind mθ λ= , 1m = , 2, … 

SET UP: 103.50 10  md −= × . 

EXECUTE: (a) 1m = and 10 102 sin
2(3.50 10  m)sin15.0 1.81 10  m 0.181 nm

d

m

θλ − −= = × = × =° .  This is an x ray. 

(b) 
10

10

1.81 10  m
sin (0.2586)

2 2[3.50 10  m]
m m m

d

λθ
−

−

⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
.  2m = : 31.1θ = ° .  3m = : 50.9θ = ° .  The equation 

doesn't have any solutions for 3m > . 
EVALUATE: In this problem / 0.52.dλ =  

36.41. IDENTIFY: Rayleigh's criterion says sin 1.22
D

λθ =  

SET UP: The best resolution is 0.3 arcseconds, which is about 5(8.33 10 )−× ° . 

EXECUTE: (a) 
7

5

1.22 1.22(5.5 10 m)
0.46 m

sin sin(8.33 10 )
D

λ
θ

−

−

×= = =
× °

 

EVALUATE: (b) The Keck telescopes are able to gather more light than the Hale telescope, and 
hence they can detect fainter objects. However, their larger size does not allow them to have greater 
resolution⎯atmospheric conditions limit the resolution. 

36.42. IDENTIFY: Apply sin 1.22
D

λθ = . 

SET UP: (1/ 60)θ = °  

EXECUTE: 
7

31.22 1.22(5.5 10 m)
2.31 10 m 2.3 mm

sin sin(1/ 60)
D

λ
θ

−
−×= = = × =  

EVALUATE: The larger the diameter the smaller the angle that can be resolved. 

36.43. IDENTIFY: Apply sin 1.22
D

λθ = . 

SET UP: 
W

h
θ = , where 28 kmW =  and 1200 kmh = .  θ is small, so sinθ θ≈ . 

EXECUTE: 
6

4

1.22 1.2 10 m
1.22 1.22(0.036 m) 1.88 m

sin 2.8 10 m

h
D

W

λ λ
θ

×= = = =
×

  

EVALUATE: D must be significantly larger than the wavelength, so a much larger diameter is needed for 
microwaves than for visible wavelengths. 

36.44. IDENTIFY:  Apply sin 1.22
D

λθ = . 

SET UP: θ is small, so 8sin 1.00 10  radθ θ −≈ = × . 

EXECUTE: 
6 8sin (8.00 10 m)(1.00 10 )

0.0656 m 6.56 cm
1.22 1.22 1.22

D Dθ θλ
−× ×= ≈ = = =  

EVALUATE: λ corresponds to microwaves. 
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36.45. IDENTIFY and SET UP: The angular size of the first dark ring is given by 1sin 1.22 / Dθ λ=  (Eq.36.17). Calculate 

1,θ  and then the diameter of the ring on the screen is 12(4.5 m) tan .θ  

EXECUTE: 
9

1 6

620 10  m
sin 1.22 0.1022;

7.4 10  m
θ

−

−

⎛ ⎞×= =⎜ ⎟×⎝ ⎠
 1 0.1024 radθ =  

The radius of the Airy disk (central bright spot) is 1(4.5 m) tan 0.462 m.r θ= =  The diameter is 

2 0.92 m 92 cm.r = =  
EVALUATE: / 0.084.Dλ =  For this small D the central diffraction maximum is broad. 

36.46. IDENTIFY: Rayleigh’s criterion limits the angular resolution. 
SET UP:  Rayleigh’s criterion is sin θ ≈ θ = 1.22 λ/D. 
EXECUTE: (a) Using Rayleigh’s criterion 

sinθ ≈ θ = 1.22 λ/D = (1.22)(550 nm)/(135/4 mm) = 1.99 × 10–5 rad 

On the bear this angle subtends a distance x. θ = x/R and 

x = Rθ  = (11.5 m)(1.99 × 10–5 rad) = 2.29 × 10–4 m = 0.23 mm 

(b) At f/22, D is 4/22 times as large as at f/4. Since θ is proportional to 1/D, and x is proportional to θ, x is  
1/(4/22) = 22/4 times as large as it was at f/4.  x = (0.229 mm)(22/4) = 1.3 mm 
EVALUATE: A wide-angle lens, such as one having a focal length of 28 mm, would have a much smaller opening 
at f/22 and hence would have an even less resolving ability. 

36.47. IDENTIFY and SET UP: Resolved by Rayleigh’s criterion means angular separation θ  of the objects equals 
1.22 / .Dλ  The angular separation θ  of the objects is their linear separation divided by their distance from the 
telescope. 

EXECUTE: 
3

11

250 10  m
,

5.93 10  m
θ ×=

×
 where 115.93 10  m×  is the distance from earth to Jupiter. Thus 74.216 10 .θ −= ×  

Then 1.22
D

λθ =  and 
9

7

1.22 1.22(500 10  m)
1.45 m

4.216 10
D

λ
θ

−

−

×= = =
×

 

EVALUATE: This is a very large telescope mirror. The greater the angular resolution the greater the diameter the 
lens or mirror must be. 

36.48. IDENTIFY: Rayleigh’s criterion says res 1.22
D

λθ = . 

SET UP: 7.20 cmD = .  res

y

s
θ = , where s is the distance of the object from the lens and 4.00 mmy = . 

EXECUTE: 1.22
y

s D

λ= .  
3 2

9

(4.00 10  m)(7.20 10  m)
429 m

1.22 1.22(550 10  m)

yD
s

λ

− −

−

× ×= = =
×

. 

EVALUATE: The focal length of the lens doesn’t enter into the calculation.  In practice, it is difficult to achieve 
resolution that is at the diffraction limit. 

36.49. IDENTIFY and SET UP: Let y be the separation between the two points being resolved and let s be their distance 

from the telescope. Then the limit of resolution corresponds to 1.22
y

D s

λ = . 

EXECUTE: (a) Let the two points being resolved be the opposite edges of the crater, so y is the diameter of the 
crater. For the moon, 83.8 10 m.s = × 1.22y s Dλ= . 

Hubble:  D = 2.4 m and 400λ = nm gives the maximum resolution, so y = 77 m 

Arecibo:  D = 305 m and 60.75 m; 1.1 10yλ = = ×  m 

(b) 
1.22

yD
s

λ
= .  Let 0.30y ≈ (the size of a license plate).    9(0.30 m)(2.4 m) [(1.22)(400 10 m)] 1500 kms −= × = . 

EVALUATE: /D λ  is much larger for the optical telescope and it has a much larger resolution even though the 
diameter of the radio telescope is much larger. 

36.50. IDENTIFY: Apply sin 1.22
D

λθ = . 

SET UP: θ is small, so sinθ θ≈ .  Smallest resolving angle is for short-wavelength light (400 nm). 

EXECUTE: 
9

8400 10 m
1.22 (1.22) 9.61 10 rad

5.08 mD

λθ
−

−×≈ = = × . 
10,000 mi

R
θ = , where R is the distance to the star. 

11
8

10,000 mi 16,000 km
1.7 10 km

9.6 10 rad
R

θ −= = = ×
×

. 

EVALUATE: This is less than a light year, so there are no stars this close. 
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36.51. IDENTIFY: Let y be the separation between the two points being resolved and let s be their distance from the 
telescope. The limit of resolution corresponds to 1.22 D y sλ = . 

SET UP:  164.28 ly 4.05 10 ms = = × . Assume visible light, with 400 mλ = . 

EXECUTE: 9 16 91.22 1.22(400 10 m)(4.05 10 m (10.0 m) 2.0 10  my s Dλ −= = × × = ×  

EVALUATE: The diameter of Jupiter is 81.38 10 m,× so the resolution is insufficient, by about one order of 

magnitude. 
36.52. IDENTIFY: If the apparatus of Exercise 36.4 is placed in water, then all that changes is the wavelength 

n

λλ λ′→ = . 

SET UP: For y x<< , the distance between the two dark fringes on either side of the central maximum is 

2D y′ ′= .  Let 2D y=  be the separation of 35.91 10  m−× found in Exercise 36.4. 

EXECUTE: 
3

3
1

2 2 5.91 10  m
2 4.44 10  m 4.44 mm.

1.33

x x D
y

a an n

λ λ −
−′ ×′ = = = = = × =  

EVALUATE: The water shortens the wavelength and this decreases the width of the central maximum. 

36.53. (a) IDENTIFY and SET UP: The intensity in the diffraction pattern is given by Eq.(36.5):
2

0

sin / 2
,

/ 2
I I

β
β

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 where 

2
sin .a

πβ θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Solve for θ  that gives 0

1
.

2
I I=  The angles θ+  and θ−  are shown in Figure 36.53. 

EXECUTE: 0

1

2
I I=  so 

sin / 2 1

/ 2 2

β
β

=  

Let / 2;x β=  the equation for x is 
sin 1

0.7071.
2

x

x
= =  

Use trial and error to find the value of x that is a solution to this equation. 
(sin ) /

1.0 rad 0.841

1.5 rad 0.665

1.2 rad 0.777

1.4 rad 0.7039

1.39 rad 0.7077;  thus 1.39 rad and 2 2.78 rad

x x x

x xβ= = =

 

 

2θ θ θ θ+ − +Δ = − =  

sin
2 a

λβθ
π+ = =  

2.78 rad
0.4425

2  rada a

λ λ
π

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Figure 36.53  

(i) For 
1

2,  sin 0.4425 0.2212; 12.78 ;  2 25.6
2

a θ θ θ θ
λ + + +

⎛ ⎞= = = = ° Δ = = °⎜ ⎟
⎝ ⎠

 

(ii) For 
1

5,  sin 0.4425 0.0885;  5.077 ; 2 10.2
5

a θ θ θ θ
λ + + +

⎛ ⎞= = = = ° Δ = = °⎜ ⎟
⎝ ⎠

 

(iii) For 
1

10,  sin 0.4425 0.04425; 2.536 ; 2 5.1
10

a θ θ θ θ
λ + + +

⎛ ⎞= = = = ° Δ = = °⎜ ⎟
⎝ ⎠

 

(b) IDENTIFY and SET UP: 0sin
a

λθ =  locates the first minimum. Solve for 0.θ  

EXECUTE: (i) For 0 0 0

1
2,  sin ; 30.0 ;  2 60.0

2

a θ θ θ
λ

= = = ° = °  

(ii) For 0 0 0

1
5,  sin ; 11.54 ;  2 23.1

5

a θ θ θ
λ

= = = ° = °  
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(iii) For 0 0 0

1
10,  sin ; 5.74 ;  2 11.5

10

a θ θ θ
λ

⎛ ⎞= = = ° = °⎜ ⎟
⎝ ⎠

 

EVALUATE: Either definition of the width shows that the central maximum gets narrower as the slit gets wider. 
36.54. IDENTIFY: The two holes behave like double slits and cause the sound waves to interfere after they pass through 

the holes. The motion of the speakers causes a Doppler shift in the wavelength of the sound. 
SET UP:  The wavelength of the sound that strikes the wall is λ = λ0 – vsTs, and destructive interference first 
occurs where  sin θ = λ/2. 
EXECUTE: (a) First find the wavelength of the sound that strikes the openings in the wall. 

λ = λ0 – vsTs = v/ fs – vs/ fs = (v – vs)/ fs = (344 m/s – 80.0 m/s)/(1250 Hz) = 0.211 m 

Destructive interference first occurs where d sin θ = λ/2, which gives 

d = λ/(2 sinθ) = (0.211 m)/(2 sin 12.7°) = 0.480 m 

(b) λ = v/f = (344 m/s)/(1250 Hz) = 0.275 m 

sinθ = λ/2d = (0.275 m)/[2(0.480 m)] → θ = ±16.7° 

EVALUATE: The moving source produces sound of shorter wavelength than the stationary source, so the angles at 
which destructive interference occurs are smaller for the moving source than for the stationary source. 

36.55. IDENTIFY and SET UP: sin / aθ λ=  locates the first dark band. In the liquid the wavelength changes and this 
changes the angular position of the first diffraction minimum. 

EXECUTE: liquidair
air liquidsin ;  sin

a a

λλθ θ= =  

liquid
liquid air

air

sin
0.4836

sin

θ
λ λ

θ
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

air / nλ λ=  (Eq.33.5), so air liquid/ 1/ 0.4836 2.07n λ λ= = =  

EVALUATE: Light travels faster in air and n must be 1.00.>  The smaller λ  in the liquid reduces θ  that located 
the first dark band. 

36.56. IDENTIFY: 
1

d
N

= , so the bright fringes are located by 1 sin
N

θ λ=  

SET UP: Red: R
1 sin 700 nm
N

λ = .  Violet: V
1 sin 400 nm
N

λ = . 

EXECUTE: R

V

sin 7

sin 4

θ
θ

= .  R V R V15 15θ θ θ θ− = ° → = + °.  V

V

sin( 15 ) 7
.

sin 4

θ
θ
+ ° =  Using a trig identify from Appendix B, 

V V

V

sin cos15 cos sin15
7 4

sin

θ θ
θ

° + ° = . Vcos15 cot sin15 7 4θ° + ° = . 

V Vtan 0.330 18.3θ θ= ⇒ = °and R V 15 18.3 15 33.3θ θ= + ° = ° + ° = °.  Then  R
1 sin 700 nm
N

θ =  gives 

5R
9

sin sin 33.3
7.84 10 lines m 7840 lines cm

700 nm 700 10 m
N

θ
−= = = × =

×
. The spectrum begins at 18 .3 and ends at 33.3 . 

EVALUATE: As N is increased, the angular range of the visible spectrum increases. 
36.57. (a) IDENTIFY and SET UP: The angular position of the first minimum is given by sina mθ λ=  (Eq.36.2), with 

1.m =  The distance of the minimum from the center of the pattern is given by tan .y x θ=  
9

3 3
3

540 10  m
sin 1.50 10 ;  1.50 10  rad

0.360 10  ma

λθ θ
−

− −
−

×= = = × = ×
×

 

3 3
1 tan (1.20 m) tan(1.50 10  rad) 1.80 10  m 1.80 mm.y x θ − −= = × = × =  

(Note that θ  is small enough for sin tan ,θ θ θ≈ ≈  and Eq.(36.3) applies.) 
(b) IDENTIFY and SET UP: Find the phase angle β  where 0 / 2.I I=  Then use Eq.(36.6) to solve for θ  and 

tany x θ=  to find the distance. 

EXECUTE: From part (a) of Problem 36.53, 0

1

2
I I=  when 2.78 rad.β =  

2
sina

πβ θ
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (Eq.(36.6)), so sin .
2 a

βλθ
π

=  

9
4

3

(2.78 rad)(540 10  m)(1.20 m)
tan sin 7.96 10  m 0.796 mm

2 2 (0.360 10  m)

x
y x x

a

βλθ θ
π π

−
−

−

×= ≈ ≈ = = × =
×

 

EVALUATE: The point where 0 / 2I I=  is not midway between the center of the central maximum and the first 

minimum; see Exercise 36.15. 
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36.58. IDENTIFY: 
2

0

sin
I I

γ
γ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

.  The maximum intensity occurs when the derivative of the intensity function with 

respect to γ is zero. 

SET UP: 
sin

cos
d

d

γ γ
γ

= .  
2

1 1d

dγ γ γ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. 

EXECUTE: 
2

0 2

sin sin cos sin
2 0

dI d
I

d d

γ γ γ γ
γ γ γ γ γ γ

⎛ ⎞ ⎛ ⎞⎛ ⎞= = − =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

. 
2

cos sin
cos sin  tan

γ γ γ γ γ γ γ
γ γ

− ⇒ = ⇒ = . 

(b) The graph in Figure 36.58 is a plot of  f( γ ) = γ − tan γ . When ( )f γ  equals zero, there is an intensity 

maximum. Getting estimates from the graph, and then using trial and error to narrow in on the value, we find that 
the three smallest γ -values are γ = 4.49 rad 7.73 rad, and 10.9 rad. 
EVALUATE: 0γ = is the central maximum.  The three values of γ we found are the locations of the first three 
secondary maxima.  The first four minima are at 3.14 radγ = , 6.28 rad, 9.42 rad, and 12.6 rad. The maxima are 
between adjacent minima, but not precisely midway between them. 

 
Figure 36.58 

36.59. IDENTIFY and SET UP: Relate the phase difference between adjacent slits to the sum of the phasors for all slits. The 

phase difference between adjacent slits is 
2 2

sin
d dπ π θφ θ

λ λ
= ≈  when θ  is small and sin .θ θ≈  Thus .

2 d

λφθ
π

=  

EXECUTE: A principal maximum occurs when max 2 ,mφ φ π= =  where m is an integer, since then all the phasors 

add. The first minima on either side of the mth principal maximum occur when min 2 (2 / )m Nφ φ π π±= = ±  and the 

phasor diagram for N slits forms a closed loop and the resultant phasor is zero. The angular position of a principal 

maximum is max .
2 d

λθ φ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 The angular position of the adjacent minimum is min min.2 d

λθ φ
π

± ±⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

min max

2 2

2 2d N d N Nd

λ π λ π λθ φ θ θ
π π

+ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= + = + = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

min max

2

2 d N Nd

λ π λθ φ θ
π

− ⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

The angular width of the principal maximum is min min

2
,

Nd

λθ θ+ −− =  as was to be shown. 

EVALUATE: The angular width of the principal maximum decreases like 1/ N  as N increases. 
36.60. IDENTIFY: The change in wavelength of the Hα line is due to a Doppler shift in the wavelength due to the motion 

of the galaxy. 

SET UP: From Equation 16.30, the Doppler effect formula for light is R S

c v
f f

c v

−=
+

. 

EXECUTE: First find the wavelength of the light using the grating information. 

λ = d sin θ1 = [1/(575,800 lines/m)] sin 23.41° = 6.900 × 10–7 m = 690.0 nm 

Using Equation 16.30, we have R S

c v
f f

c v

−=
+

. In this case, fR is the frequency of the 690.0-nm light that the 

cosmologist measures, and fS is the frequency of the 656.3-nm light of the Hα line obtained in the laboratory. 
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Solving for v gives 
( )
( )

2

R S
2

R S

1 /

1 /

f f
v

f f

−
=

+
c. Since fλ = c,  f = c/λ, which gives fR/fS = λS/λR. Substituting this into the 

equation for v, we get 
2

S

R
2

S

R

1

1

v

λ
λ

λ
λ

⎛ ⎞
− ⎜ ⎟
⎝ ⎠=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

c = ( )

2

8
2

656.3 nm
1

690.0 nm 3.00 10  m/s
656.3 nm

1
690.0 nm

⎛ ⎞− ⎜ ⎟
⎝ ⎠ ×
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 = 1.501 × 107 m/s, 

which is 5.00% the speed of light. 
EVALUATE: Since v is positive, the galaxy is moving away from us. We can also see this because the wavelength 
has increased due to the motion. 

36.61. IDENTIFY and SET UP: Draw the specified phasor diagrams.  There is totally destructive interference between 
two slits when their phasors are in opposite directions. 
EXECUTE: (a) For eight slits, the phasor diagrams must have eight vectors.  The diagrams for each specified 
value of φ  are sketched in Figure 36.61a.  In each case the phasors all sum to zero. 
(b) The additional phasor diagrams for 3 / 2φ π=  and 3 / 4π are sketched in Figure 36.61b. 

For
3 5 7

, , and ,
4 4 4

π π πφ φ φ= = =  totally destructive interference occurs between slits four apart. For 
3

,
2

πφ =  

totally destructive interference occurs with every second slit. 
EVALUATE: At a minimum the phasors for all slits sum to zero. 

  
Figure 36.61 

36.62. IDENTIFY: Maxima are given by 2 sind mθ λ= . 
SET UP: d is the separation between crystal planes. 

EXECUTE: (a) 
0.125 nm

arcsin arcsin arcsin(0.2216 )
2 2(0.282 nm)

m
m m

d

λθ ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

For 1: 12.8 , 2 : 26.3 , 3: 41.7 , and 4 : 62.4 .m m m mθ θ θ θ= = ° = = ° = = ° = = ° No larger m values yield answers. 

(b) If the separation 
2

, then arcsin arcsin(0.3134 ).
22

a m
d m

a

λθ
⎛ ⎞

= = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

So for 1: 18.3 ,  2: 38.8 ,  and 3: 70.1 .m m mθ θ θ= = ° = = ° = = °  No larger m  values yield answers. 
EVALUATE: In part (b), where d is smaller, the maxima for each m are at larger θ  

36.63. IDENTIFY and SET UP: In each case consider the relevant phasor diagram. 
EXECUTE: (a) For the maxima to occur for N  slits, the sum of all the phase differences between the slits must 
add to zero (the phasor diagram closes on itself). This requires that, adding up all the relative phase shifts, 

2 ,N mφ π=  for some integer m . Therefore 
2

,
m

N

πφ =  for m not an integer multiple of ,N  which would give a 

maximum. 

(b) The sum of N  phase shifts 
2 m

N

πφ =  brings you full circle back to the maximum, so only the 1N −  previous 

phases yield minima between each pair of principal maxima. 
EVALUATE: The 1N −  minima between each pair of principal maxima cause the maxima to become sharper as N 
increases. 

36.64. IDENTIFY: Set d a= in the expressions for φ  and β and use the results in Eq.(36.12). 
SET UP: Figure 36.64 shows a pair of slits whose width and separation are equal 
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EXECUTE: Figure 36.64 shows that the two slits are equivalent to a single slit of width 2a . 
2 2

sin , so sin .
d aπ πφ θ β θ φ

λ λ
= = =  So then the intensity is 

2 2 2 2
2

0 0 0 02 2 2 2

sin ( /2) (2sin( /2)cos( /2)) sin sin ( /2)
cos ( /2)

( /2) ( /2)
I I I I I

β β β β ββ
β β β β

′⎛ ⎞
= = = =⎜ ⎟ ′⎝ ⎠

, where
2 (2 )

sin ,
aπβ θ

λ
′ =  

which is Eq. (35.5) with double the slit width. 
EVALUATE: In Chapter 35 we considered the limit where a d<< .  a d> is not possible. 

 
Figure 36.64 

36.65. IDENTIFY and SET UP: The condition for an intensity maximum is sin ,  0,  1,  2,d m mθ λ= = ± ± …  Third order 
means 3.m =  The longest observable wavelength is the one that gives 90θ = °  and hence 1.θ =  

EXECUTE: 6500 lines/cm so 56.50 10×  lines/m and 6
5

1
m 1.538 10  m

6.50 10
d −= = ×

×
 

6
7sin (1.538 10  m)(1)

5.13 10  m 513 nm
3

d

m

θλ
−

−×= = = × =  

EVALUATE: The longest wavelength that can be obtained decreases as the order increases. 
36.66. IDENTIFY and SET UP: As the rays first reach the slits there is already a phase difference between adjacent slits of 

2 sin
.

dπ θ
λ

′
 This, added to the usual phase difference introduced after passing through the slits, yields the 

condition for an intensity maximum.  For a maximum the total phase difference must equal 2 mπ . 

EXECUTE: 
2 sin 2 sin

2 (sin sin )
d d

m d m
π θ π θ π θ θ λ

λ λ
′ ′+ = ⇒ + =  

(b) 600 6
5 1

1
slits mm 1.67 10 m.

6.00 10 m
d −

−⇒ = = ×
×

 

7

6

7

6

For 0 ,

0 :  arcsin(0) 0.

6.50 10 m
1:  arcsin arcsin 22.9 .

1.67 10 m

6.50 10 m
1:  arcsin arcsin 22.9 .

1.67 10 m

For 20.0 ,

0 :  arcsin( sin 20.0 ) 20.0 .

m

m
d

m
d

m

θ
θ

λθ

λθ

θ
θ

−

−

−

−

′ =
= = =

⎛ ⎞×⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
⎛ ⎞×⎛ ⎞= − = − = − = −⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠

′ =
= = − = −

7

6

7

6

6.50 10 m
1:  arcsin sin 20.0 2.71 .

1.67 10 m

6.50 10 m
1:  arcsin sin 20.0 47.0 .

1.67 10 m

m

m

θ

θ

−

−

−

−

⎛ ⎞×= = − =⎜ ⎟×⎝ ⎠
⎛ ⎞×= − = − − = −⎜ ⎟×⎝ ⎠

 

EVALUATE: When 0θ′ > , the maxima are shifted downward on the screen, toward more negative angles. 

36.67. IDENTIFY: The maxima are given by sind mθ λ= .  We need sin 1
m

d

λθ = ≤ in order for all the visible 

wavelengths are to be seen. 

SET UP: For 650 6
5 1

1
slits mm 1.53 10 m.

6.50 10 m
d −

−⇒ = = ×
×
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EXECUTE: 7 1 1 1
1

2 3
4.00 10 m : 1: 0.26; 2 : 0.52; 3: 0.78.m m m

d d d

λ λ λλ −= × = = = = = =  

7 2 2 2
2

2 3
7.00 10 m : 1: 0.46; 2 : 0.92; 3 : 1.37.m m m

d d d

λ λ λλ −= × = = = = = =  So, the third order does not contain the violet 

end of the spectrum, and therefore only the first and second order diffraction patterns contain all colors of the spectrum. 
EVALUATE: θ for each maximum is larger for longer wavelengths. 

36.68. IDENTIFY: Apply sin 1.22
D

λθ = . 

SET UP: θ is small, so sin
x

R
θ Δ≈ , where xΔ is the size of the detail and 87.2 10  lyR = × . 121 ly 9.41 10  km= × . /c fλ =  

EXECUTE: sin 
5 8

3 9

1.22 (1.22) (1.22)(3.00 10 km s)(7.2 10 ly)
1.22 2.06 ly

(77.000 10 km)(1.665 10 Hz)

x R cR
x

D R D Df

λ λθ Δ × ×= ≈ ⇒ Δ = = = =
× ×

. 

12 13(9.41 10 km ly)(2.06 ly) 1.94 10 km.× = ×  

EVALUATE: 18 cmλ = . / Dλ  is very small, so 
x

R

Δ
is very small.  Still, R  is very large and xΔ is many orders of 

magnitude larger than the diameter of the sun. 
36.69. IDENTIFY and SET UP: Add the phases between adjacent sources. 

EXECUTE: (a) stsin .  Place1 maximum at  or 90 .d mθ λ θ= ∞ =  d .λ=  If ,d λ<  this puts the first maximum 

“beyond .∞ ” Thus, if d λ<  there is only a single principal maximum. 
(b) At a principal maximum when 0δ = , the phase difference due to the path difference between adjacent slits 

is path

sin
2 . This just scales 2

d θπ π
λ

⎛ ⎞Φ = ⎜ ⎟
⎝ ⎠

radians by the fraction the wavelength is of the path difference between 

adjacent sources. If we add a relative phase δ between sources, we still must maintain a total phase difference of 
zero to keep our principal maximum. 

1
path

2 sin
0  or sin

2

d

d

π θ δλδ δ θ
λ π

− ⎛ ⎞Φ ± = ⇒ = ± = ⎜ ⎟
⎝ ⎠

 

(c) 
0.280 m

0.0200 m
14

d = = (count the number of spaces between 15 points). Let 45 . Also recall , sof cθ λ= =  

9

max 8

2 (0.0200 m)(8.800 10 Hz)sin 45
2.61 radians.

(3.00 10 m s)

πδ ×= ± = ±
×

 

EVALUATE: δ must vary over a wider range in order to sweep the beam through a greater angle. 
36.70. IDENTIFY: The wavelength of the light is smaller under water than it is in air, which will affect the resolving 

power of the lens, by Rayleigh’s criterion. 
SET UP: The wavelength under water is λ = λ0/n, and for small angles Rayleigh’s criterion is θ = 1.22λ/D. 
EXECUTE: (a) In air the wavelength is λ0 = c/f = (3.00 × 108 m/s)/(6.00 × 1014 Hz) = 5.00 × 10–7 m. In water the 
wavelength is λ = λ0/n = (5.00 × 10–7 m)/1.33 = 3.76 × 10–7 m. With the lens open all the way, we have D = f/2.8 = 
(35.0 mm)/2.80 = (0.0350 m)/2.80. In the water, we have 

sin θ ≈ θ = 1.22 λ/D = (1.22)(3.76 × 10–7 m)/[(0.0350 m)/2.80] = 3.67 × 10–5 rad 

Calling w the width of the resolvable detail, we have 

θ = w/R →  w = Rθ = (2750 mm)(3.67 × 10–5 rad) = 0.101 mm 

(b) θ = 1.22 λ/D = (1.22)(5.00 × 10–7 m)/[(0.0350 m)/2.80] = 4.88 × 10–5 rad 

w = Rθ = (2750 mm)(4.88 × 10–5 rad) = 0.134 mm 

EVALUATE: Due to the reduced wavelength underwater, the resolution of the lens is better under water than in air. 
36.71. IDENTIFY and SET UP: Resolved by Rayleigh’s criterion means the angular separation θ  of the objects is given 

by 1.22 / . / ,D y sθ λ θ= =  where 75.0 my =  is the distance between the two objects and s is their distance from 

the astronaut (her altitude). 

EXECUTE: 1.22
y

s D

λ=  

3
5

9

(75.0 m)(4.00 10  m)
4.92 10  m 492 km

1.22 1.22(500 10  m)

yD
s

λ

−

−

×= = = × =
×

 

EVALUATE: In practice, this diffraction limit of resolution is not achieved. Defects of vision and distortion by the 
earth’s atmosphere limit the resolution more than diffraction does. 
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36.72. IDENTIFY: Apply sin 1.22
D

λθ = . 

SET UP: θ is small, so sin
x

R
θ Δ≈ , where xΔ is the size of the details and R is the distance to the earth.  

151 ly 9.41 10  m= × . 

EXECUTE: (a) 
6 5

17
5

(6.00 10 m)(2.50 10 m)
1.23 10 m 13.1 ly

1.22 (1.22)(1.0 10 m)

D x
R

λ −

Δ × ×= = = × =
×

 

(b) 
5 15

81.22 (1.22)(1.0 10 m)(4.22 ly)(9.41 10 m ly)
4.84 10 km

1.0 m

R
x

D

λ −× ×Δ = = = × .  This is about 10,000 times the 

diameter of the earth! Not enough resolution to see an earth-like planet!  xΔ is about 3 times the distance from the 
earth to the sun. 

(c)
5 15

6
6

(1.22)(1.0 10 m)(59 ly)(9.41 10 m ly)
1.13 10 m 1130 km.

6.00 10 m
x

−× ×Δ = = × =
×

 

3
5

planet

1130 km
8.19 10 ;

1.38 10 km

x
x

D
−Δ = = × Δ

×
 is small compared to the size of the planet. 

EVALUATE: The very large diameter of Planet Imager allows it to resolve planet-sized detail at great distances. 
36.73. IDENTIFY and SET UP: Follow the steps specified in the problem. 

EXECUTE: (a) From the segment ,dy′ the fraction of the amplitude of 0E  that gets through is 

0 0 sin( ).
dy dy

E dE E kx t
a a

ω
′ ′⎛ ⎞ ⎛ ⎞⇒ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(b) The path difference between each little piece is 

0sin ( sin ) sin( ( sin ) ).
E dy

y kx k D y dE k D y t
a

θ θ θ ω
′′ ′ ′⇒ = − ⇒ = − −   This can be rewritten as 

0 (sin( )cos( sin ) sin( sin )cos( )).
E dy

dE kD t ky ky kD t
a

ω θ θ ω
′ ′ ′= − + −  

(c) So the total amplitude is given by the integral over the slit of the above. 
2 2

0

2 2
(sin( ) cos( sin ) sin( sin )

a a

a a

E
E dE dy kD t ky ky

a
ω θ θ

− −
′ ′ ′⇒ = = − +∫ ∫ cos( )).kD tω−  

But the second term integrates to zero, so we have: 

[ ]
[ ]

2
2

0
02

2

0 0

0

sin( sin )
sin( ) (cos( sin )) sin ( )

sin 2

sin( (sin ) 2) sin( (sin ) )
sin( ) sin( ) .

(sin ) 2 (sin )

sin . . .
At 0, 1 sin(

. . .

a
a

a
a

E ky
E kD t dy ky E kD t

a ka

ka a
E E kD t E kD t

ka a

E E

θω θ ω
θ

θ π θ λω ω
θ π θ λ

θ

−
−

⎡ ⎤′⎛ ⎞′ ′= − = − ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
⇒ = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= = ⇒ =

∫

).kD tω−

 

(d) Since 
2 2

2
0 0

sin( (sin )/2) sin( 2)
,

(sin )/2 2

ka
I E I I I

ka

θ β
θ β

⎛ ⎞ ⎛ ⎞
∝ ⇒ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 where we have used 2 2

0 0 sin ( ).I E kx tω= −  

EVALUATE: The same result for ( )I θ  is obtained as was obtained using phasors. 

36.74. IDENTIFY and SET UP: Follow the steps specified in the problem. 
EXECUTE: (a)  Each source can be thought of as a traveling wave evaluated at x R= with a maximum amplitude 
of 0.E  However, each successive source will pick up an extra phase from its respective pathlength to point 

sin
2

d
P .

θφ π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 which is just 2 ,π  the maximum phase, scaled by whatever fraction the path difference, 

sin ,d θ is of the wavelength, λ . By adding up the contributions from each source (including the accumulating 

phase difference) this gives the expression provided. 
(b) ( ) cos( ) sin( ).i kR t ne kR t n i kR t nω φ ω φ ω φ− + = − + + − +  The real part is just cos ( ).kR t nω φ− +  So, 

1 1
( )

0 0
0 0

Re e cos( ).
N N

i kR t n

n n

E E kR t nω φ ω φ
− −

− +

= =

⎡ ⎤ = − +⎢ ⎥
⎣ ⎦
∑ ∑  (Note: Re means “the real part of . . . .”).  But this is just 

0 0 0 0cos( ) cos( ) cos( 2 ) cos( ( 1) )E kR t E kR t E kR t E kR t Nω ω φ ω φ ω φ− + − + + − + + + − + −  
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(c) 
1 1 1

( ) ( )
0 0 0

0 0 0

e e e e e e .
N N N

i kR t n i t ikR in i kR t in

n n n

E E Eω φ ω φ ω φ
− − −

− + − + −

= = =

= =∑ ∑ ∑  
1

0 0

e (e ) .
N

in i n

n n

φ φ
∞ −

= =

=∑ ∑  But recall 
1

0

1

1

NN
n

n

x
x

x

−

=

−=
−∑ .    

/ 2 / 2 / 2 / 2 / 21
( 1) / 2

/ 2 / 2 / 2 / 2 / 2
0

e 1 1 ( ) ( )
Let e so (e ) (nice trick!). But .

e 1 1 ( ) ( )

iN iN iN iN iN iN iNN
i i n i N

i i i i i i i
n

e e e e e e
x e

e e e e e e

φ φ φ φ φ φ φ
φ φ φ

φ φ φ φ φ φ φ

− −−
−

− −
=

− − − −= = = =
− − − −∑  

Putting everything together: 

[ ]

/ 2 / 21
( ) ( ( 1) / 2)

0 0 / 2 / 2
0

0

( )
e

( )

cos /2 sin /2 cos /2 sin /2
cos( ( 1) /2) sin( ( 1) / 2)

cos /2 sin /2 cos /2 sin /2

iN iNN
i kR t n i kR t N

i i
n

e e
E e E

e e

N i N N i N
E kR t N i kR t N

i i

φ φ
ω φ ω φ

φ φ

φ φ φ φω φ ω φ
φ φ φ φ

−−
− + − + −

−
=

−=
−

⎡ ⎤+ − += − + − + − + − ⎢ ⎥+ − +⎣ ⎦

∑
 

Taking only the real part gives 0

sin( /2)
cos( ( 1) /2) .

sin /2

N
E kR t N E

φω φ
φ

⇒ − + − =  

(d) 
2

2

0 2av

sin ( / 2)
.

sin ( / 2)

N
I E I

φ
φ

= =  (The 2cos  term goes to 1
2 in the time average and is included in the definition of 0.)I  

2
0

0 .
2

E
I ∝  

EVALUATE: (e) 
2 2

20
0 02 2

sin (2 / 2) (2sin / 2cos / 2)
2.   4 cos .

sin / 2 sin / 2 2

I
N I I I

φ φ φ φ
φ φ

= = = =  Looking at Eq.(35.9), 

2
2 0 0

0 0 02  but for us .
2 4

E I
I E I

′′ ∝ ∝ =  

36.75. IDENTIFY and SET UP: From Problem 36.74, 
2

0 2

sin ( / 2)

sin / 2

N
I I

φ
φ

= .  Use this result to obtain each result specified 

in the problem. 

EXECUTE: (a)  
0

0
lim

0
I

φ →
→ .  

0 0

sin ( / 2) 2 cos( / 2)
ˆUse l'Hopital's rule:   lim lim .

sin / 2 1 2 cos( / 2)

N N N
N

φ φ

φ φ
φ φ→ →

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 So 2

0
0

lim .I N I
φ →

=  

(b) The location of the first minimum is when the numerator first goes to zero at min min

2
or .

2

N

N

πφ π φ= = The 

width of the central maximum goes like min2 ,φ  so it is proportional to 
1

.
N

 

(c) Whenever 
2

N
n

φ π= where n  is an integer, the numerator goes to zero, giving a minimum in intensity. That is, 

I  is a minimum wherever 
2

.
n

N

πφ =  This is true assuming that the denominator doesn’t go to zero as well, which 

occurs when ,
2

m
φ π= where m  is an integer. When both go to zero, using the result from part(a), there is a 

maximum. That is, if 
n

N
is an integer, there will be a maximum. 

(d) From part (c), if 
n

N
 is an integer we get a maximum. Thus, there will be 1N − minima. (Places where 

n

N
 is 

not an integer for fixed N  and integer n .) For example, 0n =  will be a maximum, but 1,2. . ., 1n N= −  will be 

minima with another maximum at .n N=  

(e) Between maxima 
2

φ
 is a half-integer multiple of 

3
i.e. , , etc.)

2 2

π ππ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 and if N is odd then 

2

02

sin ( / 2)
1, so .

sin / 2

N
I I

φ
φ

→ →  

EVALUATE: These results show that the principal maxima become sharper as the number of slits is increased. 
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RELATIVITY 

 37.1. IDENTIFY and SET UP: Consider the distance A to O′  and B to O′  as observed by an observer on the ground 
(Figure 37.1). 

 
Figure 37.1 

EXECUTE: Simultaneous to observer on train means light pulses from and A B′ ′  arrive at O′  at the same time. 
To observer at O light from A′  has a longer distance to travel than light from B′ so O will conclude that the pulse 
from ( )A A′  started before the pulse at ( ).B B′  To observer at O bolt A appeared to strike first. 

EVALUATE: Section 37.2 shows that if they are simultaneous to the observer on the ground then an observer on 
the train measures that the bolt at B′ struck first. 

 37.2. (a) 
2

1
γ 2.29.

1 (0.9)
= =

−
  6 6

γ (2.29) (2.20 10 s) 5.05 10 s.t τ − −= = × = ×  

(b) 8 6 3(0.900) (3.00 10 m s) (5.05 10 s) 1.36 10 m 1.36 km.d vt −= = × × = × =  

 37.3. IDENTIFY and SET UP: The problem asks for u such that 0

1
/ .

2
t tΔ Δ =  

EXECUTE: 0

2 21 /

t
t

u c

ΔΔ =
−

 gives ( )
2

2 8 8
0

1
1 / (3.00 10  m/s) 1 2.60 10  m/s

2
u c t t

⎛ ⎞= − Δ Δ = × − = ×⎜ ⎟
⎝ ⎠

; 0.867
u

c
=  

Jet planes fly at less than ten times the speed of sound, less than about 3000 m/s.  Jet planes fly at much lower 
speeds than we calculated for u. 

 37.4. IDENTIFY: Time dilation occurs because the rocket is moving relative to Mars. 
SET UP: The time dilation equation is 0t tγΔ = Δ , where t0 is the proper time. 

EXECUTE: (a) The two time measurements are made at the same place on Mars by an observer at rest there, so 
the observer on Mars measures the proper time. 

(b) 0 2

1
(75.0 s) 435 s

1 (0.985)
t tγ μ μΔ = Δ = =

−
 

EVALUATE: The pulse lasts for a shorter time relative to the rocket than it does relative to the Mars observer. 
 37.5. (a) IDENTIFY and SET UP: 8 7

0 2.60 10  s; 4.20 10  s.t t− −Δ = × Δ = ×  In the lab frame the pion is created and decays 

at different points, so this time is not the proper time. 

EXECUTE: 
22

0 0
22 2

 says 1
1 /

t u t
t

c tu c

Δ Δ⎛ ⎞Δ = − = ⎜ ⎟Δ⎝ ⎠−
 

22 8
0

7

2.60 10  s
1 1 0.998;  0.998

4.20 10  s

u t
u c

c t

−

−

⎛ ⎞Δ ×⎛ ⎞= − = − = =⎜ ⎟⎜ ⎟Δ ×⎝ ⎠ ⎝ ⎠
 

EVALUATE: ,u c<  as it must be, but u/c is close to unity and the time dilation effects are large. 
(b) IDENTIFY and SET UP: The speed in the laboratory frame is 0.998 ;u c=  the time measured in this frame is 

,tΔ  so the distance as measured in this frame is d u t= Δ  

EXECUTE: 8 7(0.998)(2.998 10  m/s)(4.20 10  s) 126 md −= × × =  

EVALUATE: The distance measured in the pion’s frame will be different because the time measured in the pion’s 
frame is different (shorter). 

37
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 37.6. γ 1.667=  

(a) 
8

0

1.20 10 m
0.300 s.

γ γ(0.800 )

t
t

c

Δ ×Δ = = =  

(b) 7(0.300 s) (0.800 ) 7.20 10 m.c = ×  

(c) 0 0.300 s γ 0.180 s.tΔ = =  (This is what the racer measures your clock to read at that instant.) At your origin 

you read the original 
8

8

1.20 10 m
0.5 s.

(0.800) (3 10 m s)

× =
×

 Clearly the observers (you and the racer) will not agree on the 

order of events! 
 37.7. IDENTIFY and SET UP: A clock moving with respect to an observer appears to run more slowly than a clock at rest 

in the observer’s frame. The clock in the spacecraft measurers the proper time 0.tΔ  365 days 8760 hours.tΔ = =  

EXECUTE: The clock on the moving spacecraft runs slow and shows the smaller elapsed time.  
2 2 6 8 2

0 1 / (8760 h) 1 (4.80 10 /3.00 10 ) 8758.88 ht t u cΔ = Δ − = − × × = .  The difference in elapsed times is 

8760 h 8758.88 h 1.12 h− = . 
 37.8. IDENTIFY and SET UP: The proper time is measured in the frame where the two events occur at the same point. 

EXECUTE: (a) The time of 12.0 ms measured by the first officer on the craft is the proper time. 

(b) 0

2 21 /

t
t

u c

ΔΔ =
−

gives 2 3 2
01 ( / ) 1 (12.0 10 / 0.190) 0.998u c t t c c−= − Δ Δ = − × = . 

EVALUATE: The observer at rest with respect to the searchlight measures a much shorter duration for the event. 

 37.9. IDENTIFY and SET UP: 2 2
0 1 / .l l u c= −  The length measured when the spacecraft is moving is 074.0 m; l l=  is 

the length measured in a frame at rest relative to the spacecraft. 

EXECUTE: 0 2 2 2

74.0 m
92.5 m.

1 / 1 (0.600 / )

l
l

u c c c
= = =

− −
 

EVALUATE:  0 .l l>  The moving spacecraft appears to an observer on the planet to be shortened along the 

direction of motion. 
37.10. IDENTIFY and SET UP: When the meterstick is at rest with respect to you, you measure its length to be 1.000 m, 

and that is its proper length, 0l .  0.3048 ml = . 

EXECUTE: 2 2
0 1 /l l u c= − gives 2 2 8

01 ( / ) 1 (0.3048/1.00) 0.9524 2.86 10  m/su c l l c c= − = − = = × . 

37.11. IDENTIFY and SET UP: The 2.2 μs lifetime is Δt0 and the observer on earth measures Δt.  The atmosphere is 
moving relative to the muon so in its frame the height of the atmosphere is l and l0 is 10 km. 
EXECUTE: (a) The greatest speed the muon can have is c, so the greatest distance it can travel in 62.2 10  s−×  is 

8 6(3.00 10  m/s)(2.2 10  s) 660 m 0.66 kmd vt −= = × × = = . 

(b) 
6

50

2 2 2

2.2 10  s
4.9 10  s

1 / 1 (0.999)

t
t

u c

−
−Δ ×Δ = = = ×

− −
 

8 5(0.999)(3.00 10  m/s)(4.9 10  s) 15 kmd vt −= = × × =  

In the frame of the earth the muon can travel 15 km in the atmosphere during its lifetime. 

(c) 2 2 2
0 1 / (10 km) 1 (0.999) 0.45 kml l u c= − = − =  

In the frame of the muon the height of the atmosphere is less than the distance it moves during its lifetime. 
37.12. IDENTIFY and SET UP: The scientist at rest on the earth’s surface measures the proper length of the separation 

between the point where the particle is created and the surface of the earth, so 0 45.0 kml = . The transit time 

measured in the particle’s frame is the proper time, 0tΔ . 

EXECUTE: (a) 
3

40
8

45.0 10  m
1.51 10  s

(0.99540)(3.00 10  m/s)

l
t

v
−×= = = ×

×
 

(b) 2 2 2
0 1 / (45.0 km) 1 (0.99540) 4.31 kml l u c= − = − =  

(c) time dilation formula:  2 2 4 2 5
0 1 / (1.51 10  s) 1 (0.99540) 1.44 10  st t u c − −Δ = Δ − = × − = ×  

from lΔ :  
3

5
8

4.31 10  m
1.44 10  s

(0.99540)(3.00 10  m/s)

l
t

v
−×= = = ×

×
 

The two results agree. 
37.13. (a) 0 3600 ml = . 

2 7 2

0 02 8 2

(4.00 10 m s)
1 (3600 m) 1 (3600 m)(0.991) 3568 m.

(3.00 10 m s)

u
l l l

c

×= − = − = =
×
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(b) 50
0 7

3600 m
9.00 10 s.

4.00 10 m s

l
t

u
−Δ = = = ×

×
 

(c) 5
7

3568 m
8.92 10 s.

4.00 10 m s

l
t

u
−Δ = = = ×

×
 

37.14. Multiplying the last equation of (37.21) by u and adding to the first to eliminate t gives 
2

2

1
1 ,

u
x ut x x

c
γ

γ
⎛ ⎞′ ′+ = − =⎜ ⎟
⎝ ⎠

 

and multiplying the first by 
2

u

c
 and adding to the last to eliminate x gives 

2

2 2

1
γ 1 ,

γ

u u
t x t t

c c

⎛ ⎞′ ′+ = − =⎜ ⎟
⎝ ⎠

 

2so γ( ) and γ( ),x x ut t t ux c′ ′ ′ ′= + = + which is indeed the same as Eq. (37.21) with the primed coordinates 

replacing the unprimed, and a change of sign of u. 

37.15. (a) 
2

0.400 0.600
0.806

1 1 (0.400) (0.600)

v u c c
v c

uv c

′ + += = =
′+ +

 

(b) 
2

0.900 0.600
0.974

1 1 (0.900)(0.600)

v u c c
v c

uv c

′ + += = =
′+ +

 

(c) 
2

0.990 0.600
0.997 .

1 1 (0.990)(0.600)

v u c c
v c

uv c

′ + += = =
′+ +

 

37.16. γ 1.667(γ 5 3 if (4 5) ).u c= = =  

(a) In Mavis’s frame the event “light on” has space-time coordinates 0x′ =  and 5.00t′ = s, so from the result of 

Exercise 37.14 or Example  37.7, γ( )x x ut′ ′= +  and 9
2

γ γ 2.00 10 m, γ 8.33 s
ux

t t x ut t t
c

′⎛ ⎞′ ′ ′= + ⇒ = = × = =⎜ ⎟
⎝ ⎠

. 

(b) The 5.00-s interval in Mavis’s frame is the proper time 0tΔ  in Eq.(37.6), so 0γ 8.33 s,t tΔ = Δ = as in part (a). 

(c) 9(8.33 s) (0.800 ) 2.00 10c = ×  m, which is the distance x found in part (a). 

37.17. IDENTIFY: The relativistic velocity addition formulas apply since the speeds are close to that of light. 

SET UP: The relativistic velocity addition formula is 

21

x
x

x

v u
v

uv

c

−′ =
−

. 

EXECUTE: (a) For the pursuit ship to catch the cruiser, the distance between them must be decreasing, so the 
velocity of the cruiser relative to the pursuit ship must be directed toward the pursuit ship. 
(b) Let the unprimed frame be Tatooine and let the primed frame be the pursuit ship. We want the velocity v′  of the 
cruiser knowing the velocity of the primed frame u  and the velocity of the cruiser v  in the unprimed frame (Tatooine). 

2

0.600 0.800
0.385

1 (0.600) (0.800)1

x
x

x

v u c c
v c

uv

c

− −′ = = = −
−−

 

The result implies that the cruiser is moving toward the pursuit ship at 0.385 .c  
EVALUATE: The nonrelativistic formula would have given –0.200c, which is considerably different from the 
correct result. 

37.18. Let yu be the y-component of the velocity of S′ relative to S.  Following the steps used in the derivation of 

Eq.(37.23) we get 
21 /

y y
y

y y

v u
v

u v c

′ +
=

′+
. 

37.19. IDENTIFY and SET UP: Reference frames S and S′  are shown in Figure 37.19. 

 

Frame S is at rest in the 
laboratory. Frame S′  is 
attached to particle 1. 
 

Figure 37.19  
u is the speed of S′  relative to S; this is the speed of particle 1 as measured in the laboratory. Thus 0.650 .u c= +  
The speed of particle 2 in S′  is 0.950c. Also, since the two particles move in opposite directions, 2 moves in the 

x′−  direction and 0.950 .xv c′ = −  We want to calculate ,xv  the speed of particle 2 in frame S; use Eq.(37.23). 
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EXECUTE: 
2 2

0.950 0.650 0.300
0.784 .

1 / 1 (0.950 )( 0.650 ) / 1 0.6175
x

x

x

v u c c c
v c

uv c c c c

′ + − + −= = = = −
′+ + − −

 The speed of the second particle, 

as measured in the laboratory, is 0.784c. 
EVALUATE:  The incorrect Galilean expression for the relative velocity gives that the speed of the second particle 
in the lab frame is 0.300c. The correct relativistic calculation gives a result more than twice this. 

37.20. IDENTIFY and SET UP: Let S be the laboratory frame and let S′ be the frame of one of the particles, as shown in 
Figure 37.20. Let the positive x direction for both frames be from particle 1 to particle 2. In the lab frame particle 1 
is moving in the +x direction and particle 2 is moving in the x− direction. Then 0.9520u c= and 0.9520v c= − . 
v′ is the velocity of particle 2 relative to particle 1. 

EXECUTE: 
2 2

0.9520 0.9520
0.9988

1 / 1 (0.9520 )( 0.9520 ) /

v u c c
v c

uv c c c c

− − −′ = = = −
− − −

. The speed of particle 2 relative to particle 1 

is 0.9988c . 0v′ < shows particle 2 is moving toward particle 1. 

 
Figure 37.20 

37.21. IDENTIFY: The relativistic velocity addition formulas apply since the speeds are close to that of light. 

SET UP: The relativistic velocity addition formula is 

21

x
x

x

v u
v

uv

c

−′ =
−

. 

EXECUTE: In the relativistic velocity addition formula for this case, xv ′  is the relative speed of particle 1 with 

respect to particle 2, v is the speed of particle 2 measured in the laboratory, and u is the speed of particle 1 
measured in the laboratory, u = – v. 

2 2 2

( ) 2

1 ( ) 1x

v v v
v

v v c v c

− −′ = =
− − +

. 2
2

2 0x
x

v
v v v

c

′ ′− + =  and 2 2 3(0.890 ) 2 (0.890 ) 0c v c v c− + = . 

This is a quadratic equation with solution v = 0.611c (v must be less than c). 
EVALUATE: The nonrelativistic result would be 0.445c, which is considerably different from this result. 

37.22. IDENTIFY and SET UP: Let the starfighter’s frame be S and let the enemy spaceship’s frame be S′ . Let the 
positive x direction for both frames be from the enemy spaceship toward the starfighter. Then 0.400u c= + . 

0.700v c′ = + .  v  is the velocity of the missile relative to you. 

EXECUTE: (a) 
2

0.700 0.400
0.859

1 / 1 (0.400)(0.700)

v u c c
v c

uv c

′ + += = =
′+ +

 

(b) Use the distance it moves as measured in your frame and the speed it has in your frame to calculate the time it 

takes in your frame.  
9

8

8.00 10  m
31.0 s

(0.859)(3.00 10  m/s)
t

×= =
×

. 

37.23. IDENTIFY and SET UP: The reference frames are shown in Figure 37.23. 

 

S = Arrakis frame 
S′  = spaceship frame 
The object is the rocket. 
 

Figure 37.23  

u is the velocity of the spaceship relative to Arrakis. 
0.360 ;  0.920x xv c v c′= + = +  

(In each frame the rocket is moving in the positive coordinate direction.) 
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Use the Lorentz velocity transformation equation, Eq.(37.22):  
2
.

1 /
x

x
x

v u
v

uv c

−′ =
−

 

EXECUTE: 
2 2 2

 so  and 1
1 /

x x x x x
x x x x x

x

v u v v v v
v v u v u u v v

uv c c c

′ ′− ⎛ ⎞ ⎛ ⎞′ ′ ′= − = − − = −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠
 

2 2

0.360 0.920 0.560
0.837

1 / 1 (0.360 )(0.920 ) / 0.6688
x x

x x

v v c c c
u c

v v c c c c

′− −= = = − = −
′− −

 

The speed of the spacecraft relative to Arrakis is 80.837 2.51 10  m/s.c = ×  The minus sign in our result for u means 
that the spacecraft is moving in the -direction,x−  so it is moving away from Arrakis. 
EVALUATE:  The incorrect Galilean expression also says that the spacecraft is moving away from Arrakis, but 
with speed 0.920c – 0.360c = 0.560c. 

37.24. IDENTIFY: We need to use the relativistic Doppler shift formula. 

SET UP: The relativistic Doppler shift formula, Eq.(37.25), is 0

c u
f f

c u

+=
−

. 

EXECUTE: 2 2
0

c u
f f

c u

+=
−

.  2 2
0( ) ( )c u f c u f− = + . 2 2 2 2

0 0cf uf cf uf− = + . 2 2 2 2
0 0cf cf uf uf− = + and 

2 2 2
0 0

2 2 2
0 0

( ) ( / ) 1

( / ) 1

c f f f f
u c

f f f f

− −= =
+ +

. 

(a) For f/f0 = 0.95, u = – 0.051c moving away from the source. 
(b) For f/f0 = 5.0, u = 0.923c moving towards the source. 
EVALUATE: Note that the speed required to achieve a 10 times greater Doppler shift is not 10 times the original 
speed. 

37.25. IDENTIFY and SET UP: Source and observer are approaching, so use Eq.(37.25):  0.
c u

f f
c u

+=
−

 Solve for u, the 

speed of the light source relative to the observer. 

(a) EXECUTE: 2 2
0

c u
f f

c u

+⎛ ⎞= ⎜ ⎟−⎝ ⎠
 

2 2 2
2 2 0 0

0 2 2 2
0 0

( ) ( / ) 1
( ) ( )  and 

( / ) 1

c f f f f
c u f c u f u c

f f f f

⎛ ⎞− −− = + = = ⎜ ⎟+ +⎝ ⎠
 

0 675 nm, 575 nmλ λ= =  
2

8 7
2

(675 nm/575 nm) 1
0.159 (0.159)(2.998 10  m/s) 4.77 10  m/s;

(675 nm/575 nm) 1
u c c

⎛ ⎞−= = = × = ×⎜ ⎟+⎝ ⎠
 definitely speeding 

(b) 7 7 84.77 10  m/s (4.77 10  m/s)(1 km/1000 m)(3600 s/1 h) 1.72 10  km/h.× = × = ×  Your fine would be 8$1.72 10×  

(172 million dollars). 
EVALUATE:  The source and observer are approaching, so 0 0and .f f λ λ> <  Our result gives ,u c<  as it must. 

37.26.  Using ( )0.600 3 5u c c= − = −  in Eq.(37.25) gives 

( )
( ) 0 0 0

1 3 5 2 5
2.

1 3 5 8 5
f f f f

−
= = =

+
 

37.27. IDENTIFY and SET UP: If F  is parallel to then v F  changes the magnitude of v  and not its direction. 

2 21 /

dp d mv
F

dt dt v c

⎛ ⎞
= = ⎜ ⎟

−⎝ ⎠
 

Use the chain rule to evaluate the derivative:  ( ( )) .
d df dv

f v t
dt dv dt

=  

EXECUTE: (a) 
2 2 1/ 2 2 2 3/ 2 2

1 2

(1 / ) (1 / ) 2

m dv mv v dv
F

v c dt v c c dt
⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 

2 2

2 2 3 / 2 2 2 2 2 3 / 2
1

(1 / ) (1 / )

dv m v v dv m
F

dt v c c c dt v c

⎛ ⎞
= − + =⎜ ⎟− −⎝ ⎠

 

But 2 2 3 / 2,  so ( / )(1 / ) .
dv

a a F m v c
dt

= = −  

EVALUATE: Our result agrees with Eq.(37.30). 
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(b) IDENTIFY and SET UP: If F  is perpendicular to then v F  changes the direction of v  and not its magnitude. 

2 2
.

1 /

d m

dt v c

⎛ ⎞
⎜ ⎟

−⎝ ⎠

v
F =  

/d dta v=  but the magnitude of v in the denominator of Eq.(37.29) is constant. 

EXECUTE: 
2 21 /

ma
F

v c
=

−
 and 2 2 1/ 2( / )(1 / ) .a F m v c= −  

EVALUATE:  This result agrees with Eq.(37.33). 

37.28. IDENTIFY and SET UP: 
2 2

1

1 /v c
γ =

−
.  If γ  is 1.0% greater than 1 then 1.010γ = , if γ is 10% greater than 1 

then 1.10γ = and if γ  is 100% greater than 1 then 2.00γ = . 

EXECUTE: 21 1/v c γ= −  

(a) 21 1/(1.010) 0.140v c c= − =  

(b) 21 1/(1.10) 0.417v c c= − =  

(c) 21 1/(2.00) 0.866v c c= − =  

37.29. (a) 
2 2

2
1

mv
p mv

v c
= =

−
. 

2
2 2 2 2

2

1 3 3
1 2 1 1  0.866 .

4 4 2

v
v c v c v c c

c
⇒ = − ⇒ = − ⇒ = ⇒ = =  

(b) 3 3 1/ 3 2 / 3 2 / 3
2

2

1
γ 2 γ 2 γ (2) so 2 1 2 0.608

1

v
F ma ma

v c
c

−= = ⇒ = ⇒ = = ⇒ = − =
−

 

37.30. The force is found from Eq.(37.32) or Eq.(37.33). 
(a) Indistinguishable from 0.145 N.F ma= =  

(b) 3
γ 1.75 N.ma =  

(c) 3
γ 51.7 N.ma =  

(d) γ 0.145 N,ma = 0.333 N,1.03 N.  

37.31. (a) 
2

2 2

2 21

mc
K mc mc

v c
= − =

−
 

2

22 2

1 1 3
2 1 0.866 .

4 41

v
v c c

cv c
⇒ = ⇒ = − ⇒ = =

−
 

(b) 
2

2
22 2

1 1 35
5 6 1 0.986 .

36 361

v
K mc v c c

cv c
= ⇒ = ⇒ = − ⇒ = =

−
 

37.32. 2 27 8 2 10 9= 2 = 2(1.67×10 kg)(3.00×10 m s) = 3.01×10 J = 1.88×10 eV.E mc − −  

37.33. IDENTIFY and SET UP: Use Eqs.(37.38) and (37.39). 

EXECUTE: (a) 2 2 2 10,  so 4.00  means 3.00 4.50 10  JE mc K E mc K mc −= + = = = ×  

(b) 2 2 2 2 2 2 2 2( ) ( ) ; 4.00 ,  so 15.0( ) ( )E mc pc E mc mc pc= + = =  
1815 1.94 10  kg m/sp mc −= = × ⋅  

(c) 2 2 2/ 1 /E mc v c= −  
2 2 24.00  gives 1 / 1/16 and 15/16 0.968E mc v c v c c= − = = =  

EVALUATE: The speed is close to c since the kinetic energy is greater than the rest energy. Nonrelativistic 
expressions relating E, K, p and v will be very inaccurate. 

37.34. (a) 2 3 2
f(γ 1) (4.07 10 ) .W K mc mc−= Δ = − = ×  

(b) ( 2 2
f iγ γ ) 4.79 .mc mc− =  

(c) The result of part (b) is far larger than that of part (a). 
37.35. IDENTIFY: Use 2E mc=  to relate the mass increase to the energy increase. 

(a) SET UP: Your total energy E increases because your gravitational potential energy mgy increases. 
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EXECUTE: E mg yΔ = Δ  
2 2 2( )  so / ( ) /E m c m E c mg y cΔ = Δ Δ = Δ = Δ  

2 2 8 2 13/ ( ) / (9.80 m/s )(30 m)/(2.998 10  m/s) 3.3 10 %m m g y c −Δ = Δ = × = ×  

This increase is much, much too small to be noticed. 
(b) SET UP: The energy increases because potential energy is stored in the compressed spring. 
EXECUTE: 2 4 21 1

2 2 (2.00 10  N/m)(0.060 m) 36.0 JE U kxΔ = Δ = = × =  
2 16( ) / 4.0 10  kgm E c −Δ = Δ = ×  

Energy increases so mass increases. The mass increase is much, much too small to be noticed. 
EVALUATE: In both cases the energy increase corresponds to a mass increase. But since 2c  is a very large 
number the mass increase is very small. 

37.36. (a) 2
0 0E m c= . 2 2

02 2E mc m c= = .  Therefore, 0
0 02 2

2 2
1 /

m
m m m

v c
= ⇒ =

−
. 

2 2
8

2 2

1 3
1 3 4 0.866 2.60 10 m s

4 4

v v
v c c

c c
= − ⇒ = ⇒ = = = ×  

(b) 2 2 20
0 2 2

10
1

m
m c mc c

v c
= =

−
. 

2 2
8

2 2

1 99 99
1 .  0.995 2.98 10 m s

100 100 100

v v
v c c

c c
− = ⇒ = = = = × . 

37.37. IDENTIFY and SET UP: The energy equivalent of mass is 2E mc= .  3 3 37.86 g/cm 7.86 10  kg/mρ = = × .  For a 

cube, 3V L= . 

EXECUTE: (a) 
20

3
2 8 2

1.0 10  J
1.11 10  kg

(3.00 10  m/s)

E
m

c

×= = = ×
×

 

(b) 
m

V
ρ =  so 

3
3

3 3

1.11 10  kg
0.141 m

7.86 10  kg/m

m
V

ρ
×= = =

×
.  1/ 3 0.521 m 52.1 cmL V= = =  

EVALUATE: Particle/antiparticle annihilation has been observed in the laboratory, but only with small quantities 
of antimatter. 

37.38. 27 8 2 10(5.52 10 kg)(3.00 10 m s) 4.97 10 J 3105 MeV.− −× × = × =  

37.39. IDENTIFY and SET UP: The total energy is given in terms of the momentum by Eq.(37.39). In terms of the total 
energy E, the kinetic energy K is 2K E mc= −  (from Eq.37.38). The rest energy is 2.mc  

EXECUTE: (a) 2 2 2( ) ( )E mc pc= + =  
27 8 2 2 18 8 2[(6.64 10 )(2.998 10 ) ] [(2.10 10 )(2.998 10 )]  J− −× × + × ×  

108.67 10  JE −= ×  
(b) 2 27 8 2 10(6.64 10  kg)(2.998 10  m/s) 5.97 10  Jmc − −= × × = ×  

2 10 10 108.67 10  J 5.97 10  J 2.70 10  JK E mc − − −= − = × − × = ×  

(c) 
10

2 10

2.70 10  J
0.452

5.97 10  J

K

mc

−

−

×= =
×

 

EVALUATE: The incorrect nonrelativistic expressions for K and p give 2 10/ 2 3.3 10  J;K p m −= = ×  the correct 

relativistic value is less than this. 

37.40. 

1 22
2 4 2 2 1 2 2( ) 1

p
E m c p c mc

mc

⎛ ⎞⎛ ⎞= + = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

2 2
2 2 2 2

2 2

1 1
1

2 2 2

p p
E mc mc mc mv

m c m

⎛ ⎞
≈ + = + = +⎜ ⎟

⎝ ⎠
, the sum of the rest mass energy and the classical kinetic energy. 

37.41. (a) 7

2 2

1
8 10 m s γ 1.0376

1
v

v c
= × ⇒ = =

−
.  For pm m= , 2 12

nonrel

1
5.34 10 J

2
K mv −= = × .  

2 12 rel
rel

nonrel

(γ 1) 5.65 10 J.  1.06.
K

K mc
K

−= − = × =  

(b) 82.85 10 m s; γ 3.203.v = × =  

2 11 2 10
rel rel rel nonrel

1
6.78 10 J;  (γ 1) 3.31 10 J; 4.88.

2
K mv K mc K K− −= = × = − = × =  
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37.42. IDENTIFY: Since the speeds involved are close to that of light, we must use the relativistic formula for kinetic energy. 

SET UP: The relativistic kinetic energy is 2 2

2 2

1
( 1) 1

1 /
K mc mc

v c
γ

⎛ ⎞
= − = −⎜ ⎟

−⎝ ⎠
. 

(a) 
( )

2 2 27 8 2

2 2 2

1 1
( 1) 1 (1.67 10 kg)(3.00 10 m s) 1

1 / 1 0.100 /
K mc mc

v c c c
γ −

⎛ ⎞⎛ ⎞ ⎜ ⎟= − = − = × × −⎜ ⎟ ⎜ ⎟−⎝ ⎠ −⎝ ⎠

 

10 131
(1.50 10 J) 1 7.56 10 J 4.73 MeV

1 0.0100
K − −⎛ ⎞= × − = × =⎜ ⎟−⎝ ⎠

 

(b) 10 11

2

1(1.50 10 J) 1 2.32 10 J 145 MeV
1 (0.500)

K − −
⎛ ⎞
⎜ ⎟= × − = × =
⎜ ⎟−⎝ ⎠

 

(c) 10 10

2

1(1.50 10 J) 1 1.94 10 J 1210 MeV
1 (0.900)

K − −
⎛ ⎞
⎜ ⎟= × − = × =
⎜ ⎟−⎝ ⎠

 

(d) 11 13 112.32 10  J 7.56 10  J 2.24 10  J 140 MeVE − − −Δ = × − × = × =  
(e) 10 11 101.94 10  J 2.32 10  J 1.71 10  J 1070 MeVE − − −Δ = × − × = × =  

(f) Without relativity, 21

2
K mv= . The work done in accelerating a proton from 0.100c to 0.500c in the 

nonrelativistic limit is 2 2 111 1
(0.500 ) (0.100 ) 1.81 10  J 113 MeV

2 2
E m c m c −Δ = − = × = . 

The work done in accelerating a proton from 0.500c to 0.900c in the nonrelativistic limit is 

2 2 111 1
(0.900 ) (0.500 ) 4.21 10  J 263 MeV

2 2
E m c m c −Δ = − = × = . 

EVALUATE: We see in the first case the nonrelativistic result is within 20% of the relativistic result. In the second 
case, the nonrelativistic result is very different from the relativistic result since the velocities are closer to c. 

37.43. IDENTIFY and SET UP: Use Eq.(23.12) and conservation of energy to relate the potential difference to the kinetic 
energy gained by the electron. Use Eq.(37.36) to calculate the kinetic energy from the speed. 
EXECUTE: (a) K q V e V= Δ = Δ  

2 2 13

2 2

1
1 4.025 3.295 10  J 2.06 MeV

1 /
K mc mc

v c

−⎛ ⎞
= − = = × =⎜ ⎟

−⎝ ⎠
 

6/ 2.06 10  VV K eΔ = = ×  
(b) From part (a), 133.30 10  J 2.06 MeVK −= × =  
EVALUATE: The speed is close to c and the kinetic energy is four times the rest mass. 

37.44. (a) According to Eq.(37.38) and conservation of mass-energy 

2 2 2 9.75
2 2 1 1 1.292.

2 2(16.7)

m
Mc mc Mc

M
γ γ+ = ⇒ = + = + =  

Note that since 
2 2

1 ,
1 v c

γ =
−

we have that 
2 2

1 1
1 1 0.6331.

(1.292)

v

c γ
= − = − =  

(b) According to Eq.(37.36), the kinetic energy of each proton is 

2 27 8 2
13

1.00 MeV
( 1) (1.292 1)(1.67 10 kg)(3.00 10 m s) 274 MeV.

1.60 10 J
K Mcγ −

−

⎛ ⎞
= − = − × × =⎜ ⎟×⎝ ⎠

  

(c) The rest energy of 0η  is 2 28 8 2
13

1.00 MeV
(9.75 10 kg)(3.00 10 m s) 548 MeV.

1.60 10 J
mc −

−

⎛ ⎞
= × × =⎜ ⎟×⎝ ⎠

 

(d) The kinetic energy lost by the protons is the energy that produces the 0 ,η  

548 MeV 2(274 MeV).=  

37.45. IDENTIFY: The relativistic expression for the kinetic energy is 2( 1)K mcγ= − , where 
1

1 x
γ =

−
and 2 2/x v c= .  

The Newtonian expression for the kinetic energy is 2
N

1

2
K mv= . 

SET UP: Solve for v such that N

3

2
K K= . 
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EXECUTE: 2 23
( 1)

4
mc mvγ − = .  

1 3
1

41
x

x
− =

−
.  

2
1 3

1
1 4

x
x

⎛ ⎞= +⎜ ⎟− ⎝ ⎠
.  After a little algebra this becomes 

29 15 8 0x x+ − = .  ( )21
15 (15) 4(9)(8)

18
x = − ± + .  The positive root is 0.425x = .  2 2/x v c= , so 

 0.652v x c c= = . 
EVALUATE: The fractional increase of the relativistic expression above the nonrelativistic one increases as v increases. 

37.46. The fraction of the initial mass (a) that becomes energy is 3(4.0015 u)
1 6.382 10 ,

2(2.0136 u)
−− = × and so the energy released 

per kilogram is 3 8 2 14(6.382 10 )(1.00 kg)(3.00 10 m s) 5.74 10 J.−× × = ×  

(b) 
19

4
14

1.0 10  J
1.7 10  kg.

5.74 10  J kg

× = ×
×

 

37.47. (a) 2 2 26 8 2 9, (3.8 10 J) (2.998 10 m s) 4.2 10 kgE mc m E c= = = × × = × . 

1 kg is equivalent to 2.2 lbs, so 64.6 10m = ×  tons 
(b) The current mass of the sun is 301.99 10 kg,×  so it would take it 

30 9 20 13(1.99 10 kg) (4.2 10 kg s) 4.7 10 s 1.5 10 years× × = × = ×  to use up all its mass. 

37.48. IDENTIFY: Since the final speed is close to the speed of light, there will be a considerable difference between the 
relativistic and nonrelativistic results. 

SET UP: The nonrelativistic work-energy theorem is 2 2
0

1 1

2 2
F x mv mvΔ = − , and the relativistic formula for a 

constant force is 2( 1)F x mcγΔ = − . 

(a) Using the classical work-energy theorem and solving for xΔ , we obtain 
2 2 9 8 2

0
6

( ) (0.100 10 kg)[(0.900)(3.00 10 m s)]
3.65 m.

2 2(1.00 10 N)

m v v
x

F

−− × ×Δ = = =
×

 

(b) Using the relativistic work-energy theorem for a constant force, we obtain 
2( 1)
.

mc
x

F

γ −Δ =  

For the given speed, 
2

1 2.29,
1 0.900

γ = =
−

 thus 

9 8 2

6

(2.29 1)(0.100 10 kg)(3.00 10 m s)
11.6 m.

(1.00 10 N)
x

−− × ×Δ = =
×

 

EVALUATE: (c) The distance obtained from the relativistic treatment is greater. As we have seen, more energy is 
required to accelerate an object to speeds close to c, so that force must act over a greater distance. 

37.49. (a) IDENTIFY and SET UP: 8
0 2.60 10  st −Δ = ×  is the proper time, measured in the pion’s frame. The time 

measured in the lab must satisfy ,d c t= Δ  where .u c≈  Calculate tΔ  and then use Eq.(37.6) to calculate u. 

EXECUTE: 
3

6
8

1.20 10  m
4.003 10  s

2.998 10  m/s

d
t

c
−×Δ = = = ×

×
 

0

2 21 /

t
t

u c

ΔΔ =
−

 so 2 2 1/ 2 0(1 / )
t

u c
t

Δ− =
Δ

 and 
2

2 2 0(1 / )
t

u c
t

Δ⎛ ⎞− = ⎜ ⎟Δ⎝ ⎠
 

Write (1 )u c= − Δ  so that 2 2 2( / ) (1 ) 1 2 1 2u c = − Δ = − Δ + Δ ≈ − Δ  since Δ  is small. 

Using this in the above gives 
2

01 (1 2 )
t

t

Δ⎛ ⎞− − Δ = ⎜ ⎟Δ⎝ ⎠
 

22 8
50

6

1 1 2.60 10  s
2.11 10

2 2 4.003 10  s

t

t

−
−

−

⎛ ⎞Δ ×⎛ ⎞Δ = = = ×⎜ ⎟⎜ ⎟Δ ×⎝ ⎠ ⎝ ⎠
 

EVALUATE:  An alternative calculation is to say that the length of the tube must contract relative to the moving 
pion so that the pion travels that length before decaying. The contracted length must be 

8 8
0 (2.998 10  m/s)(2.60 10  s) 7.79 m.l c t −= Δ = × × =  

2 2
0 1 /l l u c= −  so 

2

2 2

0

1 /
l

u c
l

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
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Then (1 )u c= − Δ  gives 
2 2

5
3

0

1 1 7.79 m
2.11 10 ,

2 2 1.20 10  m

l

l
−⎛ ⎞ ⎛ ⎞Δ = = = ×⎜ ⎟ ⎜ ⎟×⎝ ⎠⎝ ⎠

 which checks. 

(b) IDENTIFY and SET UP: 2E mcγ=  (Eq.(37.38). 

EXECUTE: 
2 2 5

1 1 1
154

21 / 2(2.11 10 )u c
γ

−
= = = =

Δ− ×
 

4154(139.6 MeV) 2.15 10  MeV 21.5 GeVE = = × =  

EVALUATE: The total energy is 154 times the rest energy. 
37.50. IDENTIFY and SET UP: The proper length of a side is 0l a= .  The side along the direction of motion is shortened 

to 2 2
0 1 /l l v c= − .  The sides in the two directions perpendicular to the motion are unaffected by the motion and 

still have a length a.  

EXECUTE: 2 3 2 21 /V a l a v c= = −  
37.51. IDENTIFY and SET UP: There must be a length contraction such that the length a becomes the same as b; 

0 0,  . l a l b l= =  is the distance measured by an observer at rest relative to the spacecraft. Use Eq.(37.16) and solve 

for u. 

EXECUTE: 2 2

0

1 /
l

u c
l

= −  so 2 21 / ;
b

u c
a

= −  

1.40a b=  gives 2 2/1.40 1 /b b u c= −  and thus 2 2 21 / 1/(1.40)u c− =  
2 81 1/(1.40) 0.700 2.10 10  m/su c c= − = = ×  

EVALUATE:  A length on the spacecraft in the direction of the motion is shortened. A length perpendicular to the 
motion is unchanged. 

37.52. IDENTIFY and SET UP: The proper time 0tΔ is the time that elapses in the frame of the space probe.  tΔ is the 

time that elapses in the frame of the earth.  The distance traveled is 42.2 light years, as measured in the earth frame. 

EXECUTE: (a) Light travels 42.2 light years in 42.2 yr, so (42.2 yr) 42.6 yr
0.9910

c
t

c
⎛ ⎞Δ = =⎜ ⎟
⎝ ⎠

. 

2 2 2
0 1 / (42.6 yr) 1 (0.9910) 5.7 yrt t u cΔ = Δ − = − = .  She measures her biological age to be 

19 yr 5.7 yr 24.7 yr.+ =  

(b) Her age measured by someone on earth is 19 yr 42.6 yr 61.6 yr+ = . 

37.53. (a) 
2

2
22

1 γ 1 99
 and 10 0.995.

γ 1001 ( )

v v
E mc

c cv c
γ γ −= = = ⇒ = ⇒ = =

−
 

(b) 
2

2 2 2 2 2 2 2 4 2( ) γ , γ 1
v

pc m v c E m c
c

⎛ ⎞⎛ ⎞= = +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

2 2

22 2
2

( ) 1 1
0.01 1%.

1 (10 (0.995))
1

E pc

E v

c
γ

−
⇒ = = = =

+⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 

37.54. IDENTIFY and SET UP: The clock on the plane measures the proper time 0.tΔ  
44.00 h 4.00 h (3600 s/1 h) 1.44 10  s.tΔ = = = ×  

0

2 21 /

t
t

u c

ΔΔ =
−

 and 2 2
0 1 /t t u cΔ = Δ −  

EXECUTE: 
u

c
 small so 

2
2 2 2 2 1/ 2

2

1
1 / (1 / ) 1 ;

2

u
u c u c

c
− = − ≈ −  thus 

2

0 2

1
1

2

u
t t

c

⎛ ⎞
Δ = Δ −⎜ ⎟

⎝ ⎠
 

The difference in the clock readings is 
22

4 9
0 2 8

1 1 250 m/s
(1.44 10  s) 5.01 10  s.

2 2 2.998 10  m/s

u
t t t

c
−⎛ ⎞Δ − Δ = Δ = × = ×⎜ ⎟×⎝ ⎠

 The 

clock on the plane has the shorter elapsed time. 
EVALUATE: 0tΔ  is always less than ;tΔ  our results agree with this. The speed of the plane is much less than the 

speed of light, so the difference in the reading of the two clocks is very small. 
37.55. IDENTIFY: Since the speed is very close to the speed of light, we must use the relativistic formula for kinetic 

energy. 
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SET UP: The relativistic formula for kinetic energy is 2

2 2

1
1

1
K mc

v c

⎛ ⎞
⎜ ⎟= −
⎜ ⎟−⎝ ⎠

 and the relativistic mass is 

rel 2 21

m
m

v c
=

−
. 

EXECUTE: (a) 12 67 10  eV 1.12 10  JK −= × = × . Using this value in the relativistic kinetic energy formula and 

substituting the mass of the proton for m, we get 2

2 2

1
1

1
K mc

v c

⎛ ⎞
⎜ ⎟= −
⎜ ⎟−⎝ ⎠

 

which gives  3

2 2

1
7.45 10

1 v c
= ×

−
and 

2

2 3 2

1
1

(7.45 10 )

v

c
− =

×
.  Solving for v gives 

2

2 2

( )( ) 2( )
1

v c v c v c v

c c c

+ − −− = = , since c + v ≈ 2c. Substituting (1 )v c= − Δ , we have. 

[ ]2

2

2 (1 )2( )
1 2

c cv c v

c c c

− − Δ−− = = = Δ .  Solving for Δ  gives 
( )232 2

9

1

7.45 101 /
9 10

2 2

v c −
×−Δ = = = × , to one 

significant digit. 

(b) Using the relativistic mass formula and the result that 3

2 2

1
7.45 10

1 v c
= ×

−
, we have 

3
rel 2 2 2 2

1
(7 10 )

1 1

m
m m m

v c v c

⎛ ⎞
⎜ ⎟= = = ×
⎜ ⎟− −⎝ ⎠

, to one significant digit. 

EVALUATE: At such high speeds, the proton’s mass is over 7000 times as great as its rest mass. 

37.56. IDENTIFY and SET UP: The energy released is 2( )E m c= Δ .  
4

1
(8.00 kg)

10
m

⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

.  av

E
P

t
= .  The change in 

gravitational potential energy is mg yΔ . 

EXECUTE: (a) 2 8 2 13
4

1
( ) (8.00 kg)(3.00 10  m/s) 7.20 10  J

10
E m c

⎛ ⎞= Δ = × = ×⎜ ⎟
⎝ ⎠

 

(b) 
13

19
av 6

7.20 10  J
1.80 10  W

4.00 10  s

E
P

t −

×= = = ×
×

 

(c) E U mg y= Δ = Δ .  
13

9
2 3

7.20 10  J
7.35 10  kg

(9.80 m/s )(1.00 10  m)

E
m

g y

×= = = ×
Δ ×

 

37.57. IDENTIFY and SET UP: In crown glass the speed of light is .
c

v
n

=  Calculate the kinetic energy of an electron that 

has this speed. 

EXECUTE: 
8

82.998 10  m/s
1.972 10  m/s.

1.52
v

×= = ×  

2 ( 1)K mc γ= −  
2 31 8 2 14 19(9.109 10  kg)(2.998 10  m/s) 8.187 10  J(1 eV/1.602 10  J) 0.5111 MeVmc − − −= × × = × × =  

2 2 8 8 2

1 1
1.328

1 / 1 ((1.972 10  m/s)/(2.998 10  m/s))v c
γ = = =

− − × ×
 

2 ( 1) (0.5111 MeV)(1.328 1) 0.168 MeVK mc γ= − = − =  

EVALUATE:  No object can travel faster than the speed of light in vacuum but there is nothing that prohibits an 
object from traveling faster than the speed of light in some material. 

37.58. (a) 
( )

,
p E c E

v
m m mc

= = =  where the atom and the photon have the same magnitude of momentum, .E c  

(b) ,
E

v c
mc

=  so 2.E mc  

37.59. IDENTIFY and SET UP: Let S be the lab frame and S′  be the frame of the proton that is moving in the +x direction, 
so / 2u c= + .  The reference frames and moving particles are shown in Figure 37.59. The other proton moves in 
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the x−  direction in the lab frame, so / 2v c= − .  A proton has rest mass 27
p 1.67 10  kgm −= ×  and rest energy 

2
p 938 MeVm c = . 

EXECUTE: (a) 
2 2

/ 2 / 2 4

1 / 1 ( / 2)( / 2) / 5

v u c c c
v

uv c c c c

− − −′ = = = −
− − −

 

The speed of each proton relative to the other is 
4

5
c . 

(b) In nonrelativistic mechanics the speeds just add and the speed of each relative to the other is c. 

(c) 
2

2

2 21 /

mc
K mc

v c
= −

−
 

(i) Relative to the lab frame each proton has speed / 2v c= .  The total kinetic energy of each proton is 

2

938 MeV
(938 MeV) 145 MeV

1
1

2

K = − =
⎛ ⎞− ⎜ ⎟
⎝ ⎠

. 

(ii) In its rest frame one proton has zero speed and zero kinetic energy and the other has speed 
4

5
c .  In this frame 

the kinetic energy of the moving proton is 
2

938 MeV
(938 MeV) 625 MeV

4
1

5

K = − =
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

(d) (i) Each proton has speed / 2v c=  and kinetic energy   

( )
2

221 1 938 MeV
/ 2 117 MeV

2 2 8 8

mc
K mv m c

⎛ ⎞= = = = =⎜ ⎟
⎝ ⎠

 

(ii) One proton has speed 0v =  and the other has speed c.  The kinetic energy of the moving proton 

is 21 938 MeV
469 MeV

2 2
K mc= = =  

EVALUATE: The relativistic expression for K gives a larger value than the nonrelativistic expression.  The kinetic 
energy of the system is different in different frames. 

 
Figure 37.59 

37.60. IDENTIFY and SET UP: Let S be the lab frame and let S′ the frame of the proton that is moving in the +x direction 
in the lab frame, as shown in Figure 37.60. In S′ the other proton moves in the x′− direction with speed / 2c , so 

/ 2v c′ = − .  In the lab frame each proton has speed cα , where α is a constant that we need to solve for. 

EXECUTE: (a) 
21 /

v u
v

uv c

′ +=
′+

with v cα= − , u cα= + and 0.50v c′ = − gives 
2

0.50

1 ( )( 0.50 ) /

c c
c

c c c

αα
α
− +− =

+ −
and 

0.50

1 0.50

αα
α

− +− =
−

.  2 4 1 0α α− + = and 0.268α = or 3.73α = .  Can’t have v c> , so only 0.268α = is physically 

allowed.  The speed measured by the observer in the lab is 0.268c. 

(b) (i) 0.269v c= .  1.0380γ = .  2( 1) 35.6 MeVK mcγ= − = . 
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(ii) 0.500v c= .  1.1547γ = .  2( 1) 145 MeVK mcγ= − = . 

 
Figure 37.60 

37.61. 2 2 2x c t′ ′= ( )22 2 2 2 2( )x ut c t ux cγ γ⇒ − = −  

2 2 2 21
( ) 1 ( ) ( )  .

u
x ut c t ux c x x u c t u c x ct x c t

c c
⎛ ⎞⇒ − = − ⇒ + = + = + ⇒ = ⇒ =⎜ ⎟
⎝ ⎠

 

37.62. IDENTIFY and SET UP: Let S be the lab frame and let S′ be the frame of the nucleus. Let the +x direction be the 
direction the nucleus is moving.  0.7500u c= . 

EXECUTE: (a) 0.9995v c′ = + .  
2

0.9995 0.7500
0.999929

1 / 1 (0.7500)(0.9995)

v u c c
v c

uv c

′ + += = =
′+ +

 

(b) 0.9995v c′ = − .  
0.9995 0.7500

0.9965
1 (0.7500)( 0.9995)

c c
v c

− += = −
+ −

 

(c) emitted in same direction: 

(i) 2

2 2 2

1 1
1 (0.511 MeV) 1 42.4 MeV

1 / 1 (0.999929)
K mc

v c

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

(ii) 2

2 2 2

1 1
1 (0.511 MeV) 1 15.7 MeV

1 / 1 (0.9995)
K mc

v c

⎛ ⎞⎛ ⎞
′ ⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

(d) emitted in opposite direction: 

(i) 2

2 2 2

1 1
1 (0.511 MeV) 1 5.60 MeV

1 / 1 (0.9965)
K mc

v c

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

(ii) 2

2 2 2

1 1
1 (0.511 MeV) 1 15.7 MeV

1 / 1 (0.9995)
K mc

v c

⎛ ⎞⎛ ⎞
′ ⎜ ⎟= − = − =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

37.63. IDENTIFY and SET UP: Use Eq.(37.30), with / ,a dv dt=  to obtain an expression for / .dv dt  Separate the 
variables v and t and integrate to obtain an expression for ( ).v t  In this expression, let .t → ∞  

EXECUTE: 2 2 3 / 2(1 / ) .
dv F

a v c
dt m

= = −  (One-dimensional motion is assumed, and all the F, v, and a refer to x-

components.) 

2 2 3/ 2(1 / )

dv F
dt

v c m
⎛ ⎞= ⎜ ⎟− ⎝ ⎠

 

Integrate from 0,t =  when 0,v =  to time t, when the velocity is v. 

2 2 3 / 20 0(1 / )

v tdv F
dt

v c m
⎛ ⎞= ⎜ ⎟− ⎝ ⎠∫ ∫  

Since F is constant, 
0

.
t F Ft

dt
m m

⎛ ⎞ =⎜ ⎟
⎝ ⎠∫  In the velocity integral make the change of variable / ;y v c=  then / .dy dv c=  

/
/

2 2 3/ 2 2 3 / 2 2 1/ 2 2 20 0
0

(1 / ) (1 ) (1 ) 1 /

v c
v v cdv dy y v

c c
v c y y v c

⎡ ⎤
= = =⎢ ⎥− − − −⎣ ⎦

∫ ∫  

Thus 
2 2

.
1 /

v Ft

mv c
=

−
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Solve this equation for v: 
22

2 21 /

v Ft

v c m
⎛ ⎞= ⎜ ⎟− ⎝ ⎠

 and 
2

2 2 2(1 / )
Ft

v v c
m

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

2 2
2 1

Ft Ft
v

mc m

⎛ ⎞⎛ ⎞ ⎛ ⎞+ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 so 

2 2 2 2 2

( / )

1 ( / )

Ft m Ft
v c

Ft mc m c F t
= =

+ +
 

As 
2 2 2 2 2 2

,  1,
Ft Ft

t
m c F t F t

→ ∞ → →
+

 so .v c→  

EVALUATE: Note that 
2 2 2 2

Ft

m c F t+
 is always less than 1, so v c<  always and v approaches c only when .t → ∞  

37.64. Setting 0x =  in Eq.(37.21), the first equation becomes x utγ′ = −  and the last, upon multiplication by ,c  becomes 

.ct ctγ′ = Squaring and subtracting gives 2 2 2 2 2 2 2 2 2 2
γ ( ) ,c t x c t u t c t′ ′− = − = or 2 2 84.53 10 m.x c t t′ ′= − = ×  

37.65. (a) IDENTIFY and SET UP: Use the Lorentz coordinate transformation (Eq.37.21) for 1 1( , )x t  and 2 2( , ) :x t  

1 1
1 2 2

,
1 /

x ut
x

u c

−′ =
−

 2 2
2 2 21 /

x ut
x

u c

−′ =
−

 

2
1 1

1 2 2

/
,

1 /

t ux c
t

u c

−′ =
−

 
2

2 2
2 2 2

/

1 /

t ux c
t

u c

−′ =
−

 

Same point in S′  implies 1 2.x x′ ′=  What then is 2 1 ?t t t′ ′ ′Δ = −  

EXECUTE: 1 2x x′ ′=  implies 1 1 2 2x ut x ut− = −  

2 1 2 1( )u t t x x− = −  and 2 1

2 1

x x x
u

t t t

− Δ= =
− Δ

 

From the time transformation equations, 
2

2 1 2 2

1
( / )

1 /
t t t t u x c

u c
′ ′ ′Δ = − = Δ − Δ

−
 

Using the result that 
x

u
t

Δ=
Δ

 gives 

2 2

2 2 2

1
( ( ) /(( ) ))

1 ( ) /(( ) )
t t x t c

x t c
′Δ = Δ − Δ Δ

− Δ Δ
 

2 2

2 2 2
( ( ) /(( ) ))

( ) ( ) /

t
t t x t c

t x c

Δ′Δ = Δ − Δ Δ
Δ − Δ

 

2 2 2
2 2

2 2 2

( ) ( ) /
( ) ( / ) ,

( ) ( ) /

t x c
t t x c

t x c

Δ − Δ′Δ = = Δ − Δ
Δ − Δ

 as was to be shown. 

This equation doesn’t have a physical solution (because of a negative square root) if 2 2( / ) ( )x c tΔ > Δ  or .x c tΔ ≥ Δ  

(b) IDENTIFY and SET UP: Now require that 2 1t t′ ′=  (the two events are simultaneous in S′ ) and use the Lorentz 

coordinate transformation equations. 
EXECUTE: 2 1t t′ ′=  implies 2 2

1 1 2 2/ /t ux c t ux c− = −  

2 1
2 1 2

x x
t t u

c

−⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 so 
2

x
t u

c

Δ⎛ ⎞Δ = ⎜ ⎟
⎝ ⎠

 and 
2c t

u
x

Δ=
Δ

 

From the Lorentz transformation equations, 

2 1 2 2

1
( ).

1 /
x x x x u t

u c

⎛ ⎞
′ ′ ′Δ = − = Δ − Δ⎜ ⎟

−⎝ ⎠
 

Using the result that 2 /u c t x= Δ Δ  gives 

2 2

2 2 2

1
( ( ) / )

1 ( ) /( )
x x c t x

c t x
′Δ = Δ − Δ Δ

− Δ Δ
 

2 2

2 2 2
( ( ) / )

( ) ( )

x
x x c t x

x c t

Δ′Δ = Δ − Δ Δ
Δ − Δ

 

2 2 2
2 2 2

2 2 2

( ) ( )
( ) ( )

( ) ( )

x c t
x x c t

x c t

Δ − Δ′Δ = = Δ − Δ
Δ − Δ

 

(c) IDENTIFY and SET UP: The result from part (b) is 2 2 2( ) ( )x x c t′Δ = Δ − Δ  
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Solve for 2 2 2 2:  ( ) ( ) ( )t x x c t′Δ Δ = Δ − Δ  

EXECUTE: 
2 2 2 2

8
8

( ) ( ) (5.00 m) (2.50 m)
1.44 10  s

2.998 10  m/s

x x
t

c
−′Δ − Δ −

Δ = = = ×
×

 

EVALUATE:  This provides another illustration of the concept of simultaneity (Section 37.2): events observed to 
be simultaneous in one frame are not simultaneous in another frame that is moving relative to the first. 

37.66. (a) 80.0 m s is non-relativistic, and 21
186 J.

2
K mv= =  

(b) 2 15( 1) 1.31 10 J.mcγ − = ×  

(c) In Eq. (37.23), c) 8 8 72.20 10 m s, 1.80 10 m s,and so 7.14 10 m s.v u v′ = × = − × = ×  

(d)
20.0 m

13.6 m.
γ

=  

(e) 8
8

20.0 m
9.09 10 s.

2.20 10 m s
−= ×

×
 

(f) 8 8
8

13.6 m
6.18 10 s, or 6.18 10 s.

2.20 10 m s

t
t t

γ
− −′ ′= = × = = ×

×
 

37.67. IDENTIFY and SET UP: An increase in wavelength corresponds to a decrease in frequency ( / ),f c λ=  so the 

atoms are moving away from the earth. Receding, so use Eq.(37.26): 0

c u
f f

c u

−=
+

 

EXECUTE: Solve for u: 2
0( / ) ( )f f c u c u+ = −  and 

2
0

2
0

1 ( / )

1 ( / )

f f
u c

f f

⎛ ⎞−= ⎜ ⎟+⎝ ⎠
 

0 0/ ,  /f c f cλ λ= =  so 0 0/ /f f λ λ=  
2 2

80
2 2

0

1 ( / ) 1 (656.3/953.4)
0.357 1.07 10  m/s

1 ( / ) 1 (656.3/953.4)
u c c c

λ λ
λ λ

⎛ ⎞ ⎛ ⎞− −= = = = ×⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠
 

EVALUATE: The relative speed is large, 36% of c. The cosmological implication of such observations will be 
discussed in Section 44.6. 

37.68. The baseball had better be moving non-relativistically, so the Doppler shift formula (Eq.(37.25)) becomes 

0 (1 ( )).f f u c≅ −  In the baseball’s frame, this is the frequency with which the radar waves strike the baseball, and 

the baseball reradiates at f. But in the coach’s frame, the reflected waves are Doppler shifted again, so the detected 
frequency is 2

0 0 0(1 ( )) (1 ( )) (1 2( )), so 2 ( )f u c f u c f u c f f u c− = − ≈ − Δ = and the fractional frequency shift is 

0

2( ).
f

u c
f

Δ =  In this case, 

7
8

0

(2.86 10 )
(3.00 10 m) 42.9 m s 154 km h 92.5 mi h.

2 2

f
u c

f

−Δ ×= = × = = =  

37.69. IDENTIFY and SET UP: 18500 light years 4.73 10  m= × .  The proper distance l0 to the star is 500 light years.  The 

energy needed is the kinetic energy of the rocket at its final speed. 

EXECUTE: (a) 0.50u c= .  
18

10
8

4.73 10  m
3.2 10  s 1000 yr

(0.50)(3.00 10  m/s)

d
t

u

×Δ = = = × =
×

 

The proper time is measured by the astronauts.  2 2
0 1 / 866 yrt t u cΔ = Δ − =  

2
2 8 2 19

2 2 2

1
(1000 kg)(3.00 10  m/s) 1 1.4 10  J

1 / 1 (0.500)

mc
K mc

v c

⎛ ⎞
⎜ ⎟= − = × − = ×
⎜ ⎟− −⎝ ⎠

 

This is 140% of the U.S. yearly use of energy. 

(b) 0.99u c= .  
18

10
8

4.73 10  m
1.6 10  s 505 yr

(0.99)(3.00 10  m/s)

d
t

u

×Δ = = = × =
×

, 0 71 yrtΔ =  

19 20

2

1
(9.00 10  J) 1 5.5 10  J

1 (0.99)
K

⎛ ⎞
⎜ ⎟= × − = ×
⎜ ⎟−⎝ ⎠

 

This is 55 times the U.S. yearly use. 
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(c) 0.9999u c= .  
18

10
8

4.73 10  m
1.58 10  s 501 yr

(0.9999)(3.00 10  m/s)

d
t

u

×Δ = = = × =
×

, 0 7.1 yrtΔ =  

19 21

2

1
(9.00 10  J) 1 6.3 10  J

1 (0.9999)
K

⎛ ⎞
⎜ ⎟= × − = ×
⎜ ⎟−⎝ ⎠

 

This is 630 times the U.S. yearly use. 
The energy cost of accelerating a rocket to these speeds is immense. 

37.70. (a) As in the hint, both the sender and the receiver measure the same distance. However, in our frame, the ship has 
moved between emission of successive wavefronts, and we can use the time 1T f= as the proper time, with the 

result that 0 0.f f fγ= >  

(b) Toward: 
1/2

0

1 0.758
345 MHz 930 MHz

1 0.758

c u
f f

c u

+ +⎛ ⎞= = =⎜ ⎟− −⎝ ⎠
 

0 930 MHz 345 MHz 585 MHz.f f− = − =  

Away: 
1/2

0 0

1 0.758
345 MHz 128 MHz and 217 MHz.

1 0.758

c u
f f f f

c u

− −⎛ ⎞= = = − = −⎜ ⎟+ +⎝ ⎠
 

(c) 0 0 0γ 1.53 528 MHz, 183 MHz.f f f f= = − = The shift is still bigger than 0f , but not as large as the approaching 

frequency. 
37.71. The crux of this problem is the question of simultaneity. To be “in the barn at one time” for the runner is different 

than for a stationary observer in the barn. The diagram in Figure 37.71a shows the rod fitting into the barn at time 
0t = , according to the stationary observer. The diagram in Figure 37.71b is in the runner’s frame of reference. The 

front of the rod enters the barn at time 1t and leaves the back of the barn at time 2.t  However, the back of the rod 

does not enter the front of the barn until the later time 3.t  

   
Figure 37.71 

37.72. In Eq.(37.23), , ( ),u V v c n′= =  and so 

2

( / ) ( / )
.

1 ( / )1

c n V c n V
v

cV V nc
nc

+ += =
++

 For V non-relativistic, this is 

2 2
2

1
(( ) )(1 ( / )) ( / ) ( / ) ( / ) 1

c
v cn V V nc nc n V V n V nc V

n n
⎛ ⎞≈ + − = + − − ≈ + −⎜ ⎟
⎝ ⎠

 , so 
2

1
1 .k

n
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 For water, 1.333n =  

and 0.437.k =  
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37.73. (a) 
dv

a
dt

′ =
′
.  2( )dt dt udx cγ′ = − .  

2 2 2 2(1 ) (1 )

dv v u u
dv dv

uv c uv c c

−′ = +
− −

 

22 22

1

1 (1 )

dv v u u

dv uv c cuv c

′ − ⎛ ⎞= + ⎜ ⎟− − ⎝ ⎠
. 

2 2 2

2 2 2 2 2

1 ( ) 1

1 (1 ) (1 )

v u u c u c
dv dv dv

uv c uv c uv c

⎛ ⎞ ⎛ ⎞− −′ = + =⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠
 

2 2

2 22 2

2 2 2 2

(1 )
(1 ) 1(1 )

γ (1 ) γ(1 )

u c
dv

dv u cuv c
a

dt u dx c dt uv c uv cγ

−
−−′ = =

− − −
 

2 2 3 2 2 3(1 ) (1 ) .a u c uv c −= − −  

(b) Changing frames from S S′ → just involves changing ,a a v v a′ ′→ → − ⇒ =
3

2 2 3 2
2

(1 ) 1 .
uv

a u c
c

−′⎛ ⎞′ − +⎜ ⎟
⎝ ⎠

 

37.74. (a) The speed v′ is measured relative to the rocket, and so for the rocket and its occupant, 0.v′ =  The acceleration 
as seen in the rocket is given to be ,a g′ =  and so the acceleration as measured on the earth is 

3 22

2
1 .

du u
a g

dt c

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
 

(b) With 1 0v =  when 0t = , 

1 1 1
12 2 3 2 2 2 3 2 2 20 0

1

1 1
.  .  .

(1 ) (1 ) 1

t vdu du v
dt dt t

g u c g u c g v c
= = =

− − −∫ ∫  

(c) 2 2/ 1 ,dt dt dt u cγ′ = = − so the relation in part (b) between dt and du, expressed in terms of dt′ and du, is 

2 2 3 2 2 2 22 2

1 1
.

(1 ) (1 )1

du du
dt dt

g u c g u cu c
γ′ = = =

− −−
 

Integrating as above (perhaps using the substitution z u c= ) gives 1
1 arctanh .

c v
t

g c
⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

 For those who wish to 

avoid inverse hyperbolic functions, the above integral may be done by the method of partial fractions; 
1

(1 )(1 ) 2 1 1

du du du
gdt

u c u c u c uc

⎡ ⎤′ = = +⎢ ⎥+ − + −⎣ ⎦
, which integrates to 1

1
1

c
1n

2

c v
t

g c v

⎛ ⎞+′ = ⎜ ⎟−⎝ ⎠
. 

(d) Solving the expression from part (c) for 1v in terms of 1 1 1, ( ) tanh( ),t v c gt c′=  so that 
2

1 11 ( ) 1 cosh ( ),v c gt c′− = using the appropriate indentities for hyperbolic functions. Using this in the expression 

found in part (b), 1
1 1

1

tanh( )
sinh( ),

1 cosh( )

c gt c c
t gt c

g gt c g

′ ′= =
′

 which may be rearranged slightly as 1 1sinh .
gt gt

c c

′⎛ ⎞= ⎜ ⎟
⎝ ⎠

 If 

hyperbolic functions are not used, 1v  in terms of 1t′  is found to be 
1 1

1 1

/ /
1

/ /

gt c gt c

gt c gt c

v e e

c e e

′ ′−

′ ′−

−=
+

 which is the same as 

tanh( 1gt c′ ). Inserting this expression into the result of part (b) gives, after much algebra, 1 1
1 ( ),

2
gt c gt cc

t e e
g

′ ′−= −  

which is equivalent to the expression found using hyperbolic functions. 
(e) After the first acceleration period (of 5 years by Stella’s clock), the elapsed time on earth is 

9
1 1sinh( ) 2.65 10 s 84.0 yr.

c
t gt c

g
′ ′= = × =  

The elapsed time will be the same for each of the four parts of the voyage, so when Stella has returned, Terra has 
aged 336 yr and the year is 2436. (Keeping more precision than is given in the problem gives February 7 of that 
year.) 

37.75. (a) 14 14 14
0 4.568110 10 Hz; 4.568910 10 Hz; 4.567710 10 Hzf f f+ −= × = × = ×  

0 2 2
0

2 2
0

0

( )
 

( ) ( ( )) ( ( ))

( ( )) ( ( ))( )
 

( )

c u v
f f

c u v f c u v f c u v

f c u v f c u vc u v
f f

c u v

+
+

−
−

⎫+ += ⎪− + − + = + +⎪⇒⎬ − − = + −+ − ⎪= ⎪− − ⎭
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where u  is the velocity of the center of mass and v  is the orbital velocity. 
2

0
2

0

( ) 1
( )

( ) 1

f f
u v c

f f
+

+

−
⇒ + =

+
 and 

2 2
0

2 2
0

( ) 1
( )

( ) 1

f f
u v c

f f
−

−

−− =
+

 

4 45.25 10 m s and 2.63 10 m su v u v⇒ + = × − = − × . 

This gives  41.31 10 m su = + × (moving toward at 13.1 km s)  and 43.94 10  m/sv = × . 

(b) 43.94 10 m s; 11.0 days.v T= × =  2 R vtπ = ⇒  
4

9(3.94 10 m s)(11.0 days)(24 hrs day)(3600 sec hr)
5.96 10 m

2
R

π
×= = × .  This is about 

0.040 times the earth-sun distance.  

Also the gravitational force between them (a distance of 2R) must equal the centripetal force from the center of 
mass: 

2 2 2 9 4 2
29

sun2 11 2 2

( ) 4 4(5.96 10 m)(3.94 10 m s)
5.55 10 kg 0.279 m .

(2 ) 6.672 10 N m kg

Gm mv Rv
m

R R G −

× ×= ⇒ = = = × =
× ⋅

 

37.76. For any function ( , )f f x t= and ( , ), ( , ),x x x t t t x t′ ′ ′ ′= =  let ( , ) ( ( , ), ( , ))F x t f x x t t x t′ ′ ′ ′ ′ ′=  and use the standard 

(but mathematically improper) notation ( , ) ( , ).F x t f x t′ ′ ′ ′=  The chain rule is then 

( , ) ( , ) ( , )
,

( , ) ( , ) ( , )
.

f x t f x t x f x t t

x x x t x
f x t f x t x f x t t

t x t t t

′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

 

In this solution, the explicit dependence of the functions on the sets of dependent variables is suppressed, and the 

above relations are then 
f f x f t

x x x t x

′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

, .
f f x f t

t x t t t

′ ′∂ ∂ ∂ ∂ ∂= +
′ ′∂ ∂ ∂ ∂ ∂

 

(a) 
2 2

2 2
1, , 0 and 1. Then, , and .

x x t t E E E E
v

x t x t x x x x

′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = − = = = =
′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 For the time derivative, 

.
E E E

v
t x t

∂ ∂ ∂= − +
′ ′∂ ∂ ∂

 To find the second time derivative, the chain rule must be applied to both terms; that is, 

2 2

2

2 2

2

,

.

E E E
v

t x x t x

E E E
v

t t x t t

∂ ∂ ∂ ∂= − +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂= − +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

 

Using these in
2

2
,

E

t

∂
∂

 collecting terms and equating the mixed partial derivatives gives 

2 2 2 2
2

2 2 2
2

E E E E
v v

t x x t t

∂ ∂ ∂ ∂= − +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

, and using this and the above expression for 
2

2

E

x

∂
′∂

gives the result. 

(b) For the Lorentz transformation, 2
γ, , /  and γ.

x x t t
v v c

x t x t
γ γ

′ ′ ′ ′∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂

 

The first partials are then 

2
γ γ , γ γ

E E v E E E E
v

x x c t t x t

∂ ∂ ∂ ∂ ∂ ∂= − = − +
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

 

and the second partials are (again equating the mixed partials) 
2 2 2 2 2

2 2 2
2 2 4 2 2

2 2 2 2
2 2 2 2

2 2 2

γ γ 2γ

γ γ 2γ .

E E v E v E

x x c t c x t

E E E E
v v

t x t x t

∂ ∂ ∂ ∂= + −
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂= + −
′ ′ ′ ′∂ ∂ ∂ ∂ ∂

 

Substituting into the wave equation and combining terms (note that the mixed partials cancel), 
2 2 2 2 2 2 2 2

2 2
2 2 2 2 2 4 2 2 2 2 2

1 1 1
γ 1 0.

E E v E v E E E

x c t c x c c t x c t
γ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂− = − + − = − =⎜ ⎟ ⎜ ⎟′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
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37.77. (a) In the center of momentum frame, the two protons approach each other with equal velocities (since the protons 
have the same mass). After the collision, the two protons are at rest─but now there are kaons as well. In this 

situation the kinetic energy of the protons must equal the total rest energy of the two kaons 2
cm p2(γ 1)m c⇒ − =  

2
k2m c ⇒  k

cm
p

γ 1 1.526.
m

m
= + =  The velocity of a proton in the center of momentum frame is then 

2
cm

cm 2
cm

γ 1
0.7554 .

γ
v c c

−= =  

To get the velocity of this proton in the lab frame, we must use the Lorentz velocity transformations. This is the 
same as “hopping” into the proton that will be our target and asking what the velocity of the projectile proton is. 
Taking the lab frame to be the unprimed frame moving to the left, cm cmandu v v v′= = (the velocity of the projectile 

proton in the center of momentum frame). 

2cm
lab lab lab lab p2 2

cm lab
2 2 2

2 1
0.9619 γ 3.658 (γ 1) 2494 MeV.

1 1 1

v u v
v c K m c

uv v v
c c c

′ += = = ⇒ = = ⇒ = − =′
+ + −

 

(b) lab

k

2494 MeV
2.526.

2 2(493.7 MeV)

K

m
= =  

(c) The center of momentum case considered in part (a) is the same as this situation. Thus, the kinetic energy 
required is just twice the rest mass energy of the kaons. cm 2(493.7 MeV) 987.4 MeV.K = = This offers a 

substantial advantage over the fixed target experiment in part (b). It takes less energy to create two kaons in the 
proton center of momentum frame.
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PHOTONS, ELECTRONS, AND ATOMS 

 38.1. IDENTIFY and SET UP: The stopping potential V0 is related to the frequency of the light by 0

h
V f

e e

φ= − .  The 

slope of  V0 versus f is h/e.  The value fth of f when 0 0V =  is related to φ by thhfφ = . 

EXECUTE: (a) From the graph, 15
th 1.25 10  Hzf = × . Therefore, with the value of h from part (b), 

th 4.8 eVhfφ = = . 

(b) From the graph, the slope is 153.8 10  V s−× ⋅ . 16 15 34( )(slope) (1.60 10  C)(3.8 10  V s) 6.1 10  J sh e − − −= = × × ⋅ = × ⋅  

(c) No photoelectrons are produced for thf f< . 

(d) For a different metal fth and φ are different.  The slope is h/e so would be the same, but the graph would be 
shifted right or left so it has a different intercept with the horizontal axis. 
EVALUATE: As the frequency f of the light is increased above fth the energy of the photons in the light increases 
and more energetic photons are produced.  The work function we calculated is similar to that for gold or nickel. 

 38.2. IDENTIFY and SET UP: c f λ=  relates frequency and wavelength and E hf=  relates energy and frequency for a 

photon.  83.00 10  m/sc = × .  161 eV 1.60 10  J−= × . 

EXECUTE: (a) 
8

14
9

3.00 10  m/s
5.94 10  Hz

505 10  m

c
f

λ −

×= = = ×
×

 

(b) 34 14 19(6.626 10  J s)(5.94 10  Hz) 3.94 10  J 2.46 eVE hf − −= = × ⋅ × = × =  

(c) 21
2K mv=  so 

19

15

2 2(3.94 10  J)
9.1 mm/s

9.5 10  kg

K
v

m

−

−

×= = =
×

 

 38.3. 
8

14
7

3.00 10 m s
5.77 10 Hz

λ 5.20 10  m

c
f −

×= = = ×
×

 

34
27

7

27 8 19

6.63 10 J s
1.28 10  kg m s

λ 5.20 10 m

(1.28 10 kg m s) (3.00 10 m s) 3.84 10 J 2.40 eV.

h
p

E pc

−
−

−

− −

× ⋅= = = × ⋅
×

= = × ⋅ × = × =
 

 38.4. IDENTIFY and SET UP: av

energy
P

t
= .  191 eV 1.60 10  J−= × .  For a photon, 

hc
E hf

λ
= = .  346.63 10  J sh −= × ⋅ . 

EXECUTE: (a) 3 2 16
avenergy (0.600 W)(20.0 10  s) 1.20 10  J 7.5 10  eVP t − −= = × = × = ×  

(b) 
34 8

19
9

(6.63 10  J s)(3.00 10  m/s)
3.05 10  J 1.91 eV

652 10  m

hc
E

λ

−
−

−

× ⋅ ×= = = × =
×

 

(c) The number of photons is the total energy in a pulse divided by the energy of one photon:  
2

16
19

1.20 10  J
3.93 10  photons

3.05 10  J/photon

−

−

× = ×
×

. 

EVALUATE: The number of photons in each pulse is very large. 
 38.5. IDENTIFY and SET UP: Eq.(38.2) relates the photon energy and wavelength. c f λ=  relates speed, frequency and 

wavelength for an electromagnetic wave. 

EXECUTE: (a) E hf=  so 
6 19

20
34

(2.45 10  eV)(1.602 10  J/1 eV)
5.92 10  Hz

6.626 10  J s

E
f

h

−

−

× ×= = = ×
× ⋅

 

(b) c f λ=  so 
8

13
20

2.998 10  m/s
5.06 10  m

5.92 10  Hz

c

f
λ −×= = = ×

×
 

(c) EVALUATE: λ  is comparable to a nuclear radius. Note that in doing the calculation the energy in MeV was 
converted to the SI unit of Joules. 

38
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 38.6. IDENTIFY and SET UP: th 272 nmλ = .  c f λ= .  2
max

1

2
mv hf φ= − .  At the threshold frequency, thf , max 0v → .  

154.136 10  eV sh −= × ⋅ . 

EXECUTE: (a) 
8

15
th 9

th

3.00 10  m/s
1.10 10  Hz

272 10  m

c
f

λ −

×= = = ×
×

.  

(b) 15 15
th (4.136 10  eV s)(1.10 10  Hz) 4.55 eVhfφ −= = × ⋅ × = . 

(c) 2 15 15
max

1
(4.136 10  eV s)(1.45 10  Hz) 4.55 eV 6.00 eV 4.55 eV 1.45 eV

2
mv hf φ −= − = × ⋅ × − = − =  

EVALUATE: The threshold wavelength depends on the work function for the surface. 

 38.7. IDENTIFY and SET UP: Eq.(38.3): 2
max

1
.

2

hc
mv hf φ φ

λ
= − = −  Take the work function φ  from Table 38.1. Solve 

for max .v  Note that we wrote f as / .c λ  

EXECUTE: 
34 8

2 19
max 9

1 (6.626 10  J s)(2.998 10  m/s)
(5.1 eV)(1.602 10  J/1 eV)

2 235 10  m
mv

−
−

−

× ⋅ ×= − ×
×

 

2 19 19 20
max

1
8.453 10  J 8.170 10  J 2.83 10  J

2
mv − − −= × − × = ×  

20
5

max 31

2(2.83 10  J)
2.49 10  m/s

9.109 10  kg
v

−

−

×= = ×
×

 

EVALUATE: The work function in eV was converted to joules for use in Eq.(38.3). A photon with 235 nmλ =  
has energy greater then the work function for the surface. 

 38.8. IDENTIFY and SET UP: th
th

hc
hfφ

λ
= = .  The minimum φ corresponds to the minimum λ . 

EXECUTE: 
15 8

9
th

(4.136 10  eV s)(3.00 10  m/s)
1.77 eV

700 10  m

hcφ
λ

−

−

× ⋅ ×= = =
×

 

 38.9. IDENTIFY and SET UP: c f λ= .  The source emits (0.05)(75 J) 3.75 J= of energy as visible light each second.  

E hf= , with 346.63 10  J sh −= × ⋅ . 

EXECUTE: (a) 
8

14
9

3.00 10  m/s
5.00 10  Hz

600 10  m

c
f

λ −

×= = = ×
×

 

(b) 34 14 19(6.63 10  J s)(5.00 10  Hz) 3.32 10  JE hf − −= = × ⋅ × = × .  The number of photons emitted per second is 

19
19

3.75 J
1.13 10  photons

3.32 10  J/photon− = ×
×

. 

(c) No.  The frequency of the light depends on the energy of each photon.  The number of photons emitted per 
second is proportional to the power output of the source. 

38.10. IDENTIFY: In the photoelectric effect, the energy of the photon is used to eject an electron from the surface, and 
any excess energy goes into kinetic energy of the electron. 
SET UP: The energy of a photon is E = hf, and the work function is given by φ = hf0, where f0 is the threshold frequency. 
EXECUTE: (a) From the graph, we see that Kmax = 0 when λ = 250 nm, so the threshold wavelength is 250 nm. 
Calling f0 the threshold frequency, we have 

f0 = c/λ0 = (3.00 × 108 m/s)/(250 nm) = 1.2 × 1015 Hz. 

(b) φ = hf0 = (4.136 × 10–15 eV s⋅ )(1.2 × 1015 Hz) = 4.96 eV = 5.0 eV 
(c) The graph (see Figure 38.10) is linear for λ < λ0 (1/λ > 1/λ0), and linear graphs are easier to interpret than curves. 
EVALUATE: If the wavelength of the light is longer than the threshold wavelength (that is, if 1/λ < 1/λ0), the 
kinetic energy of the electrons is really not defined since no photoelectrons are ejected from the metal. 

 
Figure 38.10 
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38.11. IDENTIFY: Protons have mass and photons are massless. 
(a) SET UP: For a particle with mass, 2 / 2 .K p m=  

EXECUTE: 2 12p p=  means 2 14 .K K=  

(b) SET UP: For a photon, .E pc=  

EXECUTE: 2 12p p=  means 2 12 .E E=  

EVALUATE: The relation between E and p is different for particles with mass and particles without mass. 

38.12. IDENTIFY and SET UP: 2
0 max

1

2
eV mv= , where 0V is the stopping potential.  The stopping potential in volts equals 

0eV in electron volts.  2
max

1

2
mv hf φ= − . 

EXECUTE: (a) 2
0 max

1

2
eV mv= so 

15 8

0 9

(4.136 10  eV s)(3.00 10  m/s)
2.3 eV 4.96 eV 2.3 eV 2.7 eV

250 10  m
eV hf φ

−

−

× ⋅ ×= − = − = − =
×

.  The stopping potential 

is 2.7 electron volts. 

(b) 2
max

1
2.7 eV

2
mv =  

(c) 
19

5
max 31

2(2.7 eV)(1.60 10  J/eV)
9.7 10  m/s

9.11 10  kg
v

−

−

×= = ×
×

 

38.13. (a) IDENTIFY: First use Eq.(38.4) to find the work function .φ  

SET UP: 0eV hf φ= −  so 0 0

hc
hf eV eVφ

λ
= − = −  

EXECUTE: 
34 8

19
9

(6.626 10  J s)(2.998 10  m/s)
(1.602 10  C)(0.181 V)

254 10  m
φ

−
−

−

× ⋅ ×= − ×
×

 

19 20 19 197.821 10  J 2.900 10  J 7.531 10  J(1 eV/1.602 10 J) 4.70 eVφ − − − −= × − × = × × =  

IDENTIFY and SET UP: The threshold frequency thf  is the smallest frequency that still produces photoelectrons. 

It corresponds to max 0K =  in Eq.(38.3), so th .hf φ=  

EXECUTE: 
c

f
λ

=  says 
th

hc φ
λ

=  

34 8
7

th 19

(6.626 10  J s)(2.998 10  m/s)
2.64 10  m 264 nm

7.531 10  J

hcλ
φ

−
−

−

× ⋅ ×= = = × =
×

 

(b) EVALUATE: As calculated in part (a), 4.70 eV.φ =  This is the value given in Table 38.1 for copper. 
38.14. IDENTIFY and SET UP: A photon has zero rest mass, so its energy and momentum are related by Eq.(37.40). 

Eq.(38.5) then relates its momentum and wavelength. 
EXECUTE: (a) 28 8 19(8.24 10  kg m/s)(2.998 10  m/s) 2.47 10  JE pc − −= = × ⋅ × = × =  

19 19(2.47 10  J)(1 eV/1.602 10  J)− −× × = 1.54 eV  

(b) 
h

p
λ

=  so 
34

7
28

6.626 10  J s
8.04 10  m 804 nm

8.24 10  kg m/s

h

p
λ

−
−

−

× ⋅= = = × =
× ⋅

 

EVALUATE: This wavelength is longer than visible wavelengths; it is in the infrared region of the 
electromagnetic spectrum. To check our result we could verify that the same E is given by Eq.(38.2), using the λ  
we have calculated. 

38.15. IDENTIFY and SET UP: Balmer’s formula is 
2 2

1 1 1
.

2
R

nλ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 For the Hγ  spectral line 5.n =  Once we have ,λ  

calculate f from /f c λ=  and E from Eq.(38.2). 

EXECUTE: (a) 
2 2

1 1 1 25 4 21
.

2 5 100 100
R R R

λ
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

Thus 7
7

100 100
 m 4.341 10  m 434.1 nm.

21 21(1.097 10 )R
λ −= = = × =

×
 

(b) 
8

14
7

2.998 10  m/s
6.906 10  Hz

4.341 10  m

c
f

λ −

×= = = ×
×
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(c) 34 14 19(6.626 10  J s)(6.906 10  Hz) 4.576 10  J 2.856 eVE hf − −= = × ⋅ × = × =  

EVALUATE: Section 38.3 shows that the longest wavelength in the Balmer series (H )α  is 656 nm and the 

shortest is 365 nm. Our result for Hγ  falls within this range. The photon energies for hydrogen atom transitions are 

in the eV range, and our result is of this order. 
38.16. IDENTIFY and SET UP: For the Lyman series the final state is 1n = and the wavelengths are given by 

2 2

1 1 1
,  2,3,....

1
R n

nλ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

  For the Paschen series the final state is 3n =  and the wavelengths are given by 

2 2

1 1 1
,  4,5,....

3
R n

nλ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

  7 11.097 10  mR −= × .  The longest wavelength is for the smallest n and the shortest 

wavelength is for n → ∞ . 

EXECUTE: Lyman  Longest:  
2 2

1 1 1 3

1 2 4

R
R

λ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

.  
7 1

4
121.5 nm

3(1.097 10  m )
λ −= =

×
. 

Shortest: 
2 2

1 1 1

1
R R

λ
⎛ ⎞= − =⎜ ⎟∞⎝ ⎠

.  
7 1

1
91.16 nm

1.097 10  m
λ −= =

×
 

Paschen  Longest:  
2 2

1 1 1 7

3 4 144

R
R

λ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

.  
7 1

144
1875 nm

7(1.097 10  m )
λ −= =

×
. 

Shortest: 
2 2

1 1 1

3 9

R
R

λ
⎛ ⎞= − =⎜ ⎟∞⎝ ⎠

. 

38.17. (a) 
34 8

19
7

(6.63 10  J s) (3.00 10 m s)
2.31 10  J 1.44 eV.

λ 8.60 10 m

hc
Eγ

−
−

−

× ⋅ ×= = = × =
×

 

So the internal energy of the atom increases by 1.44 eV to 6.52 eV 1.44 eVE = − + = 5.08 eV.−  

(b) 
34 8

19
7

(6.63 10 J s) (3.00 10 m s)
4.74 10  J 2.96 eV.

λ 4.20 10  m

hc
Eγ

−
−

−

× ⋅ ×= = = × =
×

 

So the final internal energy of the atom decreases to 2.68 eV 2.96 eV 5.64 eV.E = − − = −  

38.18. IDENTIFY and SET UP: The ionization threshold is at 0E = .  The energy of an absorbed photon equals the 
energy gained by the atom and the energy of an emitted photon equals the energy lost by the atom. 
EXECUTE: (a) 0 ( 20 eV) 20 eVEΔ = − − =  

(b) When the atom in the 1n = level absorbs a 18 eV photon, the final level of the atom is 4n = .  The possible 
transitions from 4n = and corresponding photon energies are 4 3,  3 eVn n= → = ; 4 2,  8 eVn n= → = ; 

4 1,  18 eVn n= → = .  Once the atom has gone to the 3n = level, the following transitions can occur:  
3 2,  5 eVn n= → = ; 3 1,  15 eVn n= → = .  Once the atom has gone to the 2n = level, the following transition 

can occur:  2 1,  10 eVn n= → = .  The possible energies of emitted photons are: 3 eV, 5 eV, 8 eV, 10 eV, 15 eV, 
and 18 eV. 
(c) There is no energy level 8 eV higher in energy than the ground state, so the photon cannot be absorbed. 
(d) The photon energies for 3 2n n= → =  and for 3 1n n= → = are 5 eV and 15 eV.  The photon 
energy for 4 3n n= → = is 3 eV.  The work function must have a value between 3 eV and 5 eV. 

38.19. IDENTIFY and SET UP: The wavelength of the photon is related to the transition energy i fE E−  of the atom by 

i f

hc
E E

λ
− =  where 61.240 10  eV mhc −= × ⋅ . 

EXECUTE: (a) The minimum energy to ionize an atom is when the upper state in the transition has 0E = , so 

1 17.50 eVE = − .  For 5 1n n= → = , 73.86 nmλ =  and 
6

5 1 9

1.240 10  eV m
16.79 eV

73.86 10  m
E E

−

−

× ⋅− = =
×

.  

5 17.50 eV 16.79 eV 0.71 eVE = − + = − .  For 4 1n n= → = , 75.63 nmλ =  and 4 1.10 eVE = − .  For 

3 1n n= → = , 79.76 nmλ =  and 3 1.95 eVE = − .  For 2 1n n= → = , 94.54 nmλ =  and 2 4.38 eVE = − . 

(b) i f 4 2 1.10 eV ( 4.38 eV) 3.28 eVE E E E− = − = − − − = and 
6

i f

1.240 10  eV m
378 nm

3.28 eV

hc

E E
λ

−× ⋅= = =
−

 

EVALUATE: The 4 2n n= → =  transition energy is smaller than the 4 1n n= → =  transition energy so the 
wavelength is longer.  In fact, this wavelength is longer than for any transition that ends in the 1n =  state. 
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38.20. (a) Equating initial kinetic energy and final potential energy and solving for the separation radius r, 
19

14
6

0 0

1 (92 ) (2 ) 1 (184) (1.60 10 C)
5.54 10 m.

4 4 (4.78 10 J C)

e e
r

Kπ π

−
−×= = = ×

×P P
 

(b) The above result may be substituted into Coulomb’s law, or, the relation between the magnitude of the force 
and the magnitude of the potential energy in a Coulombic field is 

6 19

14

(4.78 10 eV) (1.6 10 J ev)
13.8 N.

(5.54 10 m)

K
F

r

−

−

× ×= = =
×

 

38.21. (a) IDENTIFY: If the particles are treated as point charges, 1 2

0

1
.

4

q q
U

rπ
=

P
 

SET UP: 1 2q e=  (alpha particle); 2 82q e=  (gold nucleus); r is given so we can solve for U. 

EXECUTE: 
19 2

9 2 2 13
14

(2)(82)(1.602 10  C)
(8.987 10  N m /C ) 5.82 10  J

6.50 10  m
U

−
−

−

×= × ⋅ = ×
×

 

13 19 65.82 10  J(1 eV/1.602 10  J) 3.63 10  eV 3.63 MeVU − −= × × = × =  

(b) IDENTIFY: Apply conservation of energy: 1 1 2 2.K U K U+ = +  

SET UP: Let point 1 be the initial position of the alpha particle and point 2 be where the alpha particle 
momentarily comes to rest. Alpha particle is initially far from the lead nucleus implies 1r ≈ ∞  and 1 0.U =  Alpha 

particle stops implies 2 0.K =  

EXECUTE: Conservation of energy thus says 13
1 2 5.82 10  J 3.63 MeV.K U −= = × =  

(c) 21

2
K mv=  so 

13
7

27

2 2(5.82 10  J)
1.32 10  m/s

6.64 10  kg

K
v

m

−

−

×= = = ×
×

 

EVALUATE: / 0.044,v c =  so it is ok to use the nonrelativistic expression to relate K and v. When the alpha 
particle stops, all its initial kinetic energy has been converted to electrostatic potential energy. 

38.22. (a), (b) For either atom, the magnitude of the angular momentum is 
2

h

π
= 34 21.05 10 kg m s.−× ⋅  

38.23. IDENTIFY and SET UP: Use the energy to calculate n for this state. Then use the Bohr equation, Eq.(38.10), to 
calculate L. 

EXECUTE: 2(13.6 eV)/ ,nE n= −  so this state has 13.6/1.51 3.n = =  In the Bohr model. L n= U  so for this state 
34 23 3.16 10  kg m /s.L −= × ⋅U =  

EVALUATE: We will find in Section 41.1 that the modern quantum mechanical description gives a different 
result. 

38.24. IDENTIFY and SET UP: For a hydrogen atom 
2

13.6 eV
nE

n
= − .  

hc
E

λ
Δ = , where EΔ is the magnitude of the 

energy change for the atom and λ is the wavelength of the photon that is absorbed or emitted. 

EXECUTE: 4 1 2 2

1 1
(13.6 eV) 12.75 eV

4 1
E E E

⎛ ⎞Δ = − = − − = +⎜ ⎟
⎝ ⎠

.  

15 8(4.136 10  eV s)(3.00 10  m/s)
97.3 nm

12.75 eV

hc

E
λ

−× ⋅ ×= = =
Δ

.  153.08 10  Hz
c

f
λ

= = × . 

38.25. IDENTIFY: The force between the electron and the nucleus in 3+Be  is 
2

2
0

1
,

4

Ze
F

rπ
=

P
 where 4Z =  is the nuclear 

charge. All the equations for the hydrogen atom apply to 3+Be  if we replace 2e  by 2.Ze  
(a) SET UP: Modify Eq.(38.18). 

EXECUTE: 
4

2 2
0

1

8n

me
E

n h
= −
P

 (hydrogen) becomes 

2 2 4
2 2 3+

2 2 2 2 2
0 0

1 ( ) 1 13.60 eV
(for Be )

8 8n

m Ze me
E Z Z

n h n h n

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠P P

 

The ground-level energy of 3+Be  is 1 2

13.60 eV
16 218 eV.

1
E

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

EVALUATE: The ground-level energy of 3+Be  is 2 16Z =  times the ground-level energy of H. 
(b) SET UP: The ionization energy is the energy difference between the n → ∞  level energy and the 1n =  level 
energy. 
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EXECUTE: The n → ∞  level energy is zero, so the ionization energy of 3+Be  is 218 eV. 
EVALUATE: This is 16 times the ionization energy of hydrogen. 

(c) SET UP: 
2 2
1 2

1 1 1
R

n nλ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 just as for hydrogen but now R has a different value. 

EXECUTE: 
4

7 1
H 3

0

1.097 10  m
8

me
R

h c
−= = ×

P
 for hydrogen becomes 

4
2 7 1 8 1

Be 3
0

16(1.097 10  m ) 1.755 10  m
8

me
R Z

h c
− −= = × = ×

P
 for 3+Be .  

For 2n =  to Be 2 2

1 1 1
1,  3 /4.

1 2
n R R

λ
⎛ ⎞= = − =⎜ ⎟
⎝ ⎠

 

8 1 94 /(3 ) 4 /(3(1.755 10  m )) 7.60 10  m 7.60 nm.Rλ − −= = × = × =  

EVALUATE: This wavelength is smaller by a factor of 16 compared to the wavelength for the corresponding 
transition in the hydrogen atom. 

(d) SET UP: Modify Eq.(38.12): 
2 2

0 2n

n h
r

meπ
= P  (hydrogen). 

EXECUTE: 
2 2

0 2( )n

n h
r

m Zeπ
= P  3+(Be ).  

EVALUATE: For a given n the orbit radius for 3+Be  is smaller by a factor of 4Z =  compared to the 
corresponding radius for hydrogen. 

38.26. (a) We can find the photon’s energy from Eq. 38.8 

34 8 7 1 19
2 2 2 2

1 1 1 1
(6.63 10 J s) (3.00 10 m s) (1.097 10 m ) 4.58 10 J.

2 2 5
E hcR

n
− − −⎛ ⎞ ⎛ ⎞= − = × ⋅ × × − = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
The 

corresponding wavelength is λ 434 nm.
E

hc
= =  

(b) In the Bohr model, the angular momentum of an electron with principal quantum number n is given by  

Eq. 38.10: .
2

h
L n

π
=  Thus, when an electron makes a transition from n = 5 to n = 2 orbital, there is the following 

loss in angular momentum (which we would assume is transferred to the photon): 
34

343(6.63 10 J s)
(2 5) 3.17 10 J s.

2 2

h
L

ππ

−
−× ⋅Δ = − = − = − × ⋅  

However, this prediction of the Bohr model is wrong (as shown in Chapter 41). 

38.27. (a) 
2 19 2

6
1 34

0 0

1 (1.60 10 C)
: 1 2.18 10 m/s

2 2 (6.63 10 J s)n

e
v n v

nh

−

−

×= = ⇒ = = ×
× ⋅P P

 

6 51 1
2 32 1.09 10 m s.  3 7.27 10 m s.

2 3

v v
h v h v= ⇒ = = × = ⇒ = = ×  

(b) Orbital period 
2 2 2 2 3 3

0 0
2 4

0

2 2 4

1 2
n

n

r n h me n h

v e nh me

π= = =
⋅

P P
P

 

2 34 3
160

1 31 19 4

3 15 3 15
2 1 3 1

4 (6.63 10 J s)
1 1.53 10 s

(9.11 10 kg) (1.60 10 C)

2 : (2) 1.22 10 s.  3 : (3) 4.13 10 s.

n T

n T T n T T

−
−

− −

− −

× ⋅= ⇒ = = ×
× ×

= = = × = = = ×

P
 

(c) number of orbits 
8

6
15

1.0 10 s
8.2 10 .

1.22 10 s

−

−

×= = ×
×

 

38.28. IDENTIFY and SET UP: 
2

13.6 eV
nE

n
= −  

EXECUTE: (a) 
2

13.6 eV
nE

n
= −  and +1 2

13.6 eV

( 1)nE
n

= −
+

 

2 2

1 2 2 2 2

1 1 ( 1)
( 13.6 eV) (13.6 eV)

( 1) ( )( 1)n n

n n
E E E

n n n n+
⎡ ⎤ − +Δ = − = − − = −⎢ ⎥+ +⎣ ⎦

 

2 2

2 1
(13.6 eV)

( )( 1)

n
E

n n

+Δ =
+

  As n becomes large, 
4 3

2 2
(13.6 eV) (13.6 eV)

n
E

n n
Δ → =  
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Thus EΔ  becomes small as n becomes large. 
(b) 2

1nr n r=  so the orbits get farther apart in space as n increases. 

38.29. IDENTIFY and SET UP: The number of photons emitted each second is the total energy emitted divided by the 
energy of one photon. The energy of one photon is given by Eq.(38.2). E Pt=  gives the energy emitted by the 
laser in time t. 

EXECUTE: In 1.00 s the energy emitted by the laser is 3 3(7.50 10  W)(1.00 s) 7.50 10  J.− −× = ×  

The energy of each photon is 
34 8

20
6

(6.626 10  J s)(2.998 10  m/s)
1.874 10  J.

10.6 10  m

hc
E

λ

−
−

−

× ⋅ ×= = = ×
×

 

Therefore 
3

17
20

7.50 10  J/s
4.00 10  photons/s

1.874 10  J/photon

−

−

× = ×
×

 

EVALUATE: The number of photons emitted per second is extremely large. 
38.30. IDENTIFY and SET UP: Visible light has wavelengths from about 400 nm to about 700 nm.  The energy of each 

photon is 
251.99 10  J mhc

E hf
λ λ

−× ⋅= = = .  The power is the total energy per second and the total energy Etot is the 

number of photons N times the energy E of each photon. 
EXECUTE: (a) 193 nm is shorter than visible light so is in the ultraviolet. 

(b) 181.03 10  J 6.44 eV
hc

E
λ

−= = × =  

(c) totE NE
P

t t
= =  so 

3 9
7

18

(1.50 10  W)(12.0 10  s)
1.75 10  photons

1.03 10  J

Pt
N

E

− −

−

× ×= = = ×
×

 

EVALUATE: A very small amount of energy is delivered to the lens in each pulse, but this still corresponds to a 
large number of photons. 

38.31. IDENTIFY: Apply Eq.(38.21): 5 3( ) /5

3

s pE E kTs

p

n
e

n
− −=  

SET UP: From Fig.38.24a in the textbook, 5 320.66 eV and 18.70 eVs pE E= =  

EXECUTE: 19 19
5 3 20.66 eV 18.70 eV 1.96 eV(1.602 10  J/1 eV) 3.140 10  Js pE E − −− = − = × = ×  

(a) 
19 23(3.140 10  J)/[(1.38 10  J/K)(300 K)] 75.79 335

3

1.2 10s

p

n
e e

n

− −− × × − −= = = ×  

(b) 
19 23(3.140 10  J)/[(1.38 10  J/K)(600 K)] 37.90 175

3

3.5 10s

p

n
e e

n

− −− × × − −= = = ×  

(c) 
19 23(3.140 10  J)/[(1.38 10  J/K)(1200 K)] 18.95 95

3

5.9 10s

p

n
e e

n

− −− × × − −= = = ×  

(d) EVALUATE: At each of these temperatures the number of atoms in the 5s excited state, the initial state for the 
transition that emits 632.8 nm radiation, is quite small. The ratio increases as the temperature increases. 

38.32. 3 2 2 3 2 2 1 2

1/ 2

2 ( )

2

.P PP E E KT

P

n
e

n
− −=  

From the diagram 
34 8

19
3/ 2 g 7

1

(6.626 10  J)(3.000 10 m s)
3.375 10 J.

λ 5.890 10 m

hc
E

−
−

− −

× ×Δ = = = ×
×

 

34 8
19 19 19

1 2 g 3/ 2 1/ 27
2

(6.626 10  J)(3.000 10 m s)
3.371 10 J. so 3.375 10 J 3.371 10 J

λ 5.896 10 m

hc
E E

−
− − −

− −−

× ×Δ = = = × Δ = × − × =
×

224.00 10 J.−×
22 23

3/ 2

1/ 2

2 (4.00 10 J) (1.38 10 J / K 500 K).

2

0.944.P

P

n
e

n

− −− × × ⋅= =  So more atoms are in the 1 22 p  state. 

38.33. AC max
minλ

hceV hf= =  

34 8
10

min 19
AC

(6.63 10 J s)(3.00 10 m s)
λ 3.11 10 m

(1.60 10 C)(4000 V)

hc

eV

−
−

−

× ⋅ ×
⇒ = = = ×

×
 

This is the same answer as would be obtained if electrons of this energy were used. Electron beams are much more 
easily produced and accelerated than proton beams. 
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38.34. IDENTIFY and SET UP: 
hc

eV
λ

= , where λ is the wavelength of the x ray and V is the accelerating voltage. 

EXECUTE: (a) 
34 8

19 9

(6.63 10  J s)(3.00 10  m/s)
8.29 kV

(1.60 10  C)(0.150 10  m)

hc
V

eλ

−

− −

× ⋅ ×= = =
× ×

 

(b) 
34 8

11
19 3

(6.63 10  J s)(3.00 10  m/s)
4.14 10  m 0.0414 nm

(1.60 10  C)(30.0 10  V)

hc

eV
λ

−
−

−

× ⋅ ×= = = × =
× ×

 

(c) No.  A proton has the same magnitude of charge as an electron and therefore gains the same amount of kinetic 
energy when accelerated by the same magnitude of potential difference. 

38.35. IDENTIFY: The initial electrical potential energy of the accelerated electrons is converted to kinetic energy which 
is then given to a photon. 
SET UP: The electrical potential energy of an electron is eVAC, where VAC

  is the accelerating potential, and the 
energy of a photon is hf. Since the energy of the electron is all given to a photon, we have eVAC = hf. For any wave, 
fλ = v. 
EXECUTE: (a) eVAC = hfmin gives 

fmin = eVAC/h = (1.60 × 10–19 C)(25,000 V)/(6.626 × 10–34 J s⋅ ) = 6.037 × 1018 Hz 

= 6.04 × 1018 Hz, rounded to three digits 

(b) λmin = c/fmax = (3.00 × 108 m/s)/(6.037 × 1018 Hz) = 4.97 × 10–11 m = 0.0497 nm 
(c) We assume that all the energy of the electron produces only one photon on impact with the screen. 
EVALUATE: These photons are in the x-ray and γ-ray part of the electromagnetic spectrum (see Figure 32.4 in the 
textbook) and would be harmful to the eyes without protective glass on the screen to absorb them. 

38.36. IDENTIFY and SET UP: The wavelength of the x rays produced by the tube is give by 
hc

eV
λ

= .  

(1 cos )
h

mc
λ λ φ′ = + − .  122.426 10  m

h

mc
−= × .  The energy of the scattered x ray is 

hc

λ′
. 

EXECUTE: (a) 
34 8

11
19 3

(6.63 10  J s)(3.00 10  m/s)
6.91 10  m 0.0691 nm

(1.60 10  C)(18.0 10  V)

hc

eV
λ

−
−

−

× ⋅ ×= = = × =
× ×

 

(b) 11 12(1 cos ) 6.91 10  m (2.426 10  m)(1 cos45.0 )
h

mc
λ λ φ − −′ = + − = × + × − ° . 

116.98 10  m 0.0698 nmλ −′ = × = . 

(c) 
15 8

11

(4.136 10  eV s)(3.00 10  m/s)
17.8 keV

6.98 10  m

hc
E

λ

−

−

× ⋅ ×= = =
′ ×

 

EVALUATE: The incident x ray has energy 18.0 keV.  In the scattering event, the photon loses energy and its 
wavelength increases. 

38.37. IDENTIFY: Apply Eq.(38.23): C(1 cos ) (1 cos )
h

mc
λ λ φ λ φ′ − = − = −  

SET UP: Solve for C: (1 cos )λ λ λ λ φ′ ′ = + −  

The largest λ′  corresponds to 180 ,φ = °  so cos 1.φ = −  

EXECUTE: 9 12 11
C2 0.0665 10  m 2(2.426 10  m) 7.135 10  m 0.0714 nm.λ λ λ − − −′ = + = × + × = × =  This wavelength 

occurs at a scattering angle of 180 .φ = °  
EVALUATE: The incident photon transfers some of its energy and momentum to the electron from which it 
scatters. Since the photon loses energy its wavelength increases, .λ λ′ >  

38.38. (a) From Eq. (38.23), 
λ

cos 1 ,
( )h mc

φ Δ= − and so λ 0.0542 nm 0.0500 nm,Δ = −  

0.0042 nm
cos 1 0.731, and 137 .

0.002426 nm
φ φ= − = − = °  

(b) 
0.0021 nm

λ 0.0521 nm 0.0500 nm. cos 1 0.134. 82.3 .
0.002426 nm

φ φΔ = − = − = = °  

(c) λ 0,Δ = the photon is undeflected, cos 1φ =  and 0.φ =  

38.39. IDENTIFY and SET UP: The shift in wavelength of the photon is (1 cos )
h

mc
λ λ φ′ − = −  where λ′  is the 

wavelength after the scattering and 12
c 2.426 10  m

h

mc
λ −= = × .  The energy of a photon of wavelength λ is 
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61.24 10  eV mhc
E

λ λ

−× ⋅= = .  Conservation of energy applies to the collision, so the energy lost by the photon 

equals the energy gained by the electron. 
EXECUTE: (a) 12 13 4

c (1 cos ) (2.426 10  m)(1 cos35.0 ) 4.39 10  m 4.39 10  nmλ λ λ φ − − −′ − = − = × − = × = ×°  

(b) 4 44.39 10  nm  0.04250 nm 4.39 10  nm 0.04294 nmλ λ − −′ = + × = + × =  

(c) 42.918 10  eV
hc

Eλ λ
= = × and 42.888 10  eV

hc
Eλ λ′ = = ×

′
 so the photon loses 300 eV of energy. 

(d) Energy conservation says the electron gains 300 eV of energy. 
38.40. The change in wavelength of the scattered photon is given by Eq. 38.23 

Δλ
(1 cos ) λ (1 cos ).

Δλλ λ

λ

h h

mc mc
φ φ= − ⇒ = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Thus, 
34

14
27 8

(6.63 10 J s)
λ (1 1) 2.65 10 m.

(1.67 10 kg)(3.00 10 m/s)(0.100)

−
−

−

× ⋅= + = ×
× ×

 

38.41. The derivation of Eq.(38.23) is explicitly shown in Equations (38.24) through (38.27) with the final substitution of 

λ and λ yielding λ λ (1 cos ).
h

p h p h
mc

φ′ ′ ′= = − = −  

38.42. From Eq. (38.30), (a) 
3

m
m

2.898 10 m K
λ 0.966 mm, and

3.00 K λ

c
f

−× ⋅= = = = 113.10 10 Hz.×  Note that a more precise 

value of the Wien displacement law constant has been used.  
(b) A factor of 100 increase in the temperature lowers mλ by a factor of 100 to 9.66 mμ  and raises the frequency 

by the same factor, to 133.10 10 Hz.×   

(c) Similarly, mλ 966 nm=  14and 3.10 10  Hz.f = ×  

38.43. (a) 4 2;H AeσT A r lπ= =  
1 41 4

3 8 2 4

100 W

2 (0.20 10 m)(0.30 m)(0.26)(5.671 10 W m K )

H
T

Aeσ π − −

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟ × × ⋅⎝ ⎠ ⎝ ⎠
 

32.06 10 KT = ×  

(b) 3
m mλ 2.90 10 m K; λ 1410 nmT −= × ⋅ =  

Much of the emitted radiation is in the infrared. 

38.44. 
3 3

3
9

m

2.90 10 m K 2.90 10 m K
7.25 10 K.

400 10 m
T

λ

− −

−

× ⋅ × ⋅= = = ×
×

 

38.45. IDENTIFY and SET UP: The wavelength mλ  where the Planck distribution peaks is given by Eq.(38.30). 

EXECUTE: 
3

3
m

2.90 10  m K
1.06 10  m 1.06 mm.

2.728 K
λ

−
−× ⋅= = × =  

EVALUATE: This wavelength is in the microwave portion of the electromagnetic spectrum. This radiation is often 
referred to as the “microwave background” (Section 44.7). Note that in Eq.(38.30), T must be in kelvins. 

38.46. IDENTIFY: Since the stars radiate as blackbodies, they obey the Stefan-Boltzmann law and Wien’s displacement 
law. 
SET UP: The Stefan-Boltzmann law says that the intensity of the radiation is I = σT 4, so the total radiated power 
is P = σAT 4. Wien’s displacement law tells us that the peak-intensity wavelength is λm = (constant)/T. 
EXECUTE: (a) The hot and cool stars radiate the same total power, so the Stefan-Boltzmann law gives σAhTh

4 = 

σAcTc
4  ⇒  4πRh

2Th
4 = 4πRc

2Tc
4 = 4π(3Rh)

2Tc
4 ⇒ Th

4 = 9T 4  ⇒ h 3T T=  = 1.7T, rounded to two significant digits. 

(b) Using Wien’s law, we take the ratio of the wavelengths, giving 

m c

m h

(hot) 1

(cool) 3 3

T T

T T

λ
λ

= = =  = 0.58, rounded to two significant digits. 

EVALUATE: Although the hot star has only 1/9 the surface area of the cool star, its absolute temperature has to be 
only 1.7 times as great to radiate the same amount of energy. 

38.47. (a) Let / .hc kTα =  To find the maximum in the Planck distribution: 
2 2 2 2

5 5 5 2

2 (2 ) 2 ( )
0 5

λ λ λ ( 1) λ ( 1) λ ( 1)λ

dI d hc hc hc λ
d d e e eα λ α λ α

π π π α⎛ ⎞ −= = = − −⎜ ⎟− − −⎝ ⎠
 

λ λ5( 1)λ   5 5 λ   Solve 5 5 where .
λ λ

x hc
e e x e x

kT
α α αα α⇒ − − = ⇒ − + = ⇒ − = = =  
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Its root is 4.965, so 4.965 λ .
λ (4.965)

α hc

kT
= ⇒ =  

(b) 
34 8

3
m 23

(6.63 10 J s)(3.00 10 m s)
λ 2.90 10 m K.

(4.965) (4.965)(1.38 10 J K)

hc
T

k

−
−

−

× ⋅ ×= = = × ⋅
×

 

38.48. IDENTIFY: Since the stars radiate as blackbodies, they obey the Stefan-Boltzmann law. 
SET UP: The Stefan-Boltzmann law says that the intensity of the radiation is I = σT 4, so the total radiated power 
is P = σAT 4. 

EXECUTE: (a) I = σT 4 = (5.67 × 10–8 2 4W/m K⋅ )(24,000 K)4 = 1.9 × 1010 W/m2 
(b) Wien’s law gives  λm = (0.00290 m K⋅ )/(24,000 K) = 1.2 × 10–7 m = 120 nm 
This is not visible since the wavelength is less than 400 nm. 
(c) P = AI ⇒ 4πR2 = P/I = (1.00 × 1025 W)/(1.9 × 1010 W/m2) 
which gives RSirius = 6.51 × 106 m = 6510 km. 
RSirius/Rsun = (6.51 × 106 m)/(6.96 × 109 m) = 0.0093, which gives 

RSirius = 0.0093 Rsun ≈ 1% Rsun 

(d) Using the Stefan-Boltzmann law, we have 
2 44 2 4

sun sun sun sun sun sun sun
4 2 4

Sirius Sirius Sirius Sirius Sirius Sirius Sirius

4

4

P A T R T R T

P A T R T R T

σ π
σ π

⎛ ⎞ ⎛ ⎞
= = = ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2 4

sun sun

Sirius sun

5800 K
39

0.00935 24,000 K

P R

P R

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

EVALUATE: Even though the absolute surface temperature of Sirius B is about 4 times that of our sun, it radiates 
only 1/39 times as much energy per second as our sun because it is so small. 

38.49. Eq. (38.32): 
2 2

5

2
( ) but 1 1 for

λ ( 1) 2
x

hc λkT

hc x
I λ e x x

e

π= = + + + ≈ +
−

 

2

5 4

2 2
1 ( ) Eq.

λ ( λ ) λ

hc ckT
x I λ

hc kT

π π
⇒ ≈ = =V (38.31), which  is Rayleigh’s distribution. 

38.50. (a) Wien’s law: mλ
k
T

= .  
3

8
m

2.90 10 K m
λ 9.7 10 m 97 nm

30,000 K

−
−× ⋅= = × =  

This peak is in the ultraviolet region, which is not visible. The star is blue because the largest part of the visible 
light radiated is in the blue violet part of the visible spectrum 

(b) 4P σAT= (Stefan-Boltzmann law) 

26 8 2 4
2 4

9

W
(100, 000)(3.86 10 W) 5.67 10 (4 )(30,000 K)

m K

8.2 10 m

R

R

π−⎛ ⎞× = ×⎜ ⎟
⎝ ⎠

= ×
 

9

star sun 8

8.2 10 m
12

6.96 10 m
R R

×= =
×

 

(c) The visual luminosity is proportional to the power radiated at visible wavelengths. Much of the power is 
radiated nonvisible wavelengths, which does not contribute to the visible luminosity. 

38.51. IDENTIFY and SET UP: Use c f λ=  to relate frequency and wavelength and use E hf=  to relate photon energy 

and frequency. 
EXECUTE: (a) One photon dissociates one AgBr molecule, so we need to find the energy required to dissociate a 
single molecule. The problem states that it requires 51.00 10  J×  to dissociate one mole of AgBr, and one mole 

contains Avogadro’s number 23(6.02 10 )×  of molecules, so the energy required to dissociate one AgBr is 
5

19
23

1.00 10  J/mol
1.66 10  J/molecule.

6.02 10  molecules/mol
−× = ×

×
 

The photon is to have this energy, so 19 191.66 10  J(1eV/1.602 10  J) 1.04 eV.E − −= × × =  

(b) 
hc

E
λ

=  so 
34 8

6
19

(6.626 10  J s)(2.998 10  m/s)
1.20 10  m 1200 nm

1.66 10  J

hc

E
λ

−
−

−

× ⋅ ×= = = × =
×

 

(c) c f λ=  so 
8

14
6

2.998 10  m/s
2.50 10  Hz

1.20 10  m

c
f

λ −

×= = = ×
×

 

(d) 34 6 26(6.626 10  J s)(100 10  Hz) 6.63 10  JE hf − −= = × ⋅ × = ×  
26 19 76.63 10  J(1 eV/1.602 10  J) 4.14 10  eVE − − −= × × = ×  
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(e) EVALUATE: A photon with frequency 100 MHzf =  has too little energy, by a large factor, to dissociate a 

AgBr molecule. The photons in the visible light from a firefly do individually have enough energy to dissociate 
AgBr. The huge number of 100 MHz photons can’t compensate for the fact that individually they have too little 
energy. 

38.52. (a) Assume a non-relativistic velocity and conserve momentum 
λ

h
mv⇒ = ⇒ .

λ

h
v

m
=  

(b) 
2 2

2
2

1 1

2 2 λ 2 λ

h h
K mv m

m m
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

. 

(c) 
2

2

λ
.

2 λ 2 λ

K h h

E m hc mc
= ⋅ =   Recoil becomes an important concern for small m and small λ  since this ratio 

becomes large in those limits. 

(d) 
34 8

7
19

(6.63 10 J s)(3.00 10 m s)
10.2 eV λ 1.22 10 m 122 nm.

(10.2 eV)(1.60 10 J eV)

hc
E

E

−
−

−

× ⋅ ×= ⇒ = = = × =
×

 

34 2
27 8

27 7 2

8
9

(6.63 10 J s)
8.84 10 J 5.53 10 eV.

2(1.67 10 kg)(1.22 10 m)

5.53 10 eV
5.42 10 . This is quite small so recoil can be neglected.

10.2 eV

K

K

E

−
− −

− −

−
−

× ⋅= = × = ×
× ×

×= = ×
 

38.53. IDENTIFY and SET UP: 
c

f
λ

= .  The 0( , )f V values are:  14(8.20 10  Hz,  1.48 V)× , 14(7.41 10  Hz,  1.15 V)× , 

14(6.88 10  Hz,  0.93 V)× , 14(6.10 10  Hz,  0.62 V)× , 14(5.49 10  Hz,  0.36 V)× , 14(5.18 10  Hz,  0.24 V)× .  The graph 

of 0V versus f is given in Figure 38.53. 

EXECUTE: (a) The threshold frequency, thf , is f where 0 0V = .  From the graph this is 14
th 4.56 10  Hzf = × . 

(b) 
8

th 14
th

3.00 10  m/s
658 nm

4.56 10  Hz

c

f
λ ×= = =

×
 

(c) 15 14
th (4.136 10  eV s)(4.56 10  Hz) 1.89 eVhfφ −= = × ⋅ × =  

(d) 0eV hf φ= − so 0

h
V f

e
φ⎛ ⎞= −⎜ ⎟

⎝ ⎠
.  The slope of the graph is 

h

e
. 

15
14 14

1.48 V 0.24 V
4.11 10  V/Hz

8.20 10  Hz 5.18 10  Hz

h

e
−−⎛ ⎞= = ×⎜ ⎟× − ×⎝ ⎠

 and 

15 19 34(4.11 10  V/Hz)(1.60 10  C) 6.58 10  J sh − − −= × × = × ⋅ . 

 
Figure 38.53 

38.54. (a) 
14

( ) (200 W)(0.10)

( ) (5.00 10 Hz)

dN dE dt P

dt dE dN hf h
= = = =

×
196.03 10 photons sec.×  

(b) Demand 11 2
2

( )
1.00 10 photons sec cm .

4

dN dt

rπ
= × ⋅  

Therefore, 
1/ 219

11 2

6.03 10 photons sec
6930 cm 69.3 m.

4 (1.00 10 photons sec cm )
r

π
⎛ ⎞×= = =⎜ ⎟× ⋅⎝ ⎠

 

38.55. (a) IDENTIFY: Apply the photoelectric effect equation, Eq.(38.4). 
SET UP: 0 ( / ) .eV hf hcφ λ φ= − = −  Call the stopping potential 01V  for 1λ  and 02V  for 2.λ  Thus 

01 1( / )eV hc λ φ= −  and 02 2( / ) .eV hc λ φ= −  Note that the work function φ  is a property of the material and is 

independent of the wavelength of the light. 

EXECUTE: Subtracting one equation from the other gives 1 2
02 01

1 2

( ) .e V V hc
λ λ
λ λ

⎛ ⎞−− = ⎜ ⎟
⎝ ⎠
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(b) 
34 8 9 9

0 19 9 9

(6.626 10  J s)(2.998 10  m/s) 295 10  m 265 10  m
0.476 V.

1.602 10  C (295 10  m)(265 10  m)
V

− − −

− − −

⎛ ⎞× ⋅ × × − ×Δ = =⎜ ⎟× × ×⎝ ⎠
 

EVALUATE: 0 ,e VΔ  which is 0.476 eV, is the increase in photon energy from 295 nm to 265 nm. The stopping 

potential increases when λ  deceases because the photon energy increases when the wavelength decreases. 
38.56. IDENTIFY: The photoelectric effect occurs, so the energy of the photon is used to eject an electron, with any 

excess energy going into kinetic energy of the electron. 
SET UP: Conservation of energy gives hf = hc/λ = Kmax + φ. 
EXECUTE: (a) Using hc/λ = Kmax + φ, we solve for the work function: 

φ = hc/λ – Kmax = (4.136 × 10–15 eV s⋅ )(3.00 × 108 m/s)/(124 nm) – 4.16 eV = 5.85 eV 

(b) The number N of photoelectrons per second is equal to the number of photons per second that strike the metal 
per second.  N × (energy of a photon) = 2.50 W. N(hc/λ) = 2.50 W. 
N = (2.50 W)(124 nm)/[(6.626 × 10–34 J s⋅ )(3.00 × 108 m/s)] = 1.56 × 1018 electrons/s 
(c) N is proportional to the power, so if the power is cut in half, so is N, which gives 

N = (1.56 × 1018 el/s)/2 = 7.80 × 1017 el/s 

(d) If we cut the wavelength by half, the energy of each photon is doubled since E = hc/λ. To maintain the same 
power, the number of photons must be half of what they were in part (b), so N is cut in half to 7.80 × 1017 el/s. We 
could also see this from part (b), where N is proportional to λ. So if the wavelength is cut in half, so is N. 
EVALUATE: In part (c), reducing the power does not reduce the maximum kinetic energy of the photons; it only 
reduces the number of ejected electrons. In part (d), reducing the wavelength does change the maximum kinetic 
energy of the photoelectrons because we have increased the energy of each photon. 

38.57. IDENTIFY and SET UP: The energy added to mass m of the blood to heat it to f 100 CT = °  and to vaporize it is 

f i v( )Q mc T T mL= − + , with 4190 J/kg Kc = ⋅  and 6
v 2.256 10  J/kgL = × .  The energy of one photon is 

251.99 10  J mhc
E

λ λ

−× ⋅= = . 

EXECUTE: (a) 9 9 6(2.0 10  kg)(4190 J/kg K)(100 C 33 C) (2.0 10  kg)(2.256 10  J/kg)Q − −= × ⋅ − + × × =° °  35.07 10  J−×  

The pulse must deliver 5.07 mJ of energy. 

(b) 
3

6

energy 5.07 10  J
11.3 W

450 10  s
P

t

−

−

×= = =
×

 

(c) One photon has energy  
25

19
9

1.99 10  J m
3.40 10  J

585 10  m

hc
E

λ

−
−

−

× ⋅= = = ×
×

.  The number N of photons per pulse is the 

energy per pulse divided by the energy of one photon:  
3

16
19

5.07 10  J
1.49 10  photons

3.40 10  J/photon
N

−

−

×= = ×
×

 

38.58. (a) 0λ ,
hc

E
=  and the wavelengths are: cesium: 590 nm, copper: 264 nm, potassium: 539 nm, zinc: 288 nm.  

b) The wavelengths of copper and zinc are in the ultraviolet, and visible light is not energetic enough to overcome 
the threshold energy of these metals. 

38.59. (a) IDENTIFY and SET UP: Apply Eq.(38.20): p1 2
r

1 2 p

207

207
e

e

m mm m
m

m m m m
= =

+ +
 

EXECUTE: 
31 27

28
r 31 27

207(9.109 10  kg)(1.673 10  kg)
1.69 10  kg

207(9.109 10  kg) 1.673 10  kg
m

− −
−

− −

× ×= = ×
× + ×

 

We have used em  to denote the electron mass. 

(b) IDENTIFY: In Eq.(38.18) replace em m=  by 
4

r
r 2 2 2

0

1
: .

8n

m e
m E

n h
= −
P

 

SET UP: Write as 
4

r H
2 2 2

H 0

1
,

8n

m m e
E

m n h

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠P

 since we know that 
4

H
2 2
0

1
13.60 eV.

8

m e

h
=

P
 Here Hm  denotes the 

reduced mass for the hydrogen atom; 31 31
H 0.99946(9.109 10  kg) 9.104 10  kg.m − −= × = ×  

EXECUTE: r
2

H

13.60 eV
n

m
E

m n

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

28

1 31

1.69 10  kg
( 13.60 eV) 186( 13.60 eV) 2.53 keV

9.104 10  kg
E

−

−

×= − = − = −
×
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(c) SET UP: From part (b), r H
2

H

,n

m R ch
E

m n

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 where 7 1
H 1.097 10  mR −= ×  is the Rydberg constant for the 

hydrogen atom. Use this result in i f

hc
E E

λ
= −  to find an expression for 1/ .λ  The initial level for the transition is 

the 2in =  level and the final level is the 1fn =  level. 

EXECUTE:  r H H
2 2

H i f

hc m R ch R ch

m n nλ
⎛ ⎞⎛ ⎞

= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

r
H 2 2

H f i

1 1 1m
R

m n nλ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

28
7 1 9 1

31 2 2

1 1.69 10  kg 1 1
(1.097 10  m ) 1.527 10  m

9.104 10  kg 1 2λ

−
− −

−

× ⎛ ⎞= × − = ×⎜ ⎟× ⎝ ⎠
 

0.655 nmλ =  
EVALUATE: From Example 38.6 the wavelength of the radiation emitted in this transition in hydrogen is 122 nm. 

The wavelength for muonium is 3H

r

5.39 10
m

m
−= ×  times this. The reduced mass for hydrogen is very close to the 

electron mass because the electron mass is much less then the proton mass: p e/ 1836.m m =  The muon mass is 
28

e207 1.886 10  kg.m −= ×  The proton is only about 10 times more massive than the muon, so the reduced mass is 

somewhat smaller than the muon mass. The muon-proton atom has much more strongly bound energy levels and 
much shorter wavelengths in its spectrum than for hydrogen. 

38.60. (a) The change in wavelength of the scattered photon is given by Eq. 38.23 

34
9

31 8

λ λ (1 cos ) λ λ (1 cos )

(6.63 10 J s)
(0.0830 10 m) (1 1) 0.0781 nm.

(9.11 10 kg)(3.00 10 m s)

h h

mc mc
φ φ

−
−

−

′ ′− = − ⇒ = − − =

× ⋅× − + =
× ×

 

(b) Since the collision is one-dimensional, the magnitude of the electron’s momentum must be equal to the 
magnitude of the change in the photon’s momentum. Thus, 

34 9 1
e

23 23

1 1 1 1
(6.63 10 J s) (10  m )

λ λ 0.0781 0.0830

1.65 10  kg m s 2 10  kg m s.

p h − −

− −

−⎛ ⎞ ⎛ ⎞= − = × ⋅ +⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠
= × ⋅ ≈ × ⋅

 

(c) Since the electron is non relativistic ( 0.06),β =
2

16 16e
e 1.49 10 J 10 J.

2

p
K

m
− −= = × ≈  

38.61. IDENTIFY and SET UP: (1 cos )
h

mc
λ λ φ′ = + −  

180φ = °  so 
2

0.09485 m.
h

mc
λ λ′ = + =  Use Eq.(38.5) to calculate the momentum of the scattered photon. Apply 

conservation of energy to the collision to calculate the kinetic energy of the electron after the scattering. The 
energy of the photon is given by Eq.(38.2), 
EXECUTE: (a) 24/ 6.99 10  kg m/s.p h λ −′ ′= = × ⋅  

(b) e e;  / /E E E hc hc Eλ λ′ ′= + = +  

16
e

1 1
( ) 1.129 10  J 705 eVE hc hc

λ λ
λ λ λλ

−′ −⎛ ⎞= − = = × =⎜ ⎟′ ′⎝ ⎠
 

EVALUATE: The energy of the incident photon is 13.8 keV, so only about 5% of its energy is transferred to the 
electron. This corresponds to a fractional shift in the photon’s wavelength that is also 5%. 

38.62. (a) 
2

180 so (1 cos ) 2 λ 0.0049 nm, so λ 0.1849 nm.
h

mc
φ φ ′= ° − = ⇒ Δ = = =  

(b) 171 1
2.93 10 J 183 eV.

λ λ
E hc −⎛ ⎞Δ = − = × =⎜ ⎟′⎝ ⎠

 This will be the kinetic energy of the electron. 

(c) The kinetic energy is far less than the rest mass energy, so a non-relativistic calculation is adequate; 
62 8.02 10 m s.v K m= = ×  
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38.63. IDENTIFY and SET UP: The Hα line in the Balmer series corresponds to the 3n = to 2n = transition.  

2

13.6 eV
nE

n
= − .  

hc
E

λ
= Δ . 

EXECUTE: (a) The atom must be given an amount of energy 3 1 2 2

1 1
(13.6 eV) 12.1 eV

3 1
E E

⎛ ⎞− = − − =⎜ ⎟
⎝ ⎠

. 

(b) There are three possible transitions.  3 1n n= → = :  12.1 eVEΔ = and 103 nm
hc

E
λ = =

Δ
; 

3 2n n= → = :  
2 2

1 1
(13.6 eV) 1.89 eV

3 2
E

⎛ ⎞Δ = − − =⎜ ⎟
⎝ ⎠

and 657 nmλ = ; 2 1n n= → = :  

2 2

1 1
(13.6 eV) 10.2 eV

2 1
E

⎛ ⎞Δ = − − =⎜ ⎟
⎝ ⎠

and 122 nmλ = . 

38.64. 
( )

ex g( ) ex g2

1 2 1

( )
.

ln /
E E kT E En

e T
n k n n

− − − −
= ⇒ =  

18
ex 2 g ex g

13.6 eV
3.4 eV.  13.6 eV.  10.2 eV 1.63 10 J.

4
E E E E E −−= = = − = − − = = ×  

(a) 122

1

10 .
n

n
−=  

18

23 12

(1.63 10 J)
4275 K.

(1.38 10 J K) ln(10 )
T

−

− −

− ×= =
×

 

(b) 82

1

10 .
n

n
−=  

18

23 8

(1.63 10 J)
6412 K.

(1.38 10 J K ) ln(10 )
T

−

− −

− ×= =
×

 

(c) 42

1

10 .
n

n
−=  

18

23 4

(1.63 10 J)
12824 K.

(1.38 10 J K ) ln(10 )
T

−

− −

− ×= =
×

 

(d) For absorption to take place in the Balmer series, hydrogen must start  in the 2n =  state. From part (a), colder 
stars have fewer atoms in this state leading to weaker absorption lines. 

38.65. (a) IDENTIFY and SET UP: The photon energy is given to the electron in the atom. Some of this energy 
overcomes the binding energy of the atom and what is left appears as kinetic energy of the free electron. Apply 

f i ,hf E E= −  the energy given to the electron in the atom when a photon is absorbed. 

EXECUTE: The energy of one photon is 
34 8

9

(6.626 10  J s)(2.998 10  m/s)

85.5 10  m

hc

λ

−

−

× ⋅ ×=
×

 

18 192.323 10  J(1 eV/1.602 10  J) 14.50 eV.
hc

λ
− −= × × =  

The final energy of the electron is f i .E E hf= +  In the ground state of the hydrogen atom the energy of the electron 

is i 13.60 eV.E = −  Thus f 13.60 eV 14.50 eV 0.90 eV.E = − + =  

(b) EVALUATE: At thermal equilibrium a few atoms will be in the 2n =  excited levels, which have an energy of 
13.6 eV/4 3.40 eV, 10.2 eV− = − greater than the energy of the ground state. If an electron with 3.40 eVE = −  

gains 14.5 eV from the absorbed photon, it will end up with 14.5 eV 3.4 eV 11.1 eV− = of kinetic energy. 
38.66. IDENTIFY: The diffraction grating allows us to determine the peak-intensity wavelength of the light. Then 

Wien’s displacement law allows us to calculate the temperature of the blackbody, and the Stefan-Boltzmann law 
allows us to calculate the rate at which it radiates energy. 
SET UP: The bright spots for a diffraction grating occur when d sin θ = mλ. Wien’s displacement law is 

3

peak

2.90 10 m K

T
λ

−× ⋅= , and the Stefan-Boltzmann law says that the intensity of the radiation is I = σT 4, so the 

total radiated power is P = σAT 4. 
EXECUTE: (a) First find the wavelength of the light: 

λ = d sin θ = [1/(385,000 lines/m)] sin(11.6°) = 5.22 × 10–7 m 

Now use Wien’s law to find the temperature: T = (2.90 × 10–3 m K⋅ )/(5.22 × 10–7 m) = 5550 K. 
(b) The energy radiated by the blackbody is equal to the power times the time, giving 
U = Pt = IAt = σAT 4t, which gives 

t = U/(σAT 4) = (12.0 × 106 J)/[(5.67 × 10–8 2 4W/m K⋅ )(4π)(0.0750 m)2(5550 K)4] = 3.16 s. 
EVALUATE: By ordinary standards, this blackbody is very hot, so it does not take long to radiate 12.0 MJ of 
energy. 
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38.67. IDENTIFY: Assuming that Betelgeuse radiates like a perfect blackbody, Wien’s displacement and the Stefan-
Boltzmann law apply to its radiation. 

SET UP: Wien’s displacement law is 
3

peak

2.90 10 m K

T
λ

−× ⋅= , and the Stefan-Boltzmann law says that the 

intensity of the radiation is I = σT 4, so the total radiated power is P = σAT 4. 
EXECUTE: (a) First use Wien’s law to find the peak wavelength: 

λm = (2.90 × 10–3 m K⋅ )/(3000 K) = 9.667 × 10–7 m 

Call N the number osf photons/second radiated. N × (energy per photon) = IA = σAT 4. 

N (hc/λm) = σAT 4.  
4

m AT
N

hc

λ σ= . 

7 8 2 4 8 2 4

34 8

(9.667 10  m)(5.67 10  W/m K )(4 )(600 6.96 10  m) (3000 K)

(6.626 10  J s)(3.00 10  m/s)
N

π− −

−

× × ⋅ × ×=
× ⋅ ×

. 

N = 5 × 1049 photons/s. 

(b) 
2 44 2 4

B B B B B B S
4 2 4

S S S S S S S

4 600 3000 K

4 5800 K

I A A T R T R

I A A T R T R

σ π
σ π

⎛ ⎞ ⎛ ⎞= = = ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 = 3 × 104 

EVALUATE: Betelgeuse radiates 30,000 times as much energy per second as does our sun! 
38.68. IDENTIFY: The blackbody radiates heat into the water, but the water also radiates heat back into the blackbody. 

The net heat entering the water causes evaporation. Wien’s law tells us the peak wavelength radiated, but a 
thermophile in the water measures the wavelength and frequency of the light in the water. 

SET UP: By the Stefan-Boltzman law, the net power radiated by the blackbody is ( )4 4
sphere water

dQ
A T T

dt
σ= − . Since 

this heat evaporates water, the rate at which water evaporates is v

dQ dm
L

dt dt
= . Wien’s displacement law is 

3

m

2.90 10 m K

T
λ

−× ⋅= , and the wavelength in the water is λw = λ0/n. 

EXECUTE: (a) The net radiated heat is  ( )4 4
sphere water

dQ
A T T

dt
σ= −  and the evaporation rate is v

dQ dm
L

dt dt
= , where 

dm is the mass of water that evaporates in time dt. Equating these two rates gives ( )4 4
v sphere water

dm
L A T T

dt
σ= − . 

( )( )2 4 4
sphere water

v

4 R T Tdm

dt L

σ π −
= . 

( )( )8 2 4 2 4 4

4
3

5.67 10  W/m K 4 (0.120 m) (498 K) (373 K)
1.92 10  kg/s 0.193 g/s

2256 10  J/Kg

dm

dt

π−
−

⎡ ⎤× ⋅ −⎣ ⎦= = × =
×

 

(b) (i) Wien’s law gives λm = (0.00290 m K⋅ )/(498 K) = 5.82 × 10–6 m 
But this would be the wavelength in vacuum. In the water the thermophile organism would measure λw = λ0/n

 = 
(5.82 × 10–6 m)/1.333 = 4.37 × 10–6 m = 4.37 µm 
(ii) The frequency is the same as if the wave were in air, so 

f = c/λ0 = (3.00 ×108 m/s)/(5.82 × 10–6 m) = 5.15 × 1013 Hz 

EVALUATE: An alternative way is to use the quantities in the water:
0

/

/

c n
f

nλ
=  = c/λ0, which gives the same 

answer for the frequency. An organism in the water would measure the light coming to it through the water, so the 
wavelength it would measure would be reduced by a factor of 1/n. 

38.69. IDENTIFY: The energy of the peak-intensity photons must be equal to the energy difference between the n = 1 
and the n = 4 states. Wien’s law allows us to calculate what the temperature of the blackbody must be for it to 
radiate with its peak intensity at this wavelength. 

SET UP: In the Bohr model, the energy of an electron in shell n is 
2

13.6 eV
nE

n
= − , and Wien’s displacement law 

is 
3

m

2.90 10 m K

T
λ

−× ⋅= . The energy of a photon is E = hf = hc/λ.  

EXECUTE: First find the energy (ΔE) that a photon would need to excite the atom. The ground state of the atom 
is n = 1 and the third excited state is n = 4. This energy is the difference between the two energy levels. Therefore 
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ΔE = ( ) 2 2

1 1
13.6  eV

4 1
⎛ ⎞− −⎜ ⎟
⎝ ⎠

 = 12.8 eV. Now find the wavelength of the photon having this amount of energy.  

hc/λ = 12.8 eV and 

λ = (4.136 × 10–15 eV s⋅ )(3.00 × 108 m/s)/(12.8 eV) = 9.73 ×10–8 m 

Now use Wien’s law to find the temperature. T = (0.00290 m K⋅ )/(9.73 × 10–8 m) = 2.98 × 104 K. 
EVALUATE: This temperature is well above ordinary room temperatures, which is why hydrogen atoms are not in 
excited states during everyday conditions. 

38.70. IDENTIFY and SET UP: Electrical power is VI.  Q mc T= Δ . 

EXECUTE: (a) 3 3(0.010) (0.010)(18.0 10  V)(60.0 10  A) 10.8 W 10.8 J/sVI −= × × = =  

(b) The energy in the electron beam that isn’t converted to x rays stays in the target and appears as thermal energy.  

For 1.00 st = , 3(0.990) (1.00 s) 1.07 10  JQ VI= = × and 
31.07 10  J

32.9 K
(0.250 kg)(130 J/kg K)

Q
T

mc

×Δ = = =
⋅

.  The 

temperature rises at a rate of 32.9 K/s. 
EVALUATE: The target must be made of a material that has a high melting point. 

38.71. IDENTIFY: Apply conservation of energy and conservation of linear momentum to the system of atom plus 
photon. 
(a) SET UP: Let trE  be the transition energy, phE  be the energy of the photon with wavelength ,λ′  and rE  be 

the kinetic energy of the recoiling atom. Conservation of energy gives ph r tr .E E E+ =  

ph

hc
E

λ
=

′
 so tr r

hc
E E

λ
= −

′
 and 

tr r

.
hc

E E
λ′ =

−
 

EXECUTE: If the recoil energy is neglected then the photon wavelength is tr/ .hc Eλ =  

tr r tr tr r tr

1 1 1
1

1 /

hc
hc

E E E E E E
λ λ λ

⎛ ⎞ ⎛ ⎞⎛ ⎞′Δ = − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
 

1

r r

r tr tr tr

1
1 1

1 / E

E E

E E E

−
⎛ ⎞

= − ≈ +⎜ ⎟− ⎝ ⎠
 since r

tr

1
E

E
V  

(We have used the binomial theorem, Appendix B.) 

Thus r

tr tr

,
hc E

E E
λ

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
 or since 2r

tr / ,  .
E

E hc
hc

λ λ λ⎛ ⎞= Δ = ⎜ ⎟
⎝ ⎠

 

SET UP: Use conservation of linear momentum to find r :E  Assuming that the atom is initially at rest, the 

momentum rp  of the recoiling atom must be equal in magnitude and opposite in direction to the momentum 

ph /p h λ=  of the emitted photon: r/ .h pλ =  

EXECUTE: 
2
r

r ,
2

p
E

m
=  where m is the mass of the atom, so 

2

r 2
.

2

h
E

mλ
=  

Use this result in the above equation: 
2 2

2r
2

;
2 2

E h h

hc m hc mc

λλ λ
λ

⎛ ⎞⎛ ⎞⎛ ⎞Δ = = =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

note that this result for λΔ  is independent of the atomic transition energy. 

(b) For a hydrogen atom pm m=  and 
34

16
27 8

p

6.626 10  J s
6.61 10  m

2 2(1.673 10  kg)(2.998 10  m/s)

h

m c
λ

−
−

−

× ⋅Δ = = = ×
× ×

 

EVALUATE: The correction is independent of n. The wavelengths of photons emitted in hydrogen atom 

transitions are on the order of 7100 nm 10  m,−= so the recoil correction is exceedingly small. 

38.72. (a) 1 1 2 2λ ( )(1 cos ), λ ( )(1 cos ),h mc θ h mc θΔ = − Δ = −  and so the overall wavelength shift is 

1 2λ ( )(2 cos cos ).h mc θ θΔ = − −  

(b) For a single scattering through angle s, λ ( )(1 cos ).θ h mc θΔ = −  For two successive scatterings through an 

angle of 2θ  for each scattering, 

tλ 2( )(1 cos 2).h mc θΔ = −  

2 2
s

2
s t

1 cos 2(1 cos ( 2)) and λ ( )2(1 cos ( 2))

cos( 2) 1so1 cos ( 2) (1 cos( 2)) and λ λ

θ θ h mc θ
θ θ θ

− = − Δ = −

≤ − ≥ − Δ ≥ Δ
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Equality holds only when 180 .θ = °  
(c) ( )2(1 cos30.0 ) 0.268( ).h mc h mc− ° =   

(d) ( )(1 cos60 ) 0.500( ),h mc h mc− ° = which is indeed greater than the shift found in part (c). 

38.73. IDENTIFY and SET UP: Find the average change in wavelength for one scattering and use that in λΔ  in 
Eq.(38.23) to calculate the average scattering angle .φ  
EXECUTE: (a) The wavelength of a 1 MeV photon is 

15 8
12

6

(4.136 10  eV s)(2.998 10  m/s)
1 10  m

1 10  eV

hc

E
λ

−
−× ⋅ ×= = = ×

×
 

The total change in wavelength therefore is 9 12 9500 10  m 1 10  m 500 10  m.− − −× − × = ×  

If this shift is produced in 2610  Compton scattering events, the wavelength shift in each scattering event is 
9

33
26

500 10  m
5 10  m.

1 10
λ

−
−×Δ = = ×

×
 

(b) Use this λΔ  in (1 cos )
h

mc
λ φΔ = −  and solve for .φ  We anticipate that φ  will be very small, since λΔ  is 

much less than / ,h mc  so we can use 2cos 1 / 2.φ φ≈ −  

2 2(1 (1 / 2))
2

h h

mc mc
λ φ φΔ = − − =  

33
11 9

12

2 2(5 10  m)
6.4 10  rad (4 10 )

( / ) 2.426 10  mh mc

λφ
−

− −
−

Δ ×= = = × = × °
×

 

φ  in radians is much less than 1 so the approximation we used is valid. 
(c) IDENTIFY and SET UP: We know the total transit time and the total number of scatterings, so we can calculate 
the average time between scatterings. 
EXECUTE: The total time to travel from the core to the surface is 6 7 13(10  y)(3.156 10  s/y) 3.2 10  s.× = ×  There are 

2610  scatterings during this time, so the average time between scatterings is 
13

13
26

3.2 10  s
3.2 10  s.

10
t −×= = ×  

The distance light travels in this time is 8 13(3.0 10  m/s)(3.2 10  s) 0.1 mmd ct −= = × × =  

EVALUATE: The photons are on the average scattered through a very small angle in each scattering event. The 
average distance a photon travels between scatterings is very small. 

38.74. (a) The final energy of the photon is ,and ,
λ

hc
E E E K′ ′= = +

′
 where K is the kinetic energy of the electron after 

the collision. Then, 

2

2 2 1 2

λ
λ .

( λ ) ( λ ) ( 1) λ 1
1 1

(1 )

hc hc hc

E K hc K hc mc mc

h v c

γ
′

= = = =
′ ′ ′ ′+ + + − ⎡ ⎤

+ −⎢ ⎥−⎣ ⎦

 

2( ( 1)K mc γ= −  since the relativistic expression must be used for three-figure accuracy). 

(b) arccos(1 λ ( )).h mcφ = − Δ  

(c) 
( )( )

12
1 221.80

3.00

1
1 1 1.25 1 0.250, 2.43 10 m

1

h

mc
γ −− = − = − = = ×

−
 

3
3

12 31 8

34

5.10 10 mm
λ 3.34 10 nm

(5.10 10 m)(9.11 10 kg)(3.00 10 m s)(0.250)
1

(6.63 10 J s)

−
−

− −

−

×
⇒ = = ×

× × ×+
× ⋅

. 

12 12

12

(5.10 10 m 3.34 10 m)
arccos 1 74.0 .

2.43 10 m
φ

− −

−

⎛ ⎞× − ×= − = °⎜ ⎟×⎝ ⎠
 

38.75. (a) IDENTIFY and SET UP: Conservation of energy applied to the collision gives e ,E E Eλ λ′= +  where eE  is the 

kinetic energy of the electron after the collision and Eλ  and Eλ′  are the energies of the photon before and after the 

collision. The energy of a photon is related to its wavelength according to Eq.(38.2). 
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EXECUTE: e

1 1
E hc hc

λ λ
λ λ λλ

′ −⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠
 

9
34 8

e 9 9

0.0032 10  m
(6.626 10  J s)(2.998 10  m/s)

(0.1100 10  m)(0.1132 10  m)
E

−
−

− −

⎛ ⎞×= × ⋅ × ⎜ ⎟× ×⎝ ⎠
 

17
e 5.105 10  J 319 eVE −= × =  

2
e

1

2
E mv=  so 

17
7e

31

2 2(5.105 10  J)
1.06 10  m/s

9.109 10  kg

E
v

m

−

−

×= = = ×
×

 

(b) The wavelength λ  of a photon with energy eE  is given by e /E hc λ=  so 
34 8

17
e

(6.626 10  J s)(2.998 10  m/s)
3.89 nm

5.105 10  J

hc

E
λ

−

−

× ⋅ ×= = =
×

 

EVALUATE: Only a small portion of the incident photon’s energy is transferred to the struck electron; this is why 
the wavelength calculated in part (b) is much larger than the wavelength of the incident photon in the Compton 
scattering. 

38.76. IDENTIFY: Apply the Compton scattering formula c(1 cos ) (1 cos )
h

mc
λ λ λ φ λ φ′ − = Δ = − = −  

(a) SET UP: Largest λΔ  is for 180 .φ = °  

EXECUTE: For c180 ,  2 2(2.426 pm) 4.85 pm.φ λ λ= ° Δ = = =  

(b) SET UP: c (1 cos )λ λ λ φ′ − = −  

Wavelength doubles implies 2λ λ′ =  so .λ λ λ′ − =  Thus C (1 cos ). λ λ φ λ= −  is related to E by Eq.(38.2). 

EXECUTE: / ,E hc λ=  so smallest energy photon means largest wavelength photon, so 180φ = °  and 

c2 4.85 pm.λ λ= =  Then 
34 8

14 19
12

(6.626 10  J s)(2.998 10  m/s)
4.096 10  J(1 eV/1.602 10  J)

4.85 10  m

hc
E

λ

−
− −

−

× ⋅ ×= = = × × =
×

 

0.256 MeV.  
EVALUATE: Any photon Compton scattered at 180φ = °  has a wavelength increase of c2 4.85 pm.λ =  4.85 pm is 

near the short-wavelength end of the range of x-ray wavelengths. 

38.77. (a) 
2

5 λ

2
(λ) but λ

λ ( 1)hc kT

hc c
I

e f

π= =
−

 

2 5

5 3

2 2
( )

( ) ( 1) ( 1)hf kT hf kT

hc hf
I f

c f e c e

π π
⇒ = =

− −
 

(b) 
0

20
(λ) ( )

c
I d I f df

f
λ

∞

∞

⎛ ⎞−= ⎜ ⎟
⎝ ⎠

∫ ∫  

3 4 3 4 5 4 5 4 4
4

2 2 3 2 3 3 2 2 30 0

2 2 ( ) 2 ( ) 1 (2 ) ( ) 2
(2 )

( 1) 1 240 240 15hf kT x

hf df kT x kT kT k T
dx

c e c h e c h h c c h

π π π π ππ
∞ ∞

= = = = =
− −∫ ∫  

(c) The expression 
5 4 4

3 2

2

15

k T

h c

π σ=  as shown in Eq. (38.36). Plugging in the values for the constants we get 

8 2 45.67 10 W m Kσ −= × ⋅ . 

38.78. 4, , and ; combining,I σT P IA E Pt= = Δ =  

3
4 6 2 8 2 4 4

(100 J)
8.81 10  s 2.45 hrs.

(4.00 10 m )(5.67 10 W m K )(473 K)

E
t

A Tσ − −

Δ= = = × =
× × ⋅

 

38.79. (a) The period was found in Exercise 38.27b: 
2 3 3
0

4

4 n h
T

me
= P

 and frequency is just 
4

2 3 3
0

1
.

4

me
f

T n h
= =

P
 

(b) Eq. (38.6) tells us that 2 1

1
( ).f E E

h
= −  So 

4

2 3 2 2
0 2 1

1 1

8

me
f

h n n

⎛ ⎞
= −⎜ ⎟

⎝ ⎠P
 (from Eq. (38.18)). 

If 2 1 2 2 2 2
2 1

1 1 1 1
and 1, then

( 1)
n n n n

n n n n
= = + − = −

+
 

4

2 2 2 3 2 3 3
0

1 1 1 2 2
1 1 1 for large .

(1 1 ) 4

me
n f

n n n n n n h

⎛ ⎞ ⎛ ⎞⎛ ⎞= − ≈ − − + = ⇒ ≈⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠⎝ ⎠ P
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38.80. Each photon has momentum ,
λ

h
p =  and if the rate at which the photons strike the surface is ( ),dN dt  the force 

on the surface is ( λ)( ),h dN dt  and the pressure is ( λ)( ) .h dN dt A  The intensity is 

( )( ) ( )( λ) ,I dN dt E A dN dt hc A= =  and comparison of the two expressions gives the pressure as ( ).I c  

38.81. Momentum:  ( )p P p P p P p P′ ′ ′ ′ ′ ′⇒ − = − − ⇒ = − +p + P = p + P  

energy: pc E p c E′ ′+ = + 2 2 2( ) ( )p c P c mc′ ′= + +  
2 2 2 2( ) ( ) ( )pc p c E P c mc′ ′⇒ − + = + 2 2 2 2 2( ) (( ) ) 2 ( ) ( )Pc p p c P p p c mc′ ′= + + − + +  

2 2 2 2 2 2( ) ( ) 2( )( ) 2 ( ) 4 2 ( )pc p c E E pc p c Pc p p Ec p p pp c Ec p p′ ′ ′ ′ ′ ′− + = + + − + + − − + −  

22( )( ) 0Pc p p′+ + =  

2 2 2

2

2 2

( 2 ) ( )

2 2 ( )

2 λ ( ) 2
λ λ λ

(λ( ) 2 )
λ

p Pc pc Ec p Ec Pc

Ec Pc E Pc
p p p

pc Ec Pc pc E Pc

hc E Pc E Pc hc

E Pc E Pc E Pc

E Pc hc

E Pc

′⇒ − − = − −
+ +′⇒ = =

+ − + −
+ − −⎛ ⎞ ⎛ ⎞′⇒ = = +⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

− +′⇒ =
+

 

If
22

2 2 2 2, ( ) 1
mc

E mc Pc E mc E
E

⎛ ⎞
= − = − ⎜ ⎟

⎝ ⎠
W  

221
1

2

mc
E

E

⎛ ⎞⎛ ⎞⎜ ⎟≈ − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

2 21 ( )

2

mc
E Pc

E
⇒ − ≈

2 2 2 4

1

( ) λ
λ 1

2 (2 ) 4

λ mc hc hc m c

E E E E hcE

⎛ ⎞
⇒ ≈ + = +⎜ ⎟

⎝ ⎠
 

(b) If 6 0 9
λ 10.6 10 m, 1.00 10 eV 1.60 10 JE− 1 −= × = × = ×  

31 2 4 6

9 9

(9.11 10 kg) (10.6 10 m)
λ 1

1.60 10 J 4 (1.6 10 J)

hc c

hc

− −

− −

⎛ ⎞× ×′⇒ ≈ +⎜ ⎟× ×⎝ ⎠
 

16 15(1.24 10 m)(1 56.0) 7.08 10 m.− −= × + = ×  

(c) These photons are gamma rays. We have taken infrared radiation and converted it into gamma rays! Perhaps 
useful in nuclear medicine, nuclear spectroscopy, or high energy physics: wherever controlled gamma ray sources 
might be useful. 



THE WAVE NATURE OF PARTICLES 

 39.1. IDENTIFY and SET UP: 
h h

p mv
λ = = .  For an electron, 319.11 10  kgm −= × .  For a proton, 271.67 10  kgm −= × . 

EXECUTE: (a) 
34

10
31 6

6.63 10  J s
1.55 10  m 0.155 nm

(9.11 10  kg)(4.70 10  m/s)
λ

−
−

−

× ⋅= = × =
× ×

 

(b) λ is proportional to 
1

m
, so 

31
10 14e

p e 27
p

9.11 10  kg
(1.55 10  m) 8.46 10  m

1.67 10  kg

m

m
λ λ

−
− −

−

⎛ ⎞ ⎛ ⎞×= = × = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
. 

 39.2. IDENTIFY and SET UP: For a photon, 
hc

E
λ

= .  For an electron or proton, 
h

p
λ

= and 
2

2

p
E

m
= , so 

2

22

h
E

mλ
= . 

EXECUTE: (a) 
15 8

9

(4.136 10  eV s)(3.00 10  m/s)
6.2 keV

0.20 10  m

hc
E

λ

−

−

× ⋅ ×= = =
×

 

(b) 
22 34

18
2 9 31

6.63 10  J s 1
6.03 10  J 38 eV

2 0.20 10  m 2(9.11 10  kg)

h
E

mλ

−
−

− −

⎛ ⎞× ⋅= = = × =⎜ ⎟× ×⎝ ⎠
 

(c)
31

e
p e 27

p

9.11 10  kg
(38 eV) 0.021 eV

1.67 10  kg

m
E E

m

−

−

⎛ ⎞ ⎛ ⎞×= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
 

EVALUATE: For a given wavelength a photon has much more energy than an electron, which in turn has more 
energy than a proton. 

 39.3. (a) 
34

24
10

(6.63 10 J s)
λ 2.37 10 kg m s.

λ (2.80 10 m)

h h
p

p

−
−

−

× ⋅= ⇒ = = = × ⋅
×

 

(b) 
2 24 2

18
31

(2.37 10 kg m s)
3.08 10 J 19.3 eV.

2 2(9.11 10 kg)

p
K

m

−
−

−

× ⋅= = = × =
×

 

 39.4. λ
2

h h

p mE
= =  

34
15

27 6 19

(6.63 10 J s)
7.02 10 m.

2(6.64 10 kg) (4.20 10 eV) (1.60 10 J eV)

−
−

− −

× ⋅= = ×
× × ×

 

 39.5. IDENTIFY and SET UP: The de Broglie wavelength is .
h h

p mv
λ = = In the Bohr model, ( / 2 ),  nmvr n h π=  

so /(2 ).nmv nh rπ=  Combine these two expressions and obtain an equation for λ  in terms of n. Then 

2 2
.n nr r

h
nh n

π πλ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

EXECUTE: (a) For 10
1 1 01,  2  with 0.529 10  m, son r r aλ π −= = = = × 10 102 (0.529 10  m) 3.32 10  mλ π − −= × = ×  

12 ;rλ π=  the de Broglie wavelength equals the circumference of the orbit. 

(b) For 44,  2 / 4.n rλ π= =  
2

0 4 0 so 16 .nr n a r a= =  
10 9

0 02 (16 ) / 4 4(2 ) 4(3.32 10  m) 1.33 10  ma aλ π π − −= = = × = ×  

42 / 4;rλ π=  the de Broglie wavelength is 
1 1

4n
=  times the circumference of the orbit. 

EVALUATE: As n increases the momentum of the electron increases and its de Broglie wavelength decreases. For 
any n, the circumference of the orbits equals an integer number of de Broglie wavelengths. 

39
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 39.6. (a) For a nonrelativistic particle, 
2

, so
2

p
K

m
= .

2

h h

p Km
λ = =  

(b) 34 -19 -31 11(6.63 10  J s) 2(800 eV)(1.60 10  J/eV)(9.11 10 kg) 4.34 10  m.− −× ⋅ × × = ×  

 39.7. IDENTIFY: A person walking through a door is like a particle going through a slit and hence should exhibit wave 
properties. 
SET UP: The de Broglie wavelength of the person is λ = h/mv. 
EXECUTE: (a) Assume m = 75 kg and v = 1.0 m/s. 

λ = h/mv = (6.626 × 10–34 J ⋅ s)/[(75 kg)(1.0 m/s)] = 8.8 × 10–36 m 

EVALUATE: (b) A typical doorway is about 1 m wide, so the person’s de Broglie wavelength is much too small 
to show wave behavior through a “slit” that is about 1035 times as wide as the wavelength. Hence ordinary objects 
do not show wave behavior in everyday life. 

 39.8. Combining Equations 37.38 and 37.39 gives 2 1.p mc γ= −  

(a) 2 12( ) 1 4.43 10 m.
h

h mc
p

λ γ −= = − = ×  (The incorrect nonrelativistic calculation gives 125.05 10 m.)−×  

(b) 2 13( ) 1 7.07 10 m.h mc γ −− = ×  

 39.9. IDENTIFY and SET UP: A photon has zero mass and its energy and wavelength are related by Eq.(38.2). An 
electron has mass. Its energy is related to its momentum by 2 / 2E p m=  and its wavelength is related to its 

momentum by Eq.(39.1). 
EXECUTE: (a) photon 

34 8

19

(6.626 10  J s)(2.998 10  m/s)
 so 62.0 nm

(20.0 eV)(1.602 10  J/eV)

hc hc
E

E
λ

λ

−

−

× ⋅ ×= = = =
×

 

electron 
2 /(2 ) so 2E p m p mE= = = 31 19 242(9.109 10  kg)(20.0 eV)(1.602 10  J/eV) 2.416 10  kg m/s− − −× × = × ⋅  

/ 0.274 nmh pλ = =  

(b) photon 19/ 7.946 10  J 4.96 eVE hc λ −= = × =  

electron 27/  so / 2.650 10  kg m/sh p p hλ λ −= = = × ⋅  
2 24 5/(2 ) 3.856 10  J 2.41 10  eVE p m − −= = × = ×  

(c) EVALUATE: You should use a probe of wavelength approximately 250 nm. An electron with 250 nmλ =  has 
much less energy than a photon with 250 nm,λ =  so is less likely to damage the molecule. Note that /h pλ =  

applies to all particles, those with mass and those with zero mass. /E hf hc λ= =  applies only to photons and 
2 / 2E p m=  applies only to particles with mass. 

39.10. IDENTIFY: Any moving particle has a de Broglie wavelength. The speed of a molecule, and hence its de Broglie 
wavelength, depends on the temperature of the gas. 
SET UP: The average kinetic energy of the molecule is Kav = 3/2 kT, and the de Broglie wavelength is λ =  
h/mv = h/p. 

EXECUTE: (a) Combining Kav = 3/2 kT and K = p2/2m gives 3/2 kT = pav
2/2m and pav = 3mkT . The de Broglie 

wavelength is 
3

h h

p mkT
λ = = =

( )( )( )

34
10

27 23

6.626 10  J s
1.08 10  m

3 2 1.67 10  kg 1.38 10  J/K 273  K

−
−

− −

× ⋅ = ×
× × ×

. 

(b) For an electron, λ = h/p = h/mv gives 

( )( )
34

31 10

6.626 10  J s

9.11 10  kg 1.08 10  m

h
v

mλ

−

− −

× ⋅= =
× ×

 = 6.75 × 106 m/s 

This is about 2% the speed of light, so we do not need to use relativity. 
(c) For photon: 

E = hc/λ = (6.626 × 10–34 J ⋅ s)(3.00 × 108 m/s)/(1.08 × 10–10 m) = 1.84 × 10–15 J 

For the H2 molecule: Kav = (3/2)kT = 3/2 (1.38 × 10–23 J/K)(273 K) = 5.65 × 10–21 J 
For the electron: K = ½ mv2 = ½ (9.11 × 10–31 kg)(6.73 × 106 m/s)2 = 2.06 × 10–17 J 
EVALUATE: The photon has about 100 times more energy than the electron and 300,000 times more energy than 
the H2 molecule. This shows that photons of a given wavelength will have much more energy than particles of the 
same wavelength. 
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39.11. IDENTIFY and SET UP: Use Eq.(39.1). 

EXECUTE: 
34

34
3

6.626 10  J s
3.90 10  m

(5.00 10  kg)(340 m/s)

h h

p mv
λ

−
−

−

× ⋅= = = = ×
×

 

EVALUATE: This wavelength is extremely short; the bullet will not exhibit wavelike properties. 
39.12. (a) h mv v h mλ λ= → =  

Energy conservation: 21

2
e V mvΔ =  

2

2 2 34 2

2 19 31 9 2

(6.626 10 J s)
66.9 V

2 2 2 2(1.60 10 C) (9.11 10 kg) (0.15 10 m)

h
m

mv hm
V

e e em
λ

λ

−

− − −

⎛ ⎞
⎜ ⎟ × ⋅⎝ ⎠Δ = = = = =

× × ×
 

(b) 
34 8

15
photon 9

(6.626 10 J s) (3.0 10 m s)
1.33 10 J

0.15 10 m

hc
E hf

λ

−
−

−

× ⋅ ×= = = = ×
×

 

photone V K EΔ = =  and 
15

photon

19

1.33 10 J
8310 V

1.6 10 C

E
V

e

−

−

×Δ = = =
×

 

39.13. (a) 0.10 nmλ = .  6so ( ) 7.3 10 m sp mv h v h mλ λ= = = = × . 

(b) 21
150 eV

2
E mv= =  

(c) E / 12 KeVhc λ= =  
(d) The electron is a better probe because for the same λ  it has less energy and is less damaging to the structure 
being probed. 

39.14. IDENTIFY: The electrons behave like waves and are diffracted by the slit. 
SET UP: We use conservation of energy to find the speed of the electrons, and then use this speed to find their de 
Broglie wavelength, which is λ = h/mv. Finally we know that the first dark fringe for single-slit diffraction occurs 
when a sin θ = λ. 
EXECUTE: (a) Use energy conservation to find the speed of the electron: ½ mv2 = eV. 

v = 
( )19

31

2 1.60 10  C (100 V)2

9.11 10  kg

eV

m

−

−

×
=

×
 = 5.93 × 106 m/s 

which is about 2% the speed of light, so we can ignore relativity. 
(b) First find the de Broglie wavelength: 

( )( )
34

31 6

6.626 10  J s

9.11 10  kg 5.93 10  m/s

h

mv
λ

−

−

× ⋅= =
× ×

 = 1.23 × 10–10 m = 0.123 nm 

For the first single slit dark fringe, we have a sin θ = λ, which gives 
101.23 10  m

sin sin(11.5 )
a

λ
θ

−×= =
°

 = 6.16 × 10–10 m = 0.616 nm 

EVALUATE: The slit width is around 5 times the de Broglie wavelength of the electron, and both are much 
smaller than the wavelength of visible light. 

39.15. For m =1, sin
2

h
d θ

mE
λ = = . 

2 34 2
20

2 2 27 11 2 2

(6.63 10 J s)
6.91 10 J 0.432 eV.

2 sin 2(1.675 10 kg) (9.10 10 m) sin (28.6 )

h
E

md θ

−
−

− −

× ⋅= = = × =
× × °

 

39.16. Intensity maxima occur when sin λ.d θ m=  λ so sin .
2 2

h h mh
d θ

p ME ME
= = =  (Careful! Here, m is the order 

of the maxima, whereas M is the mass of the incoming particle.) 

(a) 
34

31 19

(2)(6.63 10  J s)

2 sin 2(9.11 10  kg)(188 eV)(1.60 10  J/eV) sin(60.6 )

mh
d

ME θ

−

− −

× ⋅= =
× × °

 

         102.06 10  m 0.206 nm.−= × =  

(b) m = 1 also gives a maximum. 
34

31 19 10

(1) (6.63 10 J s)
arcsin 25.8

2(9.11 10 kg) (188 eV) (1.60 10 J eV) (2.06 10 m)
θ

−

− − −

⎛ ⎞× ⋅⎜ ⎟= = °
⎜ ⎟× × ×⎝ ⎠

. 
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This is the only other one. If we let 3,m ≥  then there are no more maxima. 

(c) 
2 2 2 34 2

2 2 31 10 2 2

18

(1) (6.63 10 J s)

2 sin 2(9.11 10 kg) (2.60 10 m) sin (60.6 )

7.49 10  J 46.8 eV.

m h
E

Md θ

−

− −

−

× ⋅= =
× × °

= × =

 

Using this energy, if we let 2, then sin 1. Thus, there is no 2m θ m= > =  maximum in this case. 

39.17. The condition for a maximum is sin . ,  so arcsin .
h h mh

d m
p Mv dMv

θ λ λ θ ⎛ ⎞= = = = ⎜ ⎟
⎝ ⎠

 (Careful! Here, m is the order of 

the maximum, whereas M is the incoming particle mass.) 

(a) 11 arcsin
h

m θ
dMv

⎛ ⎞= ⇒ = ⎜ ⎟
⎝ ⎠

 

         
34

6 31 4

6.63 10 J s
arcsin 2.07 .

(1.60 10 m) (9.11 10 kg) (1.26 10 m s)

−

− −

⎛ ⎞× ⋅= = °⎜ ⎟× × ×⎝ ⎠
 

34

2 6 31 4

(2) (6.63 10 J s)
2 arcsin 4.14 .

(1.60 10 m) (9.11 10 kg) (1.26 10 m s)
m θ

−

− −

⎛ ⎞× ⋅= ⇒ = =⎜ ⎟× × ×⎝ ⎠
°  

(b) For small angles (in radians!) , soy Dθ≅ 1

radians
(50.0 cm) (2.07 ) 1.81cm

180

π
y

⎛ ⎞≈ ° =⎜ ⎟°⎝ ⎠
, 

2

radians
(50.0 cm) (4.14 ) 3.61 cm

180

π
y

⎛ ⎞≈ ° =⎜ ⎟°⎝ ⎠
 and 2 1 3.61 cm 1.81cm 1.81 cm.y y− = − =  

39.18. IDENTIFY: Since we know only that the mosquito is somewhere in the room, there is an uncertainty in its 
position. The Heisenberg uncertainty principle tells us that there is an uncertainty in its momentum. 
SET UP: The uncertainty principle is xx pΔ Δ ≥ . 

EXECUTE: (a) You know the mosquito is somewhere in the room, so the maximum uncertainty in its horizontal 
position is Δ x = 5.0 m. 
(b) The uncertainty principle gives xx pΔ Δ ≥ , and Δpx = mΔvx since we know the mosquito’s mass. This gives 

 xx m vΔ Δ ≥ , which we can solve for Δvx to get the minimum uncertainty in vx. 

34

-6

1.055 10  J s

(1.5 10  kg)(5.0 m)xv
m x

−× ⋅Δ = =
Δ ×

 = 1.4 × 10–29 m/s 

which is hardly a serious impediment! 
EVALUATE: For something as “large” as a mosquito, the uncertainty principle places a negligible limitation on 
our ability to measure its speed. 

39.19. (a) IDENTIFY and SET UP: Use / 2xx p h πΔ Δ ≥  to calculate xΔ  and obtain xvΔ  from this. 

EXECUTE: 
34

28
6

6.626 10  J s
1.055 10  kg m/s

2 2 (1.00 10  m)x

h
p

xπ π

−
−

−

× ⋅Δ ≥ = = × ⋅
Δ ×

 

28
321.055 10  kg m/s

8.79 10  m/s
1200 kg

x
x

p
v

m

−
−Δ × ⋅Δ = = = ×  

(b) EVALUATE: Even for this very small xΔ  the minimum xvΔ  required by the Heisenberg uncertainty principle 

is very small. The uncertainty principle does not impose any practical limit on the simultaneous measurements of 
the positions and velocities of ordinary objects. 

39.20. IDENTIFY: Since we know that the marble is somewhere on the table, there is an uncertainty in its position. The 
Heisenberg uncertainty principle tells us that there is therefore an uncertainty in its momentum. 
SET UP: The uncertainty principle is xx pΔ Δ ≥ . 

EXECUTE: (a) Since the marble is somewhere on the table, the maximum uncertainty in its horizontal position is 
Δ x = 1.75 m. 
(b) Following the same procedure as in part (b) of problem 39.18, the minimum uncertainty in the horizontal 
velocity of the marble is 

( )
341.055 10  J s

0.0100 kg (1.75 m)xv
m x

−× ⋅Δ = =
Δ

 = 6.03 × 10–33 m/s 

(c) The uncertainty principle tells us that we cannot know that the marble’s horizontal velocity is exactly zero, so 
the smallest we could measure it to be is 6.03 × 10–33 m/s, from part (b). The longest time it could remain on the 
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table is the time to travel the full width of the table (1.75 m), so t = x/vx = (1.75 m)/(6.03 × 10–33 m/s) = 2.90 × 1032 
s = 9.20 × 1024 years 
Since the universe is about 14 × 109 years old, this time is about 

24
14

9

9.0 10  yr
6 10

14 10  yr

× ≈ ×
×

 times the age of the universe! Don’t hold your breath! 

EVALUATE: For household objects, the uncertainty principle places a negligible limitation on our ability to 
measure their speed. 

39.21. Heisenberg’s Uncertainty Principles tells us that .
2x

h
x p

π
Δ Δ ≥  We can treat the standard deviation as a direct 

measure of uncertainty. 10 25 35 34Here  (1.2 10 m) (3.0 10 kg m s) 3.6 10 J s but 1.05 10 J s
2x

h
x p

π
− − − −Δ Δ = × × ⋅ = × ⋅ = × ⋅  

Therefore so the claim is .
2x

h
x p not valid

π
Δ Δ <  

39.22. (a) ( ) ( ) 2 ,xx m v h πΔ Δ ≥ and setting (0.010)x xv vΔ = and the product of the uncertainties equal to / 2h π  (for the 

minimum uncertainty) gives (2 (0.010) ) 57.9 m s.xv h πm x= Δ =  

(b) Repeating with the proton mass gives 31.6 mm s.  

39.23. 
34

32 13
3

(6.63 10 J s)
2.03 10 J 1.27 10 eV.

2 2 (5.2 10 s)

h
E

π t π

−
− −

−

× ⋅Δ > = = × = ×
Δ ×

 

39.24. IDENTIFY and SET UP: The Heisenberg Uncertainty Principle says 
2x

h
x p

π
Δ Δ ≥ .  The minimum allowed 

xx pΔ Δ is / 2h π .  x xp m vΔ = Δ . 

EXECUTE: (a) 
2x

h
m x v

π
Δ Δ = .  

34
4

27 12

6.63 10  J s
3.2 10  m/s

2 2 (1.67 10  kg)(2.0 10  m)x

h
v

m xπ π

−

− −

× ⋅Δ = = = ×
Δ × ×

 

(b) 
34

4
31

6.63 10  J s
4.6 10  m

2 2 (9.11 10  kg)(0.250 m/s)x

h
x

m vπ π

−
−

−

× ⋅Δ = = = ×
Δ ×

 

39.25. 
2

h
E t

π
Δ Δ = . 

34
14 4

21

(6.63 10 J s)
1.39 10 J 8.69 10 eV 0.0869 MeV.

2 2 (7.6 10 s)

h
E

π t π

−
−

−

× ⋅Δ = = = × = × =
Δ ×

 

2
5

2

0.0869 MeV
2.81 10 .

3097 MeV

E c

E c
−Δ = = ×  

39.26. 2 9 2 10 2. . 2.06 10 eV 3.30 10 J .
2

h
E t E mc m c c

π
−Δ Δ = Δ = Δ Δ = × = ×  

34
25

2 10

6.63 10 J s
3.20 10 s.

2 2 (3.30 10 J)

h
t

π mc π

−
−

−

× ⋅Δ = = = ×
Δ ×

 

39.27. IDENTIFY and SET UP: For a photon 
25

ph

1.99 10  J mhc
E

λ λ

−× ⋅= = .  For an electron 
22 2

e 2

1

2 2 2

p h h
E

m m mλ λ
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

. 

EXECUTE: (a) photon 
25

17
ph 9

1.99 10  J m
1.99 10  J

10.0 10  m
E

−
−

−

× ⋅= = ×
×

 

electron 
34 2

21
e 31 9 2

(6.63 10  J s)
2.41 10  J

2(9.11 10  kg)(10.0 10  m)
E

−
−

− −

× ⋅= = ×
× ×

 

17
ph 3

21
e

1.99 10  J
8.26 10

2.41 10  J

E

E

−

−

×= = ×
×

 

(b) The electron has much less energy so would be less damaging. 
EVALUATE: For a particle with mass, such as an electron, 2~E λ− .  For a massless photon 1~E λ− . 

39.28. (a) 
2 2 2( ) ( )

,  so 419 V.
2 2 2

p h h
eV K V

m m me

λ λ= = = = =  

(b) The voltage is reduced by the ratio of the particle masses, 
31

27

9.11 10 kg
(419 V) 0.229 V.

1.67 10 kg

−

−

× =
×

 

39.29. IDENTIFY and SET UP: ( ) sin .x A kxψ =  The position probability density is given by 
2 2 2( ) sin .x A kxψ =  

EXECUTE: (a) The probability is highest where sin 1 so 2 / / 2,  1,  3,  5,kx kx x n nπ λ π= = = = … 
/ 4,  1,  3,  5,  so / 4,  3 / 4,  5 /4,x n n xλ λ λ λ= = =… … 
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(b) The probability of finding the particle is zero where 
2

0,ψ =  which occurs where sin 0kx =  and 

2 / ,  0,  1,  2,kx x n nπ λ π= = = … 
/ 2,  0,  1,  2,  so 0,  / 2,  ,  3 / 2,x n n xλ λ λ λ= = =… … 

EVALUATE: The situation is analogous to a standing wave, with the probability analogous to the square of the 
amplitude of the standing wave. 

39.30. sin ,ψ ωt∗ ∗Ψ =  so 
2 2* * 2 2sin sinψ ψ ωt ψ ωtΨ = Ψ Ψ = = .  

2Ψ  is not time-independent, so Ψ is not the 

wavefunction for a stationary state. 
39.31. IDENTIFY: To describe a real situation, a wave function must be normalizable. 

SET UP: |ψ |2 dV is the probability that the particle is found in volume dV. Since the particle must be somewhere, 
ψ  must have the property that ∫|ψ |2 dV = 1 when the integral is taken over all space. 

EXECUTE: (a) In one dimension, as we have here, the integral discussed above is of the form 2| ( ) | 1x dxψ
∞

−∞
=∫ . 

(b) Using the result from part (a), we have ( )
2

2 2

2

ax
ax ax e

e dx e dx
a

∞
∞ ∞

−∞ −∞
−∞

= = = ∞∫ ∫ . Hence this wave function cannot 

be normalized and therefore cannot be a valid wave function. 
(c) We only need to integrate this wave function of 0 to ∞ because it is zero for x < 0. For normalization we have 

21 | | dxψ
∞

−∞
= ∫  = ( )

2 2 2
2 2 2

0 0
0

2 2

bx
bx bx A e A

Ae dx A e dx
b b

∞−∞ ∞− −= = =
−∫ ∫ , which gives 

2

1
2

A

b
= , so 2A b= . 

EVALUATE: If b were positive, the given wave function could not be normalized, so it would not be allowable. 
39.32. (a) The uncertainty in the particle position is proportional to the width of ( )ψ x , and is inversely proportional to 

α . This can be seen by either plotting the function for different values of α , finding the expectation 

value 2 2 2x ψ x dx= ∫  for the normalized wave function or by finding the full width at half-maximum. The 

particle’s uncertainty in position decreases with increasing α . The dependence of the expectation value 2x〈 〉  on α  
may be found by considering 

2

2

2 2

2

2

x

x

x e dx

x

e dx

α

α

∞
−

−∞
∞

−

−∞

〈 〉 =
∫

∫
 =

221
ln

2
xe dxα

α

∞
−

−∞

⎡ ⎤∂− ⎢ ⎥∂ ⎣ ⎦
∫

21 1 1
ln ,

2 42
ue du

α αα

∞
−

−∞

⎡ ⎤∂= − =⎢ ⎥∂ ⎣ ⎦
∫  

where the substitution u xα= has been made. 
(b) Since the uncertainty in position decreases, the uncertainty in momentum must increase. 

39.33. *( , ) and ( , )
x iy x iy

f x y f x y
x iy x iy

⎛ ⎞ ⎛ ⎞− += =⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠
 

2 * 1.
x iy x iy

f f f
x iy x iy

⎛ ⎞ ⎛ ⎞− +
⇒ = = ⋅ =⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠

 

39.34. The same. 
2 *( , , ) ( , , ) ( , , )ψ x y z ψ x y z ψ x y z=  

2 *( , , ) ( ( , , ) )( ( , , ) )i i iψ x y z e ψ x y z e ψ x y z eφ φ φ− += *( , , ) ( , , ).ψ x y z ψ x y z=   

The complex conjugate means convert all i’s to–i’s and vice-versa. 1.i ie eφ φ−⋅ =  
39.35. IDENTIFY: To describe a real situation, a wave function must be normalizable. 

SET UP: |ψ |2 dV is the probability that the particle is found in volume dV. Since the particle must be somewhere, 
ψ must have the property that ∫|ψ |2 dV = 1 when the integral is taken over all space. 
EXECUTE: (a) For normalization of the one-dimensional wave function, we have 

21 | | dxψ
∞

−∞
= ∫  = ( ) ( )0 02 2 2 2 2 2

0 0

bx bx bx bxAe dx Ae dx A e dx A e dx
∞ ∞− −

−∞ −∞
+ = +∫ ∫ ∫ ∫ . 

02 2 2
2

0

1
2 2

bx bxe e A
A

b b b

∞−

−∞

⎧ ⎫⎪ ⎪= + =⎨ ⎬−⎪ ⎪⎩ ⎭
, which gives 12.00  mA b −= =  = 1.41 m–1/2 

(b) The graph of the wavefunction versus x is given in Figure 39.35. 

(c) (i) 
5.00 m 2

0.500 m
| |P dxψ

+

−
= ∫  = 

5.00 m 2 2

0
2 bxA e dx

+ −∫ , where we have used the fact that the wave function is an even 

function of x. Evaluating the integral gives 

P = ( ) ( )
2 1

2 (0.500 m) 2.00
1

(2.00 m )
1 1 0.865

2.00 m
bA

e e
b

−
− −

−

− −− = − =  

There is a little more than an 86% probability that the particle will be found within 50 cm of the origin. 
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(ii) P = ( )
2 1

0 02 2 2
1

2.00  m 1

2 2(2.00  m ) 2
bx bx A

Ae dx A e dx
b

−

−−∞ −∞
= = = =∫ ∫  = 0.500 

There is a 50-50 chance that the particle will be found to the left of the origin, which agrees with the fact that the 
wave function is symmetric about the y-axis. 

(iii) P = 
1.00 m 2 2

0.500 m

bxA e dx−∫  

= ( ) ( )-1 -1
2

2(2.00 m )(1.00 m) 2(2.00 m )(0.500 m) 4 21
0.0585

2 2

A
e e e e

b
− − − −− = − − =

−
 

EVALUATE: There is little chance of finding the particle in regions where the wave function is small. 

 
Figure 39.35 

39.36. Eq. (39.18): 
2 2

22

d ψ
Uψ Eψ

m dx

− + = .  Let 1 2Aψ Bψψ = +  

2 2

1 2 1 2 1 22
( ) ( ) ( )

2

d
Aψ Bψ U Aψ Bψ E Aψ Bψ

m dx

−
⇒ + + + = +

2 2 2 2
1 2

1 1 2 22 2
0.

2 2

d ψ d ψ
A Uψ Eψ B Uψ Eψ

m dx m dx

⎛ ⎞ ⎛ ⎞
⇒ − + − + − + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

But each of 1ψ  and 2ψ  satisfy Schrödinger’s equation separately so the equation still holds true, for any A or B. 

39.37. 
2 2

1 1 2 22
.

2

d ψ
Uψ BEψ CE ψ

m dx
− + = +  If ψ were a solution with energy E, then 1 1 2 2 1 2BEψ CE ψ BEψ CEψ+ = +  or 

1 1 2 2( ) ( ) .B E E ψ C E E ψ− = −  This would mean that 1ψ  is a constant multiple of 2 1 2,  and andψ ψ ψ  would be wave 

functions with the same energy. However, 1 2E E≠ , so this is not possible, and ψ  cannot be a solution to Eq. (39.18). 

39.38. (a) 
34

31 19

(6.63 10  J s)

2 2(9.11 10  kg)(40 eV)(1.60 10 J eV)

h

mK
λ

−

− −

× ⋅= =
× ×

101.94 10  m.−= ×  

(b) 
31 1 2

7

19

(2.5 m)(9.11 10  kg)
6.67 10  s.

2 2(40 eV)(1.6 10 J eV)

R R

v E m

−
−

−

×= = = ×
×

 

(c) The width
λ

is 2 ' and ,y yw w R w v t p t m
a

= = Δ = Δ  where t is the time found in part (b) and a is the slit width. 

Combining the expressions for 282
, 2.65 10  kg m s.y

m R
w p

at

λ −Δ = = × ⋅  

(d) 0.40 m,
2 y

h
y μ

π p
Δ = =

Δ
 which is the same order of magnitude. 

39.39. (a) 12 eVE hc λ= =  

(b) Find E for an electron with 60.10 10  m.λ −= ×  27so 6.626 10  kg m sh p p hλ λ −= = = × ⋅ . 
2 4(2 ) 1.5 10  eVE p m −= = × .  4so 1.5 10  VE q V V −= Δ Δ = ×  

27 31 3(6.626 10  kg m s) (9.109 10  kg) 7.3 10 m sv p m − −= = × ⋅ × = ×  

(c) Same λ so same p. 2 27 8/(2 ) but now 1.673 10  kg so 8.2 10  eV andE p m m E− −= = × = × 88.2 10  V.V −Δ = ×  
27 27(6.626 10  kg m s) (1.673 10  kg) 4.0 m sv p m − −= = × ⋅ × =  

39.40. (a) Single slit diffraction: sina θ mλ= . 9 8sin (150 10  m)sin20 5.13 10  ma θλ − −= = × ° = ×  

h mv v h mλ λ= → = . 
34

4
31 8

6.626 10  J s
1.42 10 m s

(9.11 10  kg)(5.13 10  m)
v

−

− −

× ⋅= = ×
× ×

 

(b) 2sin 2a θ λ= . 
8

2 9

5.13 10  m
sin 2 2 0.684

150 10  m
θ

a

λ −

−

⎛ ⎞×= ± = ± = ±⎜ ⎟×⎝ ⎠
.  2 43.2θ = ± °  
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39.41. IDENTIFY: The electrons behave like waves and produce a double-slit interference pattern after passing through 
the slits. 
SET UP: The first angle at which destructive interference occurs is given by d sin θ = λ/2. The de Broglie 
wavelength of each of the electrons is λ = h/mv. 
EXECUTE: (a) First find the wavelength of the electrons. For the first dark fringe, we have d sin θ = λ/2, which gives 
(1.25 nm)(sin 18.0°) = λ/2 , and λ = 0.7725 nm. Now solve the de Broglie wavelength equation for the speed of the 
electron: 

34

31 9

6.626 10  J s

(9.11 10  kg)(0.7725 10  m)

h
v

mλ

−

− −

× ⋅= =
× ×

 = 9.42 × 105 m/s 

which is about 0.3% the speed of light, so they are nonrelativistic. 
(b) Energy conservation gives eV = ½ mv2 and 

V = mv2/2e = (9.11 × 10–31 kg)(9.42 × 105 m)2/[2(1.60 × 10–19 C)] = 2.52 V 

EVALUATE: The hole must be much smaller than the wavelength of visible light for the electrons to show diffraction. 
39.42. IDENTIFY: The alpha particles and protons behave as waves and exhibit circular-aperture diffraction after passing 

through the hole. 
SET UP: For a round hole, the first dark ring occurs at the angle θ for which sinθ = 1.22λ /D, where D is the 
diameter of the hole. The de Broglie wavelength for a particle is λ = h/p = h/mv. 
EXECUTE: Taking the ratio of the sines for the alpha particle and proton gives 

p p p

sin 1.22

sin 1.22
α α αθ λ λ

θ λ λ
= =  

The de Broglie wavelength gives λp = h/pp and λα = h/pα, so p

p p

sin /

sin /

ph p

h p p
α α

α

θ
θ

= = . Using K = p2/2m, we have 

2p mK= . Since the alpha particle has twice the charge of the proton and both are accelerated through the same 

potential difference, Kα = 2Kp. Therefore p p p2p m K=  and p p2 2 (2 ) 4p m K m K m Kα α α α α= = = . 

Substituting these quantities into the ratio of the sines gives 

p pp p

p p

2sin

sin 24

m Kp m

p mm K
α

α αα

θ
θ

= = =  

Solving for sin θα gives 
27

27

1.67 10  kg
sin  sin1 5.0

2(6.64 10  kg)αθ
−

−

×= °
×

 and θα = 5.3°. 

EVALUATE: Since sin θ is inversely proportional to the mass of the particle, the larger-mass alpha particles form 
their first dark ring at a smaller angle than the ring for the lighter protons. 

39.43. IDENTIFY: Both the electrons and photons behave like waves and exhibit single-slit diffraction after passing 
through their respective slits. 
SET UP: The energy of the photon is E = hc/λ and the de Broglie wavelength of the electron is λ = h/mv = h/p. 
Destructive interference for a single slit first occurs when a sin θ  = λ. 
EXECUTE: (a) For the photon: λ = hc/E  and  a sinθ  = λ. Since the a and θ are the same for the photons and 
electrons, they must both have the same wavelength. Equating these two expressions for λ gives a sin θ = hc/E.  

For the electron, λ = h/p = 
2

h

mK
 and a sin θ = λ. Equating these two expressions for λ gives a sin θ = 

2

h

mK
. 

Equating the two expressions for asinθ gives hc/E = 
2

h

mK
, which gives 7 1/22 (4.05 10  J )E c mK K−= = ×  

(b) 
22 2E c mK mc

K K K
= = .  Since v << c, mc2 > K, so the square root is >1. Therefore E/K > 1, meaning that the 

photon has more energy than the electron. 
EVALUATE: As we have seen in Problem 39.10, when a photon and a particle have the same wavelength, the 
photon has more energy than the particle. 

39.44. According to Eq.(35.4) 
6sin (40.0 10  m)sin(0.0300 rad)

600 nm.
2

d θ
m

λ
−×= = =  The velocity of an electron with 

this wavelength is given by Eq.(39.1) 
34

3
31 9

(6.63 10  J s)
1.21 10 m s.

λ (9.11 10  kg)(600 10  m)

p h
v

m m

−

− −

× ⋅= = = = ×
× ×
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Since this velocity is much smaller than c we can calculate the energy of the electron classically 

2 31 3 2 251 1
(9.11 10  kg)(1.21 10 m s) 6.70 10  J 4.19 eV.

2 2
K mv μ− −= = × × = × =  

39.45. The de Broglie wavelength of the blood cell is 
34

17
14 3

(6.63 10  J s)
λ 1.66 10 m.

(1.00 10  kg)(4.00 10 m s)

h

mv

−
−

− −

× ⋅= = = ×
× ×

 

We need not be concerned about wave behavior. 

39.46. (a) 

1 22

21
v

h
ch

p mv
λ

⎛ ⎞
−⎜ ⎟

⎝ ⎠= =
2 2 2

2 2 2 2 2
2 2

1
v h v

m v h h
c c

λ ⎛ ⎞
⇒ = − = −⎜ ⎟

⎝ ⎠
 

2
2 2 2 2 2

2

v
m v h h

c
λ⇒ + =  

2 2
2

2 2 2 2
2 2

2 2
1

h c
v

h m c
m

c h

λλ
⇒ = =

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 1 22
.

1

c
v

mc

h

λ
⇒ =

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

(b) 
2

1 22

1
1 (1 ) .

2
1

( )

c mc
v c c

h

h mc

λ

λ

⎛ ⎞⎛ ⎞= ≈ − = − Δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎛ ⎞ ⎝ ⎠⎛ ⎞
⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  
2 2 2

2
.

2

m c

h

λΔ =  

(c) 151.00 10 m .
h

mc
λ −= × <<  

31 2 8 2 15 2
8

34 2

(9.11 10  kg) (3.00 10 m s) (1.00 10 m)
8.50 10

2(6.63 10  J s)

− −
−

−

× × ×Δ = = ×
× ⋅

 

8(1 Δ) (1 8.50 10 ) .v c c−⇒ = − = − ×  

39.47. (a) Recall .
2 2

h h h

p mE mq V
λ = = =

Δ
So for an electron: 

34
10

31 19

6.63 10  J s
λ 1.10 10  m.

2(9.11 10  kg)(1.60 10  C)(125 V)
λ

−
−

− −

× ⋅= ⇒ = ×
× ×

 

(b) For an alpha particle: 
34

13

27 19

6.63 10  J s
9.10 10  m.

2(6.64 10  kg)2(1.60 10  C)(125 V)
λ

−
−

− −

× ⋅= = ×
× ×

 

39.48. IDENTIFY and SET UP: The minimum uncertainty product is 
2x

h
x p

π
Δ Δ = .  1x rΔ = , where 1r is the radius of the 

1n = Bohr orbit.  In the 1n = Bohr orbit, 1 1 2

h
mv r

π
= and 1 1

12

h
p mv

rπ
= = . 

EXECUTE: 
34

24
10

1

6.63 10  J s
2.0 10  kg m/s

2 2 2 (0.529 10  m)x

h h
p

x rπ π π

−
−

−

× ⋅Δ = = = = × ⋅
Δ ×

.  This is the same as the magnitude of 

the momentum of the electron in the 1n = Bohr orbit. 
EVALUATE: Since the momentum is the same order of magnitude as the uncertainty in the momentum, the 
uncertainty principle plays a large role in the structure of atoms. 

39.49. IDENTIFY and SET UP: Combining the two equations in the hint gives 2( 2 )PC K K mc= +  and 
2

.
( 2 )

hc

K K mc
λ =

+
 

EXECUTE: (a) With 23K mc=  this becomes 
2 2 2

.
153 (3 2 )

hc h

mcmc mc mc
λ = =

+
 

(b) (i) 2 31 8 2 133 3(9.109 10  kg)(2.998 10  m/s) 2.456 10  J 1.53 MeVK mc − −= = × × = × =  
34

13

31 8

6.626 10  J s
6.26 10  m

15 15(9.109 10  kg)(2.998 10  m/s)

h

mc
λ

−
−

−

× ⋅= = = ×
× ×

 

(ii) K is proportional to m, so for a proton p e( / )(1.53 MeV) 1836(1.53 MeV) 2810 MeVK m m= = =  

λ  is proportional to 1/m, so for a proton 13 13 16
e p( / )(6.26 10  m) (1/1836)(6.626 10  m) 3.41 10  mm mλ − − −= × = × = ×  

EVALUATE: The proton has a larger rest mass energy so its kinetic energy is larger when 23 .K mc=  The proton 
also has larger momentum so has a smaller .λ  
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39.50. (a) 
34

20
15

(6.626 10  J s)
2.1 10  kg m s.

2 (5.0 10  m)π

−
−

−

× ⋅ = × ⋅
×

 

(b) 2 2 2 2 13( ) ( ) 1.3 10  J 0.82 MeV.K pc mc mc −= + − = × =  

(c) The result of part (b), about 61 MeV 1 10  eV= × , is many orders of magnitude larger than the potential energy 

of an electron in a hydrogen atom. 
39.51. (a) IDENTIFY and SET UP: / 2xx p h πΔ Δ ≥  

Estimate 15 as 5.0 10  m.x x −Δ Δ ≈ ×  

EXECUTE: Then the minimum allowed xpΔ  is 
34

20
15

6.626 10  J s
2.1 10  kg m/s

2 2 (5.0 10  m)x

h
p

xπ π

−
−

−

× ⋅Δ ≈ = = × ⋅
Δ ×

 

(b) IDENTIFY and SET UP: Assume 202.1 10  kg m/s.p −≈ × ⋅  Use Eq.(37.39) to calculate E, and then 2.K E mc= −  

EXECUTE: 2 2 2( ) ( )E mc pc= +  
2 31 8 2 14(9.109 10  kg)(2.998 10  m/s) 8.187 10  Jmc − −= × × = ×  

20 8 12(2.1 10  kg m/s)(2.998 10  m/s) 6.296 10  Jpc − −= × ⋅ × = ×  
14 2 12 2 12(8.187 10  J) (6.296 10  J) 6.297 10  JE − − −= × + × = ×  

2 12 14 12 196.297 10  J 8.187 10  J 6.215 10  J(1 eV/1.602 10 J) 39 MeVK E mc − − − −= − = × − × = × × =  

(c) IDENTIFY and SET UP: The Coulomb potential energy for a pair of point charges is given by Eq.(23.9). The 
proton has charge +e and the electron has charge –e. 

EXECUTE: 
2 9 2 2 19 2

14
15

(8.988 10  N m / C )(1.602 10  C)
4.6 10  J 0.29 MeV

5.0 10  m

ke
U

r

−
−

−

× ⋅ ×= − = − = − × = −
×

 

EVALUATE: The kinetic energy of the electron required by the uncertainty principle would be much larger than 
the magnitude of the negative Coulomb potential energy. The total energy of the electron would be large and 
positive and the electron could not be bound within the nucleus. 

39.52. (a) Take the direction of the electron beam to be the x-direction and the direction of motion perpendicular to the 

beam to be the y-direction.  
34

31 3

6.626 10  J s
0.23 m/s

2 2 (9.11 10  kg)(0.50 10  m)
y

y

p h
v

m m yπ π

−

− −

Δ × ⋅Δ = = = =
Δ × ×

 

(b) The uncertainty rΔ  in the position of the point where the electrons strike the screen is 

109.56 10 m,
2 2

y
y

x

p x h x
r v t

m v πm y K m
−Δ

Δ = Δ = = = ×
Δ

 

(c) This is far too small to affect the clarity of the picture. 

39.53. IDENTIFY and SET UP: 
2

h
E t

π
Δ Δ ≥ .  Take the minimum uncertainty product, so 

2

h
E

tπ
Δ =

Δ
, with 

178.4 10  st −Δ = × .  e264m m= .  
2

E
m

c

ΔΔ = . 

EXECUTE: 
34

18
17

6.63 10  J s
1.26 10  J

2 (8.4 10  s)
E

π

−
−

−

× ⋅Δ = = ×
×

.  
18

35
8 2

1.26 10  J
1.4 10  kg

(3.00 10  m/s)
m

−
−×Δ = = ×

×
.  

35
8

31

1.4 10  kg
5.8 10

(264)(9.11 10  kg)

m

m

−
−

−

Δ ×= = ×
×

 

39.54. IDENTIFY: The insect behaves like a wave as it passes through the hole in the screen. 
SET UP: (a) For wave behavior to show up, the wavelength of the insect must be of the order of the diameter of 
the hole. The de Broglie wavelength is λ = h/mv. 
EXECUTE: The de Broglie wavelength of the insect must be of the order of the diameter of the hole in the screen, 
so λ ≈ 5.00 mm. The de Broglie wavelength gives 

( )( )
34

6

6.626 10  J s

1.25 10  kg 0.00400  m

h
v

mλ

−

−

× ⋅= =
×

 = 1.33 × 10–25 m/s 

(b) t = x/v = (0.000500 m)/(1.33 × 10–25 m/s) = 3.77 × 1021 s = 1.4 × 1010 yr 
The universe is about 14 billion years old (1.4 × 1010 yr), so this time would be about 85,000 times the age of the 
universe. 
EVALUATE: Don’t expect to see a diffracting insect! Wave behavior of particles occurs only at the very small scale. 

39.55. IDENTIFY and SET UP: Use Eq.(39.1) to relate your wavelength and speed. 

EXECUTE: (a) 
34

356.626 10  J s
,  so 1.1 10  m/s

(60.0 kg)(1.0 m)

h h
v

mv m
λ

λ

−
−× ⋅= = = = ×  
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(b) 34 7 27
35

distance 0.80 m
7.3 10  s(1 y/3.156 10  s) 2.3 10  y

velocity 1.1 10  m/s
t −= = = × × = ×

×
 

Since you walk through doorways much more quickly than this, you will not experience diffraction effects. 
EVALUATE: A 1 kg object moving at 1 m/s has a de Broglie wavelength 346.6 10  m,λ −= ×  which is exceedingly 
small. An object like you has a very, very small λ  at ordinary speeds and does not exhibit wavelike properties. 

39.56. (a) 19 72.58 eV 4.13 10 J, with a wavelength of 4.82 10 m 482 nm
hc

E
E

λ− −= = × = = × =  

(b) 
34

28 9
7

(6.63 10 J s)
6.43 10 J 4.02 10 eV.

2 2 (1.64 10 s)

h
E

π t π

−
− −

−

× ⋅Δ = = = × = ×
Δ ×

 

(c) ,  so  ( ) 0, andE hc E E E Eλ λ λ λ λ= Δ + Δ = Δ = Δ , so 
28

7 16 7
19

6.43 10 J
(4.82 10 m) 7.50 10 m 7.50 10 nm.

4.13 10 J
E Eλ λ

−
− − −

−

⎛ ⎞×Δ = Δ = × = × = ×⎜ ⎟×⎝ ⎠
 

39.57. IDENTIFY: The electrons behave as waves whose wavelength is equal to the de Broglie wavelength. 
SET UP: The de Broglie wavelength is λ = h/mv, and the energy of a photon is E = hf = hc/λ. 
EXECUTE: (a) Use the de Broglie wavelength to find the speed of the electron. 

( )( )
34

31 9

6.626 10  J s

9.11 10  kg 1.00 10  m

h
v

mλ

−

− −

× ⋅= =
× ×

 = 7.27 × 105 m/s 

which is much less than the speed of light, so it is nonrelativistic. 
(b) Energy conservation gives eV = ½ mv2. 

V = mv2/2e = (9.11 × 10–31 kg)(7.27 × 105 m/s)2/[2(1.60 × 10–19 C)] = 1.51 V 

(c) K = eV = e(1.51 V) = 1.51 eV, which is about ¼ the potential energy of the NaCl crystal, so the electron would 
not be too damaging. 
(d) E = hc/λ = (4.136 × 10–15 eV s)(3.00 × 108 m/s)/(1.00 × 10–9 m) = 1240 eV 
which would certainly destroy the molecules under study. 
EVALUATE: As we have seen in Problems 39.10 and 39.43, when a particle and a photon have the same 
wavelength, the photon has much more energy. 

39.58. sin sin , and ( ) ( 2 ), and soθ θ h p h mE
λ λ
λ
′′ ′ ′ ′= = = arcsin sin

2

hθ θ
mEλ

⎛ ⎞′ = ⎜ ⎟′⎝ ⎠
. 

34

11 31 3 19

(6.63 10 J s)sin 35.8
arcsin 20.9

(3.00 10 m) 2(9.11 10 kg)(4.50 10 )(1.60 10 J eV)
θ

−

− − + −

⎛ ⎞× ⋅ °′ ⎜ ⎟= = °
⎜ ⎟× × × ×⎝ ⎠

 

39.59. (a) The maxima occur when 2 sind θ mλ=  as described in Section 38.7. 

(b) 
2

h h

p mE
λ = = .  

( )
34

10

37 19

(6.63 10 J s)
1.46 10 m 0.146 nm

2(9.11 10 kg)(71.0 eV) 1.60 10 J/eV
λ

−
−

− −

× ⋅= = × =
× ×

. 

1sin (Note: This
2

mθ m
d

λ− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 is the order of the maximum, not the mass.) 

10
1

11

(1)(1.46 10 m)
sin 53.3 .

2(9.10 10 m)

−
−

−

⎛ ⎞×
⇒ = °⎜ ⎟×⎝ ⎠

 

(c) The work function of the metal acts like an attractive potential increasing the kinetic energy of incoming 
electrons by .eφ  An increase in kinetic energy is an increase in momentum that leads to a smaller wavelength. A 
smaller wavelength gives a smaller angle θ  (see part (b)). 

39.60. (a) Using the given approximation, ( )2 21
( ) , ( )

2
E h x m kx dE dx kx= + = − 2 3( ),h mx  and the minimum energy 

occurs when 2 3 2( ), or .
h

kx h mx x
mk

= =  The minimum energy is then .h k m  

(b) They are the same. 
39.61. (a) IDENTIFY and SET UP: .U A x=  Eq.(7.17) relates force and potential. The slope of the function A x  is not 

continuous at 0x =  so we must consider the regions x > 0 and x < 0 separately. 

EXECUTE: For 
( )

0,   so  and .
d Ax

x x x U Ax F A
dx

> = = = − = −  For 0,   so  andx x x U Ax< = − = −  

( )
 .

d Ax
F A

dx

−= − = +  We can write this result as / ,F A x x= −  valid for all x except for x = 0. 
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(b) IDENTIFY and SET UP: Use the uncertainty principle, expressed as ,p x hΔ Δ ≈  and as in Problem 39.50 

estimate pΔ  by p and xΔ  by x. Use this to write the energy E of the particle as a function of x. Find the value of x 

that gives the minimum E and then find the minimum E. 

EXECUTE: 
2

2

p
E K U A x

m
= + = +  

,  so /px h p h x≈ ≈  

Then 
2

2
.

2

h
E A x

mx
≈ +  

For 
2

2
0, .

2

h
x E Ax

mx
> = +  

To find the value of x that gives minimum E set 0.
dE

dx
=  

2

3

2
0

2

h
A

mx

−= +  

1/ 32 2
3  and 

h h
x x

mA mA

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

With this x the minimum E is 
1/ 32 / 32 2

2 / 3 1/ 3 2 / 3 2 / 3 1/ 3 2 / 3
2

1

2 2

h mA h
E A h m A h m A

m h mA
− −⎛ ⎞⎛ ⎞= + = +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

1/ 32 2
3
2

h A
E

m

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

EVALUATE: The potential well is shaped like a V. The larger A is the steeper the slope of U and the smaller the 
region to which the particle is confined and the greater is its energy. Note that for the x that minimizes E, 2K = U. 

39.62. For this wave function, 1 2
1 2 , soiω t iω tψ e ψ e∗ ∗ ∗Ψ = +  

1 2 1 2 1 2 2 1( ) ( )2
1 2 1 2 1 1 2 2 1 2 2 1( )( )iω t iω t iω t iω t i ω ω t i ω ω t*ψ e ψ e ψ e ψ e ψ ψ ψ ψ ψ ψ e ψ ψ e .− − − −∗ ∗ ∗ ∗ ∗ ∗Ψ = Ψ Ψ = + + = + + +  

The frequencies 1 2andω ω  are given as not being the same, so 
2Ψ is not time-independent, and Ψ is not the 

wave function for a stationary state. 
39.63. The time-dependent equation, with the separated form for ( , )x tΨ  as given becomes 

2 2

2
( ) ( ) .

2

d ψ
i ψ iω U x ψ

m dx

⎛ ⎞
− = − +⎜ ⎟

⎝ ⎠
 

Since ψ  is a solution of the time-independent solution with energy ,E  the term in parenthesis is ,Eψ  and so 

, and ( ).ω E ω E= =  

39.64. (a) 
2

2
π E Eω π f .
h

= = =  
2 2π π p

k p .
hλ

= = =    
2 2 2( )

2 2 2

p k kω E K ω .
m m m

= = = = ⇒ =  

(b) From Problem 39.63 the time-dependent Schrödinger’s equation is 
2 2

2

( , )

2

ψ x t

m x

∂− +
∂

 

( , )
( ) ( , ) . ( ) 0 for a free particle, so

ψ x t
U x ψ x t i U x

t

∂= =
∂

2

2

( , ) 2 ( , )
.

ψ x t mi ψ x t

x t

∂ ∂= −
∂ ∂

 

Try ( , ) cos( )ψ x t kx ωt= − : 

 
2

2
2

( , ) sin( )

( , )
sin( ) and cos( ).

ψ
x t Aω kx ωt

t

ψ x t ψ
Ak kx ωt Ak kx ωt

x x

∂ = −
∂
∂ ∂= − − = −

∂ ∂

 

Putting this into the Schrödinger’s equation, 2 2
cos( ) sin( ).

mi
Ak kx ωt Aω kx ωt

⎛ ⎞− = − −⎜ ⎟
⎝ ⎠

 

This is not generally true for all andx t so is not a solution. 
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(c) Try ( , ) sin( )ψ x t A kx ωt= − : 

2
2

2

( , )
cos( )

( , ) ( , )
cos( ) and sin( ).

ψ x t
Aω kx ωt

t

ψ x t ψ x t
Ak kx ωt Ak kx ωt

x x

∂ = − −
∂

∂ ∂= − = − −
∂ ∂

 

Again, 2 2
sin( ) cos( ) is not generally true for

mi
Ak kx ωt Aω kx ωt all

⎛ ⎞− − = − −⎜ ⎟
⎝ ⎠

andx t  so is not a solution. 

(d) Try ( , ) cos( ) sin( )ψ x t A kx ωt B kx ωt= − + − : 

2
2 2

2

( , )
sin( ) cos( )

( , ) ( , )
sin( ) cos( ) and cos(( ) sin( ).

ψ x t
Aω kx ωt Bω kx ωt

t

ψ x t ψ x t
Ak kx ωt Bk kx ωt Ak kx ωt Bk kx ωt

x x

∂ = + − − −
∂

∂ ∂= − − + − = − − − −
∂ ∂

 

Putting this into the Schrödinger’s equation, 

2 2 2
cos( ) sin( ) ( sin( ) cos( )).

mi
Ak kx ωt Bk kx ωt Aω kx ωt Bω kx ωt− − − − = − + − − −  

Recall that 
2

.
2

kω
m

=  Collect sin and cos terms. 

2 2( ) cos( ) ( ) sin (A iB k kx ωt iA B k kx+ − + − − ) 0.ωt =  This is only true if B = iA. 

39.65. (a) IDENTIFY and SET UP: Let the y-direction be from the thrower to the catcher, and let the x-direction be 
horizontal and perpendicular to the y-direction. A cube with volume 3 3 3125 cm 0.125 10  mV −= = ×  has side length 

1/ 3 3 3 1/ 3(0.125 10  m ) 0.050 m.l V −= = × =  Thus estimate as 0.050 m.x xΔ Δ ≈  Use the uncertainty principle to 

estimate .xpΔ  

EXECUTE: / 2xx p h πΔ Δ ≥  then gives 
0.0663 J s

0.21 kg m/s
2 2 (0.050 m)x

h
p

xπ π
⋅Δ ≈ = = ⋅

Δ
 

(The value of h in this other universe has been used.) 
(b) IDENTIFY and SET UP: ( )xx v tΔ = Δ  is the uncertainty in the x-coordinate of the ball when it reaches the 

catcher, where t is the time it takes the ball to reach the second student. Obtain xvΔ  from .xpΔ  

EXECUTE: The uncertainty in the ball’s horizontal velocity is 
0.21 kg m/s

0.84 m/s
0.25 kg

x
x

p
v

m

Δ ⋅Δ = = =  

The time it takes the ball to travel to the second student is 
12 m

2.0 s.
6.0 m/s

t = =  The uncertainty in the x-coordinate 

of the ball when it reaches the second student that is introduced by is ( ) (0.84 m/s)(2.0 s) 1.7 m.x xv x v tΔ Δ = Δ = =  

The ball could miss the second student by about 1.7 m. 
EVALUATE: A game of catch would be very different in this universe. We don’t notice the effects of the 
uncertainty principle in everyday life because h is so small. 

39.66. (a) 
2 2 22 2 2 2( ).αx βy γzψ A x e− + += To save some algebra, let 2,u x= so that 

2ψ = 2 ( , )uue f y zα− .  

2 2

0 0

1 1
(1 2 ) ; the maximum occurs at ,  .

2 2
ψ u ψ u x

u
α

α α
∂ = − = = ±
∂

  

(b) ψ vanishes at 0,x =  so the probability of finding the particle in the 0x =  plane is zero. The wave function 

vanishes for .x = ±∞  

39.67. (a) IDENTIFY and SET UP: The probability is 
2 2 with 4P dV dV r drψ π= =  

EXECUTE: 
2 22 2 2 2 2 2 so 4r rA e P A r e drα αψ π− −= =  

(b) IDENTIFY and SET UP: P is maximum where 0
dP

dr
=  

EXECUTE: 
22 2( ) 0rd

r e
dr

α− =  

2 22 3 22 4 0r rre r eα αα− −− =  and this reduces to 32 4 0r rα− =  
r = 0 is a solution of the equation but corresponds to a minimum not a maximum. Seek r not equal to 0 so divide by 
r and get 22 4 0rα− =  
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This gives 
1

2
r

α
=  (We took the positive square root since r must be positive.) 

EVALUATE: This is different from the value of r, r = 0, where 
2ψ  is a maximum. At 

2
0,  r ψ=  has a 

maximum but the volume element 24dV r drπ=  is zero here so P does not have a maximum at r = 0. 

39.68. (a) 
2 2

max( ) (0) 1kB k e B Bα−= = =  

2 2
h 2 2

h h

1
( ) ln(1 2)

2
kB k e kα α−= = ⇒ = −  h

1
ln(2) .kk ω

α
⇒ = =  

(b) Using integral tables: 
2 2 2 2/ 4

0
( ) cos ( ).

2
k xπψ x e kxdk eα α

α
∞ − −= =∫ ( )ψ x  is a maximum when x = 0. 

(c) 
2 2
h

2
/ 4 h

h 2

1
( ) when ln(1/2)

4 2 4
xπ xψ x e α

α α
− −= = ⇒ =  h x2 ln2x ωα⇒ = =  

(d) ( )1 ln 2
ln2 2 ln2 (2ln2) .

2 2 2
k

p x x

hω h h hω ω ω
π π π π

α
α

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

39.69. (a) 
0

0 0

0 0
0 0 00

1 sin sin
( ) ( )cos cos

k
k kx k xψ x B k kxdk kxdk

k k x k x

∞ ⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
∫ ∫  

(b) ( )ψ x has a maximum value at the origin 0 0 0 0
0

0. ( ) 0 when so .
π

x ψ x k x π x
k

= = = = Thus the width of this 

function 0
0

2
2 .x

π
w x

k
= =  If 0

2
, .x

π
k w L

L
= = ( )B k  versus k is graphed in Figure 39.69a.  The graph of ( )ψ x versus 

x is in Figure 39.69b. 

(c) If 0 2 .xk w L
L

π= =  

(d) 0

0 0 0

2
.

2
k k

p x

hw π hw hk
w w h

π k k k

⎛ ⎞⎛ ⎞= = = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 The uncertainty principle states that .
2p x

h
w w

π
≥  For us, no matter what 

0 is, ,p xk w w h= which is greater than .
2

h

π
 

   
Figure 39.69 

39.70. (a) For a standing wave, 2 ,n Lλ = and 
2 2 2 2

2

( )
.

2 2 8n

p h n h
E

m m mL

λ= = =  

(b) With 10 17
0 10.5292 10 m, 2.15 10 J 134 eV.L a E− −= = × = × =  
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39.71. Time of flight of the marble, from a free-fall kinematic equation is just 
2

2 2(25.0 m)
2.26 s

9.81 m s

y
t

g
= = = .  

( )
2

x
f i x i i

i

p ht
x x v t x t x

m x mπ
Δ⎛ ⎞Δ = Δ + Δ = Δ + = + Δ⎜ ⎟ Δ⎝ ⎠

 

To minimize fxΔ with respect to ixΔ , 
2

( )
0 1

( ) 2 ( )
f

i i

d x ht

d x πm x

Δ −= = +
Δ Δ

 

(min)
2i

ht
x

πm
⎛ ⎞⇒ Δ = ⎜ ⎟
⎝ ⎠

34
16 72 2(6.63 10 J s)(2.26 s)

(min) 2.18 10 m 2.18 10 nm.
2 2 (0.0200 kg)f

ht ht ht
x

πm πm πm π

−
− −× ⋅

⇒ Δ = + = = = × = ×  
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QUANTUM MECHANICS 

 40.1. IDENTIFY and SET UP: The energy levels for a particle in a box are given by 
2 2

2
.

8n

n h
E

mL
=  

EXECUTE: (a) The lowest level is for 1,n =  and 
34 2

67
1 2

(1)(6.626 10  J s)
1.2 10  J.

8(0.20 kg)(1.5 m)
E

−
−× ⋅= = ×  

(b) 21

2
E mv=  so 

67
332 2(1.2 10  J)

1.1 10  m/s.
0.20 kg

E
v

m

−
−×= = = ×  If the ball has this speed the time it would take it 

to travel from one side of the table to the other is 33
33

1.5 m
1.4 10  s.

1.1 10  m/s
t −= = ×

×
 

(c) 
2

1 2 12
,  4 ,

8

h
E E E

mL
= =  so 67 67

2 1 13 3(1.2 10  J) 3.6 10  JE E E E − −Δ = − = = × = ×  

(d) EVALUATE: No, quantum mechanical effects are not important for the game of billiards. The discrete, 
quantized nature of the energy levels is completely unobservable. 

 40.2. 
18

h
L

mE
=  

34
15

27 6 19

(6.626 10  J s)
6.4 10  m.

8(1.673 10  kg)(5.0 10  eV)(1.602 10  J eV)
L

−
−

− −

× ⋅= = ×
× × ×

 

 40.3. IDENTIFY: An electron in the lowest energy state in this box must have the same energy as it would in the ground 
state of hydrogen. 

SET UP: The energy of the nth level of an electron in a box is 
2

2
.

8n

nh
E

mL
=  

EXECUTE: An electron in the ground state of hydrogen has an energy of 13.6 eV,−  so find the width 

corresponding to an energy of 1 13.6 eV.E =  Solving for L gives 

18

h
L

mE
=

34
10

31 19

(6.626 10 J s)
1.66 10 m.

8(9.11 10 kg)(13.6 eV)(1.602 10 J eV)

−
−

− −

× ⋅= = ×
× ×

 

EVALUATE: This width is of the same order of magnitude as the diameter of a Bohr atom with the electron in the 
K shell. 

 40.4. (a) The energy of the given photon is 
3

34 18
9

(3.00 10 m/s)
(6.63 10 J s) 1.63 10 J.

(122 10 m)

c
E hf h

λ
− −

−

×= = = × ⋅ = ×
×

 

The energy levels of a particle in a box are given by Eq.40.9 
2

2
22

( ).
8

h
E n n

mL
Δ = −  

2 2 34 2 2 2
101 2

31 20

( ) (6.63 10  J s) (2 1 )
3.33 10  m.

8 8(9.11 10  kg)(1.63 10  J)

h n n
L

m E

−
−

− −

− × ⋅ −= = = ×
Δ × ×

 

(b) The ground state energy for an electron in a box of the calculated dimensions is 
2 34 2

19
2 31 10 2

(6.63 10  J s)
5.43 10  J 3.40 eV

8 8(9.11 10  kg)(3.33 10  m)

h
E

mL

−
−

− −

× ⋅= = = × =
× ×

(one-third of the original photon energy), 

which does not correspond to the 13.6 eV−  ground state energy of the hydrogen atom. Note that the energy levels for 

a particle in a box are proportional to 2 ,n  whereas the energy levels for the hydrogen atom are proportional to 2
1 .
n

−  

40
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 40.5. IDENTIFY and SET UP: Eq.(40.9) gives the energy levels. Use this to obtain an expression for 2 1E E−  and use the 

value given for this energy difference to solve for L. 

EXECUTE: Ground state energy is 
2

1 2
;

8

h
E

mL
=  first excited state energy is 

2

2 2

4
.

8

h
E

mL
=  The energy separation 

between these two levels is 
2

2 1 2

3
.

8

h
E E E

mL
Δ = − =  This gives 

3

8
L h

m E
= =

Δ
 

34 10
31 19

3
6.626 10  J s 6.1 10  m 0.61 nm.

8(9.109 10  kg)(3.0 eV)(1.602 10  J/1 eV)
L − −

− −= × ⋅ = × =
× ×

 

EVALUATE: This energy difference is typical for an atom and L is comparable to the size of an atom. 
 40.6. (a) The wave function for 1n =  vanishes only at 0x = and x L=  in the range 0 .x L≤ ≤  

(b) In the range for ,x the sine term is a maximum only at the middle of the box, / 2.x L=  
(c) The answers to parts (a) and (b) are consistent with the figure. 

 40.7. IDENTIFY and SET UP: For the 2n =  first excited state the normalized wave function is given by Eq.(40.13). 

2

2 2
( ) sin .

x
x

L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
2 2

2

2 2
( ) sin .

x
x dx dx

L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Examine 
2

2 ( )x dxψ  and find where it is zero and where it is 

maximum. 

EXECUTE: (a) 
2

2 0dxψ =  implies 
2

sin 0
x

L

π⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

2
,

x
m

L

π π=  0,  1, 2, . . . ;m =  ( /2)x m L=  

For 0,  0;m x= =  for 1,  /2;m x L= =  for 2,  m x L= =  
The probability of finding the particle is zero at 0,  /2,x L=  and L. 

(b) 
2

2 dxψ  is maximum when 
2

sin 1
x

L

π⎛ ⎞ = ±⎜ ⎟
⎝ ⎠

 

2
( /2),  1,  3, 5, . . . ; ( /4)

x
m m x m L

L

π π= = =  

For 1,  /4;m x L= =  for 3,  3 /4m x L= =  
The probability of finding the particle is largest at /4 and 3 /4.x L L=  

(c) EVALUATE: The answers to part (a) correspond to the zeros of 
2ψ  shown in Fig.40.5 in the textbook and the 

answers to part (b) correspond to the two values of x where 
2ψ  in the figure is maximum. 

 40.8. 
2

2
2

,
d

k
dx

ψ ψ= −  and for ψ  to be a solution of Eq.(40.3), 
2

2
2 2

8 2
.

π m m
k E E

h
= =  

(b) The wave function must vanish at the rigid walls; the given function will vanish at 0x = for any ,k  but to 
vanish at ,x L kL nπ= = for integer .n  

 40.9. (a) IDENTIFY and SET UP: cos .A kxψ =  Calculate 2 2/d dxψ  and substitute into Eq.(40.3) to see if this equation is 
satisfied. 

EXECUTE: Eq.(40.3): 
2 2

2 28

h d
E

m dx

ψ ψ
π

− =  

( sin ) sin
d

A k kx Ak kx
dx

ψ = − = −  

2
2

2
( cos ) cos

d
Ak k kx Ak kx

dx

ψ = − = −  

Thus Eq.(40.3) requires 
2

2
2

( cos ) ( cos ).
8

h
Ak kx E A kx

mπ
− − =  

This says 
2 2

2
;

8

h k
E

mπ
− =  

2 2

( /2 )

mE mE
k

h π
= =  

cosA kxψ =  is a solution to Eq.(40.3) if 
2

.
mE

k =  

(b) EVALUATE: The wave function for a particle in a box with rigid walls at 0x =  and x L=  must satisfy the 
boundary conditions 0ψ =  at 0x =  and 0ψ =  at .x L=  (0) cos0 ,A Aψ = =  since cos0 1.=  Thus ψ  is not 0 at 

0x =  and this wave function isn't acceptable because it doesn't satisfy the required boundary condition, even 
though it is a solution to the Schrödinger equation. 
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40.10. (a) The third excited state is 4,n = so 
2 34 2

2 17
2 31 9 2

15(6.626 10  J s)
(4 1) 5.78 10  J 361 eV.

8 8(9.11 10  kg)(0.125 10  m)

h
E

mL

−
−

− −

× ⋅Δ = − = = × =
× ×

 

(b) 
34 8

17

(6.63 10  J s)(3.0 10  m/s)
3.44 nm

5.78 10  J

hc

E
λ

−

−

× ⋅ ×= = =
Δ ×

 

40.11. Recall .
2

h h

p mE
λ = =  

(a) 
2

10 10
1 12 2 2

2 2(3.0 10  m) 6.0 10  m.
8 2 /8

h h
E L

mL mh mL
λ − −= ⇒ = = = × = ×  The wavelength is twice the width of 

the box. 
34

24
1 10

1

(6.63 10  J s)
1.1 10  kg m/s

6.0 10  m

h
p

λ

−
−

−

× ⋅= = = × ⋅
×

 

(b) 
2

10
2 22

4
3.0 10  m.

8

h
E L

mL
λ −= ⇒ = = ×  The wavelength is the same as the width of the box. 

24
2 1

2

2 2.2 10 kg m/s.
h

p p
λ

−= = = × ⋅  

(c) 
2

10
3 32

9 2
2.0 10  m.

8 3

h
E L

mL
λ −= ⇒ = = ×  The wavelength is two-thirds the width of the box. 

24
3 13 3.3 10 kg m/s.p p −= = × ⋅  

40.12. IDENTIFY: If the given wave function is a solution to the Schrödinger equation, we will get an identity when we 
substitute that wave function into the Schrödinger equation. 

SET UP: We must substitute the equation /2
( , ) sin niE tn x
x t e

L L

π −⎛ ⎞Ψ = ⎜ ⎟
⎝ ⎠

 into the one-dimensional Schrödinger 

equation 
2 2

2

( )
( ) ( ) ( ).

2

d x
U x x E x

m dx

ψ ψ ψ− + =  

EXECUTE: Taking the second derivative of ( , )x tΨ  with respect to x gives 
22

2

( ,  )
( , )

d x t n
x t

dx L

πΨ ⎛ ⎞= − Ψ⎜ ⎟
⎝ ⎠

 

Substituting this result into 
2 2

2

( )
( ) ( ) ( ),

2

d x
U x x E x

m dx

ψ ψ ψ− + =  we get 
22

( , ) ( , )
2

n
x t E x t

m L

π⎛ ⎞ Ψ = Ψ⎜ ⎟
⎝ ⎠

 which 

gives
22

,
2n

n
E

m L

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

 the energies of a particle in a box. 

EVALUATE: Since this process gives us the energies of a particle in a box, the given wave function is a solution 
to the Schrödinger equation. 

40.13. (a) 
2 2

2
Eq.(40.1): .

2

d ψ
Uψ Eψ

m dx

− + =  

Left-hand side: 
2 2 2 2 2 2

0 0 02
( sin ) sin sin sin .

2 2 2

d k k
A kx U A kx A kx U A kx U ψ

m dx m m

⎛ ⎞− + = + = +⎜ ⎟
⎝ ⎠

 

But 
2 2

0 02

k
U U E

m
+ > >  for constant .k  But 

2 2

02

k
U

m
+  should equal E ⇒ no solution. 

(b) If 0,E U>  then 
2 2

02

k
U E

m
+ =  is consistent and so sinψ A kx= is a solution of Eq.(40.1) for this case. 

40.14. According to Eq.(40.17), the wavelength of the electron inside of the square well is given by 

in

0

2
.

2 (3 )

mE h
k

m U
λ= ⇒ =  By an analysis similar to that used to derive Eq.40.17, we can show that outside 

the box 

out

0 0

.
2 ( ) 2 (2 )

h h

m E U m U
λ = =

−
 

Thus, the ratio of the wavelengths is 0out

in 0

2 (3 ) 3
.

22 (2 )

m U

m U

λ
λ

= =  
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40.15. 
2 2

19
1 12

0.625 0.625 ; 2.00 eV 3.20 10 J
2

π
E E E

mL
−

∞= = = = ×  

1/ 2

10
31 19

0.625
3.43 10  m

2(9.109 10  kg)(3.20 10  J)
L π −

− −

⎛ ⎞
= = ×⎜ ⎟× ×⎝ ⎠

 

40.16. Since 0 6U E∞=  we can use the result 1 0.625E E∞= from Section 40.3, so 0 1 5.375U E E∞− = and the maximum 

wavelength of the photon would be 
2

2 2
0 1

31 9 2 8
6

34

8

(5.375)( /8 ) (5.375)

8(9.11 10 kg)(1.50 10  m) (3.00 10 m/s)
1.38 10 m.

(5.375)(6.63 10  J s)

hc hc mL c

U E h mL h
λ

λ
− −

−
−

= = =
−

× × ×= = ×
× ⋅

 

40.17. Eq.(40.16): 
2 2

sin cos
mE mEψ A x B x= +  

2

2 2 2 2

2 2 2 2 2
sin cos ( ) Eq.(40.15).

d ψ mE mE mE mE mE
A x B x ψ

dx

−⎛ ⎞ ⎛ ⎞= − − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

40.18. ( ),x xdψ
Ce De

dx
κ κκ −= −  

2
2 2

2
( )x xd ψ
Ce De ψ

dx
κ κκ κ−= + =  for all constants C and .D  Hence ψ is a solution to 

Eq.(40.1) for 
2

2 1/ 2
0 0, or [2 ( )] ,

2
U E m U E

m
κ κ− + = = −  and κ is real for 0.E U<  

40.19. IDENTIFY: Find the transition energy EΔ  and set it equal to the energy of the absorbed photon. Use /E hc λ=  to 

find the wavelength of the photon. 

SET UP: 0 6 ,U E∞=  as in Fig.40.8 in the textbook, so 1 0.625E E∞=  and 3 5.09E E∞=  with 
2 2

2
.

2
E

mL

π
∞ =  In this 

problem the particle bound in the well is a proton, so 271.673 10  kg.m −= ×  

EXECUTE: 
2 2 2 34 2

12
2 27 15 2

(1.055 10  J s)
2.052 10  J.

2 2(1.673 10  kg)(4.0 10  m)
E

mL

π π −
−

∞ − −

× ⋅= = = ×
× ×

 The transition energy is 

3 1 (5.09 0.625) 4.465 .E E E E E∞ ∞Δ = − = − =  12 124.465(2.052 10  J) 9.162 10  JE − −Δ = × = ×  

The wavelength of the photon that is absorbed is related to the transition energy by / ,E hc λΔ =  so 
34 8

14
12

(6.626 10  J s)(2.998 10  m/s)
2.2 10  m 22 fm.

9.162 10  J

hc

E
λ

−
−

−

× ⋅ ×= = = × =
Δ ×

 

EVALUATE: The wavelength of the photon is comparable to the size of the box. 
40.20. IDENTIFY: The longest wavelength corresponds to the smallest energy change. 

SET UP: The ground level energy level of the infinite well is 
2

2
,

8

h
E

mL∞ =  and the energy of the photon must be 

equal to the energy difference between the two shells. 
EXECUTE: The 400.0 nm photon must correspond to the 1n =  to 2n =  transition. Since 0 6 ,U E∞=  we have 

2 12.43  and 0.625 .E E E E∞ ∞= =  The energy of the photon is equal to the energy difference between the two levels, 

and 
2

2
,

8

h
E

mL∞ =  which gives 
2

2 1 2

1.805 
(2.43 0.625)

8

hc h
E E E E

mLγ λ ∞= − ⇒ = − =  

Solving for L gives 
34 7

10
31 8

(1.805) (1.805)(6.626 10  J s)(4.00 10  m)
4.68 10  m 0.468 nm.

8 8(9.11 10  kg)(3.00 10  m s)

h
L

mc

λ − −
−

−

× ⋅ ×= = = × =
× ×

 

EVALUATE: This width is approximately half that of a Bohr hydrogen atom. 

40.21. 02 2 ( )/

0 0

16 1 L m U EE E
T e .

U U
− −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 
0

6.0 eV

11.0 eV

E

U
=  and 19

0 5 eV 8.0 10 J.E U −− = = ×  

(a) 90.80 10  m:L −= ×  
9 31 19 342(0.80 10 m) 2(9.11 10 kg)(8.0 10 J) /1.055 10 J s 86.0 eV 6.0 ev

16 1 4.4 10
11.0 eV 11.0 eV

T e
− − − −− × × × × ⋅ −⎛ ⎞ ⎛ ⎞

= − = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) 90.40 10  m:L −= ×  44.2 10 .T −= ×  
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40.22. The transmission coefficient is 02 2 ( ) /

0 0

16 1 ,m U E LE E
T e

U U
− −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 with 95.0 eV, 0.60 10  m,E L −= = ×  and 

319.11 10  kgm −= ×  

(a) 4
0 7.0 eV 5.5 10 .U T −= ⇒ = ×  

(b) 5
0 9.0 eV 1.8 10U T −= ⇒ = ×  

(c) 7
0 13.0 eV 1.1 10 .U T −= ⇒ = ×  

40.23. IDENTIFY and SET UP: Use Eq.(39.1), where 2/2K p m=  and .E K U= +  

EXECUTE: / / 2 ,h p h mKλ = =  so Kλ  is constant 

1 1 2 2 ;K Kλ λ=  1λ  and 1K  are for x L>  where 1 02K U=  and 2λ  and 2K  are for 0 x L< <  where 

2 0 0K E U U= − =  

1 2 0

2 1 0

1

2 2

K U

K U

λ
λ

= = =  

EVALUATE: When the particle is passing over the barrier its kinetic energy is less and its wavelength is larger. 
40.24. IDENTIFY: The probability of tunneling depends on the energy of the particle and the width of the barrier. 

SET UP: The probability of tunneling is approximately 2 ,LT Ge κ−=  where 
0 0

16 1
E E

G
U U

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 and 

( )02
.

m U E
κ

−
=  

EXECUTE: 
0 0

50.0 eV 50.0 eV
16 1 16 1 3.27.

70.0 eV 70.0 eV

E E
G

U U

⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

27 19
0 11 1

34

2 ( ) 2(1.67 10  kg)(70.0 eV 50.0 eV)(1.60 10  J/eV)
9.8 10  m

(6.63 10  J s) 2

m U E

π
κ

− −
−

−

− × − ×
= = = ×

× ⋅
 

Solving 2 LT Ge κ−=  for L gives 12
11 1

1 1 3.27
ln( / ) ln 3.6 10  m = 3.6 pm

2 2(9.8 10  m ) 0.0030
L G T

κ
−

−
⎛ ⎞= = = ×⎜ ⎟× ⎝ ⎠

 

If the proton were replaced with an electron, the electron’s mass is much smaller so L would be larger. 
EVALUATE: An electron can tunnel through a much wider barrier than a proton of the same energy. 

40.25. IDENTIFY and SET UP: The probability is 2 ,LT Ae κ−=  with 
0 0

16 1
E E

A
U U

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 and 02 ( )

.
m U E

κ
−

=  

9
032 eV, 41 eV, 0.25 10  m.E U L −= = = ×  Calculate T. 

EXECUTE: (a) 
0 0

32 32
16 1 16 1 2.741.

41 41

E E
A

U U

⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

02 ( )m U E
κ

−
=  

31 19
10 1

34

2(9.109 10  kg)(41 eV 32 eV)(1.602 10  J/eV)
1.536 10  m

1.055 10  J s
κ

− −
−

−

× − ×
= = ×

× ⋅
 

10 1 92 2(1.536 10  m )(0.25 10  m) 7.68(2.741) 2.741 0.0013LT Ae e eκ − −− − × × −= = = =  

(b) The only change in the mass m, which appears in .κ  

02 ( )m U E
κ

−
=  

27 19
11 1

34

2(1.673 10  kg)(41 eV 32 eV)(1.602 10  J/eV)
6.584 10  m

1.055 10  J s
κ

− −
−

−

× − ×
= = ×

× ⋅
 

Then 
11 -1 92 2(6.584 10  m )(0.25 10  m) 392.2 143(2.741) 2.741 10LT Ae e eκ −− − × × − −= = = =  

EVALUATE: The more massive proton has a much smaller probability of tunneling than the electron does. 
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40.26. 02

0 0

2 ( )
with 16 1  and ,L m U EE E

T Ge G
U U

κ κ− ⎛ ⎞ −
= = − =⎜ ⎟

⎝ ⎠
 so

02 2 ( )

0 0

16 1 .
m U E LE E

T e
U U

− −⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

(a) If 6 15 27
0 30.0 10  eV, 2.0 10  m, 6.64 10  kgU L m− −= × = × = ×  and 

6 6
0 1.0 10  eV ( 29.0 10  eV), 0.090.U E E T− = × = × =  

(b) If 6 6
0 10.0 10 eV ( 20.0 10 eV), 0.014.U E E T− = × = × =  

40.27. IDENTIFY and SET UP: The energy levels are given by Eq.(40.26), where .
k

m
ω

′
=  

EXECUTE: 
110 N/m

21.0 rad/s
0.250 kg

k

m
ω

′
= = =  

The ground state energy is given by Eq.(40.26): 
34 33 19 15

0

1 1
(1.055 10  J s)(21.0 rad/s) 1.11 10  J(1 eV/1.602 10  J) 6.93 10  eV

2 2
E ω − − − −= = × ⋅ = × × = ×  

1
;

2nE n ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

 ( 1)

1
1

2nE n ω+
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 

The energy separation between these adjacent levels is 
33 33 14

1 02 2(1.11 10  J) 2.22 10  J 1.39 10  eVn nE E E Eω − − −
+Δ = − = = = × = × = ×  

EVALUATE: These energies are extremely small; quantum effects are not important for this oscillator. 

40.28. Let 2 ,mk δ′ =  and so 2
dψ

x ψ
dx

δ= −  and 
2

2 2
2

(4 2 ,
d ψ

x δ δ)ψ
dx

= −  and ψ  is a solution of Eq.(40.21) if 

2 1 1

2 2
E δ k /m ω.

m
′= = =  

40.29. IDENTIFY: We can model the molecule as a harmonic oscillator. The energy of the photon is equal to the energy 
difference between the two levels of the oscillator. 
SET UP: The energy of a photon is / ,E hf hcγ λ= =  and the energy levels of a harmonic oscillator are given by 

1 1
.

2 2n

k
E n n

m
ω

′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EXECUTE: (a) The photon’s energy is 
34 8

6

(6.63 10  J s)(3.00 10  m/s)
0.21 eV

5.8 10  m

hc
Eγ λ

−

−

× ⋅ ×= = =
×

 

(b) The transition energy is 1 ,n n

k
E E E

m
ω+

′
Δ = − = =  which gives 

2
.

π c k

mλ
′

=  Solving for ,k′  we get 

2 2 2 8 2 26

2 6 2

4 4 (3.00 10  m s) (5.6 10  kg)
5,900 N/m.

(5.8 10  m)

π c m π
k

λ

−

−

× ×′ = = =
×

 

EVALUATE: This would be a rather strong spring in the physics lab. 
40.30. According to Eq.(40.26), the energy released during the transition between two adjacent levels is twice the ground 

state energy 3 2 02 11.2 eV.E E ω E− = = =  

For a photon of energy E  
34 8

19

(6.63 10 J s)(3.00 10 m s)
111 nm.

(11.2 eV)(1.60 10 J/eV)

c hc
E hf

f E
λ

−

−

× ⋅ ×= ⇒ = = = =
×

 

40.31. IDENTIFY and SET UP: Use the energies given in Eq.(40.26) to solve for the amplitude A and maximum speed 

maxv  of the oscillator. Use these to estimate xΔ  and xpΔ  and compute the uncertainty product .xx pΔ Δ  

EXECUTE: The total energy of a Newtonian oscillator is given by 21
2E k A′=  where k′  is the force constant and A 

is the amplitude of the oscillator. Set this equal to the energy 1
2( )E n ω= +  of an excited level that has quantum 

number n, where ,
k

m
ω

′
=  and solve for A: 21 1

2 2( )k A n ω′ = +  

(2 1)n
A

k

ω+=
′

 

The total energy of the Newtonian oscillator can also be written as 21
max2 .E mv=  Set this equal to 1

2( )E n ω= +  and 

solve for max:v  21 1
max2 2( )mv n ω= +  

max

(2 1)n
v

m

ω+=  



Quantum Mechanics  40-7 

Thus the maximum linear momentum of the oscillator is max max (2 1) .p mv n mω= = +  Assume that A represents 

the uncertainty xΔ  in position and that maxp  is the corresponding uncertainty xpΔ  in momentum. Then the 

uncertainty product is 
(2 1) 1

(2 1) (2 1) (2 1) (2 1) .x

n m
x p n m n n n

k k

ω ω ω ω
ω

+ ⎛ ⎞Δ Δ = + = + = + = +⎜ ⎟′ ′ ⎝ ⎠
 

EVALUATE: For 1n =  this gives 3 ,xx pΔ Δ =  in agreement with the result derived in Section 40.4. The 

uncertainty product xx pΔ Δ  increases with n. 

40.32. (a) 
2

2 1
2

( )
exp exp 0.368.

(0)

ψ A mk ω
A mk e

kψ
−⎛ ⎞′ ⎛ ⎞′= − = − = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎝ ⎠⎝ ⎠

 

This is consistent with what is shown in Figure 40.20 in the textbook. 

(b) 
2

2 4 2
2

(2 )
exp (2 ) exp 4 1.83 10 .

(0)

ψ A mk ω
A mk e

kψ
− −⎛ ⎞′ ⎛ ⎞′= − = − = = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎝ ⎠⎝ ⎠

 

This figure cannot be read this precisely, but the qualitative decrease in amplitude with distance is clear. 
40.33. IDENTIFY: We model the atomic vibration in the crystal as a harmonic oscillator. 

SET UP: The energy levels of a harmonic oscillator are given by 
1 1

.
2 2n

k
E n n

m
ω

′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EXECUTE: (a) The ground state energy of a simple harmonic oscillator is 
34

22 3
0 26

1 1 (1.055 10  J s) 12.2 N/m
9.43 10  J 5.89 10  eV

2 2 2 3.82 10  kg

k
E

m
ω

−
− −

−

′ × ⋅= = = = × = ×
×

 

(b) 4 3 02 0.0118 eV,E E Eω− = = =  so 
34 8

21

(6.63 10  J s)(3.00 10  m/s)
106 m

1.88 10  J

hc

E
λ μ

−

−

× ⋅ ×= = =
×

 

(c) 1 02 0.0118 eVn nE E Eω+ − = = =  

EVALUATE: These energy differences are much smaller than those due to electron transitions in the hydrogen 
atom. 

40.34. IDENTIFY: If the given wave function is a solution to the Schrödinger equation, we will get an identity when we 
substitute that wave function into the Schrödinger equation. 

SET UP: The given function is ( ) ,ikxx Aeψ =  and the one-dimensional Schrödinger equation is 
2

2

( )
( ) ( ) ( ).

2

d x
U x x E x

m dx

ψ ψ ψ− + =  

EXECUTE: Start with the given function and take the indicated derivatives: ( ) .ikxx Aeψ =  
( )

.ikxd x
Aike

dx

ψ =  

2
2 2 2

2

( )
.ikx ikxd x

Ai k e Ak e
dx

ψ = = −  
2

2
2

( )
( ).

d x
k x

dx

ψ ψ= −  
2 2

2
2

( )
( ).

2 2

d x
k x

m dx m

ψ ψ− =  Substituting these results into the 

one-dimensional Schrödinger equation gives 
2 2

0( ) ( )  ( ).
2

k
x U x E x

m
ψ ψ ψ+ =  

EVALUATE: ( )  ikxx A eψ = is a solution to the one-dimensional Schrödinger equation if 
2 2

0 2

k
E U

m
− =  or 

0
2

2 ( )
.

m E U
k

−=  (Since 0U E<  was given, k is the square root of a positive quantity.) In terms of the particle’s 

momentum p: / ,k p=  and in terms of the particle’s de Broglie wavelength :λ  2 / .k π λ=  

40.35. IDENTIFY: Let I refer to the region 0x <  and let II refer to the region 0,x >  so 1 1( ) ik x ik x
I x Ae Beψ −= +  and 

2( ) .ik x
II x Ceψ =  Set (0) (0)I IIψ ψ= and I IId d

dx dx

ψ ψ= at 0.x =  

SET UP: ( ) .ikx ikxd
e ike

dx
=  

EXECUTE: (0) (0)I IIψ ψ=  gives .A B C+ =  I IId d

dx dx

ψ ψ= at 0x =  gives 1 1 2 .ik A ik B ik C− =  Solving this pair of 

equations for B and C gives 1 2

1 2

k k
B A

k k

⎛ ⎞−= ⎜ ⎟+⎝ ⎠
 and 2

1 2

2
.

k
C A

k k

⎛ ⎞
= ⎜ ⎟+⎝ ⎠
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EVALUATE: The probability of reflection is 
2 2

1 2
2 2

1 2

( )
.

( )

B k k
R

A k k

−= =
+

 The probability of transmission is 

2 2
1

2 2
1 2

4
.

( )

C k
T

A k k
= =

+
 Note that 1.R T+ =  

40.36. (a) 
2 2

2 2 2

( 1) 2 1 2 1
.n

n n n
R

n n n n

+ − += = = +  This is never larger than it is for 11, and 3.n R= =  

(b) R approaches zero; in the classical limit, there is no quantization, and the spacing of successive levels is 
vanishingly small compared to the energy levels. 

40.37. IDENTIFY and SET UP: The energy levels are given by Eq.(40.9): 
2 2

2
.

8n

n h
E

mL
=  Calculate EΔ  for the transition 

and set / ,E hc λΔ =  the energy of the photon. 

EXECUTE: (a) Ground level, 
2

1 2
1,  

8

h
n E

mL
= =  

First excited level, 
2

2 2

4
2,  

8

h
n E

mL
= =  

The transition energy is 
2

2 1 2

3
.

8

h
E E E

mL
Δ = − =  Set the transition energy equal to the energy /hc λ  of the emitted 

photon. This gives 
2

2

3
.

8

hc h

mLλ
=  

2 31 8 9 2

34

8 8(9.109 10  kg)(2.998 10  m/s)(4.18 10  m)

3 3(6.626 10  J s)

mcL

h
λ

− −

−

× × ×= =
× ⋅

 

51.92 10  m 19.2 m.λ μ−= × =  

(b) Second excited level has 3n =  and 
2

3 2

9
.

8

h
E

mL
=  The transition energy is 

2 2 2

3 2 2 2 2

9 4 5
.

8 8 8

h h h
E E E

mL mL mL
Δ = − = − =  

2

2

5

8

hc h

mLλ
=  so 

28 3
(19.2 m) 11.5 m.

5 5

mcL

h
λ μ μ= = =  

EVALUATE: The energy spacing between adjacent levels increases with n, and this corresponds to a shorter 
wavelength and more energetic photon in part (b) than in part (a). 

40.38. (a) 
4

/ 4 / 42

0 0
0

2 2 1 2 1 2 1 1
sin 1 cos sin ,

2 2 4 2

L
L Lπx πx L πx

dx dx x
L L L L L L ππ

⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  which is about 0.0908. 

(b) Repeating with limits of 4 and 2L L  gives 
2

4

1 2 1 1
sin ,

2 4 2

L

L

L πx
x

L π L π
⎛ ⎞− = +⎜ ⎟
⎝ ⎠

 

about 0.409. 
(c) The particle is much likely to be nearer the middle of the box than the edge. 
(d) The results sum to exactly 1/2, which means that the particle is as likely to be between 0 and 2x L= as it is to 

be between 2 and .x L x L= =  

(e) These results are represented in Figure 40.5b in the textbook. 

40.39. IDENTIFY: The probability of the particle being between 1x  and 2x  is 
2

1

2
,

x

x
dxψ∫  where ψ  is the normalized 

wave function for the particle. 

(a) SET UP: The normalized wave function for the ground state is 1

2
sin .

x

L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE: The probability P of the particle being between / 4x L=  and 3 / 4x L=  is 
3 / 4 3 / 42 2

1/ 4 / 4

2
sin .

L L

L L

x
P dx dx

L L

πψ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫ ∫  Let / ;  ( / )y x L dx L dyπ π= =  and the integration limits become / 4π  and 

3 / 4.π  
3 / 4

3 / 4 2

/ 4
/ 4

2 2 1 1
sin sin 2

2 4

L
P y dy y y

L

π
π

π
ππ π

⎛ ⎞ ⎡ ⎤= = −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫  

2 3 1 3 1
sin sin

8 8 4 2 4 2
P

π π π π
π
⎡ ⎤⎛ ⎞ ⎛ ⎞= − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

2 1 1 1 1
( 1) (1) 0.818.

4 4 4 2
P

π
π π
⎛ ⎞= − − + = + =⎜ ⎟
⎝ ⎠

 (Note: The integral formula 2 1 1
sin sin 2

2 4
y dy y y∫ = −  was used.) 
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(b) SET UP: The normalized wave function for the first excited state is 2

2 2
sin

x

L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

EXECUTE: 
3 / 4 3 / 42 2

2/ 4 / 4

2 2
sin .

L L

L L

x
P dx dx

L L

πψ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫ ∫  Let 2 / ;  ( / 2 )y x L dx L dyπ π= =  and the integration limits 

become / 2π  and 3 / 2.π  
3 / 2

3 / 2 2

/ 2
/ 2

2 1 1 1 1 3
sin sin 2 0.500

2 2 4 4 4

L
P y dy y y

L

π
π

π
π

π π
π π π

⎛ ⎞ ⎡ ⎤ ⎛ ⎞= = − = − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠∫  

(c) EVALUATE: These results are consistent with Fig.40.4b in the textbook. That figure shows that 
2ψ  is more 

concentrated near the center of the box for the ground state than for the first excited state; this is consistent with the 
answer to part (a) being larger than the answer to part (b). Also, this figure shows that for the first excited state half 

the area under 
2ψ  curve lies between L/4 and 3L/4, consistent with our answer to part (b). 

40.40. Using the normalized wave function 1 2 sin( )ψ L πx L ,= the probabilities 2| |ψ dx  are 

(a) 2(2 ) sin ( 4) /L π dx dx L=  

(b) 2(2 ) sin ( / 2) 2 /L dx dx Lπ =  

(c) 2(2 )sin (3 4) .L π dx L=  

40.41. IDENTIFY and SET UP: The normalized wave function for the 2n =  first excited level is 2

2 2
sin .

x

L L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

2
( )P x dxψ=  is the probability that the particle will be found in the interval x to .x dx+  

EXECUTE: (a) /4x L=  

2 2 2 2
( ) sin sin .

4 2

L
x

L L L L

π πψ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(2/ )P L dx=  

(b) /2x L=  

2 2 2
( ) sin sin( ) 0

2

L
x

L L L

πψ π⎛ ⎞⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

0P =  
(c) 3 /4x L=  

2 2 3 2 3 2
( ) sin sin .

4 2

L
x

L L L L

π πψ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(2/ )P L dx=  

EVALUATE: Our results are consistent with the 2n =  part of Fig.40.5 in the textbook. 
2ψ  is zero at the center 

of the box and is symmetric about this point. 

40.42. final initial.Δ = −p p p  .
2

nπ hn
k

L L
= = =p  At 0x =  the initial momentum at the wall is initial

ˆ
2

hn

L
= −p i  and the final 

momentum, after turning around, is final
ˆ.

2

hn

L
= +p i  So, ˆ ˆ ˆ.

2 2

hn hn hn

L L L
⎛ ⎞Δ = + − − = +⎜ ⎟
⎝ ⎠

p i i i  At x L=  the initial 

momentum is initial
ˆ

2

hn

L
= +p i  and the final momentum, after turning around, is final .̂

2

hn

L
= −p i  So, 

ˆ ˆ ˆ
2 2

hn hn hn

L L L
Δ = − − = −p i i i  

40.43. (a) For a free particle, ( ) 0U x =  so Schrodinger's equation becomes  
2

2 2

( ) 2
( ).

d ψ x m
Eψ x

dx h
= −  The graph is given in 

Figure 40.43. 

(b) For x < 0: ( ) .xψ x e κ+=  
2

2( ) ( )
.  .x xdψ x d ψ x

e e
dx dx

κ κκ κ+ += =  So 
2 2

2
2

2
.

2

m
E E

m

κκ = − ⇒ = −  

(c) For x > 0: ( ) .xψ x e κ−=  
( )

.xdψ x
ke

dx
κ−= −  

2
2( ) xd ψ x
e

dx
κκ −=  
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So again 
2 2

2
2

2
.

2

m
E E

m

κκ −= − ⇒ =  Parts (c) and (d) show ( )ψ x  satisfies the Schrodinger's  equation, provided 

2 2

.
2

E
m

κ−=  

(d) Note 
( )dψ x

dx
 is discontinuous at 0. (That is, negative for 0 and positive for 0.)x x x= > <  

 
Figure 40.43 

40.44. IDENTIFY: We start with the penetration distance formula given in the problem. 

SET UP: The given formula is 
0

.
2 ( )m U E

η =
−

 

EXECUTE: (a) Substitute the given numbers into the formula: 
34

11

31 19
0

1.055 10  J s
7.4 10  m

2 ( ) 2(9.11 10  kg)(20 eV 13 eV)(1.602 10  J/eV)m U E
η

−
−

− −

× ⋅= = = ×
− × − ×

 

(b) 
34

15

27 13

1.055 10  J s
1.44 10  m

2(1.67 10  kg)(30 MeV 20 MeV)(1.602 10  J/MeV)
η

−
−

− −

× ⋅= = ×
× − ×

 

EVALUATE: The penetration depth varies widely depending on the mass and energy of the particle. 
40.45. (a) We set the solutions for inside and outside the well equal to each other at the well boundaries, 0 and .x L=  

0 : sin(0) ,x A B C B C= + = ⇒ =  since we must have 0 for 0.D x= <  

2 2
: sin cos  since 0 for .LmEL mEL

x L A B De C x Lκ−= + = + = >  

This gives
2

sin cos , where .L mE
A kL B kL De kκ−+ = =  

(b) Requiring continuous derivatives at the boundaries yields 
00: cos( 0) sin( 0) kdψ

x kA k kB k kA Ce kA C
dx

κ κ⋅= = ⋅ − ⋅ = = ⇒ =  

: cos sin .Lx L kA kL kB kL De κκ −= − = −  

40.46. 2 LT Ge κ−=  with 0

0 0

2 ( ) 1
16 1  and ln .

2

m U EE E T
G L

U U G
κ

κ
⎛ ⎞ − ⎛ ⎞= − = ⇒ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

31
0If 5.5 eV, 10.0 eV, 9.11 10 kg, and 0.0010.E U m T−= = = × =  Then 

31 19
10 1

34

2(9.11 10 kg)(4.5 eV)(1.60 10 J eV)
1.09 10 m

(1.054 10 J s)
κ

− −
−

−

× ×
= = ×

× ⋅
5.5 eV 5.5 eV

and 16 1 3.96
10.0 eV 10.0 eV

G
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

 

10
10 1

1 0.0010
so ln 3.8 10 m 0.38 nm.

2(1.09 10 m ) 3.96
L −

−
⎛ ⎞= − = × =⎜ ⎟× ⎝ ⎠

 

40.47. IDENTIFY and SET UP: When Lκ  is large, then Leκ  is large and Le κ−  is small. When Lκ  is small, 
sinh .L Lκ κ→  Consider both Lκ  large and Lκ  small limits. 

EXECUTE: (a) 
12

0

0

( sinh )
1

4 ( )

U L
T

E U E

κ
−

⎡ ⎤
= +⎢ ⎥−⎣ ⎦
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sinh
2

L Le e
L

κ κ

κ
−−=  

For 1,  sinh
2

Le
L L

κ

κ κ →W  and 
12 2

0 0
2 2

0 0 0

16 ( )
1

16 ( ) 16 ( )

L

L

U e E U E
T

E U E E U E U e

κ

κ

−
⎡ ⎤ −→ + =⎢ ⎥− − +⎣ ⎦

 

For 2 2 2 2
0 0 01,  16 ( ) L LL E U E U e U eκ κκ − + →W  

20
2 2
0 0 0

16 ( )
16 1 ,L

L

E U E E E
T e

U e U U
κ

κ
−⎛ ⎞⎛ ⎞−→ = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 which is Eq.(40.21). 

(b) 02 ( )
.

L m U E
Lκ

−
=  So 1Lκ W  when L is large (barrier is wide) or 0U E−  is large. (E is small compared to 0.U ) 

(c) 02 ( )
;  

m U E
κ κ

−
=  becomes small as E approaches 0.U  For κ  small, sinh L Lκ κ→  and 

1 12 2 2 2 2
0 0 0

2
0 0

2 ( )
1 1

4 ( ) 4 ( )

U L U m U E L
T

E U E E U E

κ
− −

⎡ ⎤ ⎡ ⎤−→ + = +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 (using the definition of κ ) 

Thus 
12 2

0
2

2
1

4

U L m
T

E

−
⎡ ⎤

→ +⎢ ⎥
⎣ ⎦

 

0U E→  so 
2
0U

E
E

→  and 
12

2

2
1

4

EL m
T

−
⎡ ⎤

→ +⎢ ⎥
⎣ ⎦

 

But 2
2

2
,

mE
k =  so 

12

1 ,
2

kL
T

−
⎡ ⎤⎛ ⎞→ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 as was to be shown. 

EVALUATE: When Lκ  is large Eq.(40.20) applies and T is small. When 0,E U→  T does not approach unity. 

40.48. (a) 21
( (1 2)) ( (1 2)) ,

2
E mv n ω n hf= = + = +  and solving for n, 

2
2

30
34

1
1 (1/2)(0.020 kg)(0.360 m/s) 12 1.3 10 .
2 (6.63 10  J s)(1.50 Hz) 2

mv
n

hf −= − = − = ×
× ⋅

 

(b) The difference between energies is 34 34(6.63 10 J s)(1.50 Hz) 9.95 10 J.ω hf − −= = × ⋅ = ×  This energy is too 

small to be detected with current technology 
40.49. IDENTIFY and SET UP: Calculate the angular frequency ω  of the pendulum and apply Eq.(40.26) for the energy levels. 

EXECUTE: 12 2
4  s

0.500 sT

π πω π −= = =  

The ground-state energy is 34 1 34
0

1 1
(1.055 10  J s)(4  s ) 6.63 10  J.

2 2
E ω π− − −= = × ⋅ = ×  

34 19 15
0 6.63 10  J(1 eV/1.602 10  J) 4.14 10  eVE − − −= × × = ×  

1

2nE n ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

1

1
1

2nE n ω+
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 

The energy difference between the adjacent energy levels is 

1 02n nE E E Eω+Δ = − = = = 33 151.33 10  J 8.30 10  eV− −× = ×  

EVALUATE: These energies are much too small to detect. Quantum effects are not important for ordinary size objects. 
40.50. IDENTIFY: We model the electrons in the lattice as a particle in a box. The energy of the photon is equal to the 

energy difference between the two energy states in the box. 

SET UP: The energy of an electron in the nth level is 
2 2

2
.

8n

n h
E

mL
=  We do not know the initial or final levels, but 

we do know they differ by 1. The energy of the photon, / ,hc λ  is equal to the energy difference between the two states. 

EXECUTE: The energy difference between the levels is 
34 8

7

(6.63 10  J s)(3.00 10  m/s)

1.649 10  m

hc
E

λ

−

−

× ⋅ ×Δ = = =
×

 

181.206 10  J.−×  Using the formula for the energy levels in a box, this energy difference is equal to 
2 2

2 2
2 2

( 1) (2 1) .
8 8

h h
E n n n

mL mL
⎡ ⎤Δ = − − = −⎣ ⎦  
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Solving for n gives 
2 18 31 9 2

2 34 2

8 1 (1.206 10  J)8(9.11 10  kg)(0.500 10  m)
1 1 3.

2 (6.626 10  J s)

E mL
n

h

− − −

−

⎛ ⎞ ⎛ ⎞Δ × × ×= + = + =⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
 

The transition is from 3n =  to 2.n =  
EVALUATE: We know the transition is not from the 4n =  to the 3n =  state because we let n be the higher state 
and 1n −  the lower state. 

40.51. IDENTIFY: If the given wave function is a solution to the Schrödinger equation, we will get an identity when we 
substitute that wave function into the Schrödinger equation. 
SET UP: The given wave function is 

2 2 / 2
0 0( ) xx A e αψ −=  and the Schrödinger equation is 

2 2

2

( )
( )  ( ).

2 2

d x k x
x E x

m dx

ψ ψ ψ
′

− + =  

EXECUTE: (a) Start by taking the derivatives: 
2 2 /2

0 0( ) .xx A e αψ −=  
2 22 /20

0

( )
.xd x

xA e
dx

αψ α −= −  

2 2 2 2
2

2 / 2 2 2 2 /20
0 02

( )
( ) .x xd x

A e x A e
dx

α αψ α α− −= − +  
2

2 2 2 20
02

( )
[ ( ) ] ( ).

d x
x x

dx

ψ α α ψ= − +  

2 2
2 2 2 20

02

( )
[ ( ) ] ( ).

2 2

d x
x x

m dx m

ψ α α ψ− = − − +  Equation (40.22) is 
2 2

2

( )
( )  ( ).

2 2

d x k x
x E x

m dx

ψ ψ ψ
′

− + =  Substituting 

the above result into that equation gives 
2 2

2 2 2 2
0 0 0[ ( ) ] ( ) ( )  ( ).

2 2

k x
x x x E x

m
α α ψ ψ ψ

′
− − + + =  Since 2 mωα =  and 

,
k

m
ω

′
=  the coefficient of x2 is 

22 2 2
2 2( ) 0.

2 2 2 2

k m m

m m

ω ωα
′ ⎛ ⎞− + = − + =⎜ ⎟

⎝ ⎠
 

(b) 
1/4

0

m
A

ω
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

(c) The classical turning points are at .A
mω

= ±  The probability density function 
2ψ  is 

2 2 2
1/ 2

2 2 /
0 0( ) .x m xm

x A e eα ωωψ
π

− −⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 At 0,x =  
1/ 2

2

0 .
mωψ

π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

2 2 2 2

2 1/ 2 1/ 2
0 2( )

( 2 ) 2 .x xd x m m m
x e xe

dx
α αψ ω ω ωα

π π
− −⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 At 0,x =  

2

0 ( )
0.

d x

dx

ψ
=  

2 2

2 1/ 22
0 2 2

2

( )
2 [1 2 ] .xd x m m

x e
dx

αψ ω ω α
π

−⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 At 0,x =  
22

0
2

( )
0.

d x

dx

ψ
<  Therefore, at 0,x =  the first derivative is 

zero and the second derivative is negative. Therefore, the probability density function has a maximum at 0.x =  

EVALUATE: 
2 2 /2

0 0( ) xx A e αψ −=  is a solution to equation (40.22) if 
2

2
0 0( ) ( )  ( )

2
x E x

m
α ψ ψ− − =  or 

2 2

.
2 2

E
m

α ω= =  0 2
E

ω=  corresponds to 0n =  in Equation (40.26). 

40.52. IDENTIFY: If the given wave function is a solution to the Schrödinger equation, we will get an identity when we 
substitute that wave function into the Schrödinger equation. 
SET UP: The given wave function is 

2 2 / 2
1 1( ) 2 xx A xe αψ −=  and the Schrödinger equation is 

2 2

2

( )
( )  ( ).

2 2

d x k x
x E x

m dx

ψ ψ ψ
′

− + =  

EXECUTE: (a) Start by taking the indicated derivatives: 
2 2/2

1 1( ) 2 .xx A xe αψ −=  

2 2 2 22 2 / 2 /21
1 1

( )
2 2 .x xd x

x Ae Ae
dx

α αψ α − −= − +
2 2 2 2 2 2

2
2 /2 2 2 2 / 2 2 /21

1 1 12

( )
2 2 2 ( ) 2 ( ) .x x xd x

A xe A x x e A x e
dx

α α αψ α α α α− − −= − − − + −
2

2 2 2 2 2 2 2 2 21
1 12

( )
[ 2 ( ) ] ( ) [ 3 ( ) ] ( )

d x
x x x x

dx

ψ α α α ψ α α ψ= − + − = − +  

2 2
2 2 2 21

12

( )
[ 3 ( ) ] ( )

2 2

d x
x x

m dx m

ψ α α ψ− = − − +  
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Equation (40.22) is 
2 2

2

( )
( )  ( ).

2 2

d x k x
x E x

m dx

ψ ψ ψ
′

− + =  Substituting the above result into that equation gives 

2 2
2 2 2 2

1 1 1[ 3 ( ) ] ( ) ( )  ( ).
2 2

k x
x x x E x

m
α α ψ ψ ψ

′
− − + + =  Since 2 mωα =  and ,

k

m
ω

′
=  the coefficient of x2 is 

22 2 2
2 2( ) 0

2 2 2 2

k m m

m m

ω ωα
′ ⎛ ⎞− + = − + =⎜ ⎟

⎝ ⎠
 

(b) 
1/ 4

1

1

2

m
A

ω
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

(c) The probability density function 
2ψ  is 

2

2 2
1/ 2

2 2 2 2
1 1

1
( ) 4 4

2

m x
x m

x A x e x e
ω

α ωψ
π

−− ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

At 0,x =  
2

1 0.ψ =  
2 2 2 2 2 2 2 2

2

1 2 2 2 2 2 2 3 2
1 1 1 1

( )
8 4 ( 2 ) 8 8x x x xd x

A xe A x x e A xe A x e
dx

α α α αψ
α α− − − −= + − = −  

At 0,x =  
2

1( )
0.

d x

dx

ψ
=  At 

1
,x

α
= ±  

2

1( )
0.

d x

dx

ψ
=  

2 2 2 2 2 2 2 2

22
1 2 2 2 2 2 2 2 3 2 2

1 1 1 12

( )
8 8 ( 2 ) 8(3 ) 8 ( 2 ) .x x x xd x

A e A x x e A x e A x x e
dx

α α α αψ
α α α α− − − −= + − − − −  

2 2 2 2 2 2 2 2

22
1 2 2 2 2 2 2 2 2 4 2 2

1 1 1 12

( )
8 16 24 16 ( ) .x x x xd x

A e A x e A x e A x e
dx

α α α αψ
α α α− − − −= − − +  At 0,x =  

22
1

2

( )
0.

d x

dx

ψ
>  So at 

0,x =  the first derivative is zero and the second derivative is positive. Therefore, the probability density function 

has a minimum at 0.x =  At 
1

,x
α

= ±  
22

1
2

( )
0.

d x

dx

ψ
<  So at 

1
,x

α
= ±  the first derivative is zero and the second 

derivative is negative. Therefore, the probability density function has maxima at 
1

,x
α

= ±  corresponding to the 

classical turning points for 0n =  as found in the previous question. 

EVALUATE: 
2 2 / 2

1 1( ) 2 xx A xe αψ −= is a solution to equation (40.22) if 
2

2
1( 3 ) ( )

2
x

m
α ψ− − = 1 ( )E xψ  or 

2 23 3
.

2 2
E

m

α ω= =  1

3

2
E

ω=  corresponds to 1n =  in Equation (40.26). 

40.53. IDENTIFY and SET UP: Evaluate 2 2 2 2/ ,  / ,x yψ ψ∂ ∂ ∂ ∂  and 2 2/ zψ∂ ∂  for the proposed ψ  and put Eq.(40.29). Use 

that , ,
x yn nψ ψ and 

znψ  are each solutions to Eq.(40.22). 

EXECUTE: (a) 
2 2 2 2

2 2 22
U E

m x y z

ψ ψ ψ ψ ψ⎛ ⎞∂ ∂ ∂− + + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 

, ,  
x y zn n nψ ψ ψ  are each solutions of Eq.(40.22), so

22
2

2

1

2 2
x

x x x

n
n n n

d
k x E

m dx

ψ
ψ ψ′− + =  

22
2

2

1

2 2
y

y y y

n

n n n

d
k y E

m dy

ψ
ψ ψ′− + =  

22
2

2

1

2 2
z

z z z

n
n n n

d
k z E

m dz

ψ
ψ ψ′− + =  

2 2 21 1 1
( ) ( ) ( ),  

2 2 2x y zn n nx y z U k x k y k zψ ψ ψ ψ ′ ′ ′= = + +  

22 22 2 2

2 2 2 2 2 2
, , .yx z

y z x z x y

nn n
n n n n n n

dd d

x dx y dy z dz

ψψ ψψ ψ ψψ ψ ψ ψ ψ ψ
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂
⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

So 
22 2 2 2 2

2
2 2 2 2

1

2 2 2
x

x y z

n
n n n

d
U k x

m x y z m dx

ψψ ψ ψ ψ ψ ψ ψ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ′− + + + = − +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

2 22 2
2 2

2 2

1 1

2 2 2 2
y z

y x z z x y

n n
n n n n n n

d d
k y k z

m dy m dz

ψ ψ
ψ ψ ψ ψ ψ ψ

⎛ ⎞ ⎛ ⎞
′ ′⎜ ⎟+ − + + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

2 2 2 2

2 2 2
( )

2 x y zn n nU E E E
m x y z

ψ ψ ψ ψ ψ⎛ ⎞∂ ∂ ∂− + + + = + +⎜ ⎟∂ ∂ ∂⎝ ⎠
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Therefore, we have shown that this ψ  is a solution to Eq.(40.29), with energy 

3

2x y z x y zn n n n n n x y zE E E E n n n ω⎛ ⎞= + + = + + +⎜ ⎟
⎝ ⎠

 

(b) and (c) The ground state has 0,x y zn n n= = =  so the energy is 000

3
.

2
E ω=  There is only one set of ,x yn n  and 

zn  that give this energy. 

First-excited state: 100 010 001

5
1,  0 or 1,  0 or 1,  0 and 

2x y z y x z z x yn n n n n n n n n E E E ω= = = = = = = = = = = =  

There are three different sets of ,  ,  x y zn n n  quantum numbers that give this energy, so there are three different 

quantum states that have this same energy. 
EVALUATE: For the three-dimensional isotropic harmonic oscillator, the wave function is a product of one-
dimensional harmonic oscillator wavefunctions for each dimension. The energy is a sum of energies for three one-
dimensional oscillators. All the excited states are degenerate, with more than one state having the same energy. 

40.54. 1 1 2 2, .k m ω k mω ′ ′= =  Let ( )
xnψ x be a solution of Eq.(40.22) with 1

1
, ( )

2x xn x nE n ω ψ y
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 be a similar 

solution, ( )
znψ z  be a solution of Eq.(40.22) but with z as the independent variable instead of x, and 

energy 2.

1

2zn zE n ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

(a) As in Problem 40.53, look for a solution of the form ( , , ) ( ) ( ) ( ).
x y zn n nψ x y z ψ x ψ y ψ z=  Then, 

2 2
2

12

1

2 2xn

ψ
E k x ψ

m x

∂ ⎛ ⎞′− = −⎜ ⎟∂ ⎝ ⎠
 with similar relations for 

2 2

2 2
and . Adding,

ψ ψ
y z

∂ ∂
∂ ∂

 

2 2 2 2
2 2 2

1 1 22 2 2

1 1 1

2 2 2 2

( ) ( )

x y z

x y z

n n n

n n n

ψ ψ ψ
E E E k x k y k z ψ

m x y z

E E E U ψ E U ψ

⎛ ⎞∂ ∂ ∂ ⎛ ⎞′ ′ ′− + + = + + − − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠
= + + − = −

 

where the energy E is 2 2
1 2

1
( 1) ,

2x y zn n n x y zE E E E n n ω n ω⎡ ⎤⎛ ⎞= + + = + + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
with , andx y zn n n  all nonnegative 

integers. 

(b) The ground level corresponds to 2 2
1 2

1
0,  and .

2x y zn n n E ω ω⎛ ⎞= = = = +⎜ ⎟
⎝ ⎠

 The first excited level corresponds to 

0x yn n= = and 1,zn =  since 2 2
1 2 ,ω ω>  and 2 2

1 2

3
.

2
E ω ωω⎛ ⎞= +⎜ ⎟

⎝ ⎠
 There is only one set of quantum numbers for both 

the ground state and the first excited state. 
40.55. (a) ( ) sin and ( 2) 0 ( 2)ψ x A kx ψ L ψ L= − = = +  

2 2 2 2 2

2 2

2 2
0 sin

2 2

(2 )
, where 1, 2...

2 2 8
n

n n

kL kL nπ π
A nπ k

L

L h nh p n h n h
p E n

n n L m mL mL

λ

λ
λ

+ +⎛ ⎞⇒ = ⇒ = ⇒ = =⎜ ⎟
⎝ ⎠

⇒ = ⇒ = = ⇒ = = = =
 

(b) ( ) cos and ( / 2) 0 ( / 2)ψ x A kx ψ L Lψ= − = = +  

2 2

2

(2 1) 2
0 cos (2 1)

2 2 2

2 (2 1)

(2 1) 2

(2 1)
0,1, 2...

8

n

n

kL kL π n π π
A n k

L

L n h
p

n L

n h
E n

mL

λ

λ

+⎛ ⎞⇒ = ⇒ = + ⇒ = =⎜ ⎟
⎝ ⎠

+
⇒ = ⇒ =

+
+

⇒ = =

 

(c) The combination of all the energies in parts (a) and (b) is the same energy levels as given in Eq.(40.9), where 
2 2

2
.

8n

n h
E

mL
=  

(d) Part (a)’s wave functions are odd, and part (b)’s are even. 
40.56. (a) As with the particle in a box, ( ) sin , where is a constant andψ x A kx A=  2 22 .k mE=  Unlike the particle in a 

box, however, k and hence E do not have simple forms. 
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(b) For ,x L>  the wave function must have the form of Eq.(40.18). For the wave function to remain finite as 
2

0, 0. The constant 2 ( ) ,x C κ m U E→ ∞ = = −  as in Eq.(14.17) and Eq.(40.18). 

(c) At , sin and cos .κL κLx L A kL De kA kL κDe− −= = = −  Dividing the second of these by the first gives 

cot ,k kL κ= − a transcendental equation that must be solved numerically for different values of the length L  and 

the ratio 0.E U  

40.57. (a)
2

( ) ( ) 2 ( ( )).
2

p
E K U x U x p m E U x

m
= + = + ⇒ = −  ( ) .

2 ( ( ))

h h
x

p m E U x
λ λ= ⇒ =

−
 

(b) As ( ) gets larger (i.e., ( ) approachesU x U x E from below—recall 0), ( )k E U x≥ −  
gets smaller, so ( ) gets larger.xλ  

(c) When ( ), ( ) 0, so ( ) .E U x E U x xλ= − = → ∞  

(d) 
1

2 ( ( ))
( ) 22 ( ( ))

b b b

a a a

dx dx n
m E U x dx

x hh m E U xλ
= = − =

−∫ ∫ ∫  2 ( ( )) .
2

b

a

hn
m E U x dx⇒ − =∫  

(e) ( ) 0 for 0 with classical turning points at 0 and .So,U x x L x x L= < < = =  

0 0

2 2 2

2

2 ( ( )) 2 2 2 .So, from part (d),

1
2

2 2 2 8 .

b L L

a
m E U x dx mEdx mE dx mEL

hn hn h n
mEL E

m L mL

− = = =

⎛ ⎞= ⇒ = =⎜ ⎟
⎝ ⎠

∫ ∫ ∫
 

(f ) Since ( ) 0U x =  in the region between the turning points at 0 and , thex x L= = results is the same as part (e). 

The height 0U  never enters the calculation. WKB is best used with smoothly varying potentials ( ).U x  

40.58. (a) At the turning points 2
TP TP

1 2
.

2

E
E k x x

k
′= ⇒ = ±

′
 

(b) 22 /

2 /

1
2 .

2 2

E k

E k

nh
m E k x dx

+

−

′

′
⎛ ⎞′− =⎜ ⎟
⎝ ⎠∫  To evaluate the integral, we want to get it into a form that matches the 

standard integral given. 2 2 2 21 2 2
2 2 .

2

mE E
m E k x mE mk x mk x mk x

mk k
⎛ ⎞′ ′ ′ ′− = − = − = −⎜ ⎟ ′ ′⎝ ⎠

 

Letting 2 2 2 2
, ,and

E E E
A a b

k k k
= = − = +

′ ′ ′
 

2 2 2 2 2

0

2 arcsin
2

22 2 2 2 2
arcsin arcsin (1) 2 .

22

b

b

a

mk x
mk A x dx x A x A

A

E kE E E E E m π
mk mk E

k k k k k kE k

⎡ ⎤⎛ ⎞′′⇒ − = − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞′ ⎛ ⎞′ ′= − + = =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′ ′ ′ ′′ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∫
 

Using WKB, this is equal to , so . Recall , so .
2 2 2

hn m hn k h
E π ω E ωn ωn

k m π
′

= = = =
′

 

(c) We are missing the zero-point-energy offset of
1

recall .
2 2

ω
E ω n

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 However, our approximation isn’t 

bad at all! 

40.59. (a) At the turning points TP TP .
E

E A x x
A

= ⇒ = ±  

(b) 
/ /

/ 0
2 ( ) 2 2 ( ) . Let 2 ( )

E A E A

E A
m E A x dx m E Ax dx y m E Ax

+

−
− = − = − ⇒∫ ∫  

2 when , 0, and when 0, 2 . So
E

dy mA dx x y x y mE
A

= − = = = =  

0
0 1 2 3 2 3 2

0 2
2

1 2 2
2 2 ( ) (2 ) .

3 3

E

A

mE
mE

m E Ax dx y dy y mE
mA mA mA

− = − = − =∫ ∫  Using WKB, this is equal to .
2

hn
 So, 

2 3
3 2 2 32 1 3

(2 ) .
3 2 2 4

hn mAh
mE E n

mA m
⎛ ⎞= ⇒ = ⎜ ⎟
⎝ ⎠
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(c) The difference in energy decreases between successive levels. For example: 
2 3 2 3 2 3 2 3 3 2 3 21 0 1, 2 1 0.59, 3 2 0.49,...− = − = − =  

• A sharp ∞ step gave ever-increasing level differences 2(~ ).n  

• A parabola 2(~ ) gave evenly spaced levels (~ ).x n  

• Now, a linear potential 2 3(~ ) gives ever-decreasing level differences (~ ).x n  

Roughly speaking, if the curvature of the potential (~ second derivative) is bigger than that of a parabola, then the 
level differences will increase. If the curvature is less than a parabola, the differences will decrease. 
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ATOMIC STRUCTURE 

 41.1. IDENTIFY and SET UP: ( 1)L l l= + . z lL m= .  0,  1,  2,...,  1l n= − .  0,  1,  2,...,  lm l= ± ± ± .  cos /zL Lθ = . 

EXECUTE: (a) 0l = : 0L = , 0zL = .   1l = : 2L = , ,0,zL = − . 2l = : 6L = , 2 , ,0, , 2zL = − − . 

(b) In each case cos /zL Lθ = .  0L = : θ not defined.  2L = :  45.0 ,  90.0 ,  135.0° ° ° .  6L = : 

35.3 ,  65.9 ,  90.0 ,  114.1 ,  144.7° ° ° ° °. 

EVALUATE: There is no state where L is totally aligned along the z axis. 
 41.2. IDENTIFY and SET UP: ( 1)L l l= + . z lL m= . 0,1,2,..., 1l n= − . 0, 1, 2,...,lm l= ± ± ± . cos /zL Lθ = . 

EXECUTE: (a) 0l = : 0L = , 0zL = .   1l = : 2L = , ,0,zL = − . 2l = : 6L = , 2 , ,0, , 2zL = − − .  3l = : 

2 3L = , 3 ,2 , ,0, , 2 , 3zL = − − − .  4l = : 2 5L = , 4 ,3 ,2 , ,0, , 2 , 3 , 4zL = − − − − . 

(b) 0L = : θ not defined.  2L = :  45.0 ,90.0 ,135.0° ° ° .  6L = : 35.3 ,65.9 ,90.0 ,114.1 ,144.7° ° ° ° ° . 2 3L = : 

54.7 ,73.2 ,90.0 ,106.8 ,125.3 ,150.0° ° ° ° ° °. 2 5L = : 26.6 ,47.9 ,63.4 ,77.1 ,90.0 ,102.9 ,116.6 ,132.1 ,153.4° ° ° ° ° ° ° ° ° . 

(c) The minimum angle is 26.6° and occurs for 4l = , 4lm = + . The maximum angle is 153.4° and occurs for 

4l = , 4lm = − . 

 41.3. IDENTIFY and SET UP: The magnitude of the orbital angular momentum L is related to the quantum number l by 
Eq.(41.4): ( 1) ,  1 0,  1, 2,L l l= + = … 

EXECUTE: 
2 34 2

34

4.716 10  kg m /s
( 1) 20

1.055 10  J s

L
l l

−

−

⎛ ⎞× ⋅⎛ ⎞+ = = =⎜ ⎟⎜ ⎟ × ⋅⎝ ⎠ ⎝ ⎠
 

And then ( 1) 20l l + =  gives that 4.l =  

EVALUATE: l must be integer. 
 41.4. (a) max max( ) 2,  so ( ) 2 .l zm L= =  

(b) ( 1) 6 2.45 .l l + = =  

(c) The angle is arccos arccos ,
6

z lL m

L

⎛ ⎞⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and the angles are, for 2 to 2,  144.7 ,l lm m= − = °  

114.1 ,  90.0 ,° ° 65.9 , 35.3 .° °  The angle corresponding to lm l=  will always be larger for larger .l  

 41.5. IDENTIFY and SET UP: The angular momentum L is related to the quantum number l by Eq.(41.4), ( 1) .L l l= +  

The maximum l, max ,l  for a given n is max 1.l n= −  

EXECUTE: For max2,  1 and 2 1.414 .n l L= = = =  

For max20,  19 and (19)(20) 19.49 .n l L= = = =  

For max200,  199 and (199)(200) 199.5 .n l L= = = =  

EVALUATE: As n increases, the maximum L gets closer to the value n  postulated in the Bohr model. 
 41.6. The ( , )ll m  combinations are (0,  0), (1,  0), (1, 1)± , (2,  0), (2, 1),±  (2, 2),±  (3,  0), 

(3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3), and (4, 4),± ± ± ± ± ± ±  a total of 25. 

(b) Each state has the same energy (n is the same), 
13.60 eV

0.544 eV.
25

− = −  

 41.7. 
19 2

181 2
10

0 0

1 1 (1.60 10  C)
2.3 10  J

4 4 1.0 10  m

q q
U

π r π

−
−

−

− ×= = = − ×
×P P

 

18

19

2.3 10  J
14.4 eV.

1.60 10  J eV
U

−

−

− ×= = −
×

 

41
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 41.8. (a) As in Example 41.3, the probability is 
2

2 2 3 1
/ 2 2 2 2

1 30
0

4 5
| | 4 1 0.0803

2 2 4 2

a
a r a

s

ar a r a e
P ψ πr dr e

a

−
−⎡ ⎤⎛ ⎞

= = − − − = − =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ . 

(b) The difference in the probabilities is 2 1 1 2(1 5 ) (1 (5 2) ) (5 2)( 2 ) 0.243.e e e e− − − −− − − = − =  

 41.9. (a) 2 2 2| | | ( ) | | ( ) | ( )( )l lim im*ψ ψ ψ R r θ Ae Aeφ φ− += = Θ 2 2 2| ( ) | | ( ) | ,A R r θ= Θ  which is independent ofφ . 

(b) 
2 22 2 2

0 0

1
| ( ) |  2 1 .

2

π π
d A d πA A

π
φ φ φΦ = = = ⇒ =∫ ∫  

41.10. 
4

1
12 2 1 1 12 2 2 2

0

1
(0.75) .

(4 ) 2 2
r

n

m e E
E E E E E E

π n
= − Δ = − = − = −

P
 

(a) 31
rIf 9.11 10 kgm m −= = ×  

( )
4 31 19 4

29 2 18r
2 2 34 2

0

(9.109 10  kg)(1.602 10  C)
8.988 10  N m C 2.177 10  J 13.59 eV

(4 ) 2(1.055 10  J s)

m e

π

− −
−

−

× ×= × ⋅ = × =
× ⋅P

 

For 2 1→  transition, the coefficient is (0.75)(13.59 eV) = 10.19 eV. 

(b) If r ,
2

m
m =  using the result from part (a), 

4
r

2 2
0

2 13.59 eV
(13.59 eV) 6.795 eV.

(4 ) 2

m e m

π m
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠P

 

Similarly, the 2 1→  transition, 
10.19 eV

5.095 eV.
2

⎛ ⎞⇒ =⎜ ⎟
⎝ ⎠

 

(c) If r 185.8 ,m m=  using the result from part (a), 

4

2 2
0

185.8
(13.59 eV) 2525 eV,

(4 )
rm e m

π m
⎛ ⎞= =⎜ ⎟
⎝ ⎠P

 

and the 2 1→  transition gives⇒ (10.19 eV)(185.8) = 1893 eV. 

41.11. IDENTIFY and SET UP: Eq.(41.8) gives 
2 2

0 0
2 2

r r

4
.

h
a

m e m e

π
π

= =P P
 

EXECUTE: (a) rm m=  
2 12 2 2 34 2

100
2 31 19 2

r

(8.854 10  C /N m )(6.626 10  J s)
0.5293 10  m

(9.109 10  kg)(1.602 10  C)

h
a

m eπ π

− −
−

− −

× ⋅ × ⋅= = = ×
× ×

P
 

(b) r / 2m m=  
2

100
2

r

2 1.059 10  m
h

a
m eπ

−⎛ ⎞
= = ×⎜ ⎟

⎝ ⎠

P
 

(c) r 185.8m m=  
2

130
2

r

1
2.849 10  m

185.8

h
a

m eπ
−⎛ ⎞

= = ×⎜ ⎟
⎝ ⎠

P
 

EVALUATE: a is the radius for the 1n =  level in the Bohr model. When the reduced mass rm  increases, a 

decreases. For positronium and muonium the reduced mass effect is large. 
41.12. cos( ) sin( ),lim

l le m i mφ φ φ= +  and to be periodic with period 2 ,  2lπ m π  must be an integer multiple of 2 ,  so lπ m  

must be an integer. 

41.13. 2 2
1 30

0

1
( ) 2 (4 )

a
a r a

sP a ψ V e πr dr
πa

−= =∫ ∫ . 

2 2 2 3 3 3 3
2 2 2 2 0

3 3 3

0

2

4 4 4
( )

2 2 4 2 2 4 4

( ) 1 5 .

a
a r a r a

o

ar a r a a a a a
P a r e dr e e e

a a a

P a e

− − −

−

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −= = − − = − − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⇒ = −

∫  

41.14. (a) 5 5
B (5.79 10 eV T)(0.400 T) 2.32 10 eVE μ B − −Δ = = × = ×  

(b) 2lm = −  the lowest possible value of .lm  
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(c) The energy level diagram is sketched in Figure 41.14. 

 
Figure 41.14 

41.15. IDENTIFY and SET UP: The interaction energy between an external magnetic field and the orbital angular 
momentum of the atom is given by Eq.(41.18). The energy depends on lm  with the most negative lm  value having 

the lowest energy. 
EXECUTE: (a) For the 5g level, 4l =  and there are 2 1 9l + =  different lm  states. The 5g level is split into 9 levels 

by the magnetic field. 
(b) Each lm  level is shifted in energy an amount given by B .lU m Bμ=  Adjacent levels differ in lm  by one, so 

B .U BμΔ =  
19 34

24 2
B 31

(1.602 10  C)(1.055 10  J s)
9.277 10  A m

2 2(9.109 10  kg)

e

m
μ

− −
−

−

× × ⋅= = = × ⋅
×

 

24 2 24 19 5
B (9.277 10  A/m )(0.600 T) 5.566 10  J(1 eV/1.602 10  J) 3.47 10  eVU Bμ − − − −Δ = = × = × × = ×  

(c) The level of highest energy is for the largest ,lm  which is 4 B4;  4 .lm l U Bμ= = =  The level of lowest energy is 

for the smallest ,lm  which is 4 B4;  4 .lm l U Bμ−= − = − = −  The separation between these two levels is 
5 4

4 4 B8 8(3.47 10  eV) 2.78 10  eV.U U Bμ − −
−− = = × = ×  

EVALUATE: The energy separations are proportional to the magnetic field. The energy of the 5n =  level in the 

absence of the external magnetic field is 2( 13.6 eV)/5 0.544 eV,− = −  so the interaction energy with the magnetic 

field is much less than the binding energy of the state. 
41.16. (a) According to Figure 41.11 in the textbook there are three different transitions that are consistent with the 

selection rules. The initial lm  values are 0, 1;±  and the final lm  value is 0. 

(b) The transition from 0 to 0l lm m= =  produces the same wavelength (122 nm) that was seen without the magnetic field. 

(c) The larger wavelength (smaller energy) is produced from the 1 to 0l lm m= − =  transition. 

(d) The shorter wavelength (greater energy) is produced from the 1 to 0l lm m= + =  transition. 

41.17. 
5

B 5
B

(2.71 10 eV)
3 3, 1, 0.468 T

(5.79 10 eV T)

U
p n l U μ B B

μ

−

−

×
⇒ = = Δ = ⇒ = = =

×
 

(b) Three:  0, 1.lm = ±  

41.18. (a) (2.00232)
2 2

e
U B

m

−⎛ ⎞ ⎛ ⎞= + ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

B

(2.00232)

2
μ B= −  

5 5(2.00232)
(5.788 10 eV T)(0.480 T) 2.78 10 eV.

2
U − −= − × = − ×  

(b) Since n = 1, l = 0 so there is no orbital magnetic dipole interaction. But if 0n ≠  there could be since l < n 
allows for 0.l ≠  

41.19. IDENTIFY and SET UP: The interaction energy is ,U = − ⋅ Bμ  with zμ  given by Eq.(41.22). 

EXECUTE: ,zU Bμ= − ⋅ = +Bμ  since the magnetic field is in the negative z-direction. 

(2.00232) ,  so (2.00232)
2 2z z z

e e
S U S B

m m
μ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

,  so 2.00232
2z s s

e
S m U m B

m
⎛ ⎞= = − ⎜ ⎟
⎝ ⎠

 

5
B 5.788 10  eV/T

2

e

m
μ −= = ×  

B2.00232 sU m Bμ= −  

The 
1

2sm = +  level has lower energy. 

B B

1 1 1 1
2.00232 2.00232

2 2 2 2s sU U m U m B Bμ μ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = = − − = + = − − − + = +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

5 42.00232(5.788 10  eV/T)(1.45 T) 1.68 10  eVU − −Δ = + × = ×  
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EVALUATE: The interaction energy with the electron spin is the same order of magnitude as the interaction 
energy with the orbital angular momentum for states with 0.lm ≠  But a 1s state has 0 and 0,ll m= =  so there is no 

orbital magnetic interaction. 

41.20. The allowed ( , )l j  combinations are 
1 1 3 3 5

0,  , 1,  , 1,  , 2,  and 2,  .
2 2 2 2 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

41.21. IDENTIFY and SET UP:  j can have the values 1/ 2l +  and 1/ 2.l −  
EXECUTE: If j takes the values 7/2 and 9/2 it must be that 1/ 2 7 / 2l − =  and 8/ 2 4.l = =  The letter that labels 
this l is g. 
EVALUATE: l must be an integer. 

41.22. (a) 
15 8

6

(4.136 10 eV s)(300 10 m s)
21cm,

(5.9 10 eV)

hc

E
λ

−

−

× ⋅ ×= = =
Δ ×

 
8

9(3.00 10 m s)
1.4 10  Hz,

0.21 m

c
f

λ
×= = = ×  a short radio 

wave. 
(b) As in Example 41.6, the effective field is 2

B2 5.1 10 T, forB E μ −≅ Δ = × smaller than that found in the example. 

41.23. IDENTIFY and SET UP: For a classical particle .L Iω=  For a uniform sphere with mass m and radius R, 

22
,

5
I mR=  so 22

.
5

L mR ω⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Solve for ω  and then use v rω=  to solve for v. 

EXECUTE: (a) 
3

4
L =  so 22 3

5 4
mR ω =  

34
30

2 31 17 2

5 3/ 4 5 3/ 4(1.055 10  J s)
2.5 10  rad/s

2 2(9.109 10  kg)(1.0 10  m)mR
ω

−

− −

× ⋅= = = ×
× ×

 

(b) 17 30 13(1.0 10  m)(2.5 10  rad/s) 2.5 10  m/s.v rω −= = × × = ×  

EVALUATE: This is much greater than the speed of light c, so the model cannot be valid. 
41.24. However the number of electrons is obtained, the results must be consistent with Table (41.3); adding two more 

electrons to the zinc configuration gives 2 2 6 2 6 2 10 21 2 2 3 3 4 3 4s s p s p s d p .  

41.25. The ten lowest energy levels for electrons are in the n = 1 and n = 2 shells. 

1
1, 0, 0, : 2 states.

2
1

2, 0, 0, : 2 states.
2

1
2, 1, 0, 1, : 6 states.

2

l s

l s

l s

n l m m

n l m m

n l m m

= = = = ±

= = = = ±

= = = ± = ±

 

41.26. For the outer electrons, there are more inner electrons to screen the nucleus. 
41.27. IDENTIFY and SET UP: The energy of an atomic level is given in terms of n and effZ  by Eq.(41.27), 

2
eff
2

(13.6 eV).n

Z
E

n

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 The ionization energy for a level with energy nE−  is .nE+  

EXECUTE: eff5 and Z 2.771n = =  gives 
2

5 2

(2.771)
(13.6 eV) 4.18 eV

5
E = − = −  

The ionization energy is 4.18 eV. 
EVALUATE: The energy of an atomic state is proportional to 2

eff .Z  

41.28. For the 4s  state, eff4.339 eV and 4 ( 4.339) ( 13.6) 2.26.E Z= − = − − =  Similarly, eff 1.79Z =  for the 4p state and 

1.05 for the 4d state. The electrons in the states with higher l tend to be further away from the filled subshells and 
the screening is more complete. 

41.29. IDENTIFY and SET UP: Use the exclusion principle to determine the ground-state electron configuration, as in 
Table 41.3. Estimate the energy by estimating eff ,Z  taking into account the electron screening of the nucleus. 

EXECUTE: (a) 7Z =  for nitrogen so a nitrogen atom has 7 electrons. 2+N  has 5 electrons: 2 21 2 2 .s s p  

(b) eff 7 4 3Z = − =  for the 2p level. 
2 2
eff
2 2

3
(13.6 eV) (13.6 eV) 30.6 eV

2n

Z
E

n

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
 

(c) 15Z =  for phosphorus so a phosphorus atom has 15 electrons. 
2+P  has 13 electrons: 2 2 6 21 2 2 3 3s s p s p  
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(d) eff 15 12 3Z = − =  for the 3p level. 
2 2
eff
2 2

3
(13.6 eV) (13.6 eV) 13.6 eV

3n

Z
E

n

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
 

EVALUATE: In these ions there is one electron outside filled subshells, so it is a reasonable approximation to 
assume full screening by these inner-subshell electrons. 

41.30. (a) 2
2 eff eff

13.6 eV
,  so 1.26.

4
E Z Z= − =  

(b) Similarly, eff 2.26.Z =  

(c) effZ  becomes larger going down the columns in the periodic table. 

41.31. IDENTIFY and SET UP: Estimate effZ by considering electron screening and use Eq.(41.27) to calculate the 

energy. effZ  is calculated as in Example 41.8. 

EXECUTE: (a) The element Be has nuclear charge 4.Z =  The ion +Be  has 3 electrons. The outermost electron 
sees the nuclear charge screened by the other two electrons so eff 4 2 2.Z = − =  

2
eff
2

(13.6 eV)n

Z
E

n

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 so 

2

2 2

2
(13.6 eV) 13.6 eV

2
E = − = −  

(b) The outermost electron in +Ca  sees a eff 2.Z =  
2

4 2

2
(13.6 eV) 3.4 eV

4
E = − = −  

EVALUATE: For the electron in the highest l-state it is reasonable to assume full screening by the other electrons, 
as in Example 41.8. The highest l-states of +Be , + +Mg , Ca ,  etc. all have a eff 2.Z =  But the energies are different 

because for each ion the outermost sublevel has a different n quantum number. 

41.32. 2( 1) (10.2 eV)kxE Z≅ − . 
37.46 10 eV

1 28.0,
10.2 eV

Z
×≈ + =  which corresponds to the element Nickel (Ni). 

41.33. (a) 15 2 1720 : (2.48 10 Hz)(20 1) 8.95 10 HzZ f= = × − = × . 
8

15 17 10
17

3.00 10  m s
(4.14 10 eV s) (8.95 10  Hz) 3.71 keV.  3.35 10  m.

8.95 10  Hz

c
E hf

f
λ− −×= = × ⋅ × = = = = ×

×
 

(b) Z = 27: 18 101.68 10  Hz.  6.96 keV.  1.79 10  m.f E λ −= × = = ×  

(c) 18 1148 :  5.48 10  Hz, 22.7 keV, 5.47 10  m.Z f E λ −= = × = = ×  

41.34. IDENTIFY: The orbital angular momentum is limited by the shell the electron is in. 
SET UP: For an electron in the n shell, its orbital angular momentum quantum number l is limited by 0 ≤ l < n, 
and its orbital angular momentum is given by ( 1)  L l l= + . The z-component of its angular momentum is 

,z lL m=  where ml = 0, ±1, … , ±l, and its spin angular momentum is 3/ 4  S =  for all electrons. Its energy in 

the nth shell is 2(13.6 eV)/nE n= − . 

EXECUTE: (a) ( 1)  12  3L l l l= + = ⇒ = . Therefore the smallest that n can be is 4, so En = – (13.6 eV)/n2 =  

– (13.6 eV)/42 = –0.8500 eV. 
(b) For l = 3, ml = ±3, ±2, ±1, 0. Since ,z lL m=  the largest Lz can be is 3  and the smallest it can be is –3 . 

(c) 3/ 4  S =  for all electrons. 

(d) In this case, n = 3, so l = 2, 1, 0. Therefore the maximum that L can be is max 2(2 1)  6  L = + = . The 

minimum L can be is zero when l = 0. 
EVALUATE: At the quantum level, electrons in atoms can have only certain allowed values of their angular momentum. 

41.35. IDENTIFY: The total energy determines what shell the electron is in, which limits its angular momentum. 
SET UP: The electron’s orbital angular momentum is given by ( 1)  L l l= + , and its total energy in the nth shell 

is 2(13.6  eV)/nE n= − . 

EXECUTE: (a) First find n: 2(13.6 eV)/nE n= − = − 0.5440 eV which gives n = 5, so l = 4, 3, 2, 1, 0. Therefore the 

possible values of L are given by ( 1)  L l l= + , giving L = 0, 2 ,  6 ,  12 ,  20 .  

(b) E6 = – (13.6 eV)/62 = –0.3778 eV.  ΔE = E6 – E5 = –0.3778 eV – (–0.5440 eV) = +0.1662 eV 
This must be the energy of the photon, so ΔE = hc/λ, which gives 
λ = hc/ΔE = (4.136 × 10–15 eV s⋅ )(3.00 ×108 m/s)/(0.1662 eV) = 7.47 × 10–6 m = 7470 nm, which is in the infrared 
and hence not visible. 
EVALUATE: The electron can have any of the five possible values for its angular momentum, but it cannot have 
any others. 
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41.36. IDENTIFY: For the N shell, n = 4, which limits the values of the other quantum numbers. 
SET UP: In the nth shell, 0 ≤ l < n, ml = 0, ±1, … , ±l, and ms = ±1/2. The orbital angular momentum of the 

electron is L = ( 1)  l l +  and its spin angular momentum is 3/ 4  S = . 

EXECUTE: (a) For l = 3 we can have ml = ±3, ±2±, ±1, 0 and ms = ±½; for l = 2 we can have ml = ±2, ±1, 0 and 
ms = ±½; for l = 1, we can have ml = ±1, 0 and ms = ±1/2 ; for l = 0, we can have ml = 0 and ms = ±1/2. 

(b) For the N shell, n = 4, and for an f-electron, l = 3, giving ( 1)  3(3 1)  12L l l= + = + = . Lz = 

3 ,   2 ,  ,  0,lm = ± ± ±  so the maximum value is 3 . 3/ 4  S =  for all electrons. 

(c) For a d-state electron, l = 2, giving 2(2 1)  6L = + = . ,z lL m=  and the maximum value of ml is 2, so the 

maximum value of Lz is 2 . The smallest angle occurs when Lz is most closely aligned along the angular 

momentum vector, which is when Lz is greatest. Therefore min

2 2
cos 

6 6
zL

L
θ = = =  and θmin = 35.3°. The largest 

angle occurs when Lz is as far as possible from the L-vector, which is when Lz is most negative. Therefore 

max

2 2
cos  

6 6
θ −= = −  and max 144.7θ = ° . 

(d) This is not possible since l = 3 for an f-electron, but in the M shell the maximum value of l is 2. 
EVALUATE: The fact that the angle in part (c) cannot be zero tells us that the orbital angular momentum of the 
electron cannot be totally aligned along any specified direction.  

41.37. IDENTIFY: The inner electrons shield part of the nuclear charge from the outer electron. 

SET UP: The electron’s energy in the nth shell, due to shielding, is 
2
eff
2

(13.6 eV)n

Z
E

n
= − , where Zeffe is the 

effective charge that the electron “sees” for the nucleus. 

EXECUTE: (a) 
2
eff
2

(13.6  eV)n

Z
E

n
= −  and n = 4 for the 4s state. Solving for Zeff gives 

2

eff

(4 )( 1.947  eV)

13.6  eV
Z

−= −  

= 1.51. The nucleus contains a charge of +11e, so the average number of electrons that screen this nucleus must  
be 11 – 1.51 = 9.49 electrons 
(b) (i) The charge of the nucleus is +19e, but 17.2e is screened by the electrons, so the outer electron “sees” 19e – 
17.2e = 1.8e and Zeff = 1.8. 

(ii) 
2 2
eff
2 2

(1.8)
(13.6  eV) (13.6  eV) 2.75 eV

4n

Z
E

n
= − = − = −  

EVALUATE: Sodium has 11 protons, so the inner 10 electrons shield a large portion of this charge from the outer 
electron. But they don’t shield 10 of the protons, since the inner electrons are not totally equivalent to a uniform 
spherical shell. (They are lumpy.) 

41.38. See Example 41.3; 
22

22 2 2 / 2 / 2( )
,  (2 (2 / )),r a r ad r ψ

r ψ Cr e Ce r r a
dr

− −= = −  and for a maximum, r = a, the distance of 

the electron from the nucleus in the Bohr model. 
41.39. (a) IDENTIFY and SET UP: The energy is given by Eq.(38.18), which is identical to Eq.(41.3). The potential 

energy is given by Eq.(23.9), with q Ze= +  and 0 .q e= −  

EXECUTE: 
4 2

1 2 2
0 0

1 1
; ( )

(4 ) 2 4s

me e
E U r

rπ π
= − = −

P P
 

4 2

1 2 2
0 0

1 1
 ( ) gives

(4 ) 2 4s

me e
E U r

rπ π
= − = −

P P
 

2
0

2

(4 )2
2r a

me

π= =P
 

EVALUATE: The turning point is twice the Bohr radius. 
(b) IDENTIFY and SET UP: For the 1s state the probability that the electron is in the classically forbidden region 

is 
2 2 2

1 12 2
( 2 ) 4 .s sa a

P r a dV r drψ π ψ
∞ ∞

> = =∫ ∫  The normalized wave function of the 1s state of hydrogen is given in 

Example 41.3: /
1 3

1
( ) .r a

s r e
a

ψ
π

−=  Evaluate the integral; the integrand is the same as in Example 41.3. 

EXECUTE: 2 2 /
3 2

1
( 2 ) 4 r a

a
P r a r e dr

a
π

π
∞ −⎛ ⎞> = ⎜ ⎟

⎝ ⎠ ∫  
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Use the integral formula 
2

2
2 3

2 2
,r r r r

r e dr eα α

α α α
− − ⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠

∫  with 2 / .aα =  

2 2 3
2 / 4 3 3 3

3 3

2

4 4
( 2 ) (2 / 4)

2 2 4
r a

a

ar a r a
P r a e e a a a

a a

∞

− −⎡ ⎤⎛ ⎞
> = − + + = + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

4 4( 2 ) 4 (13/ 4) 13 0.238.P r a e e− −> = = =  

EVALUATE: These is a 23.8% probability of the electron being found in the classically forbidden region, where 
classically its kinetic energy would be negative. 

41.40. (a) For large values of n, the inner electrons will completely shield the nucleus, so ff 1eZ =  and the ionization 

energy would be 
2

13.60 eV

n
. 

(b) 4 2 2 10 6
350 02

13.60 eV
1.11 10 eV, (350) (350) (0.529 10  m) 6.48 10 m

350
r a− − −= × = = × = × .  

(c) Similarly for n = 650, 5
2

13.60 eV
3.22 10 eV,

(650)
−= ×  2 10 5

650 (650) (0.529 10 m) 2.24 10 m.r − −= × = ×  

41.41. / 2
2 3

1
( ) 2

32

r a
s

r
r e

aa
ψ

π
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

(a) IDENTIFY and SET UP: Let 
2 2 2

2 20 0
4 .s sI dV r drψ π ψ

∞ ∞
= =∫ ∫  If 2sψ  is normalized then we will find that 

1.I =  

EXECUTE: 
2 3 4

/ 2 2 /
3 3 20 0

1 1 4
4 2 4

32 8
r a r ar r r

I e r dr r e dr
a a a a a

π
π

∞ ∞− −⎛ ⎞⎛ ⎞ ⎛ ⎞= − = − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫  

Use the integral formula 
10

!
,n x

n

n
x e dxα

α
∞ −

+=∫  with 1/ aα =  

3 4 5
3 2

1 4 1 1
4(2!)( ) (3!)( ) (4!)( ) (8 24 24) 1;

8 8
I a a a

a a a
⎛ ⎞= − + = − + =⎜ ⎟
⎝ ⎠

 this 2sψ  is normalized. 

(b) SET UP: For a spherically symmetric state such as the 2s, the probability that the electron will be found at 

4r a<  is 
4 42 2 2

2 20 0
( 4 ) 4 .

a a

s sP r a dV r drψ π ψ< = =∫ ∫  

EXECUTE: 
3 4

4 2 /
3 20

1 4
( 4 ) 4

8

a r ar r
P r a r e dr

a a a
−⎛ ⎞

< = − +⎜ ⎟
⎝ ⎠

∫  

Let 1 2 33

1
( 4 ) ( ).

8
P r a I I I

a
< = + +  

4 2 /
1 0

4
a r aI r e dr−= ∫  

Use the integral formula 
2

2
2 3

2 2r r r r
r e dr eα α

α α α
− − ⎛ ⎞

∫ = − + +⎜ ⎟
⎝ ⎠

 with 1/ .aα =  

/ 2 2 3 4 4 3
1 04[ ( 2 2 )] ( 104 8) .r a aI e r a ra a e a− −= − + + = − +  

4 3 /
2 0

4 a r aI r e dr
a

−= − ∫  

Use the integral formula 
3 2

3
2 3 4

3 6 6r r r r r
r e dr e

a
α α

α α α
− − ⎛ ⎞

∫ = − + + +⎜ ⎟
⎝ ⎠

 with 1/ .aα =  

/ 3 2 2 3 4 4 4 3
2 0

4
[ ( 3 6 6 )] (568 24) .r a aI e r a r a ra a e a

a
− −= + + + = −  

4 4 /
3 2 0

1 a r aI r e dr
a

−= ∫  

Use the integral formula 
4 3 2

4
2 3 4 5

4 12 24 24r r r r r r
r e dr e

a a
α α

α α α
− − ⎛ ⎞

∫ = − + + + +⎜ ⎟
⎝ ⎠

 with 1/ .aα =  

/ 4 3 2 2 3 4 5 4 4 3
3 02

1
[ ( 4 12 24 24 )] ( 824 24) .r a aI e r a r a r a ra a e a

a
− −= − + + + + = − +  
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Thus 3 4
1 2 33 3

1 1
( 4 ) ( ) ([8 24 24] [ 104 568 824])

8 8
P r a I I I a e

a a
−< = + + = − + + − + −  

4 41
( 4 ) (8 360 ) 1 45 0.176.

8
P r a e e− −< = − = − =  

EVALUATE: There is an 82.4% probability that the electron will be found at 4 .r a>  In the Bohr model the 
electron is for certain at 4 ;r a=  this is a poor description of the radial probability distribution for this state. 

41.42. (a) Since the given 2 2 2 2( ) is real, | | .ψ r r ψ r ψ=  The probability density will be an extreme when 

2 2 2 2( ) 2 2 0.
d dψ dψ

r ψ rψ r ψ rψ ψ r
dr dr dr

⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 This occurs at 0,r = a minimum, and when 0,ψ = also a 

minimum. A maximum must correspond to 0.
dψ r
dr

ψ+ = Within a multiplicative constant, 2( ) (2 ) ,r aψ r r a e−= −  

21
(2 2 ) ,r adψ

r a e
dr a

−= − −  and the condition for a maximum is 2 2(2 ) ( ) (2 2 ), or 6 4 0.r a r a r a r ra a− = − − + =  

The solutions to the quadratic are (3 5).r a= ±  The ratio of the probability densities at these radii is 3.68, with 

the larger density at (3 5)r a= + . 

(b) 0 at 2ψ r a= =  

Parts (a) and (b) are consistent with Figure 41.5 in the textbook; note the two relative maxima, one on each side of 
the minimum of zero at 2 .r a=  

41.43. IDENTIFY: Use Figure 41.2 in the textbook to relate Lθ  to zL  and L: cos  so arccosz z
L L

L L

L L
θ θ ⎛ ⎞= = ⎜ ⎟

⎝ ⎠
 

(a) SET UP: The smallest angle min( )Lθ  is for the state with the largest L and the largest .zL  This is the state with 

1l n= −  and 1.lm l n= = −  

EXECUTE: ( 1)z lL m n= = −  

( 1) ( 1)L l l n n= + = −  

min

( 1) ( 1) 1
( ) arccos arccos arccos arccos( 1 1/ ).

( 1) ( 1)
L

n n n
n

nn n n n
θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −= = = = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− − ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

EVALUATE: Note that min( )Lθ  approaches 0°  as .n → ∞  

(b) SET UP: The largest angle max( )Lθ  is for 1l n= −  and ( 1).lm l n= − = − −  

EXECUTE: A similar calculation to part (a) yields max( ) arccos( 1 1/ )L nθ = − −  

EVALUATE: Note that max( )Lθ  approaches 180°  as .n → ∞  

41.44. (a) 2 2 2 2 2 2 2 2 2 2( 1) so ( 1) .x y z l x y lL L L L l l m L L l l m+ = − = + − + = + −  

(b) This is the magnitude of the component of angular momentum perpendicular to the z-axis. 

(c) The maximum value is ( 1) ,l l L+ =  when 0.lm =  That is, if the electron is known to have no z-component 

of angular momentum, the angular momentum must be perpendicular to the z-axis. The minimum is l when 
.lm l= ±  

41.45. 4 2
5

1
( )

24
r aP r r e

a
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
.  

4
3 2

5

1
4

24
r adP r

r e
dr a a

−⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
4

30 when 4 0; 4 .
dP r

r r a
dr a

= − = =   In the Bohr 

model, 2
2so 4 ,nr n a r a= = which agrees. 

41.46. The time required to transit the horizontal 50 cm region is 
0.500 m

0.952 ms.
525 m sx

x
t

v

Δ= = =  The force required to 

deflect each spin component by 0.50 mm is z z 2 23

2 0.1079 kg mol

6.022 10 atoms mol

z
F ma m

t

⎛ ⎞Δ= = ± = ± ⎜ ⎟×⎝ ⎠
 

3

3 2

2(0.50 10 m)

(0.952 10 s)

−

−

× =
×

 

221.98 10  N.−± ×  According to Eq.(41.22), the value of zμ  is 24 2| | 9.28 10  A m .zμ
−= × ⋅  Thus, the required 

magnetic-field gradient is 
22

24

1.98 10  N
21.3 T m.

9.28 10  J T
z z

z

dB F

dz μ

−

−

×= = =
×
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41.47. Decay from a 3d to 2 p state in hydrogen means that 3 2 andn n= → =  2, 1, 0 1, 0.l lm m= ± ± → = ±  However 

selection rules limit the possibilities for decay. The emitted photon carries off one unit of angular momentum so 
l must change by 1 and hence lm  must change by 0 or 1.±  The shift in the transition energy from the zero field 

value is just 
3 2 3 2B( ) ( ),

2l l l l

e B
U m m μ B m m

m
= − = −  where 

3l
m is the 3 ld m  value and 

2l
m is the 2 lp m  value. Thus 

there are only three different energy shifts. They and the transitions that have them, labeled by the lm  names, are: 

: 2 1, 1 0, 0 1
2

0 :1 1, 0 0, 1 1

: 0 1, 1 0, 2 1
2

e B

m

e B

m

→ → → −

→ → − → −

− → − → − → −

 

41.48. IDENTIFY: The presence of an external magnetic field shifts the energy levels up or down, depending upon the 
value of ml. 
SET UP: The selection rules tell us that for allowed transitions, Δl = 1 and Δml = 0 or ±1. 
EXECUTE: (a) E = hc/λ = (4.136 × 10–15 eV s⋅ )(3.00 × 108 m/s)/(475.082 nm) = 2.612 eV. 
(b) For allowed transitions, Δl = 1 and Δml = 0 or ±1. For the 3d state, n = 3, l = 2, and ml can have the values 2, 1, 
0, –1, –2. In the 2p state, n = 2, l = 1, and ml can be 1, 0, –1. Therefore the 9 allowed transitions from the 3d state 
in the presence of a magnetic field are: 

l = 2 , ml = 2  →  l = 1, ml = 1; 
l = 2 , ml = 1  →  l = 1, ml = 0 
l = 2 , ml = 1  →  l = 1, ml = 1 
l = 2 , ml = 0  →  l = 1, ml = 0 
l = 2 , ml = 0  →  l = 1, ml = 1 
l = 2 , ml = 0  →  l = 1, ml = –1 
l = 2 , ml = –1  →  l = 1, ml = 0 
l = 2 , ml = –1  →  l = 1, ml = –1 
l = 2 , ml = –2  →  l = 1, ml = –1 

(c) ΔE = µBB = (5.788 × 10–5 eV/T)(3.500 T) = 0.000203 eV 
So the energies of the new states are –8.50000 eV + 0 and –8.50000 eV ± 0.000203 eV, giving energies of: 
–8.50020 eV, –8.50000 eV, and –8.49980 eV 
(d) The energy differences of the allowed transitions are equal to the energy differences if no magnetic field were 
present (2.61176 eV, from part (a)), and that value ±ΔE (0.000203 eV, from part (c)). Therefore we get the 
following. 
For E = 2.61176 eV: λ = 475.082 nm (which was given) 
For E = 2.61176 eV + 0.000203 eV = 2.611963 eV: 

λ = hc/E = (4.136 ×10–15 eV s⋅ )(3.00 × 108 m/s)/(2.611963 eV) = 475.045 nm 

For E = 2.61176 eV – 0.000203 eV = 2.61156 eV: 

λ = hc/E = (4.136 ×10–15 eV s⋅ )(3.00 × 108 m/s)/(2.61156 eV) = 475.119 nm 

EVALUATE: Even a strong magnetic field produces small changes in the energy levels, and hence in the 
wavelengths of the emitted light. 

41.49. IDENTIFY: The presence of an external magnetic field shifts the energy levels up or down, depending upon the 
value of ml. 
SET UP: The energy difference due to the magnetic field is  ΔE = µBB and the energy of a photon is E = hc/λ. 
EXECUTE: For the p state, ml = 0 or ±1, and for the s state ml = 0.  Between any two adjacent lines, ΔE = µBB. 
Since the change in the wavelength (Δλ) is very small, the energy change (ΔE) is also very small, so we can use 

differentials. E = hc/λ . 
2

| | 
hc

dE dλ
λ

= and 
2

hc
E

λ
λ
ΔΔ = . Since ΔE = µBB, we get B 2

hc
µ B

λ
λ
Δ=  and 

2
B

hc
B

µ

λ
λ
Δ= . 

B = (4.136 × 10–15 eV s⋅ )(3.00 × 108 m/s)(0.0462 nm)/(5.788 × 10–5 eV/T)(575.050 nm)2 = 3.00 T 
EVALUATE: Even a strong magnetic field produces small changes in the energy levels, and hence in the 
wavelengths of the emitted light. 

41.50. (a) The energy shift from zero field is 0 B .lU m BμΔ =  
5 4

0For 2, (2) (5.79 10 eV T) (1.40 T) 1.62 10 eV.lm U − −= Δ = × = ×  
5 5

0For 1, (1)(5.79 10 eV T) (1.40 T) 8.11 10  eV.lm U − −= Δ = × = ×  

(b) 0
0

| |
| | ,

E
E

λ λ ΔΔ =  where 7
0 0

36 1
(13.6 eV)((1/ 4) (1/9)),  6.563 10 m

5
E

R
λ −⎛ ⎞= − = = ×⎜ ⎟

⎝ ⎠
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4 5 5and 1.62 10 eV 8.11 10 eV 8.09 10 eV from part (a).E − − −Δ = × − × = ×  Then, 11| | 2.81 10  m 0.0281 nmλ −Δ = × = . 

The wavelength corresponds to a larger energy change, and so the wavelength is smaller. 

41.51. IDENTIFY: The ratio according to the Boltzmann distribution is given by Eq.(38.21): 1 0( ) /1

0

E E kTn
e

n
− −= , where 1 is 

the higher energy state and 0 is the lower energy state. 

SET UP: The interaction energy with the magnetic field is 2.00232
2z s

e
U B m B

m
μ ⎛ ⎞= − = ⎜ ⎟

⎝ ⎠
 (Example 41.5.). The 

energy of the 
1

2sm = +  level is increased and the energy of the 
1

2sm = −  level is decreased. 

1/ 2 1/ 2( ) /1/ 2

1/ 2

U U kTn
e

n
−− −

−

=  

EXECUTE: 1/ 2 1/ 2 B

1 1
2.00232 2.00232 2.00232

2 2 2 2

e e
U U B B B

m m
μ−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − − = =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

B(2.00232) /1/ 2

1/ 2

B kTn
e

n
μ−

−

=  

(a) 55.00 10  TB −= ×  
24 2 5 232.00232(9.274 10  A/m )(5.00 10  T)/([1.381 10 J/K][300 K])1/ 2

1/ 2

n
e

n

− − −− × × ×

−

=  

72.24 10 71/ 2

1/ 2

0.99999978 1 2.2 10
n

e
n

−− × −

−

= = = − ×  

(b) 
35 2.24 101/ 2

1/ 2

5.00 10  T, 0.9978
n

B e
n

−− − ×

−

= × = =  

(c) 
25 2.24 101/ 2

1/ 2

5.00 10  T, 0.978
n

B e
n

−− − ×

−

= × = =  

EVALUATE: For small fields the energy separation between the two spin states is much less than kT for 
300 KT =  and the states are equally populated. For 5.00 TB =  the energy spacing is large enough for there to be 

a small excess of atoms in the lower state. 

41.52. Using Eq.(41.4), ( 1) ,L mvr l l= = + and the Bohr radius from Eq.(38.15), we obtain the following value for v : 
34

5
2 31 11

0

( 1) 2(6.63 10 J s)
7.74 10 m s.

( ) 2 (9.11 10 kg) (4) (5.29 10 m)

l l
v

m n a π

−

− −

+ × ⋅= = = ×
× ×

 The magnetic field generated by the 

“moving” proton at the electrons position can be calculated from Eq.(28.1): 
19 5

70
2 2 11 2

| | sin (1.60 10 C) (7.74 10 m s) sin(90 )
(10  T m A) 0.277 T.

4 (4) (5.29 10 m)

μ q v
B

π r

φ −
−

−

× × °= = ⋅ =
×

 

41.53. IDENTIFY and SET UP: sm  can take on 4 different values: 
3 1 1 3

,  , ,  .
2 2 2 2sm = − − + +  Each lnlm  state can have 4 

electrons, each with one of the four different sm  values. Apply the exclusion principle to determine the electron 

configurations. 

EXECUTE: (a) For a filled 1n =  shell, the electron configuration would be 41 ;s  four electrons and 4.Z =  For a 

filled 2n =  shell, the electron configuration would be 4 4 121 2 2 ;s s p  twenty electrons and 20.Z =  

(b) Sodium has 11;Z =  11 electrons. The ground-state electron configuration would be 4 4 31 2 2 .s s p  

EVALUATE: The chemical properties of each element would be very different. 
41.54. (a) 2 2( 13.6 eV) (7) ( 13.6 eV) 666 eV.Z − = − = −  

(b) The negative of the result of part (a), 666 eV. 
(c) The radius of the ground state orbit is inversely proportional to the nuclear charge, and 

10 12(0.529 10 m) 7 7.56 10 m.
a

Z
− −= × = ×  

(d) ( )0 2 2
1 1
1 2

hc hc

E E
λ = =

Δ −
 , where 0E  is the energy found in part (b), and 2.49 nm.λ =  
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41.55. (a) IDENTIFY and SET UP: The energy of the photon equals the transition energy of the atom: / .E hc λΔ =  The 

energies of the states are given by Eq.(41.3). 

EXECUTE: 
2

13.60 eV
nE

n
= −  so 2

13.60 eV

4
E = −  and 1

13.60 eV

1
E = −  

19 18
2 1

1 3
13.60 eV 1 (13.60 eV) 10.20 eV (10.20 eV)(1.602 10  J/eV) 1.634 10  J

4 4
E E E − −⎛ ⎞Δ = − = − + = = = × = ×⎜ ⎟

⎝ ⎠
34 8

7
18

(6.626 10  J s)(2.998 10  m/s)
1.22 10  m 122 nm

1.634 10  J

hc

E
λ

−
−

−

× ⋅ ×= = = × =
Δ ×

 

(b) IDENTIFY and SET UP: Calculate the change in EΔ  due to the orbital magnetic interaction energy, 
Eq.(41.17), and relate this to the shift λΔ  in the photon wavelength. 
EXECUTE: The shift of a level due to the energy of interaction with the magnetic field in the z-direction is 

B .lU m Bμ=  The ground state has 0lm =  so is unaffected by the magnetic field. The 2n =  initial state has 

1lm = −  so its energy is shifted downward an amount 24 2
B ( 1)(9.274 10  A/m )(2.20 T)lU m Bμ −= = − × =  

23 19 4( 2.040 10  J)(1 eV /1.602 10  J) 1.273 10  eV− − −− × × = ×  

Note that the shift in energy due to the magnetic field is a very small fraction of the 10.2 eV transition energy. 
Problem 39.56c shows that in this situation / / .E Eλ λΔ = Δ  This gives 

41.273 10  eV
/ 122 nm 

10.2 eV
E Eλ λ

−⎛ ⎞×Δ = Δ = =⎜ ⎟
⎝ ⎠

31.52 10  nm 1.52 pm.−× =  

EVALUATE: The upper level in the transition is lowered in energy so the transition energy is decreased. A smaller 
EΔ  means a larger ;λ  the magnetic field increases the wavelength. The fractional shift in wavelength, /λ λΔ  is 

small, only 51.2 10 .−×  
41.56. The effective field is that which gives rise to the observed difference in the energy level transition, 

1 2 1 2

B B 1 2 1 2

2
.

E hc πmc
B

μ μ e

λ λ λ λ
λ λ λ λ

⎛ ⎞ ⎛ ⎞Δ − −= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Substitution of numerical values gives 33.64 10 T,B −= ×  much smaller 

than that for sodium. 
41.57. IDENTIFY: Estimate the atomic transition energy and use Eq.(38.6) to relate this to the photon wavelength. 

(a) SET UP: vanadium, 23Z =  
minimum wavelength; corresponds to largest transition energy 
EXECUTE: The highest occupied shell is the N shell ( 4).n =  The highest energy transition is ,N K→  with 

transition energy .N KE E EΔ = −  Since the shell energies scale like 21/ n  neglect NE  relative to ,KE  so 
2 2 3( 1) (13.6 eV) (23 1) (13.6 eV) 6.582 10  eVKE E ZΔ = = − = − = × =  151.055 10  J.−×  The energy of the emitted 

photon equals this transition energy, so the photon’s wavelength is given by /  so / .E hc hc Eλ λΔ = = Δ  
34 8

10
15

(6.626 10  J s)(2.998 10  m/s)
1.88 10  m 0.188 nm.

1.055 10  J
λ

−
−

−

× ⋅ ×= = × =
×

 

SET UP: maximum wavelength; corresponds to smallest transition energy, so for the Kα  transition 

EXECUTE: The frequency of the photon emitted in this transition is given by Moseley’s law (Eq.41.29): 
15 2 15 2 18(2.48 10  Hz)( 1) (2.48 10  Hz)(23 1) 1.200 10  Hzf Z= × − = × − = ×  

8
10

18

2.998 10  m/s
2.50 10  m 0.250 nm

1.200 10  Hz

c

f
λ −×= = = × =

×
 

(b) rhenium, 45Z =  
Apply the analysis of part (a), just with this different value of Z. 
minimum wavelength 

2 2 4 15( 1) (13.6 eV) (45 1) (13.6 eV) 2.633 10  eV 4.218 10  J.KE E Z −Δ = = − = − = × = ×  
34 8

11
15

(6.626 10  J s)(2.998 10  m/s)
/ 4.71 10  m 0.0471 nm.

4.218 10  J
hc Eλ

−
−

−

× ⋅ ×= Δ = = × =
×

 

maximum wavelength 
15 2 15 2 18(2.48 10  Hz)( 1) (2.48 10  Hz)(45 1) 4.801 10  Hzf Z= × − = × − = ×  

8
11

18

2.998 10  m/s
6.24 10  m 0.0624 nm

4.801 10  Hz

c

f
λ −×= = = × =

×
 

EVALUATE: Our calculated wavelengths have values corresponding to x rays. The transition energies increase 
when Z increases and the photon wavelengths decrease. 
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41.58. (a) 
2

(2.00232) .
2 z

e e hc πmc
E B S B B

m m eλ λ
Δ = Δ ≈ = ⇒ =  

(b) 
31 8

19

2 (9.11 10 kg) (3.00 10 m s)
0.307 T.

(0.0350 m)(1.60 10 C)

π
B

−

−

× ×= =
×

 

41.59. (a) To calculate the total number of states for the thn  principal quantum number shell we must multiply all the 
possibilities. The spin states multiply everything by 2. The maximum l value is (n –1), and each l value has 
(2 1) ll m+  values.  So the total number of states is 

1 1 1
2 2

0 0 0

4( 1)( )
2 (2 1) 2 1 4 2 2 2 2 2 .

2

n n n

l l l

n n
N l l n n n n n

− − −

= = =

−= + = + = + = + − =∑ ∑ ∑  

(b) The n = 5 shell (O-shell) has 50 states. 
41.60. IDENTIFY: We treat the Earth as an electron. 

SET UP: The intrinsic spin angular momentum of an electron is 
3

4
S = , and the angular momentum of the 

spinning Earth is S Iω= , where I = 2/5 mR2. 

EXECUTE: (a) Using 
3

 
4

S Iω= =  and solving for ω gives 

( )
( )( )

34

73

22 24 6

3 3
 1.055 10  J s

4 4 9.40 10  rad/s
2 2

5.97 10  kg 6.38 10  m
5 5

mR
ω

−

−
× ⋅

= = = ×
× ×

 

(b) We could not use this approach on the electron because in quantum physics we do not view it in the classical 
sense as a spinning ball. 
EVALUATE: The angular velocity we have just calculated for the Earth would certainly be masked by its present 
angular spin of one revolution per day. 

41.61. The potential 21
( )

2
U x k x′=  is that of a simple harmonic oscillator. Treated quantum mechanically (see Section 40.4) 

each energy state has energy 1
2( ).nE ω n= +  Since electrons obey the exclusion principle, this allows us to put two 

electrons (one for each 1
2 )sm = ±  for every value of n⎯each quantum state is then defined by the ordered pair of 

quantum numbers ( , ).sn m  By placing two electrons in each energy level the lowest energy is then 

1 1 1 1

0 0 0 0

1 1 ( 1)( )
2 2 2 2

2 2 2 2

N N N N

n
n n n n

N N N
E n nω ω ω

− − − −

= = = =

⎛ ⎞ −⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎡ ⎤= + = + = + =⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠ ⎣ ⎦⎝ ⎠
∑ ∑ ∑ ∑  

2 2 2[ ] .
k

N N N N N
m

ω ω
′

− + = =  

Here we used the hint from Problem 41.59 to do the first sum, realizing that the first value of n is zero and the last 
value of n is N – 1, giving us a total of N energy levels filled. 

41.62. (a) Apply Coulomb’s law to the orbiting electron and set it equal to the centripetal force. There is an attractive 

force with charge +2e a distance r away and a repulsive force a distance 2r away. So, 
2 2

0 0

( 2 )( ) ( )( )

4 4 (2 )

e e e e

r rπ π
+ − − −+ =
P P

 

2

.
mv

r

−
But, from the quantization of angular momentum in the first Bohr orbit, .L mvr v

mr
= = ⇒ =  

So 

2

2 2 2 2

2 2 3
0 0

2

4 4 (4 )

m
e e mv mr

π r π r r r mr

⎛ ⎞− ⎜ ⎟− − ⎝ ⎠+ = = = −
P P

2 2
0

2 3

7 4

4

e π
r mr

−
⇒ = − P

. 

2
10 110

02

4 4 4 4
(0.529 10 m) 3.02 10 m.

7 7 7

π
r a

me
− −⎛ ⎞

= = = × = ×⎜ ⎟
⎝ ⎠

P
 

And 
34

6
31 10

0

7 7 (1.054 10 J s)
3.83 10 m s.

4 4 (9.11 10 kg)(0.529 10 m)
v

mr ma

−

− −

− × ⋅= = = = ×
× ×

 

(b) 2 31 6 2 171
2 9.11 10 kg (3.83 10 m s) 1.34 10 J 83.5 eV.

2
K mv − −⎛ ⎞= = × × = × =⎜ ⎟

⎝ ⎠
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(c) 
2 2 2 2 2

17

0 0 0 0 0

2 4 7
2 2.67 10 J 166.9 eV

4 4 (2 ) 4 4 (2 ) 2 4

e e e e e
U

π r π r π r πE r π r
−⎛ ⎞ ⎛ ⎞− − −= + = + = = − × = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠P P P P
 

(d) [ 166.9 eV 83.5 eV] 83.4 eV,E∞ = − − + =  which is only off by about 5% from the real value of 79.0 eV. 

41.63. (a) The radius is inversely proportional to Z, so the classical turning radius is 2 .a Z  

(b) The normalized wave function is 1 3 3

1
( ) Z r a

sψ r e
πa Z

−=  and the probability of the electron being found 

outside the classical turning point is 
2 2 2 2

1 3 32 2

4
4 .Zr a

sa Z a Z
P ψ πr dr e r dr

a Z

∞ ∞ −= =∫ ∫  Making the change of variable 

, ( )u Zr a dr a Z du= =  changes the integral to 2 2

2
4 ,uP e u du

∞ −= ∫ which is independent of Z. The probability is 

that found in Problem 41.39, 0.238, independent of Z. 
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MOLECULES AND CONDENSED MATTER 

 42.1. (a) 
4 19

23

3 2 2(7.9 10  eV)(1.60 10 J eV)
6.1 K

2 3 3(1.38 10 J K)

K
K kT T

k

− −

−

× ×= ⇒ = = =
×

 

(b) 
19

23

2(4.48 eV) (1.60 10 J eV)
34,600 K.

3(1.38 10 J K)
T

−

−

×= =
×

 

(c) The thermal energy associated with room temperature (300 K) is much greater than the bond energy of 2He  

(calculated in part (a)), so the typical collision at room temperature will be more than enough to break up 2He .  

However, the thermal energy at 300 K is much less than the bond energy of 2H , so we would expect it to remain 

intact at room temperature. 

 42.2. (a) 
2

0

1
5.0 eV.

4

e
U

πε r
= − = −  

(b) 5.0 eV (4.3 eV 3.5 eV) 4.2 eV.− + − = −  

 42.3. IDENTIFY: The energy given to the photon comes from a transition between rotational states. 

SET UP: The rotational energy of a molecule is 
2

( 1)
2

E l l
I

= +  and the energy of the photon is E = hc/λ. 

EXECUTE: Use the energy formula, the energy difference between the l = 3 and l = 1 rotational levels of the 

molecule is [ ]
2 25

3(3 1) 1(1 1)
2

E
I I

Δ = + − + = .  Since ΔE = hc/λ, we get hc/λ = 5 2 /I.  Solving for I gives 

( )
( )

34

52 2

8

5 1.055 10  J s (1.780  nm)5
4.981 10  kg m

2 2 3.00 10  m/s
I

c

λ
π π

−
−

× ⋅
= = = × ⋅

×
. 

Using I = mr r0
2, we can solve for r0: 

( ) ( )( )
( )( )
52 2 26 27

N H
0 26 27

N H

4.981 10  kg m 2.33 10  kg 1.67 10  kg

2.33 10  kg 1.67 10  kg

I m m
r

m m

− − −

− −

× ⋅ × + ×+
= =

× ×
 

0r  = 5.65 × 10–13 m 

EVALUATE: This separation is much smaller than the diameter of a typical atom and is not very realistic. But we 
are treating a hypothetical NH molecule. 

 42.4. The energy of the emitted photon is 51.01 10  eV,−× and so its frequency and wavelength are 
5 19

34

(1.01 10  eV)(1.60 10  J eV)
2.44 GHz

(6.63 10  J s)

E
f

h

− −

−

× ×= = =
× ⋅

 and 
8

9

(3.00 10  m s)
0.123 m.

(2.44 10  Hz)

c

f
λ ×= = =

×
  This frequency 

corresponds to that given for a microwave oven. 
 42.5. Let 1 refer to C and 2 to O. 26 26

1 2 01.993 10  kg, 2.656 10  kg,  0.1128 nmm m r− −= × = × = . 

2
1 0

1 2

0.0644 nm (carbon)
m

r r
m m

⎛ ⎞
= =⎜ ⎟+⎝ ⎠

; 1
2 0

1 2

0.0484 nm (oxygen)
m

r r
m m

⎛ ⎞
= =⎜ ⎟+⎝ ⎠

 

(b) 2 2 46 2
1 1 2 2 1.45 10  kg m ;I m r m r −= + = × ⋅  yes, this agrees with Example 42.2. 

 42.6. Each atom has a mass m and is at a distance 2L  from the center, so the moment of inertia is 
2 2 44 22( )( 2) 2 2.21 10  kg m .m L mL −= = × ⋅  

 42.7. IDENTIFY and SET UP: Set 1K E=  from Example 42.2. Use 21
2K Iω=  to solve for ω  and v rω=  to solve for v. 

EXECUTE: (a) From Example 42.2, 23
1 0.479 meV 7.674 10  JE −= = ×  and 46 21.449 10  kg mI −= × ⋅  

21
2K Iω=  and K E=  gives 12

12 / 1.03 10  rad/sE Iω = = ×  

42
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(b) 9 12
1 1 1 (0.0644 10  m)(1.03 10  rad/s) 66.3 m/s (carbon)v rω −= = × × =  

9 12
2 2 2 (0.0484 10  m)(1.03 10  rad/s) 49.8 m/s (oxygen)v r ω −= = × × =  

(c) 122 / 6.10 10  sT π ω −= = ×  
EVALUATE: From the information in Example 42.3 we can calculate the vibrational period to be 

14
r2 / 2 / 1.5 10  s.T m kπ ω π −′= = = ×  The rotational motion is over an order of magnitude slower than the 

vibrational motion. 

 42.8. r

hc
E k m ,

λ
′Δ = =  and solving for ,k′

2

r

2
205 N m.

πc
k m

λ
⎛ ⎞′ = =⎜ ⎟
⎝ ⎠

 

 42.9. IDENTIFY and SET UP: The energy of a rotational level with quantum number l is 2( 1) / 2lE l l I= +  (Eq.(42.3)). 
2

r ,I m r=  with the reduced mass rm  given by Eq.(42.4). Calculate I and EΔ  and then use /E hc λΔ =  to find .λ  

EXECUTE: (a) 
26 27

271 2 Li H
r 26 27

1 2 Li H

(1.17 10  kg)(1.67 10  kg)
1.461 10  kg

1.17 10  kg 1.67 10  kg

m m m m
m

m m m m

− −
−

− −

× ×= = = = ×
+ + × + ×

 

2 27 9 2 47 2
r (1.461 10  kg)(0.159 10  m) 3.694 10  kg mI m r − − −= = × × = × ⋅  

2 2

3 :  3(4) 6
2

l E
I I

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

2 2

4 :  4(5) 10
2

l E
I I

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

2 34 2
21 3

4 3 47 2

(1.055 10  J s)
4 4 1.20 10  J 7.49 10  eV

3.694 10  kg m
E E E

I

−
− −

−

⎛ ⎞ ⎛ ⎞× ⋅Δ = − = = = × = ×⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠ ⎝ ⎠
 

(b) /E hc λΔ =  so 
15 8

3

(4.136 10  eV)(2.998 10  m/s)
166 m

7.49 10  eV

hc

E
λ μ

−

−

× ×= = =
Δ ×

 

EVALUATE: LiH has a smaller reduced mass than CO and λ  is somewhat smaller here than the λ  calculated for 
CO in Example 42.2 

42.10. IDENTIFY: The vibrational energy of the molecule is related to its force constant and reduced mass, while the 
rotational energy depends on its moment of inertia, which in turn depends on the reduced mass. 

SET UP: The vibrational energy is 
r

1 1

2 2n

k
E n n

m
ω

′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 and the rotational energy is 
2

( 1)
2lE l l

I
= + . 

EXECUTE: For a vibrational transition, we have v
r

k
E

m

′
Δ = , so we first need to find mr. The energy for a 

rotational transition is [ ]
2 2

R

2
2(2 1) 1(1 1)

2
E

I I
Δ = + − + = . Solving for I and using the fact that I = mrr0

2, we have 

2
2

r 0
R

2
m r

E
=

Δ
, which gives 

( )( )
( ) ( )

34 162

r 22 9 4
0 R

2 1.055 10  J s 6.583 10  eV s2

0.8860 10  m 8.841 10  eV
m

r E

− −

− −

× ⋅ × ⋅
= =

Δ × ×
 = 2.0014 × 10–28 kg 

Now look at the vibrational transition to find the force constant. 

( ) ( )
( )

2 28 2

r v
v 22 16

r

2.0014 10  kg (0.2560  eV)
        

6.583 10  eV s

m Ek
E k

m

−

−

×Δ′ ′Δ = ⇒ = =
× ⋅

 = 30.27 N/m 

EVALUATE: This would be a rather weak spring in the laboratory. 

42.11. (a) 
2 2 2 2

2 2
1

( 1) ( 1)
, ( )

2 2 2l l

l l l l l
E E E l l l l

I I I I−
+ −= = ⇒ Δ = + − + =  

(b) 
Δ Δ

2 2

E E l
f .

h π πI
= = =  
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42.12. IDENTIFY: Find EΔ  for the transition and compute λ  from / .E hc λΔ =  

SET UP: From Example 42.2, 
2

( 1) ,
2lE l l

I
= +  with 

2
30.2395 10  eV.

2I
−= ×  From Example 42.3, 0.2690 eVEΔ =  

is the spacing between vibrational levels. Thus 1
2( ) ,nE n ω= +  with 0.2690 eV.ω =  By Eq.(42.9), 

2
1
2( ) ( 1) .

2n lE E E n l l
I

ω= + = + + +  

EXECUTE: (a) 0 1 and 1 2n n l l= → = = → =  

For 
2

1
20,  1,  2 .

2in l E
I

ω ⎛ ⎞
= = = + ⎜ ⎟

⎝ ⎠
 

For 
2

3
21,  2,  6 .

2fn l E
I

ω ⎛ ⎞
= = = + ⎜ ⎟

⎝ ⎠
 

2
34 0.2690 eV 4(0.2395 10  eV) 0.2700 eV

2f iE E E
I

ω −⎛ ⎞
Δ = − = + = + × =⎜ ⎟

⎝ ⎠
 

hc
E

λ
= Δ  so 

15 8
6(4.136 10  eV s)(2.998 10  m/s)

4.592 10  m 4.592 m
0.2700 eV

hc

E
λ μ

−
−× ⋅ ×= = = × =

Δ
 

(b) 0 1 and 2 1n n l l= → = = → =  

For 
2

1
20,  2,  6 .

2in l E
I

ω ⎛ ⎞
= = = + ⎜ ⎟

⎝ ⎠
 

For 
2

3
21,  1,  2 .

2fn l E
I

ω ⎛ ⎞
= = = + ⎜ ⎟

⎝ ⎠
 

2
34 0.2690 eV 4(0.2395 10  eV) 0.2680 eV

2f iE E E
I

ω −⎛ ⎞
Δ = − = − = − × =⎜ ⎟

⎝ ⎠
 

15 8
6(4.136 10  eV s)(2.998 10  m/s)

4.627 10  m 4.627 m
0.2680 eV

hc

E
λ μ

−
−× ⋅ ×= = = × =

Δ
 

(c) 0 1 and 3 2n n l l= → = = → =  

For 
2

1
20,  3,  12 .

2in l E
I

ω ⎛ ⎞
= = = + ⎜ ⎟

⎝ ⎠
 

For 
2

3
21,  2,  6 .

2fn l E
I

ω ⎛ ⎞
= = = + ⎜ ⎟

⎝ ⎠
 

2
36 0.2690 eV 6(0.2395 10  eV) 0.2676 eV

2f iE E E
I

ω −⎛ ⎞
Δ = − = − = − × =⎜ ⎟

⎝ ⎠
 

15 8
6(4.136 10  eV s)(2.998 10  m/s)

4.634 10  m 4.634 m
0.2676 eV

hc

E
λ μ

−
−× ⋅ ×= = = × =

Δ
 

EVALUATE: All three transitions are for 0 1.n n= → =  The spacing between vibrational levels is larger than the 
spacing between rotational levels, so the difference in λ  for the various rotational transitions is small. When the 
transition is to a larger l, E ωΔ >  and when the transition is to a smaller l, .E ωΔ <  

42.13. (a) IDENTIFY and SET UP: Use r/k mω ′=  and 2 fω π=  to calculate .k′  The atomic masses are used in 

Eq.(42.4) to calculate r .m  

EXECUTE: 
r

1
,

2 2

k
f

m

ω
π π

′
= =  so 2

r (2 )k m fπ′ =  

27 26
271 2 H F

r 27 26
1 2 H F

(1.67 10  kg)(3.15 10  kg)
1.586 10  kg

1.67 10  kg 3.15 10  kg

m m m m
m

m m m m

− −
−

− −

× ×= = = = ×
+ + × + ×

 

2 27 14 2
r (2 ) (1.586 10  kg)(2 [1.24 10  Hz]) 963 N/mk m fπ π−′ = = × × =  

(b) IDENTIFY and SET UP: The energy levels are given by Eq.(42.7). 1 1
2 2( ) ( ) ,nE n n hfω= + = +  since 

( / 2 )hω π ω=  and ( / 2 ) .fω π =  The energy spacing between adjacent levels is 
1 1

1 2 2( 1 ) ,n nE E E n n hf hf+Δ = − = + + − − =  independent of n. 
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EXECUTE: 34 14 20(6.626 10  J s)(1.24 10  Hz) 8.22 10  J 0.513 eVE hf − −Δ = = × ⋅ × = × =  

(c) IDENTIFY and SET UP: The photon energy equals the transition energy so / .E hc λΔ =  

EXECUTE: /hf hc λ=  so 
8

6
14

2.998 10  m/s
2.42 10  m 2.42 m

1.24 10  Hz

c

f
λ μ−×= = = × =

×
 

EVALUATE: This photon is infrared, which is typical for vibrational transitions. 
42.14. For an average spacing a, the density is 3ρ m a= , where m is the average of the ionic masses, and so 

( )26 25

3 29 3
3 3

6.49 10 kg 1.33 10 kg 2
3.60 10 m

(2.75 10 kg m )

m
a

ρ

− −
−

× + ×
= = = ×

×
, 

and 103.30 10 m 0.330 nma −= × = . 

(b) The larger (higher atomic number) atoms have the larger spacing. 
42.15. IDENTIFY and SET UP: Find the volume occupied by each atom. The density is the average mass of Na and Cl 

divided by this volume. 
EXECUTE: Each atom occupies a cube with side length 0.282 nm. Therefore, the volume occupied by each atom 
is 9 3 29 3(0.282 10  m) 2.24 10  m .V − −= × = ×  In NaCl there are equal numbers of Na and Cl atoms, so the average 

mass of the atoms in the crystal is 26 26 261 1
Na Cl2 2( ) (3.82 10  kg 5.89 10  kg) 4.855 10  kgm m m − − −= + = × + × = ×  

The density then is 
26

3 3
29 3

4.855 10  kg
2.17 10  kg/m .

2.24 10  m

m

V
ρ

−

−

×= = = ×
×

 

EVALUATE: The density of water is 3 31.00 10  kg/m ,×  so our result is reasonable. 

42.16. (a) As a photon, 
( ) ( )
( ) ( )

34 8

3 19

6.63 10  J s 3.00 10 m s
0.200 nm.

6.20 10  eV 1.60 10 J eV

hc

E
λ

−

−

× ⋅ ×
= = =

× ×
 

(b) As a matter wave, 

( )
( ) ( ) ( )

34

31 19

6.63 10 J s
0.200 nm

2 2 9.11 10 kg 37.6 eV 1.60 10 J eV

h h

p mE
λ

−

− −

× ⋅
= = = =

× ×
 

(c) As a matter wave, 

( )
( ) ( ) ( )

34

27 19

6.63 10 J s
0.200 nm

2 2 1.67 10 kg 0.0205 eV 1.60 10 J eV

h

mE
λ

−

− −

× ⋅
= = =

× ×
. 

42.17. IDENTIFY: The energy gap is the energy of the maximum-wavelength photon. 
SET UP: The energy difference is equal to the energy of the photon, so ΔE = hc/λ. 
EXECUTE: (a) Using the photon wavelength to find the energy difference gives 

ΔE = hc/λ = (4.136 × 10–15 eV s⋅ )(3.00 × 108 m/s)/(1.11 × 10–6 m) = 1.12 eV 

(b) A wavelength of 1.11 µm = 1110 nm is in the infrared, shorter than that of visible light. 
EVALUATE: Since visible photons have more than enough energy to excite electrons from the valence to the 
conduction band, visible light will be absorbed, which makes silicon opaque. 

42.18. (a) 72.27 10 m 227 nm
hc

E
−= × =

Δ
, in the ultraviolet. 

(b) Visible light lacks enough energy to excite the electrons into the conduction band, so visible light passes 
through the diamond unabsorbed. 
(c) Impurities can lower the gap energy making it easier for the material to absorb shorter wavelength visible light. 
This allows longer wavelength visible light to pass through, giving the diamond color. 

42.19. 
34 8

13 6
13

(6.63 10 J s) (3.00 10 m s)
2.14 10 J 1.34 10 eV

9.31 10 m

hc
E

λ

−
−

−

× ⋅ ×Δ = = = × = ×
×

. So the number of electrons that can be 

excited to the conduction band is 
6

61.34 10 eV
1.20 10  electrons

1.12 eV
n

×= = ×  

42.20. 
2

1 ψ dV= ∫  

3
2 2 2 2 2

0 0 0

sin sin sin
2

L L L
yx z

n πyn πx n πz L
A dx dy dz A

L L L

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫ ∫  

so ( )3 2
2A L=  (assuming A to be real positive). 
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42.21. Density of states: 

( ) ( )

( ) ( ) ( )

3 2 31 3 2 6 3 1 2 19 1 2
1 2

2 3 2 34 3

40 19 22

2 (2(9.11 10 kg)) (1.0 10 m )(5.0 eV) (1.60 10 J eV)

2 2 (1.054 10 J s)

9.5 10 states J 1.60 10 J eV 1.5 10 states eV.

m V
g E E

π π

g E

− − −

−

−

× × ×= =
× ⋅

= × × = ×

 

42.22. 5
rms 3 1.17 10 m sv kT m= = × , as found in Example 42.9. The equipartition theorem does not hold for the 

electrons at the Fermi energy. Although these electrons are very energetic, they cannot lose energy, unlike 
electrons in a free electron gas. 

42.23. (a) IDENTIFY and SET UP: The three-dimensional Schrödinger equation is 
2 2 2 2

2 2 22
U E

m x y z

ψ ψ ψ ψ ψ⎛ ⎞∂ ∂ ∂− + + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 

(Eq.40.29). For free electrons, 0.U =  Evaluate 2 2 2 2/ ,  / ,x yψ ψ∂ ∂ ∂ ∂  and 2 2/ zψ∂ ∂  for ψ  as given by Eq.(42.10). 

Put the results into Eq.(40.20) and see if the equation is satisfied. 

EXECUTE: cos sin sinyx x z
n yn n x n z

A
x L L L L

πψ π π π⎛ ⎞∂ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

2 22

2
sin sin sinyx x z x

n yn n x n z n
A

x L L L L L

πψ π π π π ψ⎛ ⎞∂ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 

Similarly 
22

2

yn

y L

πψ ψ⎛ ⎞∂ = −⎜ ⎟∂ ⎝ ⎠
 and 

22

2
.zn

z L

ψ π ψ∂ ⎛ ⎞= −⎜ ⎟∂ ⎝ ⎠
 

Therefore, 
2 2 2 2 22 2 2 2 2 2

2 2 2
2 2 2 2 2

( )
( )

2 2 2
x y z

x y z

n n n
n n n

m x y z m L mL

πψ ψ ψ π ψ ψ
+ +⎛ ⎞ ⎛ ⎞∂ ∂ ∂− + + = + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

This equals ,Eψ  with 
2 2 2 2 2

2

( )
,

2
x y zn n n

E
mL

π+ +
=  which is Eq.(42.11). 

EVALUATE: ψ  given by Eq.(42.10) is a solution to Eq.(40.29), with E as given by Eq.(42.11). 

(b) IDENTIFY and SET UP: Find the set of quantum numbers ,  ,  and x y zn n n  that give the lowest three values of 

E. The degeneracy is the number of sets ,  ,   and x y z sn n n m  that give the same E. 

EXECUTE: Ground level: lowest E so 1x y zn n n= = =  and 
2 2

2

3
.

2
E

mL

π=  No other combination of ,  ,  and x y zn n n  

gives this same E, so the only degeneracy is the degeneracy of two due to spin. 

First excited level: next lower E so one n equals 2 and the others equal 1. 
2 2 2 2

2 2 2
2 2

6
(2 1 1 )

2 2
E

mL mL

π π= + + =  

There are three different sets of ,  ,  x y zn n n  values that give this E: 

2,  1,  1; 1,  2,  1;  1,  1,  2x y z x y z x y zn n n n n n n n n= = = = = = = = =  

This gives a degeneracy of 3 so the total degeneracy, with the factor of 2 from spin, is 6. 
Second excited level: next lower E so two of ,  ,  x y zn n n  equal 2 and the other equals 1. 

2 2 2 2
2 2 2

2 2

9
(2 2 1 )

2 2
E

mL mL

π π= + + =  

There are different sets of ,  ,  x y zn n n  values that give this E: 

2,  2,  1; 2,  1,  2;  1,  2,  2.x y z x y z x y zn n n n n n n n n= = = = = = = = =  

Thus, as for the first excited level, the total degeneracy, including spin, is 6. 
EVALUATE: The wavefunction for the 3-dimensional box is a product of the wavefunctions for a 1-dimensional 
box in the x, y, and z coordinates and the energy is the sum of energies for three 1-dimensional boxes. All levels 
except for the ground level have a degeneracy greater than two. Compare to the 3-dimensional isotropic harmonic 
oscillator treated in Problem 40.53. 

42.24. Eq.(42.13) may be solved for ( ) ( )1 2

rs 2n mE L π= , and substituting this into Eq. (42.12), using 3L V= , gives 

Eq.(42.14). 
42.25. (a) IDENTIFY and SET UP: The electron contribution to the molar heat capacity at constant volume of a metal is 

2

F

.
2V

KT
C R

E

π⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

EXECUTE: 
2 23

19

(1.381 10  J/K)(300 K)
0.0233 .

2(5.48 eV)(1.602 10  J/eV)VC R R
π −

−

×= =
×
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(b) EVALUATE: The electron contribution found in part (a) is 0.0233 0.194 J/mol K.R = ⋅  This is 
30.194/ 25.3 7.67 10 0.767%−= × =  of the total .VC  

(c) Only a small fraction of VC  is due to the electrons. Most of VC  is due to the vibrational motion of the ions. 

42.26. (a) From Eq. (42.22), av F

3
1.94 eV.

5
E E= =  

(b) 
( ) ( )19

5
31

2 1.94 eV 1.60 10 J eV
2 8.25 10 m s.

9.11 10 kg
E m

−

−

×
= = ×

×
 

(c) 
( ) ( )

( )
19

4F
23

3.23 eV 1.60 10 J eV
3.74 10 K.

1.38 10 J K

E

k

−

−

×
= = ×

×
 

42.27. IDENTIFY: The probability is given by the Fermi-Dirac distribution. 

SET UP: The Fermi-Dirac distribution is 
F( ) /

1
( )

1E E kT
f E

e −=
+

. 

EXECUTE: We calculate the value of f (E), where E = 8.520 eV, EF = 8.500 eV, 
k = 1.38 × 10–23 J/K = 8.625 × 10–5 eV/K, and T = 20°C = 293 K. The result is f (E) = 0.312 = 31.2%. 
EVALUATE: Since the energy is close to the Fermi energy, the probability is quite high that the state is occupied 
by an electron. 

42.28. (a) See Example 42.10: The probabilities are 7 61.78 10 , 2.37 10− −× × , and 51.51 10−× . 

(b) The Fermi distribution, Eq.(42.17), has the property that ( ) ( )F 1f E E f E− = −  (see Problem (42.48)), and so 

the probability that a state at the top of the valence band is occupied is the same as the probability that a state of the 
bottom of the conduction band is filled (this result depends on having the Fermi energy in the middle of the gap). 

42.29. IDENTIFY: Use Eq.(42.17), 
F( ) /

1
( ) .

1E E kT
f E

e −=
+

 Solve for F.E E−  

SET UP: F( ) / 1
1

( )
E E kTe

f E
− = −  

The problem states that 4( ) 4.4 10f E −= ×  for E at the bottom of the conduction band. 

EXECUTE: F( ) / 3
4

1
1 2.272 10 .

4.4 10
E E kTe −

−= − = ×
×

 

3 23 3 20
F ln(2.272 10 ) (1.3807 10  J/T)(300 K)ln(2.272 10 ) 3.201 10  J 0.20 eVE E kT − −− = × = × × = × =

F 0.20 eV;E E= −  the Fermi level is 0.20 eV below the bottom of the conduction band. 

EVALUATE: The energy gap between the Fermi level and bottom of the conduction band is large compared to 
kT  at 300 KT =  and as a result ( )f E  is small. 

42.30. IDENTIFY: The current depends on the voltage across the diode and its temperature, so the resistance also 
depends on these quantities. 
SET UP: The current is I = IS (e

eV/kT – 1) and the resistance is R = V/I. 

EXECUTE: (a) The resistance is ( )/
S 1eV kT

V V
R

I I e
= =

−
. The exponent is ( )5

(0.0850  V)

8.625 10  eV/K (293  K)

eV e

kT −
=

×
 = 

3.3635, giving ( )3.3635

85.0  mV

(0.750  mA) 1
R

e
=

−
 = 4.06 Ω. 

(b) In this case, the exponent is ( )5

( 0.050  V)
1.979

8.625 10  eV/K (293 K)

eV e

kT −

−= = −
×

 

which gives ( )1.979

50.0  mV

(0.750  mA) 1
R

e−

−=
−

 = 77.4 Ω 

EVALUATE: Reversing the voltage can make a considerable change in the resistance of a diode. 
42.31. IDENTIFY and SET UP: The voltage-current relation is given by Eq.(42.23): /

s ( 1).eV kTI I e= −  Use the current for 

15.0 mVV = +  to solve for the constant s.I  

EXECUTE: (a) Find 3
s :  15.0 10  VI V −= + ×  gives 39.25 10  AI −= ×  

19 3

23

(1.602 10  C)(15.0 10  V)
0.5800

(1.381 10  J/K)(300 K)

eV

kT

− −

−

× ×= =
×

 

3
2

s / 0.5800

9.25 10  A
1.177 10 11.77 mA

1 1eV kT

I
I

e e

−
−×= = = × =

− −
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Then can calculate I for 10.0 mV:V =  
19 3

23

(1.602 10  C)(10.0 10  V)
0.3867

(1.381 10  J/K)(300 K)

eV

kT

− −

−

× ×= =
×

 

/ 0.3867
s ( 1) (11.77 mA)( 1) 5.56 mAeV kTI I e e= − = − =  

(b) 
eV

kT
 has the same magnitude as in part (a) but not V is negative so 

eV

kT
 is negative. 

15.0 mV : 0.5800
eV

V
kT

= − = −  and / 0.5800
s ( 1) (11.77 mA)( 1) 5.18 mAeV kTI I e e−= − = − = −  

10.0 mV : 0.3867
eV

V
kT

= − = −  and / 0.3867
s ( 1) (11.77 mA)( 1) 3.77 mAeV kTI I e e−= − = − = −  

EVALUATE: There is a directional asymmetry in the current, with a forward-bias voltage producing more current 
than a reverse-bias voltage of the same magnitude, but the voltage is small enough for the asymmetry not be 
pronounced. Compare to Example 42.11, where more extreme voltages are considered. 

42.32. (a) Solving Eq.(42.23) for the voltage as a function of current, 

S

40.0 mA
ln 1 ln 1 0.0645 V.

3.60 mA

kT I kT
V

e I e

⎛ ⎞ ⎛ ⎞
= + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

(b) From part (a), the quantity 12.11eV kTe = , so far a reverse-bias voltage of the same magnitude, 

( )S S

1
1 1 3.30 mA

12.11
eV kTI I e I− ⎛ ⎞= − = − = −⎜ ⎟

⎝ ⎠
. 

42.33. IDENTIFY: During the transition, the molecule emits a photon of light having energy equal to the energy 
difference between the two vibrational states of the molecule. 

SET UP: The vibrational energy is 
r

1 1

2 2n

k
E n n

m
ω

′⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

EXECUTE: (a) The energy difference between two adjacent energy states is 
r

k
E

m

′
Δ = , and this is the energy of 

the photon, so ΔE = hc/λ. Equating these two expressions for ΔE and solving for k′ , we have 
2

r

E
k m

Δ⎛ ⎞′ = =⎜ ⎟
⎝ ⎠

 

2

H O

H O

m m E

m m

Δ⎛ ⎞
⎜ ⎟+ ⎝ ⎠

, and using 
/ 2E hc cλ π

λ
Δ = =   with the appropriate numbers gives us 

( )( ) ( ) 2
27 26 8

27 26 6

1.67 10  kg 2.656 10  kg 2 3.00 10  m/s

1.67 10  kg + 2.656 10  kg 2.39 10  m
k

π− −

− − −

⎡ ⎤× × ×
′ ⎢ ⎥=

× × ×⎢ ⎥⎣ ⎦
 = 977 N/m 

(b) 

H O

H O

r

1 1

2 2 2

m m
k m m

f
m k

ω
π π π

′ += = =
′

.  Substituting the appropriate numbers gives us 

( )( )27 26

27 26
14

1.67 10  kg 2.656 10  kg

1 1.67 10  kg + 2.656 10  kg
1.25 10  Hz

2 977  N/m
f

π

− −

− −

× ×
× ×= = ×  

EVALUATE: The frequency is close to, but not quite in, the visible range. 

42.34. 
2

48 2
2

2
7.14 10 kg m

2

h
I

E π c

λ −= = = × ⋅
Δ

. 

42.35. IDENTIFY and SET UP: Eq.(21.14) gives the electric dipole moment as ,p qd=  where the dipole consists of 

charges q±  separated by distance d. 

EXECUTE: (a) Point charges e+  and e−  separated by distance d, so 
19 9 29(1.602 10  C)(0.24 10  m) 3.8 10  C mp ed − − −= = × × = × ⋅  

(b) p qd=  so 
29

19
9

3.0 10  C m
1.3 10  C

0.24 10  m

p
q

d

−
−

−

× ⋅= = = ×
×

 

(c) 
19

19

1.3 10  C
0.81

1.602 10  C

q

e

−

−

×= =
×
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(d) 
30

21
9

1.5 10  C m
9.37 10  C

0.16 10  m

p
q

d

−
−

−

× ⋅= = = ×
×

 

21

19

9.37 10  C
0.058

1.602 10  C

q

e

−

−

×= =
×

 

EVALUATE: The fractional ionic character for the bond in HI is much less than the fractional ionic character for 
the bond in NaCl. The bond in HI is mostly covalent and not very ionic. 

42.36. The electrical potential energy is 5.13 eV,U = −  and 
2

10

0

1
2.8 10 m.

4

e
r

π U
−= − = ×

P
 

42.37. (a) IDENTIFY: +(Na) (Cl) (Na ) (Cl ) ( ).E E E E U r−+ = + +  Solving for ( )U r  gives 
+( ) [ (Na ) (Na)] [ (Cl) (Cl )].U r E E E E −= − − + −  

SET UP: +[ (Na ) (Na)]E E−  is the ionization energy of Na, the energy required to remove one electron, and is 

equal to 5.1 eV. [ (Cl) (Cl )]E E −−  is the electron affinity of Cl, the magnitude of the decrease in energy when an 

electron is attached to a neutral Cl atom, and is equal to 3.6 eV. 

EXECUTE: 195.1 eV 3.6 eV 1.5 eV 2.4 10  J,U −= − + = − = − ×  and 
2

19

0

1
2.4 10  J

4

e

rπ
−− = − ×

P
 

2 19 2
9 2 2

19 19
0

1 (1.602 10  C)
(8.988 10  N m /C )

4 2.4 10  J 2.4 10  J

e
r

π

−

− −

⎛ ⎞ ×= = × ⋅⎜ ⎟ × ×⎝ ⎠P
 

109.6 10  m 0.96 nmr −= × =  
(b) ionization energy of K 4.3 eV;=  electron affinity of Br 3.5 eV=  

Thus 194.3 eV 3.5 eV 0.8 eV 1.28 10  J,U −= − + = − = − ×  and 
2

19

0

1
1.28 10  J

4

e

rπ
−− = − ×

P
 

2 19 2
9 2 2

19 19
0

1 (1.602 10  C)
(8.988 10  N m / C )

4 1.28 10  J 1.28 10  J

e
r

π

−

− −

⎛ ⎞ ×= = × ⋅⎜ ⎟ × ×⎝ ⎠P
 

91.8 10  m 1.8 nmr −= × =  
EVALUATE: K has a smaller ionization energy than Na and the electron affinities of Cl and Br are very similar, 
so it takes less energy to make +K Br−+  from K Br+  than to make +Na Cl−+  from Na Cl.+  Thus, the 
stabilization distance is larger for KBr than for NaCl. 

42.38. The energies corresponding to the observed wavelengths are 213.29 10 J,−×  21 212.87 10  J, 2.47 10 J,− −× ×  
21 212.06 10 J and 1.65 10 J.− −× ×  The average spacing of these energies is 210.410 10 J−×  and these are seen to 

correspond to transition from levels 8, 7, 6, 5 and 4 to the respective next lower levels. Then, 
2

210.410 10 J
I

−= × , 

from which 47 22.71 10 kg m .I −= × ⋅  

42.39. (a) IDENTIFY: The rotational energies of a molecule depend on its moment of inertia, which in turn depends on 
the separation between the atoms in the molecule. 
SET UP: Problem 42.38 gives 47 2 2

r2.71 10  kg m . .I I m r−= × ⋅ =  Calculate rm  and solve for r. 

EXECUTE: 
27 26

27H Cl
r 27 26

H Cl

(1.67 10  kg)(5.81 10  kg)
1.623 10  kg

1.67 10  kg 5.81 10  kg

m m
m

m m

− −
−

− −

× ×= = = ×
+ × + ×

 

47 2
10

27
r

2.71 10  kg m
1.29 10  m 0.129 nm

1.623 10  kg

I
r

m

−
−

−

× ⋅= = = × =
×

 

EVALUATE: This is a typical atomic separation for a diatomic molecule; see Example 42.2 for the corresponding 
distance for CO. 
(b) IDENTIFY: Each transition is from the level l to the level 1.l −  The rotational energies are given by Eq.(42.3). 
The transition energy is related to the photon wavelength by / .E hc λΔ =  

SET UP: 2( 1) / 2 ,lE l l I= +  so 
2 2

1 [ ( 1) ( 1)] .
2l lE E E l l l l l

I I−
⎛ ⎞ ⎛ ⎞

Δ = − = + − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EXECUTE: 
2 hc

l
I λ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

8 47 2 4

34

2 2 (2.998 10  m/s)(2.71 10  kg m ) 4.843 10  m

(1.055 10  J s)

cI
l

π π
λ λ λ

− −

−

× × ⋅ ×= = =
× ⋅
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For 
4

6

4.843 10  m
60.4 m, 8.

60.4 10  m
lλ μ

−

−

×= = =
×

 

For 
4

6

4.843 10  m
69.0 m, 7.

69.0 10  m
lλ μ

−

−

×= = =
×

 

For 
4

6

4.843 10  m
80.4 m, 6.

80.4 10  m
lλ μ

−

−

×= = =
×

 

For 
4

6

4.843 10  m
96.4 m, 5.

96.4 10  m
lλ μ

−

−

×= = =
×

 

For 
4

6

4.843 10  m
120.4 m, 4.

120.4 10  m
lλ μ

−

−

×= = =
×

 

EVALUATE: In each case l is an integer, as it must be. 
(c) IDENTIFY and SET UP: Longest λ  implies smallest ,EΔ  and this is for the transition from 1l =  to 0.l =  

EXECUTE: 
2 34 2

22
47 2

(1.055 10  J s)
(1) 4.099 10  J

2.71 10  kg m
E l

I

−
−

−

⎛ ⎞ × ⋅Δ = = = ×⎜ ⎟ × ⋅⎝ ⎠
 

34 8
4

22

(6.626 10  J s)(2.998 10  m/s)
4.85 10  m 485 m.

4.099 10  J

hc

E
λ μ

−
−

−

× ⋅ ×= = = × =
Δ ×

 

EVALUATE: This is longer than any wavelengths in part (b). 
(d) IDENTIFY: What changes is r ,m  the reduced mass of the molecule. 

SET UP: The transition energy is 
2

E l
I

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
 and ,

hc
E

λ
Δ =  so 

2 cI

l

πλ =  (part (b)). 2
r ,I m r=  so λ  is directly 

proportional to r .m  
r r

(HCl) (DCl)

(HCl) (DCl)m m

λ λ=  so r

r

(DCl)
(DCl) (HCl)

(HCl)

m

m
λ λ=  

EXECUTE: The mass of a deuterium atom is approximately twice the mass of a hydrogen atom, so 
27

D 3.34 10  kg.m −= ×  
27 27

27D Cl
r 27 26

D Cl

m m (3.34 10  kg)(5.81 10  kg)
(DCl) 3.158 10  kg

m m 3.34 10  kg 5.81 10  kg
m

− −
−

− −

× ×= = = ×
+ × + ×

 

27

27

3.158 10  kg
(DCl) (HCl) (1.946) (HCl)

1.623 10  kg
λ λ λ

−

−

⎛ ⎞×= =⎜ ⎟×⎝ ⎠
 

8 7; (60.4 m)(1.946) 118 ml l λ μ μ= → = = =  

7 6; (69.0 m)(1.946) 134 ml l λ μ μ= → = = =  

6 5; (80.4 m)(1.946) 156 ml l λ μ μ= → = = =  

5 4; (96.4 m)(1.946) 188 ml l λ μ μ= → = = =  

4 3; (120.4 m)(1.946) 234 ml l λ μ μ= → = = =  

EVALUATE: The moment of inertia increases when H is replaced by D, so the transition energies decrease and 
the wavelengths increase. The larger the rotational inertia the smaller the rotational energy for a given l (Eq.42.3). 

42.40.  From the result of Problem 42.11, the moment inertia of the molecule is 
2

46 2
2

6.43 10  kg m
4

l hl
I

E π c

λ −= = = × ⋅
Δ

 and 

from Eq.(42.6) the separation is 0
r

0.193 nm.
I

r
m

= =  

42.41. (a) 
2 2

ex

( 1)
.

2 2

L l l
E

I I

+= =  0 ( 0),gE l= = and there is an additional multiplicative factor of 2l + 1 because for each l 

state there are really (2 1) ll m+ -states with the same energy. So
2 ( 1) /(2 )

0

(2 1) l l IkTln
l e

n
− += + . 

(b) 46 2300 K, 1.449 10  kg m .T I −= = × ⋅  

(i) 
2

23
1 46 2

(1) (1 1)
7.67 10 J.

2(1.449 10  kg m )lE −
= −

+= = ×
× ⋅

 
23

1
23

7.67 10  J
0.0185.

(1.38 10 J K) (300 K)
lE

kT

−
=

−

×= =
×

 

(2 1) 3l + = , so 0.01851

0

(3) 2.95.ln
e

n
−= = =  
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(ii) 
2

2
46 2 23

(2) (2 1)
0.0556.

2(1.449 10 kg m ) (1.38 10 J K) (300 K)
lE

kT
=

− −

+= =
× ⋅ ×

 

(2 1) 5l + = , so 0.05561

0

(5)( ) 4.73.ln
e

n
−= = =  

(iii) 
2

10
46 2 23

(10) (10 1)
1.02.

2(1.449 10 kg m ) (1.38 10 J K) (300 K)
lE

kT
=

− −

+= =
× ⋅ ×

 

1.0210

0

(2 1) 21, so (21) ( ) 7.57.ln
l e

n
−=+ = = =  

(iv) 
2

20
46 2 23

(20) (20 1)
3.89.

2(1.449 10 kg m ) (1.38 10 J K) (300 K)
lE

kT
=

− −

+= =
× ⋅ ×

 

(2 1) 41l + = , so 3.8920

0

(41) 0.838.ln
e

n
−= = =  

(v) 
2

50
46 2 23

(50) (50 1)
23.6.

2(1.449 10 kg m ) (1.38 10 J K) (300 K)
lE

kT
=

− −

+= =
× ⋅ ×

 

(2 1) 101l + = , so 23.6 950

0

(101) 5.69 10 .ln
e

n
− −= = = ×  

(c) There is a competing effect between the (2l + 1) term and the decaying exponential. The 2l + 1 term dominates 
for small l, while the exponential term dominates for large l. 

42.42. (a) 46 2
CO 1.449 10 kg m .I −= × ⋅  

2 34 2
23

1 46 2

( 1) (1.054 10 J s) (1) (1 1)
7.67 10 J

2 2(1.449 10 kg m )l

l l
E

I

−
−

= −

+ × ⋅ += = = ×
× ⋅

. 0 0.lE = =  

23 47.67 10 J 4.79 10 eV.E − −Δ = × = ×  
34 8

3
23

(6.63 10 J s) (3.00 10 m s)
2.59 10 m 2.59 mm.

(7.67 10 J)

hc

E
λ

−
−

−

× ⋅ ×= = = × =
Δ ×

 

(b) Let’s compare the value of kT when T = 20 K to that of EΔ  for the 1 0l l= → =  rotational transition: 
23 22

23

(1.38 10 J K) (20 K) 2.76 10 J.

7.67 10  J (from part (a)).So 3.60.

kT

kT
E

E

− −

−

= × = ×

Δ = × =
Δ

 

Therefore, although T is quite small, there is still plenty of energy to excite CO molecules into the first rotational 
level. This allows astronomers to detect the 2.59 mm wavelength radiation from such molecular clouds. 

42.43. IDENTIFY and SET UP: 2( 1) / 2 ,lE l l I= +  so lE  and the transition energy EΔ  depend on I. Different isotopic 

molecules have different I. 

EXECUTE: (a) Calculate I for 35Na Cl:  
26 26

26Na Cl
r 26 26

Na Cl

(3.8176 10  kg)(5.8068 10  kg)
2.303 10  kg

3.8176 10  kg 5.8068 10  kg

m m
m

m m

− −
−

− −

× ×= = = ×
+ × + ×

 

2 26 9 2 45 2
r (2.303 10  kg)(0.2361 10  m) 1.284 10  kg mI m r − − −= = × × = × ⋅  

2 1 transitionl l= → =  
2 2 34 2

23
2 1 45 2

2 2(1.055 10  J s)
(6 2) 1.734 10  J

2 1.284 10  kg m
E E E

I I

−
−

−

⎛ ⎞ × ⋅Δ = − = − = = = ×⎜ ⎟ × ⋅⎝ ⎠
 

hc
E

λ
Δ =  so 

34 8
2

23

(6.626 10  J s)(2.998 10  m/s)
1.146 10  m 1.146 cm

1.734 10  J

hc

E
λ

−
−

−

× ⋅ ×= = = × =
Δ ×

 

1 0 transitionl l= → =  
2 2

23 24
1 0

1
(2 0) (1.734 10  J) 8.67 10  J

2 2
E E E

I I
− −⎛ ⎞

Δ = − = − = = × = ×⎜ ⎟
⎝ ⎠

 

34 8

24

(6.626 10  J s)(2.998 10  m/s)
2.291 cm

8.67 10  J

hc

E
λ

−

−

× ⋅ ×= = =
Δ ×

 

(b) Calculate I for 37Na Cl:  
26 26

26Na Cl
r 26 26

Na Cl

(3.8176 10  kg)(6.1384 10  kg)
2.354 10  kg

3.8176 10  kg 6.1384 10  kg

m m
m

m m

− −
−

− −

× ×= = = ×
+ × + ×

 

2 26 9 2 45 2
r (2.354 10  kg)(0.2361 10  m) 1.312 10  kg mI m r − − −= = × × = × ⋅  
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2 1 transitionl l= → =  
2 34 2

23
45 2

2 2(1.055 10  J s)
1.697 10  J

1.312 10  kg m
E

I

−
−

−

× ⋅Δ = = = ×
× ⋅

 

34 8
2

23

(6.626 10  J s)(2.998 10  m/s)
1.171 10  m 1.171 cm

1.697 10  J

hc

E
λ

−
−

−

× ⋅ ×= = = × =
Δ ×

 

1 0 transitionl l= → =  
2

23 241
(1.697 10  J) 8.485 10  J

2
E

I
− −Δ = = × = ×  

34 8

24

(6.626 10  J s)(2.998 10  m/s)
2.341 cm

8.485 10  J

hc

E
λ

−

−

× ⋅ ×= = =
Δ ×

 

The differences in the wavelengths for the two isotopes are: 
2 1 transition: 1.171 cm 1.146 cm 0.025 cml l= → = − =  
1 0 transition: 2.341 cm 2.291 cm 0.050 cml l= → = − =  

EVALUATE: Replacing 35 Cl  by 37 Cl  increases I, decreases EΔ  and increases .λ  The effect on λ  is small but 

measurable. 

42.44. The vibration frequency is, from Eq.(42.8), 141.12 10
E

f
h

Δ= = × Hz.  The force constant is 

2
r(2 ) 777 N m.k πf m′ = =  

42.45. 0
r H

1 1 2

2 2n

k k
E n E

m m

′ ′⎛ ⎞= + ⇒ =⎜ ⎟
⎝ ⎠

 

34 20
0 27

1 2(576 N m)
(1.054 10 J s) 4.38 10 J 0.274 eV.

2 1.67 10 kg
E − −

−⇒ = × ⋅ = × =
×

 

This is much less than the 2H bond energy. 

42.46. (a) The frequency is proportional to the reciprocal of the square root of the reduced mass, and in terms of the 
atomic masses, the frequency of the isotope with the deuterium atom is 

1 2 1 2

F H H F F D
0 0

F D D F F H

( ) 1 ( )
.

( ) 1 ( )

m m m m m m
f f f

m m m m m m

⎛ ⎞ ⎛ ⎞+ += =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

Using 0f from Exercise 42.13 and the given masses, 138.99 10  Hz.f = ×  

42.47. IDENTIFY and SET UP: Use Eq.(42.6) to calculate I. The energy levels are given by Eq.(42.9). The transition 
energy EΔ  is related to the photon wavelength by / .E hc λΔ =  

EXECUTE: (a) 
27 25

27H I
r 27 25

H I

(1.67 10  kg)(2.11 10  kg)
1.657 10  kg

1.67 10  kg 2.11 10  kg

m m
m

m m

− −
−

− −

× ×= = = ×
+ × + ×

 

2 27 9 2 47 2
r (1.657 10  kg)(0.160 10  m) 4.24 10  kg mI m r − − −= = × × = × ⋅  

(b) The energy levels are 
2

1
2

r

( 1) ( )
2nl

k
E l l n

I m

′⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
 (Eq.(42.9)) 

2
k

f
m

ω π
′

= =  so 
2

1
2( 1) ( )

2nlE l l n hf
I

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
 

(i) transition 1 0,  1 0n n l l= → = = → =  
2 2

1 1
2 2(2 0) (1 )

2
E hf hf

I I

⎛ ⎞
Δ = − + + − = +⎜ ⎟

⎝ ⎠
 

hc
E

λ
Δ =  so 

2( / ) ( / 2 )

hc hc c

E I hf I f
λ

π
= = =

Δ + +
 

34
11

47 2

1.055 10  J s
3.960 10  Hz

2 2 (4.24 10  kg m )Iπ π

−

−

× ⋅= = ×
× ⋅

 

8

11 13

2.998 10  m/s
4.30 m

( / 2 ) 3.960 10  Hz 6.93 10  Hz

c

I f
λ μ

π
×= = =

+ × + ×
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(ii) transition 1 0,  2 1n n l l= → = = → =  
2 22

(6 2)
2

E hf hf
I I

⎛ ⎞
Δ = − + = +⎜ ⎟

⎝ ⎠
 

8

11 13

2.998 10  m/s
4.28 m

2( / 2 ) 2(3.960 10  Hz) 6.93 10  Hz

c

I f
λ μ

π
×= = =

+ × + ×
 

(iii) transition 2 1,  2 3n n l l= → = = → =  
2 23

(6 12)
2

E hf hf
I I

⎛ ⎞
Δ = − + = − +⎜ ⎟

⎝ ⎠
 

8

11 13

2.998 10  m/s
4.40 m

3( / 2 ) 3(3.960 10  Hz) 6.93 10  Hz

c

I f
λ μ

π
×= = =

− + − × + ×
 

EVALUATE: The vibrational energy change for the 1 0n n= → =  transition is the same as for the 2 1n n= → =  
transition. The rotational energies are much smaller than the vibrational energies, so the wavelengths for all three 
transitions don’t differ much. 

42.48. The sum of the probabilities is 
/

F F

1 1 1
( ) ( ) 1.

1 1 1 1

E kT

E kT E kT E kT E kT

e
f E E f E E

e e e e

−Δ

−Δ Δ −Δ −Δ+ Δ + − Δ = + = + =
+ + + +

 

42.49. Since potassium is a metal we approximate F F0.E E=  
2 3 4 3 2 2 3

F

3

2

π n
E

m
⇒ = . 

3
28 3

26

2 3 4 3 34 2 28 3 2 3
19

F 31

851 kg m
But the electron concentration 1.31 10 electron m

6.49 10 kg

3 (1.054 10 J s) (1.31 10 /m )
3.24 10  J 2.03 eV.

2(9.11 10 kg)

ρ
n n

m

π
E

−

−
−

−

= ⇒ = = ×
×

× ⋅ ×
⇒ = = × =

×

 

42.50. IDENTIFY: The only difference between the two isotopes is their mass, which will affect their reduced mass and 
hence their moment of inertia. 

SET UP: The rotational energy states are given by 
2

( 1)
2

E l l
I

= +  and the reduced mass is given by mr = 

m1m2/(m1 + m2). 
EXECUTE: (a) If we call m the mass of the H-atom, the mass of the deuterium atom is 2m and the reduced masses 
of the molecules are 

H2 (hydrogen): mr(H) = mm/(m + m) = m/2 
D2 (deuterium): mr(D) = (2m)(2m)/(2m + 2m) = m 

Using I = mr r0
2, the moments of inertia are IH = mr0

2/2 and ID = mr0
2. The ratio of the rotational energies is then 

( )
( )

2 2
HH D 0

2
2D HD

0

( 1) / 2
2

( 1) / 2
2

l l IE I mr
mE Il l I r

+
= = = =

+
. 

(b) The ratio of the vibrational energies is rH r

D r

r

1
2 (H) (D)

2
(H) / 21

2 (D)

k
n

mE m m

E m mk
n

m

′⎛ ⎞+⎜ ⎟
⎝ ⎠= = = =

′⎛ ⎞+⎜ ⎟
⎝ ⎠

. 

EVALUATE: The electrical force is the same for both molecules since both H and D have the same charge, so it is 
reasonable that the force constant would be the same for both of them. 

41.51. IDENTIFY and SET UP: Use the description of the bcc lattice in Fig.42.12c in the textbook to calculate the 
number of atoms per unit cell and then the number of atoms per unit volume. 
EXECUTE: (a) Each unit cell has one atom at its center and 8 atoms at its corners that are each shared by 8 other 
unit cells. So there are 1 8/8 2+ =  atoms per unit cell. 

28 3
9 3

2
4.66 10  atoms/m

(0.35 10  m)

n

V −= = ×
×

 

(b) 
2 / 32 / 3 4 / 3 2

F0

3

2

N
E

m V

π ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

In this equation N/V is the number of free electrons per 3m .  But the problem says to assume one free electron per 
atom, so this is the same as n/V calculated in part (a). 

319.109 10  kgm −= ×  (the electron mass), so 19
F0 7.563 10  J 4.7 eVE −= × =  

EVALUATE: Our result for metallic lithium is similar to that calculated for copper in Example 42.8. 
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42.52. (a) 
2

tot 2 9
0

1 1
8 .

4

d αe
U A

dr π r r
= −

P
  Setting this equal to zero when 0r r= gives 7 0

0 2

8 4A
r

αe

π= P
 

and so 
2 7

0
tot 8

0

1
.

4 8

αe r
U

π r r

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠P
 At 0,r r=  

2
18

tot
0 0

7
1.26 10 J 7.85 eV.

32

αe
U

π r
−= − = − × = −

P
 

(b) To remove a Na Cl+ − ion pair from the crystal requires 7.85 eV. When neutral Na and Cl atoms are formed 

from the Na+ and Cl− atoms there is a net release of energy 5.14 eV 3.61 eV 1.53 eV,− + = − so the net energy 

required to remove a neutral Na, Cl pair from the crystal is 7.85 eV 1.53 eV 6.32 eV.− =  

42.53. (a) IDENTIFY and SET UP: tot .
dE

p
dV

= −  Relate totE  to F0E  and evaluate the derivative. 

EXECUTE: 
2 / 3 4 / 3 2

5 / 3 2 / 3
tot av F0

3 3 3

5 5 2

N
E NE E N V

m

π −⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠
 

2 / 3 4 / 3 2
5 / 3 5 / 3tot 3 3 2

5 2 3

dE
N V

dV m

π −⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 so 
5 / 32 / 3 4 / 3 23

,
5

N
p

m V

π⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 as was to be shown. 

(b) 28 3/ 8.45 10  mN V −= ×  
2 / 3 4 / 3 34 2

28 3 5 / 3 10 5
31

3 (1.055 10  J s)
(8.45 10  m ) 3.81 10  Pa 3.76 10  atm.

5(9.109 10  kg)
p

π −
−

−

⎛ ⎞× ⋅= × = × = ×⎜ ⎟×⎝ ⎠
 

(c) EVALUATE: Normal atmospheric pressure is about 510  Pa,  so these pressures are extremely large. The 
electrons are held in the metal by the attractive force exerted on them by the copper ions. 

42.54. (a) From Problem 42.53, 
5 32 3 4 3 23

5

π N
p

m V
⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 
2 32 3 4 3 2

2

5 3 5
.

3 5 3

dp π N N
B V V p

dV m V V

⎡ ⎤−⎛ ⎞ ⎛ ⎞= − = − ⋅ ⋅ =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

(b) 28 38.45 10 m .
N

V
−= ×  

2 3 4 3 2
28 3 5 3 105 3

(8.45 10 m ) 6.33 10 Pa.
3 5

B
m

π −= ⋅ × = ×  

(c) 
10

11

6.33 10 Pa
0.45.

1.4 10 Pa

× =
×

The copper ions themselves make up the remaining fraction. 

42.55. (a) 
2 32 3 4 3 2

F0

3
.

2

π N
E

m V
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Let 2
F0

1

100
E mc= . 

3 22 2 3 2 3 3 3 2 3 3
33 3

2 3 4 3 2 3 2 2 3 2 3

2 2 2
1.67 10 m

(100)3 100 3 3000

N m c m c m c

V π π π
−⎡ ⎤⎛ ⎞ = = = = ×⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦
. 

(b) 
28 3

5
33 3

8.45 10 m
5.06 10 .

1.67 10 m

−
−

−

× = ×
×

 Since the real concentration of electrons in copper is less than one part in 410− of the 

concentration where relativistic effects are important, it is safe to ignore relativistic effects for most applications. 

(c) The number of electrons is 
30

56
26

6(2 10 kg)
6.03 10 .

1.99 10 kgeN −

×= = ×
×

 The concentration is 

56
35 3

6 34
3

6.03 10
6.66 10  m .

(6.00 10 m)
eN

V π
−×= = ×

×
 

(d) Comparing this to the result from part (a) 
35 3

33 3

6.66 10 m
400

1.67 10 m

−

−

× ≅
×

 so relativistic effects will be very important. 

42.56. IDENTIFY: The current through the diode is related to the voltage across it. 
SET UP: The current through the diode is given by I = IS (e

eV/kT – 1). 
EXECUTE: (a) The current through the resistor is (35.0 V)/(125 Ω) = 0.280 A = 280 mA, which is also the 
current through the diode. This current is given by I = IS (e

eV/kT – 1), giving 280 mA = 0.625 mA(eeV/kT – 1) and 1 + 

(280/0.625) = 449 = eeV/kT.  Solving for V at T = 293 K gives 
( )23

19

1.38 10  J/K (293  K)ln 449ln 449

1.60 10  C

kT
V

e

−

−

×
= =

×
 = 

0.154 V 
(b) R = V/I = (0.154 V)/(0.280 A) = 0.551 Ω 
EVALUATE: At a different voltage, the diode would have different resistance. 
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42.57. (a) 
2 2

0 0 0

1 1 1 1 1 1 1 2 2 1 1

4 4 4
i j

i j ij

q q q q
U

π r π d r r d r d r d π r d r d r d<

−⎛ ⎞ ⎛ ⎞= = + − − + − = − − −⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠
∑P P P

. 

But 
2 2 2

2 2 3

1 1 1 1 1 1 2 2
1 1

1 1

d d d d d
d dr d r d r r r r r r r r
r r

⎛ ⎞
⎜ ⎟ ⎛ ⎞

+ = + ≈ − + + ⋅ ⋅ ⋅ + + + ≈ +⎜ ⎟ ⎜ ⎟+ − ⎝ ⎠⎜ ⎟+ −
⎝ ⎠

 

2 2 2 2

3 3 3
0 0 0

2 1 2 2

4 4 4

q d p p
U

π d r π r π d

⎛ ⎞− −
⇒ = + = −⎜ ⎟

⎝ ⎠P P P
. 

(b) 
2 2 2

3
0 0 0

1 1 1 1 1 1 1 2 2 2 2

4 4 4
i j

i j ij

q q q q d
U

π r π d r r d r d r d π d r r r<

⎛ ⎞− −⎛ ⎞= = − + + − − = − + + =⎜ ⎟⎜ ⎟+ −⎝ ⎠ ⎝ ⎠
∑P P P

 

2 2

3
0

2 1

4

q d

π d r

⎛ ⎞− −⎜ ⎟
⎝ ⎠P

2 2

3 3
0 0

2 2
.

4 4

p p
U

π d π r

−
⇒ = +

P P
 

If we ignore the potential energy involved in forming each individual molecule, which just involves a different 
choice for the zero of potential energy, then the answers are: 

(a) 
2

3
0

2
.

4

p
U

π r

−=
P

 The interaction is attractive. 

(b) 
2

3
0

2
.

4

p
U

π r

+=
P

  The interaction is repulsive. 

42.58. (a) Following the hint, 
0

2 2

2 3
0 0 0

1 1

4 2
r r

e e
k dr d dr

π r π r
=

⎛ ⎞′ = − =⎜ ⎟
⎝ ⎠P P

 and 
2

3
0 0

1
2

eω k m
π mr

′= = =
P

 

191.23 10 J 0.77 eV,−× =  where ( 2)m has been used for the reduced mass. 

(b) The reduced mass is doubled, and the energy is reduced by a factor of 2  to 0.54 eV.  
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NUCLEAR PHYSICS 

 43.1. (a) 28
14 Si has 14 protons and 14 neutrons. 

(b) 85
37 Rb has 37 protons and 48 neutrons. 

(c) 205
81 Tl has 81 protons and 124 neutrons. 

 43.2. (a) Using 1 3(1.2 fm) ,R A=  the radii are roughly 3.6 fm, 5.3 fm, and 7.1 fm. 

(b) Using 24 Rπ for each of the radii in part (a), the areas are 163 2 2fm , 353 fm and 2633 fm .  

(c) 34

3
Rπ gives 195 3fm ,  624 3fm  and 1499 3fm .  

(d) The density is the same, since the volume and the mass are both proportional to A: 17 32.3 10 kg m×  (see 

Example 43.1). 

(e) Dividing the result of part (d) by the mass of a nucleon, the number density is 
33 440.14 fm 1.40 10 m .= ×  

 43.3. IDENTIFY: Calculate the spin magnetic energy shift for each spin state of the 1s level. Calculate the energy 
splitting between these states and relate this to the frequency of the photons. 
SET UP: When the spin component is parallel to the field the interaction energy is .zU Bμ= −  When the spin 

component is antiparallel to the field the interaction energy is .zU Bμ= + The transition energy for a transition 

between these two states is 2 ,zE BμΔ =  where n2.7928 .zμ μ= The transition energy is related to the photon 

frequency by ,E hfΔ = so 2 .zB hfμ =  

EXECUTE: 
34 6

27

(6.626 10 J s)(22.7 10  Hz)
0.533 T

2 2(2.7928)(5.051 10  J/T)z

hf
B

μ

−

−

× ⋅ ×= = =
×

 

EVALUATE: This magnetic field is easily achievable. Photons of this frequency have wavelength 
/ 13.2 m.c fλ = =  These are radio waves. 

 43.4. (a) As in Example 43.2, 8 72(1.9130)(3.15245 10 eV T)(2.30 T) 2.77 10 eV.E − −Δ = × = ×  Since and Sμ are in 

opposite directions for a neutron, the antiparallel configuration is lower energy. This result is smaller than but 
comparable to that found in the example for protons. 

(b) 66.9 MHz, λ 4.48 m.
E c

f
h f

Δ= = = =  

 43.5. IDENTIFY: Calculate the spin magnetic energy shift for each spin component. Calculate the energy splitting 
between these states and relate this to the frequency of the photons. 
(a) SET UP: From Example 43.2, when the z-component of (and )S μ  is parallel to ,  | |zB U Bμ= − =  

n2.7928 .Bμ−  When the z-component of (and )S μ  is antiparallel to B , n| 2.7928 .zU B Bμ μ= − = +  The state 

with the proton spin component parallel to the field lies lower in energy. The energy difference between these two 
states is n2(2.7928 ).E BμΔ =  

EXECUTE: 
27

n
34

2(2.7928 ) 2(2.7928)(5.051 10  J/T)(1.65 T)
 so 

6.626 10  J s

E B
E hf f

h h

μ −

−

Δ ×Δ = = = =
× ⋅

 

77.03 10  Hz 7.03 MHzf = × =  

And then 
8

7

2.998 10  m/s
4.26 m

7.03 10  Hz

c

f
λ ×= = =

×
 

EVALUATE: From Figure 32.4 in the textbook, these are radio waves. 

43
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(b) SET UP: From Eqs. (27.27) and (41.22) and Fig.41.14 in the textbook, the state with the z-component of 

μ parallel to B  has lower energy. But, since the charge of the electron is negative, this is the state with the 

electron spin component antiparallel to .B That is, for the 1
2 statesm = − lies lower in energy. 

EXECUTE: For the 1
2  state,sm = + 1 1

B2 2(2.00232)  (2.00232) (2.00232) .
2 2 2

e e
U B B B

m m
μ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + = + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

For the 1 1
B2 2 state, (2.00232) .sm U Bμ= − = −  The energy difference between these two states is 

B(2.00232) .E BμΔ =  
24

10B
34

2.00232 (2.00232)(9.274 10  J/T)(1.65 T)
 so 4.62 10  Hz 46.2 GHz.

6.626 10  J s

E B
E hf f

h h

μ −

−

Δ ×Δ = = = = = × =
× ⋅

 And 

8
3

10

2.998 10  m/s
6.49 10  m 6.49 mm.

4.62 10  Hz

c

f
λ −×= = = × =

×
 

EVALUATE: From Figure 32.4 in the textbook, these are microwaves. The interaction energy with the magnetic 
field is inversely proportional to the mass of the particle, so it is less for the proton than for the electron. The 
smaller transition energy for the proton produces a larger wavelength. 

 43.6. (a) n H U146 92 1.93 um m m+ − =  

(b) 31.80 10 MeV×  

(c) 7.56 MeVper nucleon (using 931.5 MeV/u and 238 nucleons). 

 43.7. IDENTIFY and SET UP: The text calculates that the binding energy of the deuteron is 2.224 MeV. A photon that 
breaks the deuteron up into a proton and a neutron must have at least this much energy. 

 so 
hc hc

E
E

λ
λ

= =  

EXECUTE: 
15 8

13
6

(4.136 10  eV s)(2.998 10  m/s)
5.575 10  m 0.5575 pm.

2.224 10  eV
λ

−
−× ⋅ ×= = × =

×
 

EVALUATE: This photon has gamma-ray wavelength. 
 43.8. IDENTIFY: The binding energy of the nucleus is the energy of its constituent particles minus the energy of the 

carbon-12 nucleus. 
SET UP: In terms of the masses of the particles involved, the binding energy is 

EB = (6mH + 6mn – mC-12)c
2. 

EXECUTE: (a) Using the values from Table 43.2, we get 

EB = [6(1.007825 u) + 6(1.008665 u) – 12.000000 u)](931.5 MeV/u) = 92.16 MeV 

(b) The binding energy per nucleon is (92.16 MeV)/(12 nucleons) = 7.680 MeV/nucleon 
(c) The energy of the C-12 nucleus is (12.0000 u)(931.5 MeV/u) = 11178 MeV. Therefore the percent of the mass 

that is binding energy is 
92.16 MeV

 0.8245%
11178 MeV

= . 

EVALUATE: The binding energy of 92.16 MeV binds 12 nucleons. The binding energy per nucleon, rather than 
just the total binding energy, is a better indicator of the strength with which a nucleus is bound. 

 43.9. IDENTIFY: Conservation of energy tells us that the initial energy (photon plus deuteron) is equal to the energy 
after the split (kinetic energy plus energy of the proton and neutron). Therefore the kinetic energy released is equal 
to the energy of the photon minus the binding energy of the deuteron. 
SET UP: The binding energy of a deuteron is 2.224 MeV and the energy of the photon is E = hc/λ. Kinetic 
energy is K = ½mv2. 
EXECUTE: (a) The energy of the photon is 

( )( )34 8

13
ph 13

6.626 10  J s 3.00 10  m/s
5.68 10  J

3.50 10  m

hc
E

λ

−
−

−

× ⋅ ×
= = = ×

×
. 

The binding of the deuteron is EB = 2.224 MeV = 133.56 10  J−× . Therefore the kinetic energy 
is 13 13  (5.68 3.56) 10  J = 2.12  10  J = 1.32 MeVK − −= − × × . 

(b) The particles share the energy equally, so each gets half. Solving the kinetic energy for v gives 

13
7

27

2 2(1.06 10  J)
1.13 10  m/s

1.6605 10  kg

K
v

m

−

−

×= = = ×
×

 

EVALUATE: Considerable energy has been released, because the particle speeds are in the vicinity of the speed of light. 
43.10. (a) n H N7( ) 0.112 u,m m m+ − =  which is 105 MeV, or 7.48 MeV per nucleon. 

(b) Similarly, H n He2( ) 0.03038 u 28.3 MeV, or 7.07 MeV perm m m+ − = =  nucleon, slightly lower (compare to 

Figure 43.2 in the textbook). 
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43.11. (a) IDENTIFY: Find the energy equivalent of the mass defect. 
SET UP: A 11

5 B  atom has 5 protons, 11 5 6− =  neutrons, and 5 electrons. The mass defect therefore is 
11

p n e 55 6 5 ( B).M m m m MΔ = + + −  

EXECUTE: 5(1.0072765 u) 6(1.0086649 u) 5(0.0005485799 u) 11.009305 u 0.08181 u.MΔ = + + − =  The energy 

equivalent is B (0.08181 u)(931.5 MeV/u) 76.21 MeV.E = =  

(b) IDENTIFY and SET UP: Eq.(43.11):  2/3 1/3 2
B 1 2 3 4( 1) / ( 2 ) /E C A C A C Z Z A C A Z A= − − − − −  

The fifth term is zero since Z is odd but N is even. 11 and 5.A Z= =  

EXECUTE: 2/3 1/3 2
B (15.75 MeV)(11) (17.80 MeV)(11) (0.7100 MeV)5(4)/11 (23.69 MeV)(11 10) /11.E = − − − −  

B 173.25 MeV 88.04 MeV 6.38 MeV 2.15 MeV 76.68 MeVE = + − − − =  

The percentage difference between the calculated and measured BE  is 
76.68 MeV 76.21 MeV

0.6%
76.21 MeV

− =  

EVALUATE: Eq.(43.11) has a greater percentage accuracy for 62 Ni.  The semi-empirical mass formula is more 
accurate for heavier nuclei. 

43.12. (a) n H Cu34 29 34(1.008665) u 29(1.007825) u 62.929601 u 0.592 u,m m m+ − = + − = which is 551 MeV,  

or 8.75 MeV per nucleon (using 931.5 MeV/u and 63 nucleons).  

(b) In Eq.(43.11), Z = 29 and N = 34, so the fifth term is zero. The predicted binding energy is 

2
3

1
3

2

B

(29)(28) (5)
(15.75 MeV)(63) (17.80 MeV)(63) (0.7100 MeV) (23.69 MeV)

(63)(63)
E = − − − . 

B 556 MeVE = . The fifth term is zero since the number of neutrons is even while the number of protons is odd, 

making the pairing term zero. This result differs from the binding energy found from the mass deficit by 0.86%, a 
very good agreement comparable to that found in Example 43.4. 

43.13. IDENTIFY  In each case determine how the decay changes A and Z of the nucleus. The  and β β+ −  particles have 
charge but their nucleon number is 0.A =  

(a) SET UP: -decay:α Z increases by 2,  A N Z= + decreases by 4 (an α particle is a 4
2 He nucleus) 

EXECUTE: 239 4 235
94 2 92Pu He U→ +  

(b) SET UP: β − decay: Z increases by 1,  A N Z= + remains the same (a β − particle is an electron, 0
1e− ) 

EXECUTE: 24 0 24
11 1 12Na e Mg−→ +  

(c) SET UP  β + decay: Z decreases by 1,  A N Z= + remains the same (a β + particle is a positron, 0
+1e)  

EXECUTE: 15 0 15
8 1 7O e N+→ +  

EVALUATE: In each case the total charge and total number of nucleons for the decay products equals the charge 
and number of nucleons for the parent nucleus; these two quantities are conserved in the decay. 

43.14. (a) The energy released is the energy equivalent of 4
n p e 8.40 10 u,m m m −− − = ×  or 783 keV.  

(b) n p ,m m>  and the decay is not possible. 

43.15. IDENTIFY: The energy of the photon must be equal to the difference in energy of the two nuclear energy levels. 
SET UP: The energy difference is ΔE = hc/λ. 

EXECUTE: 
( )( )34 8

15
9

6.626 10  J s 3.00 10  m/s
8.015 10  J = 0.0501 MeV

0.0248 10  J

hc
E

λ

−
−

−

× ⋅ ×
Δ = = = ×

×
 

EVALUATE: Since the wavelength of this photon is much shorter than the wavelengths of visible light, its energy 
is much greater than visible-light photons which are frequently emitted during electron transitions in atoms. This 
tells us that the energy difference between the nuclear shells is much greater than the energy difference between 
electron shells in atoms, meaning that nuclear energies are much greater than the energies of orbiting electrons. 

43.16. IDENTIFY: The energy released is equal to the mass defect of the initial and final nuclei. 
SET UP: The mass defect is equal to the difference between the initial and final masses of the constituent particles. 
EXECUTE: (a) The mass defect is 238.050788 u – 234.043601 u – 4.002603 u = 0.004584 u. The energy released 
is (0.004584 u)(931.5 MeV/u) = 4.270 MeV. 
(b) Take the ratio of the two kinetic energies, using the fact that K = p2/2m: 

2
Th

Th Th
2

Th

42

234
2

p
K mm

pK m
m

α

αα

α

= = = . 
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The kinetic energy of the Th is 

14
Th Total

4 4
(4.270 MeV) = 0.07176 MeV = 1.148 10  J

234 4 238
K K −= = ×

+
 

Solving for v in the kinetic energy gives 

( )
14

5

27

2 2(1.148 10  J)
2.431 10  m/s

(234.043601) 1.6605 10  kg

K
v

m

−

−

×= = = ×
×

 

EVALUATE: As we can see by the ratio of kinetic energies in part (b) , the alpha particle will have a much higher 
kinetic energy than the thorium. 

43.17. If 14decay of Cβ − is possible, then we are considering the decay 14 14
6 7C N .β −→ +  

14 14
6 7 e

4 4

( C) ( N)

(14.003242 u 6(0.000549 u)) (14.003074 u 7(0.000549 u)) 0.0005491 u

1.68 10 u. So (1.68 10 u)(931.5 MeV u ) 0.156 MeV 156 keV

m M M m

m

m E− −

Δ = − −
Δ = − − − −
Δ = + × = × = =

 

43.18. (a) A proton changes to a neutron, so the emitted particle is a positron ( ).β +  

(b) The number of nucleons in the nucleus decreases by 4 and the number of protons by 2, so the emitted particle is 
an alpha-particle. 
(c) A neutron changes to a proton, so the emitted particle is an electron ( ).β −  

43.19. (a) As in the example, (0.000898 u)(931.5 MeV u) 0.836 MeV.=  

(b) 0.836 MeV 0.122 MeV 0.014 MeV 0.700 MeV.− − =  

43.20. (a) 90 90
39 39Sr Xβ −→ + . X has 39 protons and 90 protons plus neutrons, so it must be 90 Y.  

(b) Use base 2 because we know the half life.  1 2

0 2 t TA A −= and 1 2

0 00.01 2 t TA A −= . 

1 2 log0.01 (28 yr)log0.01
190yr

log 2 log2

T
t = − = − = . 

43.21. IDENTIFY and SET UP: 1/ 2

ln 2
T

λ
=  The mass of a single nucleus is 25

p124 2.07 10  kgm −= × . 

10/ 0.350 Ci 1.30 10  BqN tΔ Δ = = × ; /N t NλΔ Δ =  

EXECUTE: 
3

22
25

6.13 10  kg
2.96 10

2.07 10  kg
N

−

−

×= = ×
×

; 
10

13 1
22

/ 1.30 10  Bq
4.39 10  s

2.96 10

N t

N
λ − −Δ Δ ×= = = ×

×
 

12 4
1/ 2

ln 2
1.58 10  s 5.01 10  yrT

λ
= = × = ×  

43.22. Note that Eq.(43.17) can be written as follows: 1 2/
0 2 .t TN N −=  The amount of elapsed time since the source was 

created is roughly 2.5 years. Thus, we expect the current activity to be (2.5 yr)/(5.271 yr)(5000 Ci)2 3600 Ci.N −= =  The 

source is barely usable. Alternatively, we could calculate 1

1 2

ln(2)
0.132(years)

T
λ −= = and use the Eq. 43.17 directly 

to obtain the same answer. 
43.23. IDENTIFY and SET UP: As discussed in Section 43.4, the activity /A dN dt= obeys the same decay equation as 

Eq. (43.17): 1/ 2(ln 2) /14
0 1/2 1/ 2 0. For C, 5730 y and ln2/  so ;t TtA A e T T A A eλ λ −−= = = = Calculate A at each t; 

0 180.0A = decays/min. 

EXECUTE: (a) 1000 y,  159 decays/mint A= =  

(b) 50,000 y,  0.43 decays/mint A= =  

EVALUATE: The time in part (b) is 8.73 half-lives, so the decay rate has decreased by a factor or 8.731
2( ) .  

43.24. IDENTIFY and SET UP: The decay rate decreases by a factor of 2 in a time of one half-life. 
EXECUTE: (a) 24 d is 3T1/2 so the activity is 3(375 Bq) /(2 ) 46.9 Bq=  

(b) The activity is proportional to the number of radioactive nuclei, so the percent is 
17.0 Bq

36.2%
46.9 Bq

=  

(c) 131 0 131
53 1 54I e Xe−→ +  The nucleus 131

54 Xe  is produced. 

EVALUATE: Both the activity and the number of radioactive nuclei present decrease by a factor of 2 in one half-
life. 
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43.25. (a) 3 0 3
1 1 2H e He−→ +  

(b) λ

0 0 1 2, 0.100 and λ (ln 2)tN N e N N T−= = =  

1 2(ln 2)0.100 ;t Te−=  1 2(ln 2) ln(0.100);t T− =   1 2ln(0.100)
40.9 y

ln 2

T
t

−
= =  

43.26. (a) 6 10 1 7500 Ci (500 10 )(3.70 10  s ) 1.85 10 decays s
dN

dt
μ − −= = × × = ×  

7
1 2

1 2

ln 2 ln 2 ln 2
λ 6.69 10 s

λ 12 d(86,400s d)
T

T
−= → = = = × .

7
13

7 1

1.85 10 decays / s
λ 2.77 10 nuclei

λ 6.69 10 s

dN dN dt
N N

dt − −

×= ⇒ = = = ×
×

.  The mass of this 131many Ba nuclei is 

13 27 12 92.77 10 nuclei (131 1.66 10 kg nucleus ) 6.0 10 kg 6.0 10 g 6.0 ngm − − −= × × × × = × = × =  

(b) 0 .tA A e λ−=  1 Ci (500 Ci) .tμ μ e λ−=  ln(1/500) .tλ= −  

6
7 1

ln(1 500) ln(1 500) 1 d
9.29 10  s 108 days

6.69 10 s 86,400 s
t

λ − −

⎛ ⎞
= − = − = × =⎜ ⎟× ⎝ ⎠

 

43.27. 1/ 2(ln 2) /
0 0

t TtA A e A eλ −−= = .   
1

2

0

(ln 2)
ln( )

t
A A

T
− = . 

1
2

0

(ln 2) (ln 2)(4.00 days)
2.80 days

ln( ) ln(3091 8318)

t
T

A A
= − = − =  

43.28.  
dN

N
dt

λ= .  ( )1
2

11 1

7

ln 2 ln 2
1.36 10 s

1620 yr 3.15 10 s/yrT
λ − −= = = ×

×
. 

23
256.022 10 atoms

1g 2.665 10 atoms
226 g

N
⎛ ⎞×= = ×⎜ ⎟
⎝ ⎠

. 

25 11 1 10 10(2.665 10 )(1.36 10 s ) 3.62 10  decays/s 3.62 10 Bq
dN

N
dt

λ − −= = × × = × = ×  

Convert to Ci: 10
10

1 Ci
3.62 10  Bq 0.98 Ci

3.70 10 Bq

⎛ ⎞
× =⎜ ⎟×⎝ ⎠

 

43.29. IDENTIFY and SET UP: Calculate the number N of 14C atoms in the sample and then use Eq. (43.17) to find the 
decay constant .λ  Eq. (43.18) then gives 1/ 2.T  

EXECUTE: Find the total number of carbon atoms in the sample. 
/ ;n m M=  

3 23 3
tot A A / (12.0 10  kg)(6.022 10  atoms/mol)/(12.011 10  kg/mol)N nN mN M − −= = = × × ×  

23 12 23 11
totN 6.016 10  atoms, so (1.3 10 )(6.016 10 ) 7.82 10  −= × × × = × carbon-14 atoms 

/ 180 decays/min 3.00 decays/sN tΔ Δ = − = −  

/ ;N t NλΔ Δ = −  12 1/
3.836 10  s

N t

N
λ − −−Δ Δ= = ×  

11
1/ 2 (ln 2) / 1.807 10  s 5730 yT λ= = × =  

EVALUATE: The value we calculated agrees with the value given in Section 43.4. 

43.30. 
6

3 7360 10 decays
4.17 10  Bq 1.13 10  Ci 0.113 Ci.

86,400 s
μ−× = × = × =  

43.31. (a) 11 117.56 10 Bq 7.56 10 decays s
dN

dt
= × = × . 4 1

1 2

0.693 0.693
3.75 10  s .

(30.8 min)(60 s min)T
λ − −= = = ×  

11
15

0 4 1

1 7.56 10 decays s
2.02 10  nuclei.

3.75 10  s

dN
N

dtλ − −

×= = = ×
×
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(b) The number of nuclei left after one half-life is 150 1.01 10
2

N = ×  nuclei, and the activity is half: 

113.78 10 decays s.
dN

dt
= ×  

(c) After three half lives (92.4 minutes) there is an eighth of the original amount, so 142.53 10N = ×  nuclei, and an 

eighth of the activity: 109.45 10 decays s.
dN

dt
⎛ ⎞ = ×⎜ ⎟
⎝ ⎠

 

43.32. The activity of the sample is 
3070 decays min

102 Bq kg,
(60 sec min) (0.500 kg)

=  while the activity of atmospheric carbon is 

255 Bq kg  (see Example 43.9). The age of the sample is then 
4

ln (102 255) ln (102 255)
7573 y.

1.21 10 y
t

λ −= − = − =
×

 

43.33. IDENTIFY and SET UP: Find λ from the half-life and the number N of nuclei from the mass of one nucleus and 
the mass of the sample. Then use Eq.(43.16) to calculate | / |,dN dt the number of decays per second. 
EXECUTE: (a) | / |dN dt Nλ=  

17 1
9 7

1/ 2

0.693 0.693
1.715 10  s

(1.28 10  y)(3.156 10  s/1 y)T
λ − −= = = ×

× ×
 

The mass of 40 K atom is approximately 40 u, so the number of 40 K nuclei in the sample is 
9 9

16
27

1.63 10  kg 1.63 10  kg
2.454 10 .

40 u 40(1.66054 10  kg)
N

− −

−

× ×= = = ×
× 

 

Then 17 1 16| / | (1.715 10  s )(2.454 10 ) 0.421 decays/sdN dt Nλ − −= = × × =  

(b) 10 11| / | (0.421 decays/s)(1 Ci/(3.70 10  decays/s)) 1.14 10  CidN dt −= × = ×  

EVALUATE: The very small sample still contains a very large number of nuclei. But the half life is very large, so 
the decay rate is small. 

43.34. (a) rem = rad × RBE. 200 = x(10) and x = 20 rad. 
(b) 1 rad deposits 0.010 J kg , so 20 rad deposit 0.20 J kg . This radiation affects 25 g (0.025 kg) of tissue, so the 

total energy is 3(0.025 kg)(0.20 J kg) 5.0 10  J 5.0 mJ−= × =  

(c) Since RBE = 1 for -rays,β  so rem = rad. Therefore 20 rad = 20 rem. 

43.35. 1 rad = 210−  Gy, so 1 Gy = 100 rad and the dose was 500 rad. 
rem = (rad)(RBE) = (500 rad)(4.0) = 2000 rem.  1Gy 1 J kg, so 5.0 J kg= . 

43.36. IDENTIFY and SET UP: For x rays RBE 1= so the equivalent dose in Sv is the same as the absorbed dose in J/kg. 
EXECUTE: One whole-body scan delivers 3(75 kg)(12 10  J/kg) 0.90 J−× = .  One chest x ray delivers 

3 3(5.0 kg)(0.20 10  J/kg) 1.0 10  J− −× = × .  It takes 
3

0.90 J
900

1.0 10  J− =
×

 chest x rays to deliver the same total energy. 

43.37. IDENTIFY and SET UP: For x rays RBE 1=  and the equivalent dose equals the absorbed dose. 
EXECUTE: (a) 175 krad 175 krem 1.75 kGy 1.75 kSv= = =  

3 2(1.75 10  J/kg)(0.150 kg) 2.62 10  J× = ×  

(b) 175 krad 1.75 kGy= ; (1.50)(175 krad) 262 krem 2.62 kSv= =  

The energy deposited would be 22.62 10  J× , the same as in (a). 

EVALUATE: The energy required to raise the temperature of 0.150 kg of water 1 C°  is 628 J, and 22.62 10  J×  is 
less than this.  The energy deposited corresponds to a very small amount of heating. 

43.38. (a) 5.4 Sv (100 rem Sv) 540 rem.=  

(b) The RBE of 1 gives an absorbed dose of 540 rad. 
(c) The absorbed dose is 5.4 Gy, so the total energy absorbed is (5.4 Gy) (65 kg) = 351 J.  The energy required to 

raise the temperature of 65 kg by 0.010 C°  is (65 kg) (4190 J kg K) (0.01C ) 3 kJ.⋅ ° =  

43.39. (a) We need to know how many decays per second occur. 

9 1
7

1 2

0.693 0.693
1.79 10 s .

(12.3 y) (3.156 10 s y)T
λ − −= = = ×

×
 

The number of tritium atoms is 
10

18
0 9 1

1 (0.35 Ci) (3.70 10 Bq Ci)
7.2540 10  nuclei

1.79 10  s

dN
N

dtλ − −

×= = = ×
×

. 
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The number of remaining nuclei after one week is 
9 118 (1.79 10 s ) (7) (24) (3600s) 18

0 (7.25 10 ) 7.2462 10  nuclei.tN N e eλ − −− − ×= = × = × 15
0 7.8 10 decays.N N NΔ = − = ×  So the 

energy absorbed is 15 19
total  (7.8 10 ) (5000 eV) (1.60 10 J eV) 6.24 J.E N Eγ

−= Δ = × × = The absorbed dose is 

(6.24 J)
0.125 J kg 12.5 rad.

(50 kg)
= =  Since RBE = 1, then the equivalent dose is 12.5 rem. 

(b) In the decay, antinetrinos are also emitted. These are not absorbed by the body, and so some of the energy of 
the decay is lost (about 12 keV ). 

43.40. 6 10 7 11(0.72 10  Ci) (3.7 10 Bq Ci) (3.156 10  s) 8.41 10 α−× × × = ×  particles. The absorbed dose is 
11 6 19(8.41 10 ) (4.0 10  eV) (1.602 10 J eV)

1.08 Gy 108 rad.
(0.50 kg)

−× × × = =  The equivalent dose is (20) (108 rad) = 2160 rem. 

43.41. (a) IDENTIFY and SET UP: Determine X by balancing the charge and nucleon number on the two sides of the 
reaction equation. 
EXECUTE: X must have 2 14 10 6 and 1 7 5 3.A Z= + − = = + − =  Thus X is 6

3Li and the reaction is 
2 14 6 10
1 7 3 5H N Li B+ → +  

(b) IDENTIFY and SET UP: Calculate the mass decrease and find its energy equivalent. 
EXECUTE: The neutral atoms on each side of the reaction equation have a total of 8 electrons, so the electron 
masses cancel when neutral atom masses are used. The neutral atom masses are found in Table 43.2. 

2 14
1 7mass of H N is 2.014102 u 14.003074 u 16.017176 u+ + =  

mass of 6 10
3 5Li B is 6.015121 u 10.012937 u 16.028058 u+ + =  

The mass increases, so energy is absorbed by the reaction. The Q value is 
(16.017176 u 16.028058 u)(931.5 MeV/u) 10.14 MeV− = −  

(c) IDENTIFY and SET UP: The available energy in the collision, the kinetic energy cmK in the center of mass 

reference frame, is related to the kinetic energy K of the bombarding particle by Eq. (43.24). 
EXECUTE: The kinetic energy that must be available to cause the reaction is 10.14 MeV. Thus 

cm 10.14 MeV.K =  The mass M of the stationary target 14
7( N)  is 14 u.M =  The mass m of the colliding particle 

2
1( H) is 2 u. Then by Eq. (43.24) the minimum kinetic energy K that the 2

1H must have is 

cm

14 u 2 u
  (10.14 MeV) 11.59 MeV

14 u

M m
K K

M

+ +⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE: The projectile ( )2
1H is much lighter than the target ( )14

7 N  so K is not much larger than cm.K  The K 

we have calculated is what is required to allow the mass increase. We would also need to check to see if at this 
energy the projectile can overcome the Coulomb repulsion to get sufficiently close to the target nucleus for the 
reaction to occur. 

43.42. 3 2 4 1
2 1 2 1

2

He H He H
1.97 10 u,m m m m −+ − − = ×  so the energy released is 18.4 MeV. 

43.43. IDENTIFY and SET UP: Determine X by balancing the charge and the nucleon number on the two sides of the 
reaction equation. 
EXECUTE: X must have 2 9 4 7 and Z 1 4 2 3.A = + + − = = + + − =  Thus X is 7

3 Li  and the reaction is 
2 9 7 4
1 4 3 2H Be Li He+ = +  

(b) IDENTIFY and SET UP: Calculate the mass decrease and find its energy equivalent. 
EXECUTE: If we use the neutral atom masses then there are the same number of electrons (five) in the reactants 
as in the products. Their masses cancel, so we get the same mass defect whether we use nuclear masses or neutral 
atom masses. The neutral atoms masses are given in Table 43.2. 
2 9
1 4H Be has mass 2.014102 u 9.012182 u 11.26284 u+ + =  
7 4
3 2Li He has mass 7.016003 u 4.002603 u 11.018606 u+ + =  

The mass decrease is 11.026284 u 11.018606 u 0.007678 u.− =  
This corresponds to an energy release of 0.007678 u(931.5 MeV/1 u) 7.152 MeV.=  

(c) IDENTIFY and SET UP: Estimate the threshold energy by calculating the Coulomb potential energy when the 
2 9
1 4H and Be  nuclei just touch. Obtain the nuclear radii from Eq. (43.1). 

EXECUTE: The radius 9 15 1/3 15
Be 4 Be of the Be nucleus is (1.2 10  m)(9) 2.5 10  m.R R − −= × = ×  

The radius 2 15 1/3 15
H 1 H of the H nucleus is (1.2 10  m)(2) 1.5 10  m.R R − −= × = ×  

The nuclei touch when their center-to-center separation is 
15

Be H 4.0 10  m.R R R −= + = ×  
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The Coulomb potential energy of the two reactant nuclei at this separation is 

1 2

0 0

1 1 (4 )

4 4

q q e e
U

r rπ π
= =

P P
 

19 2
9 2 2

15 19

4(1.602 10  C)
(8.988 10 N m / C ) 1.4 MeV

(4.0 10  m)(1.602 10  J/eV)
U

−

− −

×= × ⋅ =
× ×

 

This is an estimate of the threshold energy for this reaction. 
EVALUATE: The reaction releases energy but the total initial kinetic energy of the reactants must be 1.4 MeV in 
order for the reacting nuclei to get close enough to each other for the reaction to occur. The nuclear force is strong 
but is very short-range. 

43.44. IDENTIFY and SET UP: 0.7% of naturally occurring uranium is the isotope 235 U .  The mass of one 235 U  nucleus 
is about 235mp. 

EXECUTE: (a) The number of fissions needed is 
19

29
6 19

1.0 10  J
3.13 10

(200 10  eV)(1.60 10  J/eV)−

× = ×
× ×

. The mass of 

235 U  required is 29 5
p(3.13 10 )(235 ) 1.23 10  kgm× = × . 

(b) 
5

7
2

1.23 10  kg
1.76 10  kg

0.7 10−

× = ×
×

 

EVALUATE: The calculation assumes 100% conversion of fission energy to electrical energy. 
43.45. IDENTIFY and SET UP: The energy released is the energy equivalent of the mass decrease.  1 u is equivalent to 

931.5 MeV.  The mass of one 235 U  nucleus is 235mp. 

EXECUTE: (a) 235 1 144 89 1
92 0 56 36 0U n Ba Kr 3 n+ → + +  

We can use atomic masses since the same number of electrons are included on each side of the reaction equation 
and the electron masses cancel.  The mass decrease is 

( ) ( ) ( ) ( ) ( )235 1 144 89 1
92 0 56 36 0U n Ba Kr 3 nM m m m m m⎡ ⎤Δ = + − + +⎣ ⎦  

235.043930 u 1.0086649 u 143.922953 u 88.917630 u 3(1.0086649 u)MΔ = + − − −  

0.1860 uMΔ = .  The energy released is (0.1860 u)(931.5 MeV/u) 173.3 MeV= . 

(b) The number of 235 U  nuclei in 1.00 g is 
3

21

p

1.00 10  kg
2.55 10

235m

−× = × .  The energy released per gram is 

21 23(173.3 MeV/nucleus)(2.55 10  nuclei/g) 4.42 10  MeV/g× = × . 

43.46. (a) 28 24
14 12Si Mg X.  24 28 so 4.  12 14 so 2.A

Z A A Z Z Xγ+ ⇒ + + = = + = =  is an α particle. 

(b) 2 (23.985042 u 4.002603 u 27.976927 u) (931.5 MeV u ) 9.984 MeVγE mc= −Δ = + − =  

43.47. The energy liberated will be 
3 4 7
2 2 4( He) ( He) ( Be) (3.016029 u 4.002603 u 7.016929 u)(931.5 MeV u) 1.586 MeV.M M M+ − = + − =  

43.48. (a) 3 2 0 5 and 4 7 1 10.Z A= + − = = + − =  

(b) The nuclide is a boron nucleus, and 3
He Li n B 3.00 10  u,m m m m −+ − − = − ×  and so 2.79 MeV of energy is absorbed. 

43.49. Nuclei: 4 ( 2) 4 2
2 2X Y HeA Z A Z

Z Z
+ − − + +

−→ + .  Add the mass of Z  electrons to each side and we find: 
4 4
2 2( X) ( Y) ( He),A A

Z Zm M M M−
−Δ = − −  where now we have the mass of the neutral atoms. So as long as the mass of 

the original neutral atom is greater than the sum of the neutral products masses, the decay can happen. 
43.50. Denote the reaction as 1X Y e .A A

Z Z
−

+→ + The mass defect is related to the change in the neutral atomic masses by 

X e Y e e X Y[ ] [ ( 1) ] ( ),m Zm m Z m m m m− − − + − = −  

where Xm and Ym  are the masses as tabulated in, for instance, Table (43.2). 

43.51. ( 1)
1X YA Z A Z

Z Z β+ − + +
−→ + .  Adding (Z –1) electrons to both sides yields 1X YA A

Z Z β+ +
−→ + .  So in terms of masses: 

( ) ( ) ( )( ) ( ) ( ) ( )1 e e 1 e 1 eX Y X Y X Y 2 .A A A A A A
Z Z Z Z Z Zm M M m M m M m M M m+

− − −Δ = − − = − − − = − − So the decay will 

occur as long as the original neutral mass is greater than the sum of the neutral product mass and two electron masses. 
43.52. IDENTIFY and SET UP: .m Vρ=  3 31 gal 3.788 L 3.788 10  m−= = × .  The mass of a 235 U  nucleus is 235mp.  

131 MeV 1.60 10  J−= ×  
EXECUTE: (a) For 1 gallon, 3 3 3 3(737 kg/m )(3.788 10  m ) 2.79 kg 2.79 10  gm Vρ −= = × = = ×  

8
4

3

1.3 10  J/gal
4.7 10  J/g

2.79 10  g/gal

× = ×
×
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(b) 1 g contains 
3

21

p

1.00 10  kg
2.55 10  nuclei

235m

−× = ×  

13 21 10(200 MeV/nucleus)(1.60 10  J/MeV)(2.55 10  nuclei) 8.2 10  J/g−× × = ×  

(c) A mass of 6mp produces 26.7 MeV. 
13

14 11

p

(26.7 MeV)(1.60 10  J/MeV)
4.26 10  J/kg 4.26 10  J/g

6m

−× = × = ×  

(d) The total energy available would be 30 7 37(1.99 10  kg)(4.7 10  J/kg) 9.4 10  J× × = ×  

energy
power

t
=  so 

37
11

26

energy 9.4 10 J
2.4 10  s 7600 yr

power 3.86 10  W
t

×= = = × =
×

 

EVALUATE: If the mass of the sun were all proton fuel, it would contain enough fuel to last 
11

10
4

4.3 10  J/g
(7600 yr) 7.0 10  yr

4.7 10  J/g

⎛ ⎞× = ×⎜ ⎟×⎝ ⎠
. 

43.53. Using Eq: (43.12): 2 24 2
H n B 11 H n B( Na) 11 13 /A

Z M ZM Nm E c M M m E c= + − ⇒ = + − . 

2 3
B 1 3

(11)(10)
But (15.75 MeV)(24) (17.80 MeV)(24) (0.7100 MeV)

(24)
E = − − −  

2
4 3(24 2(11))

(23.69 MeV) (39 MeV)(24) 198.31 MeV.
24

−− − =  

24
11

(198.31 MeV)
( Na) 11(1.007825 u) 13(1 .008665 u) 23.9858 u

931.5 MeV u

23.990963 23.9858
% error 100 0.022%.

23.990963

M⇒ = + − =

−= × =
 

If the binding energy term is neglected, 24
11( Na) 24.1987 uM = and the percentage error would be 

24.1987 23.990963
100 0.87%.

23.990963

− × =  

43.54. The -particleα  will have
226

230
 of the released energy (see Example 43.5). Th Ra

226
( )

230
m m mα− − =  

35.032 10 u or 4.69 MeV.−×  

43.55. (a) IDENTIFY and SET UP: The heavier nucleus will decay into the lighter one. 
EXECUTE: 25 25

13 12Al will decay into Mg.  

(b) IDENTIFY and SET UP: Determine the emitted particle by balancing A and Z in the decay reaction. 
EXECUTE: This gives 25 25   0

13 12 1Al Mg e.+→ +  The emitted particle must have charge e+  and its nucleon number 

must be zero. Therefore, it is a β +  particle, a positron. 
(c) IDENTIFY and SET UP: Calculate the energy defect MΔ  for the reaction and find the energy equivalent of 

.MΔ  Use the nuclear masses for 25 25
13 12Al and Mg, to avoid confusion in including the correct number of electrons if 

neutral atom masses are used. 
EXECUTE: The nuclear mass for 25 25

13 nuc 13Al is  ( Al) 24.990429 u 13(0.000548580 u) 24.983297 u.M = − =  

The nuclear mass for 25 25
12 nuc 12Mg is  ( Mg) 24.985837 u 12(0.000548580 u) 24.979254 u.M = − =  

The mass defect for the reaction is 
25 25 0

nuc 13 nuc 12 1 ( Al)  ( Mg)  ( e) 24.983297 u 24.979254 u 0.00054858 u 0.003494 uM M M M +Δ = − − = − − =  
2( ) 0.003494 u(931.5 MeV/1 u) 3.255 MeVQ M c= Δ = =  

EVALUATE: The mass decreases in the decay and energy is released. Note: 25
13 Al can also decay into  

25
12 Mg by the electron capture. 
25   0 25
13 1 12Al e Mg−+ →  

The   0
1−  electron in the reaction is an orbital electron in the neutral 25

13 Al atom. The mass defect can be calculated 

using the nuclear masses: 

( ) ( )25 0 25
nuc 13 1 nuc 12 Al  ( e)  Mg 24.983287 u 0.00054858 u 24.979254 u 0.004592 u. M M M M−Δ = + − = + − =  

( )2 2 c (0.004592 u)(931.5 MeV/1 u) 4.277 MeVQ M= Δ = =  

The mass decreases in the decay and energy is released. 
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43.56. (a) 210 206 4
84 82 2

3

Po Pb He
5.81 10 u, or 5.41 MeV.m m m Q−− − = × =  The energy of the alpha particle is (206 210) times this, 

or 5.30 MeV (see Example 43.5). 

(b) 210 209 1
84 83 1

3

Po Bi H
5.35 10 u 0,m m m −− − = − × <  so the decay is not possible. 

(c)  210 209
84 84

3
nPo Po

8.22 10 u 0,m m m −− − = − × <  so the decay is not possible. 

(d) 210 210
85 84At Po

,m m>  so the decay is not possible (see Problem (43.50)). 

(e) 210 210
83 84

eBi Po
2 ,m m m+ >  so the decay is not possible (see Problem (43.51)). 

43.57. IDENTIFY and SET UP: The amount of kinetic energy released is the energy equivalent of the mass change in the 
decay.  e 0.0005486 um =  and the atomic mass of 14

7 N  is 14.003074 u.  The energy equivalent of 1 u is 

931.5 MeV.  14C  has a half-life of 11
1/ 2 5730 yr 1.81 10  sT = = × .  The  RBE for an electron is 1.0. 

EXECUTE: (a) 14 14
6 7 eC e N υ−→ + +  

(b) The mass decrease is ( ) ( )14 14
6 e 7C NM m m m⎡ ⎤Δ = − +⎣ ⎦ . Use nuclear masses, to avoid difficulty in accounting for 

atomic electrons.  The nuclear mass of 14
6C  is e14.003242 u 6 13.999950 um− = . 

The nuclear mass of 14
7 N is e14.003074 u 7 13.999234 um− = . 

413.999950 u 13.999234 u 0.000549 u 1.67 10  uM −Δ = − − = × .  The energy equivalent of MΔ  is 0.156 MeV. 

(c) The mass of carbon is (0.18)(75 kg) 13.5 kg= .  From Example 43.9, the activity due to 1 g of carbon in a 

living organism is 0.255 Bq.  The number of decay/s due to 13.5 kg of carbon is 3(13.5 10 )(0.255 Bq/g)× =  
33.4 10  decays/s× . 

(d) Each decay releases 0.156 MeV so 33.4 10  decays/s×  releases 11530 MeV/s 8.5 10  J/s−= × . 

(e) The total energy absorbed in 1 yr is 11 7 3(8.5 10  J/s)(3.156 10  s) 2.7 10  J− −× × = × . The absorbed dose is 
3

52.7 10  J
3.6 10  J/kg 36 Gy 3.6 mrad

75 kg
μ

−
−× = × = = . With RBE 1.0= , the equivalent dose is 36 Sv 3.6 mremμ = . 

43.58. IDENTIFY and SET UP: 28
e264 2.40 10  kgm m −

π = = × .  The total energy of the two photons equals the rest mass 

energy mπ c
2 of the pion. 

EXECUTE: (a) 2 28 8 2 111 1
ph 2 2 (2.40 10  kg)(3.00 10  m/s) 1.08 10  J 67.5 MeVE m c − −

π= = × × = × =  

ph

hc
E

λ
=  so 

6
14

6
ph

1.24 10  eV m
1.84 10  m 18.4 fm

67.5 10  eV

hc

E
λ

−
−× ⋅= = = × =

×
 

These are gamma ray photons, so they have RBE 1.0= . 
(b) Each pion delivers 11 112(1.08 10  J) 2.16 10  J− −× = × . 

The absorbed dose is 200 rad 2.00 Gy 2.00 J/kg= = . 

The energy deposited is 3(25 10  kg)(2.00 J/kg) 0.050 J−× = . 

The number of 0π  mesons needed is 9
11

0.050 J
2.3 10  mesons

2.16 10  J/meson− = ×
×

. 

EVALUATE: Note that charge is conserved in the decay since the pion is neutral.  If the pion is initially at rest the 
photons must have equal momenta in opposite directions so the two photons have the same λ and are emitted in 
opposite directions.  The photons also have equal energies since they have the same momentum and E pc= . 

43.59. IDENTIFY and SET UP: Find the energy equivalent of the mass decrease. Part of the released energy appears as 
the emitted photon and the rest as kinetic energy of the electron. 
EXECUTE: 198 198  0

 79  80 1Au Hg e−→ +  

The mass change is 3197.968225 u 197.966752 u 1.473 10  u−− = ×  
(The neutral atom masses include 79 electrons before the decay and 80 electrons after the decay. This one 
additional electron in the products accounts correctly for the electron emitted by the nucleus.) The total energy 
released in the decay is 3(1.473 10  u)(931.5 MeV/u) 1.372 MeV. −× = This energy is divided between the energy of 

the emitted photon and the kinetic energy of the β − particle. Thus the β −  particle has kinetic energy equal to 
1.372 MeV 0.412 MeV 0.960 MeV. − =  

EVALUATE: The emitted electron is much lighter than the 198
 80 Hg nucleus, so the electron has almost all the final 

kinetic energy. The final kinetic energy of the 198 Hg  nucleus is very small. 



Nuclear Physics  43-11 

43.60. (See Problem (43.51)) 11 11
6 5

3
eC B

2 1.03 10 u.m m m −− − = ×  Decay is energetically possible. 

43.61. IDENTIFY and SET UP: The decay is energetically possible if the total mass decreases. Determine the nucleus 
produced by the decay by balancing A and Z on both sides of the equation. 13   0 13

 7 1  6N e C.+→ +  To avoid confusion in 

including the correct number of electrons with neutral atom masses, use nuclear masses, obtained by subtracting 
the mass of the atomic electrons from the neutral atom masses. 

EXECUTE: The nuclear mass for ( )13 13
 7 nuc  7N is  N 13.005739 u 7(0.00054858 u) 13.001899 u.M = − =  

The nuclear mass for ( )13 13
 6 nuc  6C is  C 13.003355 u 6(0.00054858 u) 13.000064 u. M = − =  

The mass defect for the reaction is 

( ) ( ) ( )13 13   0
nuc  7 nuc  6 1 N  C e .  13.001899 u 13.000064 u 0.00054858 u 0.001286 u. M M M M M+Δ = − − Δ = − − =  

EVALUATE: The mass decreases in the decay, so energy is released. This decay is energetically possible. 

43.62. (a) A least-squares fit to log of the activity vs. time gives a slope of 10.5995 h ,λ −=  for a half-life of 
ln 2

1.16 h.
λ

=  

(b) The initial activity is 0N λ , and this gives 
4

8
0 1

(2.00 10 Bq)
1.20 10 .

(0.5995 hr )(1 hr 3600 s)
N −

×= = ×  

(c) λ 6
0 1.81 10 .tN e− = ×  

43.63. The activity 0 0

( ) ( )
( ) but λ ( ) so λ

dN t dN t
A t N t N A

dt dt
≡ = − − = .  Taking the derivative of 

λ λ λ

0 0 0

( )
( ) λ

t t tdN t
N t N e N e A e

dt
− − −= ⇒ = − = , λ

0or ( ) .tA t A e−=  

43.64. From Eq.43.17 ( )1 2(ln 2) /λ λ

0 0 0( ) but
t Tt tN t N e N e N e

−− −= =  
( ) ( )/ /1 2 1 2

(ln 2) ln(1/ 2)
0 0 0

1 2

1
.  So ( ) where .

2

t T t T n
t

N e N e N t N n
T

− ⎛ ⎞⎡ ⎤ ⎡ ⎤= = = =⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎝ ⎠
 

(We have used that lnln ln( ),  ( ) , and .a ax x a xa x x e e e x= = = ) 

43.65. IDENTIFY and SET UP: One-half of the sample decays in a time of T1/2. 

EXECUTE: (a) 
9

410 10  yr
5.0 10

200,000 yr

× = ×  

(b) 
45.0 101

2( ) .×  This exponent is too large for most hand-held calculators.  But 0.3011
2( ) 10−=  so 

4 45.0 10 0.301 5.0 10 15,0001
2( ) (10 ) 10× − × −= =  

43.66. IDENTIFY and SET UP: 1/ 2

ln 2
T

λ
= .  The mass of a single nucleus is 25

p149 2.49 10  kgm −= × .  /N t NλΔ Δ = − . 

EXECUTE: 
3

22
25

12.0 10  kg
4.82 10

2.49 10  kg
N

−

−

×= = ×
×

. / 2.65 decays/sN tΔ Δ = −  

23 1
22

/ 2.65 decays/s
5.50 10  s

4.82 10

N t

N
λ − −Δ Δ= − = = ×

×
;  22 14

1/ 2

ln 2
1.26 10  s 3.99 10  yrT

λ
= = × = ×  

43.67. IDENTIFY: Use Eq. (43.17) to relate the initial number of radioactive nuclei, 0 ,N to the number , N, left after time t. 

SET UP: We have to be careful; after 87 Rb  has undergone radioactive decay it is no longer a rubidium atom. Let 

85N  be the number of 85 Rb  atoms; this number doesn’t change. Let 0N  be the number of 87 Rb atoms on earth 

when the solar system was formed. Let N be the present number of 87 Rb  atoms. 
EXECUTE: The present measurements say that 850.2783 /( ).N N N= +  

85 85( )(0.2783) ,  so 0.3856 .N N N N N+ = =  The percentage we are asked to calculate is 0 0 85/( ).N N N+  

0 0 0 and  are related by  so .t tN N N N e N e Nλ λ− += =  

Thus 0 85

0 85 85 85 85

(0.3855 ) 0.3856
.

(0.3856 ) 0.3856 1

t t t

t t t

N Ne e N e

N N Ne N e N N e

λ λ λ

λ λ λ= = =
+ + + +

 

9 11 1
10

1/2

0.693 0.693
4.6 10 y; = 1.459 10  y  

4.75 10  y
t

T
λ − −= × = = ×

×
 

11 1 9(1.459 10  y )(4.6 10  y) 0.16711 1.0694te e eλ − −× ×= = =  



43-12 Chapter 43 

Thus 0

0 85

(0.3856)(1.0694)
29.2%.

(0.3856)(1.0694) 1

N

N N
= =

+ +
 

EVALUATE: The half-life for 87 Rb  is a factor of 10 larger than the age of the solar system, so only a small 

fraction of the 87 Rb  nuclei initially present  have decayed; the percentage of rubidium atoms that are radioactive is 
only a bit less now than it was when the solar system was formed. 

43.68. (a) 12 6 19(6.25 10 )(4.77 10 MeV)(1.602 10 J eV) (70.0 kg) 0.0682 Gy 0.682 rad−× × × = =  

(b) (20)(6.82 rad ) = 136 rem 

(c) 9

p 1 2

ln(2)
1.17 10 Bq 31.6 mCi

m
N

Am T
λ = = × = . 

(d) 
12

3
9

6.25 10
5.34 10 s,

1.17 10 Bq

× = ×
×

about an hour and a half. Note that this time is so small in comparison with the 

half-life that the decrease in activity of the source may be neglected. 
43.69. IDENTIFY and SET UP: Find the energy emitted and the energy absorbed each second. Convert the absorbed 

energy to absorbed dose and to equivalent dose. 
EXECUTE: (a) First find the number of decays each second: 

10
4 63.70 10  decays/s

2.6 10  Ci 9.6 10  decays/s
1 Ci

− ⎛ ⎞×× = ×⎜ ⎟
⎝ ⎠

 

The average energy per decay is 1.25 MeV, and one-half of this energy is deposited in the tumor. The energy 
delivered to the tumor per second then is 

6 6 19 71
2 (9.6 10  decays/s)(1.25 10  eV/decay)(1.602 10  J/eV) 9.6 10  J/s. − −× × × = ×  

(b) The absorbed dose is the energy absorbed divided by the mass of the tissue: 
7

6 49.6 10  J/s
(1.9 10  J/kg s)(1 rad/(0.01 J/kg)) 1.9 10  rad/s

0.500 kg

−
− −× = × ⋅ = ×  

(c) equivalent dose (REM) = RBE ×  absorbed dose (rad) 

In one second the equivalent dose is 4 40.70(1.9 10  rad) 1.3 10  rem. − −× = ×  

(d) 4 6(200 rem/1.3 10  rem/s) 1/5 10  s(1 h/3600 s) 420 h 17 days. −× = × = =  

EVALUATE: The activity of the source is small so that absorbed energy per second is small and it takes several 
days for an equivalent dose of 200 rem to be absorbed by the tumor. A 200 rem dose equals 2.00 Sv and this is 
large enough to damage the tissue of the tumor. 

43.70. (a) After 4.0 min = 240 s, the ratio of the number of nuclei is 
1 1240 122.2 (240)

26.9 122.2
240 26.9

2
2 124.

2

⎛ ⎞− −⎜ ⎟⎝ ⎠
− = =  

(b) After 15.0 min = 900 s, the ratio is 77.15 10 .×  

43.71. IDENTIFY and SET UP: The number of radioactive nuclei left after time t is given by 0 .tN N e λ−=  The problem 

says 0/ 0.21;  N N = solve for t. 

EXECUTE: 0.21  so ln(0.21)  and ln(0.21)/te t tλ λ λ−= = − = −  

Example 43.9 gives 4 1 141.209 10  y  for C. λ − −= ×  Thus 4
4

ln(0.21)
1.3 10  y.

1.209 10  y
t −

−= = ×
×

 

EVALUATE: The half-life of 14 C is 5730 y, so our calculated t is more than two half-lives, so the fraction 

remaining is less than ( )21 1
2 4 .=  

43.72. IDENTIFY: The tritium (H-3) decays to He-3. The ratio of the number of He-3 atoms to H-3 atoms allows us to 
calculate the time since the decay began, which is when the H-3 was formed by the nuclear explosion. The H-3 
decay is exponential. 

SET UP: The number of tritium (H-3) nuclei decreases exponentially as H 0,H
tN N e λ−= , with a half-life of 

12.3 years. The amount of He-3 present after a time t is equal to the original amount of tritium minus the number 
of tritium nuclei that are still undecayed after time t. 

EXECUTE: The number of He-3 nuclei after time t is 

( )He 0,H H 0,H 0,H 0,H 1t tN N N N N e N eλ λ− −= − = − = − . 

Taking the ratio of the number of He-3 atoms to the number of tritium (H-3) atoms gives 

( )0,HHe

H 0,H

1 1
1

t t
t

t t

N eN e
e

N N e e

λ λ
λ

λ λ

− −

− −

− −= = = − . 
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Solving for t gives 
( )He Hln 1 /N N

t
λ

+
= . Using the given numbers and 1/ 2

ln 2
T

λ
= , we have 

1/ 2

ln 2 ln 2
 0.0563/ y

12.3 yT
λ = = = and 

( )ln 1 4.3

0.0563/ y
t

+
=  = 30 years. 

EVALUATE: One limitation on this method would be that after many years the ratio of H to He would be too 
small to measure accurately. 

43.73. (a) IDENTIFY and SET UP: Use Eq.(43.1) to calculate the radius R of a 2
1H  nucleus. Calculate the Coulomb 

potential energy (Eq.23.9) of the two nuclei when they just touch. 
EXECUTE: The radius of 2

1H  is 15 1/3 15(1.2 10  m)(2) 1.51 10  m.R − −= × = ×  The barrier energy is the Coulomb 

potential energy of two 2
1H  nuclei with their centers separated by twice this distance: 

2 19 2
9 2 2 14

15
0

1 (1.602 10  C)
(8.988 10  N m / C ) 7.64 10  J 0.48 MeV

4 2(1.51 10  m)

e
U

rπ

−
−

−

×= = × ⋅ = × =
×P

 

(b) IDENTIFY and SET UP: Find the energy equivalent of the mass decrease. 
EXECUTE: 2 2 3 1

1 1 2 0H H He n+ → +  

If we use neutral atom masses there are two electrons on each side of the reaction equation, so their masses cancel. 
The neutral atom masses are given in Table 43.2. 
2 2
1 1H H has mass 2(2.014102 u) 4.028204 u+ =  
3 1
2 0He n has mass 3.016029 u 1.008665 u 4.024694 u+ + =  

The mass decrease is 34.028204 u 4.024694 u 3.510 10  u. −− = × This corresponds to a liberated energy of 
3 6 19 13(3.510 10  u)(931.5 MeV/u) 3.270 MeV, or (3.270 10  eV)(1.602 10  J/eV) 5.239 10  J. − − −× = × × = ×  

(c) IDENTIFY and SET UP: We know the energy released when two 2
1 H nuclei fuse. Find the number of reactions 

obtained with one mole of 2
1 H.  

EXECUTE: Each reaction takes two 2
1 H nuclei. Each mole of 23

2D  has 6.022 10× molecules, so 236.022 10× pairs 

of atoms. The energy liberated when one mole of deuterium undergoes fusion is 23 13(6.022 10 )(5.239 10  J)−× × =  
113.155 10  J/mol. ×  

EVALUATE: The energy liberated per mole is more than a million times larger than from chemical combustion of 
one mole of hydrogen gas. 

43.74. In terms of the number N of cesium atoms that decay in one week and the mass 
1.0 kg,m =  the equivalent dose is 

13
e e3.5 Sv ((RBE) E (RBE) E ) ((1)(0.66 MeV) (1.5)(0.51 MeV)) (2.283 10 J),γ γ

N N N

m m m
−= + = + = × so 

13
13

(1.0 kg)(3.5 Sv)
1.535 10

(2.283 10 J)
N −= = ×

×
.  The number 0N  of atoms present is related to 

λ

0by .tN N Ne= 10 1
7

2

ln 2 0.693
7.30 10 sec

(30.07 yr)(3.156 10 sec yr)Ty
λ − −= = ×

×
. 

Then 
10 1 4

λ 13 (7.30 10 s ) (7 days) (8.64 10 s day) 13
0 (1.535 10 ) 1.536 10 .tN Ne e

− −× ×= = × = ×  

43.75. (a) cm

m
v v

m M
=

+
.  m

m M
v v v v

m M m M
⎛ ⎞′ = − = ⎜ ⎟+ +⎝ ⎠

.  M

vm
v

m M
′ =

+
. 

2 2 2
2 2 2 2 2

2 2

1 1 1 1 1

2 2 2 ( ) 2 ( ) 2 ( )m M

mM Mm M mM m
K mv Mv v v v

m M m M m M m M m M

⎛ ⎞′ ′ ′= + = + = +⎜ ⎟+ + + + +⎝ ⎠
. 

2
cm

1

2

M M
K mv K K K

m M m M
⎛ ⎞′ ′= ⇒ = ≡⎜ ⎟+ +⎝ ⎠

. 

(b) For an endoergic reaction ( )cm 0K Q Q= − <  at threshold. Putting this into part (a) gives 

( )
th th

M mM
Q K K Q

M m M

− +
− = ⇒ =

+
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43.76. 
M

K K
M m

α

α
∞=

+
, where K∞  is the energy that the α -particle would have if the nucleus were infinitely massive. 

Then, ( )2
Os Os

186
2.76 MeV 181.94821u

182
M M M K M M cα α∞= − − = − − = . 

43.77. ( ) ( ) ( )235 140 94
92 54 38 nU Xe Srm M M M mΔ = − − −  

( ) ( ) ( )2

235.043923 u 139.921636 u 93.915360 u 1.008665 u 0.1983 u

0.1983 u 931.5 MeV u 185 MeV.

m

E m c

Δ = − − − =
⇒ = Δ = =

 

43.78. (a) A least-squares fit of the log of the activity vs. time for the times later than 4.0 h gives a fit with correlation 

( )61 2 10−− − ×  and decay constant of 10.361h− , corresponding to a half-life of 1.92 h. Extrapolating this back to time 0 

gives a contribution to the rate of about 2500/s for this longer-lived species. A least-squares fit of the log of the activity 
vs. time for times earlier than 2.0 h gives a fit with correlation = 0.994, indicating the presence of only two species. 
(b) By trial and error, the data is fit by a decay rate modeled by ( ) ( ) ( ) ( )1.733 h 0.361 h5000 Bq 2500 Bqt tR e e− −= + . This 

would correspond to half-lives of 0.400 h and 1.92 h. 
(c) In this model, there are 71.04 10×  of the shorter-lived species and 72.49 10×  of the longer-lived species. 
(d) After 5.0 h, there would be 31.80 10×  of the shorter-lived species and 64.10 10×  of the longer-lived species. 

43.79. (a) There are two processes occurring: the creation of 128 I  by the neutron irradiation, and the decay of the newly 

produced 128 I. So where
dN

K N K
dt

λ= −  is the rate of production by the neutron irradiation. Then 

0 0
.

N tdN
dt

K Nλ
′

=
′−∫ ∫   ( )

0
ln

N
K N tλ λ′− = −⎡ ⎤⎣ ⎦ .  ( )ln lnK N K tλ λ− = − .  ( ) ( )λ1

.
tK e

N t
λ

−−
=   The graph is given in 

Figure 43.79. 

(b) The activity of the sample is ( ) ( ) ( )λ 61 1.5 10 decays stN t K eλ −= − = × ×
0.693

25 min1
t

e
⎛ ⎞

−⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

. So the activity is 

( ) ( )6 0.027721.5 10 decays s 1 te−× − , with t in minutes. So the activity 
dN

dt

′−⎛ ⎞
⎜ ⎟
⎝ ⎠

 at various times is: 

4 5

5 6

6 6

( 1 min) 4.1 10 Bq; ( 10 min) 3.6 10 Bq;

( 25 min) 7.5 10 Bq; ( 50 min) 1.1 10 Bq;

( 75 min) 1.3 10 Bq; ( 180 min) 1.5 10 Bq;

dN dN
t t

dt dt
dN dN

t t
dt dt
dN dN

t t
dt dt

′ ′− −= = × = = ×

′ ′− −= = × = = ×

′ ′− −= = × = = ×

 

(c) 
( )

6
9

max

(1.5 10 ) (60)
3.2 10 atoms

0.02772

K
N

λ
×= = = × . 

(d) The maximum activity is at saturation, when the rate being produced equals that decaying and so it equals 
61.5 10 decays s.×  

 
Figure 43.79 

43.80. The activity of the original iron, after 1000 hours of operation, would be 
6 10 (1000 h) (45 d 24 h d) 5(9.4 10 Ci) (3.7 10 Bq Ci)2 1.8306 10 Bq− − ×× × = × .  The activity of the oil is 84 Bq, or 

44.5886 10−×  of the total iron activity, and this must be the fraction of the mass worn, or mass of 24.59 10 g−× . 

The rate at which the piston rings lost their mass is then 54.59 10 g h−× . 
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PARTICLE PHYSICS AND COSMOLOGY 

 44.1. (a) IDENTIFY and SET UP: Use Eq.(37.36) to calculate the kinetic energy K. 

EXECUTE: 2 2

2 2

1
1 0.1547

1 /
K mc mc

v c

⎛ ⎞
= − =⎜ ⎟

−⎝ ⎠
 

31 149.109 10  kg, so 1.27 10  Jm K− −= × = ×  

(b) IDENTIFY and SET UP: The total energy of the particles equals the sum of the energies of the two photons. 
Linear momentum must also be conserved. 
EXECUTE: The total energy of each electron or positron is 2 2 131.1547 9.46 10  J.E K mc mc −= + = = ×  The total 
energy of the electron and positron is converted into the total energy of the two photons. The initial momentum of 
the system in the lab frame is zero (since the equal-mass particles have equal speeds in opposite directions), so the 
final momentum must also be zero. The photons must have equal wavelengths and must be traveling in opposite 
directions. Equal λ  means equal energy, so each photon has energy 149.46 10  J.−×  
(c) IDENTIFY and SET UP: Use Eq. (38.2) to relate the photon energy to the photon wavelength. 
EXECUTE: /E hc λ=  so 14/ /(9.46 10  J) 2.10 pmhc E hcλ −= = × =  

EVALUATE: The wavelength calculated in Example 44.1 is 2.43 pm. When the particles also have kinetic energy, 
the energy of each photon is greater, so its wavelength is less. 

 44.2. The total energy of the positron is 
2 5.00 MeV 0.511 MeV 5.51 MeV.E K mc= + = + =  

We can calculate the speed of the positron from Eq.(37.38): 

2 22 2

2

2

0.511 MeV
1 1 0.996.

5.51 MeV
1

mc v mc
E

c Ev

c

⎛ ⎞ ⎛ ⎞= ⇒ = − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠−

 

 44.3. IDENTIFY and SET UP: By momentum conservation the two photons must have equal and opposite momenta. 
Then E pc=  says the photons must have equal energies. Their total energy must equal the rest mass energy 

2E mc=  of the pion. Once we have found the photon energy we can use E hf=  to calculate the photon frequency 

and use /c fλ =  to calculate the wavelength. 

EXECUTE: The mass of the pion is e270 ,m  so the rest energy of the pion is 270(0.511 MeV) 138 MeV.=  Each 

photon has half this energy, or 69 MeV.  
6 19

22
34

(69 10  eV)(1.602 10  J/eV)
so  1.7 10  Hz

6.626 10  J s

E
E hf f

h

−

−

× ×= = = = ×
× ⋅

 

8
14

22

2.998 10  m/s
1.8 10  m 18 fm.

1.7 10  Hz

c

f
λ −×= = = × =

×
 

EVALUATE: These photons are in the gamma ray part of the electromagnetic spectrum. 

 44.4. (a) The energy will be the proton rest energy, 938.3 MeV, corresponding to a frequency of 232.27 10 Hz×  and a 

wavelength of 151.32 10 m.−×  

(b) The energy of  each photon will be 938.3 MeV 830 MeV 1768 MeV,+ =  with frequency 2242.8 10 Hz×  and 

wavelength 167.02 10 m.−×  

 44.5. (a) e e e270 207 63m m m m m mπ μ+ +Δ = − = − = 63(0.511 MeV) 32 MeV.E⇒ = =  

(b) A positive muon has less mass than a positive pion, so if the decay from muon to pion was to happen, you 
could always find a frame where energy was not conserved. This cannot occur. 

44
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 44.6. (a) 
34

14
2 31 8

(6.626 10 J s)
1.17 10 m 0.0117 pm

(207)(9.11 10 kg)(3.00 10 m s)μ μ

hc hc h

E m c m c
λ

−
−

−

× ⋅= = = = = × =
× ×

 

In this case, the muons are created at rest (no kinetic energy). 
(b) Shorter wavelengths would mean higher photon energy, and the muons would be created with non-zero kinetic energy. 

 44.7. IDENTIFY: The energy released comes from the mass difference. 
SET UP: The mass difference is the initial mass minus the final mass. 

e e
m m m mμ − − +Δ = − −  

EXECUTE: Using the masses from Table 44.2, we have 
2 2 2 2

e e
(105.7 MeV/ ) (0.511 MeV/ ) (0.511 MeV/ ) 105 MeV/m m m m c c c cμ− − +Δ = − − = − − =  

Multiplying these masses by c2 gives E = 105 MeV. 
EVALUATE: This energy is observed as kinetic energy of the electron and positron. 

 44.8. IDENTIFY and SET UP:  Calculate the mass change in each reaction, using the atomic masses in Table 44.2. A 
mass change of 1 u is equivalent to an energy of 931.5 MeV. 
EXECUTE: (a) and (b) Eq.(44.1):  4 9 12 1

2 4 6 0He Be C n+ → +  

( ) ( ) ( ) ( )4 9 12 1He Be C nM m m m m⎡ ⎤Δ = + − +⎣ ⎦ 

4.00260 u 9.01218 u 12.00000 u 1.00866 u 0.00612 uMΔ = + − − =  

The mass decreases and the energy liberated is 5.70 MeV.  The reaction is exoergic. 
Eq.(44.2):  1 10 7 4

0 5 3 2n B Li He+ → +  

( ) ( ) ( ) ( )1 10 7 4n B Li HeM m m m m⎡ ⎤Δ = + − +⎣ ⎦ 

1.00866 u 10.01294 u 7.01600 u 4.00260 u 0.00300 uMΔ = + − − =  

The mass decreases and the energy liberated is 2.79 MeV.  The reaction is exoergic. 
(c) The reactants in the reactions of Eq.(44.1) have positive nuclear charges and a threshold kinetic energy is 
required for the reactants to overcome their Coulomb repulsion and get close enough for the reaction to occur. The 
neutron in Eq.(44.2) is neutral so there is no Coulomb repulsion and no threshold energy for this reaction. 

 44.9. IDENTIFY: The antimatter annihilates with an equal amount of matter. 
SET UP: The energy of the matter is 2( )E m c= Δ . 

EXECUTE: Putting in the numbers gives 
2 8 2 19( ) (400 kg 400 kg)(3.00 10 m s) 7.2 10 J.E m c= Δ = + × = ×  

This is about 70% of the annual energy use in the U.S. 
EVALUATE: If this huge amount of energy were released suddenly, it would blow up the Enterprise! Getting 
useable energy from matter-antimatter annihiliation is not so easy to do! 

44.10. IDENTIFY: With a stationary target, only part of the initial kinetic energy of the moving electron is available. 
Momentum conservation tells us that there must be nonzero momentum after the collision, which means that there 
must also be left over kinetic energy. Therefore not all of the initial energy is available. 
SET UP: The available energy is given by ( )2 2 2

a 2 mE mc E mc= +  for two particles of equal mass when one is 

initially stationary. In this case, the initial kinetic energy (20.0 GeV = 20,000 MeV) is much more than the rest 

energy of the electron (0.511 MeV), so the formula for available energy reduces to 2
a 2 mE mc E= . 

EXECUTE: (a) Using the formula for available energy gives 
2

a 2 2(0.511 MeV)(20.0 GeV) 143 MeVmE mc E= = =  

(b) For colliding beams of equal mass, each particle has half the available energy, so each has 71.5 MeV. The total 
energy is twice this, or 143 MeV. 
EVALUATE: Colliding beams provide considerably more available energy to do experiments than do beams 
hitting a stationary target. With a stationary electron target in part (a), we had to give the moving electron  
20,000 MeV of energy to get the same available energy that we got with only 143 MeV of energy with the 
colliding beams. 

44.11. (a) IDENTIFY and SET UP: Eq. (44.7) says /  so / .q B m B m qω ω= =  And since 2 ,fω π=  this becomes 

2 / .B mf qπ=  

EXECUTE: A deuteron is a deuterium nucleus ( )2
1H .  Its charge is .q e= +  Its mass is the mass of the neutral 2

1H  

atom (Table 43.2) minus the mass of the one atomic electron: 
27 272.014102 u 0.0005486 u = 2.013553 u (1.66054  10  kg /1 u) = 3.344  10  kgm − −= − × ×  

27 6

19

2 2 (3.344 10  kg)(9.00 10  Hz)
1.18 T

1.602 10  C

mf
B

q

π π −

−

× ×= = =
×
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(b) Eq.(44.8): 
2 2 2 19 2

27

[(1.602 10  C)(1.18 T)(0.320 m)]
.

2 2(3.344 10  kg)

q B R
K

m

−

−

×= =
×

 

13 13 195.471 10  J (5.471 10  J)(1 eV/1.602 10  J) 3.42 MeVK − − −= × = × × =  

13
2 71

2 27

2 2(5.471 10  J)
 so 1.81 10  m/s

3.344 10  kg

K
K mv v

m

−

−

×= = = = ×
×

 

EVALUATE: / 0.06,v c =  so it is ok to use the nonrelativistic expression for kinetic energy. 

44.12. (a) 72 3.97 10 s.
eB

f
m

ω
π π

= = = ×  

(b) 73.12 10  m/s
eBR

R
m

ω = = ×  

(c) For three-figure precision, the relativistic form of the kinetic energy must be used, 

21 ,eV ( )mcγ= −
2

2 61
so 1 , so 5 11 10  V.

( )mc
eV ( )mc V .

e

γγ −= − = = ×  

44.13. (a) IDENTIFY and SET UP: The masses of the target and projectile particles are equal, so Eq. (44.10) can be used. 
2 2 2
a 2 ( ).mE mc E mc= +  aE  is specified; solve for the energy mE  of the beam particles. 

EXECUTE: 
2

2a
22m

E
E mc

mc
= −  

The mass for the alpha particle can be calculated by subtracting two electron masses from the 4
2 He  atomic mass: 

4.002603 u 2(0.0005486 u) 4.001506 um mα= = − =  

Then 2 (4.001506 u)(931.5 MeV/u) 3.727 GeV.mc = =  
2 2

2a
2

(16.0 GeV)
3.727 GeV 30.6 GeV.

2 2(3.727 GeV)m

E
E mc

mc
= − = − =  

(b) Each beam must have 1
a2 8.0 GeV.E =  

EVALUATE: For a stationary target the beam energy is nearly twice the available energy. In a colliding beam 
experiment all the energy is available and each beam needs to have just half the required available energy. 

44.14. (a) 
31000 10 MeV

1065.8, so 0.999999559 .
938.3 MeV

v cγ ×= = =  

(b) Nonrelativistic: 83.83 10 rad s.
eB

m
ω = = ×  

Relativistic: 51
3.59 10 rad s.

eB

m γ
ω = = ×  

44.15. (a) IDENTIFY and SET UP: For a proton beam on a stationary proton target and since aE  is much larger than the 

proton rest energy we can use Eq.(44.11): 2 2
a 2 .mE mc E=  

EXECUTE: 
2 2
a

2

(77.4 GeV)
3200 GeV

2 2(0.938 GeV)m

E
E

mc
= = =  

(b) IDENTIFY and SET UP: For colliding beams the total momentum is zero and the available energy aE  is the 

total energy for the two colliding particles. 
EXECUTE: For proton-proton collisions the colliding beams each have the same energy, so the total energy of 
each beam is 1

a2 38.7 GeV.E =  

EVALUATE: For a stationary target less than 3% of the beam energy is available for conversion into mass. The 
beam energy for a colliding beam experiment is a factor of (1/83) times smaller than the required energy for a 
stationary target experiment. 

44.16. IDENTIFY: Only part of the initial kinetic energy of the moving electron is available. Momentum conservation 
tells us that there must be nonzero momentum after the collision, which means that there must also be left over 
kinetic energy. 
SET UP: To create the η0, the minimum available energy must be equal to the rest mass energy of the products, 
which in this case is the η0 plus two protons.  In a collider, all of the initial energy is available, so the beam energy 
is the available energy. 
EXECUTE: The minimum amount of available energy must be rest mass energy 

a p2 2(938.3  MeV) + 547.3 MeV = 2420 MeVE m mη= + =  
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Each incident proton has half of the rest mass energy, or 1210 MeV = 1.21 GeV. 
EVALUATE: As we saw in problem 44.10, we would need much more initial energy if one of the initial protons 
were stationary. The result here (1.21 GeV) is the minimum amount of energy needed; the original protons could 
have more energy and still trigger this reaction. 

44.17. Section 44.3 says 0 2(Z ) 91.2 GeV .m c=  

9 8 2 25 091.2 10 eV 1.461 10 J; 1.63 10 kg; (Z ) (p) 97.2E m E c m m− −= × = × = = × =  

44.18. (a) We shall assume that the kinetic energy of the 0Λ  is negligible. In that case we 
can set the value of the photon’s energy equal to Q: 

photon(1193 1116) MeV 77 MeV .Q E= − = =  

(b) The momentum of this photon is 
6 18

photon 20
8

(77 10 eV)(1.60 10 J eV)
4.1 10 kg m s

(3.00 10 m s)

E
p

c

−
−× ×= = = × ⋅

×
 

To justify our original assumption, we can calculate the kinetic energy of a 0Λ  that has this value of momentum 

0

2 2 2

2

(77 MeV)
2.7 MeV 77 MeV.

2 2 2(1116 MeV)

p E
K Q

m mcΛ
= = = = << =  

Thus, we can ignore the momentum of the 0Λ  without introducing a large error. 
44.19. IDENTIFY and SET UP: Find the energy equivalent of the mass decrease. 

EXECUTE: The mass decrease is 0( ) (p) ( )m m m π+∑ − −  and the energy released is 
2 2 2 0( ) (p) ( ) 1189 MeV 938.3 MeV 135.0 MeV 116 MeV.mc mc mc π+∑ − − = − − = (The 2mc  values for each 

particle were taken from Table 44.3.) 
EVALUATE: The mass of the decay products is less than the mass of the original particle, so the decay is 
energetically allowed and energy is released. 

44.20. IDENTIFY: If the initial and final rest mass energies were equal, there would be no left over energy for kinetic 
energy. Therefore the kinetic energy of the products is the difference between the mass energy of the initial 
particles and the final particles. 
SET UP: The difference in mass is 0 K

m M m m− −Ω Λ
Δ = − − . 

EXECUTE: Using Table 44.3, the energy difference is 
2( ) 1672 MeV 1116 MeV 494 MeV 62 MeVE m c= Δ = − − =  

EVALUATE: There is less rest mass energy after the reaction than before because 62 MeV of the initial energy 
was converted to kinetic energy of the products. 

44.21. Conservation of lepton number. 

(a) e ee : 1 1, : 0 1 1v v L Lμ μμ − −→ + + ⇒ + ≠ − ≠ + + , so lepton numbers are not conserved. 

(b) e ee : 0 1 1ττ v v L− −→ + + ⇒ = + − ; : 1 1τL + = + , so lepton numbers are conserved. 

(c) e .π γ+ +→ +  Lepton numbers are not conserved since just one lepton is produced from zero original leptons. 

(d) e en p e γ : 0 1 1,L−→ + + ⇒ = + −  so the lepton numbers are conserved. 

44.22. IDENTIFY and SET UP: p and n have baryon number  +1 and p  has baryon number 1− .  e+, e− , eυ  and γ  all 

have baryon number zero.  Baryon number is conserved if the total baryon number of the products equals the total 
baryon number of the reactants. 
EXECUTE: (a) reactants:  1 1 2B = + = .  Products:  1 0 1B = + = .  Not conserved. 
(b) reactants:  1 1 2B = + = .  Products:  0 0 0B = + = .  Not conserved. 
(c) reactants:  1B = + .  Products:  1 0 0 1B = + + = + .  Conserved. 
(d) reactants:  1 1 0B = − = .  Products:  0B = .  Conserved. 

44.23. IDENTIFY and SET UP: Compare the sum of the strangeness quantum numbers for the particles on each side of 
the decay equation. The strangeness quantum numbers for each particle are given Table 44.3. 

EXECUTE: (a) K ;vμμ+ +→ +  K 1,  0,  0vS S S
μμ+ += + = =  

1S =  initially; 0S =  for the products; S  is not conserved 

(b) + 0n K p ;π+ → +  n 0,S =  +K
1,S = +  p 0,S =  0 0Sπ =  

1S =  initially; 0S =  for the products; S  is not conserved 

(c) + 0
+ 0 0

K K
K K ; 1; 1; 0S S Sππ π −

−+ → + = + = − =  

1 1 0S = + − =  initially; 0S =  for the products; S  is conserved 



Particle Physics and Cosmology  44-5 

(d) 0 0
0 0

p K
p + K ; 0, 1, 1, 0.S S S Sππ −

−
Λ

→ Λ + = = − = − =  

1S = −  initially; 1S = −  for the products; S  is conserved 
EVALUATE: Strangeness is not a conserved quantity in weak interactions and strangeness non-conserving 
reactions or decays can occur. 

44.24. (a) Using the values of the constants from Appendix F, 
2

3

0

1
7.29660475 10 ,

4 137.050044

e

cπ
−= × =

P
or 1 137 to three figures. 

(b) From Section 38.5, 
2

1
02

e
v

h
=
P

. But notice this is just 
2

04

e
c

cπ
⎛ ⎞
⎜ ⎟
⎝ ⎠P

, as claimed. 

44.25. 
2

1

(J m)
1

(J s)(m s )

f

c −

⎡ ⎤ ⋅= =⎢ ⎥ ⋅ ⋅⎣ ⎦
and thus 

2f

c
 is dimensionless. (Recall 2f has units of energy times distance.) 

44.26. (a) The diagram is given in Figure 44.26. The −Ω  particle has 1Q = −  (as its label suggests) and 3.S = −  Its 

appears as a “hole”in an otherwise regular lattice in the S Q−  plane.  The mass difference between each S row is 

around 145 MeV (or so). This puts the −Ω mass at about the right spot. As it turns out, all the other particles on 
this lattice had been discovered already and it was this “hole” and mass regularity that led to an accurate prediction 
of the properties of the Ω ! 

(b) See diagram. Use quark charges 
2 1 1

, , and
3 3 3

− −= + = =u d s  as a guide. 

 
Figure 44.26 

44.27. IDENTIFY and SET UP: Each value for the combination is the sum of the values for each quark. Use Table 44.4. 
EXECUTE: (a) uds  

2 1 1
3 3 3 0Q e e e= − − =  
1 1 1
3 3 3 1B = + + =  

0 0 1 1S = + − = −  
0 0 0 0C = + + =  

(b) cu  
The values for u  are the negative for those for u. 

2 2
3 3 0Q e e= − =  
1 1
3 3 0B = − =  

0 0 0S = + =  
1 0 1C = + + = +  

(c) ddd  
1 1 1
3 3 3Q e e e e= − − − = −  

1 1 1
3 3 3 1B = + + = +  

0 0 0 0S = + + =  
0 0 0 0C = + + =  

(d) d c  
1 2
3 3Q e e e= − − = −  

1 1
3 3 0B = − =  

0 0 0S = + =  
0 1 1C = − = −  

EVALUATE: The charge, baryon number, strangeness and charm quantum numbers of a particle are determined 
by the particle's quark composition. 
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44.28. 2( 2 ) (9460 MeV 2(1777 MeV)) 5906 MeVm m cγ τ− = − = (see Sections 44.3 and 44.4 for masses). 

44.29. (a) The antiparticle must consist of the antiquarks so  n .= udd  
(b) So n = udd is not its own antiparticle. 
(c)  soψ ψ ψ= = =cc cc so the ψ  is its own antiparticle. 

44.30. (a) 1S =  indicates the presence of one s  antiquark and no s quark. To have baryon number 0 there can be only 
one other quark, and to have net charge +e that quark must be a  u, and the quark content is .us  
(b) The particle has an s antiquark, and for a baryon number of –1 the particle must consist of three antiquarks. 

For a net charge of –e, the quark content must be .dd s  

(c) 2S = −  means that there are two s quarks, and for baryon number 1 there must be one more quark. For a charge 
of 0 the third quark must be a u quark and the quark content is uss. 

44.31. IDENTIFY: A proton is made up of uud quarks and a neutron consists of udd quarks. 
SET UP: If a proton decays by β + decay, we have +p e n ev→ + +  (both charge and lepton number are 

conserved). 

EVALUATE: Since a proton consists of uud quarks and a neutron is udd quarks, it follows that in β + decay a u 
quark changes to a d quark. 

44.32. (a) Using the definition of z  from Example 44.9 we have that 

0 s 0

0 s

( )
1 1 .z

λ λ λ
λ λ
−+ = + =  

Now we use Eq.(44.13) to obtain 
1 / 1

1 .
1 / 1

c v v c
z

c v v c

β
β

+ + ++ = = =
− − −

 

(b) Solving the above equation for β  we obtain
2 2

2 2

(1 ) 1 1.5 1
0.3846.

(1 ) 1 1.5 1

z

z
β + − −= = =

+ + +
 

Thus, 80.3846 1.15 10 m s.v c= = ×  

(c) We can use Eq.(44.15) to find the distance to the given galaxy, 
8

3
4

0

(1.15 10 m s)
1.6 10 Mpc

(7.1 10 (m s) Mpc)

v
r

H

×= = = ×
×

 

44.33. (a) IDENTIFY and SET UP: Use Eq.(44.14) to calculate v. 

EXECUTE: 
2 2

0 s
2 2

0 s

( / ) 1 (658.5 nm/590 nm) 1
0.1094

( / ) 1 (658.5 nm/590 nm) 1
v c c c

λ λ
λ λ

⎡ ⎤ ⎡ ⎤− −= = =⎢ ⎥ ⎢ ⎥+ +⎣ ⎦⎣ ⎦
 

8 7(0.1094)(2.998 10  m/s) 3.28 10  m/sv = × = ×  

(b) IDENTIFY and SET UP: Use Eq.(44.15) to calculate r. 

EXECUTE: 
4

0

3.28 10  km/s
1510 Mly

(71 (km/s)/Mpc)(1 Mpc/3.26 Mly)

v
r

H

×= = =  

EVALUATE: The red shift 0 S/ 1λ λ −  for this galaxy is 0.116. It is therefore about twice as far from earth as the 

galaxy in Examples 44.9 and 44.10, that had a red shift of 0.053. 

44.34. From Eq.(44.15), 
8

4

0

3.00 10 m s
1.5 10 Mly.

20(km s) Mly

c
r

H

×= = = ×  

(b) This distance represents looking back in time so far that the light has not been able to reach us. 
44.35. (a) IDENTIFY and SET UP: Hubble's law is Eq.(44.15), with 0 71 (km/s)/(Mpc). 1 Mpc = 3.26 Mly.H =  

EXECUTE: 5
05210 Mly so ((71 km/s)/Mpc)(1 Mpc/3.26 Mly)(5210 Mly) 1.1 10  km/sr v H r= = = = ×  

(b) IDENTIFY and SET UP: Use v from part (a) in Eq. (44.13). 

EXECUTE: 0

S

1 /

1 /

c v v c

c v v c

λ
λ

+ += =
− −

 

8
0

8
S

1.1 10  m/s 1 0.367
0.367 so 1.5

2.9980 10  m/s 1 0.367

v

c

λ
λ

× += = = =
× −

 

EVALUATE: The galaxy in Examples 44.9 and 44.10 is 710 Mly away so has a smaller recession speed and 
redshift than the galaxy in this problem. 

44.36. IDENTIFY and SET UP: 27
H 1.67 10  kgm −= × .  The ideal gas law says .pV nRT=  Normal pressure is 

51.013 10  Pa×  and normal temperature is about 27 C 300 K=° .  1 mole is 236.02 10  atoms× . 
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EXECUTE: (a) 
27 3

3
27

6.3 10  kg/m
3.8 atoms/m

1.67 10  kg/atom

−

−

× =
×

 

(b) 3(4 m)(7 m)(3 m) 84 mV = =  and 3 3(3.8 atoms/m )(84 m ) 320 atoms=  

(c) With 51.013 10  Pap = × , 384 mV = , 300 KT =  the ideal gas law gives the number of moles to be 
5 3

3(1.013 10  Pa)(84 m )
3.4 10  moles

(8.3145 J/mol K)(300 K)

pV
n

RT

×= = = ×
⋅

 

3 23 27(3.4 10  moles)(6.02 10  atoms/mol) 2.0 10  atoms× × = ×  

EVALUATE: The average density of the universe is very small.  Interstellar space contains a very small number of 
atoms per cubic meter, compared to the number of atoms per cubit meter in ordinary material on the earth, such as air. 

44.37. IDENTIFY and SET UP: Find the energy equivalent of the mass decrease. 
EXECUTE: (a) 2 3

1 2p + H He→  or can write as 1 2 3
1 1 2H + H He→  

If neutral atom masses are used then the masses of the two atomic electrons on each side of the reaction will 
cancel. 

Taking the atomic masses from Table 43.2, the mass decrease is ( ) ( ) ( )1 2 3
1 1 2H H Hem m m+ − =  1.007825 u +  

2.014102 u 3.016029 u = 0.005898 u.−  The energy released is the energy equivalent of this mass decrease: 
(0.005898 u)(931.5 MeV/u) 5.494 MeV=  

(b) 1 3 4
0 2 2n He He+ →  

If neutral helium masses are used then the masses of the two atomic electrons on each side of the reaction equation 

will cancel. The mass decrease is ( ) ( ) ( )1 3 4
0 2 2n He He 1.008665 um m m+ − = +  3.016029 u 4.002603 u− =  

0.022091 u.  The energy released is the energy equivalent of this mass decrease: 
(0.022091 u)(931.l5 MeV/u) 20.58 MeV=  

EVALUATE: These are important nucleosynthesis reactions, discussed in Section 44.7. 
44.38. 4 12 33 ( He) ( C) 7.80 10m m −− = × u, or 7.27 MeV. 

44.39. 
e ee p n v vso assuming 0,m m m m m mΔ = + − − ≈  

4

2 4

0.0005486 u 1.007276 u 1.008665 u 8.40 10 u

( ) ( 8.40 10 u)(931.5 MeV u) 0.783 MeVand is endoergic.

m

E m c

−

−

Δ = + − = − ×
⇒ = Δ = − × = −

 

44.40. 12 4 16
6 2 8

3

C He O
7.69 10m m m −+ − = × u, or 7.16 MeV, an exoergic reaction. 

44.41. IDENTIFY and SET UP: The Wien displacement law (Eq.38.30) sys mTλ  equals a constant. Use this to relate 

m,1 1 m,2 2 at  to  at .T Tλ λ  

EXECUTE: m,1 1 m,2 2T Tλ λ=  

32
m,1 m,2

1

2.728 K
1.062 10  m 966 nm

3000 K

T

T
λ λ −⎛ ⎞ ⎛ ⎞= = × =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE: The peak wavelength was much less when the temperature was much higher. 
44.42. (a) The dimensions of are energy times time, the dimensions of G are energy times time per mass squared, and 

so the dimensions of 3/G c are 
1/2 22 2 2

3

(E T)(E L M ) E T L T
L.

(L T) M L T L

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⋅ ⋅ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

(b) 
1 21/ 2 34 11 2 2

35
3 8 3

(6.626 10  J s)(6.673 10  N m kg )
1.616 10  m.

2 (3.00 10 m s)

G

c π

− −
−⎛ ⎞× ⋅ × ⋅⎛ ⎞ = = ×⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠

 

44.43. IDENTIFY and SET UP: For colliding beams the available energy is twice the beam energy. For a fixed-target 
experiment only a portion of the beam energy is available energy (Eqs.44.9 and 44.10). 
EXECUTE: (a) a 2(7.0 TeV) 14.0 TeVE = =  

(b) Need 6
a 14.0 TeV 14.0 10  MeV.E = = ×  Since the target and projectile particles are both protons Eq. (44.10) can 

be used: 2 2 2
a 2 ( )mE mc E mc= +  

2 6 2
2 11 5a

2

(14.0 10  MeV)
938.3 MeV 1.0 10  MeV 1.0 10  TeV.

2 2(938.3 MeV)m

E
E mc

mc

×= − = − = × = ×  

EVALUATE: This shows the great advantage of colliding beams at relativistic energies. 
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44.44. 2 2
p p,  652 MeV.

hc hc
K m c K m c

λ λ
+ = = − =  

44.45. IDENTIFY and SET UP:  Section 44.3 says the strong interaction is 100 times as strong as the electromagnetic 
interaction and that the weak interaction is 910−  times as strong as the strong interaction. The Coulomb force is 

1 2
e 2

kq q
F

r
=  and the gravitational force is 1 2

g 2

m m
F G

r
= . 

EXECUTE: (a) 
9 2 2 19 2

e 15 2

(9.0 10  N m /C )(1.60 10  C)
200 N

(1 10  m)
F

−

−

× ⋅ ×= =
×

 

11 2 2 27 2
34

g 15 2

(6.67 10  N m /kg )(1.67 10  kg)
2 10  N

(1 10  m)
F

− −
−

−

× ⋅ ×= = ×
×

 

(b) 4
str e100 2 10  NF F≈ ≈ × .  9 5

weak str10 2 10  NF F− −≈ ≈ ×  

(c) str e weak gF F F F> > >  

(d) 36
e g1 10F F≈ × .  38

str e g100 1 10F F F≈ ≈ × .  9 29
weak str g10 1 10F F F−≈ ≈ ×  

EVALUATE: The gravity force is much weaker than any of the other three forces.  Gravity is important only when 
one very massive object is involved. 

44.46. In Eq.(44.9), 0 0
2 2

a pK
( ) , and with , and ( ) ,mπ π

E m m c M m m m E m c K− −Σ
= + = = = +  

2 2 2 2 2
a p 2

2
p

2 2 2

( ) ( )
( )

2

(1193 MeV 497.7 MeV) (139.6 MeV) (938.3 MeV)
139.6 MeV 904 MeV.

2(938.3 MeV)

E m c m c
K m c

m c

K

π
π −

− − −
= −

+ − −= − =

 

44.47. IDENTIFY: With a stationary target, only part of the initial kinetic energy of the moving proton is available. 
Momentum conservation tells us that there must be nonzero momentum after the collision, which means that there 
must also be left over kinetic energy. Therefore not all of the initial energy is available. 

SET UP: The available energy is given by ( )2 2 2
a 2 mE mc E mc= +  for two particles of equal mass when one is 

initially stationary. The minimum available energy must be equal to the rest mass energies of the products, which in 
this case is two protons, a K+ and a K− . The available energy must be at least the sum of the final rest masses. 
EXECUTE: The minimum amount of available energy must be 

a p K K
2 2(938.3  MeV) + 493.7 MeV + 493.7 MeV = 2864 MeV = 2.864 GeVE m m m+ −= + + =  

Solving the available energy formula for Em gives ( )2 2 2
a 2 mE mc E mc= +  and 

2 2
2a

2

(2864 MeV)
938.3  MeV = 3432.6 MeV

2 2(938.3  MeV)m

E
E mc

mc
= − = −  

Recalling that Em is the total energy of the proton, including its rest mass energy (RME), we have 

K = Em – RME = 3432.6 MeV – 938.3 MeV = 2494 MeV = 2.494 GeV 

Therefore the threshold kinetic energy is K = 2494 MeV = 2.494 GeV. 
EVALUATE: Considerably less energy would be needed if the experiment were done using colliding beams of 
protons. 

44.48. (a) The decay products must be neutral, so the only possible combinations are 0 0 0 0orπ π π π π π+ −  

(b) 0
0

23 142.3 MeV ,ηm m cπ− =  so the kinetic energy of the 0π  mesons is 142.3 MeV. For the other reaction, 

0
0

2( ) 133.1 MeV.K m m m m cη π π π+ −= − − − =  

44.49. IDENTIFY and SET UP: Apply conservation of linear momentum to the collision.  A photon has momentum 

/p h λ= , in the direction it is traveling.  The energy of a photon is 
hc

E pc
λ

= = .  All the mass of the electron and 

positron is converted to the total energy of the two photons, according to 2E mc= .  The mass of an electron and of 

a positron is 31
e 9.11 10  kgm −= ×  

EXECUTE: (a) In the lab frame the initial momentum of the system is zero, since the electron and positron have 
equal speeds in opposite directions.  According to momentum conservation, the final momentum of the system 
must also be zero.  A photon has momentum, so the momentum of a single photon is not zero. 
(b) For the two photons to have zero total momentum they must have the same magnitude of momentum and move 
in opposite directions.  Since E pc= , equal p means equal E. 
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(c) 2
ph e2 2E m c=  so 2

ph eE m c=  

ph

hc
E

λ
=  so 2

e

hc
m c

λ
=  and 

34

31 8
e

6.63 10  J s
2.43 pm

(9.11 10  kg)(3.00 10  m/s)

h

m c
λ

−

−

× ⋅= = =
× ×

 

These are gamma ray photons. 
EVALUATE: The total charge of the electron/positron system is zero and the photons have no charge, so charge is 
conserved in the particle-antiparticle annihilation. 

44.50. (a) If the π −  decays, it must end in an electron and neutrinos. The rest energy of π −  (139.6 MeV) is shared 
between the electron rest energy (0.511 MeV) and kinetic energy (assuming the neutrino masses are negligible). So 
the energy released is 139.6 MeV – 0.511 MeV = 139.1 MeV. 
(b) Conservation of momentum leads to the neutrinos carrying away most of the energy. 

44.51. (a) The baryon number is 0, the charge is e+ , the strangeness is 1, all lepton numbers are zero, and the particle is .K +  

(b) The baryon number is 0, the charge is e− , the strangeness is 0, all lepton numbers are zero, and the particle is .π −  
(c) The baryon numbers is –1, the charge is 0, the strangeness is zero, all lepton numbers are 0, and the particle is 
an antineutron. 
(d) The baryon number is 0, the charge is e+ , the strangeness is 0, the muonic lepton number is –1, all other 

lepton numbers are 0, and the particle is .μ+  

44.52. 
34

21 14
21

1.054 10  J s
7.6 10  s 1.39 10 J 87 keV

7.6 10 s
t E

t

−
− −

−

× ⋅Δ = × ⇒ Δ = = = × =
Δ ×

. 

5
2

0.087 MeV
2.8 10 .

3097 MeVψ

E

m c
−Δ = = ×  

44.53. 
34

22
6 19

(1.054 10  J s)
1.5 10  s.

(4.4 10  eV)(1.6 10  J/eV)E

−
−

−

× ⋅= = ×
Δ × ×

 

44.54. IDENTIFY and SET UP: +K K .φ −→ +  The total energy released is the energy equivalent of the mass decrease. 

(a) EXECUTE: The mass decrease is +( ) (K ) (K ).m m mφ −− −  The energy equivalent of the mass decrease is 
2 2 + 2( ) (K ) (K ).mc mc mcφ −− −  The rest mass energy 2mc  for the φ  meson is given in Problem 44.53, and the 

values for +K and K−  are given in Table 44.3. The energy released then is 1019.4 MeV 2(493.7 MeV)− =  

32.0 MeV.  The +K  gets half this, 16.0 MeV. 

EVALUATE: (b) Does the decay + 0K Kφ π−→ + +  occur? The energy equivalent of the + 0K K π−+ +  mass is 
493.7 MeV + 493.7 MeV + 135.0 MeV = 1122 MeV.  This is greater than the energy equivalent of the φ  mass. 
The mass of the decay products would be greater than the mass of the parent particle; the decay is energetically 
forbidden. 

(c) Does the decay +Kφ π −→ +  occur? The reaction +K Kφ −→ +  is observed. +K  has strangeness 1 and K−+  
has strangeness 1,−  so the total strangeness of the decay products is zero. If strangeness must be conserved we 

deduce that the φ  particle has strangeness zero. π −  has strangeness 0, so the product +K π −+  has strangeness 

1.−  The decay +Kφ π −→ +  violates conservation of strangeness. Does the decay +Kφ μ −→ +  occur? μ−  has 
strangeness 0, so this decay would also violate conservation of strangeness. 

44.55. (a) The number of protons in a kilogram is 
23

25
3

6.023 10 molecules mol
(1.00 kg) (2 protons molecule) 6.7 10 .

18.0 10 kg mol−

⎛ ⎞× = ×⎜ ⎟×⎝ ⎠
 

Note that only the protons in the hydrogen atoms are considered as possible sources of proton decay. The energy 

per decay is 2 10
p 938.3 MeV 1.503 10  J,m c −= = ×  and so the energy deposited in a year, per kilogram, is 

25 10 3
18

ln(2)
(6.7 10 ) (1 y) (1.50 10  J) 7.0 10  Gy 0.70 rad

1.0 10  y
− −⎛ ⎞

× × = × =⎜ ⎟×⎝ ⎠
 

(b) For an RBE of unity, the equivalent dose is (1) (0.70 rad) = 0.70 rem. 
44.56. IDENTIFY and SET UP: The total released energy is the equivalent of the mass decrease. Use conservation of 

linear momentum to relate the kinetic energies of the decay particles. 
EXECUTE: (a) The energy equivalent of the mass decrease is 

2 2 0 2( ) ( ) ( )mc mc mc π− −Ξ − Λ − 1321 MeV 1116 MeV 139.6 MeV 65 MeV= − − =  
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(b) The −Ξ  is at rest means that the linear momentum is zero. Conservation of linear momentum then says that the 
0  and π −Λ  must have equal and opposite momenta: 

0 0m v m vπ π− −Λ Λ
=  

0

0

m
v v

mπ
π

−

−

Λ
Λ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

Also, the sum of the kinetic energies of the 0 and π −Λ  must equal the total kinetic energy tot 65 MeVK =  

calculated in part (a): 

0totK K Kπ −Λ
= +  

0
21

tot2K m v Kπ π− −Λ
+ =  

Use the momentum conservation result: 

0

0 0

2

21
tot2

m
K m v K

mπ
π

−

−

Λ
Λ Λ

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
 

( )0

0 0 0
21

tot2

m
K m v K

mπ −

Λ
Λ Λ Λ

⎛ ⎞
+ =⎜ ⎟⎜ ⎟
⎝ ⎠

 

0

0 tot1
m

K K
mπ −

Λ
Λ

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
 

0

0

tot 65 MeV
7.2 MeV

1+ / 1 (1116 MeV)/(139.6 MeV)

K
K

m mπ −
Λ

Λ

= = =
+

 

0 tot  soK K Kπ −Λ
+ = 0tot 65 MeV 7.2 MeV 57.8 MeVK K Kπ − Λ

= − = − =  

The fraction for the 0 7.2 MeV
is 11%.

65 MeV
Λ =  

The fraction for the 
57.8 MeV

is 89%.
65 MeV

π − =  

EVALUATE: The lighter particle carries off more of the kinetic energy that is released in the decay than the 
heavier particle does. 

44.57. (a) For this model, , so ,
dR dR dt HR

HR H
dt R R

= = =  presumed to be the same for all points on the surface. 

(b) For constant ,θ .
dr dR

HR Hr
dt dt

θ θ= = =  

(c) See part (a), 0 .
dR dt

H
R

=  

(d) The equation 0

dR
H R

dt
=  is a differential equation, the solution to which, for constant 0 , is )H R(t =  

0
0 ,H tR e where 0R  is the value of R at 0t = . This equation may be solved by separation of variables, as 

0ln ( )
dR dt d

R H
R dt

= =  and integrating both sides with respect to time. 

(e) A constant 0H  would mean a constant critical density, which is inconsistent with uniform expansion. 

44.58. From Problem 44.57, .
r

r R Rθ
θ

= ⇒ =  So 
2

1 1
since 0.

dR dr r dθ dr dθ
dt θ dt θ dt θ dt dt

= − = =  

So 0

1 1 1 1
.

dR dr dr dr dR
v r H r

R dt Rθ dt r dt dt R dt
⎛ ⎞= = ⇒ = = =⎜ ⎟
⎝ ⎠

  Now 0
dv d r dR d dRθ
dθ dθ R dt dθ dt

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

dR
K

dt
θ⇒ =  where K  is a constant.  since 0

dR K K d
R t

dt dt

θ
θ θ

⎛ ⎞⇒ = ⇒ = =⎜ ⎟
⎝ ⎠

0

1 1
.

dR K
H

R dt Kt t

θ
θ

⇒ = = =  So the 

current value of the Hubble constant is 
1

T
where T is the present age of the universe. 

44.59. (a) For mass m, in Eq. 0 cm
cm 0 2

0 cm

(37.23) ,  ,  and so .
1m

v v
u v v v v

v v c

−′= − = =
−

 For mass 

cm cm, , 0,  so .MM u v v v v′= − = = −  
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(b) The condition for no net momentum in the center of mass frame is 0,m m M Mm v M vγ γ+ =  where 

andm Mγ γ correspond to the velocities found in part (a). The algebra reduces to 0 0( ) ,m m Mβ γ β β γ γ′= − where 

0 cm
0 ,  ,

v v

c c
β β ′= = and the condition for no net momentum becomes 0 0( ) M Mm Mβ β γ γ β γ′ ′− = , or 

0
0 2

0

0

11

m
M m M

m

ββ β
β

γ

′ = =
+ −+

. 0
cm 2

0

.
1 ( / )

mv
v

m M v c
=

+ −
 

(c) Substitution of the above expression into the expressions for the velocities found in part (a) gives the relatively 

simple forms 0 0 0 0
0 0

,m M

M m
v v v v .

m M m M
γ γ

γ γ
= = −

+ +
 After some more algebra, 

0 0

2 2 2 2
0 0

,
2 2

m M

m M M m

m M mM m M mM

γ γγ γ
γ γ

+ += =
+ + + +

, from which 2 2
02 .m Mm M m M mMγ γ γ+ = + +  This last 

expression, multiplied by 2,c  is the available energy aE in the center of mass frame, so that 
2 2 2 4 2 2 2 2 2 2
a 0 0( 2 ) ( ) ( ) (2 )( )E m M mMγ c mc Mc Mc mγ c= + + = + + = 2 2( )mc + 2 2 2( ) 2 ,mMc Mc E+ which is Eq.(44.9). 

44.60. 0 0n πΛ → +  

(a) 0 0
2 2 2 2

n( ) ( ) ( ) ( ) 1116 MeV 939.6 MeV 135.0 MeV 41.4 MeVE m c m c m c m cπΛ
= Δ = − = − − =  

(b) Using conservation of momentum and kinetic energy; we know that the momentum of the neutron and pion 
must have the same magnitude, np pπ= . 

2 2 2 2 2 2 2 2 2
n n n n n n n n n

2 2 2 2 2 2 2 2 2 2
n n n n n n

( ) ( ) ( ) ( )

( ) 2 ( ) 2 .

K E m c m c p c m c m c p c m c

K m c K m c K m c K K K m c K m c K m c Eπ π π π π π π π

= − = + − = + −

= + + − = + = + + + − =
2 2 2 2 2 2 2 2 2 2

n n n( ) 2 ( ) 2 2 2 .m c K m c K E m c K Em c EK m c Kπ π π π π π π+ + = + + + − −  Collecting terms we find: 
2 2 2 2

n n(2 2 2 ) 2K m c E m c E Em cπ π + + = +  

2(41.4 MeV) 2(41.4 MeV)(939.6 MeV)
35.62 MeV.

2(135.0 MeV) 2(41.4 MeV) 2(939.6 MeV)
Kπ

+
⇒ = =

+ +
 

So the fractional energy carried by the pion is 
35.62

0.86,
41.4

= and that of the neutron is 0.14. 
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