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 39.1. IDENTIFY and SET UP:   .h h
p mv

λ = =  For an electron, 319.11 10 kg.m −= ×  For a proton, 

271.67 10 kg.m −= ×  

EXECUTE:   (a) 
34

10
31 6

6.63 10 J s 1.55 10 m 0.155 nm
(9.11 10 kg)(4.70 10 m/s)

λ
−

−
−

× ⋅= = × =
× ×

 

(b) λ  is proportional to 1 ,
m

 so 
31

10 14e
p e 27

p

9.11 10 kg(1.55 10 m) 8.46 10 m.
1.67 10 kg

m
m

λ λ
−

− −
−

⎛ ⎞ ⎛ ⎞×= = × = ×⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
 

EVALUATE:   For the same speed the proton has a smaller de Broglie wavelength. 

 39.2. IDENTIFY and SET UP:   For a photon, .hcE
λ

=  For an electron or proton, hp
λ

=  and 
2

,
2
pE
m

=  so 

2

2 .
2

hE
mλ

=  

EXECUTE:   (a) 
15 8

9
(4.136 10 eV s)(3.00 10 m/s) 6.2 keV

0.20 10 m
hcE
λ

−

−
× ⋅ ×= = =

×
 

(b) 
22 34

18
2 9 31

6.63 10 J s 1 6.03 10 J 38 eV
2 0.20 10 m 2(9.11 10 kg)

hE
mλ

−
−

− −

⎛ ⎞× ⋅= = = × =⎜ ⎟⎜ ⎟× ×⎝ ⎠
 

(c) 
31

e
p e 27

p

9.11 10 kg(38 eV) 0.021eV
1.67 10 kg

mE E
m

−

−

⎛ ⎞ ⎛ ⎞×= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
 

EVALUATE:   For a given wavelength a photon has much more energy than an electron, which in turn has 
more energy than a proton. 

 39.3. IDENTIFY:   For a particle with mass, h
p

λ =  and 
2

.
2
pK
m

=  

SET UP:   191eV 1 60 10 J−= . ×  

EXECUTE:   (a) 
34

24
10

(6.63 10 J s) 2.37 10 kg m/s.
(2.80 10 m)

h hp
p

λ
λ

−
−

−
× ⋅= ⇒ = = = × ⋅
×

 

(b) 
2 24 2

18
31

(2.37 10 kg m/s) 3.08 10 J 19.3 eV.
2 2(9.11 10 kg)
pK
m

−
−

−
× ⋅= = = × =

×
 

EVALUATE:   This wavelength is on the order of the size of an atom. This energy is on the order of the 
energy of an electron in an atom. 
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 39.4. IDENTIFY:   For a particle with mass, h
p

λ =  and 
2

.
2
pE
m

=  

SET UP:   191eV 1.60 10 J−= ×  

EXECUTE:   
34

15
27 6 19

(6.63 10 J s) 7.02 10 m.
2 2(6.64 10 kg) (4.20 10 eV) (1.60 10 J/eV)

h h
p mE

λ
−

−
− −

× ⋅= = = = ×
× × ×

 

EVALUATE:   This wavelength is on the order of the size of a nucleus. 

 39.5. IDENTIFY and SET UP:   The de Broglie wavelength is .h h
p mv

λ = =  In the Bohr model, ( /2 ),nmvr n h π=  

so /(2 ).nmv nh rπ=  Combine these two expressions and obtain an equation for λ in terms of n. Then 

2 2 .n nr rh
nh n
π πλ ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

EXECUTE:   (a) For 10
1 1 01, 2 with 0.529 10 m, son r r aλ π −=  = = = ×  

10 102 (0.529 10 m) 3.32 10 m.λ π − −= × = ×  

12 ;rλ π=  the de Broglie wavelength equals the circumference of the orbit. 
(b) For 44, 2 /4.n rλ π= =  

2
0 4 0so 16 .nr n a r a= =  

10 9
0 02 (16 )/4 4(2 ) 4(3.32 10 m) 1.33 10 ma aλ π π − −= = = × = ×  

42 /4;rλ π=  the de Broglie wavelength is 1 1
4n

=  times the circumference of the orbit. 

EVALUATE:   As n increases the momentum of the electron increases and its de Broglie wavelength 
decreases. For any n, the circumference of the orbits equals an integer number of de Broglie wavelengths. 

 39.6. IDENTIFY:   h
p

λ =  

SET UP:   191eV 1.60 10 J.−= ×  An electron has mass 319.11 10 kg.−×  

EXECUTE:   (a) For a nonrelativistic particle, 
2

, so
2
pK
m

= .
2

h h
p Km

λ = =  

(b) 34 19 31 11(6.63 10 J s) / 2(800 eV)(1.60 10 J/eV)(9.11 10 kg) 4.34 10 m.− − − −× ⋅ × × = ×  
EVALUATE:   The de Broglie wavelength decreases when the kinetic energy of the particle increases. 

 39.7. IDENTIFY:   A person walking through a door is like a particle going through a slit and hence should 
exhibit wave properties. 
SET UP:   The de Broglie wavelength of the person is / .h mvλ =  
EXECUTE:   (a) Assume 75 kg and 1.0 m/s.m v= =  

34 36/ (6.626 10 J s)/[(75 kg)(1.0 m/s)] 8.8 10 mh mvλ − −= = × ⋅ = ×  
EVALUATE:   (b) A typical doorway is about 1 m wide, so the person’s de Broglie wavelength is much too 
small to show wave behavior through a “slit” that is about 3510  times as wide as the wavelength. Hence 
ordinary objects do not show wave behavior in everyday life. 

 39.8. IDENTIFY and SET UP:   Combining Eqs. 37.38 and 37.39 gives 2 1.p mc γ= −  

EXECUTE:   (a) 2 12( / )/ 1 4.43 10 m.h h mc
p

λ γ −= = − = ×  (The incorrect nonrelativistic calculation gives 

125.05 10 m.−× ) 

(b) 2 13( / )/ 1 7.07 10 m.h mc γ −− = ×  
EVALUATE:   The de Broglie wavelength decreases when the speed increases. 
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 39.9. IDENTIFY and SET UP:   A photon has zero mass and its energy and wavelength are related by Eq. (38.2). 
An electron has mass. Its energy is related to its momentum by 2 /2E p m=  and its wavelength is related to 
its momentum by Eq. (39.1). 

EXECUTE:   (a) photon:
34 8

19
(6.626 10 J s)(2.998 10 m/s)so 62.0 nm.

(20.0 eV)(1.602 10 J/eV)
hc hcE

E
λ

λ

−

−
× ⋅ ×

= = = =
×

 

electron: 2 /(2 ) so 2E p m p mE= = =  
31 19 242(9 109 10 kg)(20 0 eV)(1 602 10 J/eV) 2 416 10 kg m/s.− − −. × . . × = . × ⋅  / 0.274 nm.h pλ = =  

(b) photon: 19/R 7.946 10  J 4.96 eV.E hc −= = × =  
electron: 27/ so / 2.650 10 kg m/s.h p p hλ λ −= = = × ⋅  

2 24 5/(2 ) 3.856 10 J 2.41 10 eV.E p m − −= = × = ×  
(c) EVALUATE:   You should use a probe of wavelength approximately 250 nm. An electron with 

250 nmλ =  has much less energy than a photon with 250 nm,λ =  so is less likely to damage the 
molecule. Note that /h pλ =  applies to all particles, those with mass and those with zero mass. 

/E hf hc λ= =  applies only to photons and 2 /2E p m=  applies only to particles with mass. 
 39.10. IDENTIFY:   Knowing the de Broglie wavelength for an electron, we want to find its speed. 

SET UP:   1.00 mm,h h
p mv

λ = = =  319.11 10 kg.m −= ×  

EXECUTE:   
34

31 3
6.63 10 J s 0.728 m/s.

(9.11 10 kg)(1.00 10 m)
hv

mλ

−

− −
× ⋅= = =

× ×
 

EVALUATE:   Electrons normally move much faster than this, so their de Broglie wavelengths are much 
much smaller than a millimeter. 

 39.11. IDENTIFY and SET UP:   Use Eq. (39.1). 

EXECUTE:   
34

34
3

6.626 10 J s
3.90 10 m

(5.00 10 kg)(340 m/s)
h h
p mv

λ
−

−
−
× ⋅

= = = = ×
×

 

EVALUATE:   This wavelength is extremely short; the bullet will not exhibit wavelike properties. 
 39.12. IDENTIFY:   The kinetic energy of the electron is equal to the energy of the photon. We want to find the 

wavelengths of each of them. 
SET UP:   Both for particles with mass (electrons) and for massless particles (photons) the wavelength is 

related to the momentum p by .h
p

λ =  But for each type of particle there is a different expression that 

relates the energy E and momentum p. For an electron 
2

21
2 2

p
E mv

m
= =  but for a photon .E pc=  

EXECUTE:   photon: Ep
c

=  and hp
λ

=  so h E
cλ

=  and 
61.24 10 eV m 49.6 nm.

25 eV
hc
E

λ
−× ⋅= = =  

electron: Solving for p gives 2 .p mE=  This gives 
31 19 242(9.11 10 kg)(25 eV)(1.60 10 J/eV) 2.70 10 kg m/s.p − − −= × × = × ⋅  The wavelength is therefore 

34

24
6.63 10 J s

0.245 nm.
2.70 10 kg m/s

h
p

λ
−

−
× ⋅

= = =
× ⋅

 

EVALUATE:   The wavelengths are quite different. For the electron 

2
h
mE

λ =  and for the photon ,hc
E

λ =  

so for an electron λ  is proportional to 

1/2E−
 and for a photon λ  is proportional to 

1.E−
 It is incorrect to  

say 

Ep
c

=  for a particle such as an electron that has mass; the correct relation is 
2 2 2( )

.
E mc

p
c

−
=  
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 39.13. IDENTIFY:   The acceleration gives momentum to the electrons. We can use this momentum to calculate 
their de Broglie wavelength.  
SET UP:   The kinetic energy K of the electron is related to the accelerating voltage V by .K eV=  For an 

electron 
2

21
2 2

pE mv
m

= =  and .h
p

λ =  For a photon .hcE
λ

=  

EXECUTE:   (a) For an electron 
34

25
9

6.63 10 J s 1.33 10 kg m/s
5.00 10 m

hp
λ

−
−

−
× ⋅= = = × ⋅
×

 and 

2 25 2
21

31
(1.33 10 kg m/s) 9.71 10 J.

2 2(9.11 10 kg)
pE
m

−
−

−
× ⋅= = = ×

×
 

21

19
9.71 10 J 0.0607 V.
1.60 10 C

KV
e

−

−
×= = =
×

 The electrons 

would have kinetic energy 0.0607 eV. 

(b) 
6

9
1.24 10 eV m 248 eV.

5.00 10 m
hcE
λ

−

−
× ⋅= = =

×
 

(c) 219.71 10  JE −= ×   

so 
34 8

21
(6.63 10 J s)(3.00 10 m/s) 20.5 m.

9.71 10 J
hc
E

λ μ
−

−
× ⋅ ×= = =

×
 

EVALUATE:   If they have the same wavelength, the photon has vastly more energy than the electron. 

 39.14. IDENTIFY:   .h
p

λ =  Apply conservation of energy to relate the potential difference to the speed of the 

electrons. 

SET UP:   The mass of an electron is 319.11 10 kg.m −= ×  The kinetic energy of a photon is .hcE
λ

=  

EXECUTE:   (a) / / .h mv v h mλ λ= → =  Energy conservation: 21 .
2

e V mvΔ =  

2

2 2 34 2

2 19 31 9 2
(6.626 10 J s) 66.9 V.

2 2 2 2(1.60 10 C)(9.11 10 kg) (0.15 10 m)

hm
mv hmV

e e em
λ

λ

−

− − −

⎛ ⎞
⎜ ⎟ × ⋅⎝ ⎠Δ = = = = =

× × ×
 

(b) 
34 8

15
photon 9

(6.626 10 J s) (3.0 10 m/s) 1.33 10 J.
0.15 10 m

hcE hf
λ

−
−

−
× ⋅ ×= = = = ×

× photone V K EΔ = =  and 

15
photon

19
1.33 10 J

8310 V.
1.6 10 C

E
V

e

−

−
×

Δ = = =
×

 

EVALUATE:   The electron in part (b) has wavelength 0.0135 nm,
2

h h
p mE

λ = = =  much shorter than the 

wavelength of a photon of the same energy. 

 39.15. IDENTIFY:   For an electron, 

h
p

λ =  and 

21
2 .K mv=  For a photon, .hcE

λ
=  The wavelength should be 0.10 nm. 

SET UP:   For an electron, 319.11 10 kg.m −= ×  

EXECUTE:   (a) 0.10 nm.λ = 6/ so /( ) 7.3 10 m/s.p mv h v h mλ λ= = = = ×  

(b) 21 150 eV.
2

K mv= =  

(c) / 12 keV.E hc λ= =  

EVALUATE:   (d) The electron is a better probe because for the same λ it has less energy and is less 
damaging to the structure being probed. 
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39.16.  IDENTIFY:   The electrons behave like waves and are diffracted by the slit. 
SET UP:   We use conservation of energy to find the speed of the electrons, and then use this speed to find 
their de Broglie wavelength, which is / .h mvλ =  Finally we know that the first dark fringe for single-slit 
diffraction occurs when a sin .θ λ=  
EXECUTE:   (a) Use energy conservation to find the speed of the electron: 21

2 .mv eV=  

19
6

31
2 2(1.60 10 C)(100 V) 5.93 10 m/s

9.11 10 kg
eVv
m

−

−
×= = = ×

×
  

which is about 2% the speed of light, so we can ignore relativity. 
(b) First find the de Broglie wavelength: 

34
10

31 6
6.626 10 J s 1.23 10 m 0.123 nm

(9.11 10 kg)(5.93 10 m/s)
h

mv
λ

−
−

−
× ⋅= = = × =

× ×
 

For the first single-slit dark fringe, we have a sin ,θ λ=  which gives 
10

101.23 10 m 6.16 10 m 0.616 nm
sin sin(11.5 )

a λ
θ

−
−×= = = × =

°
 

EVALUATE:   The slit width is around 5 times the de Broglie wavelength of the electron, and both are much 
smaller than the wavelength of visible light. 

 39.17. IDENTIFY:   The intensity maxima are located by Eq. (39.4). Use h
p

λ =  for the wavelength of the 

neutrons. For a particle, 2 .p mE=  

SET UP:   For a neutron, 271.67 10 kg.m −= ×  

EXECUTE:   For 1,m = sin .
2
hd
mE

λ θ= =  

2 34 2
20

2 2 27 11 2 2
(6.63 10 J s) 6.91 10 J 0.432 eV.

2 sin 2(1.675 10 kg) (9.10 10 m) sin (28.6 )
hE

md θ

−
−

− −
× ⋅

= = = × =
× × °

 

EVALUATE:   The neutrons have 0.0436 nm,λ =  comparable to the atomic spacing. 

 39.18. IDENTIFY:   Intensity maxima occur when sin .d mθ λ= so sin .
2 2

h h mhd
p ME ME

λ θ= = =   

SET UP:   Here m is the order of the maxima, whereas M is the mass of the incoming particle. 

EXECUTE:   (a) 
34

31 19

(2)(6.63 10 J s)
2 sin 2(9.11 10 kg)(188 eV)(1.60 10 J/eV) sin(60.6 )

mhd
ME θ

−

− −

× ⋅= = =
× × °

 

102.06 10 m 0.206 nm.−× =  
(b) 1m =  also gives a maximum. 

34

31 19 10

(1)(6.63 10 J s)arcsin 25.8 .
2(9.11 10 kg)(188 eV)(1.60 10 J/eV)(2.06 10 m)

θ
−

− − −

⎛ ⎞× ⋅⎜ ⎟= = °
⎜ ⎟× × ×⎝ ⎠

 This is the only other 

one. If we let 3,m ≥ then there are no more maxima. 

(c) 
2 2 2 34 2

2 2 31 10 2 2

18

(1) (6.63 10 J s) .
2 sin 2(9.11 10 kg) (2.60 10 m) sin (60.6 )

7.49 10 J 46.8 eV.

m hE
Md θ

−

− −

−

× ⋅= =
× × °

= × =

  

Using this energy, if we let 2, then sin 1. Thus, there is no 2m mθ= > =  maximum in this case. 

EVALUATE:   As the energy of the electrons is lowered their wavelength increases and a given intensity 
maximum occurs at a larger angle. 
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 39.19. IDENTIFY:   The condition for a maximum is sin .d mθ λ= ,h h
p Mv

λ = =  so arcsin .mh
dMv

θ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

SET UP:   Here m is the order of the maximum, whereas M is the incoming particle mass. 

EXECUTE:   (a) 11 arcsin hm
dMv

θ ⎛ ⎞= ⇒ = ⎜ ⎟
⎝ ⎠

  

34

6 31 4
6.63 10 J sarcsin 2.07 .

(1.60 10 m)(9.11 10 kg)(1.26 10 m/s)

−

− −

⎛ ⎞× ⋅= = °⎜ ⎟⎜ ⎟× × ×⎝ ⎠
  

34

2 6 31 4
(2)(6.63 10 J s)2 arcsin 4.14 .

(1.60 10 m)(9.11 10 kg)(1.26 10 m/s)
m θ

−

− −

⎛ ⎞× ⋅= ⇒ = = °⎜ ⎟⎜ ⎟× × ×⎝ ⎠
  

(b) For small angles (in radians!) , soy Dθ≅ 1
radians(50.0 cm) (2.07 ) 1.81 cm,
180

y π⎛ ⎞≈ ° =⎜ ⎟°⎝ ⎠
 

2
radians(50.0 cm) (4.14 ) 3.61 cm
180

y π⎛ ⎞≈ ° =⎜ ⎟°⎝ ⎠
 and 2 1 3.61 cm 1.81cm 1.80 cm.y y− = − =  

EVALUATE:   For these electrons, 0.0577 m.h
mv

λ μ= = λ is much less than d and the intensity maxima 

occur at small angles. 

 39.20. IDENTIFY:   .h
p

λ =  Conservation of energy gives 
2

,
2
peV K
m

= =  where V is the accelerating voltage. 

SET UP:   The electron mass is 319.11 10 kg−×  and the proton mass is 271.67 10 kg.−×  

EXECUTE:   (a) 
2 2 2( / ) ( / ), so 419 V.

2 2 2
p h heV K V
m m me

λ λ= = = = =  

(b) The voltage is reduced by the ratio of the particle masses, 
31

27
9.11 10 kg(419 V) 0.229 V.
1.67 10 kg

−

−
× =
×

 

EVALUATE:   .
2

h h
p mE

λ = =  For the same ,λ  particles of greater mass have smaller E, so a smaller 

accelerating voltage is needed for protons. 

 39.21. IDENTIFY and SET UP:   For a photon 
25

ph
1.99 10 J m

.
hcE
λ λ

−× ⋅
= =  For an electron 

22 2

e 2
1 .

2 2 2
p h hE
m m mλ λ

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

EXECUTE:   (a) photon 
25

17
ph 9

1.99 10 J m 1.99 10 J
10.0 10 m

E
−

−
−

× ⋅= = ×
×

 

electron 
34 2

21
e 31 9 2

(6.63 10 J s) 2.41 10 J
2(9.11 10 kg)(10.0 10 m)

E
−

−
− −

× ⋅= = ×
× ×

 

17
ph 3

21
e

1.99 10 J 8.26 10
2.41 10 J

E
E

−

−
×= = ×
×

 

(b) The electron has much less energy so would be less damaging. 
EVALUATE:   For a particle with mass, such as an electron, 2~ .E λ−  For a massless photon 1~ .E λ−  
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39.22.  IDENTIFY:   The kinetic energy of the alpha particle is all converted to electrical potential energy at closest 
approach. The force on the alpha particle is the electrical repulsion of the nucleus. 

SET UP:   The electrical potential energy of the system is 1 2

0

1
4

q qU
rπε

=  and the kinetic energy is 

21
2 .K mv=  The electrical force is 2 5 mR = . (at closest approach). 

(a) Equating the initial kinetic energy and the final potential energy and solving for the separation radius  
r gives 

19 2
14

6
0 0

1 (92 ) (2 ) 1 (184) (1.60 10 C) 5.54 10 m.
4 4 (4.78 10 eV)(1.60 10  J/eV)

e er
Kπε πε

−
−

−19
×= = = ×

× ×
 

(b) The above result may be substituted into Coulomb’s law. Alternatively, the relation between the 

magnitude of the force and the magnitude of the potential energy in a Coulomb field is . ,
U

F U K
r

= =   

so 
6 19

14
(4.78 10 eV) (1.6 10 J/ev)

13.8 N.
(5.54 10 m)

KF
r

−

−
× ×

= = =
×

 

EVALUATE:   The result in part (a) is comparable to the radius of a large nucleus, so it is reasonable. The 
force in part (b) is around 3 pounds, which is large enough to be easily felt by a person. 

 39.23. (a) IDENTIFY:   If the particles are treated as point charges, 1 2

0

1 .
4

q qU
rπ

=
�

 

SET UP:   1 2q e=  (alpha particle); 2 82q e=  (gold nucleus); r is given so we can solve for U. 

EXECUTE:   
19 2

9 2 2 13
14

(2)(82)(1.602 10 C)(8.987 10 N m /C ) 5.82 10 J
6.50 10 m

U
−

−
−
×= × ⋅ = ×

×
 

13 19 65.82 10  J (1 eV/1.602 10  J) 3.63 10  eV 3.63 MeVU − −= × × = × =  
(b) IDENTIFY:   Apply conservation of energy: 1 1 2 2.K U K U+ = +  
SET UP:   Let point 1 be the initial position of the alpha particle and point 2 be where the alpha particle 
momentarily comes to rest. Alpha particle is initially far from the lead nucleus implies 1r ≈ ∞  and 1 0.U =  
Alpha particle stops implies 2 0.K =  

EXECUTE:   Conservation of energy thus says 13
1 2 5.82 10 J 3.63 MeV.K U −= = × =  

(c) 21
2

K mv=  so 
13

7
27

2 2(5.82 10 J)
1.32 10 m/s

6.64 10 kg
Kv
m

−

−
×

= = = ×
×

 

EVALUATE:   / 0.044,v c = so it is ok to use the nonrelativistic expression to relate K and v. When the alpha 
particle stops, all its initial kinetic energy has been converted to electrostatic potential energy. 

 39.24. IDENTIFY:   The minimum energy the photon would need is the 3.84 eV bond strength. 

SET UP:   The photon energy hcE hf
λ

= =  must equal the bond strength. 

EXECUTE:   3.80 eV,hc
λ

=  so 

15 8(4.136 10 eV s)(3.00 10 m/s) 327 nm.
3.80 eV 3.80 eV

hcλ
−× ⋅ ×= = =  

EVALUATE:   Any photon having a shorter wavelength would also spell doom for the Horta! 
 39.25. IDENTIFY and SET UP:   Use the energy to calculate n for this state. Then use the Bohr equation, Eq. (39.6), 

to calculate L. 
EXECUTE:   2(13.6 eV)/ ,nE n= −  so this state has 13.6/1.51 3.n = =  In the Bohr model, L n= =  so for 

this state 34 23 3 16 10 kg m /s.L ћ −= = . × ⋅  
EVALUATE:   We will find in Section 41.1 that the modern quantum mechanical description gives a different result. 
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 39.26. IDENTIFY and SET UP:   For a hydrogen atom 2
13.6 eV.nE

n
= − ,hcE

λ
Δ =  where EΔ is the magnitude of  

the energy change for the atom and λ is the wavelength of the photon that is absorbed or emitted. 

EXECUTE:   4 1 2 2
1 1(13.6 eV) 12.75 eV.
4 1

E E E ⎛ ⎞Δ = − = − − = +⎜ ⎟
⎝ ⎠

 

15 8(4.136 10 eV s)(3.00 10 m/s) 97.3 nm.
12.75 eV

hc
E

λ
−× ⋅ ×= = =

Δ
153.08 10 Hz.cf

λ
= = ×  

EVALUATE:   This photon is in the ultraviolet region of the electromagnetic spectrum. 

 39.27. IDENTIFY:   The force between the electron and the nucleus in 3Be +  is 
2

2
0

1 ,
4

ZeF
rπ

=
�

 where 4Z =  is the 

nuclear charge. All the equations for the hydrogen atom apply to 3Be +  if we replace 2e  by 2.Ze  
(a) SET UP:   Modify Eq. (39.14). 

EXECUTE:   
4

2 2 2
0

1
8n
meE
n h

= −
�

 (hydrogen) becomes 

2 2 4
2 2 3

2 2 2 2 2 2 2
0 0

1 ( ) 1 13 60 eV (for Be )
8 8n

m Ze meE Z Z
n h n h n

+⎛ ⎞ .⎛ ⎞= − = − = −  ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠� �
 

The ground-level energy of 3Be +  is 1 2
13.60 eV16 218 eV.

1
E ⎛ ⎞= − = −⎜ ⎟

⎝ ⎠
 

EVALUATE:   The ground-level energy of 3Be +  is 2 16Z =  times the ground-level energy of H. 
(b) SET UP:   The ionization energy is the energy difference between the n → ∞  level energy and the 

1n =  level energy. 

EXECUTE:   The n → ∞  level energy is zero, so the ionization energy of 3Be +  is 218 eV. 
EVALUATE:   This is 16 times the ionization energy of hydrogen. 

(c) SET UP:   2 2
1 2

1 1 1R
n nλ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 just as for hydrogen but now R has a different value. 

EXECUTE:   
4

7 1
H 2 3

0
1.097 10 m

8
meR

h c
−= = ×

�
 for hydrogen becomes 

4
2 7 1 8 1

Be 2 3
0

16(1.097 10 m ) 1.755 10 m
8

meR Z
h c

− −= = × = ×
�

 for 3Be .+  

For 2n =  to Be Be2 2
1 1 11, 3 /4.

1 2
n R R

λ
⎛ ⎞= = − =⎜ ⎟
⎝ ⎠

 

8 1 9
Be4/(3 ) 4/(3(1.755 10 m )) 7.60 10 m 7.60 nm.Rλ − −= = × = × =  

EVALUATE:   This wavelength is smaller by a factor of 16 compared to the wavelength for the 
corresponding transition in the hydrogen atom. 

(d) SET UP:   Modify Eq. (39.8): 
2 2

0 2n
n hr
meπ

= �  (hydrogen). 

EXECUTE:   
2 2

0 2( )n
n hr
m Zeπ

= � 3(Be ).+  

EVALUATE:   For a given n the orbit radius for 3Be + is smaller by a factor of 4Z =  compared to the 
corresponding radius for hydrogen. 
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39.28.  IDENTIFY and SET UP:   2
13 6 eV .nE

n
.= −  

EXECUTE:   (a) 2
13 6 eV

nE
n
.= −  and 1 2

13 6 eV .
( 1)nE
n+

.
= −

+
 

2 2

1 2 2 2 2
1 1 ( 1)( 13.6 eV) (13.6 eV) .

( 1) ( )( 1)n n
n nE E E

n n n n+
⎡ ⎤ − +Δ = − = − − = −⎢ ⎥

+ +⎣ ⎦
2 2
2 1(13 6 eV) .

( )( 1)
nE

n n
+

Δ = .
+

 

As n becomes large, 4 3
2 2(13 6 eV) (13 6 eV) .nE
n n

Δ → . = .  Thus EΔ  becomes small as n becomes large. 

(b) 2
1nr n r=  so the orbits get farther apart in space as n increases. 

EVALUATE:   There are an infinite number of bound levels for the hydrogen atom. As n increases the 
energies of the bound levels converge to the ionization threshold. 

 39.29. IDENTIFY:   Apply Eqs. (39.8) and (39.9). 
SET UP:   The orbital period for state n is the circumference of the orbit divided by the orbital speed. 

EXECUTE:   (a) 
2 19 2

6
1 34

0 0

1 (1.60 10 C)
: 1 2.18 10 m/s.

2 2 (6.63 10 J s)n
ev n v
nhε ε

−

−
×

= = ⇒ = = ×
× ⋅

 

6 51 1
2 32 1.09 10 m/s. 3 7.27 10 m/s.

2 3
v vn v n v= ⇒ = = × = ⇒ = = ×  

(b) Orbital period 
2 2 2 2 3 3

0 0
2 4

0

2 2 / 4 .
1/ /2

n

n

r n h me n h
v e nh me
π ε ε

ε
= = =

⋅
  

2 34 3
160

1 31 19 4

3 15 3 15
2 1 3 1

4 (6.63 10 J s)1 1.53 10 s
(9.11 10 kg)(1.60 10 C)

2: (2) 1.22 10 s. 3: (3) 4.13 10 s.

n T

n T T n T T

ε −
−

− −

− −

× ⋅= ⇒ = = ×
× ×

= = = × = = = ×

 

(c) number of orbits 
8

6
15

1 0 10 s 8 2 10 .
1 22 10 s

−

−
. ×= = . ×

. ×
 

EVALUATE:   The orbital speed is proportional to1/ ,n the orbital radius is proportional to 2,n  and the 

orbital period is proportional to 3.n  
 39.30. IDENTIFY and SET UP:   The ionization threshold is at 0.E = The energy of an absorbed photon equals the 

energy gained by the atom and the energy of an emitted photon equals the energy lost by the atom. 
EXECUTE:   (a) 0 ( 20 eV) 20 eVEΔ = − − =  

(b) When the atom in the 1n =  level absorbs an 18-eV photon, the final level of the atom is n = 4.  
The possible transitions from 4n =  and corresponding photon energies are 4 3, 3 eV;n n= → =  

4 2, 8 eV;n n= → =  4 1,18 eV.n n= → =  Once the atom has gone to the 3n =  level, the following 
transitions can occur: 3 2, 5 eV;n n= → =  3 1,15 eV.n n= → =  Once the atom has gone to the 2n =  
level, the following transition can occur: 2 1,10 eV.n n= → =  The possible energies of emitted photons 
are: 3 eV, 5 eV, 8 eV, 10 eV, 15 eV and 18 eV. 
(c) There is no energy level 8 eV higher in energy than the ground state, so the photon cannot be absorbed. 
(d) The photon energies for 3 2n n= → =  and for 3 1n n= → =  are 5 eV and 15 eV. The photon energy 
for 4 3n n= → =  is 3 eV. The work function must have a value between 3 eV and 5 eV. 
EVALUATE:   The atom has discrete energy levels, so the energies of emitted or absorbed photons have 
only certain discrete energies. 
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39.31.  IDENTIFY and SET UP:   The wavelength of the photon is related to the transition energy i fE E−  of the 

atom by i f
hcE E
λ

− =  where 61.240 10 eV m.hc −= × ⋅  

EXECUTE:   (a) The minimum energy to ionize an atom is when the upper state in the transition has 0,E =  

so 1 17 50 eV.E = − .  For 5 1,n n= → = 73.86 nmλ = and 
6

5 1 9
1 240 10 eV m 16 79 eV.

73 86 10 m
E E

−

−
. × ⋅− = = .

. ×
 

5 17 50 eV 16 79 eV 0 71eV.E = − . + . = − .  For 4 1,n n= → = 75.63 nmλ =  and 4 1 10 eV.E = − .  For 
3 1,n n= → = 79.76 nmλ =  and 3 1 95 eV.E = − .  For 2 1,n n= → = 94.54 nmλ = and 2 4 38 eV.E = − .  

(b) i f 4 2 1.10 eV ( 4.38 eV) 3.28 eVE E E E− = − = − − − = and 
6

i f

1.240 10 eV m 378 nm
3.28 eV

hc
E E

λ
−× ⋅= = =

−
 

EVALUATE:   The 4 2n n= → =  transition energy is smaller than the 4 1n n= → =  transition energy so 
the wavelength is longer. In fact, this wavelength is longer than for any transition that ends in the 1n =  
state. 

39.32.  IDENTIFY and SET UP:   For the Lyman series the final state is 1n =  and the wavelengths are given by 

2 2
1 1 1 , 2, 3, .

1
R n

nλ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

…  For the Paschen series the final state is 3n =  and the wavelengths are given 

by 2 2
1 1 1 , 4, 5, .

3
R n

nλ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

…  7 11 097 10 m .R −= . ×  The longest wavelength is for the smallest n and  

the shortest wavelength is for .n → ∞  

EXECUTE:   Lyman: Longest: 2 2
1 1 1 3 .

41 2
RR

λ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 7 1
4 121.5 nm.

3(1.097 10 m )
λ −= =

×
 

Shortest: 2 2
1 1 1 .

1
R R

λ
⎛ ⎞= − =⎜ ⎟∞⎝ ⎠ 7 1

1 91.16 nm
1.097 10 m

λ −= =
×

 

Paschen: Longest: 2 2
1 1 1 7 .

1443 4
RR

λ
⎛ ⎞= − =⎜ ⎟
⎝ ⎠ 7 1

144 1875 nm.
7(1.097 10 m )

λ −= =
×

 

Shortest: 2 2
1 1 1 .

93
RR

λ
⎛ ⎞= − =⎜ ⎟∞⎝ ⎠

 

EVALUATE:   The Lyman series is in the ultraviolet. The Paschen series is in the infrared. 
 39.33. IDENTIFY:   Apply conservation of energy to the system of atom and photon. 

SET UP:   The energy of a photon is .hcEγ λ
=  

EXECUTE:   (a) 
34 8

19
7

(6.63 10  J s)(3.00 10 m/s) 2.31 10 J 1.44 eV.
8.60 10 m

hc
Eγ λ

−
−

−
× ⋅ ×

= = = × =
×

 So the internal 

energy of the atom increases by 1 44 eV to 6 52 eV 1 44 eV 5 08 eV.E. = − . + . = − .  

(b) 
34 8

19
7

(6.63 10 J s)(3.00 10 m/s) 4.74 10 J 2.96 eV.
4.20 10 m

hc
Eγ λ

−
−

−
× ⋅ ×

= = = × =
×

 So the final internal energy of 

the atom decreases to 2 68 eV 2 96 eV 5 64 eV.E = − . − . = − .  
EVALUATE:   When an atom absorbs a photon the energy of the atom increases. When an atom emits a 
photon the energy of the atom decreases. 

 39.34. IDENTIFY and SET UP:   Balmer’s formula is 2 2
1 1 1 .

2
R

nλ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 For the Hγ  spectral line 5.n =  Once we 

have ,λ calculate f from /f c λ=  and E from Eq. (38.2). 

EXECUTE:   (a) 2 2
1 1 1 25 4 21 .

100 1002 5
R R R

λ
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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Thus 7
7

100 100 m 4.341 10 m 434.1 nm.
21 21(1.097 10 )R

λ −= = = × =
×

 

(b) 
8

14
7

2.998 10 m/s 6.906 10 Hz
4.341 10 m

cf
λ −

×= = = ×
×

 

(c) 34 14 19(6.626 10 J s)(6.906 10 Hz) 4.576 10 J 2.856 eVE hf − −= = × ⋅ × = × =  
EVALUATE:   Section 39.3 shows that the longest wavelength in the Balmer series (H )α  is 656 nm and the 
shortest is 365 nm. Our result for Hγ  falls within this range. The photon energies for hydrogen atom 
transitions are in the eV range, and our result is of this order. 

 39.35. IDENTIFY:   We know the power of the laser beam, so we know the energy per second that it delivers. The 
wavelength of the light tells us the energy of each photon, so we can use that to calculate the number of 
photons delivered per second. 

SET UP:   The energy of each photon is 
251.99 10 J m .hcE hf

λ λ

−× ⋅= = =  The power is the total energy per 

second and the total energy totE  is the number of photons N times the energy E of each photon. 

EXECUTE:   610.6 10 m,λ −= × so 201.88 10 J.E −= ×  totE NEP
t t

= =  so  

3
21

20
0.100 10 W 5 32 10 photons/s.
1.88 10 J

N P
t E −

×= = = . ×
×

 

EVALUATE:   At over 1021 photons per second, we can see why we do not detect individual photons. 
 39.36. IDENTIFY:   We can calculate the energy of a photon from its wavelength. Knowing the intensity of the 

beam and the energy of a single photon, we can determine how many photons strike the blemish with each 
pulse. 

SET UP:   The energy of each photon is 
251.99 10 J m .hc

E hf
λ λ

−× ⋅
= = =  The power is the total energy per 

second and the total energy totE  is the number of photons N times the energy E of each photon. The 

photon beam is spread over an area 2A rπ=  with 2 5 mm.r = .  

EXECUTE:   (a) 585 nmλ =  and 193 40 10 J 2 12 eV.hcE
λ

−= = . × = .  

(b) totE NEP
t t

= =  so 
3

16
19

(20.0 W)(0.45 10 s) 2.65 10 photons.
3.40 10 J

PtN
E

−

−
×= = = ×

×
 These photons are spread 

over an area 2,rπ  so the number of photons per 2mm  is 
16

15 2
2

2.65 10 photons 1.35 10 photons/mm .
(2.5 mm)π
×

= ×  

EVALUATE:   With so many photons per 2mm ,  it is impossible to detect individual photons. 
 39.37. IDENTIFY and SET UP:   The number of photons emitted each second is the total energy emitted divided by 

the energy of one photon. The energy of one photon is given by Eq. (38.2). E Pt=  gives the energy 
emitted by the laser in time t. 
EXECUTE:   In 1.00 s the energy emitted by the laser is 3 3(7.50 10 W)(1.00 s) 7.50 10 J.− −× = ×  

The energy of each photon is 
34 8

20
6

(6.626 10 J s)(2.998 10 m/s) 1.874 10 J.
10.6 10 m

hc
E

λ

−
−

−
× ⋅ ×

= = = ×
×

 

Therefore 
3

17
20

7 50 10 J/s 4 00 10 photons/s
1 874 10 J/photon

−

−
. × = . ×

. ×
 

EVALUATE:   The number of photons emitted per second is extremely large. 
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 39.38. IDENTIFY and SET UP:   Visible light has wavelengths from about 400 nm to about 700 nm. The energy of 

each photon is 
251.99 10 J m.hcE hf

λ λ

−× ⋅= = =  The power is the total energy per second and the total 

energy totE  is the number of photons N times the energy E of each photon. 
EXECUTE:   (a) 193 nm is shorter than visible light so is in the ultraviolet. 

(b) 181.03 10 J 6.44 eVhcE
λ

= = × =  

(c) totE NEP
t t

= =  so 

3 9
7

18
(1.50 10 W)(12.0 10 s) 1.75 10 photons

1.03 10 J
PtN
E

− −

−
× ×= = = ×

×
 

EVALUATE:   A very small amount of energy is delivered to the lens in each pulse, but this still 
corresponds to a large number of photons. 

 39.39. IDENTIFY:   Apply Eq. (39.18): 5 3( )/5

3

s pE E kTs

p

n e
n

− −=  

SET UP:   5 320 66 eV and 18 70 eVs pE E= . = .  

EXECUTE:   19 19
5 3 20 66 eV 18 70 eV 1 96 eV(1 602 10 J/1eV) 3 140 10 Js pE E − −− = . − . = . . × = . ×  

(a) 
19 23(3 140 10 J)/[(1 38 10 J/K)(300 K)] 75 79 335

3
1 2 10s

p

n e e
n

− −− . × . × − . −= = = . ×  

(b) 
19 23(3 140 10 J)/[(1 38 10 J/K)(600 K)] 37 90 175

3
3 5 10s

p

n e e
n

− −− . × . × − . −= = = . ×  

(c) 
19 23(3 140 10 J)/[(1 38 10 J/K)(1200 K)] 18 95 95

3
5 9 10s

p

n e e
n

− −− . × . × − . −= = = . ×  

(d) EVALUATE:   At each of these temperatures the number of atoms in the 5s excited state, the initial state for 
the transition that emits 632.8 nm radiation, is quite small. The ratio increases as the temperature increases. 

 39.40. IDENTIFY:   Apply Eq. (39.18). 
SET UP:   The energy of each of these excited states above the ground state is / ,hc λ where λ is the 
wavelength of the photon emitted in the transition from the excited state to the ground state. 

EXECUTE:   3/ 2 2 3/ 2 2 1/ 2

1/ 2

2 ( )/

2
.P PP E E KT

P

n
e

n
− −=  From the diagram 

34 8
19

3/2 g 7
1

34 8
19

1/2 g 3/2 1/27
2

19 19 22

(6 626 10 J)(2.998 10 m/s) 3 373 10 J.
5 890 10 m

(6.626 10 J)(2.998 10 m/s) 3.369 10 J. So
5.896 10 m

3.373 10 J 3.369 10 J 4.00 10 J.

hcE

hcE E

λ

λ

−
−

− −

−
−

− −−

− − −

. × ×Δ = = = . ×
. ×

× ×Δ = = = × Δ =
×

× − × = ×

 

22 23
3/ 2

1/ 2

2 (4.00 10 J)/(1.38 10 J/K 500 K)

2
0.944.P

P

n
e

n
− −− × × ⋅= =  So more atoms are in the 1/22P state. 

EVALUATE:   At this temperature 216 9 10 J.kT −= . ×  This is greater than the energy separation between the 
states, so an atom has almost equal probability for being in either state, with only a small preference for the 
lower energy state. 

 39.41. IDENTIFY:   Energy radiates at the rate 4.H Ae Tσ=  
SET UP:   The surface area of a cylinder of radius r and length l is 2 .A rlπ=  

EXECUTE:   (a) 
1/41/4

3 8 2 4
100 W .

2 (0.20 10 m)(0.30 m)(0.26)(5.671 10 W/m K )
HT

Aeσ π − −

⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎜ ⎟× × ⋅⎝ ⎠ ⎝ ⎠
 

32.06 10 K.T = ×  
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(b) 3
m 2.90 10 m K;Tλ −= × ⋅ m 1410 nm.λ =  

EVALUATE:   (c) mλ is in the infrared. The incandescent bulb is not a very efficient source of visible light 
because much of the emitted radiation is in the infrared. 

 39.42. IDENTIFY:   Apply Eq. (39.21) and .c f λ=  

SET UP:   T in kelvins gives λ  in meters. 

EXECUTE:   (a) 
3

11
m

m

2.90 10 m K 0.966 mm, and 3 10 10 Hz.
3.00 K

cfλ
λ

−× ⋅= = = = . ×  

(b) A factor of 100 increase in the temperature lowers mλ by a factor of 100 to 9.66 mμ and raises the 

frequency by the same factor, to 133.10 10 Hz.×  

(c) Similarly, m 966 nmλ =  14and 3 10 10  Hzf = . × .  
EVALUATE:   mλ  decreases when T increases, as explained in the textbook. 

 39.43. IDENTIFY and SET UP:   The wavelength mλ  where the Planck distribution peaks is given by Eq. (39.21). 

EXECUTE:   
3

3
m

2 90 10 m K 1 06 10 m 1 06 mm.
2 728 K

λ
−

−. × ⋅= = . × = .
.

 

EVALUATE:   This wavelength is in the microwave portion of the electromagnetic spectrum. This radiation 
is often referred to as the “microwave background” (Section 44.7). Note that in Eq. (39.21), T must be in 
kelvins. 

 39.44. IDENTIFY and SET UP:   Apply Eq. (39.21). 

EXECUTE:   
3 3

3
9

m

2.90 10 m K 2.90 10 m K
7.25 10 K.

400 10 m
T

λ

− −

−
× ⋅ × ⋅

= = = ×
×

 

EVALUATE:   400 nm 0 4 m.μ= .  This is shorter than any of the mλ values shown in Figure 39.32 in the 
textbook, and the temperature is therefore higher than those in the figure. 

 39.45. IDENTIFY:   Since the stars radiate as blackbodies, they obey the Stefan-Boltzmann law and Wien’s 
displacement law. 

SET UP:   The Stefan-Boltzmann law says that the intensity of the radiation is 4,I Tσ=  so the total 

radiated power is 4.P ATσ=  Wien’s displacement law tells us that the peak-intensity wavelength is 
m (constant)/ .Tλ =  

EXECUTE:   (a) The hot and cool stars radiate the same total power, so the Stefan-Boltzmann law gives 
4 4 2 4 2 4 2 4 4 4

h h c c h h c c h c h h4 4 4 (3 ) 9 3 1.7 ,A T A T R T R T R T T T T T Tσ σ π π π= ⇒ = = ⇒ = ⇒ = =  rounded to two 
significant digits. 
(b) Using Wien’s law, we take the ratio of the wavelengths, giving 

m c

m h

(hot) 1 0.58,
(cool) 3 3

T T
T T

λ
λ

= = = =  rounded to two significant digits. 

EVALUATE:   Although the hot star has only1/9 the surface area of the cool star, its absolute temperature 
has to be only 1.7 times as great to radiate the same amount of energy. 

 39.46. IDENTIFY:   Since the stars radiate as blackbodies, they obey the Stefan-Boltzmann law. 
SET UP:   The Stefan-Boltzmann law says that the intensity of the radiation is 4,I Tσ=  so the total 

radiated power is 4.P ATσ=  
EXECUTE:   (a) 4 8 2 4 4 10 2(5.67 10  W/m K )(24,000 K) 1.9 10 W/mI Tσ −= = × ⋅ = ×  

(b) Wien’s law gives –7
m (0.00290 m K)/(24,000 K) 1.2 10 m 20 nmλ = ⋅ = × =  

This is not visible since the wavelength is less than 400 nm. 
(c) 2 25 10 24 / (1.00 10 W)/(1.9 10 W/m )P AI R P Iπ= ⇒ = = × ×  

which gives 6
Sirius 6.51 10 m 6510 km.R = × =  
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6 9
Sirius sun/ (6.51 10 m)/(6.96 10 m) 0.0093,R R = × × = which gives 

Sirius sun sun0.0093 1%R R R= ≈  
(d) Using the Stefan-Boltzmann law, we have 

2 4 2 44 2 4
sun sun sun sun sun sun sun sun sun

4 2 4
Sirius Sirius sunSirius Sirius Sirius Sirius Sirius Sirius

4 5800 K 39
0 00935 24,000 K4

P A T R T R T P R
P P RA T R T R T

σ π
σ π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = ⋅ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ . ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

EVALUATE:   Even though the absolute surface temperature of Sirius B is about 4 times that of our sun, it 
radiates only 1/39  times as much energy per second as our sun because it is so small. 

39. 47. IDENTIFY:   Apply the Wien displacement law to relate mλ  and T. Apply the Stefan-Boltzmann law to 
relate the power output of the star to its surface area and therefore to its radius. 
SET UP:   For a sphere 24 .A rπ=  Since we assume a blackbody, 1.e =  

EXECUTE:   (a) Wien’s law: m .k
T

λ =
3

8
m

2 90 10 K m 9 7 10 m 97 nm.
30,000 K

λ
−

−. × ⋅= = . × =  This peak is in the 

ultraviolet region, which is not visible. The star is blue because the largest part of the visible light radiated 
is in the blue/violet part of the visible spectrum. 
(b) 4P ATσ=  (Stefan-Boltzmann law) 

26 8 2 4
2 4
W(100,000)(3.86 10 W) 5.67 10 (4 )(30,000 K)

m K
Rπ−⎛ ⎞× = ×⎜ ⎟

⎝ ⎠
 

98.2 10 mR = ×  
9

star sun 8
8.2 10 m/ 12
6.96 10 m

R R ×= =
×

 

EVALUATE:   (c) The visual luminosity is proportional to the power radiated at visible wavelengths. Much 
of the power is radiated nonvisible wavelengths, which does not contribute to the visible luminosity. 

 39.48. IDENTIFY:   Since we know only that the mosquito is somewhere in the room, there is an uncertainty in its 
position. The Heisenberg uncertainty principle tells us that there is an uncertainty in its momentum. 
SET UP:   The uncertainty principle is /2.xx pΔ Δ ≥ =  

EXECUTE:   (a) You know the mosquito is somewhere in the room, so the maximum uncertainty in its 
horizontal position is 5.0 m.xΔ =  

(b) The uncertainty principle gives /2,xx pΔ Δ ≥ =  and x xp m vΔ = Δ  since we know the mosquito’s mass. 
This gives /2,xxm vΔ Δ ≥ =  which we can solve for xvΔ to get the minimum uncertainty in .xv  

34
30

6
1.055 10 J s 7.0 10 m/s,

2 2(1.5 10 kg)(5.0 m)xv
m x

−
−

−
× ⋅Δ = = = ×

Δ ×
=  which is hardly a serious impediment! 

EVALUATE:   For something as “large” as a mosquito, the uncertainty principle places a negligible 
limitation on our ability to measure its speed. 

 39.49. (a) IDENTIFY and SET UP:   Use /2xx pΔ Δ ≥ =  to calculate xpΔ and obtain xvΔ from this. 

EXECUTE:   
34

29
6

1.055 10 J s
5.725 10 kg m/s.

2 2(1.00 10 m)xp
x

−
−

−
× ⋅

Δ ≥ = = × ⋅
Δ ×
=

 

29
325.275 10 kg m/s 4.40 10 m/s.

1200 kg
x

x
pv
m

−
−Δ × ⋅Δ = = = ×  

(b) EVALUATE:   Even for this very small xΔ the minimum xvΔ required by the Heisenberg uncertainty 
principle is very small. The uncertainty principle does not impose any practical limit on the simultaneous 
measurements of the positions and velocities of ordinary objects. 
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 39.50. IDENTIFY:   Since we know that the marble is somewhere on the table, there is an uncertainty in its 
position. The Heisenberg uncertainty principle tells us that there is therefore an uncertainty in its 
momentum. 
SET UP:   The uncertainty principle is /2.xx pΔ Δ ≥ =  

EXECUTE:   (a) Since the marble is somewhere on the table, the maximum uncertainty in its horizontal 
position is 1.75 m.xΔ =  
(b) Following the same procedure as in part (b) of Problem 39.48, the minimum uncertainty in the 

horizontal velocity of the marble is 
34

331.055 10 J s 3.01 10 m/s.
2 2(0.0100 kg)(1.75 m)xv

m x

−
−× ⋅Δ = = = ×

Δ
=  

(c) The uncertainty principle tells us that we cannot know that the marble’s horizontal velocity is exactly 
zero, so the smallest we could measure it to be is 333.01 10 m/s,−×  from part (b). The longest time it could 
remain on the table is the time to travel the full width of the table (1.75 m), so / (1.75 m)/xt x v= =  

33 32 25(3.01 10 m/s) 5.81 10 s 1.84 10 years.−× = × = ×  Since the universe is about 914 10×  years old, this 

time is about 
25

15
9

1 8 10 yr 1.3 10
14 10 yr
. × ≈ ×

×
 times the age of the universe! Don’t hold your breath! 

EVALUATE:   For household objects, the uncertainty principle places a negligible limitation on our ability 
to measure their speed. 

39.51.  IDENTIFY:   Heisenberg’s Uncertainty Principles tells us that /2.xx pΔ Δ ≥ =   
SET UP:   We can treat the standard deviation as a direct measure of uncertainty.  
EXECUTE:   10 25 35Here (1 2 10 m)(3 0 10 kg m/s) 3 6 10 J s,xx p − − −Δ Δ = . × . × ⋅ = . × ⋅  but 

35/2 5.28 10 J s.−= × ⋅=  Therefore /2, so the claim is .xx p not validΔ Δ < =  
EVALUATE:   The uncertainty product xx pΔ Δ  must increase by a factor of about 1.5 to become consistent 
with the Heisenberg Uncertainty Principle. 

 39.52. IDENTIFY:   Apply the Heisenberg Uncertainty Principle. 
SET UP:   .x xp m vΔ = Δ  
EXECUTE:   (a) ( )( ) /2,xx m vΔ Δ ≥ =  and setting (0.010)x xv vΔ =  and the product of the uncertainties equal 
to /2=  (for the minimum uncertainty) gives /[2 (0.010) ] 29.0 m/s.xv m x= Δ ==  
(b) Repeating with the proton mass gives 15.8 mm/s.  
EVALUATE:   For a given ,xpΔ xvΔ  is smaller for a proton than for an electron, since the proton has larger 
mass. 

 39.53. IDENTIFY:   Apply the Heisenberg Uncertainty Principle in the form /2.E tΔ Δ = =  
SET UP:   Let 35.2 10 s,t −Δ = ×  the lifetime of the state of the atom, and let EΔ  be the uncertainty in the 
energy of the state. 

EXECUTE:   
34

32 14
3

(1.055 10 J s) 1.01 10 J 6 34 10 eV.
2 2(5.2 10 s)

E
t

−
− −

−
× ⋅Δ > = = × = . ×

Δ ×
=  

EVALUATE:   The uncertainty in the energy is a very small fraction of the typical energy of atomic states, 
which is on the order of 1 eV. 

 39.54. IDENTIFY and SET UP:   The Heisenberg Uncertainty Principle says /2.xx pΔ Δ ≥ �  The minimum allowed 

xx pΔ Δ  is /2.=  .x xp m vΔ = Δ  

EXECUTE:   (a) /2.xm x vΔ Δ = =  
34

4
27 12

1.055 10 J s 1.6 10 m/s.
2 2(1.67 10 kg)(2.0 10 m)xv

m x

−

− −
× ⋅Δ = = = ×

Δ × ×
=  

(b) 
34

4
31

1.055 10 J s 2.3 10 m.
2 2(9.11 10 kg)(0.250 m/s)x

x
m v

−
−

−
× ⋅Δ = = = ×

Δ ×
=  

EVALUATE:   The smaller xΔ is, the larger xvΔ must be. 
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 39.55. (a) IDENTIFY and SET UP:   Apply Eq. (39.17): p1 2
r

1 2 p

207
207

e

e

m mm mm
m m m m

= =
+ +

 

EXECUTE:   
31 27

28
r 31 27

207(9.109 10 kg)(1.673 10 kg) 1.69 10 kg
207(9.109 10 kg) 1.673 10 kg

m
− −

−
− −

× ×= = ×
× + ×

 

We have used em  to denote the electron mass. 

(b) IDENTIFY:   In Eq. (39.14) replace em m=  by 
2
0

4
r

r 2 2
1: .

8n
m em E
n h

= −
�

 

SET UP:   Write as 
2
0

4
r H

2 2
H

1 ,
8n

m m eE
m n h

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠�

 since we know that 
2
0

4
H

2
1

13 60 eV.
8

m e
h

= .
�

 Here Hm  denotes 

the reduced mass for the hydrogen atom; 31 31
H 0.99946(9.109 10 kg) 9.104 10 kg.m − −= × = ×  

EXECUTE:   r
2

H

13 60 eV
n

mE
m n

⎛ ⎞ .⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

28

1 31
1 69 10 kg ( 13 60 eV) 186( 13 60 eV) 2 53 keV
9 109 10 kg

E
−

−
. ×= − . = − . = − .
. ×

 

(c) SET UP:   From part (b), r H
2

H
,n

m R chE
m n

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

where 7 1
H 1.097 10 mR −= ×  is the Rydberg constant 

for the hydrogen atom. Use this result in i f
hc E E
λ

= −  to find an expression for 1/ .λ  The initial level for 

the transition is the i 2n =  level and the final level is the f 1n =  level. 

EXECUTE:   r H H
2 2

H i f

hc m R ch R ch
m n nλ

⎛ ⎞⎛ ⎞
= − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

r
H 2 2

H f i

1 1 1m R
m n nλ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 

28
7 1 9 1

31 2 2
1 1.69 10 kg 1 1(1 097 10 m ) 1.527 10 m

9.109 10 kg 1 2λ

−
− −

−
× ⎛ ⎞= . × − = ×⎜ ⎟× ⎝ ⎠

 

0 655 nmλ = .  
EVALUATE:   From Example 39.6 the wavelength of the radiation emitted in this transition in hydrogen is 

122 nm. The wavelength for muonium is 3H

r
5 39 10m

m
−= . ×  times this. The reduced mass for hydrogen is 

very close to the electron mass because the electron mass is much less then the proton mass: 

p e/ 1836.m m =  The muon mass is 28
e207 1.886 10 kg.m −= ×  The proton is only about 10 times more 

massive than the muon, so the reduced mass is somewhat smaller than the muon mass. The muon-proton 
atom has much more strongly bound energy levels and much shorter wavelengths in its spectrum than for 
hydrogen. 

 39.56. IDENTIFY:   Apply conservation of momentum to the system of atom and emitted photon. 

SET UP:   Assume the atom is initially at rest. For a photon hcE
λ

=  and .hp
λ

=  

EXECUTE:   (a) Assume a non-relativistic velocity and conserve momentum .h hmv v
mλ λ

⇒ = ⇒ =  

(b) 
2 2

2
2

1 1 .
2 2 2

h hK mv m
m mλ λ

⎛ ⎞= = =⎜ ⎟
⎝ ⎠
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(c) 
2

2 .
22

K h h
E hc mcm

λ
λλ

= ⋅ =  Recoil becomes an important concern for small m  and small λ  since this 

ratio becomes large in those limits. 

(d) 
34 8

7
19

(6.63 10 J s)(3.00 10 m/s)
10.2 eV 1.22 10 m 122 nm.

(10.2 eV)(1.60 10 J/eV)
hc

E
E

λ
−

−
−

× ⋅ ×
= ⇒ = = = × =

×
 

34 2
27 8

27 7 2
(6.63 10 J s)

8.84 10 J 5.53 10 eV.
2(1.67 10 kg)(1.22 10 m)

K
−

− −
− −

× ⋅
= = × = ×

× ×
 

8
95.53 10 eV 5.42 10 . This is quite small so recoil can be neglected.

10.2 eV
K
E

−
−×= = ×  

EVALUATE:   For emission of photons with ultraviolet or longer wavelengths the recoil kinetic energy of 
the atom is much less than the energy of the emitted photon. 

 39.57. IDENTIFY and SET UP:   The Hα  line in the Balmer series corresponds to the 3n =  to 2n =  transition. 

2
13 6 eV .nE

n
.= −  .hc E

λ
= Δ  

EXECUTE:   (a) The atom must be given an amount of energy 3 1 2 2
1 1(13 6 eV) 12 1 eV.
3 1

E E ⎛ ⎞− = − . − = .⎜ ⎟
⎝ ⎠

 

(b) There are three possible transitions. 3 1:n n= → = 12 1eVEΔ = .  and 103 nm;hc
E

λ = =
Δ

 

3 2 :n n= → = 2 2
1 1(13 6 eV) 1 89 eV
3 2

E ⎛ ⎞Δ = − . − = .⎜ ⎟
⎝ ⎠

 and 657 nm;λ =  2 1:n n= → =  

2 2
1 1(13 6 eV) 10 2 eV
2 1

E ⎛ ⎞Δ = − . − = .⎜ ⎟
⎝ ⎠

 and 122 nm.λ =  

EVALUATE:   The larger the transition energy for the atom, the shorter the wavelength. 

 39.58. IDENTIFY:   Apply ex g( )/2

1
.E E kTn e

n
− −=  

SET UP:   ex 2
13 6 eV 3 4 eV.

4
E E − .= = = − . g 13 6 eV.E = − .  18

ex g 10 2 eV 1 63 10 J.E E −− = . = . ×  

EXECUTE:   (a) ex g 122

2 1 1

( )
. 10 .

ln( / )
E E nT

k n n n
−− −

= =  
18

23 12
(1 63 10 J) 4275 K.

(1 38 10 J/K) ln(10 )
T

−

− −
− . ×= =

. ×
 

(b) 82

1
10 .n

n
−=  

18

23 8
(1 63 10 J) 6412 K.

(1.38 10 J/K) ln(10 )
T

−

− −
− . ×= =
×

 

(c) 42

1
10 .n

n
−=  

18

23 4
(1.63 10 J)

12824 K.
(1 38 10 J/K) ln(10 )

T
−

− −
− ×

= =
. ×

 

EVALUATE:   (d) For absorption to take place in the Balmer series, hydrogen must start  in the 2n =  state. 
From part (a), colder stars have fewer atoms in this state leading to weaker absorption lines. 

 39.59. (a) IDENTIFY and SET UP:   The photon energy is given to the electron in the atom. Some of this energy 
overcomes the binding energy of the atom and what is left appears as kinetic energy of the free electron. 
Apply f i ,hf E E= −  the energy given to the electron in the atom when a photon is absorbed. 

EXECUTE:   The energy of one photon is 
34 8

9
(6.626 10 J s)(2.998 10 m/s)

85.5 10 m
hc
λ

−

−
× ⋅ ×=

×
 

18 192.323 10 J(1eV/1.602 10 J) 14.50 eV.hc
λ

− −= × × =  

The final energy of the electron is f i .E E hf= +  In the ground state of the hydrogen atom the energy of the 
electron is i 13 60 eV.E = − .  Thus f 13 60 eV 14 50 eV 0 90 eV.E = − . + . = .  
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(b) EVALUATE:   At thermal equilibrium a few atoms will be in the 2n =  excited levels, which have an 
energy of 13 6 eV/4 3 40 eV,10 2 eV− . = − . .  greater than the energy of the ground state. If an electron with 

3 40 eVE = − .  gains 14.5 eV from the absorbed photon, it will end up with 14 5 eV 3 4 eV 11 1 eV. − . = .  of 
kinetic energy. 

 39.60. IDENTIFY:   For circular motion, L mvr=  and 
2

.
v

a
r

=  Newton’s law of gravitation is g 2 ,mMF G
r

=   

with 11 2 26 67 10 N m /kg .G −= . × ⋅  

SET UP:   The period T is 2.00 h 7200 s.=  

EXECUTE:   (a) 2 2. .
2
h mvr rmvr n n v
π h T

π π= = =  So 

2 2 6 2
46

34
(2 ) (2π) (8.06 10 m) (20.0 kg) 1.08 10 .

(6.63 10 J . s)(7200 s)
r mn

hT
π

−
×= = = ×

×
 

(b) F ma=  gives 
2

2E E
2 . .mm v GmG m v

r rr
= =  The Bohr postulate says 

2 2
E

2 2 2so
2 4

nh Gm n hv
πmr r π m r

= =  

2
2

2 2
E

.
4

hr n
π Gm m

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 This is in the form 2,r kn=  with 

2 34 2
86

2 2 2 11 2 2 24 2
E

(6.63 10 J.s) 7.0 10 m
4 4 (6.67 10 N m /kg )(5.97 10 kg)

hk
Gm mπ π

−
−

−
×= = = ×

× ⋅ ×
 

(c) 2 2 46 86 39
1 ([ 1] ) (2 1) (2 1 08 10 1)(7 0 10 m) 1 5 10 mn nr r r k n n n k − −

+Δ = − = + − = + = [ . × ] + . × = . ×  

EVALUATE:   (d) rΔ  is exceedingly small, so the separation of adjacent orbits is not observable. 
(e) There is no measurable difference between quantized and classical orbits for this satellite; either 
method of calculation is totally acceptable. 

 39.61. IDENTIFY:   Assuming that Betelgeuse radiates like a perfect blackbody, Wien’s displacement and the 
Stefan-Boltzmann law apply to its radiation. 

SET UP:   Wien’s displacement law is 
3

peak
2.90 10 m K ,

T
λ

−× ⋅=  and the Stefan-Boltzmann law says that 

the intensity of the radiation is 4,I Tσ=  so the total radiated power is 4.P ATσ=  

EXECUTE:   (a) First use Wien’s law to find the peak wavelength: 
3 7

m (2.90 10 m K)/(3000 K) 9.667 10 mλ − −= × ⋅ = ×  

Call N the number of photons/second radiated. 4(energy per photon) .N IA ATσ× = =  

4
4 m

m

7 8 2 4 8 2 4

34 8

49

( / ) . .

(9.667 10 m)(5.67 10 W/m K )(4 )(600 6.96 10 m) (3000 K) .
(6.626 10 J s)(3.00 10 m/s)

5 10 photons/s.

ATN hc AT N
hc

N

N

λ σλ σ

π− −

−

= =

× × ⋅ × ×=
× ⋅ ×

= ×

  

(b) 
2 44 2 4

4B B B B B B S
4 2 4

S S SS S S S

4 600 3000 K 3 10
5800 K4

I A A T R T R
I A RA T R T

σ π
σ π

⎛ ⎞ ⎛ ⎞
= = = = ×⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

EVALUATE:   Betelgeuse radiates 30,000 times as much energy per second as does our sun! 
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39.62.  IDENTIFY:   The diffraction grating allows us to determine the peak-intensity wavelength of the light. Then 
Wien’s displacement law allows us to calculate the temperature of the blackbody, and the Stefan-
Boltzmann law allows us to calculate the rate at which it radiates energy. 
SET UP:   The bright spots for a diffraction grating occur when sin .d mθ λ=  Wien’s displacement law is 

3

peak
2.90 10 m K

,
T

λ
−× ⋅

=  and the Stefan-Boltzmann law says that the intensity of the radiation is 

4,I Tσ=  so the total radiated power is 4.P ATσ=  
EXECUTE:   (a) First find the wavelength of the light: 

7sin [1/(385,000 lines/m)] sin(11.6 ) 5.22 10 mdλ θ −= = ° = ×  

Now use Wien’s law to find the temperature: 3 7(2.90 10 m K)/(5.22 10 m) 5550 K.T − −= × ⋅ × =  
(b) The energy radiated by the blackbody is equal to the power times the time, giving 

4 ,U Pt IAt AT tσ= = = which gives 
4 6 8 2 4 2 4/( ) (12.0 10 J)/[(5.67 10 W/m K )(4 )(0.0750 m) (5550 K) ] 3.16 s.t U ATσ π−= = × × ⋅ =  

EVALUATE:   By ordinary standards, this blackbody is very hot, so it does not take long to radiate 12.0 MJ 
of energy. 

 39.63. IDENTIFY:   The energy of the peak-intensity photons must be equal to the energy difference between the 
1n =  and the 4n =  states. Wien’s law allows us to calculate what the temperature of the blackbody must 

be for it to radiate with its peak intensity at this wavelength. 

SET UP:   In the Bohr model, the energy of an electron in shell n is 2
13 6 eV ,nE

n
.= −  and Wien’s 

displacement law is 
3

m
2 90 10 m K .

T
λ

−. × ⋅=  The energy of a photon is / .E hf hc λ= =  

EXECUTE:   First find the energy ( E)Δ  that a photon would need to excite the atom. The ground state of 
the atom is 1n =  and the third excited state is 4.n =  This energy is the difference between the two energy 

levels. Therefore  2 2
1 1( 13.6 eV) 12.8 eV.
4 1

E ⎛ ⎞Δ = − − =⎜ ⎟
⎝ ⎠

 Now find the wavelength of the photon having 

this amount of energy. / 12.8 eVhc λ =  and 

15 8 8(4.136 10 eV s)(3.00 10 m/s)/(12.8 eV) 9.73 10 mλ − −= × ⋅ × = ×  

Now use Wien’s law to find the temperature. 8 4(0.00290 m K)/(9.73 10 m) 2.98 10 K.T −= ⋅ × = ×  
EVALUATE:   This temperature is well above ordinary room temperatures, which is why hydrogen atoms 
are not in excited states during everyday conditions. 

 39.64. IDENTIFY:   The blackbody radiates heat into the water, but the water also radiates heat back into the 
blackbody. The net heat entering the water causes evaporation. Wien’s law tells us the peak wavelength 
radiated, but a thermophile in the water measures the wavelength and frequency of the light in the water. 
SET UP:   By the Stefan-Boltzman law, the net power radiated by the blackbody is 

( )4 4
sphere water .dQ A T T

dt
σ= −  Since this heat evaporates water, the rate at which water evaporates is 

v .dQ dmL
dt dt

=  Wien’s displacement law is 
3

m
2 90 10 m K ,

T
λ

−. × ⋅=  and the wavelength in the water is 

w 0= / .nλ λ  

EXECUTE:   (a) The net radiated heat is ( )4 4
sphere water

dQ A T T
dt

σ= −  and the evaporation rate is 

v ,dQ dmL
dt dt

=  where dm is the mass of water that evaporates in time dt. Equating these two rates gives 
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( )4 4
v sphere water .dmL A T T

dt
σ= −  

( )2 4 4
sphere water

v

(4 )
.

R T Tdm
dt L

σ π −
=  

8 2 4 2 4 4
4

3

(5 67 10 W/m K )(4 )(0 120 m) (498 K) (373 K)
1 92 10 kg/s 0 193 g/s

2256 10 J/kg
dm
dt

π−
−

⎡ ⎤. × ⋅ . −⎣ ⎦= = . × = .
×

 

(b) (i) Wien’s law gives 
6

m (0.00290 m K)/(498 K) 5.82 10 mλ −= ⋅ = ×  

But this would be the wavelength in vacuum. In the water the thermophile organism would measure 
6 6

w 0 / (5.82 10 m)/1.333 4.37 10 m 4.37 mn µλ λ − −= = × = × =  

(ii) The frequency is the same as if the wave were in air, so 
8 6 13

0/ (3.00 10 m/s)/(5.82 10 m) 5.15 10 Hzf c λ −= = × × = ×  

EVALUATE:   An alternative way is to use the quantities in the water: 0
0

/ / ,
/

c nf c
n

λ
λ

= =  which gives the 

same answer for the frequency. An organism in the water would measure the light coming to it through the 
water, so the wavelength it would measure would be reduced by a factor of 1/ .n  

39.65.  IDENTIFY:   Apply conservation of energy and conservation of linear momentum to the system of atom 
plus photon. 
(a) SET UP:   Let trE  be the transition energy, phE be the energy of the photon with wavelength ,λ′  and 

rE  be the kinetic energy of the recoiling atom. Conservation of energy gives ph r tr .E E E+ =  

ph
hcE
λ

=
′

 so tr r
hc E E
λ

= −
′

 and 
tr r

.hc
E E

λ =′
−

 

EXECUTE:   If the recoil energy is neglected then the photon wavelength is tr/ .hc Eλ =  

tr r tr tr r tr

1 1 1 1
1 /

hchc
E E E E E E

λ λ λ
⎛ ⎞ ⎛ ⎞⎛ ⎞

′Δ = − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
 

1
r r

r tr tr tr

1 1 1
1 /

E E
E E E E

−
⎛ ⎞

= − ≈ +⎜ ⎟− ⎝ ⎠
 since r

tr
1E

E
�  

(We have used the binomial theorem, Appendix B.) 

Thus r

tr tr
,hc E

E E
λ

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
 or since 2r

tr / , .EE hc
hc

λ λ λ⎛ ⎞= Δ = ⎜ ⎟
⎝ ⎠

 

SET UP:   Use conservation of linear momentum to find r :E Assuming that the atom is initially at rest, the 
momentum rp  of the recoiling atom must be equal in magnitude and opposite in direction to the 
momentum ph /p h λ=  of the emitted photon: r/ .h pλ =  

EXECUTE:   
2
r

r ,
2
pE
m

=  where m is the mass of the atom, so 
2

r 2 .
2

hE
mλ

=  

Use this result in the above equation: 
2 2

2r
2 ;

22
E h h
hc hc mcm

λλ λ
λ

⎛ ⎞⎛ ⎞⎛ ⎞Δ = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

note that this result for λΔ  is independent of the atomic transition energy. 

(b) For a hydrogen atom pm m=  and 
34

16
27 8

p

6 626 10 J s 6 61 10 m
2 2(1 673 10 kg)(2 998 10 m/s)

h
m c

λ
−

−
−

. × ⋅
Δ = = = . ×

. × . ×
 

EVALUATE:   The correction is independent of n. The wavelengths of photons emitted in hydrogen atom 
transitions are on the order of 7100 nm 10 m,−=  so the recoil correction is exceedingly small. 

PMG
Note
We have left the symbol as is to maintain consistency with other chapters in this book. Please confirm if this is okay.

manir
Highlight
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39.66.  IDENTIFY:   Combine 4, , and .I T P IA E Ptσ= = Δ =  
SET UP:   In the Stefan-Boltzmann law the temperature must be in kelvins. 200 C 473 K.° =  

EXECUTE:   3
4 6 2 8 2 4 4

(100 J)
8 81 10 s 2.45 h.

(4.00 10 m )(5.67 10 W/m K )(473 K)
E

t
A Tσ − −
Δ

= = = . × =
× × ⋅

 

EVALUATE:   0 0114 W.P = .  Since the area of the hole is small, the rate at which the cavity radiates 
energy through the hole is very small. 

 39.67. IDENTIFY and SET UP:   Follow the procedures specified in the problem. 

EXECUTE:   (a) 
2 2 5

5 / 5 / 3 /
2 2 2

( ) but ( )
( 1) ( / ) ( 1) ( 1)hc kT hf kT hf kT

hc c hc hf
I I f

fe c f e c eλ
π π πλ λ

λ
= = ⇒ = =

− − −
 

(b) 
0

20
( ) ( ) cI d I f df

f
λ λ

∞

∞

⎛ ⎞−= ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫  

3 4 3 4 5 4 5 4 4
4

2 / 2 3 2 3 3 2 2 30 0

2 2 ( ) 2 ( ) 1 (2 ) ( ) 2(2 ) .
240( 1) 1 240 15hf kT x

hf df kT x kT kT k Tdx
c e c h e c h h c c h

π π π π ππ
∞ ∞

= = = = =
− −∫ ∫  

(c) The expression 
5 4

3 2
2
15

k
h c

π σ=  as shown in Eq. (39.28). Plugging in the values for the constants we get 

8 2 45.67 10 W/m K .σ −= × ⋅  
EVALUATE:   The Planck radiation law, Eq. (39.24), predicts the Stefan-Boltzmann law, Eq. (39.19). 

 39.68. IDENTIFY:   .
2

h h
p mE

λ = =  From Chapter 36, if aλ �  then the width w of the central maximum is 

2 ,Rw
a
λ=  where 2 5 mR = .  and a is the width of the slit. 

SET UP:   2 ,x
Ev

m
=  since the beam is traveling in the x-direction and y xv vΔ �  

EXECUTE:   (a) 
34

10
31 19

(6.63 10 J s) 1.94 10 m.
2 2(9.11 10 kg)(40 eV)(1.60 10 J/eV)

h
mK

λ
−

−
− −

× ⋅= = = ×
× ×

 

(b) 
31 1/2

7
19

(2.5 m)(9.11 10 kg) 6.67 10 s.
2 / 2(40 eV)(1.6 10 J/eV)

R R
v E m

−
−

−

×= = = ×
×

 

(c) The width is 2 ' and / ,y yw w R w v t p t m
a
λ= = Δ = Δ  where t is the time found in part (b) and a is the slit 

width. Combining the expressions for 282, 2.65 10 kg m/s.y
m Rw p
at
λ −Δ = = × ⋅  

(d) 0.20 m,
2 y

y
p

μΔ = =
Δ
=  which is the same order of magnitude of the width of the slit. 

EVALUATE:   For these electrons 101.94 10 m.λ −= ×  This is much smaller than a and the approximate 

expression 2Rw
a

λ=  is very accurate. Also, 62 3.75 10 m/s.x
Ev

m
= = ×  22.9 10 m/s,y

y
p

v
m

Δ
Δ = = ×  so it 

is the case that .x yv vΔ�  

 39.69. IDENTIFY:   For a photon .hcE
λ

=  For a particle with mass, hp
λ

=  and 
2

,
2
p

E q V
m

= = Δ  where VΔ  is the 

accelerating voltage. To exhibit wave nature when passing through an opening, the de Broglie wavelength 
of the particle must be comparable with the width of the opening. 
SET UP:   An electron has mass 319.109 10 kg.−×  A proton has mass 271 673 10 kg.−. ×  
EXECUTE:   (a) / 12 eVE hc λ= =  
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(b) Find E for an electron with 60.10 10 m.λ −= × 27/ so / 6.626 10 kg m/s.h p p hλ λ −= = = × ⋅  
2 4/(2 ) 1 5 10 eV.E p m −= = . × 4so 1.5 10 V.E q V V −= Δ Δ = ×  

27 31 3/ (6.626 10 kg m/s)/(9.109 10 kg) 7.3 10 m/sv p m − −= = × ⋅ × = ×  

(c) Same λ so same p. 2 27 8/(2 ) but now 1 673 10 kg so 8 2 10 eV andE p m m E− −= = . × = . ×  
88 2 10  V.V −Δ = . ×  27 27/ (6.626 10 kg m/s)/(1.673 10 kg) 4.0 m/sv p m − −= = × ⋅ × =  

EVALUATE:   A proton must be traveling much slower than an electron in order to have the same de 
Broglie wavelength. 

 39.70. IDENTIFY:   The de Broglie wavelength of the electrons must be such that the first diffraction minimum 
occurs at 20.0 .θ = °  

SET UP:   The single-slit diffraction minima occur at angles θ  given by sin .a mθ λ= .hp
λ

=  

EXECUTE:   (a) 9 8sin (150 10 m)sin 20 5.13 10 m.aλ θ − −= = × ° = × / / .h mv v h mλ λ= → =  
34

4
31 8

6.626 10 J s 1.42 10 m/s.
(9.11 10 kg)(5.13 10 m)

v
−

− −
× ⋅= = ×

× ×
 

(b) No electrons strike the screen at the location of the second diffraction minimum. 2sin 2 .a θ λ=  
8

2 9
5.13 10 msin 2 2 0.684.
150 10 ma

λθ
−

−

⎛ ⎞×= ± = ± = ±⎜ ⎟⎜ ⎟×⎝ ⎠
2 43.2 .θ = ± °  

EVALUATE:   The intensity distribution in the diffraction pattern depends on the wavelength λ and is the 
same for light of wavelength λ as for electrons with de Broglie wavelength .λ  

 39.71. IDENTIFY:   The electrons behave like waves and produce a double-slit interference pattern after passing 
through the slits. 
SET UP:   The first angle at which destructive interference occurs is given by sin /2.d θ λ=  The de Broglie 
wavelength of each of the electrons is / .h mvλ =  
EXECUTE:   (a) First find the wavelength of the electrons. For the first dark fringe, we have sin /2,d θ λ=  
which gives (1.25 nm)(sin 18.0°) /2, and 0.7725 nm.λ λ= =  Now solve the de Broglie wavelength 
equation for the speed of the electron: 

34
5

31 9
6.626 10 J s

9.42 10 m/s
(9.11 10 kg)(0.7725 10 m)

h
v

mλ

−

− −
× ⋅

= = = ×
× ×

 

which is about 0.3%  the speed of light, so they are nonrelativistic. 

(b) Energy conservation gives 21
2eV mv=  and 

2 31 5 2 19/2 (9.11 10 kg)(9.42 10 m/s) /[2(1.60 10 C)] 2.52 VV mv e − −= = × × × =  

EVALUATE:   The hole must be much smaller than the wavelength of visible light for the electrons to show 
diffraction. 

 39.72. IDENTIFY:   The alpha particles and protons behave as waves and exhibit circular-aperture diffraction after 
passing through the hole. 
SET UP:   For a round hole, the first dark ring occurs at the angle θ  for which sin 1.22 / ,Dθ λ=  where D is 
the diameter of the hole. The de Broglie wavelength for a particle is / / .h p h mvλ = =  

EXECUTE:   Taking the ratio of the sines for the alpha particle and proton gives 

p p p

sin 1.22
sin 1.22

α α αθ λ λ
θ λ λ

= =  

The de Broglie wavelength gives p p/h pλ =  and / ,h pα αλ =  so p

p p

sin /
.

sin /
ph p

h p p
α α

α

θ
θ

= =  Using 2/2 ,K p m=  

we have 2 .p mK=  Since the alpha particle has twice the charge of the proton and both are accelerated 
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through the same potential difference, p2 .K Kα =  Therefore p p p2p m K=  and 

p p2 2 (2 ) 4 .p m K m K m Kα α α α α= = =  Substituting these quantities into the ratio of the sines gives 

p pp p

p p

2sin
sin 24

m Kp m
p mm K

α

α αα

θ
θ

= = =  

Solving for sin αθ  gives 
27

27
1.67 10 kg

sin sin15.0
2(6.64 10 kg)αθ

−

−
×

= °
×

 and 5.3°.αθ =  

EVALUATE:   Since sinθ  is inversely proportional to the mass of the particle, the larger-mass alpha 
particles form their first dark ring at a smaller angle than the ring for the lighter protons. 

 39.73. IDENTIFY:   Both the electrons and photons behave like waves and exhibit single-slit diffraction after 
passing through their respective slits. 
SET UP:   The energy of the photon is /E hc λ=  and the de Broglie wavelength of the electron is 

/ / .h mv h pλ = =  Destructive interference for a single slit first occurs when a sin .θ λ=  

EXECUTE:   (a) For the photon: /hc Eλ = and a sin .θ λ=  Since the a and θ  are the same for the photons 
and electrons, they must both have the same wavelength. Equating these two expressions for λ  gives 

sin / .a hc Eθ =  For the electron, /
2
hh p
mK

λ = =  and a sin .θ λ=  Equating these two expressions for λ  

gives a sin .
2
h
mK

θ =  Equating the two expressions for sina θ  gives / ,
2
hhc E
mK

=  which 

gives 7 1/22 (4 05 10 J ) .E c mK K−= = . ×  

(b) 
22 2

.
E c mK mc
K K K

= =  Since ,v c�  2 ,mc K>  so the square root is 1.>  Therefore / 1,E K >  

meaning that the photon has more energy than the electron. 
EVALUATE:   When a photon and a particle have the same wavelength, the photon has more energy than 
the particle. 

39.74.  IDENTIFY:   The de Broglie wavelength of the electrons must equal the wavelength of the light. 
SET UP:   The maxima in the two-slit interference pattern are located by sin .d mθ λ=  For an electron, 

.h h
p mv

λ = =  

EXECUTE:   
6sin (40.0 10 m)sin(0.0300 rad) 600 nm.

2
d

m
θλ

−×= = =  The velocity of an electron with this 

wavelength is given by Eq. (39.1). 
34

3
31 9

(6.63 10 J s) 1.21 10 m/s.
(9.11 10 kg)(600 10 m)

p hv
m mλ

−

− −
× ⋅= = = = ×

× ×
 Since 

this velocity is much smaller than c we can calculate the energy of the electron classically 
2 31 3 2 251 1 (9.11 10 kg)(1.21 10 m/s) 6.70 10 J 4.19 eV.

2 2
K mv μ− −= = × × = × =  

EVALUATE:   The energy of the photons of this wavelength is 2.07 eV.hcE
λ

= =  The photons and 

electrons have the same wavelength but very different energies. 

 39.75. IDENTIFY and SET UP:   The de Broglie wavelength of the blood cell is .h
mv

λ =  

EXECUTE:   
34

17
14 3

6.63 10 J s 1.66 10 m.
(1.00 10 kg)(4.00 10 m/s)

λ
−

−
− −

× ⋅= = ×
× ×

 

EVALUATE:   We need not be concerned about wave behavior. 
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 39.76. IDENTIFY:   An electron and a photon both have the same wavelength. We want to use this fact to calculate 
the energy of each of them. 

SET UP:   The de Broglie wavelength is .h
p

λ =  The energy of the electron is its kinetic energy, 

2 21
2 /2 .K mv p m= =  The energy of the photon is / .E hf hc λ= =  

EXECUTE:   (a) 
34

27
9

6.626 10 J s 1.656 10 kg m/s.
400 10 m

hp
λ

−
−

−
× ⋅= = = × ⋅
×

 

2 27 2
24 6

31
(1.656 10 kg m/s) 1.506 10 J 9.40 10 eV

2 2(9.109 10 kg)
pE
m

−
− −

−
× ⋅= = = × = ×

×
 

(b) 
34 8

19
9

(6.626 10 J s)(2.998 10 m/s)
4.966 10 J 3.10 eV

400 10 m
hc

E
λ

−
−

−
× ⋅ ×

= = = × =
×

 

EVALUATE:   The photon has around 300,000 times as much energy as the electron. 
 39.77. IDENTIFY and SET UP:   Follow the procedures specified in the problem. 

EXECUTE:   (a) 

1/22

2 2 2 2 2
2 2 2 2 2 2 2 2 2 2

2 2 2

1
1

vh
ch v h v vm v h h m v h h

p mv c c c
λ λ λ

⎛ ⎞
−⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠= = ⇒ = − = − ⇒ + =⎜ ⎟⎜ ⎟

⎝ ⎠
  

2 2
2

1/22 2 2 2 22 2
2 2 1 1

h c cv v
h m c mcm
c h h

λ λλ
⇒ = = ⇒ = .

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(b) 
2

1/22

11 (1 ) .
2

1
( / )

c mcv c c
h

h mc

λ

λ

⎛ ⎞⎛ ⎞⎜ ⎟= ≈ − = − Δ⎜ ⎟⎜ ⎟⎝ ⎠⎛ ⎞ ⎝ ⎠⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 
2 2 2

2 .
2

m c
h

λΔ =  

(c) 151.00 10 m .h
mc

λ −= × �  
31 2 8 2 15 2

8
34 2

(9.11 10 kg) (3.00 10 m/s) (1.00 10 m)
8.50 10

2(6.63 10 J s)

− −
−

−
× × ×

Δ = = ×
× ⋅

 

8(1 ) (1 8.50 10 ) .v c c−⇒ = − Δ = − ×  
EVALUATE:   As 0,Δ → v c→  and 0.λ →  

 39.78. IDENTIFY and SET UP:   The minimum uncertainty product is /2.xx pΔ Δ = =  1,x rΔ =  where 1r  is the 

radius of the 1n =  Bohr orbit. In the 1n =  Bohr orbit, 1 1 2
hmv r
π

=  and 1 1
1

.
2

hp mv
rπ

= =  

EXECUTE:   
34

24
10

1

1.055 10 J s 1.0 10 kg m/s.
2 2 2(0.529 10 m)xp

x r

−
−

−
× ⋅Δ = = = = × ⋅

Δ ×
= =  This is the same as the 

magnitude of the momentum of the electron in the 1n =  Bohr orbit. 
EVALUATE:   Since the momentum is the same order of magnitude as the uncertainty in the momentum, 
the uncertainty principle plays a large role in the structure of atoms. 

 39.79. IDENTIFY and SET UP:   Combining the two equations in the hint gives 2( 2 )pc K K mc= +  and 

2
.

( 2 )

hc

K K mc
λ =

+
 

EXECUTE:   (a) With 23K mc=  this becomes 
2 2 2

.
153 (3 2 )

hc h
mcmc mc mc

λ = =
+

 

(b) (i) 2 31 8 2 133 3(9.109 10 kg)(2.998 10 m/s) 2.456 10 J 1.53 MeVK mc −= = × × = × =  
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34
13

31 8
6.626 10 J s

6.26 10 m
15 15(9.109 10 kg)(2.998 10 m/s)

h
mc

λ
−

−
−

× ⋅
= = = ×

× ×
 

(ii) K is proportional to m, so for a proton p e( / )(1 53 MeV) 1836(1 53 MeV) 2810 MeVK m m= . = . =  
λ  is proportional to 1/ ,m  so for a proton 

13 13 16
e p( / )(6.26 10 m) (1/1836)(6.26 10 m) 3.41 10 m.m mλ − − −= × = × = ×  

EVALUATE:   The proton has a larger rest mass energy so its kinetic energy is larger when 23 .K mc=   
The proton also has larger momentum so has a smaller .λ  

 39.80. IDENTIFY:   Apply the Heisenberg Uncertainty Principle. Consider only one component of position and 
momentum. 
SET UP:   /2.xx pΔ Δ ≥ =  Take 155.0 10 m.x −Δ ≈ ×  2.K E mc= −  For a proton, 271.67 10 kg.m −= ×  

EXECUTE:   (a) 
34

20
15

(1.055 10 J s) 1.1 10 kg m/s.
2 2(5.0 10 m)xp

x

−
−

−
× ⋅Δ = = = × ⋅

Δ ×
=  

(b) 2 2 2 2 14( ) ( ) 3.3 10 J 0.21 MeV.K pc mc mc −= + − = × =  

EVALUATE:   (c) The result of part (b), about 52 10 eV,×  is many orders of magnitude larger than the 
potential energy of an electron in a hydrogen atom. 

 39.81. (a) IDENTIFY and SET UP:   /2.xx pΔ Δ ≥ =  Estimate 15as 5 0 10 m.x x −Δ Δ ≈ . ×  

EXECUTE:   Then the minimum allowed xpΔ  is 
34

20
15

1.055 10 J s 1.1 10 kg m/s.
2 2(5.0 10 m)xp

x

−
−

−
× ⋅Δ ≈ = = × ⋅

Δ ×
=  

(b) IDENTIFY and SET UP:   Assume 201.1 10  kg m/s.p −≈ × ⋅  Use Eq. (37.39) to calculate E, and then 
2.K E mc= −  

EXECUTE:   2 2 2( ) ( ) .E mc pc= +  2 31 8 2 14(9.109 10 kg)(2.998 10 m/s) 8.187 10 J.mc − −= × × = ×  
20 8 12(1.1 10 kg m/s)(2.998 10 m/s) 3.165 10 J.pc − −= × ⋅ × = ×  

14 2 12 2 12(8.187 10 J) (3.165 10 J) 3.166 10 J.E − − −= × + × = ×  
2 12 14 12 193.166 10 J 8.187 10 J 3.084 10 J (1eV/1.602 10 J) 19 MeV.K E mc − − − −= − = × − × = × × × =  

(c) IDENTIFY and SET UP:   The Coulomb potential energy for a pair of point charges is given by  
Eq. (23.9). The proton has charge e+  and the electron has charge – .e  

EXECUTE:   
2 9 2 2 19 2

14
15

(8 988 10 N m /C )(1 602 10 C) 4 6 10 J 0 29 MeV.
5 0 10 m

keU
r

−
−

−
. × ⋅ . ×= − = − = − . × = − .

. ×
 

EVALUATE:   The kinetic energy of the electron required by the uncertainty principle would be much larger 
than the magnitude of the negative Coulomb potential energy. The total energy of the electron would be 
large and positive and the electron could not be bound within the nucleus. 

 39.82. IDENTIFY:   Apply the Heisenberg Uncertainty Principle. Let the uncertainty product have its minimum 
possible value, so /2.xx pΔ Δ = =  
SET UP:   Take the direction of the electron beam to be the -directionx  and the direction of motion 
perpendicular to the beam to be the -direction.y  

EXECUTE:   (a) 
34

31 3
1.055 10 J s 0.12 m/s.

2 2(9.11 10 kg)(0.50 10 m)
y

y
p

v
m m y

−

− −

Δ × ⋅Δ = = = =
Δ × ×
=  

(b) The uncertainty rΔ in the position of the point where the electrons strike the screen is 
104.78 10 m.

2 2 /
y

y
x

p x xr v t
m v m y K m

−Δ
Δ = Δ = = = ×

Δ
=  

EVALUATE:   (c) This is far too small to affect the clarity of the picture. 
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 39.83. IDENTIFY and SET UP:   /2.E tΔ Δ ≥ =  Take the minimum uncertainty product, so ,
2

E
t

Δ =
Δ
=  with 

178.4 10 s.t −Δ = × 264 .em m= 2 .Em
c
ΔΔ =  

EXECUTE:   
34

19
17

1.055 10 J s 6.28 10 J.
2(8.4 10 s)

E
−

−
−

× ⋅Δ = = ×
×

19
36

8 2
6.28 10 J 7.0 10 kg.

(3.00 10 m/s)
m

−
−×Δ = = ×

×
 

36
8

31
7.0 10 kg

2.9 10
(264)(9.11 10 kg)

m
m

−
−

−
Δ ×

= = ×
×

 

EVALUATE:   The fractional uncertainty in the mass is very small. 
 39.84. IDENTIFY:   The insect behaves like a wave as it passes through the hole in the screen. 

SET UP:   (a) For wave behavior to show up, the wavelength of the insect must be of the order of the 
diameter of the hole. The de Broglie wavelength is / .h mvλ =  
EXECUTE:   The de Broglie wavelength of the insect must be of the order of the diameter of the hole in the 
screen, so 4.00 mm.λ ≈  The de Broglie wavelength gives 

34
25

6
6.626 10 J s 1.33 10 m/s

(1.25 10 kg)(0.00400 m)
hv

mλ

−
−

−
× ⋅= = = ×

×
 

(b) 25 21 10/ (0.000500 m)/(1.33 10 m/s) 3.77 10 s 1.4 10 yrt x v −= = × = × = ×  

The universe is about 14 billion years old 10(1.4 10  yr)×  so this time would be about 85,000 times the age 
of the universe. 
EVALUATE:   Don’t expect to see a diffracting insect! Wave behavior of particles occurs only at the very 
small scale. 

 39.85. IDENTIFY and SET UP:   Use Eq. (39.1) to relate your wavelength and speed. 

EXECUTE:   (a) 
34

356.626 10 J s, so 1.1 10 m/s
(60.0 kg)(1.0 m)

h hv
mv m

λ
λ

−
−× ⋅= = = = ×  

(b) 34 7 27
35

distance 0.80 m
7.3 10 s(1 y/3.156 10 s) 2.3 10 y

velocity 1.1 10 m/s
t −= = = × × = ×

×
 

Since you walk through doorways much more quickly than this, you will not experience diffraction effects. 
EVALUATE:   A 1-kg object moving at 1 m/s  has a de Broglie wavelength 346.6 10 m,λ −= ×  which is 
exceedingly small. An object like you has a very, very small λ  at ordinary speeds and does not exhibit 
wavelike properties. 

 39.86. IDENTIFY:   The transition energy E for the atom and the wavelength λ of the emitted photon are related by 

.hcE
λ

=  Apply the Heisenberg Uncertainty Principle in the form .
2

E tΔ Δ ≥
=  

SET UP:   Assume the minimum possible value for the uncertainty product, so that .
2

E tΔ Δ = =  

EXECUTE:   (a) 19 72 58 eV 4 13 10 J, with a wavelength of 4 82 10 m 482 nmhcE
E

λ− −= . = . × = = . × =  

(b) 
34

28 9
7

(1.055 10 J s) 3.22 10 J 2.01 10 eV.
2 2(1.64 10 s)

E
t

−
− −

−
× ⋅Δ = = = × = ×

Δ ×
=  

(c) , so ( ) 0, and / / ,E hc E E E Eλ λ λ λ λ= Δ + Δ = Δ = Δ  so 
28

7 16 7
19

3.22 10 J/ (4.82 10 m) 3.75 10 m 3.75 10 nm.
4.13 10 J

E Eλ λ
−

− − −
−

⎛ ⎞×Δ = Δ = × = × = ×⎜ ⎟⎜ ⎟×⎝ ⎠
 

EVALUATE:   The finite lifetime of the excited state gives rise to a small spread in the wavelength of the 
emitted light. 
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 39.87. IDENTIFY:   The electrons behave as waves whose wavelength is equal to the de Broglie wavelength. 
SET UP:   The de Broglie wavelength is / ,h mvλ = and the energy of a photon is / .E hf hc λ= =  

EXECUTE:   (a) Use the de Broglie wavelength to find the speed of the electron. 
34

5
31 9

6.626 10 J s
7.27 10 m/s

(9.11 10 kg)(1.00 10 m)
h

v
mλ

−

− −
× ⋅

= = = ×
× ×

 

which is much less than the speed of light, so it is nonrelativistic. 

(b) Energy conservation gives 21
2 .eV mv=  

2 31 5 2 19/2 (9.11 10 kg)(7.27 10 m/s) /[2(1.60 10 C)] 1.51 VV mv e − −= = × × × =  

(c) (1.51 V) 1.51eV,K eV e= = = which is about ¼ the potential energy of the NaCl molecule, so the 
electron would not be too damaging. 

(d) 15 8 9/ (4.136 10 eV s)(3.00 10 m/s)/(1.00 10 m) 1240 eVE hc λ − −= = × × × =  
which would certainly destroy the molecules under study. 
EVALUATE:   As we have seen in Problems 39.73 and 39.76, when a particle and a photon have the same 
wavelength, the photon has much more energy. 

 39.88. IDENTIFY:   Assume both the x rays and electrons are at normal incidence and scatter from the surface 
plane of the crystal, so the maxima are located by sin ,d mθ λ=  where d is the separation between adjacent 
atoms in the surface plane. 

SET UP:   Let primed variables refer to the electrons. .
2

h h
p mE

λ = =′
′ ′

 

EXECUTE:   sin sin , and ( / ) ( / 2 ), and so arcsin sin .
2
hh p h mE
mE

λθ θ λ θ θ
λ λ
′ ⎛ ⎞′ ′ ′ ′ ′= = = = ⎜ ⎟′⎝ ⎠

 

11

34

31 3 19

(6.63 10 J s)sin35.8arcsin 20.9 .
(3.00 10 m) 2(9.11 10 kg)(4.50 10  eV)(1.60 10 J/eV)

θ −

−

− + −

⎛ ⎞× ⋅ °⎜ ⎟′ = = °
⎜ ⎟× × × ×⎝ ⎠

 

EVALUATE:   The x rays and electrons have different wavelengths and the 1m =  maxima occur at different 
angles. 

39.89.  IDENTIFY:   The interference pattern for electrons with de Broglie wavelength λ is the same as for light 
with wavelength .λ  

SET UP:   For an electron, .
2

h h
p mE

λ = =  

EXECUTE:   (a) The maxima occur when 2 sin .d mθ λ=  

(b) 
34

10
37 19

(6 63 10 J s)
1 46 10 m 0.146 nm.

2(9 11 10 kg)(71 0 eV)(1 60 10 J/eV)
λ

−
−

− −

. × ⋅
= = . × =

. × . . ×
 1sin .

2
m

d
λθ − ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

(Note: This m is the order of the maximum, not the mass.) 
10

1
11

(1)(1.46 10 m)sin 53.3 .
2(9.10 10 m)

θ
−

−
−

⎛ ⎞×= = °⎜ ⎟⎜ ⎟×⎝ ⎠
 

EVALUATE:   (c) The work function of the metal acts like an attractive potential increasing the kinetic 
energy of incoming electrons by .eφ  An increase in kinetic energy is an increase in momentum that leads 
to a smaller wavelength. A smaller wavelength gives a smaller angleθ  (see part (b)). 

 39.90. IDENTIFY:   The photon is emitted as the atom returns to the lower energy state. The duration of the excited 
state limits the energy of that state due to the uncertainty principle. 

SET UP:   The wavelength λ  of the photon is related to the transition energy E of the atom by .hcE
λ

=  

/2.E tΔ  Δ ≥=  The minimum uncertainty in energy is .
2

E
t

Δ ≥
Δ
=  
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EXECUTE:   (a) The photon energy equals the transition energy of the atom, 3.50 eV. 
15 8(4 136 10 eV s)(3 00 10 m/s) 355 nm.

3 50 eV
hc
E

λ
−. × ⋅ . ×

= = =
.

 

(b) 
34

29 11
6

1 055 10 J s
1 32 10 J 8 2 10 eV.

2(4 0 10 s)
E

−
− −

−
. × ⋅

Δ = = . × = . ×
. ×

 

EVALUATE:   The uncertainty in the energy could be larger than that found in (b), but never smaller. 
 39.91. IDENTIFY:   The wave (light or electron matter wave) having less energy will cause less damage to the 

virus. 

SET UP:   For a photon 
6

ph
1.24 10 eV m .hcE

λ λ

−× ⋅
= =  For an electron 

2 2

e 2 .
2 2
p hE
m mλ

= =  

EXECUTE:   (a) 
6

9
1 24 10 eV m 248 eV.

5.00 10 m
hcE
λ

−

−
. × ⋅= = =

×
 

(b) 
2 34 2

21
e 2 31 9 2

(6.63 10 J s)
9 65 10 J 0 0603 eV.

2 2(9.11 10 kg)(5.00 10 m)
h

E
mλ

−
−

− −
× ⋅

= = = . × = .
× ×

 

EVALUATE:   The electron has much less energy than a photon of the same wavelength and therefore 
would cause much less damage to the virus. 

 39.92. IDENTIFY and SET UP:   Assume px h≈  and use this to express E as a function of x. E is a minimum for 

that x that satisfies 0.dE
dx

=  

EXECUTE:   (a) Using the given approximation, 2 2 2 31 (( / ) / ), ( / ) ( / ),
2

E h x m kx dE dx kx h mx= + = −  and the 

minimum energy occurs when 2 3 2( / ), or .hkx h mx x
mk

= =  The minimum energy is then / .h k m  

EVALUATE:   (b) 21
2 .

2
h kU kx

m
= =  

2 2

2 .
2 22
p h h kK
m mmx

= = =  At this x the kinetic and potential energies 

are the same. 
39.93.  (a) IDENTIFY and SET UP:   .U A x=  Eq. (7.17) relates force and potential. The slope of the function 

A x  is not continuous at 0x =  so we must consider the regions 0x >  and 0x <  separately. 

EXECUTE:   For ( )0, so and .d Axx x x U Ax F A
dx

> = = = − = −  For 0, so andx x x U Ax< = − = −  

( ) .d AxF A
dx
−

 = − = +  We can write this result as / ,F A x x= − valid for all x except for 0.x =  

(b) IDENTIFY and SET UP:   Use the uncertainty principle, expressed as ,p x hΔ Δ ≈  and as in Problem 
39.80 estimate pΔ  by p and xΔ  by x. Use this to write the energy E of the particle as a function of x.  
Find the value of x that gives the minimum E and then find the minimum E. 

EXECUTE:   
2

2
pE K U A x
m

= + = +  

, so /px h p h x≈ ≈  

Then 
2

2 .
2

hE A x
mx

≈ +  

For 
2

20, .
2

hx E Ax
mx

> = +  

To find the value of x that gives minimum E set 0.dE
dx

=  
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2

3
20

2
h A

mx
−

= +  

1/32 2
3 andh hx x

mA mA
⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

 

With this x the minimum E is 
1/32/32 2

2/3 1/3 2/3 2/3 1/3 2/3
2

1
2 2
h mA hE A h m A h m A
m mAh

− −⎛ ⎞⎛ ⎞= + = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

1/32 23
2

h AE
m

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

EVALUATE:   The potential well is shaped like a V. The larger A is, the steeper the slope of U and the 
smaller the region to which the particle is confined and the greater is its energy. Note that for the x that 
minimizes E, 2 .K U=  

 39.94. (a) IDENTIFY and SET UP:   Let the y-direction be from the thrower to the catcher, and let the x-direction be 
horizontal and perpendicular to the y-direction. A cube with volume 3 3 3125 cm 0 125 10 mV −= = . ×  has 

side length 1/3 3 3 1/3(0 125 10 m ) 0 050 m.l V −= = . × = .  Thus estimate as 0 050 m.x xΔ Δ ≈ .  Use the 
uncertainty principle to estimate .xpΔ  

EXECUTE:   /2xx pΔ Δ ≥ =  then gives 0 01055 J s 0 11 kg m/s.
2 2(0 050 m)xp

x
. ⋅

Δ ≈ = = . ⋅
Δ .
=  (The value of =  in this 

other universe has been used.) 
(b) IDENTIFY and SET UP:   ( )xx v tΔ = Δ  is the uncertainty in the x-coordinate of the ball when it reaches 
the catcher, where t is the time it takes the ball to reach the second student. Obtain xvΔ from .xpΔ  

EXECUTE:   The uncertainty in the ball’s horizontal velocity is 0 11 kg m/s 0 42 m/s.
0 25 kg

x
x

pv
m

Δ . ⋅
Δ = = = .

.
 

The time it takes the ball to travel to the second student is 12 m 2 0 s.
6 0 m/s

t = = .
.

 The uncertainty in the  

x-coordinate of the ball when it reaches the second student that is introduced by 
is ( ) (0 42 m/s)(2 0 s) 0 84 m.x xv x v tΔ Δ = Δ = . . = .  The ball could miss the second student by about 0.84 m. 

EVALUATE:   A game of catch would be very different in this universe. We don’t notice the effects of the 
uncertainty principle in everyday life because h is so small. 

39.95.  IDENTIFY and SET UP:   The period was found in Exercise 39.29b: 
2 3 3
0

4
4 .n hT

me
ε

=  Eq. (39.14) gives the 

energy of state n of a hydrogen atom. 

EXECUTE:   (a) The frequency is 
4

2 3 3
0

1 .
4

mef
T n hε

= =  

(b) Eq. (39.5) tells us that 2 1
1 ( ).f E E
h

= −  So 
4

2 3 2 2
0 2 1

1 1
8
mef

h n nε
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (from Eq. (39.14)). If 

2 1 2 2 2 2 2 2 2 3
2 1

1 1 1 1 1 1 1 2 2and 1, then 1 1 1 .
( 1) (1 1/ )

n n n n
nn n n n n n n n

⎛ ⎞ ⎛ ⎞⎛ ⎞= = + − = − = − ≈ − − + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠⎝ ⎠
…  

Therefore, for large n, 
4

2 3 3
0

.
4

mef
n hε

≈  

EVALUATE:   We have shown that for large n we obtain the classical result that the frequency of revolution 
of the electron is equal to the frequency of the radiation it emits. 
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 39.96. IDENTIFY:   Follow the steps specified in the hint. 

SET UP:   The value of ixΔ  that minimizes fxΔ  satisfies 
( )

0.
( )

f

i

d x
d x

Δ
=

Δ
 

EXECUTE:   Time of flight of the marble, from a free-fall kinematic equation is just 

2
2 2(25 0 m) 2 26 s.

9 80 m/s
yt

g
.= = = .

.
( ) .

2
x

f i x i i
i

p tx x v t x t x
m x m

Δ⎛ ⎞Δ = Δ + Δ = Δ + = + Δ⎜ ⎟ Δ⎝ ⎠

=  To minimize fxΔ  

with respect to ,ixΔ  2
( )

0 1 (min)
( ) 22 ( )

f
i

i i

d x t tx
d x mm x

Δ − ⎛ ⎞= = + ⇒ Δ = ⎜ ⎟Δ Δ ⎝ ⎠

= =  

34
16 72 2(1 055 10 J s)(2 26 s)(min) 1 54 10 m 1 54 10 nm.

2 2 0 0200 kgf
t t tx
m m m

−
− −. × ⋅ .

⇒ Δ = + = = = . × = . ×
.

= = =  

EVALUATE:   The uncertainty introduced by the uncertainty principle is completely negligible in this 
situation. 


