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 22.1. (a) IDENTIFY and SET UP:   cos ,E E dAφΦ = ∫  where φ  is the angle between the normal to the sheet n̂  

and the electric field .E  
EXECUTE:   In this problem E and cosφ  are constant over the surface so 

2 2cos cos (14 N/C)(cos 60 )(0.250 m ) 1.8 N m /C.E E dA E Aφ φΦ = = = ° = ⋅∫  

(b) EVALUATE:   EΦ  is independent of the shape of the sheet as long as φ  and E are constant at all points 
on the sheet. 
(c) EXECUTE:   (i) cos .E E AφΦ =  EΦ  is largest for 0 , so cos 1 and .E EAφ φ= ° = Φ =  
(ii) EΦ  is smallest for 90 , so cos 0 and 0.Eφ φ= ° = Φ =  
EVALUATE:   EΦ  is 0 when the surface is parallel to the field so no electric field lines pass through the 
surface. 

 22.2. IDENTIFY:   The field is uniform and the surface is flat, so use cos .E EA φΦ =  

SET UP:   φ  is the angle between the normal to the surface and the direction of ,E  so 70 .φ = °  

EXECUTE:   2(75.0 N/C)(0.400 m)(0.600 m)cos70 6.16 N m /CEΦ = ° = ⋅  

EVALUATE:   If the field were perpendicular to the surface the flux would be 218.0 N m /C.E EAΦ = = ⋅  

The flux in this problem is much less than this because only the component of E perpendicular to the 
surface contributes to the flux. 

 22.3. IDENTIFY:   The electric flux through an area is defined as the product of the component of the electric 
field perpendicular to the area times the area. 
(a) SET UP:   In this case, the electric field is perpendicular to the surface of the sphere, so 

2(4 ).E EA E rπΦ = =  
EXECUTE:   Substituting in the numbers gives 

6 2 5 2(1.25 10 N/C)4 (0.150 m) 3.53 10 N m /CE πΦ = × = × ⋅  
(b) IDENTIFY:   We use the electric field due to a point charge. 

SET UP:   2
0

1
4

qE
rπ

=
�

 

EXECUTE:   Solving for q and substituting the numbers gives 

2 2 6 6
0 9 2 2

14 (0.150 m) (1.25 10 N/C) 3.13 10 C
9.00 10 N m /C

q r Eπ −= = × = ×
× ⋅

�  

EVALUATE:   The flux would be the same no matter how large the sphere, since the area is proportional to 
2r  while the electric field is proportional to 21/ .r  
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 22.4. (a) IDENTIFY:   Use Eq. (22.5) to calculate the flux through the surface of the cylinder. 
SET UP:   The line of charge and the cylinder are sketched in Figure 22.4. 

 

 

Figure 22.4 
 

EXECUTE:   The area of the curved part of the cylinder is 2 .A rlπ=  
The electric field is parallel to the end caps of the cylinder, so 0⋅ =E A  for the ends and the flux through 
the cylinder end caps is zero. 
The electric field is normal to the curved surface of the cylinder and has the same magnitude 0/2E rλ π= �  
at all points on this surface. Thus 0φ = °  and 

6
5 2

0 12 2 2
0

(3.00 10  C/m)(0.400 m)cos ( /2 )(2 ) 1.36 10  N m /C.
8.854 10  C /N mE

lEA EA r rl λφ λ π π
−

−
×Φ = = = = = = × ⋅

× ⋅
�

�
 

(b) In the calculation in part (a) the radius r of the cylinder divided out, so the flux remains the same, 
5 21.36 10  N m /C.EΦ = × ⋅  

(c) 
6

5 2
12 2 2

0

(3.00 10  C/m)(0.800 m) 2.71 10  N m /C
8.854 10  C /N mE

lλ −

−
×Φ = = = × ⋅

× ⋅�
 (twice the flux calculated in parts (a)  

and (b)). 
EVALUATE:   The flux depends on the number of field lines that pass through the surface of the 
cylinder. 

 22.5. IDENTIFY:   The flux through the curved upper half of the hemisphere is the same as the flux through the 
flat circle defined by the bottom of the hemisphere because every electric field line that passes through the 
flat circle also must pass through the curved surface of the hemisphere. 
SET UP:   The electric field is perpendicular to the flat circle, so the flux is simply the product of E and the 
area of the flat circle of radius r. 
EXECUTE:   2 2( )E EA E r r Eπ πΦ = = =  
EVALUATE:   The flux would be the same if the hemisphere were replaced by any other surface bounded 
by the flat circle. 

 22.6. IDENTIFY:   Use Eq. (22.3) to calculate the flux for each surface. 
SET UP:   ˆcos where .EA AφΦ = ⋅ = =E A A n  

EXECUTE:   (a) 
1

ˆˆ (left).S = −n j  
1

3 2 2(4 10  N/C)(0.10 m) cos(90 53.1 ) 32 N m /C.SΦ = − × ° − ° = − ⋅  

2
ˆˆ (top).S = +n k  

2

3 2(4 10  N/C)(0.10 m) cos90 0.SΦ = − × ° =  

3
ˆˆ (right).S = +n j  

3

3 2 2(4 10  N/C)(0.10 m) cos(90 53.1 ) 32 N m /C.SΦ = + × ° − ° = + ⋅  

4
ˆˆ (bottom).S = −n k  

4

3 2(4 10  N/C)(0.10 m) cos90 0.SΦ = × ° =  

5
ˆˆ (front).S = +n i  

5

3 2 2(4 10  N/C 0.10 m cos53.1 24 N m /C.SΦ = + × ° = ⋅)( )  

6
ˆˆ (back).S = −n i  

6

3 2 2(4 10  N/C)(0.10 m) cos53.1 24 N m /C.SΦ = − × ° = − ⋅  

EVALUATE:   (b) The total flux through the cube must be zero; any flux entering the cube must also leave 
it, since the field is uniform. Our calculation gives the result; the sum of the fluxes calculated in part (a) 
is zero. 
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 22.7. IDENTIFY:   Apply Gauss’s law to a Gaussian surface that coincides with the cell boundary. 

SET UP:   encl

0
.E

QΦ =
�

 

EXECUTE:   
12

2encl
12 2 2

0

8.65 10  C 0.977 N m /C.
8.854 10  C /(N m )E

Q −

−
− ×Φ = = = − ⋅
× ⋅�

 enclQ  is negative, so the flux is 

inward. 
EVALUATE:   If the cell were positive, the field would point outward, so the flux would be positive. 

 22.8. IDENTIFY:   Apply Gauss’s law to each surface. 
SET UP:   enclQ  is the algebraic sum of the charges enclosed by each surface. Flux out of the volume is 
positive and flux into the enclosed volume is negative. 
EXECUTE:   (a) 

1

9 2
1 0 0/ (4.00 10  C)/ 452 N m /C.S q −Φ = = × = ⋅� �  

(b) 
2

9 2
2 0 0/ ( 7.80 10  C)/ 881 N m /C.S q −Φ = = − × = − ⋅� �  

(c) 
3

9 2
1 2 0 0( )/ ((4.00 7.80) 10  C)/ 429 N m /C.S q q −Φ = + = − × = − ⋅� �  

(d) 
4

9 2
1 3 0 0/ (4.00 2.40) 10  C / 723 N m /C.S q q −Φ = ( + ) = ( + × ) = ⋅� �  

(e) 
5

9 2
1 2 3 0 0( )/ ((4.00 7.80 2.40) 10  C)/ 158 N m /C.S q q q −Φ = + + = − + × = − ⋅� �  

EVALUATE:   (f) All that matters for Gauss’s law is the total amount of charge enclosed by the surface, not 
its distribution within the surface. 

 22.9. IDENTIFY:   Apply the results in Example 22.5 for the field of a spherical shell of charge. 

SET UP:   Example 22.5 shows that 0E =  inside a uniform spherical shell and that 2
q

E k
r

=  outside the 

shell. 
EXECUTE:   (a) 0.E =  

(b) 0 060 mr = .  and 
6

9 2 2 7
2

35.0 10  C(8.99 10  N m /C ) 8.74 10  N/C.
(0.060 m)

E
−×= × ⋅ = ×  

(c) 0.110 mr =  and 
6

9 2 2 7
2

35.0 10  C(8.99 10  N m /C ) 2.60 10  N/C.
(0.110 m)

E
−×= × ⋅ = ×  

EVALUATE:   Outside the shell the electric field is the same as if all the charge were concentrated at the 
center of the shell. But inside the shell the field is not the same as for a point charge at the center of the 
shell, inside the shell the electric field is zero. 

 22.10. IDENTIFY:   Apply Gauss’s law to the spherical surface. 
SET UP:   enclQ  is the algebraic sum of the charges enclosed by the sphere. 
EXECUTE:   (a) No charge enclosed so 0.EΦ =  

(b) 
9

22
12 2 2

0

6.00 10  C 678 N m /C.
8.85 10  C /N mE

q −

−
− ×Φ = = = − ⋅
× ⋅�

 

(c) 
9

21 2
12 2 2

0

(4.00 6.00) 10 C 226 N m /C.
8.85 10  C /N mE

q q −

−
+ − ×Φ = = = − ⋅

× ⋅�
 

EVALUATE:   Negative flux corresponds to flux directed into the enclosed volume. The net flux depends 
only on the net charge enclosed by the surface and is not affected by any charges outside the enclosed 
volume. 

 22.11. (a) IDENTIFY and SET UP:   It is rather difficult to calculate the flux directly from E dΦ = ⋅∫E A  since the 

magnitude of E  and its angle with dA  varies over the surface of the cube. A much easier approach is to 
use Gauss’s law to calculate the total flux through the cube. Let the cube be the Gaussian surface. The 
charge enclosed is the point charge. 
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EXECUTE:   
6

5 2
encl 0 12 2 2

6.20 10  C/ 7.002 10  N m /C.
8.854 10  C /N mE Q

−

−
×Φ = = = × ⋅

× ⋅
�  By symmetry the flux is the 

same through each of the six faces, so the flux through one face is 
5 2 5 21

6 (7.002 10  N m /C) 1.17 10  N m /C.× ⋅ = × ⋅  

(b) EVALUATE:   In part (a) the size of the cube did not enter into the calculations. The flux through one 
face depends only on the amount of charge at the center of the cube. So the answer to (a) would not change 
if the size of the cube were changed. 

 22.12. IDENTIFY:   Apply the results of Examples 22.9 and 22.10. 

SET UP:   2
q

E k
r

=  outside the sphere. A proton has charge .e+  

EXECUTE:   (a) 
19

9 2 2 21
2 15 2

92(1.60 10  C)(8.99 10  N m /C ) 2.4 10  N/C
(7.4 10  m)

q
E k

r

−

−
×= = × ⋅ = ×

×
 

(b) For 101.0 10  m,r −= ×  
215

21 13
10

7.4 10  m(2.4 10  N/C) 1.3 10  N/C
1.0 10  m

E
−

−

⎛ ⎞×= × = ×⎜ ⎟⎜ ⎟×⎝ ⎠
 

(c) 0,E =  inside a spherical shell. 
EVALUATE:   The electric field in an atom is very large. 

 22.13. IDENTIFY:   The electric fields are produced by point charges. 

SET UP:   We use Coulomb’s law, 2
0

1 | | ,
4

qE
rπ

=
�

 to calculate the electric fields. 

EXECUTE:   (a) 
6

9 2 2 4
2

5.00 10  C(9.00 10  N m /C ) 4.50 10  N/C
(1.00 m)

E
−×= × ⋅ = ×  

(b) 
6

9 2 2 2
2

5.00 10  C(9.00 10  N m /C ) 9.18 10  N/C
(7.00 m)

E
−×= × ⋅ = ×  

(c) Every field line that enters the sphere on one side leaves it on the other side, so the net flux through the 
surface is zero. 
EVALUATE:   The flux would be zero no matter what shape the surface had, providing that no charge was 
inside the surface. 

 22.14. IDENTIFY:   Apply the results of Example 22.5. 
SET UP:   At a point 0.100 m outside the surface, 0.550 m.r =  

EXECUTE:   (a) 
10

2 2
0 0

1 1 (2.50 10 C) 7.44 N/C.
4 4 (0.550 m)

qE
rπ π

−×= = =
� �

 

(b) 0E =  inside of a conductor or else free charges would move under the influence of forces, violating 
our electrostatic assumptions (i.e., that charges aren’t moving). 
EVALUATE:   Outside the sphere its electric field is the same as would be produced by a point charge at its 
center, with the same charge. 

 22.15. IDENTIFY:   Each line lies in the electric field of the other line, and therefore each line experiences a force 
due to the other line. 

SET UP:   The field of one line at the location of the other is 
0

.
2

E
r

λ
π

=
�

 For charge dq dxλ=  on one line, 

the force on it due to the other line is .dF Edq=  The total force is .F Edq E dq Eq= = =∫ ∫  

EXECUTE:   
6

5
12 2 2

0

5.20 10  C/m 3.116 10  N/C.
2 2 (8.854 10  C /(N m ))(0.300 m)

E
r

λ
π π

−

−
×= = = ×

× ⋅�
 The force on one line 

due to the other is ,F Eq=  where 7(0.0500 m)  2.60 10  C.q λ −= = ×  The net force is 
5 7(3.116 10  N/C)(2.60 10  C) 0.0810 N.F Eq −= = × × =  
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EVALUATE:   Since the electric field at each line due to the other line is uniform, each segment of line 
experiences the same force, so all we need to use is ,F Eq=  even though the line is not a point charge. 

 22.16. IDENTIFY:   According to Exercise 21.32, the Earth’s electric field points toward its center. Since Mars’s 
electric field is similar to that of Earth, we assume it points toward the center of Mars. Therefore the charge 
on Mars must be negative. We use Gauss’s law to relate the electric flux to the charge causing it. 

SET UP:   Gauss’s law is 
0

E
qΦ =
�

 and the electric flux is .E EAΦ =  

EXECUTE:   (a) Solving Gauss’s law for q, putting in the numbers, and recalling that q is negative, gives 
16 2 12 2 2 5

0 (3.63 10  N m /C)(8.85 10  C /N m ) 3.21 10  C.Eq −= − Φ = − × ⋅ × ⋅ = − ×�  
(b) Use the definition of electric flux to find the electric field. The area to use is the surface area of Mars. 

16 2
2

6 2
3.63 10 N m /C 2.50 10 N/C
4 (3.40 10 m)

EE
A π

Φ × ⋅= = = ×
×

 

(c) The surface charge density on Mars is therefore 
5

9 2
6 2

Mars

3.21 10 C 2.21 10 C/m
4 (3.40 10 m)

q
A

σ
π

−− ×= = = − ×
×

 

EVALUATE:   Even though the charge on Mars is very large, it is spread over a large area, giving a small 
surface charge density. 

 22.17. IDENTIFY and SET UP:   Example 22.5 derived that the electric field just outside the surface of a spherical 

conductor that has net charge q is 2
0

1 .
4

qE
Rπ

=
�

 Calculate q and from this the number of excess electrons. 

EXECUTE:   
2 2

9
9 2 2

0

(0.160 m) (1150 N/C) 3.275 10  C.
(1/4 ) 8.988 10  N m /C

R Eq
π

−= = = ×
× ⋅�

 

Each electron has a charge of magnitude 191.602 10  C,e −= ×  so the number of excess electrons needed is 
9

10
19

3.275 10  C 2.04 10 .
1.602 10  C

−

−
× = ×
×

 

EVALUATE:   The result we obtained for q is a typical value for the charge of an object. Such net charges 
correspond to a large number of excess electrons since the charge of each electron is very small. 

 22.18. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Draw a cylindrical Gaussian surface with the line of charge as its axis. The cylinder has radius 
0.400 m and is 0.0200 m long. The electric field is then 840 N/C at every point on the cylindrical surface 
and is directed perpendicular to the surface. 
EXECUTE:   2

cylinder (2 ) (840 N/C)(2 )(0.400 m)(0.0200 m) 42.2 N m /C.d EA E rLπ π⋅ = = = = ⋅∫ E A  

The field is parallel to the end caps of the cylinder, so for them 0.d⋅ =∫ E A  From Gauss’s law, 
12 2 2 2 10

0 (8.854 10  C /N m )(42.2 N m /C) 3.74 10 C.Eq − −= Φ = × ⋅ ⋅ = ×�  
EVALUATE:   We could have applied the result in Example 22.6 and solved for .λ  Then .q Lλ=  

 22.19. IDENTIFY:   Add the vector electric fields due to each line of charge. E(r) for a line of charge is given by 
Example 22.6 and is directed toward a negative line of charge and away from a positive line. 
SET UP:   The two lines of charge are shown in Figure 22.19. 

 

 

0

1
2

E
r
λ

π
=

�
 

Figure 22.19   
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EXECUTE:   (a) At point a, 1 2 and E E  are in the -directiony+  (toward negative charge, away from 
positive charge). 

6 5
1 0(1/2 )[(4.80 10  C/m)/(0.200 m)] 4.314 10  N/CE π −= × = ×�  

6 5
2 0(1/2 )[(2.40 10  C/m)/(0.200 m)] 2.157 10  N/CE π −= × = ×�  

5
1 2 6.47 10  N/C,E E E= + = ×  in the y-direction. 

(b) At point b, 1E  is in the 2-direction and y+ E  is in the -direction.y−  
6 5

1 0(1/2 )[(4.80 10  C/m)/(0.600 m)] 1.438 10  N/CE π −= × = ×�  
6 5

2 0(1/2 )[(2.40 10  C/m)/(0.200 m)] 2.157 10  N/CE π −= × = ×�  
4

2 1 7.2 10  N/C,E E E= − = ×  in the -direction.y−  
EVALUATION:   At point a the two fields are in the same direction and the magnitudes add. At point b the 
two fields are in opposite directions and the magnitudes subtract. 

 22.20. IDENTIFY:   Apply the results of Examples 22.5, 22.6 and 22.7. 
SET UP:   Gauss’s law can be used to show that the field outside a long conducting cylinder is the same as 
for a line of charge along the axis of the cylinder. 
EXECUTE:   (a) For points outside a uniform spherical charge distribution, all the charge can be considered 
to be concentrated at the center of the sphere. The field outside the sphere is thus inversely proportional to 
the square of the distance from the center. In this case, 

2
0.200 cm(480 N/C) 53 N/C
0.600 cm

E
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

(b) For points outside a long cylindrically symmetrical charge distribution, the field is identical to that of a 

long line of charge: 
0

,
2

E
r

λ
π

=
�

 that is, inversely proportional to the distance from the axis of the cylinder. 

In this case 0 200 cm(480 N/C) 160 N/C.
0 600 cm

E .⎛ ⎞= =⎜ ⎟.⎝ ⎠
 

(c) The field of an infinite sheet of charge is 0/2 ;E σ= �  i.e., it is independent of the distance from the 
sheet. Thus in this case 480 N/C.E =  
EVALUATE:   For each of these three distributions of charge the electric field has a different dependence on 
distance. 

 22.21. IDENTIFY:   The electric field inside the conductor is zero, and all of its initial charge lies on its outer 
surface. The introduction of charge into the cavity induces charge onto the surface of the cavity, which 
induces an equal but opposite charge on the outer surface of the conductor. The net charge on the outer 
surface of the conductor is the sum of the positive charge initially there and the additional negative charge 
due to the introduction of the negative charge into the cavity. 
(a) SET UP:   First find the initial positive charge on the outer surface of the conductor using i ,q Aσ=  
where A is the area of its outer surface. Then find the net charge on the surface after the negative charge 
has been introduced into the cavity. Finally, use the definition of surface charge density. 
EXECUTE:   The original positive charge on the outer surface is 

2 6 2 2 6
i (4 ) (6.37 10  C/m )4 (0.250 m) 5.00 10  Cq A rσ σ π π− −= = = × = ×  

After the introduction of 0 500 Cμ− .   into the cavity, the outer charge is now 

5.00 C 0.500 C 4.50 Cμ μ μ −  =   

The surface charge density is now 
6

6 2
2 2

4.50 10  C 5.73 10  C/m
4 4 (0.250 m)

q q
A r

σ
π π

−
−×= = = = ×  

(b) SET UP:   Using Gauss’s law, the electric field is 2
0 0

.
4

E q qE
A A rπ

Φ= = =
� �
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EXECUTE:   Substituting numbers gives 
6

5
12 2 2 2

4.50 10  C 6.47 10  N/C.
(8.85 10  C /N m )(4 )(0.250 m)

E
π

−

−
×= = ×

× ⋅
 

(c) SET UP:   We use Gauss’s law again to find the flux. 
0

.E
qΦ =
�

 

EXECUTE:   Substituting numbers gives 
6

4 2
12 2 2

0.500 10 C 5.65 10 N m /C.
8.85 10  C /N mE

−

−
− ×Φ = = − × ⋅
× ⋅

 

EVALUATE:   The excess charge on the conductor is still 5.00 C,μ+   as it originally was. The introduction 
of the 0.500 Cμ−   inside the cavity merely induced equal but opposite charges (for a net of zero) on the 
surfaces of the conductor. 

 22.22. IDENTIFY:   We apply Gauss’s law, taking the Gaussian surface beyond the cavity but inside the solid. 

SET UP:   Because of the symmetry of the charge, Gauss’s law gives us 1
total

0
,qE

A
=

�
 where A is the surface 

area of a sphere of radius 9.50 cmR =  centered on the point-charge, and totalq  is the total charge 
contained within that sphere. This charge is the sum of the 2 00 Cμ− .   point charge at the center of the 
cavity plus the charge within the solid between 6.50 cmr =  and 9.50 cm.R =  The charge within the solid 
is 3 3 3 3

solid ([4/3] [4/3] ) ([4 /3] )( ).q V R r R rρ ρ π π π ρ= = − = −  

EXECUTE:   First find the charge within the solid between 6.50 cmr =  and 9.50 cm:R =  
4 3 3 3 6

solid
4 (7.35 10  C/m )[(0.0950 m) (0.0650 m) ] 1.794 10  C
3

q π − −= × − = ×  

Now find the total charge within the Gaussian surface: 

total solid point 2.00 C 1.794 C 0.2059 Cq q q μ μ μ= + = −  +  = −   
Now find the magnitude of the electric field from Gauss’s law: 

6
5

2 12 2 2 2
0 0

| | | | 0.2059 10  C 2.05 10  N/C.
4 (8.85 10  C /N m )(4 )(0.0950 m)

q qE
A rπ π

−

−
×= = = = ×

× ⋅� �
 

The fact that the charge is negative means that the electric field points radially inward. 
EVALUATE:   Because of the uniformity of the charge distribution, the charge beyond 9.50 cm does not 
contribute to the electric field. 

 22.23. IDENTIFY:   The magnitude of the electric field is constant at any given distance from the center because 
the charge density is uniform inside the sphere. We can use Gauss’s law to relate the field to the charge 
causing it. 

(a) SET UP:   Gauss’s law tells us that 
0

,qEA =
�

 and the charge density is given by 3 .
(4/3)

q q
V R

ρ
π

= =  

EXECUTE:   Solving for q and substituting numbers gives 
2 2 12 2 2 8

0 0(4 ) (1750 N/C)(4 )(0.500 m) (8.85 10  C /N m ) 4.866 10  C.q EA E rπ π − −= = = × ⋅ = ×� �  Using the 

formula for charge density we get 
8

7 3
3 3

4.866 10 C 2.60 10 C/m .
(4/3) (4/3) (0.355 m)

q q
V R

ρ
π π

−
−×= = = = ×  

(b) SET UP:   Take a Gaussian surface of radius 0.200 m,r =  concentric with the insulating sphere. The 

charge enclosed within this surface is 3
encl

4 ,
3

q V rρ ρ π⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 and we can treat this charge as a point-

charge, using Coulomb’s law encl
2

0

1 .
4

qE
rπ

=
�

 The charge beyond 0.200 mr =  makes no contribution to 

the electric field. 
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EXECUTE:   First find the enclosed charge: 

3 7 3 3 9
encl

4 4(2.60 10 C/m ) (0.200 m) 8.70 10 C
3 3

q rρ π π− −⎛ ⎞ ⎡ ⎤= = × = ×⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
 

Now treat this charge as a point-charge and use Coulomb’s law to find the field: 
9

9 2 2 3
2

8.70 10 C(9.00 10 N m /C ) 1.96 10 N/C
(0.200 m)

E
−×= × ⋅ = ×  

EVALUATE:   Outside this sphere, it behaves like a point-charge located at its center. Inside of it, at a 
distance r from the center, the field is due only to the charge between the center and r. 

 22.24. IDENTIFY:   The sheet repels the charge electrically, slowing it down and eventually stopping it at its 
closest approach. 

SET UP:   Let y+  be in the direction toward the sheet. The electric field due to the sheet is 
02

E σ=
�

 and 

the magnitude of the force the sheet exerts on the object is .F qE=  Newton’s second law, and the 
constant-acceleration kinematics formulas, apply to the object as it is slowing down. 

EXECUTE:   
8 2

3
12 2 2

0

5.90 10 C/m 3.332 10 N/C.
2 2(8.854 10 C /(N m ))

E σ −

−
×= = = ×

× ⋅�
 

3 9
3 2

9
(3.332 10 N/C)(6.50 10 C) 2.641 10 m/s .

8.20 10 kgy
F Eqa
m m

−

−
× ×= − = − = − = − ×

×
 Using 2 2

0 02 ( )y y yv v a y y= + −  

gives 3 2
0 02 ( ) 2( 2.64 10  m/s )(0.300 m) 39.8 m/s.y yv a y y= − − = − − × =  

EVALUATE:   We can use the constant-acceleration kinematics equations because the uniform electric field 
of the sheet exerts a constant force on the object, giving it a constant acceleration. We could not use this 
approach if the sheet were replaced with a sphere, for example. 

 22.25. IDENTIFY:   The uniform electric field of the sheet exerts a constant force on the proton perpendicular to 
the sheet, and therefore does not change the parallel component of its velocity. Newton’s second law 
allows us to calculate the proton’s acceleration perpendicular to the sheet, and uniform-acceleration 
kinematics allows us to determine its perpendicular velocity component.  
SET UP:   Let x+  be the direction of the initial velocity and let y+  be the direction perpendicular to the 

sheet and pointing away from it. 0xa =  so 2
0 9.70 10  m/s.x xv v= = ×  The electric field due to the sheet is 

02
E σ=

�
 and the magnitude of the force the sheet exerts on the proton is .F eE=  

EXECUTE:   
9 2

12 2 2
0

2.34 10  C/m 132.1 N/C.
2 2(8.854 10  C /(N m ))

E σ −

−
×= = =

× ⋅�
 Newton’s second law gives 

19
10 2

27
(132.1 N/C)(1.602 10  C) 1.265 10  m/s .

1.673 10  kgy
Eqa
m

−

−
×= = = ×

×
 Kinematics gives 

10 2 8
0 (1 265 10  m/s )(5 00 10  s) 632 7 m/s.y y yv v a y −= + = . × . × = .  The speed of the proton is the magnitude 

of its velocity, so 2 2 2 2 2 3(9 70 10  m/s) (632 7 m/s) 1 16 10  m/s.x yv v v= + = . × + . = . ×  

EVALUATE:   We can use the constant-acceleration kinematics equations because the uniform electric field 
of the sheet exerts a constant force on the proton, giving it a constant acceleration. We could not use this 
approach if the sheet were replaced with a sphere, for example. 

 22.26. IDENTIFY:   The charged sheet exerts a force on the electron and therefore does work on it. 
SET UP:   The electric field is uniform so the force on the electron is constant during the displacement. The 

electric field due to the sheet is 
02

E σ=
�

 and the magnitude of the force the sheet exerts on the electron is 

.F qE=  The work the force does on the electron is .W Fs=  In (b) we can use the work-energy theorem, 

tot 2 1.W K K K= Δ = −  
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EXECUTE:   (a) ,W Fs=  where 0 250 m.s = .  ,F Eq=  where 
12 2

12 2 2
0

2.90 10  C/m 0.1638 N/C.
2 2(8.854 10  C /(N m ))

E σ −

−
×= = =

× ⋅�
 Therefore the force is 

19 20(0.1638 N/C)(1.602 10  C) 2.624 10  N.F − −= × = ×  The work this force does is 216.56 10  J.W Fs −= = ×  

(b) Use the work-energy theorem: tot 2 1.W K K K= Δ = −  1 0.K =  2
2 2

1 .
2

K mv=  So, 2
2

1 ,
2

mv W=  which 

gives 
21

5
2 31

2 2(6.559 10  J) 1.2 10  m/s.
9.109 10  kg

Wv
m

−

−
×= = = ×

×
 

EVALUATE:   If the field were not constant, we would have to integrate in (a), but we could still use the 
work-energy theorem in (b). 

 22.27. IDENTIFY:   The field of the sphere exerts a force on the object as it accelerates away from the sphere, and 
therefore does work on it. Coulomb’s law gives the force that the sphere exerts on the object. 

SET UP:   The sphere carries charge 34
3

Q V Rρ ρ π⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 and produces an electric field 2
kQE
r

=  for 

points outside its surface. The work done on the object is ( ) .
R

W F r dr
∞

= ∫  

EXECUTE:   3 9 3 3 104 4(7.20 10  C/m ) (0.160 m) 1.235 10  C.
3 3

Q V Rρ ρ π π− −⎛ ⎞ ⎛ ⎞= = = × = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 Outside the 

sphere, 2 .kQE
r

=  The work done on the object is 

9 2 2 10 6

2
(8.988 10  N m /C )(1.235 10  C)(3.40 10  C)( ) .

0.160 mR R
dr kQqW F r dr kQq

Rr

− −∞ ∞ × ⋅ × ×= = = =∫ ∫
52.36 10  J.W −= ×  

EVALUATE:   Even though the force on the sphere extends to infinity, it does finite work because it gets 
weaker and weaker as the distance from the sphere increases. 

 22.28. IDENTIFY:   Apply Gauss’s law and conservation of charge. 
SET UP:   Use a Gaussian surface that lies wholly within the conducting material. 
EXECUTE:   (a) Positive charge is attracted to the inner surface of the conductor by the charge in the cavity. 
Its magnitude is the same as the cavity charge: nner 6.00 nC,iq = +  since 0E =  inside a conductor and a 
Gaussian surface that lies wholly within the conductor must enclose zero net charge. 
(b) On the outer surface the charge is a combination of the net charge on the conductor and the charge “left 
behind” when the 6 00 nC+ .  moved to the inner surface: 

tot inner outer outer tot inner 5.00 nC 6.00 nC 1.00 nC.q q q q q q= + ⇒ = − = − = −  
EVALUATE:   The electric field outside the conductor is due to the charge on its surface. 

 22.29. IDENTIFY:   Apply Gauss’s law to each surface. 
SET UP:   The field is zero within the plates. By symmetry the field is perpendicular to a plate outside the 
plate and can depend only on the distance from the plate. Flux into the enclosed volume is positive. 
EXECUTE:   2 3andS S  enclose no charge, so the flux is zero, and electric field outside the plates is zero. 
Between the plates, 4S  shows that 0 0/EA q A/σ− = − = −� �  and 0/ .E σ= �  
EVALUATE:   Our result for the field between the plates agrees with the result stated in Example 22.8. 

 22.30. IDENTIFY:   Close to a finite sheet the field is the same as for an infinite sheet. Very far from a finite sheet 
the field is that of a point charge. 

SET UP:   For an infinite sheet, 
0

.
2

E σ=
�

 For a positive point charge, 2
0

1 .
4

qE
rπ

=
�
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EXECUTE:    (a) At a distance of 0.1 mm from the center, the sheet appears “infinite,” so 
9

2
0 0

7.50 10  C 662 N/C.
2 2 (0.800 m)

qE
A

−×≈ = =
� �

 

(b) At a distance of 100 m from the center, the sheet looks like a point, so: 
9

3
2 2

0 0

1 1 (7.50 10  C) 6.75 10  N C.
4 4 (100 m)

qE /
rπ π

−
−×≈ = = ×

� �
 

(c) There would be no difference if the sheet was a conductor. The charge would automatically spread out 
evenly over both faces, giving it half the charge density on either face as the insulator but the same electric 
field. Far away, they both look like points with the same charge. 
EVALUATE:   The sheet can be treated as infinite at points where the distance to the sheet is much less than 
the distance to the edge of the sheet. The sheet can be treated as a point charge at points for which the 
distance to the sheet is much greater than the dimensions of the sheet. 

 22.31. IDENTIFY:   Apply Gauss’s law to a Gaussian surface and calculate E. 
(a) SET UP:   Consider the charge on a length l of the cylinder. This can be expressed as .q lλ=  But since 
the surface area is 2 Rlπ  it can also be expressed as 2 .q Rlσ π=  These two expressions must be equal, so 

2l Rlλ σ π=  and 2 .Rλ π σ=  
(b) Apply Gauss’s law to a Gaussian surface that is a cylinder of length l, radius r, and whose axis 
coincides with the axis of the charge distribution, as shown in Figure 22.31. 

 

 EXECUTE:    
encl (2 )Q Rlσ π=  

2E rlEπΦ =  

Figure 22.31   
 

encl

0 0

(2 ) gives 2E
Q RlrlE σ ππΦ = =

� �
 

0

RE
r

σ=
�

 

(c) EVALUATE:   Example 22.6 shows that the electric field of an infinite line of charge is 0/2 .E rλ π= �  

,
2 R

λσ
π

=  so 
0 0 0

,
2 2

R RE
r r R r

σ λ λ
π π

⎛ ⎞= = =⎜ ⎟
⎝ ⎠� � �

 the same as for an infinite line of charge that is along the 

axis of the cylinder. 
 22.32. IDENTIFY:   The net electric field is the vector sum of the fields due to each of the four sheets of charge. 

SET UP:   The electric field of a large sheet of charge is 0/2 .E σ= �  The field is directed away from a 
positive sheet and toward a negative sheet. 

EXECUTE:   (a) At 32 4 1
2 3 4 1

0 0 0 0 0

1: ( ).
2 2 2 2 2AA E

σσ σ σ
σ σ σ σ= + + − = + + −

� � � � �
 

2 2 2 2 5

0

1 (5 C/m 2 C/m 4 C/m 6 C/m ) 2.82 10  N/C to the left.
2AE μ μ μ μ= + + − = ×
�

 

(b) 31 4 2
1 3 4 2

0 0 0 0 0

1 ( ).
2 2 2 2 2BE

σσ σ σ
σ σ σ σ= + + − = + + −

� � � � �
 

2 2 2 2 5

0

1 (6 C/m 2 C/m 4 C/m 5 C/m ) 3.95 10 N/C to the left.
2BE μ μ μ μ= + + − = ×
�
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(c) 34 1 2
4 1 2 3

0 0 0 0 0

1 ( ).
2 2 2 2 2CE

σσ σ σ
σ σ σ σ= + − − = + − −

� � � � �
 

2 2 2 2 5

0

1 (4 C/m 6 C/m 5 C/m 2 C/m ) 1.69 10 N/C to the left.
2CE μ μ μ μ=  +  −  −  = ×  
�

 

EVALUATE:   The field at C is not zero. The pieces of plastic are not conductors. 
 22.33. IDENTIFY:   Apply Gauss’s law and conservation of charge. 

SET UP:   0E =  in a conducting material. 
EXECUTE:   (a) Gauss’s law says Q+  on inner surface, so 0E =  inside metal. 
(b) The outside surface of the sphere is grounded, so no excess charge. 
(c) Consider a Gaussian sphere with the –Q  charge at its center and radius less than the inner radius of the 
metal. This sphere encloses net charge –Q  so there is an electric field flux through it; there is electric field 
in the cavity. 
(d) In an electrostatic situation 0E =  inside a conductor. A Gaussian sphere with the Q−  charge at its 
center and radius greater than the outer radius of the metal encloses zero net charge (the Q−  charge and 
the Q+  on the inner surface of the metal), so there is no flux through it and 0E =  outside the metal. 
(e) No, 0E =  there. Yes, the charge has been shielded by the grounded conductor. There is nothing like 
positive and negative mass (the gravity force is always attractive), so this cannot be done for gravity. 
EVALUATE:   Field lines within the cavity terminate on the charges induced on the inner surface. 

 22.34. IDENTIFY:   Use Eq. (22.3) to calculate the flux for each surface. Use Eq. (22.8) to calculate the total 
enclosed charge. 
SET UP:   ˆ ˆ( 5.00 N/C m) (3.00 N/C m) .x z= − ⋅ + ⋅E i k  The area of each face is 2,L  where 0 300 m.L = .  

EXECUTE:   (a) 
1 11

ˆˆ ˆ 0.S S A= − ⇒ Φ = ⋅ =n j E n  

2 2

2
2

ˆˆ ˆ (3.00 N/C m)(0.300 m) (0.27 (N/C) m) .S S A z z= + ⇒ Φ = ⋅ = ⋅ = ⋅n k E n  
2

2 (0.27 (N/C) m)(0.300 m) 0.081(N/C) m .Φ =  ⋅ =  ⋅  

3 33
ˆˆ ˆ 0.S S A= + ⇒ Φ = ⋅ =n j E n  

4 44
ˆˆ ˆ (0.27 (N/C) m) 0 (since 0).S S A z z= − ⇒ Φ = ⋅ = −  ⋅ = =n k E n  

5 5

2
5

ˆˆ ˆ ( 5.00 N/C m)(0.300 m) (0.45 (N/C) m) .S S A x x= + ⇒ Φ = ⋅ = − ⋅ = −  ⋅n i E n  
2

5 (0.45 (N/C) m)(0.300 m) (0.135(N/C) m ).Φ = −  ⋅ = −  ⋅  

6 66
ˆˆ ˆ (0.45 (N/C) m) 0 (since 0).S S A x x= − ⇒ Φ = ⋅ = +  ⋅ =  =n i E n  

(b) Total flux: 2 2
2 5 (0.081 0.135)(N/C) m 0.054 N m /C.Φ = Φ + Φ = − ⋅ = − ⋅  Therefore, 
13

0 4.78 10  C.q −= Φ = − ×�  

EVALUATE:   Flux is positive when E  is directed out of the volume and negative when it is directed into 
the volume. 

 22.35. IDENTIFY:   Use Eq. (22.3) to calculate the flux through each surface and use Gauss’s law to relate the net 
flux to the enclosed charge. 
SET UP:   Flux into the enclosed volume is negative and flux out of the volume is positive. 
EXECUTE:   (a) 2 2(125 N/C)(6.0 m ) 750 N m /C.EAΦ = = = ⋅  
(b) Since the field is parallel to the surface, 0.Φ =  
(c) Choose the Gaussian surface to equal the volume’s surface. Then 2

0750 N m /C /EA q⋅ − = �  and 

8 2
02

1 (2 40 10  C/ 750 N m /C) 577 N/C,
6.0 m

E −= . × + ⋅ =�  in the positive x-direction. Since 0q <  we must 

have some net flux flowing in so the flux is EA−  on second face. 
EVALUATE:   (d) 0q <  but we have E pointing away from face I. This is due to an external field that does not 
affect the flux but affects the value of E. The electric field is produced by charges both inside and outside the slab. 
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 22.36. IDENTIFY:   The electric field is perpendicular to the square but varies in magnitude over the surface of the 
square, so we will need to integrate to find the flux. 
SET UP and EXECUTE:   ˆ(964 N/(C m)) .x= ⋅E k  Consider a thin rectangular slice parallel to the y-axis and 

at coordinate x with width dx. ˆ( ) .d Ldx=A k  (964 N/(C m)) .Ed d LxdxΦ = ⋅ = ⋅E A  
2

0 0
(964 N/(C m)) (964 N/(C m)) .

2E E
L L Ld L xdx L

⎛ ⎞
Φ = Φ = ⋅ = ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫

3 21 (964 N/(C m))(0 350 m) 20 7 N m /C.
2EΦ = ⋅ . = . ⋅  

EVALUATE:   To set up the integral, we take rectangular slices parallel to the y-axis (and not the x-axis) 
because the electric field is constant over such a slice. It would not be constant over a slice parallel to the x-axis. 

 22.37. (a) IDENTIFY:   Find the net flux through the parallelepiped surface and then use that in Gauss’s law to find 
the net charge within. Flux out of the surface is positive and flux into the surface is negative. 
SET UP:   1E  gives flux out of the surface. See Figure 22.37a. 

 

 EXECUTE:   1 1E A⊥Φ = +  
3 2(0.0600 m)(0.0500 m) 3.00 10  mA −= = ×  

4
1 1 cos60 (2.50 10  N/C)cos60E E⊥ = ° = × °  

4
1 1.25 10  N/CE ⊥ = ×  

Figure 22.37a   
 

1

4 3 2 2
1 (1.25 10  N/C)(3.00 10  m ) 37.5 N m /CE E A −
⊥Φ = + = + × × = ⋅  

SET UP:   2E  gives flux into the surface. See Figure 22.37b. 
 

 EXECUTE:   2 2E A⊥Φ = −  
3 2(0.0600 m)(0.0500 m) 3.00 10 mA −= = ×  

4
2 2 cos60 (7.00 10  N/C)cos60E E⊥ = ° = × °  

4
2 3.50 10  N/CE ⊥ = ×  

Figure 22.37b   
 

2

4 3 2 2
2 (3.50 10  N/C)(3.00 10  m ) 105.0 N m /CE E A −

⊥Φ = − = − × × = − ⋅  

The net flux is 
1 2

2 2 237.5 N m /C 105.0 N m /C 67.5 N m /C.E E EΦ = Φ + Φ = + ⋅ − ⋅ = − ⋅  

The net flux is negative (inward), so the net charge enclosed is negative. 

Apply Gauss’s law: encl

0
E

QΦ =
�

 

2 12 2 2 10
encl 0 ( 67.5 N m /C)(8.854 10  C /N m ) 5.98 10  C.EQ − −= Φ = − ⋅ × ⋅ = − ×�  

(b) EVALUATE:   If there were no charge within the parallelpiped the net flux would be zero. This is not the 
case, so there is charge inside. The electric field lines that pass out through the surface of the parallelpiped 
must terminate on charges, so there also must be charges outside the parallelpiped. 

 22.38. IDENTIFY:   The α  particle feels no force where the net electric field due to the two distributions of charge 
is zero. 
SET UP:   The fields can cancel only in the regions A and B shown in Figure 22.38, because only in these 
two regions are the two fields in opposite directions. 
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EXECUTE:   line sheetE E=  gives 
0 02 2r

λ σ
π

=
� �

 and 2
50 C/m/ 0.16 m 16 cm.

(100 C/m )
r μλ πσ

π μ
= = = =  

The fields cancel 16 cm from the line in regions A and B. 
EVALUATE:   The result is independent of the distance between the line and the sheet. The electric field of 
an infinite sheet of charge is uniform, independent of the distance from the sheet. 

 

 

Figure 22.38 
 

 22.39. (a) IDENTIFY:   Apply Gauss’s law to a Gaussian cylinder of length l and radius r, where ,a r b< <  and 
calculate E on the surface of the cylinder. 
SET UP:   The Gaussian surface is sketched in Figure 22.39a. 

 

 EXECUTE:   (2 )E E rlπΦ =  

enclQ lλ=  (the charge on the 
length l of the inner conductor 
that is inside the Gaussian surface). 

Figure 22.39a   
 

encl

0 0
 gives (2 )E

Q lE rl λπΦ = =
� �

 

0
.

2
E

r
λ

π
=

�
 The enclosed charge is positive so the direction of E  is radially outward. 

(b) SET UP:   Apply Gauss’s law to a Gaussian cylinder of length l and radius r, where ,r c>  as shown in 
Figure 22.39b. 

 

 EXECUTE:   (2 )E E rlπΦ =  

enclQ lλ=  (the charge on the  
length l of the inner conductor  
that is inside the Gaussian surface;  
the outer conductor carries no  
net charge). 

Figure 22.39b   
 

encl

0 0
 gives (2 )E

Q lE rl λπΦ = =
� �

 

0
.

2
E

r
λ

π
=

�
 The enclosed charge is positive so the direction of E  is radially outward. 

(c) E = 0 within a conductor. Thus E = 0 for ;r a<  

0
 for ; 0 for ;

2
E a r b E b r c

r
λ

π
= < <  = < <

�
 

0
 for .

2
E r c

r
λ

π
= >

�
 The graph of E versus r is sketched in Figure 22.39c. 
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Figure 22.39c 

 

EVALUATE:   Inside either conductor E = 0. Between the conductors and outside both conductors the electric 
field is the same as for a line of charge with linear charge density λ  lying along the axis of the inner conductor. 
(d) IDENTIFY and SET UP:   inner surface: Apply Gauss’s law to a Gaussian cylinder with radius r, where 

.b r c< <  We know E on this surface; calculate encl.Q  
EXECUTE:   This surface lies within the conductor of the outer cylinder, where 0, so 0.EE = Φ =  Thus by 
Gauss’s law encl 0.Q =  The surface encloses charge lλ  on the inner conductor, so it must enclose charge 

lλ−  on the inner surface of the outer conductor. The charge per unit length on the inner surface of the 
outer cylinder is .λ−  
outer surface: The outer cylinder carries no net charge. So if there is charge per unit length λ−  on its 
inner surface there must be charge per unit length λ+  on the outer surface. 
EVALUATE:   The electric field lines between the conductors originate on the surface charge on the outer 
surface of the inner conductor and terminate on the surface charges on the inner surface of the outer conductor. 
These surface charges are equal in magnitude (per unit length) and opposite in sign. The electric field lines 
outside the outer conductor originate from the surface charge on the outer surface of the outer conductor. 

 22.40. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a cylinder of radius r, length l and that has the line of charge along 
its axis. The charge on a length l of the line of charge or of the tube is .q lα=  

EXECUTE:   (a) (i) For ,r a<  Gauss’s law gives encl

0 0
(2 ) Q lE rl απ = =

� �
 and 

0
.

2
E

r
α

π
=

�
 

(ii) The electric field is zero because these points are within the conducting material. 

(iii) For ,r b>  Gauss’s law gives encl

0 0

2(2 ) Q lE rl απ = =
� �

 and 
0

.E
r

α
π

=
�

 

The graph of E versus r is sketched in Figure 22.40. 
(b) (i) The Gaussian cylinder with radius r, for ,a r b< <  must enclose zero net charge, so the charge per 
unit length on the inner surface is .α−  (ii) Since the net charge per length for the tube is α+  and there is 

α−  on the inner surface, the charge per unit length on the outer surface must be 2 .α+  
EVALUATE:   For r b>  the electric field is due to the charge on the outer surface of the tube. 

 

 
Figure 22.40 
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 22.41. (a) IDENTIFY:   Use Gauss’s law to calculate E(r). 
(i) SET UP:   :r a<  Apply Gauss’s law to a cylindrical Gaussian surface of length l and radius r, where 

,r a<  as sketched in Figure 22.41a. 
 

 EXECUTE:   (2 )E E rlπΦ =  

enclQ lα=  (the charge on the 
length l of the line of charge) 

Figure 22.41a   
 

encl

0 0
 gives (2 )E

Q lE rl απΦ = =
� �

 

0
.

2
E

r
α

π
=

�
 The enclosed charge is positive so the direction of E  is radially outward. 

(ii) :a r b< <  Points in this region are within the conducting tube, so. E = 0. 
(iii) SET UP:   :r b>  Apply Gauss’s law to a cylindrical Gaussian surface of length l and radius r, where 

,r b>  as sketched in Figure 22.41b. 
 

 EXECUTE:   (2 )E E rlπΦ =  

enclQ lα=  (the charge on length 
l of the line of charge) lα−  (the  
charge on length l of the tube)  
Thus encl 0.Q =  

Figure 22.41b   
 

encl

0
 gives (2 ) 0 and 0.E

Q E rl EπΦ = = =
�

 The graph of E versus r is sketched in Figure 22.41c. 

 

 
Figure 22.41c 

 

(b) IDENTIFY:   Apply Gauss’s law to cylindrical surfaces that lie just outside the inner and outer surfaces 
of the tube. We know E so can calculate encl.Q  
(i) SET UP:   inner surface 
Apply Gauss’s law to a cylindrical Gaussian surface of length l and radius r, where .a r b< <  
EXECUTE:   This surface lies within the conductor of the tube, where E = 0, so 0.EΦ =  Then by Gauss’s 
law encl 0.Q =  The surface encloses charge lα  on the line of charge so must enclose charge lα−  on the 
inner surface of the tube. The charge per unit length on the inner surface of the tube is .α−  
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(ii) outer surface 
The net charge per unit length on the tube is .α−  We have shown in part (i) that this must all reside on the 
inner surface, so there is no net charge on the outer surface of the tube. 
EVALUATE:   For r a<  the electric field is due only to the line of charge. For r b>  the electric field of 
the tube is the same as for a line of charge along its axis. The fields of the line of charge and of the tube are 
equal in magnitude and opposite in direction and sum to zero. For r a<  the electric field lines originate on 
the line of charge and terminate on the surface charge on the inner surface of the tube. There is no electric 
field outside the tube and no surface charge on the outer surface of the tube. 

 22.42. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a cylinder of radius r and length l, and that is coaxial with the 
cylindrical charge distributions. The volume of the Gaussian cylinder is 2r lπ  and the area of its curved 
surface is 2 .rlπ  The charge on a length l of the charge distribution is ,q lλ=  where 2.Rλ ρπ=  

EXECUTE:   (a) For ,r R<  2
enclQ r lρπ=  and Gauss’s law gives 

2
encl

0 0
(2 ) Q r lE rl ρππ = =

��
 and 

02
,rE ρ=

�
 

radially outward. 

(b) For ,r R>  2
enclQ l R lλ ρπ= =  and Gauss’s law gives 

2
encl

00
(2 ) Q R lE rl ρππ = =

��
 and 

2

0 0
,

2 2
RE

r r
ρ λ

π
= =

� �
 radially outward. 

(c) At ,r R=  the electric field for BOTH regions is 
0

,
2

RE ρ=
�

 so they are consistent. 

(d) The graph of E versus r is sketched in Figure 22.42. 
EVALUATE:   For r R>  the field is the same as for a line of charge along the axis of the cylinder. 

 

 
Figure 22.42 

 22.43. IDENTIFY:   First make a free-body diagram of the sphere. The electric force acts to the left on it since the 
electric field due to the sheet is horizontal. Since it hangs at rest, the sphere is in equilibrium so the forces 
on it add to zero, by Newton’s first law. Balance horizontal and vertical force components separately. 
SET UP:   Call T the tension in the thread and E the electric field. Balancing horizontal forces gives 

sin .T qEθ =  Balancing vertical forces we get cos .T mgθ =  Combining these equations gives 
tan / ,qE mgθ =  which means that arctan ( / ).qE mgθ =  The electric field for a sheet of charge is 

0/2 .E σ ε=  

EXECUTE:   Substituting the numbers gives us  
9 2

2
12 2 2

0

2.50 10 C/m 1.41 10 N/C.
2 2(8.85 10 C /N m )

E σ −

−
×= = = ×

× ⋅�
 Then  

8 2

6 2
(5.00 10 C)(1.41 10 N/C)arctan 10.2 .

(4.00 10 kg)(9.80 m/s )
θ

−

−

⎡ ⎤× ×= = °⎢ ⎥
×⎢ ⎥⎣ ⎦

 

EVALUATE:   Increasing the field, or decreasing the mass of the sphere, would cause the sphere to hang at a 
larger angle. 
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 22.44. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the conducting 
spheres. 
EXECUTE:   (a) For , 0,r a E< =  since these points are within the conducting material. 

For 2
0

1, ,
4

qa r b E
rπ

< < =
�

 since there is q+  inside a radius r. 

For , 0,b r c E< < =  since these points are within the conducting material. 

For 2
0

1, ,
4

qr c E
rπ

> =
�

 since again the total charge enclosed is .q+  

(b) The graph of E versus r is sketched in Figure 22.44a. 
(c) Since the Gaussian sphere of radius r, for ,b r c< <  must enclose zero net charge, the charge on the 
inner shell surface is – .q  
(d) Since the hollow sphere has no net charge and has charge q−  on its inner surface, the charge on the 
outer shell surface is .q+  
(e) The field lines are sketched in Figure 22.44b. Where the field is nonzero, it is radially outward. 
EVALUATE:   The net charge on the inner solid conducting sphere is on the surface of that sphere. The 
presence of the hollow sphere does not affect the electric field in the region .r b<  

 

 
Figure 22.44 

 

 22.45. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charge 
distributions. 
EXECUTE:   (a) For , 0,r R E< =  since these points are within the conducting material. For 2 ,R r R< <  

2
0

1 ,
4

QE
rπ

=
�

 since the charge enclosed is Q. The field is radially outward. For 2 ,r R>  2
0

1 2
4

QE
rπ

=
�

 

since the charge enclosed is 2Q. The field is radially outward. 
(b) The graph of E versus r is sketched in Figure 22.45. 
EVALUATE:   For 2r R<  the electric field is unaffected by the presence of the charged shell. 

 

 

Figure 22.45 
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 22.46. IDENTIFY:   Apply Gauss’s law and conservation of charge. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that has the point charge at its center. 

EXECUTE:   (a) For  ,r a<  2
0

1 ,
4

QE
rπ

=
�

 radially outward, since the charge enclosed is Q, the charge of 

the point charge. For ,a r b< <  0E =  since these points are within the conducting material. For ,r b>  

2
0

1 2 ,
4

QE
rπ

=
�

 radially inward, since the total enclosed charge is 2 .Q−  

(b) Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero net charge, the total charge on 

the inner surface is Q−  and the surface charge density on the inner surface is 2 .
4

Q
a

σ
π

= −  

(c) Since the net charge on the shell is 3Q−  and there is Q−  on the inner surface, there must be 2Q−  on 

the outer surface. The surface charge density on the outer surface is 2
2 .

4
Q
b

σ
π

= −  

(d) The field lines and the locations of the charges are sketched in Figure 22.46a. 
(e) The graph of E versus r is sketched in Figure 22.46b. 

 

     

Figure 22.46 
 

EVALUATE:   For r a<  the electric field is due solely to the point charge Q. For r b>  the electric field is 
due to the charge 2Q−  that is on the outer surface of the shell. 

 22.47. IDENTIFY:   Apply Gauss’s law to a spherical Gaussian surface with radius r. Calculate the electric field at 
the surface of the Gaussian sphere. 
(a) SET UP:   (i) :r a<  The Gaussian surface is sketched in Figure 22.47a. 

 

 EXECUTE:   2(4 )E EA E rπΦ = =  

encl 0;Q =  no charge is enclosed 

encl

0
E

QΦ =
�

 says  

2(4 ) 0 and 0.E r Eπ = =  
 

Figure 22.47a   
 

(ii) :a r b< <  Points in this region are in the conductor of the small shell, so 0.E =  
(iii) SET UP:   :b r c< <  The Gaussian surface is sketched in Figure 22.47b. 
Apply Gauss’s law to a spherical Gaussian surface with radius .b r c< <  
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 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and none of the 
large shell, so encl 2 .Q q= +  

Figure 22.47b   
 

2encl
2

0 0 0

2 2 gives (4 )  so .
4E

Q q qE r E
r

π
π

Φ = = =
� � �

 Since the enclosed charge is positive the electric field is 

radially outward. 
(iv) :c r d< <  Points in this region are in the conductor of the large shell, so 0.E =  
(v) SET UP:   :r d>  Apply Gauss’s law to a spherical Gaussian surface with radius ,r d>  as shown in 
Figure 22.47c. 

 

 EXECUTE:   2(4 )E EA E rπΦ = =  
The Gaussian surface encloses all 
of the small shell and all of the 
large shell, so encl 2 4 6 .Q q q q= + + =  

Figure 22.47c   
 

2encl

0 0

6gives (4 )E
Q qE rπΦ = =

� �
 

2
0

6 .
4

qE
rπ

=
�

 Since the enclosed charge is positive the electric field is radially outward. 

The graph of E versus r is sketched in Figure 22.47d. 
 

 

Figure 22.47d 
 

(b) IDENTIFY and SET UP:   Apply Gauss’s law to a sphere that lies outside the surface of the shell for 
which we want to find the surface charge. 
EXECUTE:   (i) charge on inner surface of the small shell: Apply Gauss’s law to a spherical Gaussian 
surface with radius a r b< < .  This surface lies within the conductor of the small shell, where 0,E =  so 

0EΦ = .  Thus by Gauss’s law encl 0,Q =  so there is zero charge on the inner surface of the small shell. 



22-20   Chapter 22 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

(ii) charge on outer surface of the small shell: The total charge on the small shell is 2 .q+  We found in part 
(i) that there is zero charge on the inner surface of the shell, so all 2q+  must reside on the outer surface. 
(iii) charge on inner surface of large shell: Apply Gauss’s law to a spherical Gaussian surface with radius 

.c r d< <  The surface lies within the conductor of the large shell, where 0,E =  so 0.EΦ =  Thus by 
Gauss’s law encl 0.Q =  The surface encloses the 2q+  on the small shell so there must be charge 2q−  on 
the inner surface of the large shell to make the total enclosed charge zero. 
(iv) charge on outer surface of large shell: The total charge on the large shell is 4 .q+  We showed in part 
(iii) that the charge on the inner surface is 2 ,q−  so there must be 6q+  on the outer surface. 
EVALUATE:   The electric field lines for b r c< <  originate from the surface charge on the outer surface of 
the inner shell and all terminate on the surface charge on the inner surface of the outer shell. These surface 
charges have equal magnitude and opposite sign. The electric field lines for r d>  originate from the 
surface charge on the outer surface of the outer sphere. 

 22.48. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE:   (a) (i) For , 0,r a E< =  since the charge enclosed is zero. (ii) For , 0,a r b E< < =  since the 

points are within the conducting material. (iii) For 2
0

1 2, ,
4

qb r c E
rπ

< < =
�

outward, since the charge 

enclosed is 2q+ .  (iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For 
, 0,r d E> =  since the net charge enclosed is zero. The graph of E versus r is sketched in Figure 22.48. 

(b) (i) small shell inner surface: Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero 
net charge, the charge on this surface is zero. (ii) small shell outer surface: 2 .q+  (iii) large shell inner 
surface: Since a Gaussian surface with radius r, for ,c r d< <  must enclose zero net charge, the charge on 
this surface is 2 .q−  (iv) large shell outer surface: Since there is 2q−  on the inner surface and the total 
charge on this conductor is 2 ,q−  the charge on this surface is zero. 
EVALUATE:   The outer shell has no effect on the electric field for .r c<  For r d>  the electric field is due 
only to the charge on the outer surface of the larger shell. 

 

 

Figure 22.48 
 

 22.49. IDENTIFY:   Apply Gauss’s law 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the charged shells. 
EXECUTE:   (a) (i) For , 0,r a E< =  since the charge enclosed is zero. (ii) , 0,a r b E< < =  since the points 

are within the conducting material. (iii) For 2
0

1 2, ,
4

qb r c E
rπ

< < =
�

 outward, since the charge enclosed  

is 2 .q+  (iv) For , 0,c r d E< < =  since the points are within the conducting material. (v) For 

2
0

1 2, ,
4

qr d E
rπ

> =
�

 inward, since the charge enclosed is 2 .q−  The graph of the radial component of the 

electric field versus r is sketched in Figure 22.49, where we use the convention that outward field is 
positive and inward field is negative. 
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(b) (i) small shell inner surface: Since a Gaussian surface with radius r, for ,a r b< <  must enclose zero 
net charge, the charge on this surface is zero. (ii) small shell outer surface: 2 .q+  (iii) large shell inner 
surface: Since a Gaussian surface with radius r, for ,c r d< <  must enclose zero net charge, the charge on 
this surface is 2 .q−  (iv) large shell outer surface: Since there is 2q−  on the inner surface and the total 
charge on this conductor is 4 ,q−  the charge on this surface is 2 .q−  
EVALUATE:   The outer shell has no effect on the electric field for .r c<  For r d>  the electric field is due 
only to the charge on the outer surface of the larger shell. 

 

 
Figure 22.49 

 

 22.50. IDENTIFY:   Apply Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the sphere and 

shell. The volume of the insulating shell is 3 3 34 28([2 ] ) .
3 3

V R R Rππ= − =  

EXECUTE:   (a) Zero net charge requires that 
328 ,

3
RQ π ρ− =  so 3

3 .
28

Q
R

ρ
π

= −  

(b) For , 0r R E<  =  since this region is within the conducting sphere. For 2 , 0,r R E>  =  since the net 
charge enclosed by the Gaussian surface with this radius is zero. For 2 ,R r R< <  Gauss’s law gives 

2 3 3

0 0

4(4 ) ( )
3

QE r r Rπ ρπ = + −
� �

 and 3 3
2 2

0 0
( ).

4 3
QE r R

r r
ρ

π
= + −

� �
 Substituting ρ  from part (a) gives 

2 3
0 0

2 .
7 28

Q QrE
r Rπ π

= −
� �

 The net enclosed charge for each r in this range is positive and the electric field 

is outward. 
(c) The graph is sketched in Figure 22.50. We see a discontinuity in going from the conducting sphere to 
the insulator due to the thin surface charge of the conducting sphere. But we see a smooth transition from 
the uniform insulator to the surrounding space. 
EVALUATE:   The expression for E within the insulator gives 0E =  at 2 .r R=  

 

 
Figure 22.50 
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 22.51. IDENTIFY:   Use Gauss’s law to find the electric field E  produced by the shell for  and r R r R< >  and 
then use q=F E  to find the force the shell exerts on the point charge. 
(a) SET UP:   Apply Gauss’s law to a spherical Gaussian surface that has radius r R>  and that is 
concentric with the shell, as sketched in Figure 22.51a. 

 

 EXECUTE:   2(4 )E E rπΦ = −  

enclQ Q= −  

Figure 22.51a   
 

2encl

0 0
 gives (4 )E

Q QE rπ −Φ = − =
� �

 

The magnitude of the field is 2
04

QE
rπ

=
�

 and it is directed toward the center of the shell. Then 

2
0

,
4

qQF qE
rπ

= =
�

 directed toward the center of the shell. (Since q is positive, and E F  are in the same 

direction.) 
(b) SET UP:   Apply Gauss’s law to a spherical Gaussian surface that has radius r R<  and that is 
concentric with the shell, as sketched in Figure 22.51b. 

 

 EXECUTE:   2(4 )E E rπΦ =  

encl 0Q =  

Figure 22.51b   
 

2encl

0
 gives (4 ) 0E

Q E rπΦ = =
�

 

Then 0 so 0.E F= =  
EVALUATE:   Outside the shell the electric field and the force it exerts is the same as for a point charge Q−  
located at the center of the shell. Inside the shell 0E =  and there is no force. 

 22.52. IDENTIFY:   The method of Example 22.9 shows that the electric field outside the sphere is the same as for 
a point charge of the same charge located at the center of the sphere. 
SET UP:   The charge of an electron has magnitude 191.60 10  C.e −= ×  

EXECUTE:   (a) 2 .
q

E k
r

=  For 0.150 m,r R= =  1390 N/CE = so 

2 2
9

9 2 2
(1390 N/C)(0.150 m) 3.479 10  C.
8.99 10  N m /C

Erq
k

−= = = ×
× ⋅

 The number of excess electrons is 

9
10

19
3.479 10 C 2.17 10 electrons.

1.60 10 C/electron

−

−
× = ×

×
 

(b) 0 100 m 0 250 m.r R= + . = .  
9

9 2 2 2
2 2

3.479 10  C(8.99 10  N m /C ) 5.00 10  N/C.
(0.250 m)

q
E k

r

−×= = × ⋅ = ×  
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EVALUATE:   The magnitude of the electric field decreases according to the square of the distance from the 
center of the sphere. 

22.53. IDENTIFY:   We apply Gauss’s law in (a) and take a spherical Gaussian surface because of the spherical 
symmetry of the charge distribution. In (b), the net field is the vector sum of the field due to q and the field 
due to the sphere. 

(a) SET UP:   ( ) ,r
r
αρ =  24 ,dV r drπ=  and ( ) .

r

a
Q r dVρ= ′∫  

EXECUTE:   For a Gaussian sphere of radius r, 2 2
encl

1( ) 4 4 ( ).
2

r r

a a
Q r dV r dr r aρ πα πα= ′ = ′ ′ = −∫ ∫  Gauss’s 

law says that 
2 2

2

0

2 ( )(4 ) ,r aE r παπ −=
�

 which gives 
2

2
0

1 .
2

aE
r

α ⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠�
 

(b) The electric field of the point charge is 2
0

.
4q

qE
rπ

=
�

 The total electric field 

is
2

total 2 2
0 0 0

.
2 2 4

a qE
r r

α α
π

= − +
� � �

 For totalE  to be constant, 
2

0 0
0

2 4
a qα

π
− + =

� �
 and 22 .q aπα=  The 

constant electric field is 
0

.
2
α
�

 

EVALUATE:   The net field is constant, but not zero. 
 22.54. IDENTIFY:   Example 22.9 gives the expression for the electric field both inside and outside a uniformly 

charged sphere. Use e= −F E  to calculate the force on the electron. 
SET UP:   The sphere has charge .Q e= +  
EXECUTE:   (a) Only at 0r =  is 0E =  for the uniformly charged sphere. 

(b) At points inside the sphere, 3
0

.
4r

erE
Rπ

=
�

 The field is radially outward. 
2

3
0

1 .
4r

e rF eE
Rπ

= − = −
�

 The 

minus sign denotes that rF  is radially inward. For simple harmonic motion, 2 ,rF kr m rω= − = −  where 

/ 2 .k m fω π= =  
2

2
3

0

1
4r

e rF m r
R

ω
π

= − = −
�

 so 
2

3
0

1
4

e
mR

ω
π

=
�

 and 
2

3
0

1 1 .
2 4

ef
mRπ π

=
�

 

(c) If 
2

14
3

0

1 14.57 10  Hz
2 4

ef
mRπ π

= × =
�

 then 

19 2
103

2 31 14 2
0

1 (1.60 10 C) 3.13 10  m.
4 4 (9.11 10 kg)(4.57 10  Hz)

R
π π

−
−

−
×= = ×

× ×�
 The atom radius in this model is the 

correct order of magnitude. 

(d) If ,r R>  2
04r

eE
rπ

=
�

 and 
2

2
0

.
4r

eF
rπ

= −
�

 The electron would still oscillate because the force is 

directed toward the equilibrium position at 0.r =  But the motion would not be simple harmonic, since rF  

is proportional to 21/r  and simple harmonic motion requires that the restoring force be proportional to the 
displacement from equilibrium. 
EVALUATE:   As long as the initial displacement is less than R the frequency of the motion is independent 
of the initial displacement. 

 22.55. IDENTIFY:   There is a force on each electron due to the other electron and a force due to the sphere of 
charge. Use Coulomb’s law for the force between the electrons. Example 22.9 gives E inside a uniform 
sphere and Eq. (21.3) gives the force. 
SET UP:   The positions of the electrons are sketched in Figure 22.55a. 
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 If the electrons are in  
equilibrium the net force on  
each one is zero. 

Figure 22.55a   
 

EXECUTE:   Consider the forces on electron 2. There is a repulsive force 1F  due to the other electron, 
electron 1. 

2

1 2
0

1
4 (2 )

eF
dπ

=
�

 

The electric field inside the uniform distribution of positive charge is 3
04

QrE
Rπ

=
�

 (Example 22.9), where 

2 .Q e= +  At the position of electron 2, .r d=  The force cdF  exerted by the positive charge distribution is 

cd 3
0

(2 )
4
e e dF eE

Rπ
= =

�
 and is attractive. 

The force diagram for electron 2 is given in Figure 22.55b. 
 

 

Figure 22.55b 

Net force equals zero implies 1 cdF F=  and 
2 2

2 3
0 0

1 2 .
4 4 4

e e d
d Rπ π

=
� �

 

Thus 2 3 3 3(1/4 ) 2 / , so /8 and /2.d d R d R d R= = =  
EVALUATE:   The electric field of the sphere is radially outward; it is zero at the center of the sphere and 
increases with distance from the center. The force this field exerts on one of the electrons is radially inward 
and increases as the electron is farther from the center. The force from the other electron is radially 
outward, is infinite when 0d =  and decreases as d increases. It is reasonable therefore for there to be a 
value of d for which these forces balance. 

 22.56. IDENTIFY:   Use Gauss’s law to find the electric field both inside and outside the slab. 
SET UP:   Use a Gaussian surface that has one face of area A in the y z plane at 0,x =  and the other face at 
a general value .x  The volume enclosed by such a Gaussian surface is Ax. 
EXECUTE:   (a) The electric field of the slab must be zero by symmetry. There is no preferred direction in 
the y z plane, so the electric field can only point in the x-direction. But at the origin, neither the positive 
nor negative x-directions should be singled out as special, and so the field must be zero. 

(b) For ,x d≤  Gauss’s law gives encl

0 0

A xQEA
ρ

= =
� �

 and 
0

,
x

E
ρ

=
�

 with direction given by ˆx
x
i  (away 

from the center of the slab). Note that this expression does give 0E =  at 0.x =  Outside the slab, the 
enclosed charge does not depend on x and is equal to .Adρ  For ,x d≥  Gauss’s law gives 

encl

0 0

Q AdEA ρ= =
� �

and 
0

,dE ρ=
�

 again with direction given by ˆ.x
x
i  

EVALUATE:   At the surfaces of the slab, .x d= ±  For these values of x the two expressions for E (for 
inside and outside the slab) give the same result. The charge per unit area σ of the slab is given by 

(2 )A A dσ ρ=  and /2.dρ σ=  The result for E outside the slab can therefore be written as 0/2E σ= �  and 
is the same as for a thin sheet of charge. 
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 22.57. (a) IDENTIFY and SET UP:   Consider the direction of the field for x slightly greater than and slightly less 
than zero. The slab is sketched in Figure 22.57a. 

 

 2
0( ) ( / )x x dρ ρ=  

Figure 22.57a   
 

EXECUTE:   The charge distribution is symmetric about 0,x =  so by symmetry ( ) ( ).E x E x= −  But for 
0x >  the field is in the x+  direction and for 0x <  the field is in the x−  direction. At 0x =  the field 

can’t be both in the  andx x+ −  directions so must be zero. That is, ( ) ( ).x xE x E x= − −  At point 0x =  this 
gives (0) (0)x xE E= −  and this equation is satisfied only for (0) 0.xE =  
(b) IDENTIFY and SET UP:   x d> (outside the slab) 

Apply Gauss’s law to a cylindrical Gaussian surface whose axis is perpendicular to the slab and whose end 
caps have area A and are the same distance x d>  from x = 0, as shown in Figure 22.57b. 

 

 EXECUTE:   2E EAΦ =  

Figure 22.57b   
 
 

 To find enclQ  consider a thin disk at coordinate x and 
with thickness dx, as shown in Figure 22.57c.  
The charge within this disk is  

2 2
0( / ) .dq dV Adx A d x dxρ ρ ρ= = =  

Figure 22.57c   
 

The total charge enclosed by the Gaussian cylinder is 

2 2 2 3 2
encl 0 0 030 0

2 2 / (2 / )( /3) .
d d

Q dq A d x dx A d d Adρ ρ ρ= = ( ) = =∫ ∫  

Then encl
0 0

0
 gives 2 /3 .E

Q EA AdρΦ = = 2 �
�

 

0 0/3E dρ= �  

E  is directed away from x = 0, so 0 0
ˆ( /3 )( / ) .d x xρ=E i�  

(c) IDENTIFY and SET UP:   x d< (inside the slab) 

Apply Gauss’s law to a cylindrical Gaussian surface whose axis is perpendicular to the slab and whose end 
caps have area A and are the same distance x d<  from x = 0, as shown in Figure 22.57d 

 

 EXECUTE:   2E EAΦ =  

Figure 22.57d   
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enclQ  is found as above, but now the integral on dx is only from 0 to x instead of 0 do d. 

2 2 2 3
encl 0 00 0

2 2 / (2 / )( /3).
x x

Q dq A d x dx A d xρ ρ= = ( ) =∫ ∫  

Then 3 2encl
0 0

0
 gives 2 /3 .E

Q EA Ax dρΦ = = 2 �
�

 

3 2
0 0/3x dρ=E �  

E  is directed away from x = 0, so 3 2
0 0

ˆ( /3 ) .x dρ=E i�  
EVALUATE:   Note that E = 0 at x = 0 as stated in part (a). Note also that the expressions for x d>  and 

x d<  agree for x = d. 
 22.58. IDENTIFY:   Apply Gauss’s law. 

SET UP:   Use a Gaussian surface that is a sphere of radius r and that is concentric with the spherical 
distribution of charge. The volume of a thin spherical shell of radius r and thickness dr is 24 .dV r drπ=  

EXECUTE:   (a) 2 2 2 3
0 00 0 0 0

4 4( ) 4 ( ) 4 1 4
3 3

R R RrQ r dV r r dr r dr r dr r dr
R R

ρ π ρ πρ πρ
∞ ⎛ ⎞ ⎡ ⎤= = = − = −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫ ∫ ∫ ∫ ∫  

3 4

0
44 0.

3 3 4
R RQ

R
πρ

⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦
 The total charge is zero. 

(b) For ,r R≥  encl

0
0,Qd⋅ = =∫ E A

�
 so 0.E =  

(c) For ,r R≤  2encl
00 0

4 ( ) .
rQd r r drπ ρ⋅ = = ′ ′ ′∫ ∫E A

� �
 2 2 30

0 00

4 44
3

r r
E r r dr r dr

R
πρπ ⎡ ⎤= ′ ′ − ′ ′⎢ ⎥⎣ ⎦∫ ∫�

 and 

3 4
0 0

2
0 0

1 1 .
3 3 3
r r rE r

R Rr
ρ ρ⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦� �

 

(d) The graph of E versus r is sketched in Figure 22.58. 

(e) Where E is a maximum, 0.dE
dr

=  This gives 0 0 max

0 0

2 0
3 3

r
R

ρ ρ− =
� �

 and max .
2
Rr =  At this r, 

0 0

0 0

11 .
3 2 2 12

R RE ρ ρ⎡ ⎤= − =⎢ ⎥⎣ ⎦� �
 

EVALUATE:   The result in part (b) for r R≤  gives 0E =  at ;r R=  the field is continuous at the surface 
of the charge distribution. 

 

 

Figure 22.58 
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 22.59. IDENTIFY:   Follow the steps specified in the problem. 
SET UP:   In spherical polar coordinates 2 ˆsin .d r d dθ θ φ=  A r  sin 4 .d dθ θ φ π=∫  

EXECUTE:   (a) 
2

2
sin 4 .g

r d dd Gm Gm
r
θ θ φ πΦ = ⋅ = − = −∫ ∫g A  

(b) For any closed surface, mass OUTSIDE the surface contributes zero to the flux passing through the 
surface. Thus the formula above holds for any situation where m  is the mass enclosed by the Gaussian 
surface. 
That is, encl4 .g d GMπΦ = ⋅ = −∫ g A  

EVALUATE:   The minus sign in the expression for the flux signifies that the flux is directed inward. 
 22.60. IDENTIFY:   Apply encl4 .d GMπ⋅ = −∫ g A  

SET UP:   Use a Gaussian surface that is a sphere of radius r, concentric with the mass distribution. Let 

gΦ denote d⋅∫ g A  

EXECUTE:   (a) Use a Gaussian sphere with radius ,r R>  where R is the radius of the mass distribution. 
g is constant on this surface and the flux is inward. The enclosed mass is M. Therefore, 

24 4g g r GMπ πΦ = − = −  and 2 ,GMg
r

=  which is the same as for a point mass. 

(b) For a Gaussian sphere of radius ,r R<  where R is the radius of the shell, encl 0, so 0.M g= =  
(c) Use a Gaussian sphere of radius ,r R<  where R is the radius of the planet. Then 

3 3 3
encl

4 / .
3

M r Mr Rρ π⎛ ⎞= =⎜ ⎟
⎝ ⎠

 This gives 
3

2
encl 34 4 4g

rg r GM G M
R

π π π
⎛ ⎞

Φ = − = − = −  ⎜ ⎟⎜ ⎟
⎝ ⎠

 and 3 ,GMrg
R

=  

which is linear in r.  
EVALUATE:   The spherically symmetric distribution of mass results in an acceleration due to gravity g  
that is radical and that depends only on r, the distance from the center of the mass distribution. 

 22.61. (a) IDENTIFY:   Use ( )E r  from Example (22.9) (inside the sphere) and relate the position vector of a point 
inside the sphere measured from the origin to that measured from the center of the sphere. 
SET UP:   For an insulating sphere of uniform charge density ρ  and centered at the origin, the electric 

field inside the sphere is given by 3
0/4E Qr Rπ= ′ �  (Example 22.9), where ′r  is the vector from the center 

of the sphere to the point where E is calculated. 
But 33 /4Q Rρ π=  so this may be written as 0/3 .E rρ= �  And E  is radially outward, in the direction of 

0, so /3 .ρ′ = ′r E r �  

For a sphere whose center is located by vector ,b  a point inside the sphere and located by r  is located by 
the vector ′ = −r r b  relative to the center of the sphere, as shown in Figure 22.61. 

 

 
EXECUTE:   Thus 

0

( )
3

ρ −= r bE
�

 

Figure 22.61   
 

EVALUATE:   When 0b =  this reduces to the result of Example 22.9. When ,=r b  this gives 0,E =  
which is correct since we know that 0E =  at the center of the sphere. 
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(b) IDENTIFY:   The charge distribution can be represented as a uniform sphere with charge density ρ  and 
centered at the origin added to a uniform sphere with charge density ρ−  and centered at .=r b  
SET UP:   uniform hole uniform,  where = +E E E E  is the field of a uniformly charged sphere with charge 

density ρ  and holeE  is the field of a sphere located at the hole and with charge density .ρ−  (Within the 
spherical hole the net charge density is 0.ρ ρ+ − = ) 

EXECUTE:   uniform
0

,
3
ρ= rE
�

 where r  is a vector from the center of the sphere. 

hole
0

( ) ,
3

ρ− −= r bE
�

 at points inside the hole. 

Then 
0 0 0

( ) .
3 3 3
ρ ρ ρ⎛ ⎞− −= + =⎜ ⎟

⎝ ⎠

r r b bE
� � �

 

EVALUATE:   E  is independent of r  so is uniform inside the hole. The direction of E  inside the hole is in 
the direction of the vector ,b  the direction from the center of the insulating sphere to the center of the hole. 

 22.62. IDENTIFY:   We first find the field of a cylinder off-axis, then the electric field in a hole in a cylinder is the 
difference between two electric fields: that of a solid cylinder on-axis, and one off-axis, at the location of the hole. 
SET UP:   Let r  locate a point within the hole, relative to the axis of the cylinder and let ′r  locate this 
point relative to the axis of the hole. Let b  locate the axis of the hole relative to the axis of the cylinder. As 
shown in Figure 22.62, .′ = −r r b  Problem 22.42 shows that at points within a long insulating cylinder, 

0
.

2
ρ= rE
�

 

EXECUTE:   off axis
0 0

( ) .
2 2
ρ ρ

−
′ −= =r r bE

� �
 hole cylinder off axis

0 0 0

( ) .
2 2 2
ρ ρ ρ

−
−= − = − =r r b bE E E

� � �
 

Note that E  is uniform. 
EVALUATE:   If the hole is coaxial with the cylinder, 0b =  and hole 0.E =  

 

 

Figure 22.62 
 

 22.63. IDENTIFY:   The electric field at each point is the vector sum of the fields of the two charge distributions. 

SET UP:   Inside a sphere of uniform positive charge, 
0

.
3

rE ρ=
�

 

3 3 34
03

3  so ,
4 4

Q Q QrE
R R R

ρ
π π π

= = =
�

 directed away from the center of the sphere. Outside a sphere of 

uniform positive charge, 2
0

,
4

QE
rπ

=
�

 directed away from the center of the sphere. 
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EXECUTE:   (a) 0.x =  This point is inside sphere 1 and outside sphere 2. The fields are shown in 
Figure 22.63a. 

 

 
1 3

0
0, since 0.

4
QrE r

Rπ
= = =

�
 

Figure 22.63a   
 

2 22 2
0 0

 with 2  so ,
4 16

Q QE r R E
r Rπ π

= = =
� �

 in the -direction.x−  

Thus 1 2 2
0

ˆ.
16

Q
Rπ

= + = −E E E i
�

 

(b) /2.x R=  This point is inside sphere 1 and outside sphere 2. Each field is directed away from the center 
of the sphere that produces it. The fields are shown in Figure 22.63b. 

 

 
1 3

0
with /2 so

4
QrE r R

Rπ
= =

�
 

1 2
08

QE
Rπ

=
�

 

Figure 22.63b   
 

2 22 2
0 0

 with 3 /2 so 
4 9

Q QE r R E
r Rπ π

= = =
� �

 

1 2 2
0

,
72

QE E E
Rπ

= − =
�

 in the +x-direction and 2
0

ˆ
72

Q
Rπ

=E i
�

 

(c) .x R=  This point is at the surface of each sphere. The fields have equal magnitudes and opposite 
directions, so 0.E =  
(d) 3 .x R=  This point is outside both spheres. Each field is directed away from the center of the sphere 
that produces it. The fields are shown in Figure 22.63c. 

 

 
1 2

0
with 3  so

4
QE r R

rπ
= =

�
 

1 2
036

QE
Rπ

=
�

 

Figure 22.63c   
 

2 22 2
0 0

 with  so 
4 4

Q QE r R E
r Rπ π

= = =
� �

 

1 2 2
0

5 , 
18

QE E E
Rπ

= + =
�

 in the +x-direction and 2
0

5 ˆ
18

Q
Rπ

=E i
�

 

EVALUATE:   The field of each sphere is radially outward from the center of the sphere. We must use the 
correct expression for E(r) for each sphere, depending on whether the field point is inside or outside that 
sphere. 
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 22.64. IDENTIFY:   The net electric field at any point is the vector sum of the fields at each sphere. 
SET UP:   Example 22.9 gives the electric field inside and outside a uniformly charged sphere. For the 
positively charged sphere the field is radially outward and for the negatively charged sphere the electric 
field is radially inward. 
EXECUTE:   (a) At this point the field of the left-hand sphere is zero and the field of the right-hand sphere 
is toward the center of that sphere, in the +x-direction. This point is outside the right-hand sphere, a 

distance 2r R=  from its center. 2
0

1 ˆ.
4 4

Q
Rπ

= +E i
�

 

(b) This point is inside the left-hand sphere, at /2,r R=  and is outside the right-hand sphere, at 3 /2.r R=  
Both fields are in the +x-direction. 

3 2 2 2 2
0 0 0

1 ( /2) 1 4 1 17ˆ ˆ ˆ.
4 4 4(3 /2) 2 9 18

Q R Q Q Q Q
R R R R Rπ π π

⎡ ⎤ ⎡ ⎤= + = + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
E i i i

� � �
 

(c) This point is outside both spheres, at a distance r R=  from their centers. Both fields are in the 

-direction.x+  2 2 2
0 0

1 ˆ ˆ.
4 2

Q Q Q
R R Rπ π
⎡ ⎤= + =⎢ ⎥⎣ ⎦

E i i
� �

 

(d) This point is outside both spheres, a distance 3r R=  from the center of the left-hand sphere and a 
distance r R=  from the center of the right-hand sphere. The field of the left-hand sphere is in the 

-directionx+  and the field of the right-hand sphere is in the -direction.x−  

2 2 2 2 2
0 0 0

1 1 1 8ˆ ˆ ˆ.
4 4 4(3 ) 9 9

Q Q Q Q Q
R R R R Rπ π π

⎡ ⎤ −⎡ ⎤= − = − =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
E i i i

� � �
 

EVALUATE:   At all points on the x-axis the net field is parallel to the x-axis. 
 22.65. 3

0 0( ) (1 ) for  where 3 / .r r/R r R Q Rρ ρ ρ π= − ≤ =  ( ) 0 for r r Rρ = ≥  
(a) IDENTIFY:   The charge density varies with r inside the spherical volume. Divide the volume up into thin 
concentric shells, of radius r and thickness dr. Find the charge dq in each shell and integrate to find the total charge. 
SET UP:   The thin shell is sketched in Figure 22.65a. 

 

 EXECUTE:   The volume of such a 
shell is 24 .dV r drπ=  
The charge contained within the shell is 

2
0( ) 4 (1 / ) .dq r dV r r R drρ π ρ= = −  

Figure 22.65a   
 

The total charge Q in the charge distribution is obtained by integrating dq over all such shells into which 
the sphere can be subdivided: 

2 2 3
0 00 0

4 (1 / ) 4 ( / )
R R

Q dq r r R dr r r R drπ ρ πρ= = − = −∫ ∫ ∫  

3 4 3 4
3 3 3

0 0 0
0

4 4 4 ( /12) 4 (3 / )( /12) ,
3 4 3 4

R
r r R RQ R Q R R Q

R R
πρ πρ πρ π π

⎡ ⎤ ⎛ ⎞
= − = − = = =⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

 as was to be shown. 

(b) IDENTIFY:   Apply Gauss’s law to a spherical surface of radius r, where .r R>  
SET UP:   The Gaussian surface is shown in Figure 22.65b. 

 

 
EXECUTE:   encl

0
E

QΦ =
�

 

2

0
(4 ) QE rπ =

�
 

Figure 22.65b   
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2
0

;
4

QE
rπ

=
�

 same as for point charge of charge Q. 

(c) IDENTIFY:   Apply Gauss’s law to a spherical surface of radius r, where :r R<  
SET UP:   The Gaussian surface is shown in Figure 22.65c. 

 

 

EXECUTE:   encl

0
E

QΦ =
�

 

2(4 )E E rπΦ =  

Figure 22.65c   
 

To calculate the enclosed charge enclQ  use the same technique as in part (a), except integrate dq out to r 
rather than R. (We want the charge that is inside radius r.) 

3
2 2

encl 0 00 0
4 1 4

r rr rQ r dr r dr
R R

π ρ πρ
⎛ ⎞′ ′⎛ ⎞= ′ − ′ = ′ − ′⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫  

3 4 3 4
3

encl 0 0 0
0

14 4 4
3 4 3 4 3 4

r
r r r r rQ r

R R R
πρ πρ πρ

⎡ ⎤ ⎛ ⎞′ ′ ⎛ ⎞= − = − = −⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠
 

3 3

0 encl3 3 3
3 1so 12 4 3 .

3 4
Q r r r rQ Q Q

R RR R R
ρ

π
⎛ ⎞⎛ ⎞ ⎛ ⎞= = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Thus Gauss’s law gives 
3

2
3

0
(4 ) 4 3 .Q r rE r

RR
π

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠�
 

3
0

34 ,
4

Qr rE r R
RRπ

⎛ ⎞= −  ≤⎜ ⎟
⎝ ⎠�

 

(d) The graph of E versus r is sketched in Figure 22.65d. 
 

 

Figure 22.65d 
 

(e) Where the electric field is a maximum, 0.dE
dr

=  Thus 
234 0 so 4 6 / 0 and 2 /3.d rr r R r R

dr R
⎛ ⎞

− = − = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

At this value of r, 3 2
0 0

2 3 24 .
3 34 3

Q R R QE
RR Rπ π

⎛ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠� �
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EVALUATE:   Our expressions for ( )E r  for r R<  and for r R>  agree at .r R=  The results of part (e) for 
the value of r where ( )E r  is a maximum agrees with the graph in part (d). 

 22.66. IDENTIFY:   The charge in a spherical shell of radius r and thickness dr is 2( )4 .dQ r r drρ π=   Apply 
Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r. Let iQ  be the charge in the region / 2r R≤  
and let 0Q  be the charge in the region where /2 .R r R≤ ≤  

EXECUTE:   (a) The total charge is 0,iQ Q Q= +  where 
3 34 ( /2)

3 6i
R RQ π απα= =  and 

3 3 4 4 3
2 3

0 /2
( /8) ( /16) 114 (2 ) ( / ) 8 .

3 4 24
R

R
R R R R RQ r r R dr

R
αππ α απ

⎛ ⎞− −= − = − =⎜ ⎟⎜ ⎟
⎝ ⎠

∫  Therefore, 
315

24
RQ απ=  

and 3
8 .

5
Q
R

α
π

=  

(b) For 2,r R/≤  Gauss’s law gives 
3

2

0

44
3

rE r α ππ =
�

 and 3
0 0

8 .
3 15

r QrE
R

α
π

= =
� �

 For /2 ,R r R≤ ≤  

3 3 4 4
2

0 0

1 ( /8) ( /16)4 8
3 4

iQ r R r RE r
R

π απ
⎛ ⎞⎛ ⎞− −
⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠� �

 and 

3
3 4 3 4

2 2
0

(64( / ) 48( / ) 1) (64( / ) 48( / ) 1).
24 (4 ) 15

R kQE r R r R r R r R
r r

απ
π

= − − = − −
�

 

For ,r R≥  2

0
(4 ) QE rπ =

�
 and 2

0
.

4
QE

rπ
=

�
 

(c) (4 /15) 4 0 267.
15

iQ Q
Q Q

= = = .  

(d) For /2,r R≤  3
0

8 ,
15r

eQF eE r
Rπ

= − = −
�

 so the restoring force depends upon displacement to the first 

power, and we have simple harmonic motion. 

(e) Comparing to 3
0

8, .
15

eQF kr k
Rπ

= − =
�

 Then 3
e 0 e

8
15

k eQ
m R m

ω
π

= =
�

 and 
3

0 e2 152 .
8

R mT
eQ

π ππ
ω

= = �  

EVALUATE:   (f) If the amplitude of oscillation is greater than /2,R  the force is no longer linear in ,r  and 
is thus no longer simple harmonic. 

 22.67. IDENTIFY:   The charge in a spherical shell of radius r and thickness dr is 2( )4 .dQ r r drρ π=   Apply 
Gauss’s law. 
SET UP:   Use a Gaussian surface that is a sphere of radius r. Let iQ  be the charge in the region /2r R≤  
and let 0Q  be the charge in the region where /2 .R r R≤ ≤  

EXECUTE:   (a) The total charge is 0,iQ Q Q= +  where 
3 4/2 3

0
3 6 1 34
2 4 16 32

R
i

r RQ dr R
R R

α παπ πα= = =∫  and 

2 2 3 3
0 /2

7 31 474 (1 ( / ) ) 4 .
24 160 120

R

R
Q r R r dr R Rπα πα πα⎛ ⎞= − = − =⎜ ⎟

⎝ ⎠∫  Therefore, 

3 33 47 233
32 120 480

Q R Rπα πα⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 and 3
480 .

233
Q
R

α
π

=  
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(b) For /2,r R≤  Gauss’s law gives 
3 4

2
00 0

4 3 34
2 2

r r rE r dr
R R

π α παπ ′= ′ =∫� �
 and 

2 2

4
0 0

6 180 .
16 233

r QrE
R R

α
π

= =
� �

 For 

/2 ,R r R≤ ≤  
3 3 5 3

2 2 2
2/20 0 0 0

4 44 (1 ( / ) ) .
3 24 1605

ri i
R

Q Q r R r RE r r R r dr
R

πα παπ
⎛ ⎞

= + − ′ ′ ′ = + − − +⎜ ⎟⎜ ⎟
⎝ ⎠

∫� � � �
 

3 53 3
2

0 0

3 4 4 1 1 174
128 3 5 480

R R r rE r
R R

πα παπ
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠� �

 and 
3 5

2
0

480 1 1 23 .
3 5 1920233

Q r rE
R Rrπ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠�
 

For ,r R≥  2
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 since all the charge is enclosed. 

(c) The fraction of Q  between /2R r R≤ ≤  is 0 47 480 0.807.
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 using either of the electric field expressions above, evaluated at /2.r R=  

EVALUATE:    (e) The force an electron would feel never is proportional to r−  which is necessary for 
simple harmonic oscillations. It is oscillatory since the force is always attractive, but it has the wrong 
power of r  to be simple harmonic motion. 



 

 

 


