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 15.1. IDENTIFY:   .λ=v f  1/=T f  is the time for one complete vibration. 
SET UP:   The frequency of the note one octave higher is 1568 Hz. 

EXECUTE:   (a) 344 m/s 0.439 m.
784 Hz

λ = = =v
f

 1 1.28 ms.= =T
f

 

(b) 344 m/s 0.219 m.
1568 Hz

λ = = =v
f

 

EVALUATE:   When f is doubled, λ  is halved. 
 15.2. IDENTIFY:   The distance between adjacent dots is .λ  .λ=v f  The long-wavelength sound has the lowest 

frequency, 20.0 Hz, and the short-wavelength sound has the highest frequency, 20.0 kHz. 
SET UP:   For sound in air, 344 m/s.=v  

EXECUTE:   (a) Red dots: 344 m/s 17.2 m.
20.0 Hz

λ = = =v
f

 

Blue dots: 3
344 m/s 0.0172 m 1.72 cm.

20.0 10  Hz
λ = = =

×
 

(b) In each case the separation easily can be measured with a meterstick. 

(c) Red dots: 1480 m/s 74 0 m.
20 0 Hz

λ = = = .
.

v
f

 

Blue dots: 3
1480 m/s 0.0740 m 7.40 cm.

20.0 10  Hz
λ = = =

×
 In each case the separation easily can be measured 

with a meterstick, although for the red dots a long tape measure would be more convenient. 
EVALUATE:   Larger wavelengths correspond to smaller frequencies. When the wave speed increases, for a 
given frequency, the wavelength increases. 

 15.3. IDENTIFY:   / .λ λ= =v f T  
SET UP:   1.0 h 3600 s.=  The crest to crest distance is .λ  

EXECUTE:   
3800 10  m 220 m/s.

3600 s
×= =v  800 km 800 km/h.

1.0 h
= =v  

EVALUATE:   Since the wave speed is very high, the wave strikes with very little warning. 
 15.4. IDENTIFY:   λ =f v  

SET UP:   1.0 mm 0.0010 m=  

EXECUTE:   61500 m/s 1.5 10  Hz
0.0010 m

vf
λ

 = = = ×  

EVALUATE:   The frequency is much higher than the upper range of human hearing. 
 15.5. IDENTIFY:   We want to relate the wavelength and frequency for various waves. 

SET UP:   For waves .λ=v f  
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EXECUTE:   (a) 344 m/s.=v  For 20,000 Hz,f =  344 m/s 1.7 cm.
20,000 Hz

v
f

λ = = =  For 20 Hz,=f  

344 m/s 17 m.
20 Hz

λ = = =v
f

 The range of wavelengths is 1.7 cm to 17 m. 

(b) 83.00 10 m/s.= = ×v c  For 700 nm,λ =  
8

14
9

3.00 10 m/s 4.3 10 Hz.
700 10 mλ −

×= = = ×
×

cf  For 400 nm,λ =  

8
14

9
3.00 10 m/s 7.5 10 Hz.
400 10 m

cf
λ −

×= = = ×
×

 The range of frequencies for visible light is 144.3 10 Hz×  to 

147.5 10 Hz.×  

(c) 344 m/s.=v  3
344 m/s 1.5 cm.

23 10 Hz
λ = = =

×
v
f

 

(d) 1480 m/s.=v  3
1480 m/s 6.4 cm.

23 10 Hz
λ = = =

×
v
f

 

EVALUATE:   For a given v, a larger f corresponds to smaller .λ  For the same f, λ  increases when v 
increases. 

 15.6. IDENTIFY:   The fisherman observes the amplitude, wavelength, and period of the waves.  
SET UP:   The time from the highest displacement to lowest displacement is /2.T  The distance from 
highest displacement to lowest displacement is 2A. The distance between wave crests is ,λ  and the speed 
of the waves is / .λ λ= =v f T  

EXECUTE:   (a) 2(2.5 s) 5.0 s.= =T  6.0 m.λ =  6.0 m 1.2 m/s.
5.0 s

= =v  

(b) (0 62 m)/2 0 31 m= . = .A  
(c) The amplitude becomes 0.15 m but the wavelength, period and wave speed are unchanged. 
EVALUATE:   The wavelength, period and wave speed are independent of the amplitude of the wave. 

 15.7. IDENTIFY:   Use Eq. (15.1) to calculate v. 1/T f=  and k is defined by Eq. (15.5). The general form of the 
wave function is given by Eq. (15.8), which is the equation for the transverse displacement. 
SET UP:   8.00 m/s,=v  0.0700 m,=A  0.320 mλ =  
EXECUTE:   (a) λ=v f  so / (8.00 m/s)/(0.320 m) 25.0 Hzλ= = =f v  

1/ 1/25.0 Hz 0.0400 s= = =T f  
2 / 2  rad/0.320 m 19.6 rad/mπ λ π= = =k  

(b) For a wave traveling in the -direction,−x  
( , ) cos2 ( / / )π λ= +y x t A x t T  (Eq. (15.8).) 

At 0,=x  (0, ) cos2 ( / ),π=y t A t T  so =y A  at 0.=t  This equation describes the wave specified in the problem. 
Substitute in numerical values: 

( , ) (0.0700 m)cos(2 ( /0.320 m /0.0400 s)).π= +y x t x t  

Or, 1( , ) (0.0700 m)cos((19.6 m ) (157 rad/s) ).y x t x t−= +  
(c) From part (b), (0.0700 m)cos(2 ( /0.320 m /0.0400 s)).π= +y x t  
Plug in 0 360 m= .x  and 0 150 s:= .t  

(0 0700 m)cos(2 (0 360 m/0 320 m 0 150 s/0 0400 s))y π= . . . + . .  
(0.0700 m)cos[2 (4.875 rad)] 0.0495 m 4.95 cmπ= = + = +y  

(d) In part (c) 0.150 s.=t  
=y A  means cos(2 ( / / )) 1π λ + =x t T  

cos 1θ =  for 0, 2 , 4 , (2 )nθ π π π= =…  or 0, 1, 2,= …n  
So =y A  when 2 ( / / ) (2 )π λ π+ =x t T n  or / /λ + =x t T n  

( / ) (0.0400 s)( 0.360 m/0.320 m) (0.0400 s)( 1.125)λ= − = − = −t T n x n n  
For 4,=n  0 1150 s= .t  (before the instant in part (c)) 
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For 5,=n  0 1550 s= .t  (the first occurrence of =y A  after the instant in part (c)). Thus the elapsed time 
is 0.1550 s 0.1500 s 0.0050 s.− =  
EVALUATE:   Part (d) says =y A  at 0.115 s and next at 0.155 s; the difference between these two times is 
0.040 s, which is the period. At 0 150 s= .t  the particle at 0.360 m=x  is at 4.95 cm=y  and traveling 
upward. It takes /4 0.0100 s=T  for it to travel from 0=y  to ,=y A  so our answer of 0.0050 s is 
reasonable. 

 15.8. IDENTIFY:   Compare ( , )y x t given in the problem to the general form of Eq. (15.4). 1/=f T  and λ=v f  
SET UP:   The comparison gives 6.50 mm,=A  28.0 cmλ =  and 0.0360 s.=T  
EXECUTE:   (a) 6.50 mm  
(b) 28.0 cm  

(c) 1 27.8 Hz0.0360 s= =f  

(d) (0.280 m)(27.8 Hz) 7.78 m/s= =v  
(e) Since there is a minus sign in front of the /t T  term, the wave is traveling in the -direction.+x  
EVALUATE:   The speed of propagation does not depend on the amplitude of the wave. 

 15.9. IDENTIFY:   Evaluate the partial derivatives and see if Eq. (15.12) is satisfied. 

SET UP:   cos( ) sin( ).kx t k kx t
x

ω ω∂ + = − +
∂

 cos( ) sin( ).kx t kx t
t

ω ω ω∂ + = − +
∂

 

sin( ) cos( ).kx t k kx t
x

ω ω∂ + = +
∂

 sin( ) cos( ).kx t kx t
t

ω ω ω∂ + = +
∂

 

EXECUTE:   (a) 
2

2
2 cos( ).y Ak kx t

x
ω∂ = − +

∂
 

2
2

2 cos( ).y A kx t
t

ω ω∂ = − +
∂

 Eq. (15.12) is satisfied, if / .v kω=  

(b) 
2

2
2 sin( ).y Ak kx t

x
ω∂ = − +

∂
 

2
2

2 sin( ).y A kx t
t

ω ω∂ = − +
∂

 Eq. (15.12) is satisfied, if / .ω=v k  

(c) sin( ).y kA kx
x

∂ = −
∂

 

2
2

2 cos( ).∂ = −
∂

y k A kx
x

 sin( ).y A t
t

ω ω∂ = −
∂

 

2
2

2 cos( ).y A t
t

ω ω∂ = −
∂

 Eq. (15.12) is not 

satisfied. 

(d) cos( ).y
yv A kx t
t

ω ω∂= = +
∂

 
2

2
2 sin( )y
ya A kx t

t
ω ω∂= = − +

∂
 

EVALUATE:   The functions cos( )kx tω+  and sin( )kx tω+ differ only in phase. 
 15.10. IDENTIFY:   The general form of the wave function for a wave traveling in the -direction−x is given by  

Eq. (15.8). The time for one complete cycle to pass a point is the period T and the number that pass per 
second is the frequency f. The speed of a crest is the wave speed v and the maximum speed of a particle in 
the medium is max .ω=v A  
SET UP:   Comparison to Eq. (15.8) gives 3 75 cm,= .A  0 450 rad/cm= .k  and 5 40 rad/s.ω = .  

EXECUTE:   (a) 2  rad 2  rad 1.16 s.
5.40 rad/s

π π
ω

= = =T  In one cycle a wave crest travels a distance 

2  rad 2  rad 0.140 m.
0.450 rad/cm

π πλ = = =
k

 

(b) 0.450 rad/cm.=k  1/ 0.862 Hz 0.862 waves/second.f T= = =  
(c) (0.862 Hz)(0.140 m) 0.121 m/s.v f λ= = =  max (5.40 rad/s)(3.75 cm) 0.202 m/s.ω= = =v A  
EVALUATE:   The transverse velocity of the particles in the medium (water) is not the same as the velocity 
of the wave. 

 15.11. IDENTIFY and SET UP:   Read A and T from the graph. Apply Eq. (15.4) to determine λ  and then use  
Eq. (15.1) to calculate v. 
EXECUTE:   (a) The maximum y is 4 mm (read from graph). 
(b) For either x the time for one full cycle is 0.040 s; this is the period. 
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(c) Since 0=y  for 0=x  and 0=t  and since the wave is traveling in the -direction+x  then 
( , ) sin[2 ( / / )].π λ= −y x t A t T x  (The phase is different from the wave described by Eq. (15.4); for that wave 
=y A  for 0,=x  0.)=t  From the graph, if the wave is traveling in the -direction+x  and if 0=x  and 

0.090 m=x  are within one wavelength the peak at 0.01 s=t  for 0=x  moves so that it occurs at 
0.035 s=t  (read from graph so is approximate) for 0.090 m.=x  The peak for 0=x  is the first peak past 
0=t  so corresponds to the first maximum in sin[2 ( / / )]π λ−t T x  and hence occurs at 

2 ( / / ) /2.π λ π− =t T x  If this same peak moves to 1 0 035 s= .t  at 1 0 090 m,= .x  then  
2 ( / / ) /2.t T xπ λ π− =  
Solve for :λ  1 1/ / 1/4λ− =t T x  

1 1/ / 1/4 0.035 s/0.040 s 0.25 0.625x t Tλ = − = − =  

1/0 625 0 090 m/0 625 0 14 m.λ = . = . . = .x  
Then / 0 14 m/0 040 s 3 5 m/s.λ λ= = = . . = .v f T  
(d) If the wave is traveling in the -direction,x−  then ( , ) sin(2 ( / / ))π λ= +y x t A t T x and the peak at 0.050 st =  

for 0=x  corresponds to the peak at 1 0 035 s= .t  for 1 0 090 m= . .x  This peak at 0=x  is the second peak past 
the origin so corresponds to 2 ( / / ) 5 /2.t T xπ λ π+ =  If this same peak moves to 1 0 035 s= .t  for 1 0 090 m,= .x  

then 1 12 ( / / ) 5 /2.π λ π+ =t T x  

1 1/ / 5/4λ+ =t T x  

1 1/ 5/4 / 5/4 0 035 s/0 040 s 0 375x t Tλ = − = − . . = .  

1/0 375 0 090 m/0 375 0 24 m.λ = . = . . = .x  
Then / 0 24 m/0 040 s 6 0 m/s.λ λ= = = . . = .v f T  
EVALUATE:   (e) No. Wouldn’t know which point in the wave at 0=x  moved to which point at 0 090 m.= .x  

 15.12. IDENTIFY:   .∂=
∂y
yv
t

 / .λ λ= =v f T  

SET UP:   2 2 2cos ( ) sin ( )π π π
λ λ λ

∂ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

vA x vt A x vt
t

 

EXECUTE:  (a) 

2 2cos2 cos cos ( )x tA A x t A x vt
T T

π λ ππ
λ λ λ

⎛ ⎞ ⎛ ⎞− = + − = + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
where 

λ λ= =f v
T

 has been used. 

(b) 2 2sin ( ).π π
λ λ

∂= = −
∂y
y vv A x vt
t

 

(c) The speed is the greatest when the sine is 1, and that speed is 2 / .π λvA  This will be equal to v  if 
/2 ,λ π=A  less than v if /2λ π<A  and greater than v  if /2 .λ π>A  

EVALUATE:   The propagation speed applies to all points on the string. The transverse speed of a particle of 
the string depends on both x and t. 

 15.13. IDENTIFY:   Follow the procedure specified in the problem. 
SET UP:   For λ  and x in cm, v in cm/s and t in s, the argument of the cosine is in radians. 
EXECUTE:   (a) 0:=t  
x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 
y(cm) 0.300 0.212 0 −0.212 −0.300 −0.212 0 0.212 0.300 
The graph is shown in Figure 15.13a. 
(b) (i) 0 400 s:= .t  
x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 
y(cm) −0.221 −0.0131 0.203 0.300 0.221 0.0131 −0.203 −0.300 −0.221 
The graph is shown in Figure 15.13b. 
(ii) 0 800 s:= .t  
x(cm) 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 
y(cm) 0.0262 −0.193 −0.300 −0.230 −0.0262 0.193 0.300 0.230 0.0262 
The graph is shown in Figure 15.13c. 
(iii) The graphs show that the wave is traveling in the -direction.x+  
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EVALUATE:   We know that Eq. (15.3) is for a wave traveling in the -direction,x+  and ( , )y x t  is derived 
from this. This is consistent with the direction of propagation we deduced from our graph. 

 

Figure 15.13 
 

 15.14. IDENTIFY:   yv  and ya  are given by Eqs. (15.9) and (15.10). 

SET UP:   The sign of yv  determines the direction of motion of a particle on the string. If 0=yv  and 

0≠ya  the speed of the particle is increasing. If 0,≠yv  the particle is speeding up if yv  and ya  have the 
same sign and slowing down if they have opposite signs. 
EVALUATE:   (a) The graphs are given in Figure 15.14. 
(b) (i) sin(0) 0ω= =yv A  and the particle is instantaneously at rest. 2 2 cos(0)ya A Aω ω= − = −  and the 
particle is speeding up. 
(ii) sin( /4) / 2,ω π ω= =yv A A  and the particle is moving up. 2 2cos( /4) / 2,ya A Aω π ω= − = −  and the 

particle is slowing down ( yv  and ya  have opposite sign). 

(iii) sin( /2)ω π ω= =yv A A  and the particle is moving up. 2 cos( /2) 0ya Aω π= − =  and the particle is 
instantaneously not accelerating. 
(iv) sin(3 /4) / 2,ω π ω= =yv A A  and the particle is moving up. 2 2cos(3 /4) / 2,ya A Aω π ω= − =  and the 
particle is speeding up. 
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(v) sin( ) 0ω π= =yv A  and the particle is instantaneously at rest. 2 2cos( )ya A Aω π ω= − =  and the particle 
is speeding up. 
(vi) sin(5 /4) / 2ω π ω= = −yv A A  and the particle is moving down. 2 2cos(5 /4) / 2ya A Aω π ω= − =  and 

the particle is slowing down ( yv  and ya  have opposite sign). 

(vii) sin(3 /2)ω π ω= = −yv A A  and the particle is moving down. 2 cos(3 /2) 0ya Aω π= − =  and the particle 
is instantaneously not accelerating. 
(viii) sin(7 /4) / 2,ω π ω= = −yv A A  and the particle is moving down. 2 2cos(7 /4) / 2ya A Aω π ω= − = −  

and the particle is speeding up ( yv  and ya  have the same sign). 
EVALUATE:   At 0=t  the wave is represented by Figure 15.10a in the textbook: point (i) in the problem 
corresponds to the origin, and points (ii)–(viii) correspond to the points in the figure labeled 1–7. Our 
results agree with what is shown in the figure. 

 

 

Figure 15.14 
 

 15.15. IDENTIFY and SET UP:   Use Eq. (15.13) to calculate the wave speed. Then use Eq. (15.1) to calculate the 
wavelength. 
EXECUTE:   (a) The tension F in the rope is the weight of the hanging mass: 

2(1 50 kg)(9 80 m/s ) 14 7 N= = . . = .F mg  
/ 14 7 N/(0 0550 kg/m) 16 3 m/sμ= = . . = .v F  

(b) λ=v f  so / (16 3 m/s)/120 Hz 0 136 m.v fλ = = . = .  

(c) EVALUATE:   / ,μ=v F  where .=F mg  Doubling m increases v by a factor of 2.  / .λ = v f  f remains 

120 Hz and v increases by a factor of 2,  so λ  increases by a factor of 2.  
 15.16. IDENTIFY:   The frequency and wavelength determine the wave speed and the wave speed depends on the tension. 

SET UP:   .
μ

= Fv / .μ = m L .λ=v f  

EXECUTE:   2 2 20 120 kg( ) ( 40 0 Hz 0 750 m ) 43 2 N
2 50 m

μ μ λ .= = = [ . ][ . ] = .
.

F v f  

EVALUATE:   If the frequency is held fixed, increasing the tension will increase the wavelength. 
15.17. IDENTIFY:   The speed of the wave depends on the tension in the wire and its mass density. The target 

variable is the mass of the wire of known length. 

SET UP:   
μ

= Fv  and / .μ = m L  

EXECUTE:   First find the speed of the wave: 3 80 m 77 24 m/s.
0 0492 s

.= = .
.

v  .
μ

= Fv  

2

2 2
(54 0 kg)(9 8 m/s ) 0 08870 kg/m.

(77 24 m/s)
μ . .= = = .

.
F
v

 The mass of the wire is 

(0 08870 kg/m)(3 80 m) 0 337 kg.μ= = . . = .m L  
EVALUATE:   This mass is 337 g, which is a bit large for a wire 3.80 m long. It must be fairly thick. 
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 15.18. IDENTIFY:   For transverse waves on a string, / .μ=v F  The general form of the equation for waves 
traveling in the -direction+x  is ( , ) cos( ).y x t A kx tω= −  For waves traveling in the -direction−x  it is 

( , ) cos( ).y x t A kx tω= +  / .ω=v k  
SET UP:   Comparison to the general equation gives 8 50 mm,= .A  172 rad/m=k  and 4830 rad/s.ω =  
The string has mass 0.00128 kg and / 0 000850 kg/m.m Lμ = = .  

EXECUTE:   (a) 4830 rad/s 28 08 m/s.
172 rad/m

ω= = = .v
k

 1 50 m 0 0534 s  53 4 ms.
28 08 m/s

.= = = . = .

.
dt
v

 

(b) 2 2(0 000850 kg/m)(28 08 m/s) 0.670 N.W F vμ= = = . . =  

(c) 2  rad 2  rad 0 0365 m.
172 rad/m

π πλ = = = .
k

 The number of wavelengths along the length of the string is 

1 50 m 41 1.
0 0365 m

. = .
.

 

(d) For a wave traveling in the opposite direction, ( , ) (8 50 mm)cos([172 rad/m] [4830 rad/s] ).= . +y x t x t  
EVALUATE:   We have assumed that the tension in the string is constant and equal to W. This is reasonable 
since 0.0125 N,W �  so the weight of the string has a negligible effect on the tension. 

 15.19. IDENTIFY:   For transverse waves on a string, / .μ=v F  .λ=v f  
SET UP:   The wire has / (0 0165 kg)/(0 750 m) 0 0220 kg/m.μ = = . . = .m L  

EXECUTE:   (a) 2(875 Hz)(3 33 10  m) 29 1 m/s.λ −= = . × = .v f  The tension is 
2 2(0 0220 kg/m)(29 1 m/s) 18 6 N.μ= = . . = .F v  

(b) 29 1 m/s= .v  
EVALUATE:   If λ  is kept fixed, the wave speed and the frequency increase when the tension is increased. 

 15.20. IDENTIFY:   Apply 0Σ =yF  to determine the tension at different points of the rope. / .μ=v F  

SET UP:   From Example 15.3, samples 20 0 kg,= .m  rope 2 00 kg= .m  and 0 0250 kg/m.μ = .  
EXECUTE:   (a) The tension at the bottom of the rope is due to the weight of the load, and the speed is the 
same 88 5m/s.  as found in Example 15.3. 
(b) The tension at the middle of the rope is 

2(21.0 kg)(9.80m/s ) 205.8 N=  and the wave speed is 90.7 m/s.  

(c) The tension at the top of the rope is 2(22 0 kg)(9 80 m/s ) 215 6 N. . = .  and the speed is 92 9 m/s..  (See 
Challenge Problem (15.84) for the effects of varying tension on the time it takes to send signals.) 
EVALUATE:   The tension increases toward the top of the rope, so the wave speed increases from the 
bottom of the rope to the top of the rope. 

 15.21. IDENTIFY:   / .μ=v F  .λ=v f  The general form for ( , )y x t  is given in Eq. (15.4), where 1/ .=T f   

Eq. (15.10) says that the maximum transverse acceleration is 2 2
max (2 ) .a A f Aω π= =  

SET UP:   0.0500 kg/mμ =  

EXECUTE:   (a) / (5.00 N)/(0.0500) kg/m 10.0 m/sμ= = =v F  
(b) / (10.0 m/s)/(40.0 Hz) 0.250 mv fλ = = =  
(c) ( , )  cos( ).y x t A kx tω= −  2 / 8.00 rad/m; 2 80.0 rad/s.k fπ λ π ω π π= = = =  

( , ) (3.00 cm)cos[ (8.00 rad/m) (80.0  rad/s) ]y x t x tπ π= −  

(d) 2 sin( ) and cos( ).y yv A kx t a A kx tω ω ω ω= + − = − −  2 2 2
, max (2 ) 1890 m/s .ya A A fω π= = =  

(e) ,maxya  is much larger than g, so it is a reasonable approximation to ignore gravity. 
EVALUATE:   ( , )y x t  in part (c) gives (0,0) ,=y A  which does correspond to the oscillator having 
maximum upward displacement at 0.=t  

 15.22. IDENTIFY:   Apply Eq. (15.25). 
SET UP:   2 .ω π= f  / .μ = m L  
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EXECUTE:   (a) 2 2
av

1 .
2

μ ω=P F A  

3
2 3 2

av
1 3.00 10  kg (25.0 N)(2 (120.0 Hz)) (1.6 10  m) 0.223 W
2 0.80 m

P π
−

−⎛ ⎞×= × =⎜ ⎟⎜ ⎟
⎝ ⎠

 or 0.22 W to two figures. 

(b) avP  is proportional to 2,A  so halving the amplitude quarters the average power, to 0.056 W. 
EVALUATE:   The average power is also proportional to the square of the frequency. 

 15.23. IDENTIFY:   The average power carried by the wave depends on the mass density of the wire and the 
tension in it, as well as on the square of both the frequency and amplitude of the wave (the target variable).  

SET UP:   2 2
av

1 ,
2

μ ω=P F A  .
μ

= Fv  

EXECUTE:   Solving 2 2
av

1
2

μ ω=P F A  for A gives
1/2

av
2
2 .

ω μ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

PA
F

 av 0 365 W.= .P  

2 2 (69 0 Hz) 433 5 rad/s.ω π π= = . = .f  The tension is 94 0 N= .F  and 
μ

= Fv  so 

4
2 2

94.0 N 3.883 10  kg/m.
(492 m/s)

F
v

μ −= = = ×

1/2

3
2 4

2(0.365 W) 4 51 10  m 4.51 mm
(433.5 rad/s) (3.883 10  kg/m)(94.0 N)

A −
−

⎛ ⎞
⎜ ⎟= = . × =
⎜ ⎟×⎝ ⎠

 

EVALUATE:   Vibrations of strings and wires normally have small amplitudes, which this wave does. 
 15.24. IDENTIFY:   The average power (the target variable) is proportional to the square of the frequency of the 

wave and therefore it is inversely proportional to the square of the wavelength. 

SET UP:   2 2
av

1
2

μ ω=P F A  where  2 .ω π= f  The wave speed is .
μ

= Fv  

EXECUTE:   22 2 πω π π
λ λ μ

= = =v Ff  so 
2

2
av 2

1 4 .
2

πμ
μλ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

FP F A  This shows that avP  is proportional 

to 2
1 .

λ
 Therefore 2 2

av,1 1 av,2 2λ λ=P P  and 
2 2

1 1
av,2 av,1

2 1
(0 400 W) 0 100 W.

2
λ λ
λ λ

⎛ ⎞ ⎛ ⎞
= = . = .⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
P P  

EVALUATE:   The wavelength is increased by a factor of 2, so the power is decreased by a factor of 22 4.=  

 15.25. IDENTIFY:   For a point source, 24π
= PI

r
 and 

2
1 2

2
2 1

.=I r
I r

 

SET UP:   61 W 10  Wμ − =  

EXECUTE:   (a) 
2

1
2 1 6 2

2

10.0 W/m(30.0 m) 95 km
1 10  W/m

Ir r
I −= = =

×
 

(b) 
2

2 3
2

3 2
,=I r

I r
 with 2

2 1 0 W/mμ= .  I  and 3 22 .=r r
2

22
3 2 2

3
/4 0 25 W/m .μ

⎛ ⎞
= = = .  ⎜ ⎟

⎝ ⎠

rI I I
r

 

(c) 2 2 2 5(4 ) (10 0 W/m )(4 )(30 0 m) 1 1 10  Wπ π= = . . = . ×P I r  
EVALUATE:   These are approximate calculations, that assume the sound is emitted uniformly in all 
directions and that ignore the effects of reflection, for example reflections from the ground. 

 15.26. IDENTIFY:   Apply Eq. (15.26). 
SET UP:   2

1 0 11 W/m .= .I  1 7 5 m.= .r  Set 2
2 1 0 W/m= .I  and solve for 2.r  



Mechanical Waves   15-9 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

EXECUTE:   
2

1
2 1 2

2

0 11W/m(7 5 m) 2 5 m,
1 0 W/m

Ir r
I

.  = = . = .
.  

 so it is possible to move 

1 2 7 5 m 2 5 m 5 0 m− = . − . = .r r  closer to the source. 
EVALUATE:   I increases as the distance r of the observer from the source decreases. 

 15.27. IDENTIFY: and SET UP:   Apply Eq. (15.26) to relate I and r. 
Power is related to intensity at a distance r by 2(4 ).π=P I r  Energy is power times time. 

EXECUTE:   (a) 2 2
1 1 2 2=I r I r  

2 2 2 2
2 1 1 2( / ) (0 026 W/m )(4 3 m/3 1 m) 0 050 W/m= = . . . = .I I r r  

(b) 2 2 24 4 (4 3 m) (0 026 W/m ) 6 04 Wπ π= = . . = .P r I  
4Energy (6 04 W)(3600 s) 2 2 10  J= = . = . ×Pt  

EVALUATE:   We could have used 3 1 m= .r  and 20 050 W/m= .I  in 24π=P r I  and would have obtained 
the same P. Intensity becomes less as r increases because the radiated power spreads over a sphere of 
larger area. 

 15.28. IDENTIFY:   The tension and mass per unit length of the rope determine the wave speed. Compare ( , )y x t  
given in the problem to the general form given in Eq. (15.8). / .ω=v k  The average power is given by  
Eq. (15.25). 
SET UP:   Comparison with Eq. (15.8) gives 2 30 mm,A = . 6 98 rad/m= .k and 742 rad/s.ω =  
EXECUTE:   (a) 2 30 mm= .A  

(b) 742 rad/s 118 Hz.22
ω

ππ
 = = =f  

(c) 2 2 0 90 m6 98 rad/m
π πλ = = = ..  k  

(d) 742 rad/s 106 m/s6 98 rad/m
ω  = = =  .  v k  

(e) The wave is traveling in the −x-direction because the phase of ( , )y x t  has the form .kx tω+  

(f) The linear mass density is 3 3(3.38 10  kg)/(1.35 m) 2.504 10  kg/m,μ − −= × = ×  so the tension is 
2 3 2(2.504 10 kg/m)(106.3 m/s) 28.3 N.F vμ −= = ×   =  

(g) 2 2 3 2 3 21 1
av 2 2 (2.50 10 kg/m)(28.3 N)(742 rad/s) (2.30 10  m) 0.39 WP F Aμ ω − −= = ×   × =   

EVALUATE:   In part (d) we could also calculate the wave speed as λ=v f and we would obtain the same 
result. 

 15.29. IDENTIFY:   The intensity obeys an inverse square law. 

SET UP:   2 ,
4

PI
rπ

=  where P is the target variable. 

EXECUTE:   Solving for the power gives 2 12 2 2 27(4 ) 4 (7 00 10  m) (15 4 W/m ) 9 48 10  W.π π= = . × . = . ×P r I  
EVALUATE:   The intensity of the radiation is decreased enormously due to the great distance from the star. 

 15.30. IDENTIFY:   The distance the wave shape travels in time t is vt. The wave pulse reflects at the end of the 
string, at point O. 
SET UP:   The reflected pulse is inverted when O is a fixed end and is not inverted when O is a free end. 
EXECUTE:   (a) The wave form for the given times, respectively, is shown in Figure 15.30a. 
(b) The wave form for the given times, respectively, is shown in Figure 15.30b. 
EVALUATE:   For the fixed end the result of the reflection is an inverted pulse traveling to the left and for 
the free end the result is an upright pulse traveling to the left. 
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Figure 15.30 
 

 15.31. IDENTIFY:   The distance the wave shape travels in time t is vt. The wave pulse reflects at the end of the 
string, at point O. 
SET UP:   The reflected pulse is inverted when O is a fixed end and is not inverted when O is a free end. 
EXECUTE:   (a) The wave form for the given times, respectively, is shown in Figure 15.31a. 
(b) The wave form for the given times, respectively, is shown in Figure 15.31b. 
EVALUATE:   For the fixed end the result of the reflection is an inverted pulse traveling to the left and for 
the free end the result is an upright pulse traveling to the left. 

 

 
 

Figure 15.31 
 

 15.32. IDENTIFY:   Apply the principle of superposition. 
SET UP:   The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE:   The shape of the string at each specified time is shown in Figure 15.32. 
EVALUATE:   The pulses interfere when they overlap but resume their original shape after they have 
completely passed through each other. 

 

Figure 15.32 
 

 15.33. IDENTIFY:   Apply the principle of superposition. 
SET UP:   The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE:   The shape of the string at each specified time is shown in Figure 15.33. 
EVALUATE:   The pulses interfere when they overlap but resume their original shape after they have 
completely passed through each other. 
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Figure 15.33 
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 15.34. IDENTIFY:   Apply the principle of superposition. 
SET UP:   The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE:   The shape of the string at each specified time is shown in Figure 15.34. 
EVALUATE:   The pulses interfere when they overlap but resume their original shape after they have 
completely passed through each other. 

 

Figure 15.34 
 

 15.35. IDENTIFY:   Apply the principle of superposition. 
SET UP:   The net displacement is the algebraic sum of the displacements due to each pulse. 
EXECUTE:   The shape of the string at each specified time is shown in Figure 15.35. 
EVALUATE:   The pulses interfere when they overlap but resume their original shape after they have 
completely passed through each other. 
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Figure 15.35 
 

 15.36. IDENTIFY:   Apply Eqs. (15.28) and (15.1). At an antinode, SW( ) sin .y t A tω=  k and ω  for the standing 
wave have the same values as for the two traveling waves. 
SET UP:   SW 0 850 cm.= .A  The antinode to antinode distance is /2,λ  so 30 0 cm.λ = .  / .= ∂ ∂yv y t  
EXECUTE:   (a) The node to node distance is /2 15 0 cm.λ = .  
(b) λ  is the same as for the standing wave, so 30 0 cm.λ = .  1

SW2 0 425 cm.= = .A A  

0 300 m 4 00 m/s.
0 0750 s

λλ .= = = = .
.

v f
T

 

(c) SW sin cos .y
yv A kx t
t

ω ω∂= =
∂

 At an antinode sin 1,=kx  so SW cos .yv A tω ω=  max SW .ω=v A  

2  rad 2  rad 83 8 rad/s.
0 0750 sT

π πω = = = .
.

 2
max (0 850 10  m)(83 8 rad/s) 0 0712 m/s.−= . × . = .v  min 0.=v  

(d) The distance from a node to an adjacent antinode is /4 7 50 cm.λ = .  
EVALUATE:   The maximum transverse speed for a point at an antinode of the standing wave is twice the 
maximum transverse speed for each traveling wave, since SW 2 .=A A  

 15.37. IDENTIFY and SET UP:   Nodes occur where sin 0=kx  and antinodes are where sin 1= ± .kx  
EXECUTE:   Eq. (15.28): SW( sin )siny A kx tω=  
(a) At a node 0=y  for all t. This requires that sin 0=kx  and this occurs for ,kx nπ=  0,  1, 2,n = …  

/ (1 33 m) , 0,  1, 2,
0 750  rad/m

nx n k n nππ
π

= = = .  = …
.

 

(b) At an antinode sin 1= ±kx  so y will have maximum amplitude. This occurs when ( )1
2 ,π= +kx n  

0,  1, 2,n = …  

( ) ( ) ( )1 1 1
2 2 2/ (1.33 m) , 0,  1, 2,

0.750  rad/m
x n k n n nππ

π
= + = + = +  = …  

EVALUATE:   2 / 2 66 m.kλ π= = .  Adjacent nodes are separated by /2,λ  adjacent antinodes are separated 
by /2,λ  and the node to antinode distance is /4λ .  

 15.38. IDENTIFY:   Evaluate 2 2/∂ ∂y x  and 2 2/∂ ∂y t and see if Eq. (15.12) is satisfied for / .ω=v k  

SET UP:   sin cos .∂ =
∂

kx k kx
x

 cos sin .∂ = −
∂

kx k kx
x

 sin cos .ω ω ω∂ =
∂

t t
t

 cos sint t
t

ω ω ω∂ = −
∂

 

EXECUTE:   (a) 
2

2
sw2 [ sin ]sin ,ω∂ = −

∂
y k A t kx

x
 

2
2

sw2 [ sin ]sin ,ω ω∂ = −
∂

y A t kx
t

 so for ( , )y x t  to be a solution 

of Eq. (15.12), 
2

2
2 ,ω−− =k

v
 and .ω=v

k
 

(b) A standing wave is built up by the superposition of traveling waves, to which the relationship /λ=v k  
applies. 
EVALUATE:   SW( , ) ( sin )sinω=y x t A kx t  is a solution of the wave equation because it is a sum of 
solutions to the wave equation. 
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 15.39. IDENTIFY:   Evaluate 2 2/∂ ∂y x and 2 2/∂ ∂y t  and show that Eq. (15.12) is satisfied. 

SET UP:   1 2
1 2( )∂ ∂ ∂+ = +

∂ ∂ ∂
y yy y

x x x
 and 1 2

1 2( )∂ ∂ ∂+ = +
∂ ∂ ∂

y yy y
t t t

 

EXECUTE:   
2 2 2

1 2
2 2 2

∂ ∂ ∂= +
∂ ∂ ∂

y y y
x x x

 and 
2 2 2

1 2
2 2 2 .∂ ∂ ∂= +

∂ ∂ ∂
y y y

t t t
 The functions 1y  and 2y  are given as being 

solutions to the wave equation, so 
2 2 2 2 2 2 2 2

1 2 1 2 1 2
2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = + = + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

y y y y y y y y
x x x v t v t v t t v t

 and so 1 2= +y y y  is a 

solution of Eq. (15.12). 
EVALUATE:   The wave equation is a linear equation, as it is linear in the derivatives, and differentiation is 
a linear operation. 

 15.40. IDENTIFY:   For a string fixed at both ends, 2λ =n
L
n

 and .
2

⎛ ⎞= ⎜ ⎟
⎝ ⎠

n
vf n
L

 

SET UP:   For the fundamental, 1.=n  For the second overtone, 3.=n  For the fourth harmonic, 4.=n  

EXECUTE:   (a) 1 2 3 00 m.λ = = .L  1
(48 0 m/s) 16 0 Hz.2 2(1 50 m)

.  = = = ..
vf L  

(b) 3 1/3 1 00 m.λ λ= = .  2 13 48 0 Hz.= = .f f  
(c) 4 1/4 0 75 m.λ λ= = .  3 14 64 0 Hz.= = .f f  
EVALUATE:   As n increases, λ  decreases and f increases. 

 15.41. IDENTIFY:   Use Eq. (15.1) for v and Eq. (15.13) for the tension F. /= ∂ ∂yv y t  and / .= ∂ ∂y ya v t  
(a) SET UP:   The fundamental standing wave is sketched in Figure 15.41. 

 

 60 0 Hz= .f  
From the sketch, 

/2λ = L  so  
2 1 60 mλ = = .L  

 

Figure 15.41   
 

EXECUTE:   (60 0 Hz)(1 60 m) 96 0 m/sλ= = . . = .v f  
(b) The tension is related to the wave speed by Eq. (15.13): 

/μ=v F  so 2.μ=F v  
/ 0 0400 kg/0 800 m 0 0500 kg/mμ = = . . = .m L  

2 2(0 0500 kg/m)(96 0 m/s) 461 N.μ= = . . =F v  
(c) 2 377 rad/sω π= =f  and SW( , ) sin siny x t A kx tω=  

SW sin cos ;yv A kx tω ω=  2
SW sin sinya A kx tω ω= −  

max SW( ) (377 rad/s)(0 300 cm) 1 13 m/s.ω= = . = .yv A  
2 2 2

max SW( ) (377 rad/s) (0 300 cm) 426 m/s .ω= = . =ya A  
EVALUATE:   The transverse velocity is different from the wave velocity. The wave velocity and tension are 
similar in magnitude to the values in the examples in the text. Note that the transverse acceleration is quite 
large. 

 15.42. IDENTIFY:   The fundamental frequency depends on the wave speed, and that in turn depends on the tension. 

SET UP:   
μ

= Fv  where / .μ = m L  1 .
2

= vf
L

 The nth harmonic has frequency 1.=nf nf  
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EXECUTE:   (a) 3
(800 N)(0 400 m) 327 m/s.

/ 3.00 10  kg
F FLv

m L m −
.= = = =

×
 1

327 m/s 409 Hz.
2 2(0 400 m)

= = =
.

vf
L

 

(b) 
1

10 000 Hz 24 4.= = .,n
f

 The 24th harmonic is the highest that could be heard. 

EVALUATE:   In part (b) we use the fact that a standing wave on the wire produces a sound wave in air of 
the same frequency. 

 15.43. IDENTIFY:   Compare ( , )y x t  given in the problem to Eq. (15.28). From the frequency and wavelength for 
the third harmonic find these values for the eighth harmonic. 
(a) SET UP:   The third harmonic standing wave pattern is sketched in Figure 15.43. 

 

 

Figure 15.43 
 

EXECUTE:   (b) Eq. (15.28) gives the general equation for a standing wave on a string: 
SW( , ) ( sin )sinω=y x t A kx t  

SW 2 ,=A A  so SW/2 (5 60 cm)/2 2 80 cm= = . = .A A  
(c) The sketch in part (a) shows that 3( /2).λ=L  2 / ,π λ=k  2 /λ π= k  
Comparison of ( , )y x t  given in the problem to Eq. (15.28) gives 0 0340 rad/cm.= .k  So, 

2 /(0 0340 rad/cm) 184 8 cmλ π= . = .  
3( /2) 277 cmλ= =L  

(d) 185 cm,λ =  from part (c) 
50 0 rad/sω = .  so /2 7 96 Hzω π= = .f  

period 1/ 0 126 s= = .T f  
1470 cm/sλ= =v f  

(e) SW/ sin cosyv y t A kx tω ω= ∂ ∂ =  

 max SW (50 0 rad/s)(5 60 cm) 280 cm/sω= = . . =y,v A  

(f) 3 17 96 Hz 3 ,= . =f f  so 1 2 65 Hz= .f  is the fundamental 

8 18 21 2 Hz;= = .f f  8 82 133 rad/sω π= =f  
/ (1470 cm/s)/(21 2 Hz) 69 3 cmλ = = . = .v f  and 2 / 0 0906 rad/cmπ λ= = .k  

( ) (5 60 cm)sin([0 0906 rad/cm] )sin([133 rad/s] ) = . .y x,t x t  
EVALUATE:   The wavelength and frequency of the standing wave equals the wavelength and frequency of 
the two traveling waves that combine to form the standing wave. In the 8th harmonic the frequency and 
wave number are larger than in the 3rd harmonic. 

 15.44. IDENTIFY:   Compare the ( , )y x t  specified in the problem to the general form of Eq. (15.28). 
SET UP:   The comparison gives SW 4 44 mm,= .A 32 5 rad/m= .k  and 754 rad/s.ω =  

EXECUTE:   (a) 1 1
SW2 2 (4 44 mm) 2 22 mm.= = . = .A A  

(b) 2 2 0 193 m.32 5 rad/m
π πλ = = = ..  k  

(c) 754 rad/s 120 Hz.2 2
ω
π π

 = = =f  

(d) 754 rad/s 23 2 m/s.32 5 rad/m
ω  = = = .  .  v k  
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(e) If the wave traveling in the +x-direction is written as 1( , ) cos( ),y x t A kx tω= − then the wave traveling in 
the -direction−x is 2( , ) cos( ),ω= − +y x t A kx t where 2 22 mm= .A from part (a), 32 5 rad/m= .  k and 

754 rad/s.ω =   
(f) The harmonic cannot be determined because the length of the string is not specified. 
EVALUATE:   The two traveling waves that produce the standing wave are identical except for their 
direction of propagation. 

 15.45. (a) IDENTIFY and SET UP:   Use the angular frequency and wave number for the traveling waves in  
Eq. (15.28) for the standing wave. 
EXECUTE:   The traveling wave is ( , ) (2 30 mm)cos([6 98 rad/m] ) [742 rad/s] )= . . +y x t x t  

2 30 mm= .A  so SW 4 60 mm;= .A  6 98 rad/m= .k  and 742 rad/sω =  
The general equation for a standing wave is SW( , ) ( sin )sin ,y x t A kx tω=  so 

( , ) (4.60 mm)sin([6.98 rad/m] )sin([742 rad/s] )y x t x t =  
(b) IDENTIFY and SET UP:   Compare the wavelength to the length of the rope in order to identify the harmonic. 
EXECUTE:   1 35 m= .L  (from Exercise 15.28) 

2 / 0 900 mλ π= = .k  
3( /2),λ=L  so this is the 3rd harmonic 

(c) For this 3rd harmonic, /2 118 Hzω π= =f  

3 13=f f  so 1 (118 Hz)/3 39 3 Hz= = .f  
EVALUATE:   The wavelength and frequency of the standing wave equals the wavelength and frequency of 
the two traveling waves that combine to form the standing wave. The nth harmonic has n node-to-node 
segments and the node-to-node distance is /2,λ  so the relation between L and λ  for the nth harmonic is 

( /2).λ=L n  

 15.46. IDENTIFY:   / .μ=v F  .λ=v f  The standing waves have wavelengths 2λ =n
L
n

 and frequencies 1.=nf nf  

The standing wave on the string and the sound wave it produces have the same frequency. 
SET UP:   For the fundamental 1=n and for the second overtone 3.=n  The string has 

3 2/ (8.75 10  kg)/(0.750 m) 1.17 10  kg/m.m Lμ − −= = × = ×  
EXECUTE:   (a) 2 /3 2(0 750 m)/3 0 500 m.λ = = . = .L  The sound wave has frequency 

344 m/s 449.7 Hz.
0.765 mλ

= = =vf  For waves on the string,  

(449.7 Hz)(0 500 m) 224.8 m/s.λ= = . =v f  The tension in the string is 
2 2 2(1 17 10  kg/m)(224.8 m/s) 591 N.μ −= = . × =F v  

(b) 1 3/3 (449.7 Hz)/3 150 Hz.= = =f f  
EVALUATE:   The waves on the string have a much longer wavelength than the sound waves in the air 
because the speed of the waves on the string is much greater than the speed of sound in air. 

 15.47. IDENTIFY and SET UP:   Use the information given about the 4A  note to find the wave speed that depends 
on the linear mass density of the string and the tension. The wave speed isn’t affected by the placement of 
the fingers on the bridge. Then find the wavelength for the 5D  note and relate this to the length of the 
vibrating portion of the string. 
EXECUTE:   (a) 440 Hz=f  when a length 0 600 m= .L  vibrates; use this information to calculate the 
speed v of waves on the string. For the fundamental /2λ = L  so 2 2(0 600 m) 1 20 m.λ = = . = .L  Then 

(440 Hz)(1 20 m) 528 m/s.λ= = . =v f  Now find the length =L x  of the string that makes 587 Hz.=f  
528 m/s 0 900 m
587 Hz

λ = = = .v
f

 

/2 0 450 m,λ= = .L  so 0 450 m 45 0 cm.= . = .x  
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(b) No retuning means same wave speed as in part (a). Find the length of vibrating string needed to 
produce 392 Hz.=f  

528 m/s 1 35 m
392 Hz

λ = = = .v
f

 

/2 0 675 m;λ= = .L  string is shorter than this. No, not possible. 
EVALUATE:   Shortening the length of this vibrating string increases the frequency of the fundamental. 

 15.48. IDENTIFY:   SW( , ) ( sin )sin .y x t A kx tω=  / .= ∂ ∂yv y t  2 2/ .= ∂ ∂ya y t  

SET UP:   max SW( sin ) .ω=v A kx  2
max SW( sin ) .ω=a A kx  

EXECUTE:   (a) (i)
2

x λ
=  is a node, and there is no motion. (ii) 

4
x λ

=  is an antinode, and 

max (2 ) 2 ,π π= =v A f fA  2 2 2
max max(2 ) 4 .a f v f Aπ π= =  (iii) 1cos 4 2

π =  and this factor multiplies the 

results of (ii), so max 2 ,π=v fA  2 2
max 2 2 .π=a f A  

(b) The amplitude is 2 sin , or (i) 0,  (ii) 2 , (iii) 2 / 2. A kx A A  
(c) The time between the extremes of the motion is the same for any point on the string (although the 
period of the zero motion at a node might be considered indeterminate) and is 1/2 .f  
EVALUATE:   Any point in a standing wave moves in SHM. All points move with the same frequency but 
have different amplitude. 

 15.49. IDENTIFY:   For the fundamental, 1 .
2

= vf
L

 / .μ=v F  A standing wave on a string with frequency f 

produces a sound wave that also has frequency f. 
SET UP:   1 245 Hz.=f  0 635 m.= .L  
EXECUTE:   (a) 12 2(245 Hz)(0 635 m) 311 m/s.= = . =v f L  
(b) The frequency of the fundamental mode is proportional to the speed and hence to the square root of the 
tension; (245 Hz) 1 01 246 Hz.. =  
(c) The frequency will be the same, 245 Hz. The wavelength will be 

air air/ (344 m/s) /(245 Hz) 1 40 m,λ = = = .v f  which is larger than the wavelength of standing wave on the 
string by a factor of the ratio of the speeds. 
EVALUATE:   Increasing the tension increases the wave speed and this in turn increases the frequencies of 
the standing waves. The wavelength of each normal mode depends only on the length of the string and 
doesn’t change when the tension changes. 

 15.50. IDENTIFY:   The ends of the stick are free, so they must be displacement antinodes. The first harmonic has 
one node, at the center of the stick, and each successive harmonic adds one node. 
SET UP:   The node to node and antinode to antinode distance is /2.λ  
EXECUTE:   The standing wave patterns for the first three harmonics are shown in Figure 15.50. 

1st harmonic: 1 1
1 2 4 0 m.
2

λ λ= → = = .L L  2nd harmonic: 2 21 2 0 m.λ λ= → = = .L L  

3rd harmonic: 3 3
3 2 1 33 m.
2 3

λ λ= → = = .LL  

EVALUATE:   The higher the harmonic the shorter the wavelength. 
 

 

Figure 15.50 
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15.51. IDENTIFY and SET UP:   Calculate v, ,ω  and k from Eqs. (15.1), (15.5) and (15.6). Then apply Eq. (15.7) 
to obtain ( , ).y x t  

32.50 10  m,A −= ×  1 80 m,λ = .  36 0 m/s= .v  
EXECUTE:   (a) λ=v f  so / (36 0 m/s)/1 80 m 20 0 Hzλ= = . . = .f v  

2 2 (20 0 Hz) 126 rad/sω π π= = . =f  
2 / 2  rad/1 80 m 3 49 rad/mπ λ π= = . = .k  

(b) For a wave traveling to the right, ( , ) cos( ).y x t A kx tω= −  This equation gives that the 0=x  end of the 
string has maximum upward displacement at 0.=t  
Put in the numbers: 3( , ) (2.50 10  m)cos((3 49 rad/m) (126 rad/s) .y x t x t− = × . −  
(c) The left-hand end is located at 0.=x  Put this value into the equation of part (b): 

3(0, ) (2 50 10  m)cos((126 rad/s) ).y t t− = + . ×  
(d) Put 1 35 m= .x  into the equation of part (b): 

3(1.35 m, ) (2.50 10  m)cos((3.49 rad/m)(1.35 m) (126 rad/s) ).y t t−= × −  
3(1.35 m, ) (2.50 10  m)cos(4.71 rad (126 rad/s) )y t t−= × −  

4 71 rad 3 /2π. =  and cos( ) cos( ),θ θ= −  so 3(1.35 m, ) (2.50 10  m)cos((126 rad/s) 3 /2 rad)y t t π− = × −  
(e) cos( )y A kx tω= −  (part (b)) 

The transverse velocity is given by cos( ) sin( ).y
yv A kx t A kx t
t t

ω ω ω∂ ∂= = − = + −
∂ ∂

 

The maximum yv  is 3(2.50 10  m)(126 rad/s) 0.315 m/s.Aω −= × =  

(f) 3( , ) (2.50 10  m)cos((3.49 rad/m) (126 rad/s) )y x t x t− = × −  
0 0625 s= .t  and 1 35 m= .x  gives 

3 3(2 50 10  m)cos((3.49 rad/m)(1.35 m) (126 rad/s)(0.0625 s)) 2.50 10  m.y − −= . × − = − ×  
sin( ) (0.315 m/s)sin((3.49 rad/m) (126 rad/s) )yv A kx t x tω ω= + − = + −  

0 0625 s= .t  and 1 35 m= .x  gives 
(0.315 m/s)sin((3.49 rad/m)(1.35 m) (126 rad/s)(0.0625 s)) 0.0yv = − =  

EVALUATE:   The results of part (f) illustrate that 0=yv  when ,= ±y A  as we saw from SHM in  
Chapter 14. 

15.52.  IDENTIFY:   Compare ( , )y x t given in the problem to the general form given in Eq. (15.8). 
SET UP:   The comparison gives 0 750 cm,= .A  0 400  rad/cmπ= .k and 250  rad/s.ω π=  

EXECUTE:   (a) 20 750 cm, 5 00 cm,0 400 rad/cmλ= . = = ..A 125 Hz,=f  1 0 00800 s= = .fT  and 

6 25 m/s.λ= = .v f  
(b) The sketches of the shape of the rope at each time are given in Figure 15.52. 
(c) To stay with a wavefront as t  increases, x decreases and so the wave is moving in the −x-direction. 
(d) From Eq. (15.13), the tension is 2 2(0 50 kg/m)(6 25 m/s) 19 5 N.μ= = . . = .F v  

(e) 2 21
av 2 54 2 W.μ ω= = .P F A  

EVALUATE:   The argument of the cosine is ( )kx tω+ for a wave traveling in the −x-direction, and that is 
the case here. 
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Figure 15.52 
 

15.53.  IDENTIFY:   The speed in each segment is / .μ=v F  The time to travel through a segment is / .=t L v  

SET UP:   The travel times for each segment are 1 1 1
1 2 3

4,  ,  and .
4

t L t L t L
F F F
μ μ μ= = =  

EXECUTE:   (a) Adding the travel times gives 1 1 1 171
total 2 22 .t L L L LF F F F

μ μ μ μ= + + =  

(b) No. The speed in a segment depends only on F and μ  for that segment. 
EVALUATE:   The wave speed is greater and its travel time smaller when the mass per unit length of the 
segment decreases. 

15.54.  IDENTIFY:   Apply 0τΣ =z to find the tension in each wire. Use /μ=v F to calculate the wave speed for 
each wire and then /=t L v is the time for each pulse to reach the ceiling, where 1 25 m.= .L  

SET UP:   The wires have 2
0 360 N

0 02939 kg/m.
(9 80 m/s )(1 25 m)

m
L

μ .
= = = .

. .
 The free-body diagram for the 

beam is given in Figure 15.54. Take the axis to be at the end of the beam where wire A is attached. 
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EXECUTE:   0τΣ =z gives ( /3)=BT L w L and /3 583 N.= =BT w  1750 N,+ =A BT T  so 1167 N.=AT  

1167 N 199 m/s.
0 02939 kg/mμ

= = =
.

A
A

Tv  1 25 m 0 00627 s  6 27 ms.
199 m/s

.= = . = .At  

583 N 141 m/s.
0 02939 kg/m

= =
.Bv  1.25 m 0.00888 s 8.88 ms.

141 m/sBt = = =  

8.88 ms 6.27 ms 2.6 ms.B At t tΔ = − = − =  
EVALUATE:   The wave pulse travels faster in wire A, since that wire has the greater tension, so the pulse in 
wire A arrives first. 

 

 

Figure 15.54 
 

15.55. IDENTIFY and SET UP:   The transverse speed of a point of the rope is /= ∂ ∂yv y t  where ( , )y x t  is given by 
Eq. (15.7). 
EXECUTE:   (a) ( , ) cos( )y x t A kx tω = −  

/ sin( )yv y t A kx tω ω= ∂ ∂ = + −  

, max 2yv A fAω π= =  

λ
= vf  and ,

( / )
F

v
M L

=  so 1
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

FLf
M

 

, max
2

y
A FLv

M
π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

(b) To double , maxyv  increase F by a factor of 4. 
EVALUATE:   Increasing the tension increases the wave speed v which in turn increases the oscillation 
frequency. With the amplitude held fixed, increasing the number of oscillations per second increases the 
transverse velocity. 

15.56. IDENTIFY:   The maximum vertical acceleration must be at least .g  

SET UP:   2
max ω=a A  

EXECUTE:   2
minω=g A and thus 2

min / .ω=A g  Using 2 2 /ω π π λ= =f v  and / ,μ=v F  this becomes 
2

min 2 .
4

λ μ
π

= gA
F

 

EVALUATE:   When the amplitude of the motion increases, the maximum acceleration of a point on the 
rope increases. 

15.57. IDENTIFY and SET UP:   Use Eq. (15.1) and 2ω π= f  to replace v by ω  in Eq. (15.13). Compare this 

equation to /ω = ′k m  from Chapter 14 to deduce .′k  
EXECUTE:   (a) 2 ,ω π= f  / ,λ=f v  and / .μ=v F  These equations combine to give 

2 2 ( / ) (2 / ) / .ω π π λ π λ μ= = =f v F  
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But also / .ω = ′k m  Equating these expressions for ω  gives 2(2 / ) ( / ).k m Fπ λ μ′ =  

But μ=  Δm x  so 2(2 / )π λ′ = Δk x F  
(b) EVALUATE:   The “force constant” ′k  is independent of the amplitude A and mass per unit length ,μ  
just as is the case for a simple harmonic oscillator. The force constant is proportional to the tension in the 
string F and inversely proportional to the wavelength λ.  The tension supplies the restoring force and the 

21/λ  factor represents the dependence of the restoring force on the curvature of the string. 
15.58.  IDENTIFY:   The frequencies at which a string vibrates depend on its tension, mass density and length. 

SET UP:   1 ,
4

= vf
L

 where .
μ

= =T TLv
m

 T is the tension in the string, L is its length and m is its mass. 

EXECUTE:   (a) 1
1 1 .

2 2 2
= =  =v TL Tf

L L m Lm
 Solving for T gives 

2 2 3
1(2 ) 4(262 Hz) (0 350 m)(8 00 10 kg) 769 N.T f Lm −= = . . × =  

(b) 2 2
1

769 N 2 53 g.
(2 ) (0 350 m)(4)(466 Hz)

= = = .
.

Tm
L f

 

(c) For 1,S  
38.00 10 kg 0.0229 kg/m.

0.350 m
μ

−×= =  769 N=T  and / 183 m/s.μ= =v T  1 2
= vf

L
 gives 

1

183 m/s 33 0 cm.
2 2(277 Hz)

= = = .vL
f

 35 0 cm 33 0 cm 2 00 cm.= . − . = .x  

(d) For 2,S  
3

32.53 10 kg 7.23 10 kg/m.
0.350 m

μ
−

−×= = ×  769 N=T  and / 326 m/s.μ= =v T  0 330 m= .L  

and 1
326 m/s 494 Hz.

2 2(0 330 m)
= = =

.
vf
L

 

EVALUATE:   If the tension is the same in the strings, the mass densities must be different to produce 
sounds of different pitch. 

15.59.  IDENTIFY:   The frequency of the fundamental (the target variable) depends on the tension in the wire. The 
bar is in rotational equilibrium so the torques on it must balance. 

SET UP:   
μ

= Fv  and .
λ

= vf  0.τΣ =z  

EXECUTE:   2 0 660 m.λ = = .L  The tension F in the wire is found by applying the rotational equilibrium 
methods of Chapter 11. Let l  be the length of the bar.  Then 0τΣ =z  with the axis at the hinge gives 

1cos30 sin30 .
2

Fl lmg° = °  
2tan30 (45.0 kg)(9.80 m/s ) tan30 127.3 N.

2 2
mgF ° °= = =  

127 3 N 21 37 m/s.
(0 0920 kg/0 330 m)μ

.= = = .
. .

Fv  21 37 m/s 32 4 Hz
0 660 mλ

.= = = .
.

vf  

EVALUATE:   This is an audible frequency for humans. 
15.60.  IDENTIFY:   The mass of the planet (the target variable) determines g at its surface, which in turn 

determines the weight of the lead object hanging from the string. The weight is the tension in the string, 
which determines the speed of a wave pulse on that string. 

SET UP:   At the surface of the planet p
2
p

.=
m

g G
R

 The pulse speed is .
μ

= Fv  

EXECUTE:   On earth, 24.00 m 1.0256 10  m/s.
0.0390 s

v = = ×  3 30.0280 kg 7.00 10  kg/m .
4.00 m

μ −= = ×  F = Mg, so 

μ
= Mgv and the mass of the lead weight is 
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3
2 2 2

2
7.00 10  kg/m (1.0256 10  m/s) 7.513 kg.

9.8 m/s
M v

g
μ −⎛ ⎞⎛ ⎞ ×= = × =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 On the planet,  

4 00 m 66 67 m/s.
0 0600 s

.= = .
.

v  Therefore 
3

2 2 27.00 10  kg/m (66.67 m/s) 4.141 m/s .
7.513 kg

g v
M
μ −⎛ ⎞×⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  

p
2
p

=
m

g G
R

 and 
2 2 7 2
p 26

11 2 2
(4 141 m/s )(7 20 10  m) 3 22 10  kg.

6 6742 10  N m /kgp
gR

m
G −

. . ×= = = . ×
. × ⋅

 

EVALUATE:   This mass is about 50 times that of Earth, but its radius is about 10 times that of Earth, so the 
result is reasonable. 

15.61.  IDENTIFY:   The wavelengths of standing waves depend on the length of the string (the target variable), 
which in turn determine the frequencies of the waves. 

SET UP:   1=nf nf  where 1 .
2

= vf
L

 

EXECUTE:   1=nf nf  and 1 1( +1) .+ =nf n f  We know the wavelengths of two adjacent modes, so 

1 1 630 Hz 525 Hz 105 Hz.+= − = − =n nf f f  Solving 1 2
= vf

L
 for L gives 1 384 m/s 1 83 m.

2 2(105 Hz)
= = = .vL

f
 

EVALUATE:   The observed frequencies are both audible which is reasonable for a string that is about a half 
meter long. 

15.62.  IDENTIFY:   Apply 0τΣ =z to one post and calculate the tension in the wire. /μ=v F for waves on the 
wire. .λ=v f  The standing wave on the wire and the sound it produces have the same frequency. For 

standing waves on the wire, 2 .λ =n
L
n

 

SET UP:   For the 5th overtone, n = 6. The wire has / (0 732 kg)/(5 00 m) 0 146 kg/m.μ = = . . = .m L  The 
free-body diagram for one of the posts is given in Figure 15.62. Forces at the pivot aren’t shown. We take 
the rotation axis to be at the pivot, so forces at the pivot produce no torque. 

EXECUTE:    0τΣ =z gives cos57 0 ( sin57 0 ) 0.
2

⎛ ⎞. ° − . ° =⎜ ⎟
⎝ ⎠

Lw T L  235 N 76 3 N.
2 tan57 0 2tan57 0

= = = .
. ° . °

wT  For 

waves on the wire, 76 3 N 22 9 m/s.
0 146 kg/mμ

.= = = .
.

Fv  For the 5th overtone standing wave on the wire, 

2 2(5 00 m) 1 67 m.
6 6

λ .= = = .L  22 9 m/s 13 7 Hz.
1 67 mλ

.= = = .
.

vf  The sound waves have frequency 13.7 Hz and 

wavelength 344 m/s 25 0 m.
13 7 Hz

λ = = .
.

 

EVALUATE:   The frequency of the sound wave is just below the lower limit of audible frequencies. The 
wavelength of the standing wave on the wire is much less than the wavelength of the sound waves, because 
the speed of the waves on the wire is much less than the speed of sound in air. 

 

 

Figure 15.62 
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15.63.  IDENTIFY:   The tension in the wires along with their lengths determine the fundamental frequency in each 
one (the target variables). These frequencies are different because the wires have different linear mass 
densities. The bar is in equilibrium, so the forces and torques on it balance. 

SET UP:   a c ,+ =T T w  0,τΣ =z  ,
μ

= Fv  f1 = v/2L and ,μ = m
L

 where 2 .ρ ρπ= =m V r L  The densities of 

copper and aluminum are given in a table in the text. 
EXECUTE:   Using the subscript “a” for aluminum and “c” for copper, we have a c 536 N.T T w+ = =  

0,τΣ =z  with the axis at left-hand end of bar, gives c(1 40 m) (0 90 m),. = .T w  so c 344 6 N.= .T  

a 536 N 344 6 N 191 4 N.= − . = .T  1 .
2

= vf
L

 
2

2.ρπμ ρπ= = =m r L r
L L

  

For the copper wire: 344 6 N= .F  and 3 3 3 2 3(8.90 10  kg/m ) (0.280 10  m) 2.19 10  kg/m,μ π − −= × × = ×  so 

3
344.6 N 396.7 m/s.

2.19 10  kg/m
Fv
μ −= = =

×
 1

396 7 m/s 330 Hz.
2 2(0 600 m)

.= = =
.

vf
L

  

For the aluminum wire: 191 4 N= .F  and 3 3 3 2 4(2.70 10  kg/m ) (0 280 10  m) 6.65 10  kg/m,μ π − −= × . × = ×  

so 4
919.4 N 536.5 m/s,

6.65 10  kg/m
Fv
μ −= = =

×
 which gives 1

536 5 m/s 447 Hz.
2(0 600 m)

.= =
.

f  

EVALUATE:   The wires have different fundamental frequencies because they have different tensions and 
different linear mass densities. 

15.64.  IDENTIFY:   The time it takes the wave to travel a given distance is determined by the wave speed v.  
A point on the string travels a distance 4A in time T. 
SET UP:   .λ=v f  1/ .=T f  
EXECUTE:   (a) The wave travels a horizontal distance d in a time 

8 00  m 0 190 s.
(0 600 m)(70 0 Hz)

d dt
v fλ

.= = = = .
. .

 

(b) A point on the string will travel a vertical distance of 4A  each cycle. Although the transverse velocity 
( , )yv x t  is not constant, a distance of 8 00 m= .h  corresponds to a whole number of cycles, 

3/(4 ) (8.00 m)/[4(5.00 10  m)] 400,n h A −= = × = so the amount of time 
is / (400)/(70 0 Hz) 5 71 s.= = = . = .t nT n f  
EVALUATE:   (c) The time in part (a) is independent of amplitude but the time in part (b) depends on the 
amplitude of the wave. For (b), the time is halved if the amplitude is doubled. 

15.65.  IDENTIFY:   Follow the procedure specified in part (b). 

SET UP:   If = −u x vt , then ∂ =
∂
u v
t
2 and 1.u

x
∂ =
∂

 

EXECUTE:   (a) As time goes on, someone moving with the wave would need to move in such a way that 
the wave appears to have the same shape. If this motion can be described by ,  with x vt b b= +  a constant, 
then ( , ) ( ),y x t f b=  and the waveform is the same to such an observer. 

(b) 
2 2

2 2
∂ =
∂

y d f
x du

 and 

2 2
2

2 2 ,∂ =
∂

y d fv
t du

so ( , ) ( )y x t f x vt= −  is a solution to the wave equation with wave 

speed .v  

(c) This is of the form ( , ) ( ), with y x t f u u x vt= = −  and 
2 2( / )( ) .B x Ct Bf u De− −=  The result of part (b) 

may be used to determine the speed / .=v C B  
EVALUATE:   The wave in part (c) moves in the -direction+ .x  The speed of the wave is independent of the 
constant D. 
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15.66.  IDENTIFY:   The wavelengths of the standing waves on the wire are given by 2 .λ =n
L
n

 When the ball is 

changed the wavelength changes because the length of the wire changes; 0 .Δ = Fll
AY

 

SET UP:   For the third harmonic, 3.=n  For copper, 1011 10  Pa.= ×Y  The wire has cross-sectional area 
2 3 2 7 2(0.512 10  m) 8.24 10  m .A rπ π − −= = × = ×  

EXECUTE:   (a) 3
2(1 20 m) 0 800 m

3
λ .= = .  

(b) The increase in length when the 100.0 N ball is replaced by the 500.0 N ball is given by 0( ) ,F ll
AY

ΔΔ =  

where 400 0 NΔ = .F is the increase in the force applied to the end of the wire. 
3

7 2 10
(400.0 N)(1.20 m) 5 30 10  m.

(8 24 10  m )(11 10  Pa)
l −

−Δ = = . ×
. × ×

 The change in wavelength is 2
3 3 5 mm.λΔ = Δ = .l  

EVALUATE:   The change in tension changes the wave speed and that in turn changes the frequency of the 
standing wave, but the problem asks only about the wavelength. 

15.67.  IDENTIFY and SET UP:   Use Eq. (15.13) to replace ,μ  and then Eq. (15.6) to replace v. 

EXECUTE:   (a) Eq. (15.25): 2 21
av 2 μ ω=P F A  

/μ=v F  says /μ = F v  so 2 2 2 21 1
av 2 2( / ) /ω ω= =P F v F A F A v  

2ω π= f  so / 2 / 2 /ω π π λ= = =v f v k  and 21
av 2 ,ω=P Fk A  as was to be shown. 

(b) IDENTIFY:   For the ω  dependence, use Eq. (15.25) since it involves just ,ω  not k: 2 21
av 2 .μ ω=P F A  

SET UP:   av,P  ,μ  A all constant so 2ωF  is constant, and 2 2
1 1 2 2 .ω ω=F F  

EXECUTE:   1/4 1/4 1/4
2 1 1 2 1 1 1 1 1( / ) ( /4 ) (4) / 2F F F Fω ω ω ω ω−= = = =  

ω  must be changed by a factor of 1/ 2  (decreased) 
IDENTIFY:   For the k dependence, use the equation derived in part (a), 21

av 2 .ω=P Fk A  

SET UP:   If avP  and A are constant then ωFk  must be constant, and 1 1 1 2 2 2ω ω= .F k F k  

EXECUTE:   1 1 1 1
2 1 1 1 1 1

2 2 1 1

2 2 / 8
4 4 16/ 2

ω ω
ω ω

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
= = = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

F Fk k k k k k
F F

 

k must be changed by a factor of 1/ 8  (decreased). 
EVALUATE:   Power is the transverse force times the transverse velocity. To keep avP  constant the 
transverse velocity must be decreased when F is increased, and this is done by decreasing .ω  

15.68.  IDENTIFY:   The phase angle determines the value of y for 0,=x  0=t  but does not affect the shape of the 
( , )y x t versus x or t graph. 

SET UP:   cos( ) sin( ).kx t kx t
t

ω φ ω ω φ∂ − + = − − +
∂

 

EXECUTE:   (a) The graphs for each φ are sketched in Figure 15.68. 

(b) sin( )y A kx tt ω ω φ∂ = − − +∂  

(c) No. /4 or 3 /4φ π φ π= =  would both give / 2.A  If the particle is known to be moving downward, the 
result of part (b) shows that cos 0,  and so  3 /4.φ φ π< =  
(d) To identifyφ  uniquely, the quadrant in whichφ  lies must be known. In physical terms, the signs of both the 
position and velocity, and the magnitude of either, are necessary to determine φ  (within additive multiples of 2 ).π  
EVALUATE:   The phase 0φ = corresponds to =y A at 0,=x  0.=t  
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Figure 15.68 
 

15.69.  IDENTIFY and SET UP:   The average power is given by Eq. (15.25). Rewrite this expression in terms of v 
and λ  in place of F and .ω  
EXECUTE:   (a) 2 21

av 2 μ ω=P F A  

/μ=v F  so F v μ=  
2 2 ( / )ω π π λ= =f v  

Using these two expressions to replace F  and ω  gives 2 3 2 2
av 2 / ;μπ λ=P v A  

3(6.00 10  kg)/(8.00 m)μ −= ×  
1/22

av
2 3

2 7.07 cm
4

λ
π μ

⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠

PA
v

 

(b) EVALUATE:   3
av ~P v  so doubling v increases avP  by a factor of 8. 

av 8(50.0 W) 400.0 W= =P  
15.70.  IDENTIFY:   The wave moves in the +x direction with speed ,v  so to obtain ( , )y x t  replace x with −x vt in 

the expression for ( ,0).y x  
SET UP:   ( , )P x t is given by Eq. (15.21). 
EXECUTE:   (a) The wave pulse is sketched in Figure 15.70. 
(b) 

0 for ( )
( )/ for ( ) 0

( , )
( )/ for 0 ( )

0 for ( )

x vt L
h L x vt L L x vt

y x t
h L x vt L x vt L

x vt L

−  < −⎧
⎪ + − − < − <⎪= ⎨ − +  < − <⎪
⎪ − >⎩

 

(c) From Eq. (15.21): 

2

2

(0)(0) 0 for ( )

( / )( / ) ( / ) for ( ) 0( , ) ( , )( , )
( / )( / ) ( / ) for 0 ( )
(0)(0) 0 for ( )

F x vt L

F h L hv L Fv h L L x vty x t y x tP x t F
x t F h L hv L Fv h L x vt L

F x vt L

− = − < −⎧
⎪

− − = − < − <∂ ∂ ⎪= − = ⎨∂ ∂ − − = < − <⎪
⎪− = − >⎩

 

Thus the instantaneous power is zero except for ( ) ,− < − <L x vt L  where it has the constant value 2( / ) .Fv h L  
EVALUATE:   For this pulse the transverse velocity yv is constant in magnitude and has opposite sign on 
either side of the peak of the pulse. 
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Figure 15.70 
 

15.71.  IDENTIFY:   Draw the graphs specified in part (a). 
SET UP:   When ( , )y x t is a maximum, the slope /∂ ∂y x is zero. The slope has maximum magnitude when 

( , ) 0.y x t =  
EXECUTE:   (a) The graph is sketched in Figure 15.71a. 
(b) The power is a maximum where the displacement is zero, and the power is a minimum of zero when 
the magnitude of the displacement is a maximum. 
(c) The energy flow is always in the same direction. 

(d) In this case, sin( )y kA kx t
x

ω∂ = − +
∂

and Eq. (15.22) becomes 2 2( , ) sin ( ).P x t Fk A kx tω ω= − +  The power 

is now negative (energy flows in the -direction−x ), but the qualitative relations of part (b) are unchanged. 
The graph is sketched in Figure 15.71b. 
EVALUATE:   cosθ and sinθ are 180°  out of phase, so for fixed t, maximum y corresponds to zero P and 

0=y corresponds to maximum P. 
 

  

Figure 15.71 
 

15.72.  IDENTIFY:   The time between positions 1 and 5 is equal to /2.T  .λ=v f  The velocity of points on the 
string is given by Eq. (15.9). 

SET UP:   Four flashes occur from position 1 to position 5, so the elapsed time is 60 s4 0 048 s.
5000

⎛ ⎞ = .⎜ ⎟
⎝ ⎠

 The 

figure in the problem shows that 0 500 m.λ = = .L  At point P the amplitude of the standing wave is 1.5 cm. 
EXECUTE:   (a) /2 0 048 s= .T  and 0 096 s.= .T  1/ 10 4 Hz.= = .f T  0 500 m.λ = .  
(b) The fundamental standing wave has nodes at each end and no nodes in between. This standing wave 
has one additional node. This is the 1st overtone and 2nd harmonic. 
(c) (10 4 Hz)(0 500 m) 5 20 m/s.λ= = . . = .v f  
(d) In position 1, point P is at its maximum displacement and its speed is zero. In position 3, point P is passing 
through its equilibrium position and its speed is max 2 2 (10 4 Hz)(0 015 m) 0 980 m/s.ω π π= = = . . = .v A fA  

(e) 
μ

= =F FLv
m

 and 2 2
(1 00 N)(0 500 m) 18 5 g.

(5 20 m/s)
. .= = = .

.
FLm
v

 

EVALUATE:   The standing wave is produced by traveling waves moving in opposite directions. Each point 
on the string moves in SHM, and the amplitude of this motion varies with position along the string. 
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15.73.  IDENTIFY and SET UP:   There is a node at the post and there must be a node at the clothespin. There could 
be additional nodes in between. The distance between adjacent nodes is /2,λ  so the distance between any 
two nodes is ( /2)λn  for 1,  2, 3,n = …  This must equal 45.0 cm, since there are nodes at the post and 
clothespin. Use this in Eq. (15.1) to get an expression for the possible frequencies f. 
EXECUTE:   45 0 cm ( /2),λ. = n  / ,λ = v f  so [ /(90 0 cm)] (0 800 Hz) ,f n v n= . = .  1,  2, 3,n = …  
EVALUATE:   Higher frequencies have smaller wavelengths, so more node-to-node segments fit between 
the post and clothespin. 

15.74.  IDENTIFY:   The displacement of the string at any point is SW( , ) ( sin )sin .y x t A kx tω=  For the fundamental 
mode 2 ,λ = L  so at the midpoint of the string sin sin(2 / )( /2) 1,π λ= =kx L  and SW sin .y A tω=  The 
transverse velocity is /= ∂ ∂yv y t and the transverse acceleration is / .= ∂ ∂y ya v t  

SET UP:   Taking derivatives gives SW cos ,y
yv A t
t

ω ω∂= =
∂

 with maximum value , max SW,yv Aω=  and 

2
SW sin ,y

y
v

a A tt ω ω
∂

= = −∂  with maximum value 2
, max SW.ya Aω=  

EXECUTE:   3 2 3
, max , max/ (8 40 10 m/s )/(3 80 m/s) 2 21 10 rad/s,y ya vω = = . ×  .  = . ×   and then 

3 3
SW , max/ (3.80 m/s)/(2.21 10 rad/s) 1.72 10  m.yA v ω −= =  ×  = ×  

(b) 3(2 )( /2 ) / (0 386 m)(2 21 10 rad/s) 272 m/s.v f L Lλ ω π ω π π= = = = . . ×  / =   
EVALUATE:   The maximum transverse velocity and acceleration will have different (smaller) values at 
other points on the string. 

15.75.  IDENTIFY:   Carry out the derivation as done in the text for Eq. (15.28). The transverse velocity is 
/= ∂ ∂yv y t  and the transverse acceleration is / .= ∂ ∂y ya v t  

(a) SET UP:   For reflection from a free end of a string the reflected wave is not inverted, so 
1 2( , ) ( , ) ( , ), =  +  y x t y x t y x t  where 

1( , ) cos( )y x t A kx tω = +  (traveling to the left) 

2( , ) cos( )y x t A kx tω= −  (traveling to the right) 
Thus ( , ) [cos( ) cos( )]y x t A kx t kx tω ω= + + − .  
EXECUTE:   Apply the trig identity cos( ) cos cos sin sin± = ∓a b a b a b  with =a kx  and :b tω=  
cos( ) cos cos sin sinkx t kx t kx tω ω ω+ = −  and 
cos( ) cos cos sin sin .kx t kx t kx tω ω ω− = +  
Then ( ) (2 cos )cosω =y x,t A kx t  (the other two terms cancel) 
(b) For 0,=x  cos 1=kx  and ( , ) 2 cos .ω=y x t A t  The amplitude of the simple harmonic motion at 0=x  is 
2A, which is the maximum for this standing wave, so 0=x  is an antinode. 
(c) max 2=y A  from part (b). 

cos[(2 cos )cos ] 2 cos 2 cos sin .y
y tv A kx t A kx A kx t
t t t

ωω ω ω∂ ∂ ∂= = = = −
∂ ∂ ∂

 

At 0,=x  2 sinyv A tω ω= −  and max( ) 2 ω=yv A  
2

2
2

sin2 cos 2 cos cosy
y

vy ta A kx A kx t
t tt

ωω ω ω
∂∂ ∂= = = − = −
∂ ∂∂

 

At 0,=x  22 cosya A tω ω= −  and 2
max( ) 2 .ya Aω=  

EVALUATE:   The expressions for max( )yv  and max( )ya  are the same as at the antinodes for the standing 
wave of a string fixed at both ends. 

15.76.  IDENTIFY:   The standing wave is given by Eq. (15.28). 
SET UP:   At an antinode, sin 1=kx . ,max .ω=yv A  2

,max .ω=ya A  

EXECUTE:   (a) / (192 0 m/s)/(240 0 Hz) 0 800 m,λ = = .  . = .v f  and the wave amplitude is SW 0 400 cm.= .A  
The amplitude of the motion at the given points is 
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(i) (0 400 cm)sin( ) 0 (a node)π. =  (ii) (0 400 cm) sin( /2) 0 400 cm (an antinode) π. = .  
(iii) (0 400 cm) sin( /4) 0 283 cmπ. = .  

(b) The time is half of the period, or 31/(2 ) 2 08 10 s.f −= . ×  
(c) In each case, the maximum velocity is the amplitude multiplied by 2ω π= f and the maximum 

acceleration is the amplitude multiplied by 2 2 24 :ω π= f  
3 2 3 2(i) 0, 0;   (ii) 6 03 m/s,  9 10 10 m/s ;  (iii) 4 27 m/s, 6 43 10 m s .. . ×  . . ×  /  

EVALUATE:   The amplitude, maximum transverse velocity, and maximum transverse acceleration vary 
along the length of the string. But the period of the simple harmonic motion of particles of the string is the 
same at all points on the string. 

15.77.  IDENTIFY:   The standing wave frequencies are given by .
2

⎛ ⎞= ⎜ ⎟
⎝ ⎠

n
vf n
L

 / .μ=v F  Use the density of steel 

to calculate μ for the wire. 

SET UP:   For steel, 3 37.8 10  kg/m .ρ = ×  For the first overtone standing wave, 2.=n  

EXECUTE:   22 (0 550 m)(311 Hz) 171 m/s.
2

= = . =Lfv  The volume of the wire is 2( ) .π=V r L  ρ=m V so 

2 3 3 3 2 3(7.8 10  kg/m ) (0.57 10  m) 7.96 10  kg/m.m V r
L L

ρμ ρπ π − −= = = = × × = ×  The tension is 

2 3 2(7 96 10  kg/m)(171 m/s) 233 N.F vμ −= = . × =  
EVALUATE:   The tension is not large enough to cause much change in length of the wire. 

15.78.  IDENTIFY:   The mass and breaking stress determine the length and radius of the string. 1 ,
2

= vf
L

with .
μ

= Fv  

SET UP:   The tensile stress is 2/ .F rπ  
EXECUTE:   (a) The breaking stress is 8 2

2 7 0 10 N/mF
rπ

= . ×   and the maximum tension is 900 N,=F so 

solving for r gives the minimum radius 4
8 2

900 N 6 4 10  m.
(7 0 10 N/m )

r
π

−= = . ×
. ×  

 The mass and density are 

fixed, 2 .ρ
π

= M
r L

 so the minimum radius gives the maximum length 

3

2 4 2 3
4 0 10  kg 0.40 m.

(6 4 10  m) (7800 kg/m )
ML
rπ ρ π

−

−
. ×= = =

. ×  
 

(b) The fundamental frequency is 1
1 1 1 .2 2 2/

F F Ff MLL L M Lμ= = =  Assuming the maximum length of 

the string is free to vibrate, the highest fundamental frequency occurs when 900 N=F and 

1 3 
900 N1 375 Hz.2 (4 0 10  kg)(0.40 m)

f −= =
. ×

 

EVALUATE:   If the radius was any smaller the breaking stress would be exceeded. If the radius were greater, so 
the stress was less than the maximum value, then the length would be less to achieve the same total mass. 

 15.79. IDENTIFY:   At a node, ( , ) 0y x t = for all t. 1 2+y y  is a standing wave if the locations of the nodes don’t depend on t. 
SET UP:   The string is fixed at each end so for all harmonics the ends are nodes. The second harmonic is 
the first overtone and has one additional node. 
EXECUTE:   (a) The fundamental has nodes only at the ends, 0 and .= =x x L  
(b) For the second harmonic, the wavelength is the length of the string, and the nodes are at 

0, /2 and .= = =x x L x L  
(c) The graphs are sketched in Figure 15.79. 
(d) The graphs in part (c) show that the locations of the nodes and antinodes between the ends vary in time. 
EVALUATE:   The sum of two standing waves of different frequencies is not a standing wave. 
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Figure 15.79 
 

 15.80. IDENTIFY:   1 .
2

= vf
L

 The buoyancy force B that the water exerts on the object reduces the tension in the 

wire. fluid submerged .ρ=B V g  

SET UP:   For aluminum, 3
a 2700 kg/m .ρ =  For water, 3

w 1000 kg/m .ρ =  Since the sculpture is 
completely submerged, submerged object .= =V V V  
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EXECUTE:   (a) L is constant, so air w

air w
=f f

v v
and the fundamental frequency when the sculpture is 

submerged is w
w air

air
,

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

vf f
v

 with air 250 0 Hz.= .f  Fv
μ

=  so w w

air air
.=v F

v F
 When the sculpture is in 

air, air a .F w mg Vgρ= = =  When the sculpture is submerged in water, w a w( ) .ρ ρ= − = −F w B Vg  

w a w

air a

v
v

ρ ρ
ρ
−=  and 

3

w 3
1000 kg/m(250 0 Hz) 1 198 Hz.
2700 kg/m

= . − =f  

(b) The sculpture has a large mass and therefore very little displacement. 
EVALUATE:   We have neglected the buoyant force on the wire itself. 

15.81.  IDENTIFY:   When the rock is submerged in the liquid, the buoyant force on it reduces the tension in the 
wire supporting it. This in turn changes the frequency of the fundamental frequency of the vibrations of the 
wire. The buoyant force depends on the density of the liquid (the target variable). The vertical forces on the 
rock balance in both cases, and the buoyant force is equal to the weight of the liquid displaced by the rock 
(Archimedes’s principle). 

SET UP:   The wave speed is 
μ

= Fv  and .λ=v f  liq rock .ρ=B V g  0.Σ =yF  

EXECUTE:   2 6 00 m.λ = = .L  In air, (42 0 Hz)(6 00 m) 252 m/s.λ= = . . =v f  Fv
μ

=  so 

2 2
164 0 N 0 002583 kg/m.

(252 m/s)
μ .= = = .F

v
 In the liquid, (28 0 Hz)(6 00 m) 168 m/s.λ= = . . =v f  

2 2(0 002583 kg/m)(168 m/s) 72 90 N.μ= = . = .F v  0.+ − =F B mg  

164 0 N 72 9 N 91 10 N.= − = . − . = .B mg F  For the rock, 
2

3 3
3

(164.0 N/9.8 m/s ) 5 230 10  m .
3200 kg/m

mV
ρ

−= = = . ×  

liq rockρ=B V g  and 3 3
liq 3 3 2

rock

91.10 N 1.78 10  kg/m .
(5.230 10  m )(9.8 m/s )

B
V g

ρ −= = = ×
×

 

EVALUATE:   This liquid has a density 1.78 times that of water, which is rather dense but not impossible. 
15.82.  IDENTIFY:   Compute the wavelength from the length of the string. Use Eq. (15.1) to calculate the wave 

speed and then apply Eq. (15.13) to relate this to the tension. 
(a) SET UP:   The tension F is related to the wave speed by /μ=v F  (Eq. (15.13)), so use the information 
given to calculate v. 

 

EXECUTE:   /2λ = L  
2 2(0 600 m) 1 20 mλ = = . = .L  

Figure 15.82   
 

(65 4 Hz)(1 20 m) 78 5 m/sλ= = . . = .v f  
3/ 14.4 10  kg/0.600 m 0.024 kg/mm Lμ −= = × =  

Then 2 2(0 024 kg/m)(78 5 m/s) 148 N.μ= = . . =F v  

(b) SET UP:   2μ=F v  and λ=v f  give 2 2.μ λ=F f  
μ  is a property of the string so is constant. 
λ  is determined by the length of the string so stays constant. 

,μ  λ  constant implies 2 2/ constant,μλ= =F f  so 2 2
1 1 2 2/ / .F f F f=  
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EXECUTE:   
2 2

2
2 1

1

73 4 Hz(148 N) 186 N.
65 4 Hz

⎛ ⎞ .⎛ ⎞= = =⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠

fF F
f

 

The percent change in F is 2 1

1

186 N 148 N 0 26 26%.
148 N

− −= = . =F F
F

 

EVALUATE:   The wave speed and tension we calculated are similar in magnitude to values in the 
examples. Since the frequency is proportional to ,F  a 26% increase in tension is required to produce a 
13% increase in the frequency. 

15.83.  IDENTIFY:   Stress is / ,F A  where F is the tension in the string and A is its cross-sectional area. 

SET UP:   2.π=A r  For a string fixed at each end, 1
1 1

.
2 2 2
v F F

f
L L mLμ

= = =  

EXECUTE:   (a) The cross-section area of the string would be 
8 6 2(900 N)/(7.0 10  Pa) 1.29 10  m ,A −= × = ×  

corresponding to a radius of 0 640 mm.. The length is the volume divided by the area, and the volume is 
/ ,ρ=V m  so 

3

3 3 6 2
/ (4 00 10  kg) 0 40 m.

(7 8 10 kg/m )(1 29 10  m )
V mL
A A

ρ −

−
. ×= = = = .

. ×  . ×
 

(b) For the maximum tension of 900 N, 1 3
1 900 N 375 Hz,
2 (4 00 10  kg)(0 40 m)

f −= =
. × .

 or 380 Hz to two 

figures. 
EVALUATE:   The string could be shorter and thicker. A shorter string of the same mass would have a 
higher fundamental frequency. 

15.84.  IDENTIFY:   Apply 0Σ =yF  to segments of the cable. The forces are the weight of the diver, the weight of 
the segment of the cable, the tension in the cable and the buoyant force on the segment of the cable and on 
the diver. 
SET UP:   The buoyant force on an object of volume V that is completely submerged in water is 

water .ρ=B Vg  
EXECUTE:    (a) The tension is the difference between the diver’s weight and the buoyant force, 

3 3 2
water( ) (120 kg (1000 kg/m )(0 0800 m ))(9 80 m/s ) 392 N.ρ= − = − . .  =F m V g  

(b) The increase in tension will be the weight of the cable between the diver and the point at x, minus the 
buoyant force. This increase in tension is then 

3 2 2 2( ( )) (1 10 kg/m (1000 kg/m ) (1 00 10  m) )(9 80 m/s ) (7 70 N/m) .x Ax g x xμ ρ π −− = .  − . × .  = .   The tension as 
a function of x is then ( ) (392 N) (7 70 N/m) .= + .  F x x  
(c) Denote the tension as 0( ) ,= +F x F ax  where 0 392 N=F  and 7 70 N/m.= .a Then the speed of 

transverse waves as a function of x is 0( )/dxv F ax
dt

μ= = +  and the time t needed for a wave to reach the 

surface is found from 
0

.
/ +

μ= = =∫ ∫ ∫
dxt dt dx

dx dt F ax
 

Let the length of the cable be L, so 0 0 0 00
0

22 ( ).
L Ldxt F ax F aL F

a aF ax
μμ μ= = + = + −

+∫  

2 1 10 kg/m
( 392 N + (7 70 N/m)(100 m) 392 N) 3 89 s.

7 70 N/m
.  

= . − = .
.  

t  
EVALUATE:   If the weight of the cable and the buoyant force on the cable are neglected, then the tension would 

have the constant value calculated in part (a). Then 392 N 18 9 m/s
1 10 kg/mμ

= = = .
.

Fv  and 5 29 s.Lt
v

= = .  

The weight of the cable increases the tension along the cable and the time is reduced from this value. 
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15.85.  IDENTIFY:   Carry out the analysis specified in the problem. 
SET UP:   The kinetic energy of a very short segment Δx is 21

2 ( ) .Δ = Δ yK m v  / .= ∂ ∂yv y t  The work done by 

the tension is F times the increase in length of the segment. Let the potential energy be zero when the 
segment is unstretched. 

EXECUTE:    (a) 
2 2

k
(1/2) 1 .

/ 2
μ

μ
ΔΔ ∂⎛ ⎞= = = ⎜ ⎟Δ Δ ∂⎝ ⎠

ymvK yu
x m t

 

(b)  sin( ) and soy A kx t
t

ω ω∂ = −
∂

 2 2 2
k

1 sin ( ).
2

u A kx tμω ω= −  

(c) The piece has width  and height ,yx x
x

∂
Δ Δ

∂
and so the length of the piece is 

1/2 1/22 2 2
2 1( ) 1 1 ,

2
y y yx x x x
x x x

⎛ ⎞ ⎛ ⎞ ⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟Δ + Δ = Δ + ≈ Δ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦
 where the relation given in the hint has 

been used. 

(d) 
21 2

2
p

1 + ( / ) 1 .
2

⎡ ⎤Δ ∂ ∂ − Δ ∂⎛ ⎞⎣ ⎦= = ⎜ ⎟Δ ∂⎝ ⎠

x y x x yu F F
x x

 

(e)  sin( ), y kA kx t
x

ω∂
= − −

∂
 and so 2 2 2

p
1 sin ( ).
2

ω= −u Fk A kx t  

(f) Comparison with the result of part (c) with 2 2 2 2/ /ω ω μ= =k v F  shows that for a sinusoidal wave 

k p.=u u  

(g) The graph is given in Figure 15.85. In this graph, k pand u u  coincide, as shown in part (f). At 0,=y  

the string is stretched the most, and is moving the fastest, so k pand u u are maximized. At the extremes of y, 

the string is unstretched and is not moving, so k pand u u  are both at their minimum of zero. 

(h) 2 2 2 2 2
k p sin ( ) ( / ) sin ( ) .Pu u Fk A kx t Fk v A kx t

v
ω ω ω+ = − = − =  

EVALUATE:   The energy density travels with the wave, and the rate at which the energy is transported is 
the product of the density per unit length and the speed. 

 

 

Figure 15.85 
 


