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 14.1. IDENTIFY:   We want to relate the characteristics of various waves, such as the period, frequency and 
angular frequency. 
SET UP:   The frequency f  in Hz is the number of cycles per second. The angular frequency ω  is 

2 fω π=  and has units of radians per second. The period T is the time for one cycle of the wave and has 

units of seconds. The period and frequency are related by 1 .T
f

=  

EXECUTE:   (a) 31 1 2.15 10 s.
466 Hz

T
f

−= = = ×  

32 2 (466 Hz) 2.93 10 rad/s.fω π π= = = ×  

(b) 4
6

1 1 2.00 10 Hz.
50.0 10 s

f
T −= = = ×

×
 52 1.26 10 rad/s.fω π= = ×  

(c) 
2

f ω
π

=  so f  ranges from 
15

142.7 10  rad/s
4.3 10  Hz

2 radπ
×

= ×  to  

15
144.7 10  rad/s

7.5 10  Hz.
2  radπ

×
= ×  1T

f
=  so T ranges from 

15
14

1 1.3 10 s
7.5 10  Hz

−= ×
×

 to 15
14

1 2.3 10 s.
4.3 10  Hz

−= ×
×

 

(d) 7
6

1 1 2.0 10 s
5.0 10  Hz

T
f

−= = = ×
×

 and 6 72 2 (5.0 10  Hz) 3.1 10  rad/s.fω π π= = × = ×  

EVALUATE:   Visible light has much higher frequency than either sounds we can hear or ultrasound. 
Ultrasound is sound with frequencies higher than what the ear can hear. Large f  corresponds to small T. 

 14.2. IDENTIFY and SET UP:   The amplitude is the maximum displacement from equilibrium. In one period the 
object goes from x A= +  to x A= −  and returns. 
EXECUTE:   (a) 0 120 mA = .  
(b) 0 800 s 2T/. =  so the period is 1.60 s 

(c) 1 0 625 Hzf
T

= = .   

EVALUATE:   Whenever the object is released from rest, its initial displacement equals the amplitude of  
its SHM. 

 14.3. IDENTIFY:   The period is the time for one vibration and 2 .
T
πω =  

SET UP:   The units of angular frequency are rad/s. 
EXECUTE:   The period is 30 50 s 1 14 10  s440

−. = . ×  and the angular frequency is 32 5 53 10 rad/s.T
πω = = . ×   

EVALUATE:   There are 880 vibrations in 1.0 s, so 880 Hz.f =  This is equal to 1 ./T  
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 14.4. IDENTIFY:   The period is the time for one cycle and the amplitude is the maximum displacement from 
equilibrium. Both these values can be read from the graph. 
SET UP:   The maximum x is 10.0 cm. The time for one cycle is 16.0 s. 

EXECUTE:   (a) 16 0 sT = .  so 1 0 0625 Hz.f
T

= = .  

(b) 10 0 cm.A = .  
(c) 16 0 sT = .  
(d) 2 0 393 rad/sfω π= = .  
EVALUATE:   After one cycle the motion repeats.  

 14.5. IDENTIFY:   This displacement is 1
4  of a period. 

SET UP:   1 0 200 s.T /f= = .  
EXECUTE:   0 0500 st = .  
EVALUATE:   The time is the same for x A=  to 0,x =  for 0x =  to ,x A= −  for x A= −  to 0x =  and for 

0x =  to .x A=  
 14.6. IDENTIFY:   Apply Eq. (14.12). 

SET UP:   The period will be twice the interval between the times at which the glider is at the equilibrium 
position. 

EXECUTE:   
22

2 2 2 (0 200 kg) 0 292 N m.
2(2 60 s)

k m m /
T
π πω ⎛ ⎞⎛ ⎞= = =  . = .  ⎜ ⎟⎜ ⎟ .⎝ ⎠ ⎝ ⎠

 

EVALUATE:   21 N 1 kg m/s ,= ⋅  so 21 N/m 1 kg/s .=  
 14.7. IDENTIFY and SET UP:   Use Eq. (14.1) to calculate T, Eq. (14.2) to calculate ω and Eq. (14.10) for m. 

EXECUTE:   (a) 1/ 1/6 00 Hz 0 167 sT f= = . = .  
(b) 2 2 (6 00 Hz) 37 7 rad/sfω π π= = . = .  

(c) /k mω =  implies 2 2/ (120 N/m)/(37 7 rad/s) 0 0844 kgm k ω= = . = .  

EVALUATE:   We can verify that 2/k ω  has units of mass. 

 14.8. IDENTIFY:   The mass and frequency are related by 1 .
2

kf
mπ

=  

SET UP:    constant,
2

kf m
π

= =  so 1 1 2 2 .f m f m=  

EXECUTE:   (a) 1 0 750 kg,m = .  1 1 33 Hzf = .  and 2 0 750 kg + 0 220 kg 0 970 kg.m = . . = .  

1
2 1

2

0 750 kg(1 33 Hz) 1 17 Hz.
0 970 kg

mf f
m

.= = . = .

.
 

(b) 2 0 750 kg 0 220 kg 0 530 kg.m = . − . = .  2
0 750 kg(1 33 Hz) 1 58 Hz
0 530 kg

f .= . = .
.

  

EVALUATE:   When the mass increases the frequency decreases and when the mass decreases the 
frequency increases. 

 14.9. IDENTIFY:   For SHM the motion is sinusoidal. 
SET UP:   ( ) cos( ).x t A tω=  

EXECUTE:   ( ) cos( ),x t A tω=  where 0.320 mA =  and 2 2 6.981 rad/s.
0.900 sT

π πω = = =  

(a) 0.320 mx =  at 1 0.t =  Let 2t  be the instant when 0.160 m.x =  Then we have 

20.160 m (0.320 m) cos( ).tω=  2cos( ) 0.500.tω =  2 1.047 rad.tω =  2
1.047 rad 0.150 s.
6.981 rad/s

t = =  It takes 

2 1 0.150 s.t t− =  
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(b) Let 3t  be when 0.x =  Then we have 3cos( ) 0tω =  and 3 1.571 rad.tω =  3
1.571 rad 0.225 s.

6.981 rad/s
t = =  It 

takes 3 2 0.225 s 0.150 s 0.0750 s.t t− = − =  
EVALUATE:   Note that it takes twice as long to go from 0.320 mx =  to 0.160 mx =  than to go from 

0.160 mx =  to 0,x =  even though the two distances are the same, because the speeds are different over 
the two distances. 

 14.10. IDENTIFY:   For SHM the restoring force is directly proportional to the displacement and the system obeys 
Newton’s second law. 

SET UP:   x xF ma=  and 1 .
2

kf
mπ

=  

EXECUTE:   x xF ma=  gives ,x
kxa
m

= −  so 
2

25.30 m/s 18.93 s .
0.280 m

xk a
m x

−−= − = − =  

21 1 18.93 s 0.692 Hz
2 2

kf
mπ π

−= = =  

EVALUATE:   The period is around 1.5 s, so this is a rather slow vibration. 
 14.11. IDENTIFY:   Use Eq. (14.19) to calculate A. The initial position and velocity of the block determine .φ  

( )x t  is given by Eq. (14.13). 
SET UP:   cosθ  is zero when /2θ π= ±  and sin( /2) 1.π =  

EXECUTE:   (a) From Eq. (14.19), 0 0 0 98 m.
/

v vA
k mω= = .  

(b) Since (0) 0,x =  Eq. (14.14) requires 2 .πφ = ±  Since the block is initially moving to the left, 0 0xv <  

and Eq. (14.7) requires that sin 20  so ., πφ φ> = +  

(c) cos ( + ( /2)) sin  so ( 0 98 m) sin((12 2  rad/s) ).t t, x tω π ω= − = − . .  
EVALUATE:   The ( )x t  result in part (c) does give 0x =  at 0t =  and 0x <  for t slightly greater than zero. 

 14.12. IDENTIFY and SET UP:   We are given k, m, 0,x  and 0.v  Use Eqs. (14.19), (14.18) and (14.13). 

EXECUTE:   (a) Eq. (14.19): 2 2 2 2 2
0 0 0 0/ /x xA x v x mv kω= + = +  

2 2(0 200 m) + (2 00 kg)( 4 00 m/s) /(300 N/m) 0 383 mA = . . − . = .  
(b) Eq. (14.18): 0 0arctan( / )xv xφ ω= −  

/ (300 N/m)/2 00 kg 12 25 rad/sk mω = = . = .  

( 4.00 m/s)arctan arctan( 1.633) 58.5 (or 1.02 rad)
(12.25 rad/s)(0.200 m)

φ ⎛ ⎞−= − = + = °⎜ ⎟
⎝ ⎠

 

(c) cos( + )x A tω φ=  gives (0 383 m)cos([12 2rad/s] + 1 02 rad)x t= . . .  
EVALUATE:   At 0t =  the block is displaced 0.200 m from equilibrium but is moving, so 0 200 m.A > .  
According to Eq. (14.15), a phase angle φ  in the range 0 90φ< < °  gives 0 0.xv <  

 14.13. IDENTIFY:   For SHM, 2 2(2 ) .xa x f xω π= − = −  Apply Eqs. (14.13), (14.15) and (14.16), with A and φ  
from Eqs. (14.18) and (14.19). 
SET UP:   1 1 cm,x = .  0 15 cm/s.xv = −  2 ,fω π=  with 2 5 Hz.f = .  

EXECUTE:   (a) 2 2 2(2 (2 5 Hz)) (1 1 10  m) 2 71 m/s .xa π −= − . . × = − .  
(b) From Eq. (14.19) the amplitude is 1.46 cm, and from Eq. (14.18) the phase angle is 0.715 rad. The 
angular frequency is 2 15 7 rad/s,fπ = .  so (1 46 cm) cos ((15 7 rad/s) + 0 715 rad),x t= . . .  

( 22 9 cm/s) sin ((15 7 rad/s) 0 715 rad)xv t= − .  . + .  and 2( 359 cm/s ) cos ((15 7 rad/s) 0 715 rad).xa t= − . + .  
EVALUATE:   We can verify that our equations for x, xv  and xa  give the specified values at 0.t =  



14-4   Chapter 14 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

14.14.  IDENTIFY:   The motion is SHM, and in each case the motion described is one-half of a complete cycle.  

SET UP:   For SHM, cos( )x A tω=  and 2 .
T
πω =  

EXECUTE:   (a) The time is half a period. The period is independent of the amplitude, so it still takes 2.70 s. 

(b) 0.090 mx =  at time 1.t  5.40 sT =  and 2 1.164 rad/s.
T
πω = =  1 1cos( ).x A tω=  1cos( ) 0.500.tω =  

1 1.047 radtω =  and 1 0.8997 s.t =  0.090 mx = −  at time 2.t  2cos( ) 0.500 m.tω = −  2 2.094 radtω =  and 

2 1.800 s.t =  The elapsed time is 2 1 1.800 s 0.8997 s 0.900 s.t t− = − =  
EVALUATE:   It takes less time to travel from ±0.090 m in (b) than it originally did because the block has 
larger speed at 0.090±  m with the increased amplitude. 

 14.15. IDENTIFY:   Apply 2 .mT
k

π=  Use the information about the empty chair to calculate k. 

SET UP:   When 42 5 kg,m = .  1 30 s.T = .  

EXECUTE:   Empty chair: 2 .
m

T
k

π=  gives 
2 2

2 2
4 4 (42 5 kg) 993 N/m

(1 30 s)
mk

T
π π .= = =

.
 

With person in chair: 2 mT
k

π=  gives 
2 2

2 2
(2 54 s) (993 N/m) 162 kg

4 4
T km
π π

.= = =  and 

person 162 kg 42 5 kg 120 kg.m = − . =  
EVALUATE:   For the same spring, when the mass increases, the period increases. 

 14.16. IDENTIFY and SET UP:   Use Eq. (14.12) for T and Eq. (14.4) to relate xa  and k. 

EXECUTE:   2 ,
m

T
k

π=  0 400 kgm = .  

Use 22 70 m/sxa = − .  to calculate k: xkx ma− =  gives 
2(0 400 kg)( 2 70 m/s ) 3 60 N/m

0 300 m
xmak

x
. − .= − = − = + .

.
2 2 09 s

m
T

k
π= = .  

EVALUATE:   xa  is negative when x is positive. /xma x  has units of N/m and /m k  has units of s. 

 14.17. IDENTIFY:   2 .mT
k

π=  x
ka x
m

= −  so max .ka A
m

=  .F kx= −  

SET UP:   xa  is proportional to x so xa  goes through one cycle when the displacement goes through one 
cycle. From the graph, one cycle of xa  extends from 0 10 st = .  to 0 30 s,t = .  so the period is 0 20 s.T = .  

2 50 N/cm 250 N/m.k = . =  From the graph the maximum acceleration is 212 0 m/s ..  

EXECUTE:   (a) 2 mT
k

π=  gives 
2 20 20 s(250 N/m) 0 253 kg

2 2
Tm k
π π

.⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) 
2

max (0 253 kg)(12 0 m/s ) 0 0121 m 1 21 cm
250 N/m

maA
k

. .= = = . = .  

(c) max (250 N/m)(0 0121 m) 3 03 NF kA= = . = .  
EVALUATE:   We can also calculate the maximum force from the maximum acceleration: 

2
max max (0 253 kg)(12 0 m/s ) 3 04 N,F ma= = . . = .  which agrees with our previous results. 

 14.18. IDENTIFY:   The general expression for ( )xv t  is ( ) sin( ).xv t A tω ω φ= − +  We can determine ω  and A by 
comparing the equation in the problem to the general form. 
SET UP:   4 71 rad/s.ω = .  3 60 cm/s 0 0360 m/s.Aω = . = .  

EXECUTE:   (a) 2 2  rad 1 33 s
4 71 rad/s

T π π
ω

= = = .
.
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(b) 30 0360 m/s 0 0360 m/s 7 64 10  m 7 64 mm
4 71 rad/s

A
ω

−. .= = = . × = .
.

 

(c) 2 2 3 2
max (4 71 rad/s) (7 64 10  m) 0 169 m/sa Aω −= = . . × = .  

(d) k
m

ω =  so 2 2(0 500 kg)(4 71 rad/s) 11 1 N/m.k mω= = . . = .  

EVALUATE:   The overall positive sign in the expression for ( )xv t  and the factor of /2π−  both are related 
to the phase factor φ  in the general expression. 

 14.19. IDENTIFY:   Compare the specific ( )x t  given in the problem to the general form of Eq. (14.13). 
SET UP:   7 40 cm,A = .  4 16 rad/s,ω = .  and 2 42 rad.φ = − .  

EXECUTE:   (a) 2 2 1 51 s.
4 16 rad/s

T π π
ω

= = = .
.

 

(b) k
m

ω =  so 2 2(1 50 kg)(4 16 rad/s) 26 0 N/mk mω= = . . = .  

(c) max (4 16 rad/s)(7 40 cm) 30 8 cm/sv Aω= = . . = .  
(d) xF kx= −  so max (26 0 N/m)(0 0740 m) 1 92 N.F kA= = . . = .  
(e) ( )x t  evaluated at 1 00 st = .  gives 0 0125 m.x = − .  sin( ) 30 4 cm/s.xv A tω ω φ= − + = .  

2 2/ 0 216 m/s .xa kx m xω= − = − = + .  

(f) (26.0 N/m)( 0.0125 m) 0.325 NxF kx= − = − − = +  
EVALUATE:   The maximum speed occurs when 0x =  and the maximum force is when .x A= ±  

 14.20. IDENTIFY:   The frequency of vibration of a spring depends on the mass attached to the spring. Differences 
in frequency are due to differences in mass, so by measuring the frequencies we can determine the mass of 
the virus, which is the target variable. 

SET UP:   The frequency of vibration is 1 .
2

kf
mπ

=  

Solve: (a) The frequency without the virus is s
s

1 ,
2

kf
mπ

=  and the frequency with the virus is 

s v
s v

1 .
2

kf
m mπ+ =

+
 s v s s

s s v s v v s

1 12 .
2 1 /

f k m m
f m m k m m m m

π
π

+ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠

 

(b) 
2

s v

s v s

1 .
1 /

f
f m m
+⎛ ⎞

=⎜ ⎟ +⎝ ⎠
 Solving for vm  gives 

22 15
16 15s

v s 14
s v

2.00 10 Hz1 (2.10 10 g) 1 9.99 10 g,
2.87 10 Hz

fm m
f

− −

+

⎛ ⎞⎛ ⎞ ⎡ ⎤⎡ ⎤ ×⎜ ⎟⎜ ⎟= − = × − = ×⎢ ⎥⎢ ⎥ ⎜ ⎟⎜ ⎟ ×⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
 or 

v 9.99 femtograms.m =  
EVALUATE:   When the mass increases, the frequency of oscillation increases. 

 14.21. IDENTIFY and SET UP:   Use Eqs. (14.13), (14.15) and (14.16). 
EXECUTE:   440 Hz,f =  3 0 mm,A = .  0φ =  
(a) cos( )x A tω φ= +  

32 2 (440 Hz) 2 76 10  rad/sfω π π= = = . ×  
3 3(3 0 10  m)cos((2 76 10  rad/s) )x t−= . × . ×  

(b) sin( )xv A tω ω φ= − +  
3 3

max (2 76 10  rad/s)(3 0 10  m) 8 3 m/sv Aω −= = . × . × = .  (maximum magnitude of velocity) 
2 cos( )xa A tω ω φ= − +  
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2 3 2 3 4 2
max (2 76 10  rad/s) (3 0 10  m) 2 3 10  m/sa Aω −= = . × . × = . ×  (maximum magnitude of acceleration) 

(c) 2 cosxa A tω ω= −  
3 3 3 3/ sin [2 (440 Hz)] (3 0 10  m)sin([2 76 10  rad/s] )xda dt A t tω ω π  −= + = . × . × =

7 3 3(6 3 10  m/s )sin( 2 76 10 rad/s )t. × [ . × ]  

Maximum magnitude of the jerk is 3 7 36 3 10  m/sAω = . ×  
EVALUATE:   The period of the motion is small, so the maximum acceleration and jerk are large. 

 14.22. IDENTIFY:   The mechanical energy of the system is conserved.  The maximum acceleration occurs at the 
maximum displacement and the motion is SHM. 

SET UP:   Energy conservation gives 2 2
max

1 1 ,
2 2

mv kA=  2 ,mT
k

π=  and max .kAa
m

=  

EXECUTE:   (a) From the graph, we read off T = 16.0 s and A = 10.0 cm = 0.100 m. 2 2
max

1 1
2 2

mv kA=  gives 

max .kv A
m

=  2 ,mT
k

π=  so 2 .k
m T

π=  Therefore max
2 2(0.100 m) 0.0393 m/s.

16.0 s
v A

T
π π⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(b) 
2 2

2
max

2 2 (0.100 m) 0.0154 m/s
16.0 s

kAa A
m T

π π⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The acceleration is much less than g. 
 14.23. IDENTIFY:   The mechanical energy of the system is conserved.  The maximum acceleration occurs at the 

maximum displacement and the motion is SHM. 

SET UP:   Energy conservation gives 2 2
max

1 1
2 2

mv kA=  and max .kAa
m

=  

EXECUTE:   0.120 m.A =  2 2
max

1 1
2 2

mv kA=  gives 
2 2

2max 3.90 m/s 1056 s .
0.120 m

k v
m A

−⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2 2
max (1056 s )(0.120 m) 127 m/skAa

m
−= = =  

EVALUATE:   The acceleration is much greater than g. 
 14.24. IDENTIFY:   The mechanical energy of the system is conserved, Newton’s second law applies and the 

motion is SHM. 

SET UP:   Energy conservation gives 2 2 21 1 1 ,
2 2 2xmv kx kA+ =  ,x xF ma=  ,xF kx= −  and the period is 

2 .mT
k

π=  

EXECUTE:   Solving 2 2 21 1 1
2 2 2xmv kx kA+ =  for xv  gives 2 2 .x

kv A x
m

= −  2 ,mT
k

π=  so 

12 2 1.963 s .
3.20 s

k
m T

π π −= = =  1 2 2(1.963 s ) (0.250 m) (0.160 m) 0.377 m/s.xv −= − =  

1 2 2(1.963 s ) (0.160 m) 0.617 m/s .x
kxa
m

−= − = − = −  

EVALUATE:   The block is on the positive side of the equilibrium position ( 0)x =  and is moving in the 
positive direction but is accelerating in the negative direction, so it must be slowing down. 

 14.25. IDENTIFY:   max 2 .v A fAω π= =  21
max max2K mv=  

SET UP:   The fly has the same speed as the tip of the tuning fork. 
EXECUTE:   (a) 3

max 2 2 (392 Hz)(0 600 10  m) 1 48 m/sv fAπ π −= = . × = .  

(b) 2 3 2 51 1
max max2 2 (0 0270 10  kg)(1 48 m/s) 2 96 10  JK mv − −= = . × . = . ×  

EVALUATE:   maxv is directly proportional to the frequency and to the amplitude of the motion. 
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 14.26. IDENTIFY and SET UP:   Use Eq. (14.21) to relate K and U. U depends on x and K depends on .xv  
EXECUTE:   (a) + ,U K E=  so U K=  says that 2U E=  

( )2 21 1
2 22 kx kA=  and / 2;x A= ±  magnitude is / 2A  

But U K=  also implies that 2K E=  

( )2 21 1
2 22 xmv kA=  and / / 2 / 2;xv k mA Aω= ± = ±  magnitude is / 2.Aω  

(b) In one cycle x goes from A to 0 to A−  to 0 to .A+  Thus 2x A= +  twice and / 2x A= −  twice in 
each cycle. Therefore, U K=  four times each cycle. The time between U K=  occurrences is the time 

atΔ  for 1 / 2x A= +  to 2 2,x A= −  time btΔ  for 1 / 2x A= −  to 2 / 2,x A= +  time ctΔ  for 

1 / 2x A= +  to 2 2,x A= +  or the time dtΔ  for 1 / 2x A= −  to 2 / 2,x A= −  as shown in Figure 14.26. 
 

 a bt tΔ = Δ  

c dt tΔ = Δ  

Figure 14.26   
 

Calculation of :atΔ  
Specify x in cosx A tω=  (choose 0φ =  so x A=  at 0t = ) and solve for t. 

1 / 2x A= +  implies 1/ 2 cos( )A A tω=  

1cos 1/ 2tω =  so 1 arccos(1/ 2) /4 radtω π= =  

1 /4t π ω=  

2 / 2x A= −  implies 2/ 2 cos( )A A tω− =  

2cos 1/ 2tω = −  so 1 3 /4 radtω π=  

2 3 /4t π ω=  

2 1 3 /4 /4 /2at t t π ω π ω π ωΔ = − = − =  (Note that this is /4,T  one fourth period.) 
Calculation of :dtΔ  

1 / 2x A= −  implies 1 3 /4t π ω=  

2 / 2x A ,= −  2t  is the next time after 1t  that gives 2cos 1/ 2tω = −  
Thus 2 1 /2 5 /4t tω ω π π= + =  and 2 5 /4t π ω=  

2 1 5 /4 3 /4 /2 ,dt t t π ω π ω π ωΔ = − = − =  so is the same as .atΔ  
Therfore the occurrences of K U=  are equally spaced in time, with a time interval between them 
of /2 .π ω  
EVALUATE:   This is one-fourth T, as it must be if there are 4 equally spaced occurrences each period. 
(c) EXECUTE:   /2x A=  and U K E+ =  

2 2 2 2 2 2 21 1 1 1 1 1
2 2 2 2 2 8( /2) 3 /8K E U kA kx kA k A kA kA kA= − = − = − = − =  

Then 
2

21
2

3 /8 3
4

K kA
E kA

= =  and 
21

8
21

2

1
4

kAU
E kA

= =  

EVALUATE:   At 0x =  all the energy is kinetic and at x A= ±  all the energy is potiential. But K U=  does 
not occur at /2,x A= ±  since U is not linear in x. 
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 14.27. IDENTIFY:   Velocity and position are related by 2 2 21 1 1
2 2 2 .xE kA mv kx= = +  Acceleration and position are 

related by .xkx ma− =    
SET UP:   The maximum speed is at 0x =  and the maximum magnitude of acceleration is at .x A= ±  

EXECUTE:   (a) For 0,x =  2 21 1
max2 2mv kA=  and max

450 N/m(0 040 m) 1 20 m/s
0 500 kg

kv A
m

= = . = .
.

 

(b) 2 2 2 2450 N/m (0 040 m) (0 015 m) 1 11 m/s.
0 500 kgx

kv A x
m

= ± − = ± . − . = ± .
.

  

The speed is 1 11 m/s.v = .  

(c) For ,x A= ±  2
max

450 N/m (0 040 m) 36 m/s
0 500 kg

ka A
m

⎛ ⎞
= = . =⎜ ⎟.⎝ ⎠

 

(d) 2(450 N/m)( 0 015 m) 13 5 m/s
0 500 kgx

kxa
m

− .= − = − = + .
.

 

(e) 2 21 1
2 2 (450 N/m)(0 040 m) 0 360 JE kA= = . = .  

EVALUATE:   The speed and acceleration at 0 015 mx = − .  are less than their maximum values. 
 14.28. IDENTIFY and SET UP:   xa  is related to x by Eq. (14.4) and xv  is related to x by Eq. (14.21). xa  is a 

maximum when x A= ±  and xv  is a maximum when 0.x =  t is related to x by Eq. (14.13). 
EXECUTE:   (a) xkx ma− =  so ( / )xa k m x= −  (Eq.14.4). But the maximum x  is A, so 

2
max ( / ) .a k m A Aω= =  

0 850 Hzf = .  implies / 2 2 (0 850 Hz) 5 34 rad/s.k m fω π π= = = . = .  
2 2 2

max (5 34 rad/s) (0 180 m) 5 13 m/s .a Aω= = . . = .  
2 2 21 1 1

2 2 2xmv kx kA+ =  

maxxv v=  when 0x =  so 2 21 1
max2 2mv kA=  

max / (5 34 rad/s)(0 180 m) 0 961 m/sv k mA Aω= = = . . = .  

(b) 2 2 2( / ) (5 34 rad/s) (0 090 m) 2 57 m/sxa k m x xω= − = − = − . . = − .  
2 2 21 1 1

2 2 2xmv kx kA+ =  says that 2 2 2 2/xv k m A x A xω= ± − = ± −  

2 2(5 34 rad/s) (0 180 m) (0 090 m) 0 832 m/sxv = ± . . − . = ± .  
The speed is 0.832 m/s. 
(c) cos( )x A tω φ= +  
Let /2φ π= −  so that 0x =  at 0.t =  
Then cos( /2) sin( )x A t A tω π ω= − =  [Using the trig identity cos( /2) sina aπ− = ] 
Find the time t that gives 0 120 m.x = .  
0 120 m (0 180 m)sin( )tω. = .  
sin 0 6667tω = .  

arcsin(0.6667)/ 0.7297 rad/(5.34 rad/s)=0.137 st ω= =  
EVALUATE:   It takes one-fourth of a period for the object to go from 0x =  to 0 180 m.x A= = .  So the 
time we have calculated should be less than /4.T  1/ 1/0 850 Hz 1 18 s,T f= = . = .  /4 0 295 s,T = .  and the 
time we calculated is less than this. Note that the xa  and xv  we calculated in part (b) are smaller in 
magnitude than the maximum values we calculated in part (b). 
(d) The conservation of energy equation relates v and x and F ma=  relates a and x. So the speed and 
acceleration can be found by energy methods but the time cannot. 
Specifying x uniquely determines xa  but determines only the magnitude of ;xv  at a given x the object 
could be moving either in the x+  or x−  direction. 
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14.29. IDENTIFY:   Use the results of Example 14.5 and also that 21
2 .E kA=  

SET UP:   In the example, 2 1
MA A M m= +  and now we want 1

2 12 .A A=  Therefore, 
1

,
2

M
M m=  +  or 

3 .m M=  For the energy, 21
2 22 ,E kA=  but since 1

2 12 ,A A=  1
2 14 ,E E =  and 3

14 E  is lost to heat. 

EXECUTE:   The putty and the moving block undergo a totally inelastic collision and the mechanical 
energy of the system decreases. 
 

 14.30. IDENTIFY and SET UP:   Use Eq. (14.21). x Aω= ±  when 0xv =  and maxxv v= ±  when 0.x =  

EXECUTE:   (a) 2 21 1
2 2E mv kx= +  

2 21 1
2 2(0 150 kg)(0 300 m/s) (300 N/m)(0 012 m) 0 0284 JE = . . + . = .  

(b) 21
2E kA=  so 2 / 2(0 0284 J)/300 N/m 0 014 mA E k= = . = .  

(c) 21
max2E mv=  so max 2 / 2(0 0284 J)/0 150 kg 0 615 m/sv E m= = . . = .  

EVALUATE:   The total energy E is constant but is transferred between kinetic and potential energy during 
the motion. 

 14.31. IDENTIFY:   Conservation of energy says 2 2 21 1 1
2 2 2mv kx kA+ = and Newton’s second law says .xkx ma− =  

SET UP:   Let x+ be to the right. Let the mass of the object be m. 

EXECUTE:   
2

28 40 m/s
(14 0 s ) .

0 600 m
xma

k m m
x

−⎛ ⎞− .
= − = − = .⎜ ⎟.⎝ ⎠

 

2 2 2 2
2( / ) (0 600 m) (2 20 m/s) 0 840 m.

[14 0 s ]
mA x m k v

m−
⎛ ⎞

= = . + . = .⎜ ⎟⎜ ⎟.⎝ ⎠
 The object will therefore 

travel 0 840 m 0 600 m 0 240 m. − . = . to the right before stopping at its maximum amplitude. 
EVALUATE:   The acceleration is not constant and we cannot use the constant acceleration kinematic 
equations. 

 14.32. IDENTIFY:   When the box has its maximum speed all of the energy of the system is in the form of kinetic 
energy. When the stone is removed the oscillating mass is decreased and the speed of the remaining mass 

is unchanged. The period is given by 2 .mT
k

π=  

SET UP:   The maximum speed is max .kv A A
m

ω= =  With the stone in the box 8 64 kgm = .  and 

0 0750 m.A = .  

EXECUTE:   (a) 5 20 kg2 2 0 740 s
375 N/m

mT
k

π π .= = = .  

(b) Just before the stone is removed, the speed is max
375 N/m (0 0750 m) 0 494 m/s.
8 64 kg

v = . = .
.

 The speed of 

the box isn’t altered by removing the stone but the mass on the spring decreases to 5.20 kg. The new 

amplitude is max
5 20 kg (0 494 m/s) 0 0582 m.

375 N/m
mA v
k

.= = . = .  The new amplitude can also be calculated 

as 5 20 kg (0 0750 m) 0 0582 m.
8 64 kg

. . = .

.
 

(c) 2 .mT
k

π=  The force constant remains the same. m decreases, so T decreases. 
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EVALUATE:   After the stone is removed, the energy left in the system is 
2 21 1

box max2 2 (5 20 kg)(0 494 m/s) 0 6345 J.m v = . . = .  This then is the energy stored in the spring at its 

maximum extension or compression and 21
2 0 6345 J.kA = .  This gives the new amplitude to be 0.0582 m, 

in agreement with our previous calculation. 
14.33.  IDENTIFY:   The mechanical energy (the sum of the kinetic energy and potential energy) is conserved. 

SET UP:   ,K U E+ =  with 21
2E kA=  and 21

2U kx=  

EXECUTE:   U K=  says 2 .U E=  This gives 2 21 1
2 22( ) ,kx kA=  so / 2.x A=  

EVALUATE:   When /2x A=  the kinetic energy is three times the elastic potential energy. 
14.34.  IDENTIFY:   The velocity is a sinusoidal function. From the graph we can read off the period and use it to 

calculate the other quantities. 
SET UP:   The period is the time for 1 cycle; after time T the motion repeats. The graph shows that T = 1.60 
s and max 20.0 cm/s.v =  Mechanical energy is conserved, so 2 2 21 1 1

2 2 2 ,xmv kx kA+ =  and Newton’s second 

law applies to the mass. 
EXECUTE:   (a) 1.60 sT =  (from the graph). 

(b) 1 0.625 Hz.f
T

= =  

(c) 2 3.93 rad/s.fω π= =  

(d) maxxv v=  when 0x =  so 2 21 1
max2 2 .kA mv=  max .mA v

k
=  1

2
kf
mπ

=  so max /(2 ).A v fπ=  From the 

graph in the problem, max 0.20 m/s,v =  so 0.20 m/s 0.051 m 5.1 cm.
2 (0.625 Hz)

A
π

= = =  The mass is at x A= ±  

when 0,xv =  and this occurs at 0.4 s,t =  1.2 s, and 1.8 s. 
(e) Newton’s second law gives ,xkx ma− =  so 

2 2 2 2 2
max (2 ) (4 )(0.625 Hz) (0.051 m) 0.79 m/s 79 cm/s .kAa f A

m
π π= = = = =  The acceleration is 

maximum when x A= ±  and this occurs at the times given in (d). 

(f) 2 mT
k

π=  so 
2 21.60 s(75 N/m) 4.9 kg.

2 2
Tm k
π π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The speed is maximum at 0,x =  when 0.xa =  The magnitude of the acceleration is 
maximum at ,x A= ±  where 0.xv =  

 14.35. IDENTIFY:   Work in an inertial frame moving with the vehicle after the engines have shut off. The 
acceleration before engine shut-off determines the amount the spring is initially stretched. The initial speed 
of the ball relative to the vehicle is zero. 
SET UP:   Before the engine shut-off the ball has acceleration 25 00 m/s .a = .  

EXECUTE:   (a) x xF kx ma= − =  gives 
2(3 50 kg)(5 00 m/s ) 0 0778 m.

225 N/m
maA
k

. .= = = .  This is the amplitude 

of the subsequent motion. 

(b) 1 1 225 N/m 1 28 Hz
2 2 3 50 kg

kf
mπ π

= = = .
.

 

(c) Energy conservation gives 2 21 1
max2 2kA mv= and max

225 N/m (0 0778 m) 0 624 m/s.
3 50 kg

kv A
m

= = . = .
.

 

EVALUATE:   During the simple harmonic motion of the ball its maximum acceleration, when ,x A= ±  

continues to have magnitude 25 00 m/s ..  
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 14.36. IDENTIFY:   Use the amount the spring is stretched by the weight of the fish to calculate the force constant 
k of the spring. 2 / .T m kπ=  max 2 .v A fAω π= =  

SET UP:   When the fish hangs at rest the upward spring force xF kx= equals the weight mg of the fish. 
1 .f /T=  The amplitude of the SHM is 0.0500 m. 

EXECUTE:   (a) mg kx=  so 
2

3(65 0 kg)(9 80 m/s ) 5 31 10  N/m.
0 120 m

mgk
x

. .= = = . ×
.

 

(b) 3
65 0 kg2 2 0 695 s.

5 31 10  N/m
mT
k

π π .= = = .
. ×

 

(c) max
2 2 (0 0500 m)

2 0 452 m/s
0 695 s

A
v fA

T
π ππ .

= = = = .
.

 

EVALUATE:   Note that T depends only on m and k and is independent of the distance the fish is pulled 
down. But maxv  does depend on this distance. 

 14.37. IDENTIFY:   Initially part of the energy is kinetic energy and part is potential energy in the stretched spring. 
When x A= ±  all the energy is potential energy and when the glider has its maximum speed all the energy 
is kinetic energy. The total energy of the system remains constant during the motion. 
SET UP:   Initially 0 815 m/sxv = ± .  and 0 0300 m.x = ± .  
EXECUTE:   (a) Initially the energy of the system is 

2 2 2 21 1 1 1
2 2 2 2(0 175 kg)(0 815 m/s) (155 N/m)(0 0300 m) 0 128 J.E mv kx= + = . . + . = .  21

2 kA E=  and 

2 2(0 128 J) 0 0406 m 4 06 cm.
155 N/m

EA
k

.= = = . = .  

(b) 21
max2 mv E=  and max

2 2(0 128 J) 1 21 m/s.
0 175 kg

Ev
m

.= = = .
.

 

(c) 155 N/m 29 8 rad/s
0 175 kg

k
m

ω = = = .
.

 

EVALUATE:   The amplitude and the maximum speed depend on the total energy of the system but the 
angular frequency is independent of the amount of energy in the system and just depends on the force 
constant of the spring and the mass of the object. 

 14.38. IDENTIFY:   21
2 ,K mv=  gravU mgy=  and 21

el 2 .U kx=  

SET UP:   At the lowest point of the motion, the spring is stretched an amount 2A. 
EXECUTE:   (a) At the top of the motion, the spring is unstretched and so has no potential energy, the cat is 
not moving and so has no kinetic energy, and the gravitational potential energy relative to the bottom is 

22 2(4 00 kg)(9 80 m/s )(0 050 m) 3 92  J.mgA = . . . = .  This is the total energy, and is the same total for each part. 
(b) grav spring0, 0,  so 3 92  J.U K U= = = .  
(c) At equilibrium the spring is stretched half as much as it was for part (a), and so 

1
spring 4 (3 92 J) 0 98  J,U = . = .  1

grav 2 (3 92 J) 1 96 J,U = . = .  and so 0 98 J.K = .  

EVALUATE:   During the motion, work done by the forces transfers energy among the forms kinetic energy, 
gravitational potential energy and elastic potential energy. 

 14.39. IDENTIFY:   The location of the equilibrium position, the position where the downward gravity force is 
balanced by the upward spring force, changes when the mass of the suspended object changes. 
SET UP:   At the equilibrium position, the spring is stretched a distance d. The amplitude is the maximum 
distance of the object from the equilibrium position. 
EXECUTE:   (a) The force of the glue on the lower ball is the upward force that accelerates that ball 
upward. The upward acceleration of the two balls is greatest when they have the greatest downward 
displacement, so this is when the force of the glue must be greatest. 
(b) With both balls, the distance 1d  that the spring is stretched at equilibrium is given by 

1 (1 50 kg 2 00 kg)kd g= . + .  and 1 20 8 cm.d = .  At the lowest point the spring is stretched  
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20 8 cm 15 0 cm 35 8 cm.. + . = .  After the 1.50 kg ball falls off the distance 2d  that the spring is stretched at 
equilibrium is given by 2 (2 00 kg)kd g= .  and 2 11 9 cm.d = .  The new amplitude is 

35 8 cm 11 9 cm 23 9 cm.. − . = .  The new frequency is 1 1 165 N/m 1 45 Hz.
2 2 2 00 kg

kf
mπ π

= = = .
.

 

EVALUATE:   The potential energy stored in the spring doesn’t change when the lower ball comes loose. 

 14.40. IDENTIFY:   The torsion constant κ  is defined by .zτ κθ= −  1
2

f
I
κ

π
=  and 1/ .T f=  

( ) cos( ).t tθ ω φ= Θ +  

SET UP:   For the disk, 21
2 .I MR=  .z FRτ = −  At 0,t =  3 34 0 0583 rad,θ = Θ = . ° = .  so 0.φ =  

EXECUTE:   (a) (4 23 N)(0 120 m) 8 71 N m/rad
0 0583 rad 0 0583 rad

z FRτκ
θ

− . .= − = − = + = . ⋅
. .

 

(b) 2 2
1 1 2 1 2(8 71 N m/rad)

2 17 Hz.
2 2 2 (6 50 kg)(0 120 m)

f
I MR
κ κ

π π π
. ⋅

= = = = .
. .

 1/ 0 461 s.T f= = .  

(c) 2 13 6 rad/s.fω π= = .  ( ) (3 34 )cos([13 6 rad/s] ).t tθ = . ° .  
EVALUATE:   The frequency and period are independent of the initial angular displacement, so long as this 
displacement is small. 

 14.41. IDENTIFY and SET UP:   The number of ticks per second tells us the period and therefore the frequency. 
We can use a formula from Table 9.2 to calculate I. Then Eq. (14.24) allows us to calculate the torsion 
constant .κ  
EXECUTE:   Ticks four times each second implies 0.25 s per tick. Each tick is half a period, so 0 50 sT = .  
and 1/ 1/0 50 s 2 00 Hz.f T= = . = .  

(a) Thin rim implies 2I MR=  (from Table 9.2). 3 2 2 8 2(0 900 10  kg)(0 55 10  m) 2 7 10  kg mI − − −= . × . × = . × ⋅  

(b) 2 /T Iπ κ=  so 2 8 2 2 6(2 / ) (2 7 10  kg m )(2 /0 50 s) 4 3 10  N m/radI Tκ π π− −= = . × ⋅ . = . × ⋅  
EVALUATE:   Both I and κ  are small numbers. 

 14.42. IDENTIFY:   Eq. (14.24) and 1/T f=  says 2 .IT π=
κ

 

SET UP:   21
2 .I mR=  

EXECUTE:   Solving Eq. (14.24) for κ  in terms of the period, 
2 2

3 2 2 52 2
((1/2)(2 00 10  kg)(2 20 10  m) ) 1 91 10  N m/rad.

1 00 s
I

T
π πκ − − −⎛ ⎞ ⎛ ⎞= = . × . × = . × ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠.

 

EVALUATE:   The longer the period, the smaller the torsion constant. 

 14.43. IDENTIFY:   1 .
2

f
I
κ

π
=  

SET UP:   125/(265 s),f =  the number of oscillations per second. 

EXECUTE:   2
2 2

0 450 N m/rad
0 0512 kg m .

(2 ) (2 (125)/(265 s))
I

f
κ

π π
. ⋅

= = = . ⋅  

EVALUATE:   For a larger I, f is smaller. 
 14.44. IDENTIFY:   ( )tθ  is given by ( ) cos( ).t tθ ω φ= Θ +  Evaluate the derivatives specified in the problem. 

SET UP:   (cos )/ sin .d t dt tω ω ω= −  (sin )/ cos .d t dt tω ω ω=  2 2sin cos 1θ θ+ =  
In this problem, 0.ϕ =  

EXECUTE:   (a) 22
sin( ) and cos( ).2

d dt tdt dt
θ θω ω α ω ω= −  Θ  = = −  Θ   
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(b) When the angular displacement is ,Θ  cos( ).tωΘ = Θ  This occurs at 0,t =  so 0.ω =  2 .α ω= − Θ  

When the angular displacement is 1/2, cos( ), or cos( ).2 2t tω ωΘΘ = Θ =  3
2

d
dt
θ ω−  Θ=  since 

3sin( ) .
2

tω =  
2

,
2

ωα Θ= -  since cos( ) 1/2.tω =  

EVALUATE:   1
2cos( )tω =  when /3 rad 60 .tω π= = °  At this t, cos( )tω  is decreasing and θ  is decreasing, 

as required. There are other, larger values of tω  for which /2,θ = Θ  but θ  is increasing. 

 14.45. IDENTIFY:   2 /T L gπ=  is the time for one complete swing. 
SET UP:   The motion from the maximum displacement on either side of the vertical to the vertical position 
is one-fourth of a complete swing. 
EXECUTE:   (a) To the given precision, the small-angle approximation is valid. The highest speed is at the 

bottom of the arc, which occurs after a quarter period, 0 25 s.4 2
T L

g
π= = .  

(b) The same as calculated in (a), 0.25 s. The period is independent of amplitude. 
EVALUATE:   For small amplitudes of swing, the period depends on L and g. 

 14.46. IDENTIFY:   Since the rope is long compared to the height of a person, the system can be modeled as a 

simple pendulum. Since the amplitude is small, the period of the motion is 2 .LT
g

π=  

SET UP:   From his initial position to his lowest point is one-fourth of a cycle. He returns to this lowest 
point in time /2T  from when he was previously there. 

EXECUTE:   (a) 2
6 50 m2 5 12 s.

9 80 m/s
T π .= = .

.
 /4 1 28 s.t T= = .  

(b) 3 /4 3 84 s.t T= = .  
EVALUATE:   The period is independent of his mass. 

 14.47. IDENTIFY:   Since the cord is much longer than the height of the object, the system can be modeled as a 

simple pendulum. We will assume the amplitude of swing is small, so that 2 .LT
g

π=  

SET UP:   The number of swings per second is the frequency 1 1 .
2

gf
T Lπ

= =  

EXECUTE:   
21 9 80 m/s 0 407 swings per second.

2 1 50 m
f

π
.= = .

.
 

EVALUATE:   The period and frequency are both independent of the mass of the object. 
 14.48. IDENTIFY:   Use Eq. (14.34) to relate the period to g. 

SET UP:   Let the period on earth be E E2 / ,T L gπ=  where 2
E 9 80 m/s ,g = .  the value on earth. 

Let the period on Mars be M M2 / ,T L gπ=  where 2
M 3 71 m/s ,g = .  the value on Mars. 

We can eliminate L, which we don’t know, by taking a ratio: 

EXECUTE:   M E E

E M M

12 .
2

T L g g
T g L g

π
π

= =  

2
E

M E 2
M

9 80 m/s(1 60 s) 2 60 s.
g 3 71 m/s
gT T .= = . = .

.
 

EVALUATE:   Gravity is weaker on Mars so the period of the pendulum is longer there. 
 14.49. IDENTIFY:   Apply 2 /T L gπ=  

SET UP:   The period of the pendulum is (136 s)/100 1 36 s.T = = .  
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EXECUTE:   
2 2

2
2 2

4 4 (0 500 m) 10 7 m/s .
(1 36 s)

Lg
T
π π .= = = .  

.
 

EVALUATE:   The same pendulum on earth, where g is smaller, would have a larger period. 

 14.50. IDENTIFY:   tan ,a Lα=  2
rada Lω=  and 2 2

tan rad .a a a= +  Apply conservation of energy to calculate the 
speed in part(c).  
SET UP:   Just after the sphere is released, 0ω =  and rad 0.a =  When the rod is vertical, tan 0.a =  
EXECUTE:   (a) The forces and acceleration are shown in Figure 14.50a. rad 0a =  and tan sin .a a g θ= =  
(b) The forces and acceleration are shown in Figure 14.50b. 
(c) The forces and acceleration are shown in Figure 14.50c. i fU K=  gives 21

2(1 cos )mgL mv− Θ =  and 

2 (1 cos ).v gL= − Θ  
EVALUATE:   As the rod moves toward the vertical, v increases, rada  increases and tana  decreases. 

 

          

Figure 14.50 
 

 14.51. IDENTIFY:   If a small amplitude is assumed, 2 .LT
g

π=  

SET UP:   The fourth term in Eq. (14.35) would be 
2 2 2

6
2 2 2

1 3 5 sin .
22 4 6

⋅ ⋅ Θ
⋅ ⋅

 

EXECUTE:   (a) 2
2 00 m2 2 84 s

9 80 m/s
T π .= = .

.
 

(b) 2 4 61 9 225
(2 84 s) 1 sin 15 0 sin 15 0 sin 15 0 2 89 s

4 64 2304
T ⎛ ⎞= . + . ° + . ° + . ° = .⎜ ⎟⎝ ⎠

 

(c) Eq. (14.35) is more accurate. Eq. (14.34) is in error by 2 84 s 2 89 s 2 ,
2 89 s

. − . = − %
.

 

EVALUATE:   As Figure 14.22 in Section 14.5 shows, the approximation F mgθ θ= −  is larger in magnitude 
than the true value as θ  increases. Eq. (14.34) therefore overestimates the restoring force and this results 
in a value of T that is smaller than the actual value. 

 14.52. IDENTIFY:   2 /T I mgdπ=  
SET UP:   From the parallel axis theorem, the moment of inertia of the hoop about the nail is 

2 2 22 .I MR MR MR= + =  .d R=   
EXECUTE:   Solving for R, 2 2/8 0 496 m.R gT π= = .  

EVALUATE:   A simple pendulum of length L R=  has period 2 / .T R gπ=  The hoop has a period that is 

larger by a factor of 2.  
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 14.53. IDENTIFY:   2 / .T I mgdπ=  
SET UP:   0 200 m.d = .  (120 s)/100.T =  

EXECUTE:   
2 2

2 2120 s/100(1 80 kg)(9 80 m/s )(0 200 m) 0 129 kg m .
2 2
TI mgd
π π

⎛ ⎞ ⎛ ⎞= = . . . = . .⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   If the rod were uniform, its center of gravity would be at its geometrical center and it would 

have length 0 400 m.l = .  For a uniform rod with an axis at one end, 1
3

2 20 096 kg m .I ml= = . ⋅  The value 
of I for the actual rod is about 34% larger than this value. 

 14.54. IDENTIFY:   Apply Eq. (14.39) to calculate I and conservation of energy to calculate the maximum angular 
speed, max.Ω  
SET UP:   0 250 m.d = .  In part (b), i (1 cos ),y d= − Θ  with 0 400 radΘ = .  and f 0.y =  
EXECUTE:   (a) Solving Eq. (14.39) for I, 

2 2
2 20 940 s (1 80 kg)(9 80 m/s )(0 250 m) 0 0987 kg m .

2 2
TI mgd
π π

.⎛ ⎞ ⎛ ⎞=  = . .  . = . ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) The small-angleapproximation will not give three-figure accuracy for 0 400 rad.Θ = .  From energy 

considerations, 2
max

1(1 cos ) .
2

mgd I− Θ = Ω  Expressing maxΩ in terms of the period of small-angle 

oscillations, this becomes 
2 2

max
2 22 (1 cos ) 2 (1 cos(0 400 rad)) 2 66 rad/s.

0 940 sT
π π⎛ ⎞ ⎛ ⎞Ω = − Θ = − . = .  ⎜ ⎟ ⎜ ⎟.⎝ ⎠ ⎝ ⎠

 

EVALUATE:   The time for the motion in part (b) is /4,t T=  so av / (0 400 rad)/(0 235 s)tθΩ = Δ Δ = . . =  
1 70 rad/s..  Ω  increases during the motion and the final Ω  is larger than the average .Ω  

 14.55. IDENTIFY:   Pendulum A can be treated as a simple pendulum. Pendulum B is a physical pendulum. 

SET UP:   For pendulum B the distance d from the axis to the center of gravity is 3 /4.L  21 ( /2)
3

I m L=  for 

a bar of mass m/2 and the axis at one end. For a small ball of mass m/2 at a distance L from the axis, 
2

ball ( /2) .I m L=  

EXECUTE:   Pendulum A: 2 .A
L

T
g

π=   

Pendulum B: 2 2 2
bar ball

1 2( /2) ( /2) .
3 3

I I I m L m L mL= + = + =  

22
3 2 4 82 2 2 2 0 943 .
(3 /4) 3 3 9B A
mLI L LT T

mgd mg L g g
π π π π

⎛ ⎞
= = = ⋅ = = .⎜ ⎟⎜ ⎟

⎝ ⎠
 The period is longer for 

pendulum A. 

EVALUATE:   Example 14.9 shows that for the bar alone, 2 0 816 .
3 A AT T T= = .  Adding the ball of equal 

mass to the end of the rod increases the period compared to that for the rod alone. 
 14.56. IDENTIFY:   The ornament is a physical pendulum: 2 /T I mgdπ=  (Eq.14.39). T is the target variable. 

SET UP:   25 /3,I MR=  the moment of inertia about an axis at the edge of the sphere. d is the distance from 
the axis to the center of gravity, which is at the center of the sphere, so .d R=  

EXECUTE:   22 5/3 / 2 5/3 0 050 m/(9 80m/s ) 0 58 s.T R gπ π= = . . = .  
EVALUATE:   A simple pendulum of length 0 050 mR = .  has period 0.45 s; the period of the physical 
pendulum is longer. 

 14.57. IDENTIFY:   Pendulum A can be treated as a simple pendulum. Pendulum B is a physical pendulum. Use 
the parallel-axis theorem to find the moment of inertia of the ball in B for an axis at the top of the string. 
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SET UP:   For pendulum B the center of gravity is at the center of the ball, so .d L=  For a solid sphere 
with an axis through its center, 22

cm 5 .I MR=  /2R L=  and 21
cm 10 .I ML=  

EXECUTE:   Pendulum A: 2 .A
LT
g

π=   

Pendulum B: The parallel-axis theorem says 2 211
cm 10 .I I ML ML= + =  

211 11 112 2 2 1 05 .
10 10 10 A A

I ML LT T T
mgd MgL g

π π π
⎛ ⎞

= = = = = .⎜ ⎟⎜ ⎟
⎝ ⎠

 It takes pendulum B longer to complete 

a swing. 
EVALUATE:   The center of the ball is the same distance from the top of the string for both pendulums, but 
the mass is distributed differently and I is larger for pendulum B, even though the masses are the same. 
 

 14.58. IDENTIFY:   The amplitude of swing decreases, indicating that potential energy has been lost. 
SET UP:   As shown in Figure 14.58, the height h above the lowest point of the swing is 

cos (1 cos ).h L L Lθ θ= − = −  The energy lost is the difference in the maximum potential energy. 
 

 

Figure 14.58 
 

EXECUTE:   (a) At the maximum angle of swing, 0K =  and .E mgh=  
2

1 1(1 cos ) (2.50 kg)(9.80 m/s )(1.45 m)(1 cos11 ) 0.653 J.E mgL θ= − = − ° =  
2

2 2(1 cos ) (2.50 kg)(9.80 m/s )(1.45 m)(1 cos 4.5 ) 0.110 J.E mgL θ= − = − ° =  The mechanical energy lost 
is 1 2 0.543 J.E E− =  
(b) The mechanical energy has been converted to other forms by air resistance and by dissipative forces 
within the rope. 
EVALUATE:   After a while the rock will come to rest and then all its initial mechanical energy will have 
been “lost” because it will have been converted to other forms of energy by nonconservative forces. 

 14.59. IDENTIFY and SET UP:   Use Eq. (14.43) to calculate ,ω′  and then /2 .f ω π′ = ′  

(a) EXECUTE:   
2

2 2
2

2 50 N/m (0 900 kg/s)( / ) ( /4 ) 2 47 rad/s
0 300 kg 4(0 300 kg)

k m b mω . .′ = − = − = .
. .

 

/2 (2 47 rad/s)/2 0 393 Hzf ω π π′ = ′ = . = .  

(b) IDENTIFY and SET UP:   The condition for critical damping is 2b km=  (Eq.14.44). 
EXECUTE:   2 (2 50 N/m)(0 300 kg) 1 73 kg/sb = . . = .  
EVALUATE:   The value of b in part (a) is less than the critical damping value found in part (b). With no 
damping, the frequency is 0 459 Hz;f = .  the damping reduces the oscillation frequency. 

 14.60. IDENTIFY:   From Eq. (14.42) 2 1 exp .
2
bA A t
m

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

SET UP:   ln( )xe x− = −  
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EXECUTE:   1

2

2 2(0 050 kg) 0 300 m ln ln 0 0220 kg/s.
(5 00 s) 0 100 m

m Ab
t A

⎛ ⎞ . .⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟. .⎝ ⎠⎝ ⎠
 

EVALUATE:   As a check, note that the oscillation frequency is the same as the undamped frequency to 
34 8 10 , so Eq  (14 42) is valid.−. × % . .  

 14.61. IDENTIFY:   ( )x t is given by Eq. (14.42). /xv dx dt=  and / .x xa dv dt=  

SET UP:   (cos )/ sin .d t dt tω ω ω′ = − ′ ′  (sin )/ cos .d t dt tω ω ω′ = ′ ′  ( )/ .t td e dt eα αα− −= −  
EXECUTE:   (a) With 0,φ =  (0) .x A=  

(b) ( /2 ) cos  sin ,
2

b m t
x

dx bv Ae t t
dt m

ω ω ω⎡ ⎤= = − ′ − ′ ′⎢ ⎥⎣ ⎦
 and at 0 /2 ;xt ,v Ab m=  = −  the graph of x versus t 

near 0t =  slopes down. 

(c) 
2

( /2 ) 2
2 cos  sin ,

24
b m tx

x
dv b ba Ae t t
dt mm

ωω ω ω− ⎡ ⎤⎛ ⎞ ′= = − ′ ′ + ′⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 and at 0,t =  

2 2
2

2 2 .
4 2x
b b ka A A

mm m
ω

⎛ ⎞ ⎛ ⎞
= − ′ = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (Note that this is 0 0( )/ )bv kx m− − .  This will be negative if 

2  zero if 2  and positive if 2 .b km, b km b km< =  >  The graph in the three cases will be curved down, 
not curved, or curved up, respectively. 
EVALUATE:   (0) 0xa =  corresponds to the situation of critical damping. 

 14.62. IDENTIFY:   The graph shows that the amplitude of vibration is decreasing, so the system must be losing 
mechanical energy. 
SET UP:   The mechanical energy is 2 21 1

2 2 .xE mv kx= +   

EXECUTE:   (a) When | |x  is a maximum and the tangent to the curve is horizontal the speed of the mass is 
zero. This occurs at 0,t =  1.0 s,t =  2.0 s,t =  3.0 st =  and 4.0 s.t =  

(b) At 0,t =  0xv =  and 7.0 cmx =  so 2 21 1
0 2 2 (225 N/m)(0.070 m) 0.55 J.E kx= = =  

(c) At 1.0 s,t =  0xv =  and 6.0 cmx = −  so 2 21 1
1 2 2 (225 N/m)( 0.060 m) 0.405 J.E kx= = − =  

At 4.0 s,t =  0xv =  and 3.0 cmx =  so 2 21 1
4 2 2 (225 N/m)(0.030 m) 0.101 J.E kx= = =  The mechanical 

energy “lost” is 1 4 0.30 J.E E− =  The mechanical energy lost was converted to other forms of energy by 
nonconservative forces, such as friction, air resistance and other dissipative forces. 
EVALUATE:   After a while the mass will come to rest and then all its initial mechanical energy will have 
been “lost” because it will have been converted to other forms of energy by nonconservative forces. 

 14.63. IDENTIFY and SET UP:   Apply Eq. (14.46): 

( )
max

22 2 2
d d

FA
k m bω ω

=
− +

 

EXECUTE:   (a) Consider the special case where 2
d 0,k mω− =  so max d/A F bω=  and max d/ .b F Aω=  Units 

of max

d

F
Aω

 are 
2

1
kg m/s kg/s.
(m)(s )−

⋅ =  For units consistency the units of b must be kg/s.  

(b) Units of :km  1/2 1/2 2 1/2 2 2 1/2[(N/m)kg] (N kg/m) [(kg m/s )(kg)/m] (kg /s ) kg/s,= = ⋅ = =  the same as 
the units for b. 
(c) For d /k mω =  (at resonance) max( / ) / .A F b m k=  

(i) 0 2b km= .  

max max
max

1 5 0 .
0 20 2

m F FA F
k k kkm

= = = .
..

 

(ii) 0 4b km= .  
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max max
max

1 2 5 .
0 40 4

m F FA F
k k kkm

= = = .
..

 

EVALUATE:   Both these results agree with what is shown in Figure 14.28 in the textbook. As b increases 
the maximum amplitude decreases. 

 14.64. IDENTIFY:   Apply Eq. (14.46). 
SET UP:   d /k mω =  corresponds to resonance, and in this case Eq. (14.46) reduces to max d/ .A F bω=  
EXECUTE:   (a) 1/3A  
(b) 12A  
EVALUATE:   Note that the resonance frequency is independent of the value of b. (See Figure 14.28 in the 
textbook). 

 14.65. IDENTIFY and SET UP:   Calculate x using Eq. (14.13). Use T to calculate ω  and 0x  to calculate .φ  
EXECUTE:   0x =  at 0t =  implies that /2 radφ π= ±  
Thus cos( /2).x A tω π= ±  

2 /T π ω=  so 2 / 2 /1 20 s 5 236 rad/sTω π π= = . = .  
(0 600 m)cos([5 236 rad/s][0 480 s] /2) 0 353 m.x π= . . . ± = + .  

The distance of the object from the equilibrium position is 0.353 m. 
EVALUATE:   The problem doesn't specify whether the object is moving in the x+  or -directionx− at 

0.t =  
 14.66. IDENTIFY:   Apply ( ) cos( )x t A tω φ= +  

SET UP:   x A=  at 0,t =  so 0.φ =  6 00 cm.A = .  2 2 20 9 rad/s,
0 300 sT

π πω = = = .
.

 so 

( ) (6 00 cm)cos)([20 9 rad/s] ).x t t= . .  
EXECUTE:   0t =  at 6 00 cm.x = .  1 50 cmx = − .  when 1 50 cm (6 00 cm)cos((20 9 rad/s) ).t− . = . .   

1 1.50 cmarccos 0.0872 s.
20.9 rad/s 6.00 cm

t
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 It takes 0.0872 s. 

EVALUATE:   It takes /4 0 075 st T= = .  to go from 6 00 cmx = .  to 0x =  and 0.150 s to go from 
6 00 cmx = + .  to 6 00 cm.x = − .  Our result is between these values, as it should be. 

 14.67. IDENTIFY:   xma kx= −  so 2
max

ka A A
m

ω= =  is the magnitude of the acceleration when .x A= ±  

max .kv A A
m

ω= =  .W KP
t t

Δ= =  

SET UP:   0.0500 m.A =  4500 rpm 471.24 rad/s.ω = =   

EXECUTE:   (a) 2 2 4 2
max (471.24 rad/s) (0.0500 m) 1.11 10  m/s .a Aω= = = ×  

(b) 4 2 3
max max (0.450 kg)(1.11 10  m/s ) 5.00 10  N.F ma= = × = ×  

(c) max (471.24 rad/s)(0.0500 m) 23.6 m/s.v Aω= = =  
2 21 1

max max2 2 (0.450 kg)(23.6 m/s) 125 J.K mv= = =  

(d) maxKP
t

=  and 2
,

4 4 2
T

t
π π
ω ω

= = =  so 

4max max max2 2(471.24 rad/s)(125 J)
3.75 10  W.

/2
K K K

P
t

ω
π ω π π

= = = = = ×  

(e) maxa is proportional to 2,ω  so maxF  increases by a factor of 4500/7000, to 41.21 10  N.×  maxv  is 
proportional to ,ω  so maxv  increases by a factor of 4500/7000, to 36.7 m/s, and maxK  increases by a 
factor of (7000/4500)2, to 302 J. In part (d), t decreases by a factor of 4500/7000 and K increases by a 
factor of (7000/4500)2, so maxP  increases by a factor of (7000/4500)3 and becomes 51.41 10  W.×  
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EVALUATE:   For a given amplitude, the maximum acceleration and maximum velocity increase when the 
frequency of the motion increases and the period decreases. 

 14.68. IDENTIFY:   2 .mT
k

π=  The period changes when the mass changes. 

SET UP:   M is the mass of the empty car and the mass of the loaded car is 250 kg. M =  

EXECUTE:   The period of the empty car is E 2 .MT
k

π=  The period of the loaded car is 

L
250 kg2 .MT
k

π +=  
2

4
2

(250 kg)(9.80 m/s ) 6.125 10  N/m
4.00 10  m

k −= = ×
×

 

2 2
4 3L 1.92 s250 kg (6.125 10  N/m) 250 kg 5.469 10  kg.

2 2
TM k
π π

⎛ ⎞ ⎛ ⎞= − = × − = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

3

E 4
5.469 10  kg2 1.88 s.

6.125 10  N/m
T π ×= =

×
 

EVALUATE:   When the mass decreases, the period decreases. 
 14.69. IDENTIFY and SET UP:   Use Eqs. (14.12), (14.21) and (14.22) to relate the various quantities to the 

amplitude. 
EXECUTE:   (a) 2 / ;T m kπ=  independent of A so period doesn’t change 

1/ ;f T=  doesn’t change 
2 ;fω π=  doesn’t change 

(b) 21
2E kA=  when .x A= ±  When A is halved E decreases by a factor of 4; 2 1/4.E E=  

(c) max 2v A fAω π= =  

max 1 12 ,,v fAπ= max 2 22,v fAπ=  (f doesn’t change) 

Since ( )1 1 1 1
2 1 max 2 1 1 max,1 max2 2 2 2, 2 2 ;,A A v f A fA v vπ π= = = =  is one-half as great 

(d) 2 2/xv k m A x= ± −  

1/4x A= ±  gives 2 2
1/ /16xv k m A A= ± −  

With the original amplitude 2 2
1 1 1 1/ /16 15/16( / )xv k m A A k m A= ± − = ±  

With the reduced amplitude 2 2 2 2
2 2 1 1 1 1/ /16 / ( /2) /16 3/16( / )xv k m A A k m A A k m A= ± − = ± − = ±  

1 2/ 15/3 5,x xv v = =  so 2 1/ 5;v v =  the speed at this x is 1/ 5  times as great. 

(e) 21
2 ;U kx=  same x so same U. 

21
2 ;xK mv=  21

1 12 xK mv=  
2 2 21 1 1 1

2 2 1 1 12 2 5 2( / 5) ( ) /5;x x xK mv m v mv K= = = =  1/5 times as great.  

EVALUATE:   Reducing A reduces the total energy but doesn’t affect the period and the frequency. 
14.70.  (a) IDENTIFY and SET UP:   Combine Eqs. (14.12) and (14.21) to relate xv  and x to T. 

EXECUTE:   2 /T m kπ=  
We are given information about xv  at a particular x. The expression relating these two quantities comes 

from conservation of energy: 2 2 21 1 1
2 2 2xmv kx kA+ =  

We can solve this equation for / ,m k  and then use that result to calculate T. 2 2 2( )xmv k A x= −  gives 
2 2 2 2(0.100 m) (0.060 m)

0.200 s.
0.400 m/sx

A xm
k v

− −
= = =  
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Then 2 / 2 (0.200 s) 1.26 s.T m kπ π= = =  
(b) IDENTIFY and SET UP:   We are asked to relate x and ,xv  so use conservation of energy equation: 

2 2 21 1 1
2 2 2xmv kx kA+ =  

2 2 2
xkx kA mv= −  

2 2 2 2 2( / ) (0.100 m) (0.200 s) (0.160 m/s) 0.0947 m.xx A m k v= − = − =  

EVALUATE:   Smaller xv  means larger x. 
(c) IDENTIFY:   If the slice doesn’t slip, the maximum acceleration of the plate (Eq.14.4) equals the 
maximum acceleration of the slice, which is determined by applying Newton’s second law to the slice. 
SET UP:   For the plate, xkx ma− =  and ( / ) .xa k m x= −  The maximum | |x  is A, so max ( / ) .a k m A=  If the 
carrot slice doesn’t slip then the static friction force must be able to give it this much acceleration. The 
free-body diagram for the carrot slice (mass m′ ) is given in Figure 14.70. 

 

 EXECUTE:   y yF ma=∑  
0n m g′− =  

n m g′=  

Figure 14.70  
 

 

F max x=∑  

sn m aμ ′=  

sm g m aμ ′ ′=  and sa gμ=  

But we require that max ( / ) sa a k m A gμ= = =  and 
2

2
1 0.100 m 0.255.

0.200 s 9.80 m/ss
k A
m g

μ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

EVALUATE:   We can write this as 2
s / .A gμ ω=  More friction is required if the frequency or the amplitude 

is increased. 
 14.71. IDENTIFY:   The largest downward acceleration the ball can have is g whereas the downward acceleration 

of the tray depends on the spring force. When the downward acceleration of the tray is greater than g, then 
the ball leaves the tray. ( ) cos( ).y t A tω φ= +  
SET UP:   The downward force exerted by the spring is ,F kd=  where d is the distance of the object above 

the equilibrium point. The downward acceleration of the tray has magnitude ,F kd
m m

=  where m is the total 

mass of the ball and tray. x A=  at 0,t =  so the phase angle φ  is zero and x+  is downward. 

EXECUTE:   (a) kd g
m

=  gives 
2(1 775 kg)(9 80 m/s ) 9 40 cm.

185 N/m
mgd
k

. .= = = .  This point is 9.40 cm above the 

equilibrium point so is 9 40 cm 15 0 cm 24 4 cm. + . = .  above point A. 

(b) 185 N/m 10 2 rad/s.
1 775 kg

k
m

ω = = = .
.

 The point in (a) is above the equilibrium point so 9 40 cm.x = − .  

cos( )x A tω= gives 9.40 cmarccos arccos 2.25 rad.
15.0 cm

xt
A

ω ⎛ ⎞−⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 2 25 rad 0 221 s.
10 2 rad/s

t .= = .
.

 

(c) 2 2 21 1 1
2 2 2kx mv kA+ =  gives 2 2 2 2185 N/m( ) ( 0 150 m 0 0940 m ) 1 19 m/s.

1 775 kg
kv A x
m

= − = [ . ] − [− . ] = .
.
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EVALUATE:   The period is 2 0 615 s.mT
k

π= = .  To go from the lowest point to the highest point takes 

time /2 0 308 s.T = .  The time in (b) is less than this, as it should be. 

 14.72. IDENTIFY:   In SHM, max
tot

.ka A
m

=  Apply m∑ =F a  to the top block. 

SET UP:   The maximum acceleration of the lower block can’t exceed the maximum acceleration that can 
be given to the other block by the friction force. 
EXECUTE:   For block m, the maximum friction force is s s s .f n mgμ μ= =  F max x∑ =  gives smg maμ =  

and s .a gμ=  Then treat both blocks together and consider their simple harmonic motion. 

max .ka A
M m

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 Set maxa a=  and solve for A: s
kg A

M m
μ ⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 and s ( ) .g M mA

k
μ +=  

EVALUATE:   If A is larger than this the spring gives the block with mass M a larger acceleration than 
friction can give the other block, and the first block accelerates out from underneath the other block. 

 14.73. IDENTIFY:   Apply conservation of linear momentum to the collision and conservation of energy to the 

motion after the collision. 1
2

kf
mπ

=  and 1 .T
f

=  

SET UP:   The object returns to the equilibrium position in time /2.T  
EXECUTE:   (a) Momentum conservation during the collision: 0 (2 ) .mv m V=  

0
1 1 (2.00 m s) 1.00 m s.
2 2

V v= = =  

Energy conservation after the collision: 2 21 1 .
2 2

MV kx=   

2 2(20.0 kg)(1.00 m/s)
   0.426 m (amplitude)

110.0 N/m
MVx

k
= = =  

2  / .f k Mω π= =  1 1 110.0 N/m/  0.373 Hz.
2 2 20.0 kg

f k M
π π

= = =  1 1 2.68 s.
0.373 Hz

T
f

= = =  

(b) It takes 1/2  period to first return: 1
2 (2.68 s) 1.34 s.=  

EVALUATE:   The total mechanical energy of the system determines the amplitude. The frequency and 
period depend only on the force constant of the spring and the mass that is attached to the spring. 

 14.74. IDENTIFY:   The upward acceleration of the rocket produces an effective downward acceleration for 
objects in its frame of reference that is equal to .g a g′ = +  
SET UP:   The amplitude is the maximum displacement from equilibrium and is unaffected by the motion 

of the rocket. The period is affected and is given by 2 .LT
g

π=
′

 

EXECUTE:   The amplitude is 8 50 .. °  2 2
1 10 m2 1 77 s.

4 00 m/s 9 80 m/s
T π .= = .

. + .
 

EVALUATE:   For a pendulum of the same length and with its point of support at rest relative to the earth, 

2 2 11 s.LT
g

π= = .  The upward acceleration decreases the period of the pendulum. If the rocket were 

instead accelerating downward, the period would be greater than 2.11 s. 
 14.75. IDENTIFY and SET UP:   The bounce frequency is given by Eq. (14.11) and the pendulum frequency by 

Eq. (14.33). Use the relation between these two frequencies that is specified in the problem to calculate the 
equilibrium length L of the spring, when the apple hangs at rest on the end of the spring. 

EXECUTE:   vertical SHM: b
1

2
kf
mπ

=  
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pendulum motion (small amplitude): p
1

2
gf
Lπ

=  

The problem specifies that 1
p b2 .f f=  

1 1 1
2 2 2

g k
L mπ π

=  

/ /4g L k m=  so 4 / 4 / 4(1 00 N)/1 50 N/m 2 67 mL gm k w k= = = . . = .  
EVALUATE:   This is the stretched length of the spring, its length when the apple is hanging from it. (Note: 
Small angle of swing means v is small as the apple passes through the lowest point, so rada  is small and 
the component of mg perpendicular to the spring is small. Thus the amount the spring is stretched changes 
very little as the apple swings back and forth.) 
IDENTIFY:   Use Newton’s second law to calculate the distance the spring is stretched from its unstretched 
length when the apple hangs from it. 
SET UP:   The free-body diagram for the apple hanging at rest on the end of the spring is given in 
Figure14.75. 

 

 EXECUTE:   y yF ma∑ =  
0k L mgΔ − =  

/ /L mg k w kΔ = = =  
1 00 N/1 50 N/m 0 667 m. . = .  

Figure 14.75  
 

 

Thus the unstretched length of the spring is 2 67 m 0 67 m 2 00 m.. − . = .  
EVALUATE:   The spring shortens to its unstretched length when the apple is removed. 

 14.76. IDENTIFY:   The vertical forces on the floating object must sum to zero. The buoyant force B applied to the 
object by the liquid is given by Archimedes’s principle. The motion is SHM if the net force on the object is 
of the form yF ky= −  and then 2 / .T m kπ=  
SET UP:   Take +y to be downward. 
EXECUTE:   (a) submerged ,V LA=  where L is the vertical distance from the surface of the liquid to the 

bottom of the object. Archimedes’ principle states ,gLA Mgρ =  so .ML
Aρ

=  

(b) The buoyant force is ( ) ,gA L y Mg Fρ + = +  where y is the additional distance the object moves 

downward. Using the result of part (a) and solving for y gives .
g
Fy

Aρ
=  

(c) The net force is net ( ) . ,F Mg gA L y gAy k gAρ ρ ρ= − + = − =  and the period of oscillation is 

2 2 .
g

M MT
k A

π π
ρ

= =  

EVALUATE:   The force F determines the amplitude of the motion but the period does not depend on how 
much force was applied. 

14.77.  IDENTIFY:   Apply the results of Problem 14.76. 
SET UP:   The additional force F applied to the buoy is the weight w = mg of the man. 

EXECUTE:   (a) 3 3 2
(70.0 kg)

0.107 m. 
(1.03 10 kg/m ) (0.450 m)

w mg m
y

gA gA Aρ ρ ρ π
= = = = =

×
 

(b) Note that in part (c) of Problem 14.76, M is the mass of the buoy, not the mass of the man, and A is the 
cross-section area of the buoy, not the amplitude. The period is then 
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3 3 2 2
(950 kg)

2 2.42 s 
(1.03 10  kg/m )(9.80 m/s ) (0.450 m)

T π
π

= =
×

 

EVALUATE:   The period is independent of the mass of the man. 
 14.78. IDENTIFY:   Tarzan on the swinging vine (with or without the chimp) is a simple pendulum. 

SET UP:   Tarzan first comes to rest after beginning his swing at the end of one-half of a cycle, so the 
period is 8.0 s.T =  Apply conservation of linear momentum to find the speed and kinetic energy of the 
system just after Tarzan has grabbed the chimp. The figure in the solution to Problem 14.58 shows that the 
height h above the lowest point of the swing is (1 cos ).h L θ= −  The period of a simple pendulum is 

2 .LT
g

π=  

EXECUTE:   (a) 2 LT
g

π=  so 
2 2

2 8.0 s(9.80 m/s ) 15.9 m.
2 2
TL g
π π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) 1 1 0.125 Hz.
8.0 s

f
T

= = =  The amplitude is 12 .°  

(c) Apply conservation of energy to find Tarzan’s speed just before he grabs the chimp: 1 2.U K=  
21

2(1 cos ) .mgL mvθ− =  22 (1 cos ) 2(9.80 m/s )(15.9 m)(1 cos12 ) 2.61 m/s.v gL θ= − = − ° =  Apply 

conservation of momentum to the inelastic collision between Tarzan and the chimp: 
(65 kg)(2.61 m/s) (65 kg 35 kg)V= +  gives 1.70 m/s.V =  Apply conservation of energy to find the 

maximum angle of swing after the collision: 21
tot tot2 (1 cos )m V m gL θ= −  Solving for θ  gives 

2 2

2
(1.70 m/s)1 cos 0.00927

2 2(9.80 m/s )(15.9 m)
V
gL

θ− = = =  so 7.8 .θ = °  1 .
2

gf
Lπ

=  The length doesn’t change 

so f  remains 0.125 Hz. f doesn’t depend on the mass or on the amplitude of swing. 
EVALUATE:   Since the amplitude of swing is fairly small, we can use the small-angle approximation for 
which the period is independent of the amplitude. If the angle of swing were a bit larger, this 
approximation would not be valid. 

 14.79. IDENTIFY:   The object oscillates as a physical pendulum, so object1 .
2

m gd
f

Iπ
=  Use the parallel-axis 

theorem, 2
cm ,I I Md= +  to find the moment of inertia of each stick about an axis at the hook. 

SET UP:   The center of mass of the square object is at its geometrical center, so its distance from the hook 
is cos45 / 2.L L° =  The center of mass of each stick is at its geometrical center. For each stick, 

21
cm 12 .I mL=  

EXECUTE:   The parallel-axis theorem gives I for each stick for an axis at the center of the square to be 

( )22 21 1
12 3/2mL m L mL+ =  and the total I for this axis is 24

3 .mL  For the entire object and an axis at the 

hook, applying the parallel-axis theorem again to the object of mass 4m gives 
2 2 2104

3 34 ( / 2) .I mL m L mL= + =  

object object
210

object3

4 / 21 1 6 1 1
0 921 .

2 2 2 25 2

m gd m gL g g
f

I L Lm Lπ π π π
⎛ ⎞ ⎛ ⎞

= = = = .⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

EVALUATE:   Just as for a simple pendulum, the frequency is independent of the mass. A simple pendulum 

of length L has frequency 1
2

gf
Lπ

=  and this object has a frequency that is slightly less than this. 

 14.80. IDENTIFY:   Conservation of energy says .K U E+ =  

SET UP:   21
2U kx=  and 21

max 2 .E U kA= =  
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EXECUTE:   (a) The graph is given in Figure 14.80. The following answers are found algebraically, to be 
used as a check on the graphical method. 

(b) 2 2(0 200 J) 0 200 m.
(10 0 N/m)

EA
k

.= = = .
.

 

(c) 0 050 J.
4
E

= .  

(d) 
1

.
2

U E=  0 141 m.
2

Ax = = .  

(e) From Eq. (14.18), using 0 0
0 0

2 2and ,K Uv xm k= = −  00 0

0 00

(2 / )
0 429

( / ) (2 / )
K mv K

x Uk m U kω
− = = = .  

and arctan( 0 429) 3.72 rad.φ = . =  

EVALUATE:   The dependence of U on x is not linear and 1
max2U U=  does not occur at 1

max2 .x x=  
 

 

Figure 14.80 
 

 14.81. IDENTIFY:   2 mT
k

π=  so the period changes because the mass changes. 

SET UP:   32 00 10  kg/s.dm
dt

−= − . ×  The rate of change of the period is .dT
dt

 

EXECUTE:   (a) When the bucket is half full, 7 00 kg.m = .  
7 00 kg

2 1 49 s.
125 N/m

T π .
= = .  

(b) 1/2 1/21
2

2 2( ) .dT d dm dmm m
dt dt dt dtk k mk

π π π−= = =   

3 4( 2 00 10  kg/s) 2 12 10  s per s.
(7 00 kg)(125 N/m)

dT
dt

π − −= − . × = − . ×
.

 .dT
dt

 is negative; the period is 

getting shorter. 
(c) The shortest period is when all the water has leaked out and 2 00 kg.m = .  Then 0 795 s.T = .  
EVALUATE:   The rate at which the period changes is not constant but instead increases in time, even 
though the rate at which the water flows out is constant. 

 14.82. IDENTIFY:   Use xF kx= −  to determine k for the wire. Then 1 .
2

kf
mπ

=  

SET UP:   F mg=  moves the end of the wire a distance .lΔ  
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EXECUTE:   The force constant for this wire is ,
mg

k
l

=
Δ

 so 

2

3
1 1 1 9 80m/s 11 1 Hz.

2 2 2 2 00 ×10 m
k gf
m lπ π π −

.= = = = .
Δ .

 

EVALUATE:   The frequency is independent of the additional distance the ball is pulled downward, so long 
as that distance is small. 

 14.83. IDENTIFY and SET UP:   Measure x from the equilibrium position of the object, where the gravity and 
spring forces balance. Let x+  be downward. 
(a) Use conservation of energy (Eq.14.21) to relate xv  and x. Use Eq. (14.21) to relate T to k/m. 

EXECUTE:   2 2 21 1 1
2 2 2xmv kx kA+ =  

For 2 21 1
2 20, xx mv kA= =  and / ,v A k m=  just as for horizontal SHM. We can use the period to calculate 

/ : 2 /k m T m kπ=  implies / 2 / .k m Tπ=  Thus 2 / 2 (0 100 m)/4 20 s 0 150 m/s.v A Tπ π= = . . = .  
(b) IDENTIFY and SET UP:   Use Eq. (14.4) to relate xa  and x. 
EXECUTE:    so /x xma kx a k m x= − = − ( )  
+x-direction is downward, so here 0 050 mx = − .  

2 2 2(2 / ) ( 0 050 m) (2 /4 20 s) (0 050 m) 0 112 m/sxa Tπ π= − − . = + . . = .  (positive, so direction is downward) 
(c) IDENTIFY and SET UP:   Use Eq. (14.13) to relate x and t. The time asked for is twice the time it takes 
to go from 0x =  to 0 050 mx = + . .  
EXECUTE:   ( ) cos( )x t A tω φ= +  
Let /2  so 0 at 0., x tφ π= − = =  Then cos( /2) sin sin(2 / ).x A t A t A t Tω π ω π= − = =  Find the time t that 
gives 0 050 m:x = + .  0 050 m (0 100 m) sin(2 / )t Tπ. = .  
2 / arcsin(0 50) /6 and /12 4 20 s/12 0 350 st T t Tπ π= . = = = . = .  
The time asked for in the problem is twice this, 0.700 s. 
(d) IDENTIFY:   The problem is asking for the distance d that the spring stretches when the object hangs at 
rest from it. Apply Newton’s second law to the object. 
SET UP:   The free-body diagram for the object is given in Figure 14.83. 

 

 EXECUTE:   F max x∑ =  

0mg kd− =  
( / )d m k g=  

Figure 14.83   
 

But / 2 /k m Tπ=  (part (a)) and 2/ ( /2 )m k T π=  
2 2

24 20 s
(9 80 m/s ) 4 38 m.

2 2
T

d g
π π

.⎛ ⎞ ⎛ ⎞= = . = .⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

EVALUATE:   When the displacement is upward (part (b)), the acceleration is downward. The mass of the 
partridge is never entered into the calculation. We used just the ratio k/m, that is determined from T. 

 14.84. IDENTIFY:   ( ) cos( ),x t A tω φ= +  sin( )xv A tω ω φ= − +  and 2 .xa xω= −  2 / .Tω π=  
SET UP:   x A=  when 0t =  gives 0.φ =  

EXECUTE:   2(0 240 m)cos .
1 50 s

tx π⎛ ⎞= . ⎜ ⎟⎝ ⎠.
 2 (0 240 m) 2 2sin (1 00530 m/s)sin .

(1 50 s) 1 50 s 1 50 sx
t tv π π π⎛ ⎞. ⎛ ⎞ ⎛ ⎞= − = − .  ⎜ ⎟ ⎜ ⎟ ⎜ ⎟. . .⎝ ⎠ ⎝ ⎠⎝ ⎠

 

2
22 2 2(0 240 m)cos (4 2110 m/s )cos .

1 50 s 1 50 s 1 50 sx
t ta π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − . = − .  ⎜ ⎟ ⎜ ⎟ ⎜ ⎟. . .⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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(a) Substitution gives 0 120 m,x = − .  or using 
3
Tt =  gives cos 120 .

2
Ax A −= ° =  

(b) Substitution gives 2 2(0 0200 kg)(2 106 m/s ) 4 21 10  N, in the -direction.xma x−= + . .  = . × +  

(c) 3 /4 arccos 0 577 s.
2
T At

Aπ
−⎛ ⎞= = .⎜ ⎟

⎝ ⎠
 

(d) Using the time found in part (c), 0 665 m/s.v = .  
EVALUATE:   We could also calculate the speed in part (d) from the conservation of energy expression, 
Eq. (14.22). 

 14.85. IDENTIFY:   Apply conservation of linear momentum to the collision between the steak and the pan. Then 
apply conservation of energy to the motion after the collision to find the amplitude of the subsequent SHM. 
Use Eq. (14.12) to calculate the period. 
(a) SET UP:   First find the speed of the steak just before it strikes the pan. Use a coordinate system with 

y+  downward. 

0 0yv = (released from the rest); 2
0 0 40 m; 9 80 m/s ;yy y a− = . = + .  ?yv =  

2 2
0 02 ( )y yyv v a y y= + −  

EXECUTE:   2
02 ( ) 2(9 80 m/s )(0 40 m) 2 80 m/sy yv a y y= + − = + . . = + .  

SET UP:   Apply conservation of momentum to the collision between the steak and the pan. After the 
collision the steak and the pan are moving together with common velocity 2.v  Let A be the steak and B be 
the pan. The system before and after the collision is shown in Figure 14.85. 

 

 

Figure 14.85 
 

EXECUTE:   yP  conserved: 1 1 2( )A A y B B y A B ym v m v m m v+ = +  

1 2( )A A A Bm v m m v= +  

2 1
2 2 kg (2 80 m/s) 2 57 m/s

2 2 kg 0 20 kg
A

A
A B

mv v
m m

⎛ ⎞ ⎛ ⎞.= = . = .⎜ ⎟⎜ ⎟+ ⎝ . + . ⎠⎝ ⎠
 

(b) SET UP:   Conservation of energy applied to the SHM gives: 2 2 21 1 1
0 02 2 2mv kx kA+ =  where 0v  and 0x  

are the initial speed and displacement of the object and where the displacement is measured from the 
equilibrium position of the object. 
EXECUTE:   The weight of the steak will stretch the spring an additional distance d given by kd mg=  so 

2(2 2 kg)(9 80 m/s ) 0 0539 m.
400 N/m

mgd
k

. . = = = .  So just after the steak hits the pan, before the pan has had time 

to move, the steak plus pan is 0.0539 m above the equilibrium position of the combined object. Thus  
0 0 0539 m.x = .  From part (a) 0 2 57 m/s,v = .  the speed of the combined object just after the collision. 

Then 2 2 21 1 1
0 02 2 2mv kx kA+ =  gives 

2 2 2 2
0 0 2 4 kg(2 57 m/s) (400 N/m)(0 0539 m) 0 21 m

400 N/m
mv kxA

k
+ . . + .= = = .  

(c) 2 4 kg2 / 2 0 49 s
400 N/m

T m kπ π .= = = .  
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EVALUATE:   The amplitude is less than the initial height of the steak above the pan because mechanical 
energy is lost in the inelastic collision. 

 14.86. IDENTIFY:   1 .
2

kf
mπ

=  Use energy considerations to find the new amplitude. 

SET UP:   1
20 600 Hz, 400 kg;   gives 5685 N/m.kf m f k

mπ= . = = =  This is the effective force constant 

of the two springs. 
(a) After the gravel sack falls off, the remaining mass attached to the springs is 225 kg. The force constant of the 
springs is unaffected, so 0 800 Hz.f = .  To find the new amplitude use energy considerations to find the distance 
downward that the beam travels after the gravel falls off.  Before the sack falls off, the amount 0x  that the spring is 

stretched at equilibrium is given by 2
0 0so / (400 kg)(9 80 m/s )/(5685 N/m) 0 6895 m.mg kx , x mg k− = = . = .  

The maximum upward displacement of the beam is 0 400 mA = .  above this point, so at this point the 
spring is stretched 0.2895 m. With the new mass, the mass 225 kg of the beam alone, at equilibrium the 
spring is stretched 2/ (225 kg)(9 80 m/s )/(5685 N/m) 0 3879 m.mg k = . = .  The new amplitude is therefore 
0 3879 m 0 2895 m 0 098 m.. − . = .  The beam moves 0.098 m above and below the new equilibrium 
position. Energy calculations show that 0v =  when the beam is 0.098 m above and below the equilibrium 
point. 
(b) The remaining mass and the spring constant is the same in part (a), so the new frequency is again 
0 800 Hz..  The sack falls off when the spring is stretched 0.6895 m. And the speed of the beam at this 
point is /v A k m= =  (5685 N/m)/(400 kg) 1 508 m/s.= .  Take 0y =  at this point. The total energy of 

the beam at this point, just after the sack falls off, is 21
el grav 2 (225 kg)(1 508 m/s)E K U U= + + = . +  

21
2 (5685 N/m)(0 6895 m) 0 1608 J.. + =  Let this be point 1. Let point 2 be where the beam has moved 

upward a distance d and where 0.v =  21
2 1 22 (0 6895 m )   E k d mgd E E= . − + . =  gives 0 7275 m.d = .  At 

this end point of motion the spring is compressed 0.7275 m – 0.6895 m 0.0380 m.=  At the new equilibrium 
position the spring is stretched 0.3879 m, so the new amplitude is 0.3879 m 0.0380 m 0.426 m.+ =  Energy 
calculations show that v  is also zero when the beam is 0.426 m below the equilibrium position. 
EVALUATE:   The new frequency is independent of the point in the motion at which the bag falls off. The 
new amplitude is smaller than the original amplitude when the sack falls off at the maximum upward 
displacement of the beam. The new amplitude is larger than the original amplitude when the sack falls off 
when the beam has maximum speed. 

 14.87. IDENTIFY and SET UP:   Use Eq. (14.12) to calculate g and use Eq. (14.4) applied to Newtonia to relate g 
to the mass of the planet. 
EXECUTE:   The pendulum swings through 1

2  cycle in 1.42 s, so 2.84 s.T =  1.85 m.L =  Use T to find g: 
2 22 /  so (2 / ) 9 055 m/sT L g g L Tπ π= = = .  

Use g to find the mass pM  of Newtonia: 2
p p/g GM R=  

7 6
p p2 5 14 10  m, so 8 18 10  mR Rπ = . × = . ×  

2
p 24

p 9 08 10  kg
gR

m
G

= = . ×  

EVALUATE:   g is similar to that at the surface of the earth. The radius of Newtonia is a little less than 
earth’s radius and its mass is a little more. 

 14.88. IDENTIFY:   xF kx= −  allows us to calculate k. 2 / .T m kπ=  ( ) cos( ).x t A tω φ= +  net .F kx= −  
SET UP:   Let /2φ π=  so ( ) sin( ).x t A tω=  At 0,t =  0x =  and the object is moving downward. When the 
object is below the equilibrium position, springF  is upward. 

EXECUTE:   (a) Solving Eq. (14.12) for ,m  and using F
k

l
=

Δ
 



14-28   Chapter 14 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

2 21.00 s 40 0 N 4 05 kg.
2 2 0 250 m
T Fm

lπ π
.⎛ ⎞ ⎛ ⎞= = = .⎜ ⎟ ⎜ ⎟Δ .⎝ ⎠ ⎝ ⎠

 

(b) (0 35)  and so sin[2 (0 35)] 0 0405 m  Since /4,t T, x A t Tπ= . = − . = − . . >  the mass has already passed the 
lowest point of its motion, and is on the way up.  
(c) Taking upward forces to be positive, spring where F mg kx, x− = −  is the displacement from equilibrium, 

so 2
spring (160 N/m)( 0 030 m) (4 05  kg)(9 80 m/s ) 44 5 N.F = − − . + . . = .  

EVALUATE:   When the object is below the equilibrium position the net force is upward and the upward 
spring force is larger in magnitude than the downward weight of the object. 

 14.89. IDENTIFY:   Use Eq. (14.13) to relate x and t.  3.5 s.T =   
SET UP:   The motion of the raft is sketched in Figure 14.89. 

 

 Let the raft be at x A= +  when 0.t =  
Then 0φ =  and ( ) cos .x t A tω=  

Figure 14.89   
 

EXECUTE:    Calculate the time it takes the raft to move from 0 200 m to x A x= + = + . =  
0 100 m 0 100 m.A − . = .  

Write the equation for x(t) in terms of T rather than :ω 2 /Tω π=  gives that ( ) cos(2 / )x t A t Tπ=  
x A=  at 0t =  

0 100x = .  m implies 0.100 m (0 200 m) cos(2 / )t Tπ= .  
cos (2 / ) 0 500 so 2 / arccos(0 500) 1 047t T t Tπ π= . = . = .  rad 

( /2 )(1 047 rad) (3 5 s/2 )(1 047 rad) 0 583 st T π π= . = . . = .  
This is the time for the raft to move down from 0 200x = .  m to 0.100x =  m. But people can also get off 
while the raft is moving up from 0 100x = .  m to 0 200x = .  m, so during each period of the motion the 
time the people have to get off is 2 2(0 583 s) 1 17 s.t = . = .   
EVALUATE:   The time to go from 0x =  to x A=  and return is /2 1 75 s.T = .  The time to go from /2x A=  
to A and return is less than this. 

 14.90. IDENTIFY:   2 /T π ω= . ( )rF r kr= −  to determine k. 

SET UP:   Example 13.10 derives E
3
E

( ) .r
GM mF r r

R
= −  

EXECUTE:    /r ra F m=  is in the form of Eq. (14.8), with x replaced by r, so the motion is simple 

harmonic. E
3
E

.GM mk
R

=  2 E
3

EE
.k GM g

m RR
ω = = =  The period is then 

6
E

2
2 6 38 10  m2 2 5070 s,

9 80 m/s
RT
g

π π π
ω

. ×= = = =
.

 or 84.5 min. 

EVALUATE:   The period is independent of the mass of the object but does depend on E,R  which is also 
the amplitude of the motion. 

 14.91. IDENTIFY:   During the collision, linear momentum is conserved. After the collision, mechanical energy is 
conserved and the motion is SHM. 
SET UP:   The linear momentum is ,x xp mv=  the kinetic energy is 21

2 ,mv  and the potential energy is 

21
2 .kx  The period is 2 ,mT

k
π=  which is the target variable. 
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EXECUTE:   Apply conservation of linear momentum to the collision: 
3(8.00 10  kg)(280 m/s) (1.00 kg) .v−× =  2.24 m/s.v =  This is maxv  for the SHM. 0.180 mA =  (given). 

So 2 21 1 .max2 2
mv kA=  

2 2
max 2.24 m/s (1.00 kg) 154.9 N/m.

0.180 m
vk m

A
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

1.00 kg2 2 0.505 s.
154.9 N/m

mT
k

π π= = =  

EVALUATE:   This block would weigh about 2 pounds, which is rather heavy, but the spring constant is 
large enough to keep the period within an easily observable range. 

 14.92. IDENTIFY:   0
0

( ) ( ) .
x

xx
U x U x F dx− = ∫  In part (b) follow the steps outlined in the hint. 

SET UP:   In part (a), let 0 0x =  and 0( ) (0) 0.U x U= =  The time for the object to go from 0x =  to x A=  
is /4.T  

EXECUTE:   (a) 3 4
0 0

.
4

x x
x

cU F dx c x dx x= − = =∫ ∫  

(b) From conservation of energy, 2 4 41
2 ( ).

4x
cmv A x= −  ,x

dxv
dt

=  so 
4 4

.
2

dx c dt
mA x

=
−

 Integrating from 

0  to A  with respect to x  and from 0  to /4T  with respect to t, 
0 4 4

.
2 4

A dx c T
mA x

=
−

∫  To use the hint, 

let ,xu
A

=  so that dx A du=   and the upper limit of the u-integral is 1.u =  Factoring 2A  out of the square 

root, 
1

0 4

1 1 31 ,
321

du c T
A A mu

.= =
−

∫  which may be expressed as 7.41 .mT
A c

=  

(c) The period does depend on amplitude, and the motion is not simple harmonic. 
EVALUATE:   Simple harmonic motion requires ,xF kx= −  where k is a constant, and that is not the case 
here. 

 14.93. IDENTIFY:   / .rF dU dr= −  The equilibrium separation eqr  is given by eq( ) 0.F r =  The force constant k is 

defined by .rF kx= −  1 ,
2

kf
mπ

=  where m is the reduced mass. 

SET UP:   ( 1)( )/ ,n nd r dr nr− − += −  for 1.n ≥  

EXECUTE:   (a) 
7
0
9 2

1
.r

RdU
F

dr r r
Α
⎡ ⎤⎛ ⎞

= − = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

(b) Setting the above expression for rF  equal to zero, the term in square brackets vanishes, so that 
7
0
9 2
eq eq

1 ,R
r r

=  or 7 7
0 eq ,R r=  and eq 0.r R=  

(c) 19
0

0

7( ) 7 57 10  J.
8

AU R
R

−= − = − . ×  

(d) The above expression for rF  can be expressed as  
9 2

9 2
0 02 2

0 00 0
(1 ( / )) (1 ( / ))r

A r r AF x R x R
R RR R

− −
− −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤⎢ ⎥= − = + − +⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

0 0 02 2 3
0 0 0

7[(1 9( / )) (1 2( / ))] ( 7 / ) .r
A A AF x R x R x R x

R R R

⎛ ⎞
≈ − − − = −  = −⎜ ⎟⎜ ⎟

⎝ ⎠
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(e) 12
3
0

1 1 7
/ 8 39 10 Hz.

2 2
A

f k m
R mπ π

= = = . ×  

EVALUATE:   The force constant depends on the parameters A and 0R  in the expression for ( ).U r  The 
minus sign in the expression in part (d) shows that for small displacements from equilibrium, rF  is a 
restoring force. 

 14.94. IDENTIFY:   Newton’s second law, in both its linear and rotational form, applies to this system. The motion is SHM. 

SET UP:   cmF ma∑ =  and ,Iτ α∑ =  where 22
5

I MR=  for a solid sphere, and cmR aα =  with no 

slipping. 

EXECUTE:   For each sphere, 2
s

2 .
5

f R MR α⎛ ⎞= ⎜ ⎟
⎝ ⎠

 cm.R aα =  s cm
2 .
5

f Ma=  For the system of two spheres, 

s cm2 2 .f kx Ma− = −  cm cm
4 2 .
5

Ma kx Ma− = −  cm
14
5

kx Ma=  and cm
5 .

14
ka x
M

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 5 .
14x

ka x
M

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 

2
xa xω= −  so 5 .

14
k
M

ω =  2 14 14(0.800 kg)2 2 0.743 s.
5 5(160 N/m)
MT
k

π π π
ω

= = = =  

EVALUATE:   If the surface were smooth, there would be no rolling, but the presence of friction provides 
the torque to cause the spheres to rotate. 

 14.95. IDENTIFY:   Apply conservation of energy to the motion before and after the collision. Apply conservation 
of linear momentum to the collision. After the collision the system moves as a simple pendulum. If the 

maximum angular displacement is small, 1 .
2

gf
Lπ

=  

SET UP:   In the motion before and after the collision there is energy conversion between gravitational 
potential energy ,mgh  where h is the height above the lowest point in the motion, and kinetic energy. 

EXECUTE:   Energy conservation during downward swing: 21
2 0 22m gh m v=  and 

2
02 2(9 8 m/s )(0 100 m) 1 40 m/s.v gh=  = . . = .  

Momentum conservation during collision: 2 2 3( )m v m m V= + and 

2

2 3

(2 00 kg)(1 40 m/s) 0 560 m/s.
5 00 kg

m vV
m m

. .= = = .
+ .

 

Energy conservation during upward swing: 2
f

1
2

Mgh MV= and 

2
2

f 2
(0 560 m/s)/2 0 0160 m 1 60 cm.
2(9 80 m/s )

h V g .= = = . = .
.

 

Figure 14.95 shows how the maximum angular displacement is calculated from fh . 48 4 cmcos
50 0 cm

θ .=
.

 and 

14 5 .θ = . °  
21 1 9 80 m/s 0 705 Hz.

2 2 0 500 m
gf
lπ π

.= = = .
.

 

EVALUATE:   14 5 0 253 rad.. ° = .  sin(0 253 rad) 0 250.. = .  sinθ θ≈  and Eq. (14.34) is accurate. 
 

 

Figure 14.95 
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 14.96. IDENTIFY:   2 /T I mgdπ=  

SET UP:   The model for the leg is sketched in Figure 14.96. 2 / , 3 .T I mgd m Mπ=  =  

1 1 2 2
cg

1 2
.m y m yd y

m m
+= =
+

 For a rod with the axis at one end, 21
3 .I ML=  For a rod with the axis at its center, 

21
12 .I ML=   

EXECUTE:   2 ([1 55 m]/2) (1 55 m (1 55 m)/2) 1 292 m.
3

M Md
M

. + . + .= = .  1 2.I I I+ +  

2 21
1 3 (2 )(1 55 m) (1 602 m ) .I M M= . = .  21

2,cm 12 (1 55 m) .I M= .  The parallel-axis theorem (Eq. 9.19) gives 
2 2

2 2,cm (1 55 m [1 55 m]/2) (5 606 m ) .I I M M= + . + . = .  2
1 2 (7 208 m ) .I I I M= + = .  Then 

2

2
(7 208 m )2 / 2 2 74 s.

(3 )(9 80 m/s )(1 292 m)
MT I mgd

M
π π .= = = .

. .
 

EVALUATE:   This is a little smaller than 2 9 sT = .  found in Example 14.10. 
 

 

Figure 14.96 
 

 14.97. IDENTIFY:   The motion is simple harmonic if the equation of motion for the angular oscillations is of the 

form 
2

2 ,d
Idt

θ κ θ= −  and in this case the period is 2 / .T Iπ κ=  

SET UP:   For a slender rod pivoted about its center, 21
12 .I ML=  

EXECUTE:   The torque on the rod about the pivot is .
2 2
L Lkτ θ⎛ ⎞= −⎜ ⎟⎝ ⎠

 
2

2
dI I
dt

θτ α= =  gives 

2 2

2
/4 3 .d L kk

I Mdt
θ θ θ= − = −  

2

2
d
dt

θ  is proportional to θ  and the motion is angular SHM. 
3

,
k

I M
κ

=  

2 .
3
MT
k

π=  

EVALUATE:   The expression we used for the torque, ,
2 2
L Lkτ θ⎛ ⎞= ⎜ ⎟

⎝ ⎠
-  is valid only when θ  is small 

enough for sinθ θ≈ and cos 1.θ ≈  
 14.98. IDENTIFY and SET UP:   Eq. (14.39) gives the period for the bell and Eq. (14.34) gives the period for the 

clapper. 
EXECUTE:   The bell swings as a physical pendulum so its period of oscillation is given by 

2 22 / 2 18 0 kg m /(34 0 kg)(9 80 m/s )(0 60 m) 1 885 s.T I mgdπ π= = . ⋅ . . . = .   

The clapper is a simple pendulum so its period is given by 2 / .T L gπ=  

Thus 2 2 2( /2 ) (9 80 m/s )(1 885 s/2 ) 0 88 m.L g T π π= = . . = .  
EVALUATE:   If the cm of the bell were at the geometrical center of the bell, the bell would extend 1.20 m 
from the pivot, so the clapper is well inside tbe bell. 
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 14.99. IDENTIFY:   The object oscillates as a physical pendulum, with 
1

,
2

mgd
f

Iπ
=  where m is the total mass 

of the object. 
SET UP:   The moment of inertia about the pivot is 2 22(1/3) (2/3) ,ML ML=   and the center of gravity when 

balanced is a distance /(2 2)d L= below the pivot. 

EXECUTE:   The frequency is 1 1 6 1 6 .
2 44 2 2

g gf
T L Lπ π

= = =  

EVALUATE:   If sp
1

2
gf
Lπ

=  is the frequency for a simple pendulum of length L, 

sp sp
1 6 1 03 .
2 2

f f f= = .  

14.100. IDENTIFY:   The angular frequency is given by Eq. (14.38). Use the parallel-axis theorem to calculate I 
in terms of x. 
(a) SET UP:    

 

 

Figure 14.100   
 

,d x=  the distance from the cg of the object (which is at its geometrical center) to the pivot 
EXECUTE:   I is the moment of inertia about the axis of rotation through O. By the parallel axis theorem 

2
0 cm.I md I= + 21

cm 12I mL=  (Table 9.2), so 2 21
0 12 .I mx mL= +  2 2 2 21

12

.
/12

mgx gx
mx mL x L

ω = =
+ +

 

(b) The maximum ω  as x varies occurs when / 0.d dxω =  0d
dx
ω =  gives 

1/2

2 2 1/2
0.

( /12)

d xg
dx x L

⎛ ⎞
=⎜ ⎟

⎜ ⎟+⎝ ⎠
 

1/21
1/22

2 2 1/2 2 2 3/2
1 2 ( ) 0
2( /12) ( /12)

x x x
x L x L

−

− =
+ +

 

3/2
1/2

2 2
2 0

/12
xx

x L
− − =

+
 

2 2 2/12 2x L x+ =  so / 12.x L=  Get maximum ω when the pivot is a distance / 12L  above the center of 
the rod. 
(c) To answer this question we need an expression for max:ω  

In 2 2 /12
gx

x L
ω =

+
 substitute / 12.x L=  

1/2 1/4
1/4 1/2 1/4

max 2 2 1/2
( / 12) (12) / (12) (6) / (3)

/12 /12 ( /6)
g L g g L g L

L L L
ω

−
−= = = =

+
 

2
max ( / ) 3g Lω =  and 2

max3/L g ω=  

max 2  rad/sω π=  gives 
2

2
(9 80 m/s ) 3 0 430 m.

(2  rad/s)
L

π
.= = .  
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EVALUATE:   0ω →  as 0x →  and 3 /(2 ) 1 225 /g L g Lω → = .  when /2.x L→  maxω  is greater than 

the /2x L=  value. A simple pendulum has / ;g Lω =  maxω  is greater than this. 
14.101. IDENTIFY:   In each situation, imagine the mass moves a distance ,xΔ  the springs move distances 1xΔ  and 

2,xΔ  with forces 1 1 1 2 2 2, .F k x F k x= − Δ  = − Δ  
SET UP:   Let 1xΔ  and 2xΔ  be positive if the springs are stretched, negative if compressed. 
EXECUTE:   (a) 1 2 1 2 1 2 eff 1 2, ,  so .x x x F F F k k x k k kΔ = Δ = Δ  = + = − + Δ = +( )  
(b) Despite the orientation of the springs, and the fact that one will be compressed when the other is 
extended, 1 2x x xΔ = Δ − Δ and both spring forces are in the same direction. The above result is still valid; 

eff 1 2.k k k= +  
(c) For massless springs, the force on the block must be equal to the tension in any point of the spring 

combination, and 1 2.F F F= =  1 2
1 2

, ,F Fx x
k k

Δ = − Δ == −  1 2

1 2 1 2

1 1 k kx F F
k k k k

⎛ ⎞ +Δ = − +  = −⎜ ⎟
⎝ ⎠

and 

1 2
eff

1 2
.k kk

k k
=

+
  

(d) The result of part (c) shows that when a spring is cut in half, the effective spring constant doubles, and 
so the frequency increases by a factor of 2.  
EVALUATE:   In cases (a) and (b) the effective force constant is greater than either 1k  or 2k  and in case (c) 
it is less. 

14.102. IDENTIFY:   Calculate netF  and define effk  by net eff .F k x= −  eff2 / .T m kπ=  

SET UP:   If the elongations of the springs are 1x  and 2,x  they must satisfy 1 2 0 200 m.x x+ = .  
EXECUTE:   (a) The net force on the block at equilibrium is zero, and so 1 1 2 2k x k x=  and one spring (the 
one with 1 2 00 N/m)k = .  must be stretched three times as much as the one with 2 6 00 /m.k = .  Ν  The sum 
of the elongations is 0.200 m, and so one spring stretches 0.150 m and the other stretches 0.050 m, and so 
the equilibrium lengths are 0.350 m and 0.250 m. 
(b) When the block is displaced a distance x to the right, the net force on the block is 

1 1 2 2 1 1 2 2 1 2( ) ( ) [ ] ( ) .k x x k x x k x k x k k x− + + − = − − − +  From the result of part (a), the term in square brackets 
is zero, and so the net force is 1 2( ) ,k k x− +  the effective spring constant is eff 1 2k k k= +  and the period of 

vibration is 0.100 kg2 0 702 s.
8.00 N/m

T π= = .  

EVALUATE:   The motion is the same as if the block were attached to a single spring that has force 
constant eff .k  

14.103. IDENTIFY:   Follow the procedure specified in the hint. 
SET UP:   Denote the position of a piece of the spring by ;  0l l =  is the fixed point and l L=  is the 

moving end of the spring. Then the velocity of the point corresponding to ,l  denoted   is ( ) lu, u l v
L

=  

(when the spring is moving, l will be a function of time, and so u  is an implicit function of time). 

EXECUTE:   (a) ,
M

dm dl
L

=  and so 
2

2 2
3

1 1
2 2

MvdK dm u l dl
L

=  =   and 
2 2

2
3 0

.
62

LMv Mv
K dK l dl

L
= =   =∫ ∫  

(b) 0,  or 0,
dv dx

mv kx ma kx
dt dt

+ = + =  which is Eq. (14.4) 

(c) m  is replaced by ,
3
M so 3 and  .

3
k MM

M
ω = ′ =  

EVALUATE:   The effective mass of the spring is only one-third of its actual mass. 


