
© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

11-1 

 11.1. IDENTIFY:   Use Eq. (11.3) to calculate cm.x  The center of gravity of the bar is at its center and it can be 
treated as a point mass at that point. 
SET UP:   Use coordinates with the origin at the left end of the bar and the x+  axis along the bar. 

1 0 120 kg,m = .  2 0 055 kg,m = .  3 0 110 kg.m = .  

EXECUTE:   1 1 2 2 3 3
cm

1 2 3

(0.120 kg)(0.250 m) 0 (0.110 kg)(0.500 m) 0.298 m.
0.120 kg 0.055 kg 0.110 kg

m x m x m xx
m m m

+ + + += = =
+ + + +

 The 

fulcrum should be placed 29.8 cm to the right of the left-hand end. 
EVALUATE:   The mass at the right-hand end is greater than the mass at the left-hand end. So the center of 
gravity is to the right of the center of the bar. 

 11.2. IDENTIFY:   Use Eq. (11.3) to calculate cmx of the composite object. 
SET UP:   Use coordinates where the origin is at the original center of gravity of the object and x+  is to the 
right. With the 1.50 g mass added, cm 2 20 cm,x = − .  1 5 00 gm = . and 2 1 50 g.m = .  1 0.x =  

EXECUTE:   2 2
cm

1 2
.m xx

m m
=

+
 1 2

2 cm
2

5 00 g 1 50 g ( 2 20 cm) 9 53 cm.
1 50 g

m mx x
m

⎛ ⎞ ⎛ ⎞+ . + .= = − . = − .⎜ ⎟ ⎜ ⎟.⎝ ⎠⎝ ⎠
 

The additional mass should be attached 9.53 cm to the left of the original center of gravity. 
EVALUATE:   The new center of gravity is somewhere between the added mass and the original center of 
gravity. 

 11.3. IDENTIFY:   Treat the rod and clamp as point masses. The center of gravity of the rod is at its midpoint, and 
we know the location of the center of gravity of the rod-clamp system. 

SET UP:   1 1 2 2
cm

1 2
.m x m xx

m m
+=
+

 

EXECUTE:   2(1.80 kg)(1.00 m) (2.40 kg)1.20 m
1.80 kg 2.40 kg

.x+=
+

 

2
(1.20 m)(1.80 kg 2.40 kg) (1.80 kg)(1.00 m) 1.35 m

2.40 kg
x + −= =  

EVALUATE:   The clamp is to the right of the center of gravity of the system, so the center of gravity of the 
system lies between that of the rod and the clamp, which is reasonable. 

 11.4. IDENTIFY:   Apply the first and second conditions for equilibrium to the trap door. 
SET UP:   For 0zτ∑ =  take the axis at the hinge. Then the torque due to the applied force must balance the 
torque due to the weight of the door. 
EXECUTE:   (a) The force is applied at the center of gravity, so the applied force must have the same 
magnitude as the weight of the door, or 300 N.  In this case the hinge exerts no force. 
(b) With respect to the hinges, the moment arm of the applied force is twice the distance to the center of 
mass, so the force has half the magnitude of the weight, or 150 N.  
The hinges supply an upward force of 300 N 150 N 150 N.− =  
EVALUATE:   Less force must be applied when it is applied farther from the hinges. 
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 11.5. IDENTIFY:   Apply 0zτ∑ =  to the ladder. 
SET UP:   Take the axis to be at point A. The free-body diagram for the ladder is given in Figure 11.5. The 
torque due to F must balance the torque due to the weight of the ladder. 
EXECUTE:   (8 0 m)sin 40 (2800 N)(10 0 m), so 5 45 kN.F F. ° = . = .  
EVALUATE:   The force required is greater than the weight of the ladder, because the moment arm for F is 
less than the moment arm for w. 

 

 

Figure 11.5 
 

 11.6. IDENTIFY:   Apply the first and second conditions of equilibrium to the board. 
SET UP:   The free-body diagram for the board is given in Figure 11.6. Since the board is uniform its center 
of gravity is 1.50 m from each end. Apply 0,yF∑ =  with y+  upward. Apply 0zτ∑ =  with the axis at the 
end where the first person applies a force and with counterclockwise torques positive. 
EXECUTE:   0yF∑ =  gives 1 2 0F F w+ − =  and 2 1 160 N 60 N 100 N.F w F= − = − =  0zτ∑ =  gives 

2 (1 50 m) 0F x w− . =  and 
2

160 N(1 50 m) (1 50 m) 2 40 m.
100 N

wx
F

⎛ ⎞ ⎛ ⎞= . = . = .⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 The other person lifts with a 

force of 100 N at a point 2.40 m from the end where the other person lifts. 
EVALUATE:   By considering the axis at the center of gravity we can see that a larger force is applied by 
the person who pushes closer to the center of gravity. 

 

 

Figure 11.6 
 

 11.7. IDENTIFY:   Apply 0yF∑ =  and 0zτ∑ =  to the board. 
SET UP:   Let y+  be upward. Let x be the distance of the center of gravity of the motor from the end of the 
board where the 400 N force is applied. 
EXECUTE:    (a) If the board is taken to be massless, the weight of the motor is the sum of the applied 

forces, 1000 N.  The motor is a distance (2.00 m)(600 N) 1 20 m
(1000 N)

= .  from the end where the 400 N force is 

applied, and so is 0.800 m from the end where the 600 N force is applied. 
(b) The weight of the motor is 400 N 600 N 200 N 800 N.+ − =  Applying 0zτ∑ =  with the axis at the 
end of the board where the 400 N acts gives (600 N)(2 00 m) (200 N)(1 00 m) (800 N)x. = . +  and 

1 25 m.x = .  The center of gravity of the motor is 0.75 m from the end of the board where the 600 N force 
is applied. 
EVALUATE:   The motor is closest to the end of the board where the larger force is applied. 
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 11.8. IDENTIFY:   Apply the first and second conditions of equilibrium to the shelf. 
SET UP:   The free-body diagram for the shelf is given in Figure 11.8. Take the axis at the left-hand end of the 
shelf and let counterclockwise torque be positive. The center of gravity of the uniform shelf is at its center. 
EXECUTE:    (a) 0zτ∑ =  gives t s 2(0 200 m) (0 300 m) (0 400 m) 0.w w T− . − . + . =  

2
(25 0 N)(0 200 m) (50 0 N)(0 300 m) 50 0 N

0 400 m
T . . + . .= = .

.
 

0yF∑ =  gives 1 2 t s 0T T w w+ − − =  and 1 25 0 N.T = .  The tension in the left-hand wire is 25.0 N and the 
tension in the right-hand wire is 50.0 N. 
EVALUATE:   We can verify that 0zτ∑ =  is zero for any axis, for example for an axis at the right-hand end 
of the shelf. 

 

 

Figure 11.8 
 

 11.9. IDENTIFY:   Apply the conditions for equilibrium to the bar. Set each tension equal to its maximum value. 
SET UP:   Let cable A be at the left-hand end. Take the axis to be at the left-hand end of the bar and x be the 
distance of the weight w from this end. The free-body diagram for the bar is given in Figure 11.9. 
EXECUTE:    (a) 0yF∑ = gives bar 0A BT T w w+ − − =  and 

bar 500 0 N 400 0 N 350.0 N 550 N.A Bw T T w= + − = . + . − =  
(b) 0zτ∑ =  gives bar(1 50 m) (0 750 m) 0.BT wx w. − − . =  

bar(1 50 m) (0 750 m) (400 0 N)(1 50 m) (350 N)(0 750 m) 0 614 m.
550 N

BT wx
w

. − . . . − .= = = .  The weight should 

be placed 0.614 m from the left-hand end of the bar (cable A). 
EVALUATE:   If the weight is moved to the left, AT  exceeds 500.0 N and if it is moved to the right 

BT exceeds 400.0 N. 
 

 

Figure 11.9 
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11.10.  IDENTIFY:   Apply the first and second conditions for equilibrium to the ladder. 
SET UP:   Let 2n be the upward normal force exerted by the ground and let 1n  be the horizontal normal 
force exerted by the wall. The maximum possible static friction force that can be exerted by the ground 
is s 2.nμ  
EXECUTE:    (a) Since the wall is frictionless, the only vertical forces are the weights of the man and the 
ladder, and the normal force 2.n  For the vertical forces to balance, 2 1 m 160 N 740 N 900 N,n w w= + = + =  
and the maximum frictional force is s 2 (0 40)(900N) 360N.nμ = . =  
(b) Note that the ladder makes contact with the wall at a height of 4.0 m above the ground. Balancing 
torques about the point of contact with the ground, 

1(4 0 m) (1 5 m)(160 N) (1 0 m)(3/5)(740 N) 684 N m,n. = . + . = ⋅  so 1 171 0 N.n = .  This horizontal force 
must be balanced by the friction force, which must then be 170 N to two figures. 
(c) Setting the friction force, and hence 1,n  equal to the maximum of 360 N and solving for the distance x 
along the ladder, (4 0 m)(360 N) (1 50 m)(160 N) (3/5)(740 N),x. = . +  so 2 7 m.x = .  
EVALUATE:   The normal force exerted by the ground doesn’t change as the man climbs up the ladder. But 
the normal force exerted by the wall and the friction force exerted by the ground both increase as he moves 
up the ladder. 

 11.11. IDENTIFY:   The system of the person and diving board is at rest so the two conditions of equilibrium 
apply. 
(a) SET UP:   The free-body diagram for the diving board is given in Figure 11.11. Take the origin of 
coordinates at the left-hand end of the board (point A). 

 

 1F  is the force applied at the support 

point and 2F  is the force at the end 
that is held down. 

Figure 11.11   
 

EXECUTE:   0Aτ∑ =  gives 1(1 0 m) (500 N)(3 00 m) (280 N)(1 50 m) 0F+ . − . − . =  

1
(500 N)(3 00 m) (280 N)(1 50 m) 1920 N

1 00 m
F . + .= =

.
 

(b) y yF ma∑ =  

1 2 280 N 500 N 0F F− − − =  

2 1 280 N 500 N 1920 N 280 N 500 N 1140 NF F= − − = − − =  
EVALUATE:   We can check our answers by calculating the net torque about some point and checking that 

0zτ∑ =  for that point also. Net torque about the right-hand end of the board: 
(1140 N)(3 00 m) (280 N)(1 50 m) (1920 N)(2 00 m). + . − . = 3420 N m 420 N m 3840 N m 0,⋅ + ⋅ − ⋅ =  which 
checks. 

 11.12. IDENTIFY:   Apply the first and second conditions of equilibrium to the beam. 
SET UP:   The boy exerts a downward force on the beam that is equal to his weight. 
EXECUTE:    (a) The graphs are given in Figure 11.12. 
(b) 6 25 m when 0,Ax F= . =  which is 1.25 m beyond point B. 
(c) Take torques about the right end. When the beam is just balanced, 0, so 900 N.A BF F= =  

The distance that point B must be from the right end is then (300 N)(4.50 m) 1 50 m.
(900 N)

= .  
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EVALUATE:   When the beam is on the verge of tipping it starts to lift off the support A and the normal 
force AF exerted by the support goes to zero. 

 

 

Figure 11.12 
 
 

 11.13. IDENTIFY:   Apply the first and second conditions of equilibrium to the strut. 
(a) SET UP:   The free-body diagram for the strut is given in Figure 11.13a. Take the origin of coordinates 
at the hinge (point A) and y+  upward. Let hF  and vF  be the horizontal and vertical components of the  

force F  exerted on the strut by the pivot. The tension in the vertical cable is the weight w of the 
suspended object. The weight w of the strut can be taken to act at the center of the strut. Let L be the length 
of the strut. 

 

 EXECUTE:    
y yF ma∑ =  

v 0F w w− − =  

v 2F w=  

Figure 11.13a   
 

Sum torques about point A. The pivot force has zero moment arm for this axis and so doesn’t enter into the 
torque equation. 

0Aτ =  
sin30 0 (( /2)cos30 0 ) ( cos30 0 ) 0TL w L w L. ° − . ° − . ° =  

sin30 0 (3 /2)cos30 0 0T w. ° − . ° =  
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3 cos30 0 2 60
2sin30 0
wT w. °= = .

. °
 

Then x xF ma∑ =  implies h 0T F− =  and h 2 60 .F w= .  

We now have the components of F  so can find its magnitude and direction (Figure 11.13b). 
 

 2 2
h vF F F= +  

2 2(2 60 ) (2 00 )F w w= . + .  
3 28F w= .  

v

h

2 00tan
2 60

F w
F w

θ .= =
.

 

37 6θ = . °  
Figure 11.13b   

 

(b) SET UP:   The free-body diagram for the strut is given in Figure 11.13c. 
 

 

Figure 11.13c 
 

The tension T has been replaced by its x and y components. The torque due to T equals the sum of the 
torques of its components, and the latter are easier to calculate. 
EXECUTE:   0 ( cos30 0 )( sin 45 0 ) ( sin30 0 )( cos45 0 )A T L T Lτ∑ = + . ° . ° − . ° . ° −  

(( /2)cos45 0 ) ( cos45 0 ) 0w L w L. ° − . ° =  
The length L divides out of the equation. The equation can also be simplified by noting that 
sin 45.0 cos45.0 .° = °  
Then (cos30.0 sin30.0 ) 3 /2.T w° − ° =  

3 4 10
2(cos30 0 sin30 0 )

wT w= = .
. ° − . °

 

x xF ma∑ =  

h cos30 0 0F T− . ° =  

h cos30 0 (4 10 )(cos30 0 ) 3 55F T w w= . ° = . . ° = .  

y yF ma∑ =  

v sin30 0 0F w w T− − − . ° =  

v 2 (4 10 )sin30 0 4 05F w w w= + . . ° = .  
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 From Figure 11.13d, 
2 2

h vF F F= +  
2 2(3 55 ) (4 05 ) 5 39F w w w= . + . = .  

v

h

4 05tan
3 55

F w
F w

θ .= =
.

 

48 8θ = . °  
Figure 11.13d   

 

EVALUATE:   In each case the force exerted by the pivot does not act along the strut. Consider the net 
torque about the upper end of the strut. If the pivot force acted along the strut, it would have zero torque 
about this point. The two forces acting at this point also have zero torque and there would be one nonzero 
torque, due to the weight of the strut. The net torque about this point would then not be zero, violating the 
second condition of equilibrium. 

 11.14. IDENTIFY:   Apply the first and second conditions of equilibrium to the beam. 
SET UP:   The free-body diagram for the beam is given in Figure 11.14. vH  and hH  are the vertical and 
horizontal components of the force exerted on the beam at the wall (by the hinge). Since the beam is 
uniform, its center of gravity is 2.00 m from each end. The angle θ  has cos 0 800θ = .  and sin 0.600.θ =  
The tension T has been replaced by its x and y components. 
EXECUTE:   (a) v ,H hH  and cosxT T θ=  all produce zero torque. 0zτ∑ =  gives 

load(2 00 m) (4 00 m) sin (4 00 m) 0w w T θ− . − . + . =  and (150 N)(2 00 m) (300 N)(4 00 m) 625 N.
(4 00 m)(0 600)

T . + .= =
. .

 

(b) 0xF∑ =  gives h cos 0H T θ− =  and h (625 N)(0 800) 500 N.H = . =  0yF∑ =  gives 

v load sin 0H w w T θ− − + =  and v load sin 150 N 300 N (625 N)(0 600) 75 N.H w w T θ= + − = + − . =  

EVALUATE:   For an axis at the right-hand end of the beam, only w and vH produce torque. The torque due 
to w is counterclockwise so the torque due to vH must be clockwise. To produce a clockwise torque, 

vH must be upward, in agreement with our result from 0.yF∑ =  
 

 

Figure 11.14 
 
 11.15. IDENTIFY:   The athlete is in equilibrium, so the forces and torques on him must balance. The target 

variables are the forces on his hands and feet due to the floor. 
SET UP:   The free-body diagram is given in Figure 11.15. fF  is the force on each foot and hF  is the force 
on each hand. Use coordinates as shown. Take the pivot at his feet and let counterclockwise torques be 
positive. 0zτ∑ =  and 0.yF∑ =  
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Figure 11.15 
 

EXECUTE:   0zτ∑ =  gives h(2 )(1.70 m) (1.15 m) 0.F w− =  Solving for Fh gives 

h
1.15 m 0.338 272 N.

2(1.70 m)
F w w= = =  Applying 0,yF∑ =  we get f h2 2 0F F w+ − =  which gives 

1
f h2 402 N 272 N 130 N.F w F= − = − =  

EVALUATE:   His center of mass is closer to his hands than to his feet, so his hands exert a greater force. 
11.16.  IDENTIFY:   Apply the conditions of equilibrium to the wheelbarrow plus its contents. The upward force 

applied by the person is 650 N. 
SET UP:   The free-body diagram for the wheelbarrow is given in Figure 11.16. 650 N,F =  

wb 80 0 Nw = . and w is the weight of the load placed in the wheelbarrow. 
EXECUTE:   (a) 0zτ∑ = with the axis at the center of gravity gives (0 50 m) (0 90 m) 0n F. − . = and 

0 90 m 1170 N.
0 50 m

n F .⎛ ⎞= =⎜ ⎟.⎝ ⎠
 0yF∑ = gives wb 0F n w w+ − − =  and 

wb 650 N 1170 N 80 0 N 1740 N.w F n w= + − = + − . =  
(b) The extra force is applied by the ground pushing up on the wheel. 
EVALUATE:   You can verify that 0zτ∑ = for any axis, for example for an axis where the wheel contacts 
the ground. 

 

 
Figure 11.6 

 

11.17. IDENTIFY:   Apply the first and second conditions of equilibrium to Clea. 
SET UP:   Consider the forces on Clea. The free-body diagram is given in Figure 11.17 

 

 EXECUTE:    
r 89 N,n =  f 157 Nn =  

r fn n w+ =  so 246 Nw =  

Figure 11.17   
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0,zτ∑ =  axis at rear feet 
Let x be the distance from the rear feet to the center of gravity. 

f (0.95 m) 0n xw− =  
0 606 mx = .  from rear feet so 0.34 m from front feet. 

EVALUATE:   The normal force at her front feet is greater than at her rear feet, so her center of gravity is 
closer to her front feet. 

 11.18. IDENTIFY:   Apply the conditions for equilibrium to the crane. 
SET UP:   The free-body diagram for the crane is sketched in Figure 11.18. hF  and vF  are the components 

of the force exerted by the axle. T pulls to the left so hF is to the right. T  also pulls downward and the 
two weights are downward, so vF is upward. 
EXECUTE:    (a) 0zτ∑ = gives c b([13 m]sin 25 ) ([7 0 m]cos55 ) ([16 0 m]cos55 ) 0.T w w° − . ° − . ° =  

4(11,000 N)([16 0 m]cos55 ) (15,000 N)([7 0 m]cos55 ) 2 93 10  N.
(13 0 m)sin 25

T . ° + . °= = . ×
. °

 

(b) 0xF∑ =  gives h cos30 0F T− ° = and 4
h 2 54 10  N.F = . ×  

0yF∑ =  gives v c bsin30 0F T w w− ° − − =  and 4
v 4 06 10  N.F = . ×  

EVALUATE:   
4

v
4

h

4 06 10  Ntan
2 54 10  N

F
F

θ . ×= =
. ×

 and 58 .θ = °  The force exerted by the axle is not directed along 

the crane. 
 

 
Figure 11.18 

 

 11.19. IDENTIFY:   Apply the first and second conditions of equilibrium to the rod. 
SET UP:   The force diagram for the rod is given in Figure 11.19. 

 

 
Figure 11.19 
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EXECUTE:   0,zτ∑ =  axis at right end of rod, counterclockwise torque is positive 

1(240 N)(1 50 m) (90 N)(0 50 m) ( sin30 0 )(3 00 m) 0T. + . − . ° . =  

1
360 N m 45 N m 270 N

1 50 m
T ⋅ + ⋅= =

.
 

x xF ma∑ =  

2 1cos cos30 0T Tθ − ° =  and 2 cos 234 NT θ =  

y yF ma∑ =  

1 2sin30 sin 240 N 90 N 0T T θ° + − − =  

2 sin 330 N (270 N)sin30 195 NT θ = − ° =  

Then 2

2

sin 195 N
cos 234 N

T
T

θ
θ

=  gives tan 0 8333θ = . and 40θ = °  

And 2
195 N 303 N.
sin 40

T = =
°

 

EVALUATE:   The monkey is closer to the right rope than to the left one, so the tension is larger in the right 
rope. The horizontal components of the tensions must be equal in magnitude and opposite in direction. 
Since 2 1,T T>  the rope on the right must be at a greater angle above the horizontal to have the same 
horizontal component as the tension in the other rope. 

 11.20. IDENTIFY:   Apply the first and second conditions for equilibrium to the beam. 
SET UP:   The free-body diagram for the beam is given in Figure 11.20. 
EXECUTE:   The cable is given as perpendicular to the beam, so the tension is found by taking torques 
about the pivot point; (3.00 m) (1.00 kN)(2.00 m)cos25.0 (5.00 kN)(4.50 m)cos25.0 ,T = ° + °  and 

7.40 kN.T =  The vertical component of the force exerted on the beam by the pivot is the net weight minus 
the upward component of T, 6.00 kN cos25.0 0.71 kN.T− ° = −  The vertical component is downward. The 
horizontal force is sin 25.0 3.13 kN.T ° =  
EVALUATE:   The vertical component of the tension is nearly the same magnitude as the total weight of the 
object and the vertical component of the force exerted by the pivot is much less than its horizontal component. 

 

 
Figure 11.20 

 

 11.21. (a) IDENTIFY and SET UP:   Use Eq. (10.3) to calculate the torque (magnitude and direction) for each force 
and add the torques as vectors. See Figure 11.21a. 

 

 EXECUTE:    
1 1 1 8.00 N 3.00 mF lτ = = +( )( )  

1 24.0 N mτ = + ⋅  

2 2 2 8.00 N 3.00 mF l lτ = − = − +( )( )  

2 24.0 N m (8.00 N)lτ = − ⋅ −  
Figure 11.21a   
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1 2 24.0 N m 24.0 N m (8.00 N) (8.00 N)z l lτ τ τ∑ = + = + ⋅ − ⋅ − = −  
Want l that makes 6.40 N mzτ∑ = − ⋅  (net torque must be clockwise) 

(8.00 N) 6.40 N ml− = − ⋅  
(6.40 N m)/8.00 N 0.800 ml = ⋅ =  

(b) 2 1τ τ>  since 2F  has a larger moment arm; the net torque is clockwise. 
(c) See Figure 11.21b. 

 

 1 1 1 (8.00 N)F l lτ = − = −  

2 0τ =  since 2F  is at the axis 

Figure 11.21b   
 

6.40 N mzτ∑ = − ⋅  gives (8.00 N) 6.40 N ml− = − ⋅  
0.800 m,l =  same as in part (a). 

EVALUATE:   The force couple gives the same magnitude of torque for the pivot at any point. 
 11.22. IDENTIFY:   The person is in equilibrium, so the torques on him must balance. The target variable is the 

force exerted by the deltoid muscle. 
SET UP:   The free-body diagram for the arm is given in Figure 11.22. Take the pivot at the shoulder joint 
and let counterclockwise torques be positive. Use coordinates as shown. Let F be the force exerted by the 
deltoid muscle. There are also the weight of the arm and forces at the shoulder joint, but none of these 
forces produce any torque when the arm is in this position. The forces F and T have been replaced by their 
x and y components. 0.zτ∑ =  

 

 

Figure 11.22 
 

EXECUTE:   0zτ∑ =  gives ( sin12.0 )(15.0 cm) ( cos35 )(64.0 cm) 0.F T° − ° =  
(36.0 N)(cos35 )(64.0 cm) 605 N.

(sin12.0 )(15.0 cm)
F °= =

°
 

EVALUATE:   The force exerted by the deltoid muscle is much larger than the tension in the cable because 
the deltoid muscle makes a small angle (only 12.0°) with the humerus. 

11.23. IDENTIFY:   The student’s head is at rest, so the torques on it must balance. The target variable is the 
tension in her neck muscles. 
SET UP:   Let the pivot be at point P and let counterclockwise torques be positive. 0.zτ∑ =  
EXECUTE:    (a) The free-body diagram is given in Figure 11.23. 
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Figure 11.23 
 

(b) 0zτ∑ =  gives (11.0 cm)(sin 40.0 ) (1.50 cm) 0.w T° − =  
2(4.50 kg)(9.80 m/s )(11.0 cm)sin 40.0 208 N.

1.50 cm
T °= =  

EVALUATE:   Her head weighs about 45 N but the tension in her neck muscles must be much larger 
because the tension has a small moment arm. 

 11.24. IDENTIFY:   0l FY
A l

⊥=
Δ

 

SET UP:   2 4 250.0 cm 50.0 10  m .A −= = ×  

EXECUTE:   relaxed: 4
4 2 2

(0.200 m)(25.0 N) 3.33 10  Pa
(50.0 10  m )(3.0 10  m)

Y − −= = ×
× ×

 

maximum tension: 5
4 2 2

(0.200 m)(500 N) 6.67 10  Pa
(50.0 10  m )(3.0 10  m)

Y − −= = ×
× ×

 

EVALUATE:   The muscle tissue is much more difficult to stretch when it is under maximum tension. 
 11.25. IDENTIFY and SET UP:   Apply Eq. (11.10) and solve for A and then use 2A rπ=  to get the radius and 

2d r=  to calculate the diameter. 

EXECUTE:   0l FY
A l

⊥=
Δ

 so 0l FA
Y l

⊥=
Δ

 (A is the cross-section area of the wire) 

For steel, 112 0 10  PaY = . ×  (Table 11.1) 

Thus 6 2
11 2

(2.00 m)(400 N) 1.6 10  m .
(2.0 10  Pa)(0.25 10  m)

A −
−= = ×

× ×
 

2,A rπ=  so 6 2 4/ 1.6 10  m / 7.1 10  mr A π π− −= = × = ×  
32 1.4 10  m 1.4 mmd r −= = × =  

EVALUATE:   Steel wire of this diameter doesn’t stretch much; 0/ 0.12%.l lΔ =  
 11.26. IDENTIFY:   Apply Eq. (11.10). 

SET UP:   From Table 11.1, for steel, 112 0 10  PaY = . × and for copper, 111 1 10  Pa.Y = . ×  
2 4 2( /4) 1.77 10  m .A dπ −= = ×  4000 NF⊥ = for each rod. 

EXECUTE:   (a) The strain is 
0

.l F
l YA
Δ =  For steel 4

11 4 2
0

(4000 N) 1 1 10 .
(2.0 10  Pa)(1.77 10  m )

l
l

−
−

Δ = = . ×
× ×

 

Similarly, the strain for copper is 42.1 10 .−×  
(b) Steel: 4 5(1.1 10 )(0.750 m) 8.3 10  m.− −× = ×  Copper: 4 4(2.1 10 )(0.750 m) 1.6 10  m.− −× = ×  
EVALUATE:   Copper has a smaller Y and therefore a greater elongation. 

 11.27. IDENTIFY:   0l FY
A l

⊥=
Δ

 

SET UP:   2 4 20.50 cm 0.50 10  mA −= = ×  
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EXECUTE:   11
4 2 2

(4.00 m)(5000 N) 2 0 10  Pa
(0.50 10  m )(0.20 10 m)

Y − −= = . ×
× ×

 

EVALUATE:   Our result is the same as that given for steel in Table 11.1. 

 11.28. IDENTIFY:   0l FY
A l

⊥=
Δ

 

SET UP:   2 3 2 5 2(3.5 10  m) 3.85 10  m .A rπ π − −= = × = ×  The force applied to the end of the rope is the 

weight of the climber: 2(65.0 kg)(9.80 m/s ) 637 N.F⊥ = =  

EXECUTE:   8
5 2

(45.0 m)(637 N) 6.77 10  Pa
(3.85 10  m )(1.10 m)

Y −= = ×
×

 

EVALUATE:   Our result is a lot smaller than the values given in Table 11.1. An object made of rope 
material is much easier to stretch than if the object were made of metal. 

 11.29. IDENTIFY:   Use the first condition of equilibrium to calculate the tensions 1T  and 2T  in the wires 
(Figure 11.29a). Then use Eq. (11.10) to calculate the strain and elongation of each wire. 

 

 
Figure 11.29a 

 

SET UP:   The free-body diagram for 2m  is given in Figure 11.27b. 
 

 EXECUTE:    
y yF ma∑ =  

2 2 0T m g− =  

2 98 0 NT = .  

Figure 11.29b   
 

SET UP:   The free-body-diagram for 1m  is given in Figure 11.29c. 
 

 EXECUTE:    
y yF ma∑ =  

1 2 1 0T T m g− − =  

1 2 1T T m g= +  

1 98 0 N 58 8 N 157 NT = . + . =  

Figure 11.29c   
 

(a) stress
strain

Y =  so stressstrain F
Y AY

⊥= =  

upper wire: 31
7 2 11

157 Nstrain 3 1 10
(2.5 10  m )(2.0 10  Pa)

T
AY

−
−= = = . ×

× ×
 

lower wire: 32
7 2 11

98 Nstrain 2.0 10
(2.5 10  m )(2.0 10  Pa)

T
AY

−
−= = = ×

× ×
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(b) 0strain /l l= Δ  so 0(strain)l lΔ =  

upper wire: 3 3(0.50 m)(3.1 10 ) 1.6 10  m 1.6 mml − −Δ = × = × =  

lower wire: 3 3(0.50 m)(2.0 10 ) 1.0 10  m 1.0 mml − −Δ = × = × =  
EVALUATE:   The tension is greater in the upper wire because it must support both objects. The wires have 
the same length and diameter, so the one with the greater tension has the greater strain and elongation. 

 11.30. IDENTIFY:   Apply Eqs. (11.8), (11.9) and (11.10). 
SET UP:   The cross-sectional area of the post is 

2 2 2(0 125 m) 0 0491 m .A rπ π= = . = .  The force applied to the 

end of the post is 
2 4(8000 kg)(9.80 m/s ) 7.84 10  N.F⊥ = = ×  The Young’s modulus of steel is 112.0 10  Pa.Y = ×  

EXECUTE:   (a) 
4

6
2

7.84 10  Nstress 1.60 10  Pa.
0.0491 m

F
A
⊥ ×= = − = − ×  The minus sign indicates that the stress is 

compressive. 

(b) 
6

6
11

stress 1.60 10  Pastrain 8.0 10 .
2.0 10  PaY

−×= = − = − ×
×

 The minus sign indicates that the length decreases. 

(c) 6 5
0(strain) (2.50 m)( 8.0 10 ) 2.0 10  ml l − −Δ = = − × = − ×  

EVALUATE:   The fractional change in length of the post is very small. 
 11.31. IDENTIFY:   The amount of compression depends on the bulk modulus of the bone. 

SET UP:   
0

V p
V B
Δ Δ= −  and 51 atm 1.01 10 Pa.= ×  

EXECUTE:   (a) 9

0
(15 10 Pa)( 0.0010)Vp B

V
ΔΔ = − = − × −  71.5 10 Pa 150 atm.= × =  

(b) The depth for a pressure increase of 71.5 10 Pa×  is 1.5 km. 
EVALUATE:   An extremely large pressure increase is needed for just a 0.10% bone compression, so pressure 
changes do not appreciably affect the bones. Unprotected dives do not approach a depth of 1.5 km, so bone 
compression is not a concern for divers. 

 11.32. IDENTIFY:   Apply Eq. (11.13). 

SET UP:   0 .V pV
B
ΔΔ = −  pΔ is positive when the pressure increases. 

EXECUTE:   (a) The volume would increase slightly. 
(b) The volume change would be twice as great. 
(c) The volume change is inversely proportional to the bulk modulus for a given pressure change, so the 
volume change of the lead ingot would be four times that of the gold. 
EVALUATE:   For lead, 104.1 10  Pa,B = ×  so /p BΔ is very small and the fractional change in volume is very 
small. 

11.33. IDENTIFY:   Vigorous downhill hiking produces a shear force on the knee cartilage which could deform the 
cartilage. The target variable is the angle of deformation of the cartilage. 

SET UP:   , where / .
F

S x h
A

φ
φ

= = sin12 .F F= ° φ  is in radians. 8 ,F mg=  with 10 kg.m = 1 rad 180 .= °  

EXECUTE:   4 2 6
8 sin12 0.1494 rad 8.6 .

(10 10 m )(12 10 Pa)

F mg
AS

φ −
°= = = = °

× ×
 

EVALUATE:   The shear modulus of cartilage is much less than the values for metals given in Table 11.1 in 
the text. 

 11.34. IDENTIFY:   Apply Eq. (11.13). Density / .m V=  

SET UP:   At the surface the pressure is 51.0 10  Pa,×  so 81.16 10  Pa.pΔ = ×  3
0 1.00 m .V =  At the surface 

31.00 m of water has mass 31.03 10  kg.×  
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EXECUTE:   (a) 0( )p VB
V

Δ= −
Δ

 gives 
8 3

30
9

( ) (1.16 10  Pa)(1.00 m ) 0.0527 m
2.2 10  Pa

p VV
B

Δ ×Δ = − = − = −
×

 

(b) At this depth 31.03 10  kg× of seawater has volume 3
0 0.9473 m .V V+ Δ =  The density is 

3
3 3

3
1.03 10  kg 1.09 10  kg/m .

0.9473 m
× = ×  

EVALUATE:   The density is increased because the volume is compressed due to the increased pressure. 
 11.35. IDENTIFY and SET UP:   Use Eqs. (11.13) and (11.14) to calculate B and k. 

EXECUTE:   
6 3

9
3

0

(3.6 10  Pa)(600 cm ) 4.8 10  Pa
/ ( 0.45 cm )
pB

V V
Δ ×= − = − = + ×

Δ −
 

9 10 11/ 1/4.8 10  Pa 2.1 10  Pak B − −= = × = ×  
EVALUATE:   k is the same as for glycerine (Table 11.2). 

 11.36. IDENTIFY:   Apply Eq. (11.17). 
SET UP:   59.0 10  N.F = ×||  2(0.100 m)(0.500 10  m).A −= ×  0.100 m.h =  From Table 11.1, 

107.5 10  PaS = × for steel. 

EXECUTE:   (a) 
5

|| 2
2 10

(9 10  N)Shear strain 2.4 10 .
[(0.100 m)(0.500 10 m)][7.5 10  Pa]

F
AS

−
−

×= = = ×
× ×

 

(b) Using Eq. (11.16), 3(Shear strain) (0.024)(0.100 m) 2.4 10 m.x h −= ⋅ = = ×  
EVALUATE:   This very large force produces a small displacement; / 2.4%.x h =  

 11.37. IDENTIFY:   The forces on the cube must balance. The deformation x is related to the force by || .
F hS
A x

=  

||F F= since F is applied parallel to the upper face. 

SET UP:   2(0 0600 m)A = . and 0 0600 m.h = .  Table 11.1 gives 104.4 10  PaS = × for copper and 
100.6 10  Pa× for lead. 

EXECUTE:   (a) Since the horizontal forces balance, the glue exerts a force F in the opposite direction. 

(b) 
2 3 10

5(0.0600 m) (0.250 10  m)(4.4 10  Pa) 6.6 10  N
0.0600 m

AxSF
h

−× ×= = = ×  

(c) 
5

2 10
(6.6 10  N)(0.0600 m) 1.8 mm

(0.0600 m) (0.6 10  Pa)
Fhx
AS

×= = =
×

 

EVALUATE:   Lead has a smaller S than copper, so the lead cube has a greater deformation than the copper cube. 
 11.38. IDENTIFY:   The force components parallel to the face of the cube produce a shear which can deform the cube. 

SET UP:   , where / .
F

S x h
A

φ
φ

= =  F  is the component of the force tangent to the surface, so 

(1375 N)cos8.50 1360 N.F = ° =  φ  must be in radians, 1.24 0.0216 rad.φ = ° =  

EXECUTE:   6
2

1360 N 7.36 10 Pa.
(0.0925 m) (0.0216 rad)

S = = ×  

EVALUATE:   The shear modulus of this material is much less than the values for metals given in Table 11.1 
in the text. 

 11.39. IDENTIFY and SET UP:   Use Eq. (11.8). 

EXECUTE:   7
2 3 2

90.8 NTensile stress 3.41 10  Pa
(0.92 10  m)

F F
A rπ π
⊥ ⊥

−= = = = ×
×

 

EVALUATE:   A modest force produces a very large stress because the cross-sectional area is small. 
 11.40. IDENTIFY:   The proportional limit and breaking stress are values of the stress, / .F A⊥  Use Eq. (11.10) to 

calculate .lΔ  
SET UP:   For steel, 1020 10  Pa.Y = ×  .F w⊥ =  
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EXECUTe:   (a) 3 10 6 2 3(1.6 10 )(20 10  Pa)(5 10  m ) 1.60 10  N.w − −= × × × = ×  

(b) 30 (1.6 10 )(4.0 m) 6.4 mmF ll
A Y

−⊥⎛ ⎞Δ = = × =⎜ ⎟
⎝ ⎠

 

(c) 3 10 6 2 3(6.5 10 )(20 10  Pa)(5 10  m ) 6.5 10  N.− −× × × = ×  
EVALUATE:   At the proportional limit, the fractional change in the length of the wire is 0.16%. 

 11.41. IDENTIFY:   The elastic limit is a value of the stress, / .F A⊥  Apply m∑ =F a to the elevator in order to find 
the tension in the cable. 

SET UP:   8 81
3 (2 40 10  Pa) 0 80 10  Pa.F

A
⊥ = . × = . ×  The free-body diagram for the elevator is given in 

Figure 11.41. F⊥  is the tension in the cable. 

EXECUTE:   8 4 2 8 4(0.80 10  Pa) (3.00 10  m )(0.80 10  Pa) 2.40 10  N.F A −
⊥ = × = × × = ×  y yF ma∑ =  applied to 

the elevator gives F mg ma⊥ − =  and 
4

2 22 40 10  N 9 80 m/s 10 2 m/s
1200 kg

Fa g
m
⊥ . ×= − = − . = .  

EVALUATE:   The tension in the cable is about twice the weight of the elevator. 
 

 
Figure 11.41 

 

 11.42. IDENTIFY:   The breaking stress of the wire is the value of /F A⊥  at which the wire breaks. 

SET UP:   From Table 11.3, the breaking stress of brass is 84 7 10  Pa.. ×  The area A of the wire is related to 
its diameter by 2/4.A dπ=  

EXECUTE:   7 2
8

350 N 7.45 10 m , so 4 / 0.97 mm.
4.7 10  Pa

A d A π−= = × = =
×

 

EVALUATE:   The maximum force a wire can withstand without breaking is proportional to the square of 
its diameter. 

 11.43. IDENTIFY:   The center of gravity of the combined object must be at the fulcrum. Use Eq. (11.3) to 
calculate cm.x  
SET UP:   The center of gravity of the sand is at the middle of the box. Use coordinates with the origin at 
the fulcrum and x+  to the right. Let 1 25 0 kg,m = .  so 1 0 500 m.x = .  Let 2 sand ,m m=  so 2 0 625 m.x = − .  

cm 0.x =  

EXECUTE:   1 1 2 2
cm

1 2
0m x m xx

m m
+= =
+

and 1
2 1

2

0.500 m(25.0 kg) 20.0 kg.
0.625 m

xm m
x

⎛ ⎞= − = − =⎜ ⎟−⎝ ⎠
 

EVALUATE:   The mass of sand required is less than the mass of the plank since the center of the box is 
farther from the fulcrum than the center of gravity of the plank is. 
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11.44.  IDENTIFY:   Apply the first and second conditions of equilibrium to the door. 
SET UP:   The free-body diagram for the door is given in Figure 11.44. Let 1H  and 2H  be the forces exerted 
by the upper and lower hinges. Take the origin of coordinates at the bottom hinge (point A) and y+  upward. 

 

 EXECUTE:    
We are given that 

1v 2v /2 140 N.H H w= = =  

x xF ma∑ =  

2h 1h 0H H− =  

1h 2hH H=  
The horizontal components 
of the hinge forces are equal 
in magnitude and opposite in 
direction. 

Figure 11.44   
 

Sum torques about point A. 1v ,H 2vH  and 2hH  all have zero moment arm and hence zero torque about an 
axis at this point. Thus 0Aτ∑ =  gives 1h (1.00 m) (0.50 m) 0H w− =  

1
1h 2

0.50 m (280 N) 140 N.
1.00 m

H w⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

The horizontal component of each hinge force is 140 N. 
EVALUATE:   The horizontal components of the force exerted by each hinge are the only horizontal forces 
so must be equal in magnitude and opposite in direction. With an axis at A, the torque due to the horizontal 
force exerted by the upper hinge must be counterclockwise to oppose the clockwise torque exerted by the 
weight of the door. So, the horizontal force exerted by the upper hinge must be to the left. You can also 
verify that the net torque is also zero if the axis is at the upper hinge. 

 11.45. IDENTIFY:   Apply the conditions of equilibrium to the climber. For the minimum coefficient of friction the 
static friction force has the value s s .f nμ=  

SET UP:   The free-body diagram for the climber is given in Figure 11.45. sf  and n are the vertical and horizontal 
components of the force exerted by the cliff face on the climber. The moment arm for the force T is (1 4 m)cos10 .. °  

EXECUTE:   (a) 0zτ∑ = gives (1.4 m)cos10 (1.1 m)cos35.0 0.T w° − ° =  

2(1.1 m)cos35.0 (82.0 kg)(9.80 m/s ) 525 N
(1.4 m)cos10

T °= =
°

 

(b) 0xF∑ = gives sin 25 0 222 N.n T= . ° =  0yF∑ = gives s cos25 0f T w+ ° − = and 
2

s (82.0 kg)(9.80 m/s ) (525 N)cos25 328 N.f = − ° =  

(c) s
s

328 N 1 48
222 N

f
n

μ = = = .  

EVALUATE:   To achieve this large value of sμ the climber must wear special rough-soled shoes. 
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Figure 11.45 

 

 11.46. IDENTIFY:   Apply 0zτ∑ =  to the bridge. 
SET UP:   Let the axis of rotation be at the left end of the bridge and let counterclockwise torques be positive. 
EXECUTE:   If Lancelot were at the end of the bridge, the tension in the cable would be (from taking 
torques about the hinge of the bridge) obtained from 

2 2(12.0 m) (600 kg)(9.80 m/s )(12.0 m) (200 kg)(9.80 m/s )(6 0 m),T = + .  so 6860 N.T =  
This exceeds the maximum tension that the cable can have, so Lancelot is going into the drink. To find the 
distance x Lancelot can ride, replace the 12.0 m multiplying Lancelot’s weight by x and the tension 

3
max by 5 80 10 NT T = . ×  and solve for x; 

3 2

2
(5.80 10  N)(12.0 m) (200 kg)(9.80 m/s )(6.0 m) 9.84 m.

(600 kg)(9.80 m/s )
x × −= =  

EVALUATE:   Before Lancelot goes onto the bridge, the tension in the supporting cable is 
2(6 0 m)(200 kg)(9 80 m/s ) 980 N,

12 0 m
T . .= =

.
 well below the breaking strength of the cable. As he moves 

along the bridge, the increase in tension is proportional to x, the distance he has moved along the bridge. 
 11.47. IDENTIFY:   For the airplane to remain in level flight, both 0 and 0.y zF τ∑ = ∑ =  

SET UP:   The free-body diagram for the airplane is given in Figure 11.47. Let y+  be upward. 
EXECUTE:   tail wing 0.F W F− − + =  Taking the counterclockwise direction as positive, and taking torques 

about the point where the tail force acts, wing(3.66 m)(6700 N) (3.36 m) 0.F− + =  This gives 

wing 7300 N(up)F =  and tail 7300 N 6700 N 600 N(down).F = − =  
EVALUATE:   We assumed that the wing force was upward and the tail force was downward. When we 
solved for these forces we obtained positive values for them, which confirms that they do have these 
directions. Note that the rear stabilizer provides a downward force. It does not hold up the tail of the 
aircraft, but serves to counter the torque produced by the wing. Thus balance, along with weight, is a 
crucial factor in airplane loading. 

 

 
Figure 11.47 
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 11.48. IDENTIFY:   Apply the first and second conditions of equilibrium to the truck. 
SET UP:   The weight on the front wheels is f ,n  the normal force exerted by the ground on the front 
wheels. The weight on the rear wheels is r ,n  the normal force exerted by the ground on the rear wheels. 
When the front wheels come off the ground, f 0.n →  The free-body diagram for the truck without the box 
is given in Figure 11.48a and with the box in Figure 11.48b. The center of gravity of the truck, without the 
box, is a distance x from the rear wheels. 
EXECUTE:   0yF∑ = in Figure 11.48a gives r f 8820 N 10,780 N 19,600 N.w n n= + = + =  

0zτ∑ =  in Figure 11.48a, with the axis at the rear wheels and counterclockwise torques positive, gives 

f (3 00 m) 0n wx. − =  and f (3 00 m) 10,780 N (3 00 m) 1 65 m.
19,600 N

nx
w
. ⎛ ⎞= = . = .⎜ ⎟

⎝ ⎠
 

(a) 0zτ∑ =  in Figure 11.48b, with the axis at the rear wheels and counterclockwise torques positive, gives 

box f(1 00 m) (3 00 m) (1 65 m) 0.w n w. + . − . =  

f
(3600 N)(1.00 m) (19,600 N)(1.65 m) 9580 N

3.00 m
n − += =  

0yF∑ =  gives r f boxn n w w+ = +  and r 3600 N 19,600 N 9580 N 13,620 N.n = + − =  There is 9580 N on 
the front wheels and 13,620 N on the rear wheels. 
(b) f 0.n →  0zτ∑ =  gives box (1 00 m) (1 65 m) 0w w. − . =  and 4

box 1 65 3 23 10  N.w w= . = . ×  
EVALUATE:   Placing the box on the tailgate in part (b) reduces the normal force exerted at the front wheels. 

 

   
Figure 11.48a, b 

 

 11.49. IDENTIFY:   In each case, to achieve balance the center of gravity of the system must be at the fulcrum. Use 
Eq. (11.3) to locate cm,x  with im  replaced by .iw  
SET UP:   Let the origin be at the left-hand end of the rod and take the x+  axis to lie along the rod. Let 

1 255 Nw = (the rod) so 1 1 00 m,x = .  let 2 225 Nw = so 2 2 00 mx = . and let 3 .w W=  In part (a) 

3 0 500 mx = . and in part (b) 3 0 750 m.x = .  

EXECUTE:   (a) cm 1 25 m.x = .  1 1 2 2 3 3
cm

1 2 3

w x w x w xx
w w w

+ +=
+ +

gives 1 2 cm 1 1 2 2
3

3 cm

( )w w x w x w xw
x x

+ − −=
−

 and 

(480 N)(1.25 m) (255 N)(1.00 m) (225 N)(2.00 m) 140 N.
0 500 m 1.25 m

W − −= =
. −

 

(b) Now 3 140 Nw W= =  and 3 0 750 m.x = .  

cm
(255 N)(1.00 m) (225 N)(2.00 m) (140 N)(0.750 m) 1 31 m.

255 N 225 N 140 N
x + += = .

+ +
 W must be moved 

1 31 m 1 25 m 6 cm. − . = to the right. 
EVALUATE:   Moving W to the right means cmx for the system moves to the right. 

 11.50. IDENTIFY:   The beam is at rest, so the forces and torques on it must balance. 
SET UP:   The weight of the beam acts 4.0 m from each end. Take the pivot at the hinge and let 
counterclockwise torques be positive. Represent the force exerted by the hinge by its horizontal and 
vertical components, hH  and v.H 0,xF∑ =  0yF∑ =  and 0.zτ∑ =  
EXECUTE:   (a) The free-body diagram for the beam is given in Figure 11.50a. 
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Figure 11.50 

 

(b) The moment arm for T is sketched in Figure 11.50b and is equal to (6.0 m)sin 40.0 .°  0zτ∑ =  gives 

(6.0 m)(sin 40.0 ) (4.0 m)(cos30.0 ) 0.T w° − ° =  
2

4(1500 kg)(9.80 m/s )(4.0 m)(cos30.0 ) 1.32 10 N.
(6.0 m)(sin 40.0 )

T °= = ×
°

 

(c) 0xF∑ =  gives h cos10.0 0H T− ° =  and 4
h cos10.0 1.30 10 N.H T= ° = ×  0yF∑ =  gives 

v sin10.0 0H T w+ ° − =  and 2 3 4
v sin10.0 (1500 kg)(9.80 m/s ) 2.29 10 N 1.24 10 N.H w T= − ° = − × = ×  

2 2 4
h v 1.80 10 N.H H H= + = ×  This is the force the hinge exerts on the beam. By Newton’s third law, 

the force the beam exerts on the wall has the same magnitude, so is 41.80 10 N.×  

EVALUATE:   The tension is less than the weight of the beam because it has a larger moment arm than the 
weight force has. 

 11.51. IDENTIFY:   Apply the conditions of equilibrium to the horizontal beam. Since the two wires are 
symmetrically placed on either side of the middle of the sign, their tensions are equal and are each equal to 

w /2 137 N.T mg= =  

SET UP:   The free-body diagram for the beam is given in Figure 11.51. vF  and hF are the horizontal and 
vertical forces exerted by the hinge on the sign. Since the cable is 2.00 m long and the beam is 1.50 m 

long, 1.50 mcos
2.00 m

θ = and 41.4 .θ = °  The tension cT in the cable has been replaced by its horizontal and 

vertical components. 

EXECUTE:   (a) 0zτ∑ = gives c beam w w(sin 41.4 )(1.50 m) (0.750 m) (1.50 m) (0.60 m) 0.T w T T° − − − =  
2

c
(12.0 kg)(9.80 m/s )(0.750 m) (137 N)(1.50 m 0.60 m) 379 N.

(1.50 m)(sin 41.4 )
T + += =

°
 

(b) 0yF∑ = gives v c beam wsin 41.4 2 0F T w T+ ° − − =  and 
2

v w beam c2 sin 41.4 2(137 N) (12.0 kg)(9.80 m/s ) (379 N)(sin 41.4 ) 141 N.F T w T= + − ° = + − ° =  The hinge 
must be able to supply a vertical force of 141 N. 
EVALUATE:   The force from the two wires could be replaced by the weight of the sign acting at a point 
0.60 m to the left of the right-hand edge of the sign. 
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Figure 11.51 

 

 11.52. IDENTIFY:   Apply 0zτ∑ =  to the hammer. 
SET UP:   Take the axis of rotation to be at point A. 
EXECUTE:   The force 1F  is directed along the length of the nail, and so has a moment arm of 

(0.080 m)sin 60 .°  The moment arm of 2F  is 0.300 m,  so 

2 1
(0.0800 m)sin 60 (400 N)(0.231) 92.4 N.

(0.300 m)
F F °= = =  

EVALUATE:   The force 2F that must be applied to the hammer handle is much less than the force that the 
hammer applies to the nail, because of the large difference in the lengths of the moment arms. 

 11.53. IDENTIFY:   Apply the first and second conditions of equilibrium to the bar. 
SET UP:   The free-body diagram for the bar is given in Figure 11.53. n is the normal force exerted on the 
bar by the surface. There is no friction force at this surface. hH  and vH  are the components of the force 
exerted on the bar by the hinge. The components of the force of the bar on the hinge will be equal in 
magnitude and opposite in direction. 

 

 EXECUTE:    
x xF ma∑ =  

h 160 NF H= =  

y yF ma∑ =  

v 0n H− =  

v ,H n=  but we don’t 
know either of these 
forces. 

Figure 11.53   
 

0Bτ∑ =  gives (4.00 m) (3.00 m) 0.F n− =  
4
3(4.00 m/3.00 m) (160 N) 213 Nn F= = =  and then v 213 N.H =  

Force of bar on hinge: 
horizontal component 160 N, to right 
vertical component 213 N, upward 
EVALUATE:   h v/ 160/213 0.750 3.00/4.00,H H = = =  so the force the hinge exerts on the bar is directed 

along the bar. n  and F  have zero torque about point A, so the line of action of the hinge force H  must 
pass through this point also if the net torque is to be zero. 

 11.54. IDENTIFY:   Apply 0zτ∑ = to the piece of art. 
SET UP:   The free-body diagram for the piece of art is given in Figure 11.54. 
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EXECUTE:   0zτ∑ = gives (1.25 m) (1.02 m) 0.BT w− =  1.02 m(426 N) 348 N.
1.25 mBT ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

0yF∑ = gives 0A BT T w+ − = and 426 N 348 N 78 N.A BT w T= − = − =  

EVALUATE:   If we consider the sum of torques about the center of gravity of the piece of art, AT has a 
larger moment arm than ,BT  and this is why .A BT T<  

 

 
Figure 11.54 

 

 11.55. IDENTIFY:   We want to locate the center of mass of the leg-cast system. We can treat each segment of the 
leg and cast as a point-mass located at its center of mass. 
SET UP:   The force diagram for the leg is given in Figure 11.55. The weight of each piece acts at the 
center of mass of that piece. The mass of the upper leg is ul (0.215)(37 kg) 7.955 kg.m = =  The mass of the 
lower leg is ll (0.140)(37 kg) 5.18 kg.m = =  Use the coordinates shown, with the origin at the hip and 

the x-axis along the leg, and use ul ul ll ll cast cast
cm

ul ll cast
.x m x m x mx

m m m
+ +=

+ +
 

 

 

Figure 11.55 
 

EXECUTE:   Using ul ul ll ll cast cast
cm

ul ll cast
,x m x m x mx

m m m
+ +=

+ +
 we have 

cm
(18.0 cm)(7.955 kg) (69.0 cm)(5.18 kg) (78.0 cm)(5.50 kg) 49.9 cm

7.955 kg 5.18 kg 5.50 kg
x + += =

+ +
 

EVALUATE:   The strap is attached to the left of the center of mass of the cast, but it is still supported by 
the rigid cast since the cast extends beyond its center of mass. 

11.56.  IDENTIFY:   Apply the first and second conditions for equilibrium to the bridge. 
SET UP:   Find torques about the hinge. Use L as the length of the bridge and T Band  w w for the weights 
of the truck and the raised section of the bridge. Take y+  to be upward and x+  to be to the right. 

EXECUTE:   (a) 3 1
T B4 2sin70 ( )cos30 ( )cos30 ,TL w L w L° = ° + °  so 

23 1
T B 54 2( )(9.80 m/s )cos30

2.84 10  N.
sin 70

m m
T

+ °
= = ×

°
 

(b) Horizontal: 5cos(70 30 ) 2.18 10  NT ° − ° = ×  (to the right).  

Vertical: 5 
T B sin 40 2.88 10 Nw w T+ − ° = ×  (upward). 
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EVALUATE:   If φ  is the angle of the hinge force above the horizontal,  
5

5
2.88 10  Ntan
2.18 10  N

φ ×=
×

 and 52.9 .φ = °  The hinge force is not directed along the bridge. 

11.57.  IDENTIFY:   The leg is not rotating, so the external torques on it must balance. 
SET UP:   The free-body diagram for the leg is given in Figure 11.57. Take the pivot at the hip joint and let 
counterclockwise torque be positive. There are also forces on the leg exerted by the hip joint but these 
forces produce no torque and aren’t shown. 0zτ∑ =  for no rotation. 
EXECUTE:   (a) 0zτ∑ =  gives (10 cm)(sin ) (44 cm)(cos ) 0.T wθ θ− =  

4.4 cos 4.4
sin tan
w wT θ

θ θ
= =  and for 60 ,θ = °  

24.4(15 kg)(9.80 m/s ) 370 N.
tan 60

T = =
°

 
 

 
Figure 11.57 

 

(b) For 5 ,θ = °  7400 N.T =  The tension is much greater when he just starts to raise his leg off the ground. 
(c) T → ∞  as 0.θ →  The person could not raise his leg. If the leg is horizontal so θ  is zero, the moment 
arm for T is zero and T produces no torque to rotate the leg against the torque due to its weight. 
EVALUATE:   Most of the exercise benefit of leg-raises occurs when the person just starts to raise his legs 
off the ground. 

 11.58. IDENTIFY:   Apply the first and second conditions of equilibrium to the ladder. 
SET UP:   Take torques about the pivot. Let y+  be upward. 
EXECUTE:   (a) The force VF  that the ground exerts on the ladder is given to be vertical, so 0zτ∑ =  
gives V (6 0 m)sin (250 N)(4 0 m)sin (750 N)(1 50 m)sin ,F θ θ θ. = . + .  so V 354 N.F =  
(b) There are no other horizontal forces on the ladder, so the horizontal pivot force is zero. The vertical 
force that the pivot exerts on the ladder must be (750 N) + (250 N) − (354 N) = 646 N, up, so the ladder 
exerts a downward force of 646 N  on the pivot. 
(c) The results in parts (a) and (b) are independent of .θ  
EVALUATE:   All the forces on the ladder are vertical, so all the moment arms are vertical and are 
proportional to sin .θ  Therefore, sinθ divides out of the torque equations and the results are independent of .θ  

11.59.  IDENTIFY:   Apply the first and second conditions for equilibrium to the strut. 
SET UP:   Denote the length of the strut by L . 
EXECUTE:   (a)  and .V mg w H T= + =  To find the tension, take torques about the pivot point. 

2 2sin cos cos
3 3 6

LT L w L mgθ θ θ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 and cot .
4

mgT w θ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

(b) Solving the above for ,w  and using the maximum tension for ,T  

2 tan (700 N) tan55 0 (7.50 kg)(9.80 m/s ) 926 N.
4

mgw T .θ= − = ° − =  

(c) Solving the expression obtained in part (a) for tan θ and letting 

0, tan 0.105,  so 6 00 .4
mgw .Tθ θ→ = = = °  

EVALUATE:   As the strut becomes closer to the horizontal, the moment arm for the horizontal tension 
force approaches zero and the tension approaches infinity. 
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11.60.  IDENTIFY:   Apply the first and second conditions of equilibrium to each rod. 
SET UP:   Apply 0yF∑ =  with y+  upward and apply 0zτ∑ =  with the pivot at the point of suspension 
for each rod. 
EXECUTE:   (a) The free-body diagram for each rod is given in Figure 11.60. 
(b) 0zτ∑ =   for the lower rod: (6 0 N)(4 0 cm) (8 0 cm)Aw. . = .  and 3 0 N.Aw = .  

0yF∑ =  for the lower rod: 3 6 0 N 9 0 NAS w= . + = .  

0zτ∑ =  for the middle rod: 3(3 0 cm) (5 0 cm)Bw S. = .  and 5 0 (9 0 N) 15 0 N.
3 0Bw .⎛ ⎞= . = .⎜ ⎟.⎝ ⎠

 

0yF∑ =  for the middle rod: 2 39 0 N 24 0 NS S= . + = .  

0zτ∑ =  for the upper rod: 2(2 0 cm) (6 0 cm)CS w. = .  and 2 0 (24 0 N) 8 0 N.
6 0Cw .⎛ ⎞= . = .⎜ ⎟.⎝ ⎠

 

0yF∑ =  for the upper rod: 1 2 32 0 N.CS S w= + = .  

In summary, 3 0 N,Aw = .  15 0 N,Bw = .  8 0 N.Cw = .  1 32 0 N,S = .  2 24 0 N,S = .  3 9 0 N.S = .  
(c) The center of gravity of the entire mobile must lie along a vertical line that passes through the point 
where 1S is located. 
EVALUATE:   For the mobile as a whole the vertical forces must balance, so 1 6.0 N.A B CS w w w= + + +  

 

 
Figure 11.60 

 

11.61.  IDENTIFY:   Apply 0zτ∑ =  to the beam. 
SET UP:   The free-body diagram for the beam is given in Figure 11.61. 
EXECUTE:   0, axis at hinge,zτ∑ =  gives (6.0 m)(sin 40 ) (3.75 m)(cos30 ) 0T w° − ° =  and  4900 N.T =  
EVALUATE:   The tension in the cable is less than the weight of the beam. sin 40T °  is the component of T 
that is perpendicular to the beam. 

 

 
Figure 11.61 
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11.62.  IDENTIFY:   Apply the first and second conditions of equilibrium to the drawbridge. 
SET UP:   The free-body diagram for the drawbridge is given in Figure 11.62. vH and hH are the 
components of the force the hinge exerts on the bridge. In part (c), apply z Iτ α∑ =  to the rotating bridge 
and in part (d) apply energy conservation to the bridge. 
EXECUTE:   (a) 0zτ∑ =  with the axis at the hinge gives (7.0 m)(cos37 ) (3.5 m)(sin37 ) 0w T− ° + ° =  and 

5cos37 (45,000 N)2 2 1.19 10  N.
sin37 tan37

T w °= = = ×
° °

 

(b) 0xF∑ =  gives 5
h 1.19 10  N.H T= = ×  0yF∑ =  gives 4

v 4.50 10  N.H w= = ×  

2 2 5
h v 1.27 10  N.H H H= + = ×  v

h
tan H

H
θ =  and 20.7 .θ = °  The hinge force has magnitude 

51.27 10  N × and is directed at 20.7° above the horizontal. 
(c) We can treat the bridge as a uniform bar rotating around one end, so 21/3 .I mL=  z zIτ α∑ =  gives 

2( /2)cos37 1/3 .mg L mL α° =  Solving for α  gives 
2

23 cos37 3(9.80 m/s )cos37 0.839 rad/s .
2 2(14.0 m)

g
L

α ° °= = =  

(d) Energy conservation gives 1 2,U K=  giving 2 2 21/2  (1/2)(1/3  ) .mgh I mLω ω= =  Trigonometry gives 

/2 sin37 .h L= °  Canceling m, the energy conservation equation gives 2 2( /2) sin37 (1/6) .g L L ω° =  Solving 

for ω  gives 
23 sin37 3(9.80 m/s )sin37 1.12 rad/s.

14.0 m
g

L
ω ° °= = =  

EVALUATE:   The hinge force is not directed along the bridge. If it were, it would have zero torque for an axis at the 
center of gravity of the bridge and for that axis the tension in the cable would produce a single, unbalanced torque. 

 

 
Figure 11.62 

 

11.63.  IDENTIFY:   The amount the tendon stretches depends on Young’s modulus for the tendon material. The 
foot is in rotational equilibrium, so the torques on it balance. 

SET UP:   T

0

/ .
/

F AY
l l

=
Δ

 The foot is in rotational equilibrium, so 0.zτ∑ =  

EXECUTE:   (a) The free-body diagram for the foot is given in Figure 11.63. T is the tension in the tendon 
and A is the force exerted on the foot by the ankle. (75 kg) ,n g=  the weight of the person. 

 

 
Figure 11.63 
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(b) Apply 0,zτ∑ =  letting counterclockwise torques be positive and with the pivot at the ankle: 

(4.6 cm) (12.5 cm) 0.T n− =  212.5 cm (75 kg)(9.80 m/s ) 2000 N,
4.6 cm

T ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 which is 2.72 times his weight. 

(c) The foot pulls downward on the tendon with a force of 2000 N. 

T
0 6 6 2

2000 N (25 cm) 4.4 mm.
(1470 10  Pa)(78 10 m )

Fl l
YA −

⎛ ⎞Δ = = =⎜ ⎟ × ×⎝ ⎠
 

EVALUATE:   The tension is quite large, but the Achilles tendon stretches about 4.4 mm, which is only 
about 1/6 of an inch, so it must be a strong tendon. 

11.64.  IDENTIFY:   Apply 0zτ∑ =  to the beam. 
SET UP:   The center of mass of the beam is 1.0 m from the suspension point. 
EXECUTE:   (a) Taking torques about the suspension point, 

(4.00 m)sin30 (140.0 N)(1.00 m)sin30 (100 N)(2.00 m)sin30 .w ° + ° = °  
The common factor of sin30° divides out, from which 15 0 N.w = .  
(b) In this case, a common factor of sin 45° would be factored out, and the result would be the same. 
EVALUATE:   All the forces are vertical, so the moments are all horizontal and all contain the factor sin ,θ  
where θ  is the angle the beam makes with the horizontal. 

11.65.  IDENTIFY:   Apply 0zτ∑ =  to the flagpole. 
SET UP:   The free-body diagram for the flagpole is given in Figure 11.65. Let clockwise torques be 
positive. θ  is the angle the cable makes with the horizontal pole. 
EXECUTE:   (a) Taking torques about the hinged end of the pole 
(200 N)(2.50 m) (600 N)(5.00 m) (5.00 m) 0.yT+ − = 700 N.yT =  The x-component of the tension is then 

2 2(1000 N) (700 N) 714 N.xT = − =  tan .
5.00 m

y

x

Th
T

θ = =  The height above the pole that the wire must 

be attached is 700(5.00 m) 4.90 m.
714

=  

(b) The y-component of the tension remains 700 N. Now 4 40 mtan
5 00 m

θ .=
.

and 41 35 ,θ = . °  so 

700 N 1060 N,
sin sin 41 35

yT
T

θ
= = =

. °
 an increase of 60 N. 

EVALUATE:   As the wire is fastened closer to the hinged end of the pole, the moment arm for T decreases 
and T must increase to produce the same torque about that end. 

 

 
Figure 11.65 

 

11.66.  IDENTIFY:   Apply 0∑ =F  to each object, including the point where D, C and B are joined. Apply 
0zτ∑ =  to the rod. 

SET UP:   To find  and ,C DT T  use a coordinate system with axes parallel to the cords. 
EXECUTE:   A and B are straightforward, the tensions being the weights suspended: 

2(0 0360 kg)(9 80 m/s ) 0 353 NAT = . . = .  and 2(0 0240 kg 0 0360 kg)(9 80 m s ) 0 588 N.BT /= . + . . = . Applying 
0xF∑ = and 0yF∑ =  to the point where the cords are joined, cos36 9 0 470 NC BT T= . ° = .  and 

cos53 1 0 353 N.D BT T= . ° = .  To find ,ET  take torques about the point where string F is attached. 



Equilibrium and Elasticity   11-27 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

2(1 00 m) sin36.9 (0.800 m) sin53.1 (0.200 m) (0.120 kg)(9.80 m/s )(0.500 m)E D CT T T. = ° + ° + and 
0 833 N.ET = .  

FT may be found similarly, or from the fact that E FT T+  must be the total weight of the ornament. 
2(0 180kg)(9 80m/s ) 1 76 N, from which 0 931 N.FT. . = . = .  

EVALUATE:   The vertical line through the spheres is closer to F than to E, so we expect ,F ET T>  and this 
is indeed the case. 

11.67.  IDENTIFY:   The torques must balance since the person is not rotating. 
SET UP:   Figure 11.67a shows the distances and angles. 90 .θ φ+ = °  56.3θ = °  and 33.7 .φ = °  The 
distances 1x  and 2x  are 1 (90 cm)cos 50.0 cmx θ= =  and 2 (135 cm)cos 112 cm.x φ= =  The free-body 
diagram for the person is given in Figure 11.67b. l 277 Nw =  is the weight of his feet and legs, and 

t 473 Nw =  is the weight of his trunk. fn  and ff  are the total normal and friction forces exerted on his 
feet and hn  and hf  are those forces on his hands. The free-body diagram for his legs is given in  
Figure 11.67c. F is the force exerted on his legs by his hip joints. For balance, 0.zτ∑ =  

 

 
Figure 11.67 

 

EXECUTE:   (a) Consider the force diagram of Figure 11.67b. 0zτ∑ =  with the pivot at his feet and 
counterclockwise torques positive gives h (162 cm) (277 N)(27.2 cm) (473 N)(103.8 cm) 0.n − − =  

h 350 N,n =  so there is a normal force of 175 N at each hand. f h l t 0n n w w+ − − =  so 

f l t h 750 N 350 N 400 N,n w w n= + − = − =  so there is a normal force of 200 N at each foot. 
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(b) Consider the force diagram of Figure 11.67c. 0zτ∑ =  with the pivot at his hips and counterclockwise 
torques positive gives f l f(74.9 cm) (22.8 cm) (50.0 cm) 0.f w n+ − =  

f
(400 N)(50.0 cm) (277 N)(22.8 cm) 182.7 N.

74.9 cm
f −= =  There is a friction force of 91 N at each foot. 

0xF∑ =  in Figure 11.67b gives h f ,f f=  so there is a friction force of 91 N at each hand. 
EVALUATE:   In this position the normal forces at his feet and at his hands don’t differ very much. 

11.68.  IDENTIFY:   Apply Eq. (11.10) and the relation 0 0/ /w w l lσΔ = − Δ that is given in the problem. 

SET UP:   The steel rod in Example 11.5 has 4
0/ 9 0 10 .l l −Δ = . ×  For nickel, 112 1 10  Pa.Y = . ×  The width 

0w is 0 4 / .w A π=  

EXECUTE:   (a) 4 4 2
0 ( ) (0.23)(9.0 10 ) 4(0.30 10 m ) / 1.3 m.w l/l wσ π μ− −Δ = − Δ = − × × = −  

(b) 1  l wF AY AY
l wσ⊥

Δ Δ= =  and 
11 2 2 3

6
2 

(2.1 10  Pa) (  (2.0 10 m) ) 0.10 10 m 3.1 10  N.
0.42 2.0 10 m

F π − −

⊥ −
× × ×= = ×

×
 

EVALUATE:   For nickel and steel, 1σ < and the fractional change in width is less than the fractional 
change in length. 

11.69.  IDENTIFY:   Apply the equilibrium conditions to the crate. When the crate is on the verge of tipping it 
touches the floor only at its lower left-hand corner and the normal force acts at this point. The minimum 
coefficient of static friction is given by the equation s s .f nμ=  
SET UP:   The free-body diagram for the crate when it is ready to tip is given in Figure 11.69. 
EXECUTE:   (a) 0zτ∑ = gives (1 50 m)sin53 0 (1 10 m) 0.P w. . ° − . =  

31 10 m 1 15 10  N
[1 50 m][sin53 0 ]

P w⎛ ⎞.= = . ×⎜ ⎟. . °⎝ ⎠
 

(b) 0yF∑ =  gives cos53 0 0.n w P− − . ° =  
3 3cos53 0 1250 N (1 15 10  N)cos53 1 94 10  Nn w P= + . ° = + . × ° = . ×  

(c) 0yF∑ = gives 3
s sin53.0 (1.15 10  N)sin53.0 918 N.f P= ° = × ° =  

(d) s
s 3

918 N 0.473
1.94 10  N

f
n

μ = = =
×

 

EVALUATE:   The normal force is greater than the weight because P has a downward component. 
 

 
Figure 11.69 

11.70.  IDENTIFY:   Apply 0zτ∑ =  to the meterstick. 
SET UP:   The wall exerts an upward static friction force f and a horizontal normal force n on the stick. 
Denote the length of the stick by l. s .f nμ=  
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EXECUTE:   (a) Taking torques about the right end of the stick, the friction force is half the weight of the 
stick, /2.f w=  Taking torques about the point where the cord is attached to the wall (the tension in the 
cord and the friction force exert no torque about this point), and noting that the moment arm of the normal 
force is tan ,l θ  tan /2. Then, ( / ) tan 0 40,  so arctan (0 40) 22 .n w f nθ θ θ= = < . < . = °  

(b) Taking torques as in part (a), ( ) and  tan .
2 2
l lfl w w l x nl w wxθ= + − = +  In terms of the coefficient of 

friction s ,μ  s
/2 ( ) 3 2tan tan .

/2 2
f l l x l x
n l x l x

μ θ θ+ − −> = =
+ +

 Solving for x, s

s

 3tan 30 2 cm.
2 tan
lx θ μ

μ θ
−> = .

+
 

(c) In the above expression, setting s10 cm and 100 cm and solving for  givesx l μ= =  

s
(3 20 ) tan 0 625.

1 20
/l

/l
θμ −> = .

+
 

EVALUATE:   For 15θ = ° and without the block suspended from the stick, a value of s 0 268μ ≥ . is required 
to prevent slipping. Hanging the block from the stick increases the value of sμ that is required. 

11.71.  IDENTIFY:   Apply the first and second conditions of equilibrium to the crate. 
SET UP:   The free-body diagram for the crate is given in Figure 11.71. 

 

 (0 375 m)cos45wl = . °  

2 (1 25 m)cos45l = . °  

Let 1F  and 2F  be the vertical 
forces exerted by you and your 
friend. Take the origin at the 
lower left-hand corner of the 
crate (point A). 

Figure 11.71    
 

EXECUTE:   y yF ma∑ =  gives 1 2 0F F w+ − =  
2

1 2 (200 kg)(9 80 m/s ) 1960 NF F w+ = = . =  
0Aτ∑ =  gives 2 2 0wF l wl− =  

2
2

0 375 mcos451960 N 590 N
1 25 mcos45

wlF w
l

⎛ ⎞ . °⎛ ⎞= = =⎜ ⎟ ⎜ ⎟. °⎝ ⎠⎝ ⎠
 

Then 1 2 1960 N 590 N 1370 N.F w F= − = − =  
EVALUATE:   The person below (you) applies a force of 1370 N. The person above (your friend) applies a 
force of 590 N. It is better to be the person above. As the sketch shows, the moment arm for 1F  is less than 

for 2,F  so must have 1 2F F>  to compensate. 
11.72.  IDENTIFY:   Apply the first and second conditions for equilibrium to the forearm. 

SET UP:   The free-body diagram is given in Figure 11.72a, and when holding the weight in Figure 11.72b. 
Let y+  be upward. 
EXECUTE:   (a) Elbow 0τ∑ =  gives B(3 80 cm) (15 0 N)(15 0 cm)F . = . . and B 59 2 N.F = .  
(b) Elbow 0τ∑ =  gives B(3 80 cm) (15 0 N)(15 0 cm) (80 0 N)(33 0 cm)F . = . . + . . and B 754 N.F =  The biceps 
force has a short lever arm, so it must be large to balance the torques. 
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(c) 0yF∑ =  gives E B 15.0 N 80.0 N 0F F− + − − = and E 754N 15.0 N 80.0 N 659 N.F = − − =  
EVALUATE:   (d) The biceps muscle acts perpendicular to the forearm, so its lever arm stays the same, but 
those of the other two forces decrease as the arm is raised. Therefore the tension in the biceps muscle 

.decreases  
 

 

 
Figure 11.72a, b    

 

11.73.  IDENTIFY:   Apply 0zτ∑ =  to the forearm. 
SET UP:   The free-body diagram for the forearm is given in Figure 11.10 in the textbook. 

EXECUTE:   (a) 0, axis at elbowzτ∑ = gives 

2 2 2 2
(  sin ) 0. sin  so .h hDwL T D w T

h D L h D
θ θ−  =  = =

+ +
 

max max 2 2
.hDw T

L h D
=

+
 

(b) 
2

max max
2 22 2

1 ; the derivative is positive.dw T h D
dD h DL h D

⎛ ⎞
= −⎜ ⎟+⎝ ⎠+

 

EVALUATE:   (c) The result of part (b) shows that maxw increases when D increases, since the derivative is 
positive. maxw is larger for a chimp since D is larger. 

11.74.  IDENTIFY:   Apply the first and second conditions for equilibrium to the table. 
SET UP:   Label the legs as shown in Figure 11.74a. Legs A and C are 3.6 m apart. Let the weight be placed 
closest to legs C and D. By symmetry, A B= and .C D=  Redraw the table as viewed from the AC side. 
The free-body diagram in this view is given in Figure 11.74b. 
EXECUTE:   (about right end) 0zτ∑ = gives 2 (3.6 m) (90.0 N)(1.8 m) (1500 N)(0.50 m)A = + and 

130 N .A B= =  0yF∑ = gives 1590 N.A B C D+ + + =  Using 130 NA B= =  and C D=  
gives  670 N.C D= =  By Newton’s third law of motion, the forces A, B, C and D on the table are the same 
magnitude as the forces the table exerts on the floor. 
EVALUATE:   As expected, the legs closest to the 1500 N weight exert a greater force on the floor. 

 

 

 
Figure 11.74a, b   

 

11.75.  IDENTIFY:   Apply 0zτ∑ =  first to the roof and then to one wall. 
(a) SET UP:   Consider the forces on the roof; see Figure 11.75a. 

 



Equilibrium and Elasticity   11-31 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 V and H are the vertical and 
horizontal forces each wall 
exerts on the roof. 

20,000 Nw =  is the total  
weight of the roof. 
2V w=  so /2V w=  

Figure 11.75a   
 

Apply 0zτ∑ =  to one half of the roof, with the axis along the line where the two halves join. Let each half 
have length L. 
EXECUTE:   ( /2)( /2)(cos35 0 ) sin35 0 cos35 0w L HL VL. ° + . ° − ° =  
L divides out, and use /2V w=  

1
4sin35.0 cos35.0H w° = °  

7140 N
4tan35 0

wH = =
. °

 

EVALUATE:   By Newton’s third law, the roof exerts a horizontal, outward force on the wall. For torque 
about an axis at the lower end of the wall, at the ground, this force has a larger moment arm and hence 
larger torque the taller the walls. 
(b) SET UP:   The force diagram for one wall is given in Figure 11.75b. 

 

 Consider the torques on this wall. 

Figure 11.75b   
 

H is the horizontal force exerted by the roof, as considered in part (a). B is the horizontal force exerted by 

the buttress. Now the angle is 40 ,°  so 5959 N.
4 tan 40

wH = =
°

 

EXECUTE:   0,zτ∑ =   axis at the ground 
(40 m) (30 m) 0H B− =  and 7900 N.B =  

EVALUATE:   The horizontal force exerted by the roof is larger as the roof becomes more horizontal, since 
for torques applied to the roof the moment arm for H decreases. The force B required from the buttress is 
less the higher up on the wall this force is applied. 

11.76.  IDENTIFY:   Apply 0zτ∑ =  to the wheel. 
SET UP:   Take torques about the upper corner of the curb. 
EXECUTE:   The force F  acts at a perpendicular distance R h−  and the weight acts at a perpendicular 

distance 2 2 2( ) 2 .R R h Rh h− − = − Setting the torques equal for the minimum necessary force, 
22 .Rh hF mg

R h
−=

−
 

(b) The torque due to gravity is the same, but the force F  acts at a perpendicular distance 2 ,R h−  

so the minimum force is 2( ) 2 /(2 ).mg Rh h R h− −  
EVALUATE:   (c) Less force is required when the force is applied at the top of the wheel, since in this case 
F  has a larger moment arm. 

11.77.  IDENTIFY:   Apply the first and second conditions of equilibrium to the gate. 
SET UP:   The free-body diagram for the gate is given in Figure 11.77. 
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Figure 11.77 

 

Use coordinates with the origin at B. Let AH  and BH  be the forces exerted by the hinges at A and B. The 

problem states that AH  has no horizontal component. Replace the tension T  by its horizontal and vertical 
components. 
EXECUTE:   (a) 0Bτ∑ =  gives ( sin30.0 )(4.00 m) ( cos30.0 )(2.00 m) (2.00 m) 0T T w+ ° + ° − =  

(2sin30.0 cos30.0 )T w° + ° =  
500 N 268 N

2sin30.0 cos30.0 2sin30.0 cos30.0
wT = = =

° + ° ° + °
 

(b) x xF ma∑ =  says h cos30 0 0BH T− . ° =  

h cos30 0 (268 N)cos30 0 232 NBH T= . ° = . ° =  
(c) y yF ma∑ =  says v v sin30 0 0A BH H T w+ + . ° − =  

v v sin30.0 500 N (268 N)sin30.0 366 NA BH H w T+ = − ° = − ° =  
EVALUATE:   T has a horizontal component to the left so hBH  must be to the right, as these are the only 
two horizontal forces. Note that we cannot determine vAH  and vBH  separately, only their sum. 

11.78.  IDENTIFY:   Use Eq. (11.3) to locate the -coordinatex  of the center of gravity of the block combinations. 
SET UP:   The center of mass and the center of gravity are the same point. For two identical blocks, the 
center of gravity is midway between the center of the two blocks. 
EXECUTE:   (a) The center of gravity of the top block can be as far out as the edge of the lower block. The 
center of gravity of this combination is then 3 /4L  to the left of the right edge of the upper block, so the 
overhang is 3 /4.L  
(b) Take the two-block combination from part (a), and place it on top of the third block such that the 
overhang of 3 /4L  is from the right edge of the third block; that is, the center of gravity of the first two 
blocks is above the right edge of the third block. The center of mass of the three-block combination, 
measured from the right end of the bottom block, is /6L−  and so the largest possible overhang is 
(3 /4) ( /6) 11 /12.L L L+ =  Similarly, placing this three-block combination with its center of gravity over the 
right edge of the fourth block allows an extra overhang of /8,L  for a total of 25 /24.L  
(c) As the result of part (b) shows, with only four blocks, the overhang can be larger than the length of a 
single block. 

EVALUATE:   The sequence of maximum overhangs is 18 22 25, , ,....
24 24 24

L L L  The increase of overhang 

when one more block is added is decreasing. 
11.79.  IDENTIFY:   Apply the first and second conditions of equilibrium, first to both marbles considered as a 

composite object and then to the bottom marble. 
(a) SET UP:   The forces on each marble are shown in Figure 11.79. 
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 EXECUTE:    
2 1 47 NBF w= = .  

sin /2R Rθ =  so 30θ = °  
0,zτ∑ =  axis at P  

(2 cos ) 0CF R wRθ − =  

0 424 N
2cos30C

mgF = = .
°

 

0 424 NA CF F= = .  

Figure 11.79   
 

(b) Consider the forces on the bottom marble. The horizontal forces must sum to zero, so sin .AF n θ=  

0 848 N
sin30

AFn = = .
°

 

Could use instead that the vertical forces sum to zero 
cos 0BF mg n θ− − =  

0 848 N,
cos30
BF mgn −= = .

°
 which checks. 

EVALUATE:   If we consider each marble separately, the line of action of every force passes through the 
center of the marble so there is clearly no torque about that point for each marble. We can use the results 
we obtained to show that 0xF∑ =  and 0yF∑ =  for the top marble. 

11.80.  IDENTIFY:   Apply 0zτ∑ =  to the right-hand beam. 
SET UP:   Use the hinge as the axis of rotation and take counterclockwise rotation as positive. If wireF is the 
tension in each wire and 200 Nw = is the weight of each beam, wire2 2 0F w− = and wire .F w=  Let L be 
the length of each beam. 

EXECUTE:   (a) 0zτ∑ =  gives wire csin cos sin 0,
2 2 2 2 2

L LF L F wθ θ θ− − =  where θ  is the angle between the 

beams and cF  is the force exerted by the cross bar. The length drops out, and all other quantities except cF  are 

known, so 

1
wire 2

c wire1
2

sin( /2))  sin( /2)
(2 ) tan .

 cos( /2) 2
F w

F F w
θ θ θ

θ
−

= = −  Therefore 53(260 N) tan 130 N.
2

F °
= =  

(b) The crossbar is under compression, as can be seen by imagining the behavior of the two beams if the 
crossbar were removed. It is the crossbar that holds them apart. 
(c) The upward pull of the wire on each beam is balanced by the downward pull of gravity, due to the 
symmetry of the arrangement. The hinge therefore exerts no vertical force. It must, however, balance the 
outward push of the crossbar. The hinge exerts a force 130 N horizontally to the left for the right-hand 
beam and 130 N to the right for the left-hand beam. Again, it’s instructive to visualize what the beams 
would do if the hinge were removed. 
EVALUATE:   The force exerted on each beam increases as θ increases and exceeds the weight of the beam 
for 90 .θ ≥ °  

11.81.  IDENTIFY:   Apply the first and second conditions of equilibrium to the bale. 
(a) SET UP:   Find the angle where the bale starts to tip. When it starts to tip only the lower left-hand 
corner of the bale makes contact with the conveyor belt. Therefore the line of action of the normal force n 
passes through the left-hand edge of the bale. Consider 0zτΣ =  with point A at the lower left-hand corner. 



11-34   Chapter 11 

© Copyright 2012 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. 
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

Then 0nτ =  and 0,fτ =  so it must be that 0mgτ =  also. This means that the line of action of the gravity 
must pass through point A. Thus the free-body diagram must be as shown in Figure 11.81a. 

 

 
EXECUTE:   0 125 mtan

0 250 m
β .=

.
 

27 ,β = °  angle where tips 

Figure 11.81a    
 

SET UP:   At the angle where the bale is ready to slip down the incline sf  has its maximum possible value, 

s s .f nμ=  The free-body diagram for the bale, with the origin of coordinates at the cg is given in  
Figure 11.81b. 

 

 EXECUTE:    
y yF ma∑ =  

cos 0n mg β− =  
cosn mg β=  

s s cosf mgμ β=  

s( f  has maximum value 
when bale ready to slip) 

x xF ma∑ =  

s sin 0f mg β− =  

s cos sin 0mg mgμ β β− =  

stan β μ=  

s 0 60μ = .  gives that 31β = °  
Figure 11.81b   

 

27β = °  to tip; 31β = °  to slip, so tips first 
(b) The magnitude of the friction force didn’t enter into the calculation of the tipping angle; still tips at 

27 .β = °  For s 0 40μ = .  slips at arctan(0.40) 22 .β = = °  
Now the bale will start to slide down the incline before it tips. 
EVALUATE:   With a smaller sμ  the slope angle β  where the bale slips is smaller. 

11.82.  IDENTIFY:   Apply the equilibrium conditions to the pole. The horizontal component of the tension in the 
wire is 22.0 N. 
SET UP:   The free-body diagram for the pole is given in Figure 11.82. The tension in the cord equals the 
weight W. vF and hF are the components of the force exerted by the hinge. If either of these forces is actually 
in the opposite direction to what we have assumed, we will get a negative value when we solve for it. 
EXECUTE:   (a) sin37 0 22 0 NT . ° = . so 36 6 N.T = .  0zτ∑ =  gives ( sin37 0 )(1 75 m) (1 35 m) 0.T W. ° . − . =  

(22 0 N)(1 75 m) 28 5 N.
1 35 m

W . .= = .
.
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(b) 0yF∑ = gives v cos37 0 0F T w− . ° − =  and v (36 6 N)cos37 0 55 0 N 84 2 N.F = . . ° + . = .  0xF∑ = gives 

hsin37 0 0W T F− . ° − = and h 28 5 N 22 0 N 6 5 N.F = . − . = .  The magnitude of the hinge force is 
2 2

h v 84 5 N.F F F= + = .  

EVALUATE:   If we consider torques about an axis at the top of the pole, we see that hF  must be to the left 
in order for its torque to oppose the torque produced by the force W. 

 

 
Figure 11.82 

 

11.83.  IDENTIFY:   Apply the first and second conditions of equilibrium to the door. 
(a) SET UP:   The free-body diagram for the door is given in Figure 11.83. 

 

 
Figure 11.83 

 

Take the origin of coordinates at the center of the door (at the cg). Let ,An k ,Af Bn  and kBf  be the normal 
and friction forces exerted on the door at each wheel. 
EXECUTE:   y yF ma∑ =  

k k

k k

0
950 N

0

A B

A B

x x

A B

A B

n n w
n n w

F ma
f f F
F f f

+ − =
+ = =

∑ =
+ − =

= +

 

k k ,A Af nμ=  k k ,B Bf nμ=  so k k( ) (0 52)(950 N) 494 NA BF n n wμ μ= + = = . =  
0Bτ∑ =  

,Bn  kAf  and kBf  all have zero moment arms and hence zero torque about this point.  
Thus (1.00 m) (2.00 m) ( ) 0Aw n F h+ − − =  

(1.00 m) ( ) (950 N)(1.00 m) (494 N)(1.60 m) 80 N
2.00 m 2.00 mA

w F hn − −= = =  

And then 950 N 950 N 80 N 870 N.B An n= − = − =  
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(b) SET UP:   If h is too large the torque of F will cause wheel A to leave the track. When wheel A just 
starts to lift off the track An  and kAf  both go to zero. 
EXECUTE:   The equations in part (a) still apply. 

0A Bn n w+ − =  gives 950 NBn w= =  
Then k k 0 52(950 N) 494 NB Bf nμ= = . =  

k k 494 NA BF f f= + =  
(1.00 m) (2.00 m) ( ) 0Aw n F h+ − − =  

(1.00 m) (950 N)(1.00 m) 1.92 m
494 N

wh
F

= = =  

EVALUATE:   The result in part (b) is larger than the value of h in part (a). Increasing h increases the 
clockwise torque about B due to F and therefore decreases the clockwise torque that An  must apply. 

11.84.  IDENTIFY:   Apply the first and second conditions for equilibrium to the boom. 
SET UP:   Take the rotation axis at the left end of the boom. 
EXECUTE:   (a) The magnitude of the torque exerted by the cable must equal the magnitude of the torque 
due to the weight of the boom. The torque exerted by the cable about the left end is sin .TL θ  
For any angle ,θ  sin(180 ) sin ,θ θ° − =  so the tension T will be the same for either angle. The horizontal 
component of the force that the pivot exerts on the boom will be cos  or cos(180 ) cos .T T Tθ θ θ° − = −  

(b) From the result of part (a), T is proportional to 1
sinθ

 and this becomes infinite as 0 or  180 .θ θ→ → °  

(c) The tension is a minimum when sinθ  is a maximum, or 90 ,θ = °  a vertical cable. 
(d) There are no other horizontal forces, so for the boom to be in equilibrium, the pivot exerts zero 
horizontal force on the boom. 
EVALUATE:   As the cable approaches the horizontal direction, its moment arm for the axis at the pivot 
approaches zero, so T must go to infinity in order for the torque due to the cable to continue to equal the 
gravity torque. 

11.85.  IDENTIFY:   Apply the first and second conditions of equilibrium to the pole. 
(a) SET UP:   The free-body diagram for the pole is given in Figure 11.85. 

 

 n and f are the vertical and horizontal 
components of the force the ground 
exerts on the pole. 

x xF ma∑ =  
0f =  

The force exerted by the ground 
has no horizontal component. 

Figure 11.85   
 

EXECUTE:   0Aτ∑ =  
(7.0 m)cos (4.5 m)cos 0T mgθ θ+ − =  

(4.5 m/7.0 m) (4.5/7.0)(5700 N) 3700 NT mg= = =  
0yF∑ =  

0n T mg+ − =  
5700 N 3700 N 2000 Nn mg T= − = − =  

The force exerted by the ground is vertical (upward) and has magnitude 2000 N. 
EVALUATE:   We can verify that 0zτ∑ =  for an axis at the cg of the pole. T n>  since T acts at a point 
closer to the cg and therefore has a smaller moment arm for this axis than n does. 
(b) In the 0Aτ∑ =  equation the angle θ  divided out. All forces on the pole are vertical and their moment 
arms are all proportional to cos .θ  
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11.86.  IDENTIFY:   Apply 0zτ∑ =  to the slab. 

SET UP:   The free-body diagram is given in Figure 11.86a. 3 75 mtan
1 75 m

β .=
.

so 65 0 .β = . °  

20.0 90β α° + + = ° so 5.0 .α = °  The distance from the axis to the center of the block is 
2 23 75 m 1 75 m 2 07 m.

2 2
. .⎛ ⎞ ⎛ ⎞+ = .⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

EXECUTE:   (a) (2 07 m)sin5 0 (3 75 m)sin52 0 0.w T. . ° − . . ° =  0 061 .T w= .  Each worker must exert a force 
of 0 012 ,w.  where w is the weight of the slab. 
(b) As θ increases, the moment arm for w decreases and the moment arm for T increases, so the worker 
needs to exert less force. 
(c) 0T → when w passes through the support point. This situation is sketched in Figure 11.86b. 

(1 75 m)/2tan
(3 75 m)/2

θ .=
.

and 25 0 .θ = . °  If θ  exceeds this value the gravity torque causes the slab to tip over. 

EVALUATE:   The moment arm for T is much greater than the moment arm for w, so the force the workers 
apply is much less than the weight of the slab. 

 

 
Figure 11.86 a, b 

 

11.87.  IDENTIFY and SET UP:   0/  Y F l A l⊥= Δ  (Eq. 11.10 holds since the problem states that the stress is proportional 
to the strain.) Thus 0/ .l F l AY⊥Δ =  Use proportionality to see how changing the wire properties affects .lΔ  
EXECUTE:   (a) Change 0l  but F⊥  (same floodlamp), A (same diameter wire), and Y (same material) all 
stay the same. 

0
constant,l F

l AY
⊥Δ = =  so 1 2

01 02

l l
l l
Δ Δ=  

2 1 02 01 1( / ) 2 2(0.18 mm) 0.36 mml l l l lΔ = Δ = Δ = =  

(b) 2 21
4( /2) ,A d dπ π= =  so 0

21
4

F ll
d Yπ
⊥Δ =  

,F⊥  0,l  Y all stay the same, so 2 1
0 4( ) /( ) constantl d F l Yπ⊥Δ = =  

2 2
1 1 2 2( ) ( )l d l dΔ = Δ  

2 2
2 1 1 2( / ) (0 18 mm)(1/2) 0 045 mml l d dΔ = Δ = . = .  

(c) ,F⊥  0,l  A all stay the same so 0/ constantlY F l A⊥Δ = =  

1 1 2 2l Y l YΔ = Δ  
10 10

2 1 1 2( / ) (0 18 mm)(20 10  Pa/11 10  Pa) 0 33 mml l Y YΔ = Δ = . × × = .  
EVALUATE:   Greater l means greater ,lΔ  greater diameter means less ,lΔ  and smaller Y means greater .lΔ  
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11.88.  IDENTIFY:   For a spring, .F kx=  0 .F lY
A l

⊥=
Δ

 

SET UP:   F F W⊥ = = and .l xΔ =  For copper, 1011 10  Pa.Y = ×  

EXECUTE:   (a) 
0 0

.YA YAF l x
l l

⎛ ⎞ ⎛ ⎞
= Δ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 This in the form of F kx= , with 
0

.YAk
l

=  

(b) 
10 4 2

5

0

(11 10  Pa) (6.455 10  m) 1.9 10  N/m
0.750 m

YAk
l

π −× ×= = = ×  

(c) 5 3(1.9 10  N/m)(1.25 10  m) 240 NW kx −= = × × =  
EVALUATE:   For the wire the force constant is very large, much larger than for a typical spring. 

11.89.  IDENTIFY:   Apply Newton’s second law to the mass to find the tension in the wire. Then apply Eq. (11.10) 
to the wire to find the elongation this tensile force produces. 
(a) SET UP:   Calculate the tension in the wire as the mass passes through the lowest point. The free-body 
diagram for the mass is given in Figure 11.89a. 

 

 The mass moves in an arc of a  
circle with radius 0.50 m.R =   
It has acceleration rada  directed 
in toward the center of the circle, 
so at this point rada  is upward. 

Figure 11.89 a   
 

EXECUTE:   y yF ma∑ =  
2T mg mRω− =  so that 2( ).T m g Rω= +  

But ω  must be in rad/s: 
(120 rev/min)(2  rad/1 rev)(1 min/60 s) 12 57 rad/s.ω π= = .  

Then 2 2(12 0 kg)(9 80 m/s (0 50 m)(12 57 rad/s) ) 1066 N.T = . . + . . =  
Now calculate the elongation lΔ  of the wire that this tensile force produces: 

0F lY
A l

⊥=
Δ

 so 0
10 4 2

(1066 N)(0.50 m) 0.54 cm.
(7.0 10  Pa)(0.014 10  m )

F ll
YA
⊥

−Δ = = =
× ×

 

(b) SET UP:   The acceleration rada  is directed in toward the center of the circular path, and at this point in 
the motion this direction is downward. The free-body diagram is given in Figure 11.89b. 
 

 EXECUTE:    
y yF ma∑ =  

2mg T mRω+ =  
2( )T m R gω= −  

Figure 11.89 b   
 

2 2(12.0 kg)((0.50 m)(12.57 rad/s) 9.80 m/s ) 830 NT = − =  

0
10 4 2
(830 N)(0.50 m) 0.42 cm.

(7.0 10  Pa)(0.014 10  m )
F ll
YA
⊥

−Δ = = =
× ×

 

EVALUATE:   At the lowest point T and w are in opposite directions and at the highest point they are in the 
same direction, so T is greater at the lowest point and the elongation is greatest there. The elongation is at 
most 1% of the length. 
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11.90.  IDENTIFY:   
0

YAF l
l⊥

⎛ ⎞
= Δ⎜ ⎟
⎝ ⎠

 so the slope of the graph in part (a) depends on Young’s modulus. 

SET UP:   F⊥  is the total load, 20 N plus the added load. 
EXECUTE:   (a) The graph is given in Figure 11.90. 

(b) The slope is 4
2

60 N 2.0 10  N/m.
(3.32 3.02) 10  m− = ×

− ×
 

4 4 110
2 3 2

3.50 m(2.0 10  N/m) (2.0 10  N/m) 1.8 10  Pa
[0.35 10  m]

lY
rπ π −

⎛ ⎞⎛ ⎞= × = × = ×⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

(c) The stress is /F A⊥ . The total load at the proportional limit is 60 N 20 N 80 N.+ =  

8
3 2

80 Nstress 2.1 10  Pa
(0.35 10  m)π −= = ×

×
 

EVALUATE:   The value of Y we calculated is close to the value for iron, nickel and steel in Table 11.1. 
 

 
Figure 11.90 

 
 

11.91.  IDENTIFY:   Use the second condition of equilibrium to relate the tension in the two wires to the distance w 
is from the left end. Use Eqs. (11.8) and (11.10) to relate the tension in each wire to its stress and strain. 
(a) SET UP:   stress / ,F A⊥=  so equal stress implies /T A  same for each wire. 

2 2/2 00 mm /4 00 mmA BT T. = .  so 2 00B AT T= .  
The question is where along the rod to hang the weight in order to produce this relation between the 
tensions in the two wires. Let the weight be suspended at point C, a distance x to the right of wire A. The 
free-body diagram for the rod is given in Figure 11.91. 

 

 EXECUTE:    
0Cτ∑ =  

(1.05 m ) 0B AT x T x+ − − =  

Figure 11.91   
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But 2 00B AT T= .  so 2 00 (1 05 m ) 0A AT x T x. . − − =  
2 10 m 2 00x x. − . =  and 2 10 m/3 00 0 70 mx = . . = .  (measured from A). 
(b) SET UP:   stress/strainY =  gives that strain stress/ / .Y F AY⊥= =  
EXECUTE:   Equal strain thus implies 

2 11 2 11(2 00 mm )(1 80 10  Pa) (4 00 mm )(1 20 10  Pa)
A BT T=

. . × . . ×
 

4 00 1 20 1 333 .
2 00 1 80B A AT T T. .⎛ ⎞⎛ ⎞= = .⎜ ⎟⎜ ⎟. .⎝ ⎠⎝ ⎠

 

The 0Cτ∑ =  equation still gives (1 05 m ) 0.B AT x T x. − − =  
But now 1 333B AT T= .  so (1 333 )(1 05 m ) 0.A AT x T x. . − − =  
1 40 m 2 33x. = .  and 1 40 m/2 33 0 60 mx = . . = .  (measured from A). 
EVALUATE:   Wire B has twice the diameter so it takes twice the tension to produce the same stress. For 
equal stress the moment arm for BT  (0.35 m) is half that for AT  (0.70 m), since the torques must be equal. 
The smaller Y for B partially compensates for the larger area in determining the strain and for equal strain 
the moment arms are closer to being equal. 

11.92.  IDENTIFY:   Apply Eq. (11.10) and calculate .lΔ  
SET UP:   When the ride is at rest the tension F⊥  in the rod is the weight 1900 N of the car and occupants. 

When the ride is operating, the tension F⊥  in the rod is obtained by applying m∑ =F a  to a car and its 
occupants. The free-body diagram is shown in Figure 11.92. The car travels in a circle of radius sin ,r l θ=  
where l is the length of the rod and θ  is the angle the rod makes with the vertical. For steel, 

112 0 10  Pa.Y = . ×  8 00 rev/min 0 838 rad/s.ω = . = .  

EXECUTE:   (a) 40
11 4 2

(15.0 m)(1900 N) 1.78 10  m 0.18 mm
(2.0 10  Pa)(8.00 10  m )

l Fl
YA

−⊥
−Δ = = = × =

× ×
 

(b) x xF ma∑ = gives 2 2sin sinF mr mlθ ω θω⊥ = =  and 

2 2 3
2

1900 N (15 0 m)(0 838 rad/s) 2 04 10  N.
9 80 m/s

F mlω⊥
⎛ ⎞= = . . = . ×⎜ ⎟.⎝ ⎠

 

32 04 10  N (0 18 mm) 0 19 mm
1900 N

l
⎛ ⎞. ×Δ = . = .⎜ ⎟⎜ ⎟
⎝ ⎠

 

EVALUATE:   y yF ma∑ =  gives cosF mgθ⊥ =  and cos / .mg Fθ ⊥=  As ω increases F⊥ increases and 
cosθ  becomes small. Smaller cosθ means θ  increases, so the rods move toward the horizontal as 
ω increases. 

 

 
Figure 11.92 
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11.93.  IDENTIFY and SET UP:   The tension is the same at all points along the composite rod. Apply Eqs. (11.8) 
and (11.10) to relate the elongations, stresses and strains for each rod in the compound. 
EXECUTE:   Each piece of the composite rod is subjected to a tensile force of 44 00 10  N.. ×  

(a) 0F lY
A l

⊥=
Δ

 so 0F ll
YA
⊥Δ =  

b nl lΔ = Δ  gives that 0,b 0,n

b b n n

F l F l
Y A Y A
⊥ ⊥=  (b for brass and n for nickel); 0,nl L=  

But the F⊥  is the same for both, so 

n n
0,n 0,b

b b

Y Al l
Y A

=  

10 2

10 2
21 10  Pa 1 00 cm (1 40 m) 1 63 m
9 0 10  Pa 2 00 cm

L
⎛ ⎞⎛ ⎞× .= . = .⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟. × .⎝ ⎠⎝ ⎠

 

(b) stress / /F A T A⊥= =  

brass: 4 4 2 8stress / (4.00 10  N)/(2.00 10  m ) 2.00 10  PaT A −= = × × = ×  

nickel: 4 4 2 8stress / (4.00 10  N)/(1.00 10  m ) 4.00 10  PaT A −= = × × = ×  
(c) stress/strainY =  and strain stress/Y=  
brass: 8 10 3strain (2.00 10  Pa)/(9.0 10  Pa) 2.22 10−= × × = ×  

nickel: 8 10 3strain (4.00 10  Pa)/(21 10  Pa) 1.90 10−= × × = ×  
EVALUATE:   Larger Y means less lΔ  and smaller A means greater ,lΔ  so the two effects largely cancel 
and the lengths don’t differ greatly. Equal lΔ  and nearly equal l means the strains are nearly the same. But 
equal tensions and A differing by a factor of 2 means the stresses differ by a factor of 2. 

11.94.  IDENTIFY:   Apply 
0

.F lY
A l
⊥ ⎛ ⎞Δ= ⎜ ⎟

⎝ ⎠
 The height from which he jumps determines his speed at the ground. 

The acceleration as he stops depends on the force exerted on his legs by the ground. 
SET UP:   In considering his motion take y+  downward. Assume constant acceleration as he is stopped by 
the floor. 

EXECUTE:   (a) 4 2 9 4

0
(3.0 10  m )(14 10  Pa)(0.010) 4.2 10  NlF YA

l
−

⊥
⎛ ⎞Δ= = × × = ×⎜ ⎟
⎝ ⎠

 

(b) As he is stopped by the ground, the net force on him is net ,F F mg⊥= −  where F⊥  is the force exerted 

on him by the ground. From part (a), 4 42(4 2 10  N) 8 4 10  NF⊥ = . × = . ×  and 
4 2 48.4 10  N (70 kg)(9.80 m/s ) 8.33 10  N.F = × − = ×  netF ma=  gives 3 21.19 10  m/s .a = ×  

3 21.19 10  m/sya = − ×  since the acceleration is upward. 0y y yv v a t= +  gives 
3 2

0 ( 1.19 10  m/s )(0.030 s) 35.7 m/s.y yv a t= − = − × =  His speed at the ground therefore is 35 7 m/s.v = .  

This speed is related to his initial height h above the floor by 21
2 mv mgh=  and 

2 2

2
(35 7 m/s) 65 m.

2 2(9 80 m/s )
vh
g

.= = =
.

 

EVALUATE:   Our estimate is based solely on compressive stress; other injuries are likely at a much lower 
height. 

11.95.  IDENTIFY:   Apply Eq. (11.13) and calculate .VΔ  
SET UP:   The pressure increase is / ,w A  where w is the weight of the bricks and A is the area 2rπ  of the piston. 

EXECUTE:   
2

5
2

(1420 kg)(9 80 m/s ) 1 97 10  Pa
(0 150 m)

p
π

.Δ = = . ×
.
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0

Vp B
V
ΔΔ = −  gives 

5
0

8
( ) (1.97 10  Pa)(250 L) 0.0542 L

9.09 10  Pa
p VV
B

Δ ×Δ = − = − = −
×

 

EVALUATE:   The fractional change in volume is only 0.022%, so this attempt is not worth the effort. 
11.96.  IDENTIFY:   Apply the equilibrium conditions to the ladder combination and also to each ladder. 

SET UP:   The geometry of the 3-4-5 right triangle simplifies some of the intermediate algebra. Denote the 
forces on the ends of the ladders by and L RF F  (left and right). The contact forces at the ground will be 
vertical, since the floor is assumed to be frictionless. 
EXECUTE:   (a) Taking torques about the right end, (5 00 m) (480 N)(3 40 m) (360 N)(0 90 m),LF . = . + .  
 so 391 N.LF =  RF  may be found in a similar manner, or from 840 N 449 N.R LF F= − =  
(b) The tension in the rope may be found by finding the torque on each ladder, using the point A as the 
origin. The lever arm of the rope is 1.50 m. For the left ladder, 

(1 50 m) (3 20 m) (480 N)(1 60 m), so 322 1 NLT F T. = . − . = .  (322 N to three figures). As a check, using the 
torques on the right ladder, (1 50 m) (1 80 m) (360 N)(0 90 m)RT F. = . − .  gives the same result. 
(c) The horizontal component of the force at A must be equal to the tension found in part (b). The vertical 
force must be equal in magnitude to the difference between the weight of each ladder and the force on the 
bottom of each ladder, 480 N 391 N 449 N 360 N 89 N.− = − =  The magnitude of the force at A is then 

2 2(322 1 N) (89 N) 334 N.. + =  
(d) The easiest way to do this is to see that the added load will be distributed at the floor in such a way that 

(0.36)(800 N) 679 N, and (0.64)(800 N) 961 N.L L R RF F F F= + = = + =′ ′  Using these forces in the form for 
the tension found in part (b) gives 

(3 20 m) (480 N)(1 60 m) (1 80 m) (360 N)(0 90 m) 937 N.
(1 50 m) (1 50 m)

L RF FT ′ . − . ′ . − .= = =
. .

 

EVALUATE:   The presence of the painter increases the tension in the rope, even though his weight is 
vertical and the tension force is horizontal. 

11.97.  IDENTIFY:   Apply the first and second conditions for equilibrium to the bookcase. 
SET UP:   When the bookcase is on the verge of tipping, it contacts the floor only at its lower left-hand 
edge and the normal force acts at this point. When the bookcase is on the verge of slipping, the static 
friction force has its largest possible value, s .nμ  
EXECUTE:   (a) Taking torques about the left edge of the left leg, the bookcase would tip when 

(1500 )(0.90 m) 750 
(1.80 m)

F Ν= = Ν  and would slip when s( )(1500 ) 600 ,F μ= Ν = Ν  so the bookcase slides 

before tipping. 
(b) If F  is vertical, there will be no net horizontal force and the bookcase could not slide. Again taking 
torques about the left edge of the left leg, the force necessary to tip the case is 
(1500 )(0.90 m) 13.5 kN.

(0.10 m)
Ν =  

(c) To slide, the friction force is s (  cos ),f w Fμ θ= +  and setting this equal to sinF θ  and solving for F  

gives s

ssin  cos
wF μ

θ μ θ
=

−
 (to slide). To tip, the condition is that the normal force exerted by the right leg 

is zero, and taking torques about the left edge of the left leg, 

sin (1.80 m) cos (0.10 m) (0.90 m),F F wθ θ+ =  and solving for F  gives 
(1/9)cos 2sin

wF
θ θ

=
+

 (to tip). 

Setting the two expressions equal to each other gives s s((1/9)cos 2sin ) sin cosμ θ θ θ μ θ+ = −  and solving 

for θ  gives s

s

(10/9)arctan 66 .
(1 2 )

μθ
μ

⎛ ⎞
= = °⎜ ⎟−⎝ ⎠

 

EVALUATE:   The result in (c) depends not only on the numerical value of sμ but also on the width and 
height of the bookcase. 
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11.98.  IDENTIFY:   Apply 0zτ∑ =  to the post, for various choices of the location of the rotation axis. 
SET UP:   When the post is on the verge of slipping, sf  has its largest possible value, s s .f nμ=  
EXECUTE:   (a) Taking torques about the point where the rope is fastened to the ground, the lever arm of 
the applied force is /2h  and the lever arm of both the weight and the normal force is tan ,h θ  and so 

( ) tan .
2
hF n w h θ= −  

Taking torques about the upper point (where the rope is attached to the post), .
2
hfh F=  Using sf nμ≤  

and solving for F, 
1 1

s

1 1 1 12 2(400 N) 400 N.
tan 0.30 tan36.9

F w
μ θ

− −⎛ ⎞ ⎛ ⎞≤ − = − =⎜ ⎟ ⎜ ⎟°⎝ ⎠⎝ ⎠
 

(b) The above relations between ,  and  becomeF n f  3 2( )  tan , ,
5 5

F h n w h f Fθ= − =  and eliminating f and 

n and solving for F gives 
1

s

2/5 3/5 ,
tan

F w
μ θ

−
⎛ ⎞

≤ −⎜ ⎟
⎝ ⎠

 and substitution of numerical values gives 750 N to two 

figures. 
(c) If the force is applied a distance y above the ground, the above relations become 

( ) tan ,  ( ) ,Fy n w h F h y fhθ= − − =  which become, on eliminating and ,n f  
s

(1 / ) ( / ) .
tan

y h y hw F
μ θ

⎡ ⎤−≥ −⎢ ⎥
⎣ ⎦

 

As the term in square brackets approaches zero, the necessary force becomes unboundedly large. The 
limiting value of y is found by setting the term in square brackets equal to zero. Solving for y gives 

tan tan36.9 0.71.
tan 0.30 tan36.9s

y
h

θ
μ θ

°= = =
+ + °

 

EVALUATE:   For the post to slip, for an axis at the top of the post the torque due to F must balance the 
torque due to the friction force. As the point of application of F approaches the top of the post, its moment 
arm for this axis approaches zero. 

11.99.  IDENTIFY:   Apply 0zτ∑ =  to the girder. 
SET UP:   Assume that the center of gravity of the loaded girder is at /2,L  and that the cable is attached a 
distance x to the right of the pivot. The sine of the angle between the lever arm and the cable is then 

2 2/ (( /2) ) .h h L x+ −  
EXECUTE:   The tension is obtained from balancing torques about the pivot; 

2 2
/2,

(( /2) )

hxT wL
h L x

⎡ ⎤
⎢ ⎥ =
⎢ ⎥+ −⎣ ⎦

 where w  is the total load. The minimum tension will occur when the term 

in square brackets is a maximum; differentiating and setting the derivative equal to zero gives a maximum, 
and hence a minimum tension, at 2

min ( / ) ( /2).x h L L= +  However, if min , which occurs if / 2,x L h L> >  
the cable must be attached at L, the farthest point to the right. 
EVALUATE:   Note that minx  is greater than /2L but approaches /2L as 0.h →  The tension is a minimum 
when the cable is attached somewhere on the right-hand half of the girder. 

11.100. IDENTIFY:   Write ( )pVΔ or ( )pV γΔ  in terms of pΔ and VΔ and use the fact that pV or pV γ  is 
constant. 
SET UP:   B is given by Eq. (11.13). 

EXECUTE:   (a) For constant temperature ( 0),TΔ =  ( ) ( ) ( ) 0pV p V p VΔ = Δ + Δ =  and ( )
( )

p VB p
V

Δ= − =
Δ

 

(b) In this situation, 1( ) ( ) 0, ( ) 0,Vp V p V V p p
V

γ γγ γ− ΔΔ + Δ = Δ + =  and ( ) .p VB p
V

γΔ= − =
Δ

 

EVALUATE:   We will see later that 1γ > , so B is larger in part (b). 
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11.101. IDENTIFY:   Apply Eq. (11.10) to calculate .lΔ  
SET UP:   For steel, 112 0 10  PaY = . × . 

EXECUTE:   (a) From Eq. (11.10), 
2

4
10 7 2

(4.50 kg)(9.80 m/s )(1.50 m) 6.62 10  m, or 0.66 mm
(20 10  Pa)(5.00 10 m )

l −
−Δ = = ×

× ×
 to two 

figures. 
(b) 2 2(4.50 kg)(9.80 m/s )(0.0500 10  m) 0.022 J.−× =  
(c) The magnitude F  will vary with distance; the average force is 0(0.0250 cm/ ) 16.7 N,YA l =  and so the 

work done by the applied force is 2 3(16.7 N)(0.0500 10  m) 8.35 10  J.− −× = ×  
(d) The average force the wire exerts is (4.50 kg) 16.7 N 60.8 N.g + =  The work done is negative, and 

equal to 2 2(60.8 N)(0.0500 10  m) 3.04 10  J.− −− × = − ×  

(e) Eq. (11.10) is in the form of Hooke’s law, with 
0

.YAk
l

=  21
el 2 ,U kx=  so 2 21

el 2 12 ( ).U k x xΔ = −  

4
1 6.62 10  mx −= × and 3 4

2 10.500 10  m 11.62 10  m.x x− −= × + = ×  The change in elastic potential energy is 
10 7 2

4 2 4 2 2(20 10  Pa)(5.00 10  m ) ((11.62 10  m) (6.62 10  m) ) 3.04 10  J,
2(1.50 m)

−
− − −× × × − × = ×  the negative of the 

result of part (d). 
EVALUATE:   The tensile force in the wire is conservative and obeys the relation .W U= −Δ  


