- 37. The total energy is given by $E = \frac{1}{2}kx_m^2$, where k is the spring constant and x_m is the amplitude. We use the answer from part (b) to do part (a), so it is best to look at the solution for part (b) first.
 - (a) The fraction of the energy that is kinetic is

$$\frac{K}{E} = \frac{E - U}{E} = 1 - \frac{U}{E} = 1 - \frac{1}{4} = \frac{3}{4}$$

where the result from part (b) has been used.

(b) When $x = \frac{1}{2}x_m$ the potential energy is $U = \frac{1}{2}kx^2 = \frac{1}{8}kx_m^2$. The ratio is

$$\frac{U}{E} = \frac{\frac{1}{8}kx_m^2}{\frac{1}{2}kx_m^2} = \frac{1}{4} \ .$$

(c) Since $E = \frac{1}{2}kx_m^2$ and $U = \frac{1}{2}kx^2$, $U/E = x^2/x_m^2$. We solve $x^2/x_m^2 = 1/2$ for x. We should get $x = x_m/\sqrt{2}$.