- 29. (a) First consider a single spring with spring constant k and unstretched length L. One end is attached to a wall and the other is attached to an object. If it is elongated by Δx the magnitude of the force it exerts on the object is F = k Δx. Now consider it to be two springs, with spring constants k₁ and k₂, arranged so spring 1 is attached to the object. If spring 1 is elongated by Δx₁ then the magnitude of the force exerted on the object is F = k₁ Δx₁. This must be the same as the force of the single spring, so k Δx = k₁ Δx₁. We must determine the relationship between Δx and Δx₁. The springs are uniform so equal unstretched lengths are elongated by Δx₂ = CL₂, where C is a constant of proportionality. The total elongation is Δx = Δx₁ + Δx₂ = C(L₁ + L₂) = CL₂(n + 1), where L₁ = nL₂ was used to obtain the last form. Since L₂ = L₁/n, this can also be written Δx = CL₁(n + 1)/n. We substitute Δx₁ = CL₁ and Δx = CL₁(n + 1)/n into k Δx = k₁ Δx₁ and solve for k₁. The result is k₁ = k(n + 1)/n.
 - (b) Now suppose the object is placed at the other end of the composite spring, so spring 2 exerts a force on it. Now $k \Delta x = k_2 \Delta x_2$. We use $\Delta x_2 = CL_2$ and $\Delta x = CL_2(n+1)$, then solve for k_2 . The result is $k_2 = k(n+1)$.
 - (c) To find the frequency when spring 1 is attached to mass m, we replace k in $(1/2\pi)\sqrt{k/m}$ with k(n+1)/n to obtain

$$f_1 = \frac{1}{2\pi} \sqrt{\frac{(n+1)k}{nm}} = \sqrt{\frac{n+1}{n}} f$$

where the substitution $f = (1/2\pi)\sqrt{k/m}$ was made.

(d) To find the frequency when spring 2 is attached to the mass, we replace k with k(n+1) to obtain

$$f_2 = \frac{1}{2\pi} \sqrt{\frac{(n+1)k}{m}} = \sqrt{n+1}f$$

where the same substitution was made.