64. (a) When the model is suspended (in air) the reading is F_g (its true weight, neglecting any buoyant effects caused by the air). When the model is submerged in water, the reading is lessened because of the buoyant force: $F_g - F_b$. We denote the difference in readings as Δm . Thus,

$$(F_q) - (F_q - F_b) = \Delta mg$$

which leads to $F_b = \Delta mg$. Since $F_b = \rho_w g V_m$ (the weight of water displaced by the model) we obtain

$$V_m = \frac{\Delta m}{\rho_w} = \frac{0.63776\,\mathrm{kg}}{1000\,\mathrm{kg/m^3}} = 6.3776 \times 10^{-4}~\mathrm{m^3}~.$$

(b) The $\frac{1}{20}$ scaling factor is discussed in the problem (and for purposes of significant figures is treated as exact). The actual volume of the dinosaur is

$$V_{\rm dino} = 20^3 V_m = 5.1021 \text{ m}^3$$
.

(c) Using $\rho \approx \rho_w = 1000 \,\mathrm{kg/m^3}$, we find

$$\rho = \frac{m_{\text{dino}}}{V_{\text{dino}}} \implies m_{\text{dino}} = \left(1000 \,\text{kg/m}^3\right) \left(5.1021 \,\text{m}^3\right)$$

which yields 5.1×10^3 kg for the *T. Rex* mass.

(d) We estimate the mass range for college students as $50 \le m \le 115$ kg. Dividing these values into the previous result leads to ratios r in the range of roughly $100 \ge r \ge 45$.