- 27. (a) Let V be the volume of the block. Then, the submerged volume is $V_s = 2V/3$. Since the block is floating, the weight of the displaced water is equal to the weight of the block, so $\rho_w V_s = \rho_b V$, where ρ_w is the density of water, and ρ_b is the density of the block. We substitute $V_s = 2V/3$ to obtain $\rho_b = 2\rho_w/3 = 2(1000 \,\text{kg/m}^3)/3 \approx 670 \,\text{kg/m}^3$.
 - (b) If ρ_o is the density of the oil, then Archimedes' principle yields $\rho_o V_s = \rho_b V$. We substitute $V_s = 0.90V$ to obtain $\rho_o = \rho_b/0.90 = 740 \,\mathrm{kg/m^3}$.