70. (a) The equation preceding Eq. 14-40 is adapted as follows:

$$\frac{m_2^3}{\left(m_1 + m_2\right)^2} = \frac{v^3 T}{2\pi G}$$

where  $m_1 = 0.9 M_{\text{Sun}}$  is the estimated mass of the star. With v = 70 m/s and T = 1500 days (or  $1500 \times 86400 = 1.3 \times 10^8 \text{ s}$ ), we find

$$\frac{m_2^3}{\left(0.9M_{\rm Sun}+m_2\right)^2} = 1.06\times 10^{23}~{\rm kg}~.$$

Since  $M_{\rm Sun} \approx 2 \times 10^{30}$  kg, we find  $m_2 \approx 7 \times 10^{27}$  kg. This solution may be reached in several ways (see discussion in the Sample Problem). Dividing by the mass of Jupiter (see Appendix C), we obtain  $m \approx 3.7 m_J$ .

(b) Since  $v = 2\pi r_1/T$  is the speed of the star, we find

$$r_1 = \frac{vT}{2\pi} = \frac{(70 \text{ m/s})(1.3 \times 10^8 \text{ s})}{2\pi} = 1.4 \times 10^9 \text{ m}$$

for the star's orbital radius. If r is the distance between the star and the planet, then  $r_2 = r - r_1$  is the orbital radius of the planet. And r can be figured from Eq. 14-37, which leads to

$$r_2 = r_1 \left( \frac{m_1 + m_2}{m_2} - 1 \right) = r_1 \frac{m_1}{m_2} = 3.7 \times 10^{11} \text{ m}$$

Dividing this by  $1.5 \times 10^{11}$  m (Earth's orbital radius,  $r_E$ ) gives  $r_2 = 2.5r_E$ .