12. We note that r_A (the distance from the origin to sphere A, which is the same as the separation between A and B) is 0.5, $r_C = 0.8$, and $r_D = 0.4$ (with SI units understood). The force \vec{F}_k that the k^{th} sphere exerts on m_B has magnitude Gm_km_B/r_k^2 and is directed from the origin towards m_k so that it is conveniently written as

$$\vec{F}_k = \frac{Gm_k m_B}{r_k^2} \left(\frac{x_k}{r_k} \hat{\mathbf{i}} + \frac{y_k}{r_k} \hat{\mathbf{j}} \right) = \frac{Gm_k m_B}{r_k^3} \left(x_k \hat{\mathbf{i}} + y_k \hat{\mathbf{j}} \right)$$

Consequently, the vector addition (where k equals A, B and D) to obtain the net force on m_B becomes

$$\vec{F}_{\text{net}} = \sum_{k} \vec{F}_{k}$$

$$= Gm_{B} \left(\left(\sum_{k} \frac{m_{k} x_{k}}{r_{k}^{3}} \right) \hat{\mathbf{i}} + \left(\sum_{k} \frac{m_{k} y_{k}}{r_{k}^{3}} \right) \hat{\mathbf{j}} \right)$$

$$= 3.7 \times 10^{-5} \hat{\mathbf{j}} \text{ N}.$$