11. We use m_1 for the 20 kg of the sphere at $(x_1,y_1)=(0.5,1.0)$ (SI units understood), m_2 for the 40 kg of the sphere at $(x_2,y_2)=(-1.0,-1.0)$, and m_3 for the 60 kg of the sphere at $(x_3,y_3)=(0,-0.5)$. The mass of the 20 kg object at the origin is simply denoted m. We note that $r_1=\sqrt{1.25},\ r_2=\sqrt{2},$ and $r_3=0.5$ (again, with SI units understood). The force \vec{F}_n that the $n^{\rm th}$ sphere exerts on m has magnitude Gm_nm/r_n^2 and is directed from the origin towards m_n , so that it is conveniently written as

$$\vec{F}_n = \frac{Gm_n m}{r_n^2} \left(\frac{x_n}{r_n} \hat{\mathbf{i}} + \frac{y_n}{r_n} \hat{\mathbf{j}} \right) = \frac{Gm_n m}{r_n^3} \left(x_n \hat{\mathbf{i}} + y_n \hat{\mathbf{j}} \right) .$$

Consequently, the vector addition to obtain the net force on m becomes

$$\vec{F}_{\text{net}} = \sum_{n=1}^{3} \vec{F}_{n}$$

$$= Gm \left(\left(\sum_{n=1}^{3} \frac{m_{n} x_{n}}{r_{n}^{3}} \right) \hat{\mathbf{i}} + \left(\sum_{n=1}^{3} \frac{m_{n} y_{n}}{r_{n}^{3}} \right) \hat{\mathbf{j}} \right)$$

$$= -9.3 \times 10^{-9} \, \hat{\mathbf{i}} - 3.2 \times 10^{-7} \, \hat{\mathbf{j}}$$

in SI units. Therefore, we find the net force magnitude is $|\vec{F}_{\rm net}| = 3.2 \times 10^{-7} \text{ N}.$