39. (a) Let F_A and F_B be the forces exerted by the wires on the log and let m be the mass of the log. Since the log is in equilibrium $F_A + F_B - mg = 0$. Information given about the stretching of the wires allows us to find a relationship between F_A and F_B . If wire A originally had a length L_A and stretches by ΔL_A , then $\Delta L_A = F_A L_A / AE$, where A is the cross-sectional area of the wire and E is Young's modulus for steel $(200 \times 10^9 \text{ N/m}^2)$. Similarly, $\Delta L_B = F_B L_B / AE$. If ℓ is the amount by which B was originally longer than A then, since they have the same length after the log is attached, $\Delta L_A = \Delta L_B + \ell$. This means

$$\frac{F_A L_A}{AE} = \frac{F_B L_B}{AE} + \ell \;.$$

We solve for F_B :

$$F_B = \frac{F_A L_A}{L_B} - \frac{AE\ell}{L_B}$$

We substitute into $F_A + F_B - mg = 0$ and obtain

$$F_A = \frac{mgL_B + AE\ell}{L_A + L_B} \; .$$

The cross-sectional area of a wire is $A = \pi r^2 = \pi (1.20 \times 10^{-3} \text{ m})^2 = 4.52 \times 10^{-6} \text{ m}^2$. Both L_A and L_B may be taken to be 2.50 m without loss of significance. Thus

$$F_A = \frac{(103 \text{ kg})(9.8 \text{ m/s}^2)(2.50 \text{ m}) + (4.52 \times 10^{-6} \text{ m}^2)(200 \times 10^9 \text{ N/m}^2)(2.0 \times 10^{-3} \text{ m})}{2.50 \text{ m} + 2.50 \text{ m}}$$

= 866 N.

(b) From the condition $F_A + F_B - mg = 0$, we obtain

$$F_B = mg - F_A = (103 \text{ kg})(9.8 \text{ m/s}^2) - 866 \text{ N} = 143 \text{ N}$$
.

(c) The net torque must also vanish. We place the origin on the surface of the log at a point directly above the center of mass. The force of gravity does not exert a torque about this point. Then, the torque equation becomes $F_A d_A - F_B d_B = 0$, which leads to

$$\frac{d_A}{d_B} = \frac{F_B}{F_A} = \frac{143 \,\mathrm{N}}{866 \,\mathrm{N}} = 0.165$$