27. The bar is in equilibrium, so the forces and the torques acting on it each sum to zero. Let T_l be the tension force of the left-hand cord, T_r be the tension force of the right-hand cord, and m be the mass of the bar. The equations for equilibrium are:

vertical force components	$T_l \cos \theta + T_r \cos \phi - mg = 0$
horizontal force components	$-T_l\sin\theta + T_r\sin\phi = 0$
torques	$mgx - T_r L\cos\phi = 0$.

The origin was chosen to be at the left end of the bar for purposes of calculating the torque.

The unknown quantities are T_l , T_r , and x. We want to eliminate T_l and T_r , then solve for x. The second equation yields $T_l = T_r \sin \phi / \sin \theta$ and when this is substituted into the first and solved for T_r the result is $T_r = mg \sin \theta / (\sin \phi \cos \theta + \cos \phi \sin \theta)$. This expression is substituted into the third equation and the result is solved for x:

$$x = L \frac{\sin \theta \cos \phi}{\sin \phi \cos \theta + \cos \phi \sin \theta} = L \frac{\sin \theta \cos \phi}{\sin(\theta + \phi)} .$$

The last form was obtained using the trigonometric identity $\sin(A+B) = \sin A \cos B + \cos A \sin B$. For the special case of this problem $\theta + \phi = 90^{\circ}$ and $\sin(\theta + \phi) = 1$. Thus,

 $x = L \sin \theta \cos \phi = (6.10 \text{ m}) \sin 36.9^{\circ} \cos 53.1^{\circ} = 2.20 \text{ m}.$