84. (Fourth problem in Cluster 1)

(a) We take the tangential acceleration of the bottom-most point on the (positively) accelerating disk to equal $R\alpha + a_{\rm com}$. This in turn must equal the (forward) acceleration of the truck $a_{\rm truck} = a > 0$. Since the disk is rolling toward the back of the truck, $a_{\rm com} < a$ which implies that α is positive. If the forward direction is rightward, then this makes it consistent to choose counterclockwise as the positive rotational sense, which is the usual convention. Thus, $\sum \tau = I\alpha$ becomes

$$f_s R = I\alpha$$
 where $I = \frac{1}{2}MR^2$

and
$$\sum F_x = Ma_{\text{com}}$$
 becomes

$$f_s = M (a - R\alpha)$$
.

Combining these two equations, we find $R\alpha = \frac{2}{3}a$. From the previous discussion, we see acceleration of the disk relative to the truck bed is $a_{\text{com}} - a = -R\alpha$, so this has a magnitude of $\frac{2}{3}$ and is directed leftward

(b) Returning to $R\alpha + a_{\text{com}} = a$ with our result that $R\alpha = \frac{2}{3}a$, we find $a_{\text{com}} = \frac{1}{3}a$. This is positive, hence rightward.