78. (a) Using Eq. 2-16 for the translational (center-of-mass) motion, we find

$$v^2 = v_0^2 + 2a\Delta x \implies a = -\frac{v_0^2}{2\Delta x}$$

which yields a = -4.11 for $v_0 = 43$ and $\Delta x = 225$ (SI units understood). The magnitude of the linear acceleration of the center of mass is therefore 4.11 m/s^2 .

- (b) With R = 0.250 m, Eq. 12-6 gives $|\alpha| = |a|/R = 16.4$ rad/s². If the wheel is going rightward, it is rotating in a clockwise sense. Since it is slowing down, this angular acceleration is counterclockwise (opposite to ω) so (with the usual convention that counterclockwise is positive) there is no need for the absolute value signs for α .
- (c) Eq. 12-8 applies with Rf_s representing the magnitude of the frictional torque. Thus, $Rf_s = I\alpha = (0.155)(16.4) = 2.55$ N·m.