50. The axis of rotation is in the middle of the rod, r = 0.25 m from either end. By Eq. 12-19, the initial angular momentum of the system (which is just that of the bullet, before impact) is $rmv \sin \phi$ where m = 0.003 kg and $\phi = 60^{\circ}$. Relative to the axis, this is counterclockwise and thus (by the common convention) positive. After the collision, the moment of inertia of the system is $I = I_{\rm rod} + mr^2$ where $I_{\rm rod} = ML^2/12$ by Table 11-2(e), with M = 4.0 kg and L = 0.5 m. Angular momentum conservation leads to

$$rmv\sin\phi = \left(\frac{1}{12}ML^2 + mr^2\right)\omega$$
.

Thus, with $\omega = 10 \text{ rad/s}$, we obtain

$$v = \frac{\left(\frac{1}{12}(4.0)(0.5)^2 + (0.003)(0.25)^2\right)(10)}{(0.25)(0.003)\sin 60^\circ} = 1.3 \times 10^3 \text{ m/s} .$$