41. (a) No external torques act on the system consisting of the two wheels, so its total angular momentum is conserved. Let I_1 be the rotational inertia of the wheel that is originally spinning (at ω_i) and I_2 be the rotational inertia of the wheel that is initially at rest. Then $I_1\omega_i = (I_1 + I_2)\omega_f$ and

$$\omega_f = \frac{I_1}{I_1 + I_2} \,\omega_i$$

where ω_f is the common final angular velocity of the wheels. Substituting $I_2 = 2I_1$ and $\omega_i = 800 \text{ rev/min}$, we obtain $\omega_f = 267 \text{ rev/min}$.

(b) The initial kinetic energy is $K_i = \frac{1}{2}I_1\omega_i^2$ and the final kinetic energy is $K_f = \frac{1}{2}(I_1 + I_2)\omega_f^2$. We rewrite this as

$$K_f = \frac{1}{2}(I_1 + 2I_1) \left(\frac{I_1\omega_i}{I_1 + 2I_1}\right)^2 = \frac{1}{6}I\omega_i^2$$
.

Therefore, the fraction lost, $(K_i - K_f)/K_i$, is

$$1 - \frac{K_f}{K_i} = 1 - \frac{\frac{1}{6}I\omega_i^2}{\frac{1}{2}I\omega_i^2} = \frac{2}{3} \; .$$