29. If we write (for the general case) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then (using Eq. 3-30) we find $\vec{r} \times \vec{v}$ is equal to

$$(yv_z - zv_y)\hat{\mathbf{i}} + (zv_x - xv_z)\hat{\mathbf{j}} + (xv_y - yv_x)\hat{\mathbf{k}}.$$

(a) The angular momentum is given by the vector product $\vec{\ell} = m\vec{r} \times \vec{v}$, where \vec{r} is the position vector of the particle, \vec{v} is its velocity, and m=3.0 kg is its mass. Substituting (with SI units understood) $x=3,\ y=8,\ z=0,\ v_x=5,\ v_y=-6$ and $v_z=0$ into the above expression, we obtain

$$\vec{\ell} = (3.0) ((3)(-6) - (8.0)(5.0)) \hat{k} = -1.7 \times 10^2 \hat{k} \text{ kg} \cdot \text{m}^2/\text{s}$$
.

(b) The torque is given by Eq. 12-14, $\vec{\tau} = \vec{r} \times \vec{F}$. We write $\vec{r} = x\hat{i} + y\hat{j}$ and $\vec{F} = F_x\hat{i}$ and obtain

$$\vec{\tau} = \left(x\,\hat{\mathbf{i}} + y\,\hat{\mathbf{j}}\right) \times \left(F_x\,\hat{\mathbf{i}}\right) = -yF_x\,\hat{\mathbf{k}}$$

- since $\hat{i} \times \hat{i} = 0$ and $\hat{j} \times \hat{i} = -\hat{k}$. Thus, we find $\vec{\tau} = -(8.0 \, \text{m})(-7.0 \, \text{N}) \, \hat{k} = 56 \, \hat{k} \, \, \text{N} \cdot \text{m}$.
- (c) According to Newton's second law $\vec{\tau} = d\vec{\ell}/dt$, so the rate of change of the angular momentum is $56\,\mathrm{kg\cdot m^2/s^2}$, in the positive z direction.