25. (a) We use $\vec{\ell} = m\vec{r} \times \vec{v}$, where \vec{r} is the position vector of the object, \vec{v} is its velocity vector, and m is its mass. Only the x and z components of the position and velocity vectors are nonzero, so Eq. 3-30 leads to $\vec{r} \times \vec{v} = (-xv_z + zv_x)$ \hat{j} . Therefore,

$$\vec{\ell} = m (-xv_z + zv_x) \hat{j}$$

= $(0.25 \text{ kg}) (-(2.0 \text{ m})(5.0 \text{ m/s}) + (-2.0 \text{ m})(-5.0 \text{ m/s})) \hat{j}$
= 0 .

(b) If we write $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then (using Eq. 3-30) we find $\vec{r} \times \vec{F}$ is equal to

$$(yF_z - zF_y)\hat{i} + (zF_x - xF_z)\hat{j} + (xF_y - yF_x)\hat{k}$$
.

With $x=2.0,\ z=-2.0,\ F_y=4.0$ and all other components zero (and SI units understood) the expression above yields $\vec{\tau}=\vec{r}\times\vec{F}=\left(8.0\,\hat{\mathbf{i}}+8.0\,\hat{\mathbf{k}}\right)\,\mathrm{N\cdot m}$.