22. If we write $\vec{r}' = x' \hat{i} + y' \hat{j} + z' \hat{k}$, then (using Eq. 3-30) we find $\vec{r}' \times \vec{F}$ is equal to

$$(y'F_z - z'F_y)\hat{i} + (z'F_x - x'F_z)\hat{j} + (x'F_y - y'F_x)\hat{k}$$
.

- (a) Here, $\vec{r}' = \vec{r}$ where $\vec{r} = 3\hat{\mathbf{i}} 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$, and $\vec{F} = \vec{F_1}$. Thus, dropping the primes in the above expression, we set (with SI units understood) x = 3, y = -2, z = 4, $F_x = 3$, $F_y = -4$ and $F_z = 5$. Then we obtain $\vec{\tau} = \vec{r} \times \vec{F_1} = \left(6.0\hat{\mathbf{i}} 3.0\hat{\mathbf{j}} 6.0\hat{\mathbf{k}}\right)$ N·m.
- (b) This is like part (a) but with $\vec{F} = \vec{F}_2$. We plug in $F_x = -3$, $F_y = -4$ and $F_z = -5$ and obtain $\vec{\tau} = \vec{r} \times \vec{F}_2 = \left(26\,\hat{\mathbf{i}} + 3.0\,\hat{\mathbf{j}} 18\,\hat{\mathbf{k}}\right)\,\text{N·m}$.
- (c) We can proceed in either of two ways. We can add (vectorially) the answers from parts (a) and (b), or we can first add the two force vectors and then compute $\vec{\tau} = \vec{r} \times \left(\vec{F}_1 + \vec{F}_2\right)$ (these total force components are computed in the next part). The result is $\left(32\,\hat{\mathbf{i}} 24\,\hat{\mathbf{k}}\right)\,\mathrm{N\cdot m}$.
- (d) Now $\vec{r}' = \vec{r} \vec{r}_0$ where $\vec{r}_0 = 3\hat{i} + 2\hat{j} + 4\hat{k}$. Therefore, in the above expression, we set x' = 0, y' = -4, z' = 0, $F_x = 3 3 = 0$, $F_y = -4 4 = -8$ and $F_z = 5 5 = 0$. We get $\vec{\tau} = \vec{r}' \times (\vec{F}_1 + \vec{F}_2) = 0$.