17. One method is to show that $\vec{r} \cdot (\vec{r} \times \vec{F}) = \vec{F} \cdot (\vec{r} \times \vec{F}) = 0$, but we choose here a more pedestrian approach: without loss of generality we take \vec{r} and \vec{F} to be in the xy plane – and will show that $\vec{\tau}$ has no x and y components (that it is parallel to the \hat{k} direction). We proceed as follows: in the general expression $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, we will set z = 0 to constrain \vec{r} to the xy plane, and similarly for \vec{F} . Using Eq. 3-30, we find $\vec{r} \times \vec{F}$ is equal to

$$(yF_z - zF_y)\hat{i} + (zF_x - xF_z)\hat{j} + (xF_y - yF_x)\hat{k}$$

and once we set z = 0 and $F_z = 0$ we obtain

$$\vec{\tau} = \vec{r} \times \vec{F} = (xF_y - yF_x)\,\hat{\mathbf{k}}$$

which demonstrates that $\vec{\tau}$ has no component in the xy plane.