- 8. We choose +x rightward (so $\vec{F} = 10\hat{i}$ in Newtons) and apply Eq. 9-14 and Eq. 11-37.
 - (a) Newton's second law in the x direction leads to

$$F - f_s = ma \implies f_s = 10 \,\mathrm{N} - (10 \,\mathrm{kg})(0.60 \,\mathrm{m/s^2})$$

which yields $f_s = 4.0$ N. As assumed in setting up the equation, $\vec{f_s}$ points leftward.

(b) With R = 0.30 m, we find the magnitude of the angular acceleration to be $|\alpha| = |a_{\rm com}|/R = 2.0 \,{\rm rad/s^2}$, from Eq. 12-6. The only force not directed towards (or away from) the center of mass is $\vec{f_s}$, and the torque it produces is clockwise:

$$|\tau| = I |\alpha|$$

(0.30 m)(4.0 N) = $I (2.0 \text{ rad/s}^2)$

which yields the wheel's rotational inertia about its center of mass: $I = 0.60 \text{ kg} \cdot \text{m}^2$.