73. We assume the given rate of 1.2×10^{-3} m/y is the linear speed of the top; it is also possible to interpret it as just the horizontal component of the linear speed but the difference between these interpretations is arguably negligible. Thus, Eq. 11-18 leads to

$$\omega = \frac{1.2 \times 10^{-3} \, \text{m/y}}{55 \, \text{m}} = 2.18 \times 10^{-5} \, \, \text{rad/y}$$

which we convert (since there are about 3.16×10^7 s in a year) to $\omega = 6.9 \times 10^{-13}$ rad/s.