- 18. The wheel starts turning from rest ($\omega_0 = 0$) at t = 0, and accelerates uniformly at $\alpha = +4.0 \text{ rad/s}^2$, which makes our choice for positive sense of rotation. At t_1 its angular displacement (relative to its orientation at t = 0) is θ_1 , and at t_2 its angular velocity is θ_2 , where $\theta_2 \theta_1 = \Delta \theta = 80 \text{ rad}$. Also, $t_2 t_1 = \Delta t = 4.0 \text{ s}$.
 - (a) We find the angular velocity at t_1 using Eq. 11-13 (set up to describe the interval $t_1 \le t \le t_2$).

$$\Delta \theta = \omega_1 \Delta t + \frac{1}{2} \alpha (\Delta t)^2 \implies \omega_1 = \frac{80 - \frac{1}{2} (4.0)(4.0)^2}{4.0}$$

which yields $\omega_1 = 12 \text{ rad/s}$.

(b) We obtain t_1 using Eq. 11-12:

$$\omega_1 = \omega_0 + \alpha t_1 \implies t_1 = \frac{12}{4.0} = 3.0 \text{ s}.$$