- 14. The wheel starts turning from rest ($\omega_0=0$) at t=0, and accelerates uniformly at $\alpha=2.00~{\rm rad/s^2}$. Between t_1 and t_2 it turns through $\Delta\theta=90.0~{\rm rad}$, where $t_2-t_1=\Delta t=3.00~{\rm s}$.
 - (a) We use Eq. 11-13 (with a slight change in notation) to describe the motion for $t_1 \le t \le t_2$:

$$\Delta \theta = \omega_1 \Delta t + \frac{1}{2} \alpha \left(\Delta t \right)^2 \implies \omega_1 = \frac{\Delta \theta}{\Delta t} - \frac{\alpha \Delta t}{2}$$

which we plug into Eq. 11-12, set up to describe the motion during $0 \le t \le t_1$:

$$\begin{array}{rcl} \omega_1 & = & \omega_0 + \alpha t_1 \\ \frac{\Delta \theta}{\Delta t} - \frac{\alpha \Delta t}{2} & = & \alpha t_1 \\ \frac{90.0}{3.00} - \frac{(2.00)(3.00)}{2} & = & (2.00)t_1 \end{array}$$

yielding $t_1 = 13.5 \text{ s.}$

(b) Plugging into our expression for ω_1 (in previous part) we obtain

$$\omega_1 = \frac{\Delta \theta}{\Delta t} - \frac{\alpha \Delta t}{2} = \frac{90.0}{3.00} - \frac{(2.00)(3.00)}{2} = 27.0 \text{ rad/s}.$$