89. (Third problem in **Cluster 1**)

We note that the problem has implicitly chosen the initial direction of motion (of m_1) as the positive direction. The questions to find "greatest" and "least" values are understood in terms of that axis choice (greatest = largest positive value, and least = the negative value of greatest magnitude or the smallest non-negative value). In addition to the assumptions mentioned in the problem, we also assume that m_1 cannot pass through m_2 (like a bullet might be able to). We are only able to use momentum conservation, since no assumptions about the total kinetic energy can be made.

$$m_1 v_{1i} = m_1 v_{1f} + m_2 v_{2f}$$

This (since $m_2 = 0.500m_1$) simplifies to

$$v_{1i} = v_{1f} + 0.500v_{2f}$$
.

(a) Using $v_{1i} = 10.0$ m/s, we have

$$v_{2f} = (20.0 \,\mathrm{m/s}) - 2.00 v_{1f}$$

(b) Ignoring physics considerations, our function is a line of infinite extent with negative slope.

- (c) The greatest possible value of v_{1f} occurs in the completely inelastic case (reasons mentioned in the next several parts) where (see solution to part (a) of previous problem) its value would be $(10.0)(2/3) \approx 6.67$ m/s.
- (d) Clearly, this is also the value of v_{2f} in this case.
- (e) They stick together (completely inelastic collision).
- (f) As mentioned above, we assume m_1 does not pass through m_2 and the problem states that there's no energy production so that $K_{1f} \leq K_{1i}$ which implies $v_{1f} \leq v_{1i}$.
- (g) The plot is shown below, in part (ℓ) .
- (h) With energy production not a possibility, then the "hardest rebound" m_1 can suffer is in an elastic collision, in which its final velocity (see part (b) of the previous problem) is $(10.0)(2-1)/3 \approx 3.33$ m/s.
- (i) Eq. 10-31 gives the velocity of m_2 as $(10.0)(4/3) \approx 13.3$ m/s (see also part (b) of previous problem).
- (j) As mentioned, this is an elastic collision (no "loss" of kinetic energy).
- (k) The problem states that there's no energy production so that $K_{1i} K_{1f} = K_{2f}$ and any greater value of $|v_{2f}|$ would violate this condition.
- (1) The above graph is redrawn here, with the dark part representing the physically allowed region; the small circles bounding the dark segment correspond to the values calculated in the previous parts of this problem.