- 81. (a) Since $\vec{F}_{net} = \frac{d\vec{p}}{dt}$ (Eq. 9-23), we read from value of F_x (see graph) that the rate of change of momentum is 4.0 kg·m/s² at t = 3.0 s.
 - (b) The impulse, which causes the change in momentum, is equivalent to the area under the curve in this graph (see Eq. 10-3). We break the area into that of a triangle $\frac{1}{2}(2.0 \text{ s})(4.0 \text{ N})$ plus that of a rectangle (1.0 s)(4.0 N), which yields a total of 8.0 N·s. Since the car started from rest, its momentum at t = 3.0 s must therefore be 8.0 kg·m/s.