- 69. We use the impulse-momentum theorem $\vec{J} = \Delta \vec{p}$ where $\vec{J} = \int \vec{F} dt$. Integrating the given expression for force from the moment it starts from rest up to a variable upper limit t, we have $\vec{J} = \left(16t \frac{1}{3}t^3\right)\hat{i}$ with SI units understood.
 - (a) Since $\left(16t \frac{1}{3}t^3\right)\hat{i} = m\vec{v}$ with m = 1.6, we obtain $\vec{v} = 24\hat{i}$ in meters-per-second, for t = 3.0 s.
 - (b) Setting $(16t \frac{1}{3}t^3)\hat{i} = m\vec{v}$ equal to zero leads to t = 6.9 s as the positive root.
 - (c) We can work through the $\frac{d\vec{v}}{dt}=0$ condition using our $\left(16t-\frac{1}{3}t^3\right)\hat{\mathbf{i}}=m\vec{v}$ relation, or more simply observe, from the outset, that this is equivalent to finding when the acceleration, hence the force, is zero. We obtain t=4.0 s as the positive root, which we plug into the $\left(16t-\frac{1}{3}t^3\right)\hat{\mathbf{i}}=m\vec{v}$ relation and find $\vec{v}_{\rm max}=27\,\hat{\mathbf{i}}$ m/s.