50. We orient our +x axis along the initial direction of motion, and specify angles in the "standard" way - so $\theta = -90^{\circ}$ for the particle B which is assumed to scatter "downward" and $\phi > 0$ for particle A which presumably goes into the first quadrant. We apply the conservation of linear momentum to the x and y axes respectively.

$$m_B v_B = m_B v'_B \cos \theta + m_A v'_A \cos \phi$$

$$0 = m_B v'_B \sin \theta + m_A v'_A \sin \phi$$

(a) Setting $v_B = v$ and $v'_B = v/2$, the *y*-momentum equation yields

$$m_A v'_A \sin \phi = m_B \, \frac{v}{2}$$

and the x-momentum equation yields

$$m_A v'_A \cos \phi = m_B v$$
.

Dividing these two equations, we find $\tan \phi = \frac{1}{2}$ which yields $\phi = 27^{\circ}$. If we choose to measure this from the final direction of motion for B, then this becomes $90^{\circ} + 27^{\circ} = 117^{\circ}$.

(b) We can *formally* solve for v'_A (using the y-momentum equation and the fact that $\sin \phi = 1/\sqrt{5}$)

$$v_A' = \frac{\sqrt{5}}{2} \, \frac{m_B}{m_A} \, v$$

but lacking numerical values for v and the mass ratio, we cannot fully determine the final speed of A. Note: substituting $\cos \phi = 2/\sqrt{5}$, into the *x*-momentum equation leads to exactly this same relation (that is, no new information is obtained which might help us determine an answer).