41. (a) Let m_1 be the mass of the body that is originally moving, v_{1i} be its velocity before the collision, and v_{1f} be its velocity after the collision. Let m_2 be the mass of the body that is originally at rest and v_{2f} be its velocity after the collision. Then, according to Eq. 10–30,

$$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i} \,.$$

We solve for m_2 to obtain

$$m_2 = \frac{v_{1i} - v_{1f}}{v_{1f} + v_{1i}} m_1 \ .$$

We combine this with $v_{1f} = v_{1i}/4$ to obtain $m_2 = 3m_1/5 = 3(2.0)/5 = 1.2$ kg.

(b) The speed of the center of mass is

$$v_{\rm com} = \frac{m_1 v_{1i} + m_2 v_{2i}}{m_1 + m_2} = \frac{(2.0)(4.0)}{2.0 + 1.2} = 2.5 \text{ m/s} .$$