25. (a) The magnitude of the deceleration of each of the cars is $a = f/m = \mu_k mg/m = \mu_k g$. If a car stops in distance d, then its speed v just after impact is obtained from Eq. 2-16:

$$v^2 = v_0^2 + 2ad \implies v = \sqrt{2ad} = \sqrt{2\mu_k gd}$$

since $v_0 = 0$ (this could alternatively have been derived using Eq. 8-31). Thus,

$$v_A = \sqrt{2(0.13)(9.8)(8.2)} = 4.6 \text{ m/s}$$
, and

- (b) $v_B = \sqrt{2(0.13)(9.8)(6.1)} = 3.9 \text{ m/s}.$
- (c) Let the speed of car B be v just before the impact. Conservation of linear momentum gives $m_B v = m_A v_A + m_B v_B$, or

$$v = \frac{(m_A v_A + m_B v_B)}{m_B} = \frac{(1100)(4.6) + (1400)(3.9)}{1400} = 7.5 \text{ m/s}.$$

The conservation of linear momentum during the impact depends on the fact that the only significant force (during impact of duration Δt) is the force of contact between the bodies. In this case, that implies that the force of friction exerted by the road on the cars is neglected during the brief Δt . This neglect would introduce some error in the analysis. Related to this is the assumption we are making that the transfer of momentum occurs at one location – that the cars do not slide appreciably during Δt – which is certainly an approximation (though probably a good one). Another source of error is the application of the friction relation Eq. 6-2 for the sliding portion of the problem (after the impact); friction is a complex force that Eq. 6-2 only partially describes.