65. Although it is expected that the boat will have a slight downward recoil (of brief duration) from the upward component of the father's leap, the problem's intent is to concentrate only on the horizontal components, since – if the effects of friction are small – the boat can continue moving horizontally for a significant time. Mass, velocity and momentum units are SI. We use coordinates with +x eastward and +y northward. Angles are positive if measured counterclockwise from the +x axis. Using magnitude-angle notation, momentum conservation is expressed as

$$\vec{p}_{0} = \vec{p}_{c} + \vec{p}_{f} + \vec{p}_{b}$$

(0 \angle 0^{\circ}) = (80 \angle 0^{\circ}) + (90 \angle - 90^{\circ}) + \vec{p}_{b}

where it must be stressed that the relevant component of the father's momentum is $\vec{p}_{\rm f} = (75)(1.5)\cos 37^{\circ}$ south (represented as $(90 \ \angle -90^{\circ})$) in the expression above). Thus, we obtain $\vec{p}_{\rm b} = (120 \ \angle 132^{\circ})$, which implies that the boat's (horizontal) velocity is $|\vec{p}|/m = 120/100 = 1.2$ m/s at an angle of 132° counterclockwise from east; this can also be expressed as 48° north of west.