43. (a) The thrust of the rocket is given by $T = Rv_{\rm rel}$, where R is the rate of fuel consumption and $v_{\rm rel}$ is the speed of the exhaust gas relative to the rocket. For this problem $R = 480 \,\rm kg/s$ and $v_{\rm rel} = 3.27 \times 10^3 \,\rm m/s$, so

$$T = (480 \text{ kg/s})(3.27 \times 10^3 \text{ m/s}) = 1.57 \times 10^6 \text{ N}$$
.

- (b) The mass of fuel ejected is given by $M_{\text{fuel}} = R\Delta t$, where Δt is the time interval of the burn. Thus, $M_{\text{fuel}} = (480 \text{ kg/s})(250 \text{ s}) = 1.20 \times 10^5 \text{ kg}$. The mass of the rocket after the burn is $M_f = M_i - M_{\text{fuel}} = 2.55 \times 10^5 \text{ kg} - 1.20 \times 10^5 \text{ kg} = 1.35 \times 10^5 \text{ kg}$.
- (c) Since the initial speed is zero, the final speed is given by

$$v_f = v_{\rm rel} \ln \frac{M_i}{M_f} = (3.27 \times 10^3) \ln \left(\frac{2.55 \times 10^5}{1.35 \times 10^5}\right) = 2.08 \times 10^3 \text{ m/s}.$$