39. Our notation (and, implicitly, our choice of coordinate system) is as follows: the mass of one piece is $m_1=m$; its velocity is $\vec{v}_1=-30\,\hat{\rm i}$ in SI units (m/s); the mass of the second piece is $m_2=m$; its velocity is $\vec{v}_2=-30\,\hat{\rm j}$ in SI units; and, the mass of the third piece is $m_3=3m$. Conservation of linear momentum requires

$$\begin{array}{rcl} m\vec{v}_{0} & = & m_{1}\vec{v}_{1} + m_{2}\vec{v}_{2} + m_{3}\vec{v}_{3} \\ 0 & = & m\left(-30\,\hat{\mathbf{i}}\right) + m\left(-30\,\hat{\mathbf{j}}\right) + 3m\vec{v}_{3} \end{array}$$

which leads to

$$\vec{v}_3 = 10\,\hat{\mathbf{i}} + 10\,\hat{\mathbf{j}}$$

in SI units. Its magnitude is $v_3 = 10\sqrt{2} \approx 14$ m/s and its angle is 45° counterclockwise from +x (in this system where we have m_1 flying off in the -x direction and m_2 flying off in the -y direction).