- 33. We assume no external forces act on the system composed of the two parts of the last stage. Hence, the total momentum of the system is conserved. Let m_c be the mass of the rocket case and m_p be the mass of the payload. At first they are traveling together with velocity v. After the clamp is released m_c has velocity v_c and m_p has velocity v_p . Conservation of momentum yields $(m_c + m_p)v = m_c v_c + m_p v_p$.
 - (a) After the clamp is released the payload, having the lesser mass, will be traveling at the greater speed. We write $v_p = v_c + v_{rel}$, where v_{rel} is the relative velocity. When this expression is substituted into the conservation of momentum condition, the result is

$$(m_c + m_p)v = m_c v_c + m_p v_c + m_p v_{\rm rel} .$$

Therefore,

$$v_c = \frac{(m_c + m_p) v - m_p v_{rel}}{m_c + m_p}$$

=
$$\frac{(290.0 \text{ kg} + 150.0 \text{ kg})(7600 \text{ m/s}) - (150.0 \text{ kg})(910.0 \text{ m/s})}{290.0 \text{ kg} + 150.0 \text{ kg}}$$

=
$$7290 \text{ m/s}.$$

- (b) The final speed of the payload is $v_p = v_c + v_{rel} = 7290 \text{ m/s} + 910.0 \text{ m/s} = 8200 \text{ m/s}.$
- (c) The total kinetic energy before the clamp is released is

$$K_i = \frac{1}{2} (m_c + m_p) v^2 = \frac{1}{2} (290.0 \,\mathrm{kg} + 150.0 \,\mathrm{kg}) (7600 \,\mathrm{m/s})^2 = 1.271 \times 10^{10} \,\mathrm{J}$$

(d) The total kinetic energy after the clamp is released is

$$K_f = \frac{1}{2} m_c v_c^2 + \frac{1}{2} m_p v_p^2$$

= $\frac{1}{2} (290.0 \text{ kg}) (7290 \text{ m/s})^2 + \frac{1}{2} (150.0 \text{ kg}) (8200 \text{ m/s})^2$
= $1.275 \times 10^{10} \text{ J}$.

The total kinetic energy increased slightly. Energy originally stored in the spring is converted to kinetic energy of the rocket parts.