9. (a) Since the can is uniform, its center of mass is at its geometrical center, a distance H/2 above its base. The center of mass of the soda alone is at its geometrical center, a distance x/2 above the base of the can. When the can is full this is H/2. Thus the center of mass of the can and the soda it contains is a distance

$$h = \frac{M(H/2) + m(H/2)}{M+m} = \frac{H}{2}$$

above the base, on the cylinder axis.

- (b) We now consider the can alone. The center of mass is H/2 above the base, on the cylinder axis.
- (c) As x decreases the center of mass of the soda in the can at first drops, then rises to H/2 again.
- (d) When the top surface of the soda is a distance x above the base of the can, the mass of the soda in the can is  $m_p = m(x/H)$ , where m is the mass when the can is full (x = H). The center of mass of the soda alone is a distance x/2 above the base of the can. Hence

$$h = \frac{M(H/2) + m_p(x/2)}{M + m_p} = \frac{M(H/2) + m(x/H)(x/2)}{M + (mx/H)} = \frac{MH^2 + mx^2}{2(MH + mx)} .$$

We find the lowest position of the center of mass of the can and soda by setting the derivative of h with respect to x equal to 0 and solving for x. The derivative is

$$\frac{dh}{dx} = \frac{2mx}{2(MH+mx)} - \frac{(MH^2 + mx^2)m}{2(MH+mx)^2} = \frac{m^2x^2 + 2MmHx - MmH^2}{2(MH+mx)^2}.$$

The solution to  $m^2x^2 + 2MmHx - MmH^2 = 0$  is

$$x = \frac{MH}{m} \left( -1 + \sqrt{1 + \frac{m}{M}} \right) \,.$$

The positive root is used since x must be positive. Next, we substitute the expression found for x into  $h = (MH^2 + mx^2)/2(MH + mx)$ . After some algebraic manipulation we obtain

$$h = \frac{HM}{m} \left( \sqrt{1 + \frac{m}{M}} - 1 \right) \; .$$