82. (a) This part is essentially a free-fall problem, which can be easily done with Chapter 2 methods. Instead, choosing energy methods, we take y=0 to be the ground level.

$$K_i + U_i = K + U \implies 0 + mgy_i = \frac{1}{2}mv^2 + 0$$

Therefore $v = \sqrt{2gy_i} = 9.2$ m/s, where $y_i = 4.3$ m.

(b) Eq. 8-29 provides $\Delta E_{\rm th}=f_k d$ for thermal energy generated by the kinetic friction force. We apply Eq. 8-31:

$$K_i + U_i = K + U \implies 0 + mgy_i = \frac{1}{2}mv^2 + 0 + f_k d$$

With $d=y_i,\,m=70$ kg and $f_k=500$ N, this yields v=4.8 m/s.