- 58. This can be worked entirely by the methods of Chapters 2-6, but we will use energy methods in as many steps as possible.
 - (a) By a force analysis in the style of Chapter 6, we find the normal force has magnitude $N = mg \cos \theta$ (where $\theta = 39^{\circ}$) which means $f_k = \mu_k mg \cos \theta$ where $\mu_k = 0.28$. Thus, Eq. 8-29 yields $\Delta E_{\rm th} = f_k d = \mu_k mg d \cos \theta$. Also, elementary trigonometry leads us to conclude that $\Delta U = -mg d \sin \theta$ where d = 3.7 m. Since $K_i = 0$, Eq. 8-31 (with W = 0) indicates that the final kinetic energy is

$$K_f = -\Delta U - \Delta E_{\rm th} = mgd \left(\sin \theta - \mu_k \cos \theta\right)$$

which leads to the speed at the bottom of the ramp

$$v = \sqrt{\frac{2K_f}{m}} = \sqrt{2gd(\sin\theta - \mu_k \cos\theta)} = 5.5 \text{ m/s}.$$

(b) This speed begins its horizontal motion, where $f_k = \mu_k mg$ and $\Delta U = 0$. It slides a distance d' before it stops. According to Eq. 8-31 (with W = 0),

$$0 = \Delta K + \Delta U + \Delta E_{th}$$

$$= 0 - \frac{1}{2}mv^2 + 0 + \mu_k mgd'$$

$$= -\frac{1}{2} \left(2gd \left(\sin \theta - \mu_k \cos \theta \right) \right) + \mu_k gd'$$

where we have divided by mass and substituted from part (a) in the last step. Therefore,

$$d' = \frac{d\left(\sin\theta - \mu_k \cos\theta\right)}{\mu_k} = 5.4 \text{ m}.$$

(c) We see from the algebraic form of the results, above, that the answers do not depend on mass. A 90 kg crate should have the same speed at the bottom and sliding distance across the floor, to the extent that the friction relations in Ch. 6 are accurate. Interestingly, since g does not appear in the relation for d', the sliding distance would seem to be the same if the experiment were performed on Mars!