- 6. We use Eq. 7-12 for W_g and Eq. 8-9 for U.
 - (a) The displacement between the initial point and Q has a vertical component of h-R downward (same direction as \vec{F}_g), so (with h=5R) we obtain $W_g=\vec{F}_g\cdot\vec{d}=4mgR$.
 - (b) The displacement between the initial point and the top of the loop has a vertical component of h-2R downward (same direction as \vec{F}_g), so (with h=5R) we obtain $W_g=\vec{F}_g\cdot\vec{d}=3mgR$.
 - (c) With y = h = 5R, we find U = 5mgR at P.
 - (d) With y = R, we find U = mgR at Q.
 - (e) With y = 2R, we find U = 2mgR at the top of the loop.
 - (f) The new information $(v_i \neq 0)$ is not involved in any of the preceding computations; the above results are unchanged.