- 4. We use Eq. 7-12 for W_g and Eq. 8-9 for U.
 - (a) The displacement between the initial point and A is horizontal, so $\phi = 90^{\circ}$ and $W_g = 0$ (since $\cos 90^{\circ} = 0$).
 - (b) The displacement between the initial point and B has a vertical component of h/2 downward (same direction as \vec{F}_g), so we obtain $W_g = \vec{F}_g \cdot \vec{d} = mgh/2$.
 - (c) The displacement between the initial point and C has a vertical component of h downward (same direction as \vec{F}_g), so we obtain $W_g = \vec{F}_g \cdot \vec{d} = mgh$.
 - (d) With the reference position at C, we obtain $U_B = mgh/2$.
 - (e) Similarly, we find $U_A = mgh$.
 - (f) All the answers are proportional to the mass of the object. If the mass is doubled, all answers are doubled.