- 34. (a) Since constant speed implies  $\Delta K = 0$ , we require  $W_a = -W_g$ , by Eq. 7-15. Since  $W_g$  is the same in both cases (same weight and same path), then  $W_a = 900$  J just as it was in the first case.
  - (b) Since the speed of 1.0 m/s is constant, then 8.0 meters is traveled in 8.0 seconds. Using Eq. 7-42, and noting that average power is *the* power when the work is being done at a steady rate, we have

$$P = \frac{W}{\Delta t} = \frac{900 \text{ J}}{8.0 \text{ s}}$$

which results in P = 113 W.

(c) Since the speed of 2.0 m/s is constant, 8.0 meters is traveled in 4.0 seconds. Using Eq. 7-42, with *average power* replaced by *power*, we have

$$P = \frac{W}{\Delta t} = \frac{900 \text{ J}}{4.0 \text{ s}}$$

from which we obtain P = 225 W.