33. (a) The power is given by P = Fv and the work done by \vec{F} from time t_1 to time t_2 is given by

$$W = \int_{t_1}^{t_2} P \,\mathrm{d}t = \int_{t_1}^{t_2} F v \,\mathrm{d}t \,.$$

Since \vec{F} is the net force, the magnitude of the acceleration is a = F/m, and, since the initial velocity is $v_0 = 0$, the velocity as a function of time is given by $v = v_0 + at = (F/m)t$. Thus

$$W = \int_{t_1}^{t_2} (F^2/m) t \, \mathrm{d}t = \frac{1}{2} (F^2/m) (t_2^2 - t_1^2) \, .$$

For $t_1 = 0$ and $t_2 = 1.0 \,\mathrm{s}$,

$$W = \frac{1}{2} \left(\frac{(5.0 \,\mathrm{N})^2}{15 \,\mathrm{kg}} \right) (1.0 \,\mathrm{s})^2 = 0.83 \,\mathrm{J} \;.$$

(b) For $t_1 = 1.0$ s and $t_2 = 2.0$ s,

$$W = \frac{1}{2} \left(\frac{(5.0 \,\mathrm{N})^2}{15 \,\mathrm{kg}} \right) \left((2.0 \,\mathrm{s})^2 - (1.0 \,\mathrm{s})^2 \right) = 2.5 \,\mathrm{J}$$

(c) For $t_1 = 2.0$ s and $t_2 = 3.0$ s,

$$W = \frac{1}{2} \left(\frac{(5.0 \,\mathrm{N})^2}{15 \,\mathrm{kg}} \right) \left((3.0 \,\mathrm{s})^2 - (2.0 \,\mathrm{s})^2 \right) = 4.2 \,\mathrm{J} \;.$$

(d) Substituting v = (F/m)t into P = Fv we obtain $P = F^2t/m$ for the power at any time t. At the end of the third second $(F \circ N)^2(2 \circ c)$

$$P = \frac{(5.0 \,\mathrm{N})^2 (3.0 \,\mathrm{s})}{15 \,\mathrm{kg}} = 5.0 \,\mathrm{W} \;.$$