- 18. We use d to denote the magnitude of the spelunker's displacement during each stage. The mass of the spelunker is m = 80.0 kg. The work done by the lifting force is denoted W_i where i = 1, 2, 3 for the three stages. We apply the work-energy theorem, Eq. 17-15.
 - (a) For stage 1, $W_1 mgd = \Delta K_1 = \frac{1}{2}mv_1^2$, where $v_1 = 5.00 \text{ m/s}$. This gives

$$W_1 = mgd + \frac{1}{2}mv_1^2 = (80.0)(9.8)(10.0) + \frac{1}{2}(80.0)(5.00)^2 = 8.84 \times 10^3 \,\mathrm{J}$$
.

(b) For stage 2, $W_2 - mgd = \Delta K_2 = 0$, which leads to

$$W_2 = mgd = (80.0 \text{ kg}) (9.8 \text{ m/s}^2) (10.0 \text{ m}) = 7.84 \times 10^3 \text{ J}.$$

(c) For stage 3, $W_3 - mgd = \Delta K_3 = -\frac{1}{2}mv_1^2$. We obtain

$$W_3 = mgd - \frac{1}{2}mv_1^2 = (80.0)(9.8)(10.0) - \frac{1}{2}(80.0)(5.00)^2 = 6.84 \times 10^3 \text{ J}$$