- 15. There is no acceleration, so the lifting force is equal to the weight of the object. We note that the person's pull \vec{F} is equal (in magnitude) to the tension in the cord.
 - (a) As indicated in the *hint*, tension contributes twice to the lifting of the canister: 2T = mg. Since, $|\vec{F}| = T$, we find $|\vec{F}| = 98$ N.
 - (b) To rise 0.020 m, two segments of the cord (see Fig. 7-28) must shorten by that amount. Thus, the amount of string pulled down at the left end (this is the magnitude of \vec{d} , the downward displacement of the hand) is d = 0.040 m.
 - (c) Since (at the left end) both \vec{F} and \vec{d} are downward, then Eq. 7-7 leads to $W = \vec{F} \cdot \vec{d} = (98)(0.040) = 3.9 \text{ J}.$
 - (d) Since the force of gravity \vec{F}_g (with magnitude mg) is opposite to the displacement $\vec{d}_c = 0.020$ m (up) of the canister, Eq. 7-7 leads to $W = \vec{F}_g \cdot \vec{d}_c = -(196)(0.020) = -3.9$ J. This is consistent with Eq. 7-15 since there is no change in kinetic energy.