- 9. We choose +x as the direction of motion (so \vec{a} and \vec{F} are negative-valued).
 - (a) Newton's second law readily yields $\vec{F} = (85 \text{ kg})(-2.0 \text{ m/s}^2)$ so that $F = |\vec{F}| = 170 \text{ N}$.
 - (b) From Eq. 2-16 (with v = 0) we have

$$0 = v_0^2 + 2a\Delta x \implies \Delta x = -\frac{(37 \text{ m/s})^2}{2(-2.0 \text{ m/s}^2)}$$

which gives $\Delta x = 3.4 \times 10^2$ m. Alternatively, this can be worked using the work-energy theorem.

- (c) Since \vec{F} is opposite to the direction of motion (so the angle ϕ between \vec{F} and $\vec{d} = \Delta x$ is 180°) then Eq. 7-7 gives the work done as $W = -F\Delta x = -5.8 \times 10^4$ J.
- (d) In this case, Newton's second law yields $\vec{F} = (85 \text{ kg})(-4.0 \text{ m/s}^2)$ so that $F = |\vec{F}| = 340 \text{ N}$.
- (e) From Eq. 2-16, we now have

$$\Delta x = -\frac{(37 \,\mathrm{m/s})^2}{2(-4.0 \,\mathrm{m/s}^2)} = 1.7 \times 10^2 \,\mathrm{m}$$

(f) The force \vec{F} is again opposite to the direction of motion (so the angle ϕ is again 180°) so that Eq. 7-7 leads to $W = -F\Delta x = -5.8 \times 10^4$ J. The fact that this agrees with the result of part (c) provides insight into the concept of work.